BUG_ON() Conversion in fs/buffer.c
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / fork.c
bloba02063903aaabffcad69de5b662183f7ca5b1c97
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/cn_proc.h>
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/uaccess.h>
51 #include <asm/mmu_context.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlbflush.h>
56 * Protected counters by write_lock_irq(&tasklist_lock)
58 unsigned long total_forks; /* Handle normal Linux uptimes. */
59 int nr_threads; /* The idle threads do not count.. */
61 int max_threads; /* tunable limit on nr_threads */
63 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
65 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
67 EXPORT_SYMBOL(tasklist_lock);
69 int nr_processes(void)
71 int cpu;
72 int total = 0;
74 for_each_online_cpu(cpu)
75 total += per_cpu(process_counts, cpu);
77 return total;
80 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
81 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
82 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
83 static kmem_cache_t *task_struct_cachep;
84 #endif
86 /* SLAB cache for signal_struct structures (tsk->signal) */
87 kmem_cache_t *signal_cachep;
89 /* SLAB cache for sighand_struct structures (tsk->sighand) */
90 kmem_cache_t *sighand_cachep;
92 /* SLAB cache for files_struct structures (tsk->files) */
93 kmem_cache_t *files_cachep;
95 /* SLAB cache for fs_struct structures (tsk->fs) */
96 kmem_cache_t *fs_cachep;
98 /* SLAB cache for vm_area_struct structures */
99 kmem_cache_t *vm_area_cachep;
101 /* SLAB cache for mm_struct structures (tsk->mm) */
102 static kmem_cache_t *mm_cachep;
104 void free_task(struct task_struct *tsk)
106 free_thread_info(tsk->thread_info);
107 free_task_struct(tsk);
109 EXPORT_SYMBOL(free_task);
111 void __put_task_struct_cb(struct rcu_head *rhp)
113 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
115 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
116 WARN_ON(atomic_read(&tsk->usage));
117 WARN_ON(tsk == current);
119 if (unlikely(tsk->audit_context))
120 audit_free(tsk);
121 security_task_free(tsk);
122 free_uid(tsk->user);
123 put_group_info(tsk->group_info);
125 if (!profile_handoff_task(tsk))
126 free_task(tsk);
129 void __init fork_init(unsigned long mempages)
131 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
132 #ifndef ARCH_MIN_TASKALIGN
133 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
134 #endif
135 /* create a slab on which task_structs can be allocated */
136 task_struct_cachep =
137 kmem_cache_create("task_struct", sizeof(struct task_struct),
138 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
139 #endif
142 * The default maximum number of threads is set to a safe
143 * value: the thread structures can take up at most half
144 * of memory.
146 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
149 * we need to allow at least 20 threads to boot a system
151 if(max_threads < 20)
152 max_threads = 20;
154 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
155 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
156 init_task.signal->rlim[RLIMIT_SIGPENDING] =
157 init_task.signal->rlim[RLIMIT_NPROC];
160 static struct task_struct *dup_task_struct(struct task_struct *orig)
162 struct task_struct *tsk;
163 struct thread_info *ti;
165 prepare_to_copy(orig);
167 tsk = alloc_task_struct();
168 if (!tsk)
169 return NULL;
171 ti = alloc_thread_info(tsk);
172 if (!ti) {
173 free_task_struct(tsk);
174 return NULL;
177 *tsk = *orig;
178 tsk->thread_info = ti;
179 setup_thread_stack(tsk, orig);
181 /* One for us, one for whoever does the "release_task()" (usually parent) */
182 atomic_set(&tsk->usage,2);
183 atomic_set(&tsk->fs_excl, 0);
184 tsk->btrace_seq = 0;
185 return tsk;
188 #ifdef CONFIG_MMU
189 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
191 struct vm_area_struct *mpnt, *tmp, **pprev;
192 struct rb_node **rb_link, *rb_parent;
193 int retval;
194 unsigned long charge;
195 struct mempolicy *pol;
197 down_write(&oldmm->mmap_sem);
198 flush_cache_mm(oldmm);
199 down_write(&mm->mmap_sem);
201 mm->locked_vm = 0;
202 mm->mmap = NULL;
203 mm->mmap_cache = NULL;
204 mm->free_area_cache = oldmm->mmap_base;
205 mm->cached_hole_size = ~0UL;
206 mm->map_count = 0;
207 cpus_clear(mm->cpu_vm_mask);
208 mm->mm_rb = RB_ROOT;
209 rb_link = &mm->mm_rb.rb_node;
210 rb_parent = NULL;
211 pprev = &mm->mmap;
213 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
214 struct file *file;
216 if (mpnt->vm_flags & VM_DONTCOPY) {
217 long pages = vma_pages(mpnt);
218 mm->total_vm -= pages;
219 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
220 -pages);
221 continue;
223 charge = 0;
224 if (mpnt->vm_flags & VM_ACCOUNT) {
225 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
226 if (security_vm_enough_memory(len))
227 goto fail_nomem;
228 charge = len;
230 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
231 if (!tmp)
232 goto fail_nomem;
233 *tmp = *mpnt;
234 pol = mpol_copy(vma_policy(mpnt));
235 retval = PTR_ERR(pol);
236 if (IS_ERR(pol))
237 goto fail_nomem_policy;
238 vma_set_policy(tmp, pol);
239 tmp->vm_flags &= ~VM_LOCKED;
240 tmp->vm_mm = mm;
241 tmp->vm_next = NULL;
242 anon_vma_link(tmp);
243 file = tmp->vm_file;
244 if (file) {
245 struct inode *inode = file->f_dentry->d_inode;
246 get_file(file);
247 if (tmp->vm_flags & VM_DENYWRITE)
248 atomic_dec(&inode->i_writecount);
250 /* insert tmp into the share list, just after mpnt */
251 spin_lock(&file->f_mapping->i_mmap_lock);
252 tmp->vm_truncate_count = mpnt->vm_truncate_count;
253 flush_dcache_mmap_lock(file->f_mapping);
254 vma_prio_tree_add(tmp, mpnt);
255 flush_dcache_mmap_unlock(file->f_mapping);
256 spin_unlock(&file->f_mapping->i_mmap_lock);
260 * Link in the new vma and copy the page table entries.
262 *pprev = tmp;
263 pprev = &tmp->vm_next;
265 __vma_link_rb(mm, tmp, rb_link, rb_parent);
266 rb_link = &tmp->vm_rb.rb_right;
267 rb_parent = &tmp->vm_rb;
269 mm->map_count++;
270 retval = copy_page_range(mm, oldmm, mpnt);
272 if (tmp->vm_ops && tmp->vm_ops->open)
273 tmp->vm_ops->open(tmp);
275 if (retval)
276 goto out;
278 retval = 0;
279 out:
280 up_write(&mm->mmap_sem);
281 flush_tlb_mm(oldmm);
282 up_write(&oldmm->mmap_sem);
283 return retval;
284 fail_nomem_policy:
285 kmem_cache_free(vm_area_cachep, tmp);
286 fail_nomem:
287 retval = -ENOMEM;
288 vm_unacct_memory(charge);
289 goto out;
292 static inline int mm_alloc_pgd(struct mm_struct * mm)
294 mm->pgd = pgd_alloc(mm);
295 if (unlikely(!mm->pgd))
296 return -ENOMEM;
297 return 0;
300 static inline void mm_free_pgd(struct mm_struct * mm)
302 pgd_free(mm->pgd);
304 #else
305 #define dup_mmap(mm, oldmm) (0)
306 #define mm_alloc_pgd(mm) (0)
307 #define mm_free_pgd(mm)
308 #endif /* CONFIG_MMU */
310 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
312 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
313 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
315 #include <linux/init_task.h>
317 static struct mm_struct * mm_init(struct mm_struct * mm)
319 atomic_set(&mm->mm_users, 1);
320 atomic_set(&mm->mm_count, 1);
321 init_rwsem(&mm->mmap_sem);
322 INIT_LIST_HEAD(&mm->mmlist);
323 mm->core_waiters = 0;
324 mm->nr_ptes = 0;
325 set_mm_counter(mm, file_rss, 0);
326 set_mm_counter(mm, anon_rss, 0);
327 spin_lock_init(&mm->page_table_lock);
328 rwlock_init(&mm->ioctx_list_lock);
329 mm->ioctx_list = NULL;
330 mm->free_area_cache = TASK_UNMAPPED_BASE;
331 mm->cached_hole_size = ~0UL;
333 if (likely(!mm_alloc_pgd(mm))) {
334 mm->def_flags = 0;
335 return mm;
337 free_mm(mm);
338 return NULL;
342 * Allocate and initialize an mm_struct.
344 struct mm_struct * mm_alloc(void)
346 struct mm_struct * mm;
348 mm = allocate_mm();
349 if (mm) {
350 memset(mm, 0, sizeof(*mm));
351 mm = mm_init(mm);
353 return mm;
357 * Called when the last reference to the mm
358 * is dropped: either by a lazy thread or by
359 * mmput. Free the page directory and the mm.
361 void fastcall __mmdrop(struct mm_struct *mm)
363 BUG_ON(mm == &init_mm);
364 mm_free_pgd(mm);
365 destroy_context(mm);
366 free_mm(mm);
370 * Decrement the use count and release all resources for an mm.
372 void mmput(struct mm_struct *mm)
374 if (atomic_dec_and_test(&mm->mm_users)) {
375 exit_aio(mm);
376 exit_mmap(mm);
377 if (!list_empty(&mm->mmlist)) {
378 spin_lock(&mmlist_lock);
379 list_del(&mm->mmlist);
380 spin_unlock(&mmlist_lock);
382 put_swap_token(mm);
383 mmdrop(mm);
386 EXPORT_SYMBOL_GPL(mmput);
389 * get_task_mm - acquire a reference to the task's mm
391 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
392 * this kernel workthread has transiently adopted a user mm with use_mm,
393 * to do its AIO) is not set and if so returns a reference to it, after
394 * bumping up the use count. User must release the mm via mmput()
395 * after use. Typically used by /proc and ptrace.
397 struct mm_struct *get_task_mm(struct task_struct *task)
399 struct mm_struct *mm;
401 task_lock(task);
402 mm = task->mm;
403 if (mm) {
404 if (task->flags & PF_BORROWED_MM)
405 mm = NULL;
406 else
407 atomic_inc(&mm->mm_users);
409 task_unlock(task);
410 return mm;
412 EXPORT_SYMBOL_GPL(get_task_mm);
414 /* Please note the differences between mmput and mm_release.
415 * mmput is called whenever we stop holding onto a mm_struct,
416 * error success whatever.
418 * mm_release is called after a mm_struct has been removed
419 * from the current process.
421 * This difference is important for error handling, when we
422 * only half set up a mm_struct for a new process and need to restore
423 * the old one. Because we mmput the new mm_struct before
424 * restoring the old one. . .
425 * Eric Biederman 10 January 1998
427 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
429 struct completion *vfork_done = tsk->vfork_done;
431 /* Get rid of any cached register state */
432 deactivate_mm(tsk, mm);
434 /* notify parent sleeping on vfork() */
435 if (vfork_done) {
436 tsk->vfork_done = NULL;
437 complete(vfork_done);
439 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
440 u32 __user * tidptr = tsk->clear_child_tid;
441 tsk->clear_child_tid = NULL;
444 * We don't check the error code - if userspace has
445 * not set up a proper pointer then tough luck.
447 put_user(0, tidptr);
448 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
453 * Allocate a new mm structure and copy contents from the
454 * mm structure of the passed in task structure.
456 static struct mm_struct *dup_mm(struct task_struct *tsk)
458 struct mm_struct *mm, *oldmm = current->mm;
459 int err;
461 if (!oldmm)
462 return NULL;
464 mm = allocate_mm();
465 if (!mm)
466 goto fail_nomem;
468 memcpy(mm, oldmm, sizeof(*mm));
470 if (!mm_init(mm))
471 goto fail_nomem;
473 if (init_new_context(tsk, mm))
474 goto fail_nocontext;
476 err = dup_mmap(mm, oldmm);
477 if (err)
478 goto free_pt;
480 mm->hiwater_rss = get_mm_rss(mm);
481 mm->hiwater_vm = mm->total_vm;
483 return mm;
485 free_pt:
486 mmput(mm);
488 fail_nomem:
489 return NULL;
491 fail_nocontext:
493 * If init_new_context() failed, we cannot use mmput() to free the mm
494 * because it calls destroy_context()
496 mm_free_pgd(mm);
497 free_mm(mm);
498 return NULL;
501 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
503 struct mm_struct * mm, *oldmm;
504 int retval;
506 tsk->min_flt = tsk->maj_flt = 0;
507 tsk->nvcsw = tsk->nivcsw = 0;
509 tsk->mm = NULL;
510 tsk->active_mm = NULL;
513 * Are we cloning a kernel thread?
515 * We need to steal a active VM for that..
517 oldmm = current->mm;
518 if (!oldmm)
519 return 0;
521 if (clone_flags & CLONE_VM) {
522 atomic_inc(&oldmm->mm_users);
523 mm = oldmm;
524 goto good_mm;
527 retval = -ENOMEM;
528 mm = dup_mm(tsk);
529 if (!mm)
530 goto fail_nomem;
532 good_mm:
533 tsk->mm = mm;
534 tsk->active_mm = mm;
535 return 0;
537 fail_nomem:
538 return retval;
541 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
543 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
544 /* We don't need to lock fs - think why ;-) */
545 if (fs) {
546 atomic_set(&fs->count, 1);
547 rwlock_init(&fs->lock);
548 fs->umask = old->umask;
549 read_lock(&old->lock);
550 fs->rootmnt = mntget(old->rootmnt);
551 fs->root = dget(old->root);
552 fs->pwdmnt = mntget(old->pwdmnt);
553 fs->pwd = dget(old->pwd);
554 if (old->altroot) {
555 fs->altrootmnt = mntget(old->altrootmnt);
556 fs->altroot = dget(old->altroot);
557 } else {
558 fs->altrootmnt = NULL;
559 fs->altroot = NULL;
561 read_unlock(&old->lock);
563 return fs;
566 struct fs_struct *copy_fs_struct(struct fs_struct *old)
568 return __copy_fs_struct(old);
571 EXPORT_SYMBOL_GPL(copy_fs_struct);
573 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
575 if (clone_flags & CLONE_FS) {
576 atomic_inc(&current->fs->count);
577 return 0;
579 tsk->fs = __copy_fs_struct(current->fs);
580 if (!tsk->fs)
581 return -ENOMEM;
582 return 0;
585 static int count_open_files(struct fdtable *fdt)
587 int size = fdt->max_fdset;
588 int i;
590 /* Find the last open fd */
591 for (i = size/(8*sizeof(long)); i > 0; ) {
592 if (fdt->open_fds->fds_bits[--i])
593 break;
595 i = (i+1) * 8 * sizeof(long);
596 return i;
599 static struct files_struct *alloc_files(void)
601 struct files_struct *newf;
602 struct fdtable *fdt;
604 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
605 if (!newf)
606 goto out;
608 atomic_set(&newf->count, 1);
610 spin_lock_init(&newf->file_lock);
611 newf->next_fd = 0;
612 fdt = &newf->fdtab;
613 fdt->max_fds = NR_OPEN_DEFAULT;
614 fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
615 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
616 fdt->open_fds = (fd_set *)&newf->open_fds_init;
617 fdt->fd = &newf->fd_array[0];
618 INIT_RCU_HEAD(&fdt->rcu);
619 fdt->free_files = NULL;
620 fdt->next = NULL;
621 rcu_assign_pointer(newf->fdt, fdt);
622 out:
623 return newf;
627 * Allocate a new files structure and copy contents from the
628 * passed in files structure.
630 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
632 struct files_struct *newf;
633 struct file **old_fds, **new_fds;
634 int open_files, size, i, expand;
635 struct fdtable *old_fdt, *new_fdt;
637 newf = alloc_files();
638 if (!newf)
639 goto out;
641 spin_lock(&oldf->file_lock);
642 old_fdt = files_fdtable(oldf);
643 new_fdt = files_fdtable(newf);
644 size = old_fdt->max_fdset;
645 open_files = count_open_files(old_fdt);
646 expand = 0;
649 * Check whether we need to allocate a larger fd array or fd set.
650 * Note: we're not a clone task, so the open count won't change.
652 if (open_files > new_fdt->max_fdset) {
653 new_fdt->max_fdset = 0;
654 expand = 1;
656 if (open_files > new_fdt->max_fds) {
657 new_fdt->max_fds = 0;
658 expand = 1;
661 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
662 if (expand) {
663 spin_unlock(&oldf->file_lock);
664 spin_lock(&newf->file_lock);
665 *errorp = expand_files(newf, open_files-1);
666 spin_unlock(&newf->file_lock);
667 if (*errorp < 0)
668 goto out_release;
669 new_fdt = files_fdtable(newf);
671 * Reacquire the oldf lock and a pointer to its fd table
672 * who knows it may have a new bigger fd table. We need
673 * the latest pointer.
675 spin_lock(&oldf->file_lock);
676 old_fdt = files_fdtable(oldf);
679 old_fds = old_fdt->fd;
680 new_fds = new_fdt->fd;
682 memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
683 memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
685 for (i = open_files; i != 0; i--) {
686 struct file *f = *old_fds++;
687 if (f) {
688 get_file(f);
689 } else {
691 * The fd may be claimed in the fd bitmap but not yet
692 * instantiated in the files array if a sibling thread
693 * is partway through open(). So make sure that this
694 * fd is available to the new process.
696 FD_CLR(open_files - i, new_fdt->open_fds);
698 rcu_assign_pointer(*new_fds++, f);
700 spin_unlock(&oldf->file_lock);
702 /* compute the remainder to be cleared */
703 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
705 /* This is long word aligned thus could use a optimized version */
706 memset(new_fds, 0, size);
708 if (new_fdt->max_fdset > open_files) {
709 int left = (new_fdt->max_fdset-open_files)/8;
710 int start = open_files / (8 * sizeof(unsigned long));
712 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
713 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
716 out:
717 return newf;
719 out_release:
720 free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
721 free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
722 free_fd_array(new_fdt->fd, new_fdt->max_fds);
723 kmem_cache_free(files_cachep, newf);
724 goto out;
727 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
729 struct files_struct *oldf, *newf;
730 int error = 0;
733 * A background process may not have any files ...
735 oldf = current->files;
736 if (!oldf)
737 goto out;
739 if (clone_flags & CLONE_FILES) {
740 atomic_inc(&oldf->count);
741 goto out;
745 * Note: we may be using current for both targets (See exec.c)
746 * This works because we cache current->files (old) as oldf. Don't
747 * break this.
749 tsk->files = NULL;
750 error = -ENOMEM;
751 newf = dup_fd(oldf, &error);
752 if (!newf)
753 goto out;
755 tsk->files = newf;
756 error = 0;
757 out:
758 return error;
762 * Helper to unshare the files of the current task.
763 * We don't want to expose copy_files internals to
764 * the exec layer of the kernel.
767 int unshare_files(void)
769 struct files_struct *files = current->files;
770 int rc;
772 if(!files)
773 BUG();
775 /* This can race but the race causes us to copy when we don't
776 need to and drop the copy */
777 if(atomic_read(&files->count) == 1)
779 atomic_inc(&files->count);
780 return 0;
782 rc = copy_files(0, current);
783 if(rc)
784 current->files = files;
785 return rc;
788 EXPORT_SYMBOL(unshare_files);
790 void sighand_free_cb(struct rcu_head *rhp)
792 struct sighand_struct *sp;
794 sp = container_of(rhp, struct sighand_struct, rcu);
795 kmem_cache_free(sighand_cachep, sp);
798 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
800 struct sighand_struct *sig;
802 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
803 atomic_inc(&current->sighand->count);
804 return 0;
806 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
807 rcu_assign_pointer(tsk->sighand, sig);
808 if (!sig)
809 return -ENOMEM;
810 spin_lock_init(&sig->siglock);
811 atomic_set(&sig->count, 1);
812 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
813 return 0;
816 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
818 struct signal_struct *sig;
819 int ret;
821 if (clone_flags & CLONE_THREAD) {
822 atomic_inc(&current->signal->count);
823 atomic_inc(&current->signal->live);
824 return 0;
826 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
827 tsk->signal = sig;
828 if (!sig)
829 return -ENOMEM;
831 ret = copy_thread_group_keys(tsk);
832 if (ret < 0) {
833 kmem_cache_free(signal_cachep, sig);
834 return ret;
837 atomic_set(&sig->count, 1);
838 atomic_set(&sig->live, 1);
839 init_waitqueue_head(&sig->wait_chldexit);
840 sig->flags = 0;
841 sig->group_exit_code = 0;
842 sig->group_exit_task = NULL;
843 sig->group_stop_count = 0;
844 sig->curr_target = NULL;
845 init_sigpending(&sig->shared_pending);
846 INIT_LIST_HEAD(&sig->posix_timers);
848 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
849 sig->it_real_incr.tv64 = 0;
850 sig->real_timer.function = it_real_fn;
851 sig->real_timer.data = tsk;
853 sig->it_virt_expires = cputime_zero;
854 sig->it_virt_incr = cputime_zero;
855 sig->it_prof_expires = cputime_zero;
856 sig->it_prof_incr = cputime_zero;
858 sig->leader = 0; /* session leadership doesn't inherit */
859 sig->tty_old_pgrp = 0;
861 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
862 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
863 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
864 sig->sched_time = 0;
865 INIT_LIST_HEAD(&sig->cpu_timers[0]);
866 INIT_LIST_HEAD(&sig->cpu_timers[1]);
867 INIT_LIST_HEAD(&sig->cpu_timers[2]);
869 task_lock(current->group_leader);
870 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
871 task_unlock(current->group_leader);
873 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
875 * New sole thread in the process gets an expiry time
876 * of the whole CPU time limit.
878 tsk->it_prof_expires =
879 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
882 return 0;
885 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
887 unsigned long new_flags = p->flags;
889 new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
890 new_flags |= PF_FORKNOEXEC;
891 if (!(clone_flags & CLONE_PTRACE))
892 p->ptrace = 0;
893 p->flags = new_flags;
896 asmlinkage long sys_set_tid_address(int __user *tidptr)
898 current->clear_child_tid = tidptr;
900 return current->pid;
904 * This creates a new process as a copy of the old one,
905 * but does not actually start it yet.
907 * It copies the registers, and all the appropriate
908 * parts of the process environment (as per the clone
909 * flags). The actual kick-off is left to the caller.
911 static task_t *copy_process(unsigned long clone_flags,
912 unsigned long stack_start,
913 struct pt_regs *regs,
914 unsigned long stack_size,
915 int __user *parent_tidptr,
916 int __user *child_tidptr,
917 int pid)
919 int retval;
920 struct task_struct *p = NULL;
922 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
923 return ERR_PTR(-EINVAL);
926 * Thread groups must share signals as well, and detached threads
927 * can only be started up within the thread group.
929 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
930 return ERR_PTR(-EINVAL);
933 * Shared signal handlers imply shared VM. By way of the above,
934 * thread groups also imply shared VM. Blocking this case allows
935 * for various simplifications in other code.
937 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
938 return ERR_PTR(-EINVAL);
940 retval = security_task_create(clone_flags);
941 if (retval)
942 goto fork_out;
944 retval = -ENOMEM;
945 p = dup_task_struct(current);
946 if (!p)
947 goto fork_out;
949 retval = -EAGAIN;
950 if (atomic_read(&p->user->processes) >=
951 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
952 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
953 p->user != &root_user)
954 goto bad_fork_free;
957 atomic_inc(&p->user->__count);
958 atomic_inc(&p->user->processes);
959 get_group_info(p->group_info);
962 * If multiple threads are within copy_process(), then this check
963 * triggers too late. This doesn't hurt, the check is only there
964 * to stop root fork bombs.
966 if (nr_threads >= max_threads)
967 goto bad_fork_cleanup_count;
969 if (!try_module_get(task_thread_info(p)->exec_domain->module))
970 goto bad_fork_cleanup_count;
972 if (p->binfmt && !try_module_get(p->binfmt->module))
973 goto bad_fork_cleanup_put_domain;
975 p->did_exec = 0;
976 copy_flags(clone_flags, p);
977 p->pid = pid;
978 retval = -EFAULT;
979 if (clone_flags & CLONE_PARENT_SETTID)
980 if (put_user(p->pid, parent_tidptr))
981 goto bad_fork_cleanup;
983 p->proc_dentry = NULL;
985 INIT_LIST_HEAD(&p->children);
986 INIT_LIST_HEAD(&p->sibling);
987 p->vfork_done = NULL;
988 spin_lock_init(&p->alloc_lock);
989 spin_lock_init(&p->proc_lock);
991 clear_tsk_thread_flag(p, TIF_SIGPENDING);
992 init_sigpending(&p->pending);
994 p->utime = cputime_zero;
995 p->stime = cputime_zero;
996 p->sched_time = 0;
997 p->rchar = 0; /* I/O counter: bytes read */
998 p->wchar = 0; /* I/O counter: bytes written */
999 p->syscr = 0; /* I/O counter: read syscalls */
1000 p->syscw = 0; /* I/O counter: write syscalls */
1001 acct_clear_integrals(p);
1003 p->it_virt_expires = cputime_zero;
1004 p->it_prof_expires = cputime_zero;
1005 p->it_sched_expires = 0;
1006 INIT_LIST_HEAD(&p->cpu_timers[0]);
1007 INIT_LIST_HEAD(&p->cpu_timers[1]);
1008 INIT_LIST_HEAD(&p->cpu_timers[2]);
1010 p->lock_depth = -1; /* -1 = no lock */
1011 do_posix_clock_monotonic_gettime(&p->start_time);
1012 p->security = NULL;
1013 p->io_context = NULL;
1014 p->io_wait = NULL;
1015 p->audit_context = NULL;
1016 cpuset_fork(p);
1017 #ifdef CONFIG_NUMA
1018 p->mempolicy = mpol_copy(p->mempolicy);
1019 if (IS_ERR(p->mempolicy)) {
1020 retval = PTR_ERR(p->mempolicy);
1021 p->mempolicy = NULL;
1022 goto bad_fork_cleanup_cpuset;
1024 mpol_fix_fork_child_flag(p);
1025 #endif
1027 #ifdef CONFIG_DEBUG_MUTEXES
1028 p->blocked_on = NULL; /* not blocked yet */
1029 #endif
1031 p->tgid = p->pid;
1032 if (clone_flags & CLONE_THREAD)
1033 p->tgid = current->tgid;
1035 if ((retval = security_task_alloc(p)))
1036 goto bad_fork_cleanup_policy;
1037 if ((retval = audit_alloc(p)))
1038 goto bad_fork_cleanup_security;
1039 /* copy all the process information */
1040 if ((retval = copy_semundo(clone_flags, p)))
1041 goto bad_fork_cleanup_audit;
1042 if ((retval = copy_files(clone_flags, p)))
1043 goto bad_fork_cleanup_semundo;
1044 if ((retval = copy_fs(clone_flags, p)))
1045 goto bad_fork_cleanup_files;
1046 if ((retval = copy_sighand(clone_flags, p)))
1047 goto bad_fork_cleanup_fs;
1048 if ((retval = copy_signal(clone_flags, p)))
1049 goto bad_fork_cleanup_sighand;
1050 if ((retval = copy_mm(clone_flags, p)))
1051 goto bad_fork_cleanup_signal;
1052 if ((retval = copy_keys(clone_flags, p)))
1053 goto bad_fork_cleanup_mm;
1054 if ((retval = copy_namespace(clone_flags, p)))
1055 goto bad_fork_cleanup_keys;
1056 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1057 if (retval)
1058 goto bad_fork_cleanup_namespace;
1060 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1062 * Clear TID on mm_release()?
1064 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1067 * sigaltstack should be cleared when sharing the same VM
1069 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1070 p->sas_ss_sp = p->sas_ss_size = 0;
1073 * Syscall tracing should be turned off in the child regardless
1074 * of CLONE_PTRACE.
1076 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1077 #ifdef TIF_SYSCALL_EMU
1078 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1079 #endif
1081 /* Our parent execution domain becomes current domain
1082 These must match for thread signalling to apply */
1084 p->parent_exec_id = p->self_exec_id;
1086 /* ok, now we should be set up.. */
1087 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1088 p->pdeath_signal = 0;
1089 p->exit_state = 0;
1092 * Ok, make it visible to the rest of the system.
1093 * We dont wake it up yet.
1095 p->group_leader = p;
1096 INIT_LIST_HEAD(&p->ptrace_children);
1097 INIT_LIST_HEAD(&p->ptrace_list);
1099 /* Perform scheduler related setup. Assign this task to a CPU. */
1100 sched_fork(p, clone_flags);
1102 /* Need tasklist lock for parent etc handling! */
1103 write_lock_irq(&tasklist_lock);
1106 * The task hasn't been attached yet, so its cpus_allowed mask will
1107 * not be changed, nor will its assigned CPU.
1109 * The cpus_allowed mask of the parent may have changed after it was
1110 * copied first time - so re-copy it here, then check the child's CPU
1111 * to ensure it is on a valid CPU (and if not, just force it back to
1112 * parent's CPU). This avoids alot of nasty races.
1114 p->cpus_allowed = current->cpus_allowed;
1115 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1116 !cpu_online(task_cpu(p))))
1117 set_task_cpu(p, smp_processor_id());
1120 * Check for pending SIGKILL! The new thread should not be allowed
1121 * to slip out of an OOM kill. (or normal SIGKILL.)
1123 if (sigismember(&current->pending.signal, SIGKILL)) {
1124 write_unlock_irq(&tasklist_lock);
1125 retval = -EINTR;
1126 goto bad_fork_cleanup_namespace;
1129 /* CLONE_PARENT re-uses the old parent */
1130 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1131 p->real_parent = current->real_parent;
1132 else
1133 p->real_parent = current;
1134 p->parent = p->real_parent;
1136 spin_lock(&current->sighand->siglock);
1137 if (clone_flags & CLONE_THREAD) {
1139 * Important: if an exit-all has been started then
1140 * do not create this new thread - the whole thread
1141 * group is supposed to exit anyway.
1143 if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1144 spin_unlock(&current->sighand->siglock);
1145 write_unlock_irq(&tasklist_lock);
1146 retval = -EAGAIN;
1147 goto bad_fork_cleanup_namespace;
1149 p->group_leader = current->group_leader;
1151 if (current->signal->group_stop_count > 0) {
1153 * There is an all-stop in progress for the group.
1154 * We ourselves will stop as soon as we check signals.
1155 * Make the new thread part of that group stop too.
1157 current->signal->group_stop_count++;
1158 set_tsk_thread_flag(p, TIF_SIGPENDING);
1161 if (!cputime_eq(current->signal->it_virt_expires,
1162 cputime_zero) ||
1163 !cputime_eq(current->signal->it_prof_expires,
1164 cputime_zero) ||
1165 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1166 !list_empty(&current->signal->cpu_timers[0]) ||
1167 !list_empty(&current->signal->cpu_timers[1]) ||
1168 !list_empty(&current->signal->cpu_timers[2])) {
1170 * Have child wake up on its first tick to check
1171 * for process CPU timers.
1173 p->it_prof_expires = jiffies_to_cputime(1);
1178 * inherit ioprio
1180 p->ioprio = current->ioprio;
1182 SET_LINKS(p);
1183 if (unlikely(p->ptrace & PT_PTRACED))
1184 __ptrace_link(p, current->parent);
1186 if (thread_group_leader(p)) {
1187 p->signal->tty = current->signal->tty;
1188 p->signal->pgrp = process_group(current);
1189 p->signal->session = current->signal->session;
1190 attach_pid(p, PIDTYPE_PGID, process_group(p));
1191 attach_pid(p, PIDTYPE_SID, p->signal->session);
1192 if (p->pid)
1193 __get_cpu_var(process_counts)++;
1195 attach_pid(p, PIDTYPE_TGID, p->tgid);
1196 attach_pid(p, PIDTYPE_PID, p->pid);
1198 nr_threads++;
1199 total_forks++;
1200 spin_unlock(&current->sighand->siglock);
1201 write_unlock_irq(&tasklist_lock);
1202 proc_fork_connector(p);
1203 return p;
1205 bad_fork_cleanup_namespace:
1206 exit_namespace(p);
1207 bad_fork_cleanup_keys:
1208 exit_keys(p);
1209 bad_fork_cleanup_mm:
1210 if (p->mm)
1211 mmput(p->mm);
1212 bad_fork_cleanup_signal:
1213 exit_signal(p);
1214 bad_fork_cleanup_sighand:
1215 exit_sighand(p);
1216 bad_fork_cleanup_fs:
1217 exit_fs(p); /* blocking */
1218 bad_fork_cleanup_files:
1219 exit_files(p); /* blocking */
1220 bad_fork_cleanup_semundo:
1221 exit_sem(p);
1222 bad_fork_cleanup_audit:
1223 audit_free(p);
1224 bad_fork_cleanup_security:
1225 security_task_free(p);
1226 bad_fork_cleanup_policy:
1227 #ifdef CONFIG_NUMA
1228 mpol_free(p->mempolicy);
1229 bad_fork_cleanup_cpuset:
1230 #endif
1231 cpuset_exit(p);
1232 bad_fork_cleanup:
1233 if (p->binfmt)
1234 module_put(p->binfmt->module);
1235 bad_fork_cleanup_put_domain:
1236 module_put(task_thread_info(p)->exec_domain->module);
1237 bad_fork_cleanup_count:
1238 put_group_info(p->group_info);
1239 atomic_dec(&p->user->processes);
1240 free_uid(p->user);
1241 bad_fork_free:
1242 free_task(p);
1243 fork_out:
1244 return ERR_PTR(retval);
1247 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1249 memset(regs, 0, sizeof(struct pt_regs));
1250 return regs;
1253 task_t * __devinit fork_idle(int cpu)
1255 task_t *task;
1256 struct pt_regs regs;
1258 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1259 if (!task)
1260 return ERR_PTR(-ENOMEM);
1261 init_idle(task, cpu);
1262 unhash_process(task);
1263 return task;
1266 static inline int fork_traceflag (unsigned clone_flags)
1268 if (clone_flags & CLONE_UNTRACED)
1269 return 0;
1270 else if (clone_flags & CLONE_VFORK) {
1271 if (current->ptrace & PT_TRACE_VFORK)
1272 return PTRACE_EVENT_VFORK;
1273 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1274 if (current->ptrace & PT_TRACE_CLONE)
1275 return PTRACE_EVENT_CLONE;
1276 } else if (current->ptrace & PT_TRACE_FORK)
1277 return PTRACE_EVENT_FORK;
1279 return 0;
1283 * Ok, this is the main fork-routine.
1285 * It copies the process, and if successful kick-starts
1286 * it and waits for it to finish using the VM if required.
1288 long do_fork(unsigned long clone_flags,
1289 unsigned long stack_start,
1290 struct pt_regs *regs,
1291 unsigned long stack_size,
1292 int __user *parent_tidptr,
1293 int __user *child_tidptr)
1295 struct task_struct *p;
1296 int trace = 0;
1297 long pid = alloc_pidmap();
1299 if (pid < 0)
1300 return -EAGAIN;
1301 if (unlikely(current->ptrace)) {
1302 trace = fork_traceflag (clone_flags);
1303 if (trace)
1304 clone_flags |= CLONE_PTRACE;
1307 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1309 * Do this prior waking up the new thread - the thread pointer
1310 * might get invalid after that point, if the thread exits quickly.
1312 if (!IS_ERR(p)) {
1313 struct completion vfork;
1315 if (clone_flags & CLONE_VFORK) {
1316 p->vfork_done = &vfork;
1317 init_completion(&vfork);
1320 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1322 * We'll start up with an immediate SIGSTOP.
1324 sigaddset(&p->pending.signal, SIGSTOP);
1325 set_tsk_thread_flag(p, TIF_SIGPENDING);
1328 if (!(clone_flags & CLONE_STOPPED))
1329 wake_up_new_task(p, clone_flags);
1330 else
1331 p->state = TASK_STOPPED;
1333 if (unlikely (trace)) {
1334 current->ptrace_message = pid;
1335 ptrace_notify ((trace << 8) | SIGTRAP);
1338 if (clone_flags & CLONE_VFORK) {
1339 wait_for_completion(&vfork);
1340 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1341 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1343 } else {
1344 free_pidmap(pid);
1345 pid = PTR_ERR(p);
1347 return pid;
1350 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1351 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1352 #endif
1354 void __init proc_caches_init(void)
1356 sighand_cachep = kmem_cache_create("sighand_cache",
1357 sizeof(struct sighand_struct), 0,
1358 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1359 signal_cachep = kmem_cache_create("signal_cache",
1360 sizeof(struct signal_struct), 0,
1361 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1362 files_cachep = kmem_cache_create("files_cache",
1363 sizeof(struct files_struct), 0,
1364 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1365 fs_cachep = kmem_cache_create("fs_cache",
1366 sizeof(struct fs_struct), 0,
1367 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1368 vm_area_cachep = kmem_cache_create("vm_area_struct",
1369 sizeof(struct vm_area_struct), 0,
1370 SLAB_PANIC, NULL, NULL);
1371 mm_cachep = kmem_cache_create("mm_struct",
1372 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1373 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1378 * Check constraints on flags passed to the unshare system call and
1379 * force unsharing of additional process context as appropriate.
1381 static inline void check_unshare_flags(unsigned long *flags_ptr)
1384 * If unsharing a thread from a thread group, must also
1385 * unshare vm.
1387 if (*flags_ptr & CLONE_THREAD)
1388 *flags_ptr |= CLONE_VM;
1391 * If unsharing vm, must also unshare signal handlers.
1393 if (*flags_ptr & CLONE_VM)
1394 *flags_ptr |= CLONE_SIGHAND;
1397 * If unsharing signal handlers and the task was created
1398 * using CLONE_THREAD, then must unshare the thread
1400 if ((*flags_ptr & CLONE_SIGHAND) &&
1401 (atomic_read(&current->signal->count) > 1))
1402 *flags_ptr |= CLONE_THREAD;
1405 * If unsharing namespace, must also unshare filesystem information.
1407 if (*flags_ptr & CLONE_NEWNS)
1408 *flags_ptr |= CLONE_FS;
1412 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1414 static int unshare_thread(unsigned long unshare_flags)
1416 if (unshare_flags & CLONE_THREAD)
1417 return -EINVAL;
1419 return 0;
1423 * Unshare the filesystem structure if it is being shared
1425 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1427 struct fs_struct *fs = current->fs;
1429 if ((unshare_flags & CLONE_FS) &&
1430 (fs && atomic_read(&fs->count) > 1)) {
1431 *new_fsp = __copy_fs_struct(current->fs);
1432 if (!*new_fsp)
1433 return -ENOMEM;
1436 return 0;
1440 * Unshare the namespace structure if it is being shared
1442 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1444 struct namespace *ns = current->namespace;
1446 if ((unshare_flags & CLONE_NEWNS) &&
1447 (ns && atomic_read(&ns->count) > 1)) {
1448 if (!capable(CAP_SYS_ADMIN))
1449 return -EPERM;
1451 *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1452 if (!*new_nsp)
1453 return -ENOMEM;
1456 return 0;
1460 * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1461 * supported yet
1463 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1465 struct sighand_struct *sigh = current->sighand;
1467 if ((unshare_flags & CLONE_SIGHAND) &&
1468 (sigh && atomic_read(&sigh->count) > 1))
1469 return -EINVAL;
1470 else
1471 return 0;
1475 * Unshare vm if it is being shared
1477 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1479 struct mm_struct *mm = current->mm;
1481 if ((unshare_flags & CLONE_VM) &&
1482 (mm && atomic_read(&mm->mm_users) > 1)) {
1483 return -EINVAL;
1486 return 0;
1490 * Unshare file descriptor table if it is being shared
1492 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1494 struct files_struct *fd = current->files;
1495 int error = 0;
1497 if ((unshare_flags & CLONE_FILES) &&
1498 (fd && atomic_read(&fd->count) > 1)) {
1499 *new_fdp = dup_fd(fd, &error);
1500 if (!*new_fdp)
1501 return error;
1504 return 0;
1508 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1509 * supported yet
1511 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1513 if (unshare_flags & CLONE_SYSVSEM)
1514 return -EINVAL;
1516 return 0;
1520 * unshare allows a process to 'unshare' part of the process
1521 * context which was originally shared using clone. copy_*
1522 * functions used by do_fork() cannot be used here directly
1523 * because they modify an inactive task_struct that is being
1524 * constructed. Here we are modifying the current, active,
1525 * task_struct.
1527 asmlinkage long sys_unshare(unsigned long unshare_flags)
1529 int err = 0;
1530 struct fs_struct *fs, *new_fs = NULL;
1531 struct namespace *ns, *new_ns = NULL;
1532 struct sighand_struct *sigh, *new_sigh = NULL;
1533 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1534 struct files_struct *fd, *new_fd = NULL;
1535 struct sem_undo_list *new_ulist = NULL;
1537 check_unshare_flags(&unshare_flags);
1539 /* Return -EINVAL for all unsupported flags */
1540 err = -EINVAL;
1541 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1542 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM))
1543 goto bad_unshare_out;
1545 if ((err = unshare_thread(unshare_flags)))
1546 goto bad_unshare_out;
1547 if ((err = unshare_fs(unshare_flags, &new_fs)))
1548 goto bad_unshare_cleanup_thread;
1549 if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1550 goto bad_unshare_cleanup_fs;
1551 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1552 goto bad_unshare_cleanup_ns;
1553 if ((err = unshare_vm(unshare_flags, &new_mm)))
1554 goto bad_unshare_cleanup_sigh;
1555 if ((err = unshare_fd(unshare_flags, &new_fd)))
1556 goto bad_unshare_cleanup_vm;
1557 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1558 goto bad_unshare_cleanup_fd;
1560 if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
1562 task_lock(current);
1564 if (new_fs) {
1565 fs = current->fs;
1566 current->fs = new_fs;
1567 new_fs = fs;
1570 if (new_ns) {
1571 ns = current->namespace;
1572 current->namespace = new_ns;
1573 new_ns = ns;
1576 if (new_sigh) {
1577 sigh = current->sighand;
1578 rcu_assign_pointer(current->sighand, new_sigh);
1579 new_sigh = sigh;
1582 if (new_mm) {
1583 mm = current->mm;
1584 active_mm = current->active_mm;
1585 current->mm = new_mm;
1586 current->active_mm = new_mm;
1587 activate_mm(active_mm, new_mm);
1588 new_mm = mm;
1591 if (new_fd) {
1592 fd = current->files;
1593 current->files = new_fd;
1594 new_fd = fd;
1597 task_unlock(current);
1600 bad_unshare_cleanup_fd:
1601 if (new_fd)
1602 put_files_struct(new_fd);
1604 bad_unshare_cleanup_vm:
1605 if (new_mm)
1606 mmput(new_mm);
1608 bad_unshare_cleanup_sigh:
1609 if (new_sigh)
1610 if (atomic_dec_and_test(&new_sigh->count))
1611 kmem_cache_free(sighand_cachep, new_sigh);
1613 bad_unshare_cleanup_ns:
1614 if (new_ns)
1615 put_namespace(new_ns);
1617 bad_unshare_cleanup_fs:
1618 if (new_fs)
1619 put_fs_struct(new_fs);
1621 bad_unshare_cleanup_thread:
1622 bad_unshare_out:
1623 return err;