powerpc/numa: Make memory reserve code more robust
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / powerpc / mm / numa.c
blob195bfcd08959a4eac2dd9f2ebc2a7e8aa8e9d09c
1 /*
2 * pSeries NUMA support
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <linux/lmb.h>
21 #include <linux/of.h>
22 #include <asm/sparsemem.h>
23 #include <asm/prom.h>
24 #include <asm/system.h>
25 #include <asm/smp.h>
27 static int numa_enabled = 1;
29 static char *cmdline __initdata;
31 static int numa_debug;
32 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
34 int numa_cpu_lookup_table[NR_CPUS];
35 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
36 struct pglist_data *node_data[MAX_NUMNODES];
38 EXPORT_SYMBOL(numa_cpu_lookup_table);
39 EXPORT_SYMBOL(numa_cpumask_lookup_table);
40 EXPORT_SYMBOL(node_data);
42 static int min_common_depth;
43 static int n_mem_addr_cells, n_mem_size_cells;
45 static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
46 unsigned int *nid)
48 unsigned long long mem;
49 char *p = cmdline;
50 static unsigned int fake_nid;
51 static unsigned long long curr_boundary;
54 * Modify node id, iff we started creating NUMA nodes
55 * We want to continue from where we left of the last time
57 if (fake_nid)
58 *nid = fake_nid;
60 * In case there are no more arguments to parse, the
61 * node_id should be the same as the last fake node id
62 * (we've handled this above).
64 if (!p)
65 return 0;
67 mem = memparse(p, &p);
68 if (!mem)
69 return 0;
71 if (mem < curr_boundary)
72 return 0;
74 curr_boundary = mem;
76 if ((end_pfn << PAGE_SHIFT) > mem) {
78 * Skip commas and spaces
80 while (*p == ',' || *p == ' ' || *p == '\t')
81 p++;
83 cmdline = p;
84 fake_nid++;
85 *nid = fake_nid;
86 dbg("created new fake_node with id %d\n", fake_nid);
87 return 1;
89 return 0;
93 * get_active_region_work_fn - A helper function for get_node_active_region
94 * Returns datax set to the start_pfn and end_pfn if they contain
95 * the initial value of datax->start_pfn between them
96 * @start_pfn: start page(inclusive) of region to check
97 * @end_pfn: end page(exclusive) of region to check
98 * @datax: comes in with ->start_pfn set to value to search for and
99 * goes out with active range if it contains it
100 * Returns 1 if search value is in range else 0
102 static int __init get_active_region_work_fn(unsigned long start_pfn,
103 unsigned long end_pfn, void *datax)
105 struct node_active_region *data;
106 data = (struct node_active_region *)datax;
108 if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) {
109 data->start_pfn = start_pfn;
110 data->end_pfn = end_pfn;
111 return 1;
113 return 0;
118 * get_node_active_region - Return active region containing start_pfn
119 * Active range returned is empty if none found.
120 * @start_pfn: The page to return the region for.
121 * @node_ar: Returned set to the active region containing start_pfn
123 static void __init get_node_active_region(unsigned long start_pfn,
124 struct node_active_region *node_ar)
126 int nid = early_pfn_to_nid(start_pfn);
128 node_ar->nid = nid;
129 node_ar->start_pfn = start_pfn;
130 node_ar->end_pfn = start_pfn;
131 work_with_active_regions(nid, get_active_region_work_fn, node_ar);
134 static void __cpuinit map_cpu_to_node(int cpu, int node)
136 numa_cpu_lookup_table[cpu] = node;
138 dbg("adding cpu %d to node %d\n", cpu, node);
140 if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node])))
141 cpu_set(cpu, numa_cpumask_lookup_table[node]);
144 #ifdef CONFIG_HOTPLUG_CPU
145 static void unmap_cpu_from_node(unsigned long cpu)
147 int node = numa_cpu_lookup_table[cpu];
149 dbg("removing cpu %lu from node %d\n", cpu, node);
151 if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
152 cpu_clear(cpu, numa_cpumask_lookup_table[node]);
153 } else {
154 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
155 cpu, node);
158 #endif /* CONFIG_HOTPLUG_CPU */
160 static struct device_node * __cpuinit find_cpu_node(unsigned int cpu)
162 unsigned int hw_cpuid = get_hard_smp_processor_id(cpu);
163 struct device_node *cpu_node = NULL;
164 const unsigned int *interrupt_server, *reg;
165 int len;
167 while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) {
168 /* Try interrupt server first */
169 interrupt_server = of_get_property(cpu_node,
170 "ibm,ppc-interrupt-server#s", &len);
172 len = len / sizeof(u32);
174 if (interrupt_server && (len > 0)) {
175 while (len--) {
176 if (interrupt_server[len] == hw_cpuid)
177 return cpu_node;
179 } else {
180 reg = of_get_property(cpu_node, "reg", &len);
181 if (reg && (len > 0) && (reg[0] == hw_cpuid))
182 return cpu_node;
186 return NULL;
189 /* must hold reference to node during call */
190 static const int *of_get_associativity(struct device_node *dev)
192 return of_get_property(dev, "ibm,associativity", NULL);
196 * Returns the property linux,drconf-usable-memory if
197 * it exists (the property exists only in kexec/kdump kernels,
198 * added by kexec-tools)
200 static const u32 *of_get_usable_memory(struct device_node *memory)
202 const u32 *prop;
203 u32 len;
204 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
205 if (!prop || len < sizeof(unsigned int))
206 return 0;
207 return prop;
210 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
211 * info is found.
213 static int of_node_to_nid_single(struct device_node *device)
215 int nid = -1;
216 const unsigned int *tmp;
218 if (min_common_depth == -1)
219 goto out;
221 tmp = of_get_associativity(device);
222 if (!tmp)
223 goto out;
225 if (tmp[0] >= min_common_depth)
226 nid = tmp[min_common_depth];
228 /* POWER4 LPAR uses 0xffff as invalid node */
229 if (nid == 0xffff || nid >= MAX_NUMNODES)
230 nid = -1;
231 out:
232 return nid;
235 /* Walk the device tree upwards, looking for an associativity id */
236 int of_node_to_nid(struct device_node *device)
238 struct device_node *tmp;
239 int nid = -1;
241 of_node_get(device);
242 while (device) {
243 nid = of_node_to_nid_single(device);
244 if (nid != -1)
245 break;
247 tmp = device;
248 device = of_get_parent(tmp);
249 of_node_put(tmp);
251 of_node_put(device);
253 return nid;
255 EXPORT_SYMBOL_GPL(of_node_to_nid);
258 * In theory, the "ibm,associativity" property may contain multiple
259 * associativity lists because a resource may be multiply connected
260 * into the machine. This resource then has different associativity
261 * characteristics relative to its multiple connections. We ignore
262 * this for now. We also assume that all cpu and memory sets have
263 * their distances represented at a common level. This won't be
264 * true for hierarchical NUMA.
266 * In any case the ibm,associativity-reference-points should give
267 * the correct depth for a normal NUMA system.
269 * - Dave Hansen <haveblue@us.ibm.com>
271 static int __init find_min_common_depth(void)
273 int depth;
274 const unsigned int *ref_points;
275 struct device_node *rtas_root;
276 unsigned int len;
278 rtas_root = of_find_node_by_path("/rtas");
280 if (!rtas_root)
281 return -1;
284 * this property is 2 32-bit integers, each representing a level of
285 * depth in the associativity nodes. The first is for an SMP
286 * configuration (should be all 0's) and the second is for a normal
287 * NUMA configuration.
289 ref_points = of_get_property(rtas_root,
290 "ibm,associativity-reference-points", &len);
292 if ((len >= 1) && ref_points) {
293 depth = ref_points[1];
294 } else {
295 dbg("NUMA: ibm,associativity-reference-points not found.\n");
296 depth = -1;
298 of_node_put(rtas_root);
300 return depth;
303 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
305 struct device_node *memory = NULL;
307 memory = of_find_node_by_type(memory, "memory");
308 if (!memory)
309 panic("numa.c: No memory nodes found!");
311 *n_addr_cells = of_n_addr_cells(memory);
312 *n_size_cells = of_n_size_cells(memory);
313 of_node_put(memory);
316 static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
318 unsigned long result = 0;
320 while (n--) {
321 result = (result << 32) | **buf;
322 (*buf)++;
324 return result;
327 struct of_drconf_cell {
328 u64 base_addr;
329 u32 drc_index;
330 u32 reserved;
331 u32 aa_index;
332 u32 flags;
335 #define DRCONF_MEM_ASSIGNED 0x00000008
336 #define DRCONF_MEM_AI_INVALID 0x00000040
337 #define DRCONF_MEM_RESERVED 0x00000080
340 * Read the next lmb list entry from the ibm,dynamic-memory property
341 * and return the information in the provided of_drconf_cell structure.
343 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
345 const u32 *cp;
347 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
349 cp = *cellp;
350 drmem->drc_index = cp[0];
351 drmem->reserved = cp[1];
352 drmem->aa_index = cp[2];
353 drmem->flags = cp[3];
355 *cellp = cp + 4;
359 * Retreive and validate the ibm,dynamic-memory property of the device tree.
361 * The layout of the ibm,dynamic-memory property is a number N of lmb
362 * list entries followed by N lmb list entries. Each lmb list entry
363 * contains information as layed out in the of_drconf_cell struct above.
365 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
367 const u32 *prop;
368 u32 len, entries;
370 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
371 if (!prop || len < sizeof(unsigned int))
372 return 0;
374 entries = *prop++;
376 /* Now that we know the number of entries, revalidate the size
377 * of the property read in to ensure we have everything
379 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
380 return 0;
382 *dm = prop;
383 return entries;
387 * Retreive and validate the ibm,lmb-size property for drconf memory
388 * from the device tree.
390 static u64 of_get_lmb_size(struct device_node *memory)
392 const u32 *prop;
393 u32 len;
395 prop = of_get_property(memory, "ibm,lmb-size", &len);
396 if (!prop || len < sizeof(unsigned int))
397 return 0;
399 return read_n_cells(n_mem_size_cells, &prop);
402 struct assoc_arrays {
403 u32 n_arrays;
404 u32 array_sz;
405 const u32 *arrays;
409 * Retreive and validate the list of associativity arrays for drconf
410 * memory from the ibm,associativity-lookup-arrays property of the
411 * device tree..
413 * The layout of the ibm,associativity-lookup-arrays property is a number N
414 * indicating the number of associativity arrays, followed by a number M
415 * indicating the size of each associativity array, followed by a list
416 * of N associativity arrays.
418 static int of_get_assoc_arrays(struct device_node *memory,
419 struct assoc_arrays *aa)
421 const u32 *prop;
422 u32 len;
424 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
425 if (!prop || len < 2 * sizeof(unsigned int))
426 return -1;
428 aa->n_arrays = *prop++;
429 aa->array_sz = *prop++;
431 /* Now that we know the number of arrrays and size of each array,
432 * revalidate the size of the property read in.
434 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
435 return -1;
437 aa->arrays = prop;
438 return 0;
442 * This is like of_node_to_nid_single() for memory represented in the
443 * ibm,dynamic-reconfiguration-memory node.
445 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
446 struct assoc_arrays *aa)
448 int default_nid = 0;
449 int nid = default_nid;
450 int index;
452 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
453 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
454 drmem->aa_index < aa->n_arrays) {
455 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
456 nid = aa->arrays[index];
458 if (nid == 0xffff || nid >= MAX_NUMNODES)
459 nid = default_nid;
462 return nid;
466 * Figure out to which domain a cpu belongs and stick it there.
467 * Return the id of the domain used.
469 static int __cpuinit numa_setup_cpu(unsigned long lcpu)
471 int nid = 0;
472 struct device_node *cpu = find_cpu_node(lcpu);
474 if (!cpu) {
475 WARN_ON(1);
476 goto out;
479 nid = of_node_to_nid_single(cpu);
481 if (nid < 0 || !node_online(nid))
482 nid = any_online_node(NODE_MASK_ALL);
483 out:
484 map_cpu_to_node(lcpu, nid);
486 of_node_put(cpu);
488 return nid;
491 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
492 unsigned long action,
493 void *hcpu)
495 unsigned long lcpu = (unsigned long)hcpu;
496 int ret = NOTIFY_DONE;
498 switch (action) {
499 case CPU_UP_PREPARE:
500 case CPU_UP_PREPARE_FROZEN:
501 numa_setup_cpu(lcpu);
502 ret = NOTIFY_OK;
503 break;
504 #ifdef CONFIG_HOTPLUG_CPU
505 case CPU_DEAD:
506 case CPU_DEAD_FROZEN:
507 case CPU_UP_CANCELED:
508 case CPU_UP_CANCELED_FROZEN:
509 unmap_cpu_from_node(lcpu);
510 break;
511 ret = NOTIFY_OK;
512 #endif
514 return ret;
518 * Check and possibly modify a memory region to enforce the memory limit.
520 * Returns the size the region should have to enforce the memory limit.
521 * This will either be the original value of size, a truncated value,
522 * or zero. If the returned value of size is 0 the region should be
523 * discarded as it lies wholy above the memory limit.
525 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
526 unsigned long size)
529 * We use lmb_end_of_DRAM() in here instead of memory_limit because
530 * we've already adjusted it for the limit and it takes care of
531 * having memory holes below the limit.
534 if (! memory_limit)
535 return size;
537 if (start + size <= lmb_end_of_DRAM())
538 return size;
540 if (start >= lmb_end_of_DRAM())
541 return 0;
543 return lmb_end_of_DRAM() - start;
547 * Reads the counter for a given entry in
548 * linux,drconf-usable-memory property
550 static inline int __init read_usm_ranges(const u32 **usm)
553 * For each lmb in ibm,dynamic-memory a corresponding
554 * entry in linux,drconf-usable-memory property contains
555 * a counter followed by that many (base, size) duple.
556 * read the counter from linux,drconf-usable-memory
558 return read_n_cells(n_mem_size_cells, usm);
562 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
563 * node. This assumes n_mem_{addr,size}_cells have been set.
565 static void __init parse_drconf_memory(struct device_node *memory)
567 const u32 *dm, *usm;
568 unsigned int n, rc, ranges, is_kexec_kdump = 0;
569 unsigned long lmb_size, base, size, sz;
570 int nid;
571 struct assoc_arrays aa;
573 n = of_get_drconf_memory(memory, &dm);
574 if (!n)
575 return;
577 lmb_size = of_get_lmb_size(memory);
578 if (!lmb_size)
579 return;
581 rc = of_get_assoc_arrays(memory, &aa);
582 if (rc)
583 return;
585 /* check if this is a kexec/kdump kernel */
586 usm = of_get_usable_memory(memory);
587 if (usm != NULL)
588 is_kexec_kdump = 1;
590 for (; n != 0; --n) {
591 struct of_drconf_cell drmem;
593 read_drconf_cell(&drmem, &dm);
595 /* skip this block if the reserved bit is set in flags (0x80)
596 or if the block is not assigned to this partition (0x8) */
597 if ((drmem.flags & DRCONF_MEM_RESERVED)
598 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
599 continue;
601 base = drmem.base_addr;
602 size = lmb_size;
603 ranges = 1;
605 if (is_kexec_kdump) {
606 ranges = read_usm_ranges(&usm);
607 if (!ranges) /* there are no (base, size) duple */
608 continue;
610 do {
611 if (is_kexec_kdump) {
612 base = read_n_cells(n_mem_addr_cells, &usm);
613 size = read_n_cells(n_mem_size_cells, &usm);
615 nid = of_drconf_to_nid_single(&drmem, &aa);
616 fake_numa_create_new_node(
617 ((base + size) >> PAGE_SHIFT),
618 &nid);
619 node_set_online(nid);
620 sz = numa_enforce_memory_limit(base, size);
621 if (sz)
622 add_active_range(nid, base >> PAGE_SHIFT,
623 (base >> PAGE_SHIFT)
624 + (sz >> PAGE_SHIFT));
625 } while (--ranges);
629 static int __init parse_numa_properties(void)
631 struct device_node *cpu = NULL;
632 struct device_node *memory = NULL;
633 int default_nid = 0;
634 unsigned long i;
636 if (numa_enabled == 0) {
637 printk(KERN_WARNING "NUMA disabled by user\n");
638 return -1;
641 min_common_depth = find_min_common_depth();
643 if (min_common_depth < 0)
644 return min_common_depth;
646 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
649 * Even though we connect cpus to numa domains later in SMP
650 * init, we need to know the node ids now. This is because
651 * each node to be onlined must have NODE_DATA etc backing it.
653 for_each_present_cpu(i) {
654 int nid;
656 cpu = find_cpu_node(i);
657 BUG_ON(!cpu);
658 nid = of_node_to_nid_single(cpu);
659 of_node_put(cpu);
662 * Don't fall back to default_nid yet -- we will plug
663 * cpus into nodes once the memory scan has discovered
664 * the topology.
666 if (nid < 0)
667 continue;
668 node_set_online(nid);
671 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
672 memory = NULL;
673 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
674 unsigned long start;
675 unsigned long size;
676 int nid;
677 int ranges;
678 const unsigned int *memcell_buf;
679 unsigned int len;
681 memcell_buf = of_get_property(memory,
682 "linux,usable-memory", &len);
683 if (!memcell_buf || len <= 0)
684 memcell_buf = of_get_property(memory, "reg", &len);
685 if (!memcell_buf || len <= 0)
686 continue;
688 /* ranges in cell */
689 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
690 new_range:
691 /* these are order-sensitive, and modify the buffer pointer */
692 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
693 size = read_n_cells(n_mem_size_cells, &memcell_buf);
696 * Assumption: either all memory nodes or none will
697 * have associativity properties. If none, then
698 * everything goes to default_nid.
700 nid = of_node_to_nid_single(memory);
701 if (nid < 0)
702 nid = default_nid;
704 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
705 node_set_online(nid);
707 if (!(size = numa_enforce_memory_limit(start, size))) {
708 if (--ranges)
709 goto new_range;
710 else
711 continue;
714 add_active_range(nid, start >> PAGE_SHIFT,
715 (start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
717 if (--ranges)
718 goto new_range;
722 * Now do the same thing for each LMB listed in the ibm,dynamic-memory
723 * property in the ibm,dynamic-reconfiguration-memory node.
725 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
726 if (memory)
727 parse_drconf_memory(memory);
729 return 0;
732 static void __init setup_nonnuma(void)
734 unsigned long top_of_ram = lmb_end_of_DRAM();
735 unsigned long total_ram = lmb_phys_mem_size();
736 unsigned long start_pfn, end_pfn;
737 unsigned int i, nid = 0;
739 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
740 top_of_ram, total_ram);
741 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
742 (top_of_ram - total_ram) >> 20);
744 for (i = 0; i < lmb.memory.cnt; ++i) {
745 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
746 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
748 fake_numa_create_new_node(end_pfn, &nid);
749 add_active_range(nid, start_pfn, end_pfn);
750 node_set_online(nid);
754 void __init dump_numa_cpu_topology(void)
756 unsigned int node;
757 unsigned int cpu, count;
759 if (min_common_depth == -1 || !numa_enabled)
760 return;
762 for_each_online_node(node) {
763 printk(KERN_DEBUG "Node %d CPUs:", node);
765 count = 0;
767 * If we used a CPU iterator here we would miss printing
768 * the holes in the cpumap.
770 for (cpu = 0; cpu < NR_CPUS; cpu++) {
771 if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
772 if (count == 0)
773 printk(" %u", cpu);
774 ++count;
775 } else {
776 if (count > 1)
777 printk("-%u", cpu - 1);
778 count = 0;
782 if (count > 1)
783 printk("-%u", NR_CPUS - 1);
784 printk("\n");
788 static void __init dump_numa_memory_topology(void)
790 unsigned int node;
791 unsigned int count;
793 if (min_common_depth == -1 || !numa_enabled)
794 return;
796 for_each_online_node(node) {
797 unsigned long i;
799 printk(KERN_DEBUG "Node %d Memory:", node);
801 count = 0;
803 for (i = 0; i < lmb_end_of_DRAM();
804 i += (1 << SECTION_SIZE_BITS)) {
805 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
806 if (count == 0)
807 printk(" 0x%lx", i);
808 ++count;
809 } else {
810 if (count > 0)
811 printk("-0x%lx", i);
812 count = 0;
816 if (count > 0)
817 printk("-0x%lx", i);
818 printk("\n");
823 * Allocate some memory, satisfying the lmb or bootmem allocator where
824 * required. nid is the preferred node and end is the physical address of
825 * the highest address in the node.
827 * Returns the physical address of the memory.
829 static void __init *careful_allocation(int nid, unsigned long size,
830 unsigned long align,
831 unsigned long end_pfn)
833 int new_nid;
834 unsigned long ret = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
836 /* retry over all memory */
837 if (!ret)
838 ret = __lmb_alloc_base(size, align, lmb_end_of_DRAM());
840 if (!ret)
841 panic("numa.c: cannot allocate %lu bytes on node %d",
842 size, nid);
845 * If the memory came from a previously allocated node, we must
846 * retry with the bootmem allocator.
848 new_nid = early_pfn_to_nid(ret >> PAGE_SHIFT);
849 if (new_nid < nid) {
850 ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid),
851 size, align, 0);
853 if (!ret)
854 panic("numa.c: cannot allocate %lu bytes on node %d",
855 size, new_nid);
857 ret = __pa(ret);
859 dbg("alloc_bootmem %lx %lx\n", ret, size);
862 return (void *)ret;
865 static struct notifier_block __cpuinitdata ppc64_numa_nb = {
866 .notifier_call = cpu_numa_callback,
867 .priority = 1 /* Must run before sched domains notifier. */
870 void __init do_init_bootmem(void)
872 int nid;
873 unsigned int i;
875 min_low_pfn = 0;
876 max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
877 max_pfn = max_low_pfn;
879 if (parse_numa_properties())
880 setup_nonnuma();
881 else
882 dump_numa_memory_topology();
884 register_cpu_notifier(&ppc64_numa_nb);
885 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
886 (void *)(unsigned long)boot_cpuid);
888 for_each_online_node(nid) {
889 unsigned long start_pfn, end_pfn;
890 unsigned long bootmem_paddr;
891 unsigned long bootmap_pages;
893 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
895 /* Allocate the node structure node local if possible */
896 NODE_DATA(nid) = careful_allocation(nid,
897 sizeof(struct pglist_data),
898 SMP_CACHE_BYTES, end_pfn);
899 NODE_DATA(nid) = __va(NODE_DATA(nid));
900 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
902 dbg("node %d\n", nid);
903 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
905 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
906 NODE_DATA(nid)->node_start_pfn = start_pfn;
907 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
909 if (NODE_DATA(nid)->node_spanned_pages == 0)
910 continue;
912 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
913 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
915 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
916 bootmem_paddr = (unsigned long)careful_allocation(nid,
917 bootmap_pages << PAGE_SHIFT,
918 PAGE_SIZE, end_pfn);
919 memset(__va(bootmem_paddr), 0, bootmap_pages << PAGE_SHIFT);
921 dbg("bootmap_paddr = %lx\n", bootmem_paddr);
923 init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT,
924 start_pfn, end_pfn);
926 free_bootmem_with_active_regions(nid, end_pfn);
929 /* Mark reserved regions */
930 for (i = 0; i < lmb.reserved.cnt; i++) {
931 unsigned long physbase = lmb.reserved.region[i].base;
932 unsigned long size = lmb.reserved.region[i].size;
933 unsigned long start_pfn = physbase >> PAGE_SHIFT;
934 unsigned long end_pfn = ((physbase + size) >> PAGE_SHIFT);
935 struct node_active_region node_ar;
937 get_node_active_region(start_pfn, &node_ar);
938 while (start_pfn < end_pfn &&
939 node_ar.start_pfn < node_ar.end_pfn) {
940 unsigned long reserve_size = size;
942 * if reserved region extends past active region
943 * then trim size to active region
945 if (end_pfn > node_ar.end_pfn)
946 reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
947 - (start_pfn << PAGE_SHIFT);
948 dbg("reserve_bootmem %lx %lx nid=%d\n", physbase,
949 reserve_size, node_ar.nid);
950 reserve_bootmem_node(NODE_DATA(node_ar.nid), physbase,
951 reserve_size, BOOTMEM_DEFAULT);
953 * if reserved region is contained in the active region
954 * then done.
956 if (end_pfn <= node_ar.end_pfn)
957 break;
960 * reserved region extends past the active region
961 * get next active region that contains this
962 * reserved region
964 start_pfn = node_ar.end_pfn;
965 physbase = start_pfn << PAGE_SHIFT;
966 size = size - reserve_size;
967 get_node_active_region(start_pfn, &node_ar);
972 for_each_online_node(nid)
973 sparse_memory_present_with_active_regions(nid);
976 void __init paging_init(void)
978 unsigned long max_zone_pfns[MAX_NR_ZONES];
979 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
980 max_zone_pfns[ZONE_DMA] = lmb_end_of_DRAM() >> PAGE_SHIFT;
981 free_area_init_nodes(max_zone_pfns);
984 static int __init early_numa(char *p)
986 if (!p)
987 return 0;
989 if (strstr(p, "off"))
990 numa_enabled = 0;
992 if (strstr(p, "debug"))
993 numa_debug = 1;
995 p = strstr(p, "fake=");
996 if (p)
997 cmdline = p + strlen("fake=");
999 return 0;
1001 early_param("numa", early_numa);
1003 #ifdef CONFIG_MEMORY_HOTPLUG
1005 * Validate the node associated with the memory section we are
1006 * trying to add.
1008 int valid_hot_add_scn(int *nid, unsigned long start, u32 lmb_size,
1009 unsigned long scn_addr)
1011 nodemask_t nodes;
1013 if (*nid < 0 || !node_online(*nid))
1014 *nid = any_online_node(NODE_MASK_ALL);
1016 if ((scn_addr >= start) && (scn_addr < (start + lmb_size))) {
1017 nodes_setall(nodes);
1018 while (NODE_DATA(*nid)->node_spanned_pages == 0) {
1019 node_clear(*nid, nodes);
1020 *nid = any_online_node(nodes);
1023 return 1;
1026 return 0;
1030 * Find the node associated with a hot added memory section represented
1031 * by the ibm,dynamic-reconfiguration-memory node.
1033 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1034 unsigned long scn_addr)
1036 const u32 *dm;
1037 unsigned int n, rc;
1038 unsigned long lmb_size;
1039 int default_nid = any_online_node(NODE_MASK_ALL);
1040 int nid;
1041 struct assoc_arrays aa;
1043 n = of_get_drconf_memory(memory, &dm);
1044 if (!n)
1045 return default_nid;;
1047 lmb_size = of_get_lmb_size(memory);
1048 if (!lmb_size)
1049 return default_nid;
1051 rc = of_get_assoc_arrays(memory, &aa);
1052 if (rc)
1053 return default_nid;
1055 for (; n != 0; --n) {
1056 struct of_drconf_cell drmem;
1058 read_drconf_cell(&drmem, &dm);
1060 /* skip this block if it is reserved or not assigned to
1061 * this partition */
1062 if ((drmem.flags & DRCONF_MEM_RESERVED)
1063 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1064 continue;
1066 nid = of_drconf_to_nid_single(&drmem, &aa);
1068 if (valid_hot_add_scn(&nid, drmem.base_addr, lmb_size,
1069 scn_addr))
1070 return nid;
1073 BUG(); /* section address should be found above */
1074 return 0;
1078 * Find the node associated with a hot added memory section. Section
1079 * corresponds to a SPARSEMEM section, not an LMB. It is assumed that
1080 * sections are fully contained within a single LMB.
1082 int hot_add_scn_to_nid(unsigned long scn_addr)
1084 struct device_node *memory = NULL;
1085 int nid;
1087 if (!numa_enabled || (min_common_depth < 0))
1088 return any_online_node(NODE_MASK_ALL);
1090 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1091 if (memory) {
1092 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1093 of_node_put(memory);
1094 return nid;
1097 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
1098 unsigned long start, size;
1099 int ranges;
1100 const unsigned int *memcell_buf;
1101 unsigned int len;
1103 memcell_buf = of_get_property(memory, "reg", &len);
1104 if (!memcell_buf || len <= 0)
1105 continue;
1107 /* ranges in cell */
1108 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1109 ha_new_range:
1110 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1111 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1112 nid = of_node_to_nid_single(memory);
1114 if (valid_hot_add_scn(&nid, start, size, scn_addr)) {
1115 of_node_put(memory);
1116 return nid;
1119 if (--ranges) /* process all ranges in cell */
1120 goto ha_new_range;
1122 BUG(); /* section address should be found above */
1123 return 0;
1125 #endif /* CONFIG_MEMORY_HOTPLUG */