4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
47 #include <linux/swapops.h>
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned
;
55 /* This context's GFP mask */
60 /* Can pages be swapped as part of reclaim? */
63 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
64 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
65 * In this context, it doesn't matter that we scan the
66 * whole list at once. */
71 int all_unreclaimable
;
75 /* Which cgroup do we reclaim from */
76 struct mem_cgroup
*mem_cgroup
;
78 /* Pluggable isolate pages callback */
79 unsigned long (*isolate_pages
)(unsigned long nr
, struct list_head
*dst
,
80 unsigned long *scanned
, int order
, int mode
,
81 struct zone
*z
, struct mem_cgroup
*mem_cont
,
82 int active
, int file
);
85 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
87 #ifdef ARCH_HAS_PREFETCH
88 #define prefetch_prev_lru_page(_page, _base, _field) \
90 if ((_page)->lru.prev != _base) { \
93 prev = lru_to_page(&(_page->lru)); \
94 prefetch(&prev->_field); \
98 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
101 #ifdef ARCH_HAS_PREFETCHW
102 #define prefetchw_prev_lru_page(_page, _base, _field) \
104 if ((_page)->lru.prev != _base) { \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetchw(&prev->_field); \
112 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
116 * From 0 .. 100. Higher means more swappy.
118 int vm_swappiness
= 60;
119 long vm_total_pages
; /* The total number of pages which the VM controls */
121 static LIST_HEAD(shrinker_list
);
122 static DECLARE_RWSEM(shrinker_rwsem
);
124 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
125 #define scan_global_lru(sc) (!(sc)->mem_cgroup)
127 #define scan_global_lru(sc) (1)
131 * Add a shrinker callback to be called from the vm
133 void register_shrinker(struct shrinker
*shrinker
)
136 down_write(&shrinker_rwsem
);
137 list_add_tail(&shrinker
->list
, &shrinker_list
);
138 up_write(&shrinker_rwsem
);
140 EXPORT_SYMBOL(register_shrinker
);
145 void unregister_shrinker(struct shrinker
*shrinker
)
147 down_write(&shrinker_rwsem
);
148 list_del(&shrinker
->list
);
149 up_write(&shrinker_rwsem
);
151 EXPORT_SYMBOL(unregister_shrinker
);
153 #define SHRINK_BATCH 128
155 * Call the shrink functions to age shrinkable caches
157 * Here we assume it costs one seek to replace a lru page and that it also
158 * takes a seek to recreate a cache object. With this in mind we age equal
159 * percentages of the lru and ageable caches. This should balance the seeks
160 * generated by these structures.
162 * If the vm encountered mapped pages on the LRU it increase the pressure on
163 * slab to avoid swapping.
165 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
167 * `lru_pages' represents the number of on-LRU pages in all the zones which
168 * are eligible for the caller's allocation attempt. It is used for balancing
169 * slab reclaim versus page reclaim.
171 * Returns the number of slab objects which we shrunk.
173 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
174 unsigned long lru_pages
)
176 struct shrinker
*shrinker
;
177 unsigned long ret
= 0;
180 scanned
= SWAP_CLUSTER_MAX
;
182 if (!down_read_trylock(&shrinker_rwsem
))
183 return 1; /* Assume we'll be able to shrink next time */
185 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
186 unsigned long long delta
;
187 unsigned long total_scan
;
188 unsigned long max_pass
= (*shrinker
->shrink
)(0, gfp_mask
);
190 delta
= (4 * scanned
) / shrinker
->seeks
;
192 do_div(delta
, lru_pages
+ 1);
193 shrinker
->nr
+= delta
;
194 if (shrinker
->nr
< 0) {
195 printk(KERN_ERR
"%s: nr=%ld\n",
196 __func__
, shrinker
->nr
);
197 shrinker
->nr
= max_pass
;
201 * Avoid risking looping forever due to too large nr value:
202 * never try to free more than twice the estimate number of
205 if (shrinker
->nr
> max_pass
* 2)
206 shrinker
->nr
= max_pass
* 2;
208 total_scan
= shrinker
->nr
;
211 while (total_scan
>= SHRINK_BATCH
) {
212 long this_scan
= SHRINK_BATCH
;
216 nr_before
= (*shrinker
->shrink
)(0, gfp_mask
);
217 shrink_ret
= (*shrinker
->shrink
)(this_scan
, gfp_mask
);
218 if (shrink_ret
== -1)
220 if (shrink_ret
< nr_before
)
221 ret
+= nr_before
- shrink_ret
;
222 count_vm_events(SLABS_SCANNED
, this_scan
);
223 total_scan
-= this_scan
;
228 shrinker
->nr
+= total_scan
;
230 up_read(&shrinker_rwsem
);
234 /* Called without lock on whether page is mapped, so answer is unstable */
235 static inline int page_mapping_inuse(struct page
*page
)
237 struct address_space
*mapping
;
239 /* Page is in somebody's page tables. */
240 if (page_mapped(page
))
243 /* Be more reluctant to reclaim swapcache than pagecache */
244 if (PageSwapCache(page
))
247 mapping
= page_mapping(page
);
251 /* File is mmap'd by somebody? */
252 return mapping_mapped(mapping
);
255 static inline int is_page_cache_freeable(struct page
*page
)
257 return page_count(page
) - !!PagePrivate(page
) == 2;
260 static int may_write_to_queue(struct backing_dev_info
*bdi
)
262 if (current
->flags
& PF_SWAPWRITE
)
264 if (!bdi_write_congested(bdi
))
266 if (bdi
== current
->backing_dev_info
)
272 * We detected a synchronous write error writing a page out. Probably
273 * -ENOSPC. We need to propagate that into the address_space for a subsequent
274 * fsync(), msync() or close().
276 * The tricky part is that after writepage we cannot touch the mapping: nothing
277 * prevents it from being freed up. But we have a ref on the page and once
278 * that page is locked, the mapping is pinned.
280 * We're allowed to run sleeping lock_page() here because we know the caller has
283 static void handle_write_error(struct address_space
*mapping
,
284 struct page
*page
, int error
)
287 if (page_mapping(page
) == mapping
)
288 mapping_set_error(mapping
, error
);
292 /* Request for sync pageout. */
298 /* possible outcome of pageout() */
300 /* failed to write page out, page is locked */
302 /* move page to the active list, page is locked */
304 /* page has been sent to the disk successfully, page is unlocked */
306 /* page is clean and locked */
311 * pageout is called by shrink_page_list() for each dirty page.
312 * Calls ->writepage().
314 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
315 enum pageout_io sync_writeback
)
318 * If the page is dirty, only perform writeback if that write
319 * will be non-blocking. To prevent this allocation from being
320 * stalled by pagecache activity. But note that there may be
321 * stalls if we need to run get_block(). We could test
322 * PagePrivate for that.
324 * If this process is currently in generic_file_write() against
325 * this page's queue, we can perform writeback even if that
328 * If the page is swapcache, write it back even if that would
329 * block, for some throttling. This happens by accident, because
330 * swap_backing_dev_info is bust: it doesn't reflect the
331 * congestion state of the swapdevs. Easy to fix, if needed.
332 * See swapfile.c:page_queue_congested().
334 if (!is_page_cache_freeable(page
))
338 * Some data journaling orphaned pages can have
339 * page->mapping == NULL while being dirty with clean buffers.
341 if (PagePrivate(page
)) {
342 if (try_to_free_buffers(page
)) {
343 ClearPageDirty(page
);
344 printk("%s: orphaned page\n", __func__
);
350 if (mapping
->a_ops
->writepage
== NULL
)
351 return PAGE_ACTIVATE
;
352 if (!may_write_to_queue(mapping
->backing_dev_info
))
355 if (clear_page_dirty_for_io(page
)) {
357 struct writeback_control wbc
= {
358 .sync_mode
= WB_SYNC_NONE
,
359 .nr_to_write
= SWAP_CLUSTER_MAX
,
361 .range_end
= LLONG_MAX
,
366 SetPageReclaim(page
);
367 res
= mapping
->a_ops
->writepage(page
, &wbc
);
369 handle_write_error(mapping
, page
, res
);
370 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
371 ClearPageReclaim(page
);
372 return PAGE_ACTIVATE
;
376 * Wait on writeback if requested to. This happens when
377 * direct reclaiming a large contiguous area and the
378 * first attempt to free a range of pages fails.
380 if (PageWriteback(page
) && sync_writeback
== PAGEOUT_IO_SYNC
)
381 wait_on_page_writeback(page
);
383 if (!PageWriteback(page
)) {
384 /* synchronous write or broken a_ops? */
385 ClearPageReclaim(page
);
387 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
395 * Same as remove_mapping, but if the page is removed from the mapping, it
396 * gets returned with a refcount of 0.
398 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
)
400 BUG_ON(!PageLocked(page
));
401 BUG_ON(mapping
!= page_mapping(page
));
403 spin_lock_irq(&mapping
->tree_lock
);
405 * The non racy check for a busy page.
407 * Must be careful with the order of the tests. When someone has
408 * a ref to the page, it may be possible that they dirty it then
409 * drop the reference. So if PageDirty is tested before page_count
410 * here, then the following race may occur:
412 * get_user_pages(&page);
413 * [user mapping goes away]
415 * !PageDirty(page) [good]
416 * SetPageDirty(page);
418 * !page_count(page) [good, discard it]
420 * [oops, our write_to data is lost]
422 * Reversing the order of the tests ensures such a situation cannot
423 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
424 * load is not satisfied before that of page->_count.
426 * Note that if SetPageDirty is always performed via set_page_dirty,
427 * and thus under tree_lock, then this ordering is not required.
429 if (!page_freeze_refs(page
, 2))
431 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
432 if (unlikely(PageDirty(page
))) {
433 page_unfreeze_refs(page
, 2);
437 if (PageSwapCache(page
)) {
438 swp_entry_t swap
= { .val
= page_private(page
) };
439 __delete_from_swap_cache(page
);
440 spin_unlock_irq(&mapping
->tree_lock
);
443 __remove_from_page_cache(page
);
444 spin_unlock_irq(&mapping
->tree_lock
);
450 spin_unlock_irq(&mapping
->tree_lock
);
455 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
456 * someone else has a ref on the page, abort and return 0. If it was
457 * successfully detached, return 1. Assumes the caller has a single ref on
460 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
462 if (__remove_mapping(mapping
, page
)) {
464 * Unfreezing the refcount with 1 rather than 2 effectively
465 * drops the pagecache ref for us without requiring another
468 page_unfreeze_refs(page
, 1);
475 * putback_lru_page - put previously isolated page onto appropriate LRU list
476 * @page: page to be put back to appropriate lru list
478 * Add previously isolated @page to appropriate LRU list.
479 * Page may still be unevictable for other reasons.
481 * lru_lock must not be held, interrupts must be enabled.
483 #ifdef CONFIG_UNEVICTABLE_LRU
484 void putback_lru_page(struct page
*page
)
487 int active
= !!TestClearPageActive(page
);
488 int was_unevictable
= PageUnevictable(page
);
490 VM_BUG_ON(PageLRU(page
));
493 ClearPageUnevictable(page
);
495 if (page_evictable(page
, NULL
)) {
497 * For evictable pages, we can use the cache.
498 * In event of a race, worst case is we end up with an
499 * unevictable page on [in]active list.
500 * We know how to handle that.
502 lru
= active
+ page_is_file_cache(page
);
503 lru_cache_add_lru(page
, lru
);
506 * Put unevictable pages directly on zone's unevictable
509 lru
= LRU_UNEVICTABLE
;
510 add_page_to_unevictable_list(page
);
512 mem_cgroup_move_lists(page
, lru
);
515 * page's status can change while we move it among lru. If an evictable
516 * page is on unevictable list, it never be freed. To avoid that,
517 * check after we added it to the list, again.
519 if (lru
== LRU_UNEVICTABLE
&& page_evictable(page
, NULL
)) {
520 if (!isolate_lru_page(page
)) {
524 /* This means someone else dropped this page from LRU
525 * So, it will be freed or putback to LRU again. There is
526 * nothing to do here.
530 if (was_unevictable
&& lru
!= LRU_UNEVICTABLE
)
531 count_vm_event(UNEVICTABLE_PGRESCUED
);
532 else if (!was_unevictable
&& lru
== LRU_UNEVICTABLE
)
533 count_vm_event(UNEVICTABLE_PGCULLED
);
535 put_page(page
); /* drop ref from isolate */
538 #else /* CONFIG_UNEVICTABLE_LRU */
540 void putback_lru_page(struct page
*page
)
543 VM_BUG_ON(PageLRU(page
));
545 lru
= !!TestClearPageActive(page
) + page_is_file_cache(page
);
546 lru_cache_add_lru(page
, lru
);
547 mem_cgroup_move_lists(page
, lru
);
550 #endif /* CONFIG_UNEVICTABLE_LRU */
554 * shrink_page_list() returns the number of reclaimed pages
556 static unsigned long shrink_page_list(struct list_head
*page_list
,
557 struct scan_control
*sc
,
558 enum pageout_io sync_writeback
)
560 LIST_HEAD(ret_pages
);
561 struct pagevec freed_pvec
;
563 unsigned long nr_reclaimed
= 0;
567 pagevec_init(&freed_pvec
, 1);
568 while (!list_empty(page_list
)) {
569 struct address_space
*mapping
;
576 page
= lru_to_page(page_list
);
577 list_del(&page
->lru
);
579 if (!trylock_page(page
))
582 VM_BUG_ON(PageActive(page
));
586 if (unlikely(!page_evictable(page
, NULL
)))
589 if (!sc
->may_swap
&& page_mapped(page
))
592 /* Double the slab pressure for mapped and swapcache pages */
593 if (page_mapped(page
) || PageSwapCache(page
))
596 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
597 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
599 if (PageWriteback(page
)) {
601 * Synchronous reclaim is performed in two passes,
602 * first an asynchronous pass over the list to
603 * start parallel writeback, and a second synchronous
604 * pass to wait for the IO to complete. Wait here
605 * for any page for which writeback has already
608 if (sync_writeback
== PAGEOUT_IO_SYNC
&& may_enter_fs
)
609 wait_on_page_writeback(page
);
614 referenced
= page_referenced(page
, 1, sc
->mem_cgroup
);
615 /* In active use or really unfreeable? Activate it. */
616 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&&
617 referenced
&& page_mapping_inuse(page
))
618 goto activate_locked
;
622 * Anonymous process memory has backing store?
623 * Try to allocate it some swap space here.
625 if (PageAnon(page
) && !PageSwapCache(page
)) {
626 if (!(sc
->gfp_mask
& __GFP_IO
))
628 switch (try_to_munlock(page
)) {
629 case SWAP_FAIL
: /* shouldn't happen */
635 ; /* fall thru'; add to swap cache */
637 if (!add_to_swap(page
, GFP_ATOMIC
))
638 goto activate_locked
;
641 #endif /* CONFIG_SWAP */
643 mapping
= page_mapping(page
);
646 * The page is mapped into the page tables of one or more
647 * processes. Try to unmap it here.
649 if (page_mapped(page
) && mapping
) {
650 switch (try_to_unmap(page
, 0)) {
652 goto activate_locked
;
658 ; /* try to free the page below */
662 if (PageDirty(page
)) {
663 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&& referenced
)
667 if (!sc
->may_writepage
)
670 /* Page is dirty, try to write it out here */
671 switch (pageout(page
, mapping
, sync_writeback
)) {
675 goto activate_locked
;
677 if (PageWriteback(page
) || PageDirty(page
))
680 * A synchronous write - probably a ramdisk. Go
681 * ahead and try to reclaim the page.
683 if (!trylock_page(page
))
685 if (PageDirty(page
) || PageWriteback(page
))
687 mapping
= page_mapping(page
);
689 ; /* try to free the page below */
694 * If the page has buffers, try to free the buffer mappings
695 * associated with this page. If we succeed we try to free
698 * We do this even if the page is PageDirty().
699 * try_to_release_page() does not perform I/O, but it is
700 * possible for a page to have PageDirty set, but it is actually
701 * clean (all its buffers are clean). This happens if the
702 * buffers were written out directly, with submit_bh(). ext3
703 * will do this, as well as the blockdev mapping.
704 * try_to_release_page() will discover that cleanness and will
705 * drop the buffers and mark the page clean - it can be freed.
707 * Rarely, pages can have buffers and no ->mapping. These are
708 * the pages which were not successfully invalidated in
709 * truncate_complete_page(). We try to drop those buffers here
710 * and if that worked, and the page is no longer mapped into
711 * process address space (page_count == 1) it can be freed.
712 * Otherwise, leave the page on the LRU so it is swappable.
714 if (PagePrivate(page
)) {
715 if (!try_to_release_page(page
, sc
->gfp_mask
))
716 goto activate_locked
;
717 if (!mapping
&& page_count(page
) == 1) {
719 if (put_page_testzero(page
))
723 * rare race with speculative reference.
724 * the speculative reference will free
725 * this page shortly, so we may
726 * increment nr_reclaimed here (and
727 * leave it off the LRU).
735 if (!mapping
|| !__remove_mapping(mapping
, page
))
739 * At this point, we have no other references and there is
740 * no way to pick any more up (removed from LRU, removed
741 * from pagecache). Can use non-atomic bitops now (and
742 * we obviously don't have to worry about waking up a process
743 * waiting on the page lock, because there are no references.
745 __clear_page_locked(page
);
748 if (!pagevec_add(&freed_pvec
, page
)) {
749 __pagevec_free(&freed_pvec
);
750 pagevec_reinit(&freed_pvec
);
756 putback_lru_page(page
);
760 /* Not a candidate for swapping, so reclaim swap space. */
761 if (PageSwapCache(page
) && vm_swap_full())
762 remove_exclusive_swap_page_ref(page
);
763 VM_BUG_ON(PageActive(page
));
769 list_add(&page
->lru
, &ret_pages
);
770 VM_BUG_ON(PageLRU(page
) || PageUnevictable(page
));
772 list_splice(&ret_pages
, page_list
);
773 if (pagevec_count(&freed_pvec
))
774 __pagevec_free(&freed_pvec
);
775 count_vm_events(PGACTIVATE
, pgactivate
);
779 /* LRU Isolation modes. */
780 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
781 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
782 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
785 * Attempt to remove the specified page from its LRU. Only take this page
786 * if it is of the appropriate PageActive status. Pages which are being
787 * freed elsewhere are also ignored.
789 * page: page to consider
790 * mode: one of the LRU isolation modes defined above
792 * returns 0 on success, -ve errno on failure.
794 int __isolate_lru_page(struct page
*page
, int mode
, int file
)
798 /* Only take pages on the LRU. */
803 * When checking the active state, we need to be sure we are
804 * dealing with comparible boolean values. Take the logical not
807 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
810 if (mode
!= ISOLATE_BOTH
&& (!page_is_file_cache(page
) != !file
))
814 * When this function is being called for lumpy reclaim, we
815 * initially look into all LRU pages, active, inactive and
816 * unevictable; only give shrink_page_list evictable pages.
818 if (PageUnevictable(page
))
822 if (likely(get_page_unless_zero(page
))) {
824 * Be careful not to clear PageLRU until after we're
825 * sure the page is not being freed elsewhere -- the
826 * page release code relies on it.
836 * zone->lru_lock is heavily contended. Some of the functions that
837 * shrink the lists perform better by taking out a batch of pages
838 * and working on them outside the LRU lock.
840 * For pagecache intensive workloads, this function is the hottest
841 * spot in the kernel (apart from copy_*_user functions).
843 * Appropriate locks must be held before calling this function.
845 * @nr_to_scan: The number of pages to look through on the list.
846 * @src: The LRU list to pull pages off.
847 * @dst: The temp list to put pages on to.
848 * @scanned: The number of pages that were scanned.
849 * @order: The caller's attempted allocation order
850 * @mode: One of the LRU isolation modes
851 * @file: True [1] if isolating file [!anon] pages
853 * returns how many pages were moved onto *@dst.
855 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
856 struct list_head
*src
, struct list_head
*dst
,
857 unsigned long *scanned
, int order
, int mode
, int file
)
859 unsigned long nr_taken
= 0;
862 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
865 unsigned long end_pfn
;
866 unsigned long page_pfn
;
869 page
= lru_to_page(src
);
870 prefetchw_prev_lru_page(page
, src
, flags
);
872 VM_BUG_ON(!PageLRU(page
));
874 switch (__isolate_lru_page(page
, mode
, file
)) {
876 list_move(&page
->lru
, dst
);
881 /* else it is being freed elsewhere */
882 list_move(&page
->lru
, src
);
893 * Attempt to take all pages in the order aligned region
894 * surrounding the tag page. Only take those pages of
895 * the same active state as that tag page. We may safely
896 * round the target page pfn down to the requested order
897 * as the mem_map is guarenteed valid out to MAX_ORDER,
898 * where that page is in a different zone we will detect
899 * it from its zone id and abort this block scan.
901 zone_id
= page_zone_id(page
);
902 page_pfn
= page_to_pfn(page
);
903 pfn
= page_pfn
& ~((1 << order
) - 1);
904 end_pfn
= pfn
+ (1 << order
);
905 for (; pfn
< end_pfn
; pfn
++) {
906 struct page
*cursor_page
;
908 /* The target page is in the block, ignore it. */
909 if (unlikely(pfn
== page_pfn
))
912 /* Avoid holes within the zone. */
913 if (unlikely(!pfn_valid_within(pfn
)))
916 cursor_page
= pfn_to_page(pfn
);
918 /* Check that we have not crossed a zone boundary. */
919 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
921 switch (__isolate_lru_page(cursor_page
, mode
, file
)) {
923 list_move(&cursor_page
->lru
, dst
);
929 /* else it is being freed elsewhere */
930 list_move(&cursor_page
->lru
, src
);
932 break; /* ! on LRU or wrong list */
941 static unsigned long isolate_pages_global(unsigned long nr
,
942 struct list_head
*dst
,
943 unsigned long *scanned
, int order
,
944 int mode
, struct zone
*z
,
945 struct mem_cgroup
*mem_cont
,
946 int active
, int file
)
953 return isolate_lru_pages(nr
, &z
->lru
[lru
].list
, dst
, scanned
, order
,
958 * clear_active_flags() is a helper for shrink_active_list(), clearing
959 * any active bits from the pages in the list.
961 static unsigned long clear_active_flags(struct list_head
*page_list
,
968 list_for_each_entry(page
, page_list
, lru
) {
969 lru
= page_is_file_cache(page
);
970 if (PageActive(page
)) {
972 ClearPageActive(page
);
982 * isolate_lru_page - tries to isolate a page from its LRU list
983 * @page: page to isolate from its LRU list
985 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
986 * vmstat statistic corresponding to whatever LRU list the page was on.
988 * Returns 0 if the page was removed from an LRU list.
989 * Returns -EBUSY if the page was not on an LRU list.
991 * The returned page will have PageLRU() cleared. If it was found on
992 * the active list, it will have PageActive set. If it was found on
993 * the unevictable list, it will have the PageUnevictable bit set. That flag
994 * may need to be cleared by the caller before letting the page go.
996 * The vmstat statistic corresponding to the list on which the page was
997 * found will be decremented.
1000 * (1) Must be called with an elevated refcount on the page. This is a
1001 * fundamentnal difference from isolate_lru_pages (which is called
1002 * without a stable reference).
1003 * (2) the lru_lock must not be held.
1004 * (3) interrupts must be enabled.
1006 int isolate_lru_page(struct page
*page
)
1010 if (PageLRU(page
)) {
1011 struct zone
*zone
= page_zone(page
);
1013 spin_lock_irq(&zone
->lru_lock
);
1014 if (PageLRU(page
) && get_page_unless_zero(page
)) {
1015 int lru
= page_lru(page
);
1019 del_page_from_lru_list(zone
, page
, lru
);
1021 spin_unlock_irq(&zone
->lru_lock
);
1027 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1028 * of reclaimed pages
1030 static unsigned long shrink_inactive_list(unsigned long max_scan
,
1031 struct zone
*zone
, struct scan_control
*sc
,
1032 int priority
, int file
)
1034 LIST_HEAD(page_list
);
1035 struct pagevec pvec
;
1036 unsigned long nr_scanned
= 0;
1037 unsigned long nr_reclaimed
= 0;
1039 pagevec_init(&pvec
, 1);
1042 spin_lock_irq(&zone
->lru_lock
);
1045 unsigned long nr_taken
;
1046 unsigned long nr_scan
;
1047 unsigned long nr_freed
;
1048 unsigned long nr_active
;
1049 unsigned int count
[NR_LRU_LISTS
] = { 0, };
1050 int mode
= ISOLATE_INACTIVE
;
1053 * If we need a large contiguous chunk of memory, or have
1054 * trouble getting a small set of contiguous pages, we
1055 * will reclaim both active and inactive pages.
1057 * We use the same threshold as pageout congestion_wait below.
1059 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
1060 mode
= ISOLATE_BOTH
;
1061 else if (sc
->order
&& priority
< DEF_PRIORITY
- 2)
1062 mode
= ISOLATE_BOTH
;
1064 nr_taken
= sc
->isolate_pages(sc
->swap_cluster_max
,
1065 &page_list
, &nr_scan
, sc
->order
, mode
,
1066 zone
, sc
->mem_cgroup
, 0, file
);
1067 nr_active
= clear_active_flags(&page_list
, count
);
1068 __count_vm_events(PGDEACTIVATE
, nr_active
);
1070 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
,
1071 -count
[LRU_ACTIVE_FILE
]);
1072 __mod_zone_page_state(zone
, NR_INACTIVE_FILE
,
1073 -count
[LRU_INACTIVE_FILE
]);
1074 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
,
1075 -count
[LRU_ACTIVE_ANON
]);
1076 __mod_zone_page_state(zone
, NR_INACTIVE_ANON
,
1077 -count
[LRU_INACTIVE_ANON
]);
1079 if (scan_global_lru(sc
)) {
1080 zone
->pages_scanned
+= nr_scan
;
1081 zone
->recent_scanned
[0] += count
[LRU_INACTIVE_ANON
];
1082 zone
->recent_scanned
[0] += count
[LRU_ACTIVE_ANON
];
1083 zone
->recent_scanned
[1] += count
[LRU_INACTIVE_FILE
];
1084 zone
->recent_scanned
[1] += count
[LRU_ACTIVE_FILE
];
1086 spin_unlock_irq(&zone
->lru_lock
);
1088 nr_scanned
+= nr_scan
;
1089 nr_freed
= shrink_page_list(&page_list
, sc
, PAGEOUT_IO_ASYNC
);
1092 * If we are direct reclaiming for contiguous pages and we do
1093 * not reclaim everything in the list, try again and wait
1094 * for IO to complete. This will stall high-order allocations
1095 * but that should be acceptable to the caller
1097 if (nr_freed
< nr_taken
&& !current_is_kswapd() &&
1098 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
) {
1099 congestion_wait(WRITE
, HZ
/10);
1102 * The attempt at page out may have made some
1103 * of the pages active, mark them inactive again.
1105 nr_active
= clear_active_flags(&page_list
, count
);
1106 count_vm_events(PGDEACTIVATE
, nr_active
);
1108 nr_freed
+= shrink_page_list(&page_list
, sc
,
1112 nr_reclaimed
+= nr_freed
;
1113 local_irq_disable();
1114 if (current_is_kswapd()) {
1115 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
, nr_scan
);
1116 __count_vm_events(KSWAPD_STEAL
, nr_freed
);
1117 } else if (scan_global_lru(sc
))
1118 __count_zone_vm_events(PGSCAN_DIRECT
, zone
, nr_scan
);
1120 __count_zone_vm_events(PGSTEAL
, zone
, nr_freed
);
1125 spin_lock(&zone
->lru_lock
);
1127 * Put back any unfreeable pages.
1129 while (!list_empty(&page_list
)) {
1131 page
= lru_to_page(&page_list
);
1132 VM_BUG_ON(PageLRU(page
));
1133 list_del(&page
->lru
);
1134 if (unlikely(!page_evictable(page
, NULL
))) {
1135 spin_unlock_irq(&zone
->lru_lock
);
1136 putback_lru_page(page
);
1137 spin_lock_irq(&zone
->lru_lock
);
1141 lru
= page_lru(page
);
1142 add_page_to_lru_list(zone
, page
, lru
);
1143 mem_cgroup_move_lists(page
, lru
);
1144 if (PageActive(page
) && scan_global_lru(sc
)) {
1145 int file
= !!page_is_file_cache(page
);
1146 zone
->recent_rotated
[file
]++;
1148 if (!pagevec_add(&pvec
, page
)) {
1149 spin_unlock_irq(&zone
->lru_lock
);
1150 __pagevec_release(&pvec
);
1151 spin_lock_irq(&zone
->lru_lock
);
1154 } while (nr_scanned
< max_scan
);
1155 spin_unlock(&zone
->lru_lock
);
1158 pagevec_release(&pvec
);
1159 return nr_reclaimed
;
1163 * We are about to scan this zone at a certain priority level. If that priority
1164 * level is smaller (ie: more urgent) than the previous priority, then note
1165 * that priority level within the zone. This is done so that when the next
1166 * process comes in to scan this zone, it will immediately start out at this
1167 * priority level rather than having to build up its own scanning priority.
1168 * Here, this priority affects only the reclaim-mapped threshold.
1170 static inline void note_zone_scanning_priority(struct zone
*zone
, int priority
)
1172 if (priority
< zone
->prev_priority
)
1173 zone
->prev_priority
= priority
;
1176 static inline int zone_is_near_oom(struct zone
*zone
)
1178 return zone
->pages_scanned
>= (zone_lru_pages(zone
) * 3);
1182 * This moves pages from the active list to the inactive list.
1184 * We move them the other way if the page is referenced by one or more
1185 * processes, from rmap.
1187 * If the pages are mostly unmapped, the processing is fast and it is
1188 * appropriate to hold zone->lru_lock across the whole operation. But if
1189 * the pages are mapped, the processing is slow (page_referenced()) so we
1190 * should drop zone->lru_lock around each page. It's impossible to balance
1191 * this, so instead we remove the pages from the LRU while processing them.
1192 * It is safe to rely on PG_active against the non-LRU pages in here because
1193 * nobody will play with that bit on a non-LRU page.
1195 * The downside is that we have to touch page->_count against each page.
1196 * But we had to alter page->flags anyway.
1200 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
1201 struct scan_control
*sc
, int priority
, int file
)
1203 unsigned long pgmoved
;
1204 int pgdeactivate
= 0;
1205 unsigned long pgscanned
;
1206 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1207 LIST_HEAD(l_inactive
);
1209 struct pagevec pvec
;
1213 spin_lock_irq(&zone
->lru_lock
);
1214 pgmoved
= sc
->isolate_pages(nr_pages
, &l_hold
, &pgscanned
, sc
->order
,
1215 ISOLATE_ACTIVE
, zone
,
1216 sc
->mem_cgroup
, 1, file
);
1218 * zone->pages_scanned is used for detect zone's oom
1219 * mem_cgroup remembers nr_scan by itself.
1221 if (scan_global_lru(sc
)) {
1222 zone
->pages_scanned
+= pgscanned
;
1223 zone
->recent_scanned
[!!file
] += pgmoved
;
1227 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
, -pgmoved
);
1229 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
, -pgmoved
);
1230 spin_unlock_irq(&zone
->lru_lock
);
1233 while (!list_empty(&l_hold
)) {
1235 page
= lru_to_page(&l_hold
);
1236 list_del(&page
->lru
);
1238 if (unlikely(!page_evictable(page
, NULL
))) {
1239 putback_lru_page(page
);
1243 /* page_referenced clears PageReferenced */
1244 if (page_mapping_inuse(page
) &&
1245 page_referenced(page
, 0, sc
->mem_cgroup
))
1248 list_add(&page
->lru
, &l_inactive
);
1251 spin_lock_irq(&zone
->lru_lock
);
1253 * Count referenced pages from currently used mappings as
1254 * rotated, even though they are moved to the inactive list.
1255 * This helps balance scan pressure between file and anonymous
1256 * pages in get_scan_ratio.
1258 zone
->recent_rotated
[!!file
] += pgmoved
;
1261 * Move the pages to the [file or anon] inactive list.
1263 pagevec_init(&pvec
, 1);
1266 lru
= LRU_BASE
+ file
* LRU_FILE
;
1267 while (!list_empty(&l_inactive
)) {
1268 page
= lru_to_page(&l_inactive
);
1269 prefetchw_prev_lru_page(page
, &l_inactive
, flags
);
1270 VM_BUG_ON(PageLRU(page
));
1272 VM_BUG_ON(!PageActive(page
));
1273 ClearPageActive(page
);
1275 list_move(&page
->lru
, &zone
->lru
[lru
].list
);
1276 mem_cgroup_move_lists(page
, lru
);
1278 if (!pagevec_add(&pvec
, page
)) {
1279 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1280 spin_unlock_irq(&zone
->lru_lock
);
1281 pgdeactivate
+= pgmoved
;
1283 if (buffer_heads_over_limit
)
1284 pagevec_strip(&pvec
);
1285 __pagevec_release(&pvec
);
1286 spin_lock_irq(&zone
->lru_lock
);
1289 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1290 pgdeactivate
+= pgmoved
;
1291 if (buffer_heads_over_limit
) {
1292 spin_unlock_irq(&zone
->lru_lock
);
1293 pagevec_strip(&pvec
);
1294 spin_lock_irq(&zone
->lru_lock
);
1296 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1297 __count_vm_events(PGDEACTIVATE
, pgdeactivate
);
1298 spin_unlock_irq(&zone
->lru_lock
);
1300 pagevec_swap_free(&pvec
);
1302 pagevec_release(&pvec
);
1305 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1306 struct zone
*zone
, struct scan_control
*sc
, int priority
)
1308 int file
= is_file_lru(lru
);
1310 if (lru
== LRU_ACTIVE_FILE
) {
1311 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1315 if (lru
== LRU_ACTIVE_ANON
&&
1316 (!scan_global_lru(sc
) || inactive_anon_is_low(zone
))) {
1317 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1320 return shrink_inactive_list(nr_to_scan
, zone
, sc
, priority
, file
);
1324 * Determine how aggressively the anon and file LRU lists should be
1325 * scanned. The relative value of each set of LRU lists is determined
1326 * by looking at the fraction of the pages scanned we did rotate back
1327 * onto the active list instead of evict.
1329 * percent[0] specifies how much pressure to put on ram/swap backed
1330 * memory, while percent[1] determines pressure on the file LRUs.
1332 static void get_scan_ratio(struct zone
*zone
, struct scan_control
*sc
,
1333 unsigned long *percent
)
1335 unsigned long anon
, file
, free
;
1336 unsigned long anon_prio
, file_prio
;
1337 unsigned long ap
, fp
;
1339 anon
= zone_page_state(zone
, NR_ACTIVE_ANON
) +
1340 zone_page_state(zone
, NR_INACTIVE_ANON
);
1341 file
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
1342 zone_page_state(zone
, NR_INACTIVE_FILE
);
1343 free
= zone_page_state(zone
, NR_FREE_PAGES
);
1345 /* If we have no swap space, do not bother scanning anon pages. */
1346 if (nr_swap_pages
<= 0) {
1352 /* If we have very few page cache pages, force-scan anon pages. */
1353 if (unlikely(file
+ free
<= zone
->pages_high
)) {
1360 * OK, so we have swap space and a fair amount of page cache
1361 * pages. We use the recently rotated / recently scanned
1362 * ratios to determine how valuable each cache is.
1364 * Because workloads change over time (and to avoid overflow)
1365 * we keep these statistics as a floating average, which ends
1366 * up weighing recent references more than old ones.
1368 * anon in [0], file in [1]
1370 if (unlikely(zone
->recent_scanned
[0] > anon
/ 4)) {
1371 spin_lock_irq(&zone
->lru_lock
);
1372 zone
->recent_scanned
[0] /= 2;
1373 zone
->recent_rotated
[0] /= 2;
1374 spin_unlock_irq(&zone
->lru_lock
);
1377 if (unlikely(zone
->recent_scanned
[1] > file
/ 4)) {
1378 spin_lock_irq(&zone
->lru_lock
);
1379 zone
->recent_scanned
[1] /= 2;
1380 zone
->recent_rotated
[1] /= 2;
1381 spin_unlock_irq(&zone
->lru_lock
);
1385 * With swappiness at 100, anonymous and file have the same priority.
1386 * This scanning priority is essentially the inverse of IO cost.
1388 anon_prio
= sc
->swappiness
;
1389 file_prio
= 200 - sc
->swappiness
;
1392 * The amount of pressure on anon vs file pages is inversely
1393 * proportional to the fraction of recently scanned pages on
1394 * each list that were recently referenced and in active use.
1396 ap
= (anon_prio
+ 1) * (zone
->recent_scanned
[0] + 1);
1397 ap
/= zone
->recent_rotated
[0] + 1;
1399 fp
= (file_prio
+ 1) * (zone
->recent_scanned
[1] + 1);
1400 fp
/= zone
->recent_rotated
[1] + 1;
1402 /* Normalize to percentages */
1403 percent
[0] = 100 * ap
/ (ap
+ fp
+ 1);
1404 percent
[1] = 100 - percent
[0];
1409 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1411 static unsigned long shrink_zone(int priority
, struct zone
*zone
,
1412 struct scan_control
*sc
)
1414 unsigned long nr
[NR_LRU_LISTS
];
1415 unsigned long nr_to_scan
;
1416 unsigned long nr_reclaimed
= 0;
1417 unsigned long percent
[2]; /* anon @ 0; file @ 1 */
1420 get_scan_ratio(zone
, sc
, percent
);
1422 for_each_evictable_lru(l
) {
1423 if (scan_global_lru(sc
)) {
1424 int file
= is_file_lru(l
);
1427 scan
= zone_page_state(zone
, NR_LRU_BASE
+ l
);
1430 scan
= (scan
* percent
[file
]) / 100;
1432 zone
->lru
[l
].nr_scan
+= scan
;
1433 nr
[l
] = zone
->lru
[l
].nr_scan
;
1434 if (nr
[l
] >= sc
->swap_cluster_max
)
1435 zone
->lru
[l
].nr_scan
= 0;
1440 * This reclaim occurs not because zone memory shortage
1441 * but because memory controller hits its limit.
1442 * Don't modify zone reclaim related data.
1444 nr
[l
] = mem_cgroup_calc_reclaim(sc
->mem_cgroup
, zone
,
1449 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
1450 nr
[LRU_INACTIVE_FILE
]) {
1451 for_each_evictable_lru(l
) {
1453 nr_to_scan
= min(nr
[l
],
1454 (unsigned long)sc
->swap_cluster_max
);
1455 nr
[l
] -= nr_to_scan
;
1457 nr_reclaimed
+= shrink_list(l
, nr_to_scan
,
1458 zone
, sc
, priority
);
1464 * Even if we did not try to evict anon pages at all, we want to
1465 * rebalance the anon lru active/inactive ratio.
1467 if (!scan_global_lru(sc
) || inactive_anon_is_low(zone
))
1468 shrink_active_list(SWAP_CLUSTER_MAX
, zone
, sc
, priority
, 0);
1469 else if (!scan_global_lru(sc
))
1470 shrink_active_list(SWAP_CLUSTER_MAX
, zone
, sc
, priority
, 0);
1472 throttle_vm_writeout(sc
->gfp_mask
);
1473 return nr_reclaimed
;
1477 * This is the direct reclaim path, for page-allocating processes. We only
1478 * try to reclaim pages from zones which will satisfy the caller's allocation
1481 * We reclaim from a zone even if that zone is over pages_high. Because:
1482 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1484 * b) The zones may be over pages_high but they must go *over* pages_high to
1485 * satisfy the `incremental min' zone defense algorithm.
1487 * Returns the number of reclaimed pages.
1489 * If a zone is deemed to be full of pinned pages then just give it a light
1490 * scan then give up on it.
1492 static unsigned long shrink_zones(int priority
, struct zonelist
*zonelist
,
1493 struct scan_control
*sc
)
1495 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1496 unsigned long nr_reclaimed
= 0;
1500 sc
->all_unreclaimable
= 1;
1501 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1502 if (!populated_zone(zone
))
1505 * Take care memory controller reclaiming has small influence
1508 if (scan_global_lru(sc
)) {
1509 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1511 note_zone_scanning_priority(zone
, priority
);
1513 if (zone_is_all_unreclaimable(zone
) &&
1514 priority
!= DEF_PRIORITY
)
1515 continue; /* Let kswapd poll it */
1516 sc
->all_unreclaimable
= 0;
1519 * Ignore cpuset limitation here. We just want to reduce
1520 * # of used pages by us regardless of memory shortage.
1522 sc
->all_unreclaimable
= 0;
1523 mem_cgroup_note_reclaim_priority(sc
->mem_cgroup
,
1527 nr_reclaimed
+= shrink_zone(priority
, zone
, sc
);
1530 return nr_reclaimed
;
1534 * This is the main entry point to direct page reclaim.
1536 * If a full scan of the inactive list fails to free enough memory then we
1537 * are "out of memory" and something needs to be killed.
1539 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1540 * high - the zone may be full of dirty or under-writeback pages, which this
1541 * caller can't do much about. We kick pdflush and take explicit naps in the
1542 * hope that some of these pages can be written. But if the allocating task
1543 * holds filesystem locks which prevent writeout this might not work, and the
1544 * allocation attempt will fail.
1546 * returns: 0, if no pages reclaimed
1547 * else, the number of pages reclaimed
1549 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
1550 struct scan_control
*sc
)
1553 unsigned long ret
= 0;
1554 unsigned long total_scanned
= 0;
1555 unsigned long nr_reclaimed
= 0;
1556 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1557 unsigned long lru_pages
= 0;
1560 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1562 delayacct_freepages_start();
1564 if (scan_global_lru(sc
))
1565 count_vm_event(ALLOCSTALL
);
1567 * mem_cgroup will not do shrink_slab.
1569 if (scan_global_lru(sc
)) {
1570 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1572 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1575 lru_pages
+= zone_lru_pages(zone
);
1579 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1582 disable_swap_token();
1583 nr_reclaimed
+= shrink_zones(priority
, zonelist
, sc
);
1585 * Don't shrink slabs when reclaiming memory from
1586 * over limit cgroups
1588 if (scan_global_lru(sc
)) {
1589 shrink_slab(sc
->nr_scanned
, sc
->gfp_mask
, lru_pages
);
1590 if (reclaim_state
) {
1591 nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1592 reclaim_state
->reclaimed_slab
= 0;
1595 total_scanned
+= sc
->nr_scanned
;
1596 if (nr_reclaimed
>= sc
->swap_cluster_max
) {
1602 * Try to write back as many pages as we just scanned. This
1603 * tends to cause slow streaming writers to write data to the
1604 * disk smoothly, at the dirtying rate, which is nice. But
1605 * that's undesirable in laptop mode, where we *want* lumpy
1606 * writeout. So in laptop mode, write out the whole world.
1608 if (total_scanned
> sc
->swap_cluster_max
+
1609 sc
->swap_cluster_max
/ 2) {
1610 wakeup_pdflush(laptop_mode
? 0 : total_scanned
);
1611 sc
->may_writepage
= 1;
1614 /* Take a nap, wait for some writeback to complete */
1615 if (sc
->nr_scanned
&& priority
< DEF_PRIORITY
- 2)
1616 congestion_wait(WRITE
, HZ
/10);
1618 /* top priority shrink_zones still had more to do? don't OOM, then */
1619 if (!sc
->all_unreclaimable
&& scan_global_lru(sc
))
1623 * Now that we've scanned all the zones at this priority level, note
1624 * that level within the zone so that the next thread which performs
1625 * scanning of this zone will immediately start out at this priority
1626 * level. This affects only the decision whether or not to bring
1627 * mapped pages onto the inactive list.
1632 if (scan_global_lru(sc
)) {
1633 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1635 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1638 zone
->prev_priority
= priority
;
1641 mem_cgroup_record_reclaim_priority(sc
->mem_cgroup
, priority
);
1643 delayacct_freepages_end();
1648 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
1651 struct scan_control sc
= {
1652 .gfp_mask
= gfp_mask
,
1653 .may_writepage
= !laptop_mode
,
1654 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1656 .swappiness
= vm_swappiness
,
1659 .isolate_pages
= isolate_pages_global
,
1662 return do_try_to_free_pages(zonelist
, &sc
);
1665 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1667 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*mem_cont
,
1670 struct scan_control sc
= {
1671 .may_writepage
= !laptop_mode
,
1673 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1674 .swappiness
= vm_swappiness
,
1676 .mem_cgroup
= mem_cont
,
1677 .isolate_pages
= mem_cgroup_isolate_pages
,
1679 struct zonelist
*zonelist
;
1681 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
1682 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
1683 zonelist
= NODE_DATA(numa_node_id())->node_zonelists
;
1684 return do_try_to_free_pages(zonelist
, &sc
);
1689 * For kswapd, balance_pgdat() will work across all this node's zones until
1690 * they are all at pages_high.
1692 * Returns the number of pages which were actually freed.
1694 * There is special handling here for zones which are full of pinned pages.
1695 * This can happen if the pages are all mlocked, or if they are all used by
1696 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1697 * What we do is to detect the case where all pages in the zone have been
1698 * scanned twice and there has been zero successful reclaim. Mark the zone as
1699 * dead and from now on, only perform a short scan. Basically we're polling
1700 * the zone for when the problem goes away.
1702 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1703 * zones which have free_pages > pages_high, but once a zone is found to have
1704 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1705 * of the number of free pages in the lower zones. This interoperates with
1706 * the page allocator fallback scheme to ensure that aging of pages is balanced
1709 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
)
1714 unsigned long total_scanned
;
1715 unsigned long nr_reclaimed
;
1716 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1717 struct scan_control sc
= {
1718 .gfp_mask
= GFP_KERNEL
,
1720 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1721 .swappiness
= vm_swappiness
,
1724 .isolate_pages
= isolate_pages_global
,
1727 * temp_priority is used to remember the scanning priority at which
1728 * this zone was successfully refilled to free_pages == pages_high.
1730 int temp_priority
[MAX_NR_ZONES
];
1735 sc
.may_writepage
= !laptop_mode
;
1736 count_vm_event(PAGEOUTRUN
);
1738 for (i
= 0; i
< pgdat
->nr_zones
; i
++)
1739 temp_priority
[i
] = DEF_PRIORITY
;
1741 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1742 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
1743 unsigned long lru_pages
= 0;
1745 /* The swap token gets in the way of swapout... */
1747 disable_swap_token();
1752 * Scan in the highmem->dma direction for the highest
1753 * zone which needs scanning
1755 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
1756 struct zone
*zone
= pgdat
->node_zones
+ i
;
1758 if (!populated_zone(zone
))
1761 if (zone_is_all_unreclaimable(zone
) &&
1762 priority
!= DEF_PRIORITY
)
1766 * Do some background aging of the anon list, to give
1767 * pages a chance to be referenced before reclaiming.
1769 if (inactive_anon_is_low(zone
))
1770 shrink_active_list(SWAP_CLUSTER_MAX
, zone
,
1773 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1782 for (i
= 0; i
<= end_zone
; i
++) {
1783 struct zone
*zone
= pgdat
->node_zones
+ i
;
1785 lru_pages
+= zone_lru_pages(zone
);
1789 * Now scan the zone in the dma->highmem direction, stopping
1790 * at the last zone which needs scanning.
1792 * We do this because the page allocator works in the opposite
1793 * direction. This prevents the page allocator from allocating
1794 * pages behind kswapd's direction of progress, which would
1795 * cause too much scanning of the lower zones.
1797 for (i
= 0; i
<= end_zone
; i
++) {
1798 struct zone
*zone
= pgdat
->node_zones
+ i
;
1801 if (!populated_zone(zone
))
1804 if (zone_is_all_unreclaimable(zone
) &&
1805 priority
!= DEF_PRIORITY
)
1808 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1811 temp_priority
[i
] = priority
;
1813 note_zone_scanning_priority(zone
, priority
);
1815 * We put equal pressure on every zone, unless one
1816 * zone has way too many pages free already.
1818 if (!zone_watermark_ok(zone
, order
, 8*zone
->pages_high
,
1820 nr_reclaimed
+= shrink_zone(priority
, zone
, &sc
);
1821 reclaim_state
->reclaimed_slab
= 0;
1822 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
1824 nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1825 total_scanned
+= sc
.nr_scanned
;
1826 if (zone_is_all_unreclaimable(zone
))
1828 if (nr_slab
== 0 && zone
->pages_scanned
>=
1829 (zone_lru_pages(zone
) * 6))
1831 ZONE_ALL_UNRECLAIMABLE
);
1833 * If we've done a decent amount of scanning and
1834 * the reclaim ratio is low, start doing writepage
1835 * even in laptop mode
1837 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
1838 total_scanned
> nr_reclaimed
+ nr_reclaimed
/ 2)
1839 sc
.may_writepage
= 1;
1842 break; /* kswapd: all done */
1844 * OK, kswapd is getting into trouble. Take a nap, then take
1845 * another pass across the zones.
1847 if (total_scanned
&& priority
< DEF_PRIORITY
- 2)
1848 congestion_wait(WRITE
, HZ
/10);
1851 * We do this so kswapd doesn't build up large priorities for
1852 * example when it is freeing in parallel with allocators. It
1853 * matches the direct reclaim path behaviour in terms of impact
1854 * on zone->*_priority.
1856 if (nr_reclaimed
>= SWAP_CLUSTER_MAX
)
1861 * Note within each zone the priority level at which this zone was
1862 * brought into a happy state. So that the next thread which scans this
1863 * zone will start out at that priority level.
1865 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1866 struct zone
*zone
= pgdat
->node_zones
+ i
;
1868 zone
->prev_priority
= temp_priority
[i
];
1870 if (!all_zones_ok
) {
1878 return nr_reclaimed
;
1882 * The background pageout daemon, started as a kernel thread
1883 * from the init process.
1885 * This basically trickles out pages so that we have _some_
1886 * free memory available even if there is no other activity
1887 * that frees anything up. This is needed for things like routing
1888 * etc, where we otherwise might have all activity going on in
1889 * asynchronous contexts that cannot page things out.
1891 * If there are applications that are active memory-allocators
1892 * (most normal use), this basically shouldn't matter.
1894 static int kswapd(void *p
)
1896 unsigned long order
;
1897 pg_data_t
*pgdat
= (pg_data_t
*)p
;
1898 struct task_struct
*tsk
= current
;
1900 struct reclaim_state reclaim_state
= {
1901 .reclaimed_slab
= 0,
1903 node_to_cpumask_ptr(cpumask
, pgdat
->node_id
);
1905 if (!cpumask_empty(cpumask
))
1906 set_cpus_allowed_ptr(tsk
, cpumask
);
1907 current
->reclaim_state
= &reclaim_state
;
1910 * Tell the memory management that we're a "memory allocator",
1911 * and that if we need more memory we should get access to it
1912 * regardless (see "__alloc_pages()"). "kswapd" should
1913 * never get caught in the normal page freeing logic.
1915 * (Kswapd normally doesn't need memory anyway, but sometimes
1916 * you need a small amount of memory in order to be able to
1917 * page out something else, and this flag essentially protects
1918 * us from recursively trying to free more memory as we're
1919 * trying to free the first piece of memory in the first place).
1921 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
1926 unsigned long new_order
;
1928 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
1929 new_order
= pgdat
->kswapd_max_order
;
1930 pgdat
->kswapd_max_order
= 0;
1931 if (order
< new_order
) {
1933 * Don't sleep if someone wants a larger 'order'
1938 if (!freezing(current
))
1941 order
= pgdat
->kswapd_max_order
;
1943 finish_wait(&pgdat
->kswapd_wait
, &wait
);
1945 if (!try_to_freeze()) {
1946 /* We can speed up thawing tasks if we don't call
1947 * balance_pgdat after returning from the refrigerator
1949 balance_pgdat(pgdat
, order
);
1956 * A zone is low on free memory, so wake its kswapd task to service it.
1958 void wakeup_kswapd(struct zone
*zone
, int order
)
1962 if (!populated_zone(zone
))
1965 pgdat
= zone
->zone_pgdat
;
1966 if (zone_watermark_ok(zone
, order
, zone
->pages_low
, 0, 0))
1968 if (pgdat
->kswapd_max_order
< order
)
1969 pgdat
->kswapd_max_order
= order
;
1970 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1972 if (!waitqueue_active(&pgdat
->kswapd_wait
))
1974 wake_up_interruptible(&pgdat
->kswapd_wait
);
1977 unsigned long global_lru_pages(void)
1979 return global_page_state(NR_ACTIVE_ANON
)
1980 + global_page_state(NR_ACTIVE_FILE
)
1981 + global_page_state(NR_INACTIVE_ANON
)
1982 + global_page_state(NR_INACTIVE_FILE
);
1987 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1988 * from LRU lists system-wide, for given pass and priority, and returns the
1989 * number of reclaimed pages
1991 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1993 static unsigned long shrink_all_zones(unsigned long nr_pages
, int prio
,
1994 int pass
, struct scan_control
*sc
)
1997 unsigned long nr_to_scan
, ret
= 0;
2000 for_each_zone(zone
) {
2002 if (!populated_zone(zone
))
2005 if (zone_is_all_unreclaimable(zone
) && prio
!= DEF_PRIORITY
)
2008 for_each_evictable_lru(l
) {
2009 /* For pass = 0, we don't shrink the active list */
2011 (l
== LRU_ACTIVE
|| l
== LRU_ACTIVE_FILE
))
2014 zone
->lru
[l
].nr_scan
+=
2015 (zone_page_state(zone
, NR_LRU_BASE
+ l
)
2017 if (zone
->lru
[l
].nr_scan
>= nr_pages
|| pass
> 3) {
2018 zone
->lru
[l
].nr_scan
= 0;
2019 nr_to_scan
= min(nr_pages
,
2020 zone_page_state(zone
,
2022 ret
+= shrink_list(l
, nr_to_scan
, zone
,
2024 if (ret
>= nr_pages
)
2034 * Try to free `nr_pages' of memory, system-wide, and return the number of
2037 * Rather than trying to age LRUs the aim is to preserve the overall
2038 * LRU order by reclaiming preferentially
2039 * inactive > active > active referenced > active mapped
2041 unsigned long shrink_all_memory(unsigned long nr_pages
)
2043 unsigned long lru_pages
, nr_slab
;
2044 unsigned long ret
= 0;
2046 struct reclaim_state reclaim_state
;
2047 struct scan_control sc
= {
2048 .gfp_mask
= GFP_KERNEL
,
2050 .swap_cluster_max
= nr_pages
,
2052 .swappiness
= vm_swappiness
,
2053 .isolate_pages
= isolate_pages_global
,
2056 current
->reclaim_state
= &reclaim_state
;
2058 lru_pages
= global_lru_pages();
2059 nr_slab
= global_page_state(NR_SLAB_RECLAIMABLE
);
2060 /* If slab caches are huge, it's better to hit them first */
2061 while (nr_slab
>= lru_pages
) {
2062 reclaim_state
.reclaimed_slab
= 0;
2063 shrink_slab(nr_pages
, sc
.gfp_mask
, lru_pages
);
2064 if (!reclaim_state
.reclaimed_slab
)
2067 ret
+= reclaim_state
.reclaimed_slab
;
2068 if (ret
>= nr_pages
)
2071 nr_slab
-= reclaim_state
.reclaimed_slab
;
2075 * We try to shrink LRUs in 5 passes:
2076 * 0 = Reclaim from inactive_list only
2077 * 1 = Reclaim from active list but don't reclaim mapped
2078 * 2 = 2nd pass of type 1
2079 * 3 = Reclaim mapped (normal reclaim)
2080 * 4 = 2nd pass of type 3
2082 for (pass
= 0; pass
< 5; pass
++) {
2085 /* Force reclaiming mapped pages in the passes #3 and #4 */
2088 sc
.swappiness
= 100;
2091 for (prio
= DEF_PRIORITY
; prio
>= 0; prio
--) {
2092 unsigned long nr_to_scan
= nr_pages
- ret
;
2095 ret
+= shrink_all_zones(nr_to_scan
, prio
, pass
, &sc
);
2096 if (ret
>= nr_pages
)
2099 reclaim_state
.reclaimed_slab
= 0;
2100 shrink_slab(sc
.nr_scanned
, sc
.gfp_mask
,
2101 global_lru_pages());
2102 ret
+= reclaim_state
.reclaimed_slab
;
2103 if (ret
>= nr_pages
)
2106 if (sc
.nr_scanned
&& prio
< DEF_PRIORITY
- 2)
2107 congestion_wait(WRITE
, HZ
/ 10);
2112 * If ret = 0, we could not shrink LRUs, but there may be something
2117 reclaim_state
.reclaimed_slab
= 0;
2118 shrink_slab(nr_pages
, sc
.gfp_mask
, global_lru_pages());
2119 ret
+= reclaim_state
.reclaimed_slab
;
2120 } while (ret
< nr_pages
&& reclaim_state
.reclaimed_slab
> 0);
2124 current
->reclaim_state
= NULL
;
2130 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2131 not required for correctness. So if the last cpu in a node goes
2132 away, we get changed to run anywhere: as the first one comes back,
2133 restore their cpu bindings. */
2134 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
2135 unsigned long action
, void *hcpu
)
2139 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
2140 for_each_node_state(nid
, N_HIGH_MEMORY
) {
2141 pg_data_t
*pgdat
= NODE_DATA(nid
);
2142 node_to_cpumask_ptr(mask
, pgdat
->node_id
);
2144 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
2145 /* One of our CPUs online: restore mask */
2146 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
2153 * This kswapd start function will be called by init and node-hot-add.
2154 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2156 int kswapd_run(int nid
)
2158 pg_data_t
*pgdat
= NODE_DATA(nid
);
2164 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
2165 if (IS_ERR(pgdat
->kswapd
)) {
2166 /* failure at boot is fatal */
2167 BUG_ON(system_state
== SYSTEM_BOOTING
);
2168 printk("Failed to start kswapd on node %d\n",nid
);
2174 static int __init
kswapd_init(void)
2179 for_each_node_state(nid
, N_HIGH_MEMORY
)
2181 hotcpu_notifier(cpu_callback
, 0);
2185 module_init(kswapd_init
)
2191 * If non-zero call zone_reclaim when the number of free pages falls below
2194 int zone_reclaim_mode __read_mostly
;
2196 #define RECLAIM_OFF 0
2197 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2198 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2199 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2202 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2203 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2206 #define ZONE_RECLAIM_PRIORITY 4
2209 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2212 int sysctl_min_unmapped_ratio
= 1;
2215 * If the number of slab pages in a zone grows beyond this percentage then
2216 * slab reclaim needs to occur.
2218 int sysctl_min_slab_ratio
= 5;
2221 * Try to free up some pages from this zone through reclaim.
2223 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2225 /* Minimum pages needed in order to stay on node */
2226 const unsigned long nr_pages
= 1 << order
;
2227 struct task_struct
*p
= current
;
2228 struct reclaim_state reclaim_state
;
2230 unsigned long nr_reclaimed
= 0;
2231 struct scan_control sc
= {
2232 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
2233 .may_swap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
2234 .swap_cluster_max
= max_t(unsigned long, nr_pages
,
2236 .gfp_mask
= gfp_mask
,
2237 .swappiness
= vm_swappiness
,
2238 .isolate_pages
= isolate_pages_global
,
2240 unsigned long slab_reclaimable
;
2242 disable_swap_token();
2245 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2246 * and we also need to be able to write out pages for RECLAIM_WRITE
2249 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
2250 reclaim_state
.reclaimed_slab
= 0;
2251 p
->reclaim_state
= &reclaim_state
;
2253 if (zone_page_state(zone
, NR_FILE_PAGES
) -
2254 zone_page_state(zone
, NR_FILE_MAPPED
) >
2255 zone
->min_unmapped_pages
) {
2257 * Free memory by calling shrink zone with increasing
2258 * priorities until we have enough memory freed.
2260 priority
= ZONE_RECLAIM_PRIORITY
;
2262 note_zone_scanning_priority(zone
, priority
);
2263 nr_reclaimed
+= shrink_zone(priority
, zone
, &sc
);
2265 } while (priority
>= 0 && nr_reclaimed
< nr_pages
);
2268 slab_reclaimable
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2269 if (slab_reclaimable
> zone
->min_slab_pages
) {
2271 * shrink_slab() does not currently allow us to determine how
2272 * many pages were freed in this zone. So we take the current
2273 * number of slab pages and shake the slab until it is reduced
2274 * by the same nr_pages that we used for reclaiming unmapped
2277 * Note that shrink_slab will free memory on all zones and may
2280 while (shrink_slab(sc
.nr_scanned
, gfp_mask
, order
) &&
2281 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) >
2282 slab_reclaimable
- nr_pages
)
2286 * Update nr_reclaimed by the number of slab pages we
2287 * reclaimed from this zone.
2289 nr_reclaimed
+= slab_reclaimable
-
2290 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2293 p
->reclaim_state
= NULL
;
2294 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
2295 return nr_reclaimed
>= nr_pages
;
2298 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2304 * Zone reclaim reclaims unmapped file backed pages and
2305 * slab pages if we are over the defined limits.
2307 * A small portion of unmapped file backed pages is needed for
2308 * file I/O otherwise pages read by file I/O will be immediately
2309 * thrown out if the zone is overallocated. So we do not reclaim
2310 * if less than a specified percentage of the zone is used by
2311 * unmapped file backed pages.
2313 if (zone_page_state(zone
, NR_FILE_PAGES
) -
2314 zone_page_state(zone
, NR_FILE_MAPPED
) <= zone
->min_unmapped_pages
2315 && zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)
2316 <= zone
->min_slab_pages
)
2319 if (zone_is_all_unreclaimable(zone
))
2323 * Do not scan if the allocation should not be delayed.
2325 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
2329 * Only run zone reclaim on the local zone or on zones that do not
2330 * have associated processors. This will favor the local processor
2331 * over remote processors and spread off node memory allocations
2332 * as wide as possible.
2334 node_id
= zone_to_nid(zone
);
2335 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
2338 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
2340 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
2341 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);
2347 #ifdef CONFIG_UNEVICTABLE_LRU
2349 * page_evictable - test whether a page is evictable
2350 * @page: the page to test
2351 * @vma: the VMA in which the page is or will be mapped, may be NULL
2353 * Test whether page is evictable--i.e., should be placed on active/inactive
2354 * lists vs unevictable list. The vma argument is !NULL when called from the
2355 * fault path to determine how to instantate a new page.
2357 * Reasons page might not be evictable:
2358 * (1) page's mapping marked unevictable
2359 * (2) page is part of an mlocked VMA
2362 int page_evictable(struct page
*page
, struct vm_area_struct
*vma
)
2365 if (mapping_unevictable(page_mapping(page
)))
2368 if (PageMlocked(page
) || (vma
&& is_mlocked_vma(vma
, page
)))
2375 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2376 * @page: page to check evictability and move to appropriate lru list
2377 * @zone: zone page is in
2379 * Checks a page for evictability and moves the page to the appropriate
2382 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2383 * have PageUnevictable set.
2385 static void check_move_unevictable_page(struct page
*page
, struct zone
*zone
)
2387 VM_BUG_ON(PageActive(page
));
2390 ClearPageUnevictable(page
);
2391 if (page_evictable(page
, NULL
)) {
2392 enum lru_list l
= LRU_INACTIVE_ANON
+ page_is_file_cache(page
);
2394 __dec_zone_state(zone
, NR_UNEVICTABLE
);
2395 list_move(&page
->lru
, &zone
->lru
[l
].list
);
2396 __inc_zone_state(zone
, NR_INACTIVE_ANON
+ l
);
2397 __count_vm_event(UNEVICTABLE_PGRESCUED
);
2400 * rotate unevictable list
2402 SetPageUnevictable(page
);
2403 list_move(&page
->lru
, &zone
->lru
[LRU_UNEVICTABLE
].list
);
2404 if (page_evictable(page
, NULL
))
2410 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2411 * @mapping: struct address_space to scan for evictable pages
2413 * Scan all pages in mapping. Check unevictable pages for
2414 * evictability and move them to the appropriate zone lru list.
2416 void scan_mapping_unevictable_pages(struct address_space
*mapping
)
2419 pgoff_t end
= (i_size_read(mapping
->host
) + PAGE_CACHE_SIZE
- 1) >>
2422 struct pagevec pvec
;
2424 if (mapping
->nrpages
== 0)
2427 pagevec_init(&pvec
, 0);
2428 while (next
< end
&&
2429 pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
2435 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
2436 struct page
*page
= pvec
.pages
[i
];
2437 pgoff_t page_index
= page
->index
;
2438 struct zone
*pagezone
= page_zone(page
);
2441 if (page_index
> next
)
2445 if (pagezone
!= zone
) {
2447 spin_unlock_irq(&zone
->lru_lock
);
2449 spin_lock_irq(&zone
->lru_lock
);
2452 if (PageLRU(page
) && PageUnevictable(page
))
2453 check_move_unevictable_page(page
, zone
);
2456 spin_unlock_irq(&zone
->lru_lock
);
2457 pagevec_release(&pvec
);
2459 count_vm_events(UNEVICTABLE_PGSCANNED
, pg_scanned
);
2465 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2466 * @zone - zone of which to scan the unevictable list
2468 * Scan @zone's unevictable LRU lists to check for pages that have become
2469 * evictable. Move those that have to @zone's inactive list where they
2470 * become candidates for reclaim, unless shrink_inactive_zone() decides
2471 * to reactivate them. Pages that are still unevictable are rotated
2472 * back onto @zone's unevictable list.
2474 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2475 void scan_zone_unevictable_pages(struct zone
*zone
)
2477 struct list_head
*l_unevictable
= &zone
->lru
[LRU_UNEVICTABLE
].list
;
2479 unsigned long nr_to_scan
= zone_page_state(zone
, NR_UNEVICTABLE
);
2481 while (nr_to_scan
> 0) {
2482 unsigned long batch_size
= min(nr_to_scan
,
2483 SCAN_UNEVICTABLE_BATCH_SIZE
);
2485 spin_lock_irq(&zone
->lru_lock
);
2486 for (scan
= 0; scan
< batch_size
; scan
++) {
2487 struct page
*page
= lru_to_page(l_unevictable
);
2489 if (!trylock_page(page
))
2492 prefetchw_prev_lru_page(page
, l_unevictable
, flags
);
2494 if (likely(PageLRU(page
) && PageUnevictable(page
)))
2495 check_move_unevictable_page(page
, zone
);
2499 spin_unlock_irq(&zone
->lru_lock
);
2501 nr_to_scan
-= batch_size
;
2507 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2509 * A really big hammer: scan all zones' unevictable LRU lists to check for
2510 * pages that have become evictable. Move those back to the zones'
2511 * inactive list where they become candidates for reclaim.
2512 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2513 * and we add swap to the system. As such, it runs in the context of a task
2514 * that has possibly/probably made some previously unevictable pages
2517 void scan_all_zones_unevictable_pages(void)
2521 for_each_zone(zone
) {
2522 scan_zone_unevictable_pages(zone
);
2527 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2528 * all nodes' unevictable lists for evictable pages
2530 unsigned long scan_unevictable_pages
;
2532 int scan_unevictable_handler(struct ctl_table
*table
, int write
,
2533 struct file
*file
, void __user
*buffer
,
2534 size_t *length
, loff_t
*ppos
)
2536 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2538 if (write
&& *(unsigned long *)table
->data
)
2539 scan_all_zones_unevictable_pages();
2541 scan_unevictable_pages
= 0;
2546 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2547 * a specified node's per zone unevictable lists for evictable pages.
2550 static ssize_t
read_scan_unevictable_node(struct sys_device
*dev
,
2551 struct sysdev_attribute
*attr
,
2554 return sprintf(buf
, "0\n"); /* always zero; should fit... */
2557 static ssize_t
write_scan_unevictable_node(struct sys_device
*dev
,
2558 struct sysdev_attribute
*attr
,
2559 const char *buf
, size_t count
)
2561 struct zone
*node_zones
= NODE_DATA(dev
->id
)->node_zones
;
2564 unsigned long req
= strict_strtoul(buf
, 10, &res
);
2567 return 1; /* zero is no-op */
2569 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
2570 if (!populated_zone(zone
))
2572 scan_zone_unevictable_pages(zone
);
2578 static SYSDEV_ATTR(scan_unevictable_pages
, S_IRUGO
| S_IWUSR
,
2579 read_scan_unevictable_node
,
2580 write_scan_unevictable_node
);
2582 int scan_unevictable_register_node(struct node
*node
)
2584 return sysdev_create_file(&node
->sysdev
, &attr_scan_unevictable_pages
);
2587 void scan_unevictable_unregister_node(struct node
*node
)
2589 sysdev_remove_file(&node
->sysdev
, &attr_scan_unevictable_pages
);