params.c: Use new strtobool function to process boolean inputs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / perf_event.c
blob8e81a9860a0d543c436716345b2ce0871229915b
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/vmalloc.h>
29 #include <linux/hardirq.h>
30 #include <linux/rculist.h>
31 #include <linux/uaccess.h>
32 #include <linux/syscalls.h>
33 #include <linux/anon_inodes.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/perf_event.h>
36 #include <linux/ftrace_event.h>
37 #include <linux/hw_breakpoint.h>
39 #include <asm/irq_regs.h>
41 struct remote_function_call {
42 struct task_struct *p;
43 int (*func)(void *info);
44 void *info;
45 int ret;
48 static void remote_function(void *data)
50 struct remote_function_call *tfc = data;
51 struct task_struct *p = tfc->p;
53 if (p) {
54 tfc->ret = -EAGAIN;
55 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
56 return;
59 tfc->ret = tfc->func(tfc->info);
62 /**
63 * task_function_call - call a function on the cpu on which a task runs
64 * @p: the task to evaluate
65 * @func: the function to be called
66 * @info: the function call argument
68 * Calls the function @func when the task is currently running. This might
69 * be on the current CPU, which just calls the function directly
71 * returns: @func return value, or
72 * -ESRCH - when the process isn't running
73 * -EAGAIN - when the process moved away
75 static int
76 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
78 struct remote_function_call data = {
79 .p = p,
80 .func = func,
81 .info = info,
82 .ret = -ESRCH, /* No such (running) process */
85 if (task_curr(p))
86 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
88 return data.ret;
91 /**
92 * cpu_function_call - call a function on the cpu
93 * @func: the function to be called
94 * @info: the function call argument
96 * Calls the function @func on the remote cpu.
98 * returns: @func return value or -ENXIO when the cpu is offline
100 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
102 struct remote_function_call data = {
103 .p = NULL,
104 .func = func,
105 .info = info,
106 .ret = -ENXIO, /* No such CPU */
109 smp_call_function_single(cpu, remote_function, &data, 1);
111 return data.ret;
114 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
115 PERF_FLAG_FD_OUTPUT |\
116 PERF_FLAG_PID_CGROUP)
118 enum event_type_t {
119 EVENT_FLEXIBLE = 0x1,
120 EVENT_PINNED = 0x2,
121 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
125 * perf_sched_events : >0 events exist
126 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
128 atomic_t perf_sched_events __read_mostly;
129 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
131 static atomic_t nr_mmap_events __read_mostly;
132 static atomic_t nr_comm_events __read_mostly;
133 static atomic_t nr_task_events __read_mostly;
135 static LIST_HEAD(pmus);
136 static DEFINE_MUTEX(pmus_lock);
137 static struct srcu_struct pmus_srcu;
140 * perf event paranoia level:
141 * -1 - not paranoid at all
142 * 0 - disallow raw tracepoint access for unpriv
143 * 1 - disallow cpu events for unpriv
144 * 2 - disallow kernel profiling for unpriv
146 int sysctl_perf_event_paranoid __read_mostly = 1;
148 /* Minimum for 512 kiB + 1 user control page */
149 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
152 * max perf event sample rate
154 #define DEFAULT_MAX_SAMPLE_RATE 100000
155 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
156 static int max_samples_per_tick __read_mostly =
157 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
159 int perf_proc_update_handler(struct ctl_table *table, int write,
160 void __user *buffer, size_t *lenp,
161 loff_t *ppos)
163 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
165 if (ret || !write)
166 return ret;
168 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
170 return 0;
173 static atomic64_t perf_event_id;
175 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
176 enum event_type_t event_type);
178 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
179 enum event_type_t event_type,
180 struct task_struct *task);
182 static void update_context_time(struct perf_event_context *ctx);
183 static u64 perf_event_time(struct perf_event *event);
185 void __weak perf_event_print_debug(void) { }
187 extern __weak const char *perf_pmu_name(void)
189 return "pmu";
192 static inline u64 perf_clock(void)
194 return local_clock();
197 static inline struct perf_cpu_context *
198 __get_cpu_context(struct perf_event_context *ctx)
200 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
203 #ifdef CONFIG_CGROUP_PERF
206 * Must ensure cgroup is pinned (css_get) before calling
207 * this function. In other words, we cannot call this function
208 * if there is no cgroup event for the current CPU context.
210 static inline struct perf_cgroup *
211 perf_cgroup_from_task(struct task_struct *task)
213 return container_of(task_subsys_state(task, perf_subsys_id),
214 struct perf_cgroup, css);
217 static inline bool
218 perf_cgroup_match(struct perf_event *event)
220 struct perf_event_context *ctx = event->ctx;
221 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
223 return !event->cgrp || event->cgrp == cpuctx->cgrp;
226 static inline void perf_get_cgroup(struct perf_event *event)
228 css_get(&event->cgrp->css);
231 static inline void perf_put_cgroup(struct perf_event *event)
233 css_put(&event->cgrp->css);
236 static inline void perf_detach_cgroup(struct perf_event *event)
238 perf_put_cgroup(event);
239 event->cgrp = NULL;
242 static inline int is_cgroup_event(struct perf_event *event)
244 return event->cgrp != NULL;
247 static inline u64 perf_cgroup_event_time(struct perf_event *event)
249 struct perf_cgroup_info *t;
251 t = per_cpu_ptr(event->cgrp->info, event->cpu);
252 return t->time;
255 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
257 struct perf_cgroup_info *info;
258 u64 now;
260 now = perf_clock();
262 info = this_cpu_ptr(cgrp->info);
264 info->time += now - info->timestamp;
265 info->timestamp = now;
268 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
270 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
271 if (cgrp_out)
272 __update_cgrp_time(cgrp_out);
275 static inline void update_cgrp_time_from_event(struct perf_event *event)
277 struct perf_cgroup *cgrp;
280 * ensure we access cgroup data only when needed and
281 * when we know the cgroup is pinned (css_get)
283 if (!is_cgroup_event(event))
284 return;
286 cgrp = perf_cgroup_from_task(current);
288 * Do not update time when cgroup is not active
290 if (cgrp == event->cgrp)
291 __update_cgrp_time(event->cgrp);
294 static inline void
295 perf_cgroup_set_timestamp(struct task_struct *task,
296 struct perf_event_context *ctx)
298 struct perf_cgroup *cgrp;
299 struct perf_cgroup_info *info;
302 * ctx->lock held by caller
303 * ensure we do not access cgroup data
304 * unless we have the cgroup pinned (css_get)
306 if (!task || !ctx->nr_cgroups)
307 return;
309 cgrp = perf_cgroup_from_task(task);
310 info = this_cpu_ptr(cgrp->info);
311 info->timestamp = ctx->timestamp;
314 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
315 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
318 * reschedule events based on the cgroup constraint of task.
320 * mode SWOUT : schedule out everything
321 * mode SWIN : schedule in based on cgroup for next
323 void perf_cgroup_switch(struct task_struct *task, int mode)
325 struct perf_cpu_context *cpuctx;
326 struct pmu *pmu;
327 unsigned long flags;
330 * disable interrupts to avoid geting nr_cgroup
331 * changes via __perf_event_disable(). Also
332 * avoids preemption.
334 local_irq_save(flags);
337 * we reschedule only in the presence of cgroup
338 * constrained events.
340 rcu_read_lock();
342 list_for_each_entry_rcu(pmu, &pmus, entry) {
344 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
346 perf_pmu_disable(cpuctx->ctx.pmu);
349 * perf_cgroup_events says at least one
350 * context on this CPU has cgroup events.
352 * ctx->nr_cgroups reports the number of cgroup
353 * events for a context.
355 if (cpuctx->ctx.nr_cgroups > 0) {
357 if (mode & PERF_CGROUP_SWOUT) {
358 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
360 * must not be done before ctxswout due
361 * to event_filter_match() in event_sched_out()
363 cpuctx->cgrp = NULL;
366 if (mode & PERF_CGROUP_SWIN) {
367 WARN_ON_ONCE(cpuctx->cgrp);
368 /* set cgrp before ctxsw in to
369 * allow event_filter_match() to not
370 * have to pass task around
372 cpuctx->cgrp = perf_cgroup_from_task(task);
373 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
377 perf_pmu_enable(cpuctx->ctx.pmu);
380 rcu_read_unlock();
382 local_irq_restore(flags);
385 static inline void perf_cgroup_sched_out(struct task_struct *task)
387 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
390 static inline void perf_cgroup_sched_in(struct task_struct *task)
392 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
395 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
396 struct perf_event_attr *attr,
397 struct perf_event *group_leader)
399 struct perf_cgroup *cgrp;
400 struct cgroup_subsys_state *css;
401 struct file *file;
402 int ret = 0, fput_needed;
404 file = fget_light(fd, &fput_needed);
405 if (!file)
406 return -EBADF;
408 css = cgroup_css_from_dir(file, perf_subsys_id);
409 if (IS_ERR(css)) {
410 ret = PTR_ERR(css);
411 goto out;
414 cgrp = container_of(css, struct perf_cgroup, css);
415 event->cgrp = cgrp;
417 /* must be done before we fput() the file */
418 perf_get_cgroup(event);
421 * all events in a group must monitor
422 * the same cgroup because a task belongs
423 * to only one perf cgroup at a time
425 if (group_leader && group_leader->cgrp != cgrp) {
426 perf_detach_cgroup(event);
427 ret = -EINVAL;
429 out:
430 fput_light(file, fput_needed);
431 return ret;
434 static inline void
435 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
437 struct perf_cgroup_info *t;
438 t = per_cpu_ptr(event->cgrp->info, event->cpu);
439 event->shadow_ctx_time = now - t->timestamp;
442 static inline void
443 perf_cgroup_defer_enabled(struct perf_event *event)
446 * when the current task's perf cgroup does not match
447 * the event's, we need to remember to call the
448 * perf_mark_enable() function the first time a task with
449 * a matching perf cgroup is scheduled in.
451 if (is_cgroup_event(event) && !perf_cgroup_match(event))
452 event->cgrp_defer_enabled = 1;
455 static inline void
456 perf_cgroup_mark_enabled(struct perf_event *event,
457 struct perf_event_context *ctx)
459 struct perf_event *sub;
460 u64 tstamp = perf_event_time(event);
462 if (!event->cgrp_defer_enabled)
463 return;
465 event->cgrp_defer_enabled = 0;
467 event->tstamp_enabled = tstamp - event->total_time_enabled;
468 list_for_each_entry(sub, &event->sibling_list, group_entry) {
469 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
470 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
471 sub->cgrp_defer_enabled = 0;
475 #else /* !CONFIG_CGROUP_PERF */
477 static inline bool
478 perf_cgroup_match(struct perf_event *event)
480 return true;
483 static inline void perf_detach_cgroup(struct perf_event *event)
486 static inline int is_cgroup_event(struct perf_event *event)
488 return 0;
491 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
493 return 0;
496 static inline void update_cgrp_time_from_event(struct perf_event *event)
500 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
504 static inline void perf_cgroup_sched_out(struct task_struct *task)
508 static inline void perf_cgroup_sched_in(struct task_struct *task)
512 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
513 struct perf_event_attr *attr,
514 struct perf_event *group_leader)
516 return -EINVAL;
519 static inline void
520 perf_cgroup_set_timestamp(struct task_struct *task,
521 struct perf_event_context *ctx)
525 void
526 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
530 static inline void
531 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
535 static inline u64 perf_cgroup_event_time(struct perf_event *event)
537 return 0;
540 static inline void
541 perf_cgroup_defer_enabled(struct perf_event *event)
545 static inline void
546 perf_cgroup_mark_enabled(struct perf_event *event,
547 struct perf_event_context *ctx)
550 #endif
552 void perf_pmu_disable(struct pmu *pmu)
554 int *count = this_cpu_ptr(pmu->pmu_disable_count);
555 if (!(*count)++)
556 pmu->pmu_disable(pmu);
559 void perf_pmu_enable(struct pmu *pmu)
561 int *count = this_cpu_ptr(pmu->pmu_disable_count);
562 if (!--(*count))
563 pmu->pmu_enable(pmu);
566 static DEFINE_PER_CPU(struct list_head, rotation_list);
569 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
570 * because they're strictly cpu affine and rotate_start is called with IRQs
571 * disabled, while rotate_context is called from IRQ context.
573 static void perf_pmu_rotate_start(struct pmu *pmu)
575 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
576 struct list_head *head = &__get_cpu_var(rotation_list);
578 WARN_ON(!irqs_disabled());
580 if (list_empty(&cpuctx->rotation_list))
581 list_add(&cpuctx->rotation_list, head);
584 static void get_ctx(struct perf_event_context *ctx)
586 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
589 static void free_ctx(struct rcu_head *head)
591 struct perf_event_context *ctx;
593 ctx = container_of(head, struct perf_event_context, rcu_head);
594 kfree(ctx);
597 static void put_ctx(struct perf_event_context *ctx)
599 if (atomic_dec_and_test(&ctx->refcount)) {
600 if (ctx->parent_ctx)
601 put_ctx(ctx->parent_ctx);
602 if (ctx->task)
603 put_task_struct(ctx->task);
604 call_rcu(&ctx->rcu_head, free_ctx);
608 static void unclone_ctx(struct perf_event_context *ctx)
610 if (ctx->parent_ctx) {
611 put_ctx(ctx->parent_ctx);
612 ctx->parent_ctx = NULL;
616 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
619 * only top level events have the pid namespace they were created in
621 if (event->parent)
622 event = event->parent;
624 return task_tgid_nr_ns(p, event->ns);
627 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
630 * only top level events have the pid namespace they were created in
632 if (event->parent)
633 event = event->parent;
635 return task_pid_nr_ns(p, event->ns);
639 * If we inherit events we want to return the parent event id
640 * to userspace.
642 static u64 primary_event_id(struct perf_event *event)
644 u64 id = event->id;
646 if (event->parent)
647 id = event->parent->id;
649 return id;
653 * Get the perf_event_context for a task and lock it.
654 * This has to cope with with the fact that until it is locked,
655 * the context could get moved to another task.
657 static struct perf_event_context *
658 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
660 struct perf_event_context *ctx;
662 rcu_read_lock();
663 retry:
664 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
665 if (ctx) {
667 * If this context is a clone of another, it might
668 * get swapped for another underneath us by
669 * perf_event_task_sched_out, though the
670 * rcu_read_lock() protects us from any context
671 * getting freed. Lock the context and check if it
672 * got swapped before we could get the lock, and retry
673 * if so. If we locked the right context, then it
674 * can't get swapped on us any more.
676 raw_spin_lock_irqsave(&ctx->lock, *flags);
677 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
678 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
679 goto retry;
682 if (!atomic_inc_not_zero(&ctx->refcount)) {
683 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
684 ctx = NULL;
687 rcu_read_unlock();
688 return ctx;
692 * Get the context for a task and increment its pin_count so it
693 * can't get swapped to another task. This also increments its
694 * reference count so that the context can't get freed.
696 static struct perf_event_context *
697 perf_pin_task_context(struct task_struct *task, int ctxn)
699 struct perf_event_context *ctx;
700 unsigned long flags;
702 ctx = perf_lock_task_context(task, ctxn, &flags);
703 if (ctx) {
704 ++ctx->pin_count;
705 raw_spin_unlock_irqrestore(&ctx->lock, flags);
707 return ctx;
710 static void perf_unpin_context(struct perf_event_context *ctx)
712 unsigned long flags;
714 raw_spin_lock_irqsave(&ctx->lock, flags);
715 --ctx->pin_count;
716 raw_spin_unlock_irqrestore(&ctx->lock, flags);
720 * Update the record of the current time in a context.
722 static void update_context_time(struct perf_event_context *ctx)
724 u64 now = perf_clock();
726 ctx->time += now - ctx->timestamp;
727 ctx->timestamp = now;
730 static u64 perf_event_time(struct perf_event *event)
732 struct perf_event_context *ctx = event->ctx;
734 if (is_cgroup_event(event))
735 return perf_cgroup_event_time(event);
737 return ctx ? ctx->time : 0;
741 * Update the total_time_enabled and total_time_running fields for a event.
743 static void update_event_times(struct perf_event *event)
745 struct perf_event_context *ctx = event->ctx;
746 u64 run_end;
748 if (event->state < PERF_EVENT_STATE_INACTIVE ||
749 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
750 return;
752 * in cgroup mode, time_enabled represents
753 * the time the event was enabled AND active
754 * tasks were in the monitored cgroup. This is
755 * independent of the activity of the context as
756 * there may be a mix of cgroup and non-cgroup events.
758 * That is why we treat cgroup events differently
759 * here.
761 if (is_cgroup_event(event))
762 run_end = perf_event_time(event);
763 else if (ctx->is_active)
764 run_end = ctx->time;
765 else
766 run_end = event->tstamp_stopped;
768 event->total_time_enabled = run_end - event->tstamp_enabled;
770 if (event->state == PERF_EVENT_STATE_INACTIVE)
771 run_end = event->tstamp_stopped;
772 else
773 run_end = perf_event_time(event);
775 event->total_time_running = run_end - event->tstamp_running;
780 * Update total_time_enabled and total_time_running for all events in a group.
782 static void update_group_times(struct perf_event *leader)
784 struct perf_event *event;
786 update_event_times(leader);
787 list_for_each_entry(event, &leader->sibling_list, group_entry)
788 update_event_times(event);
791 static struct list_head *
792 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
794 if (event->attr.pinned)
795 return &ctx->pinned_groups;
796 else
797 return &ctx->flexible_groups;
801 * Add a event from the lists for its context.
802 * Must be called with ctx->mutex and ctx->lock held.
804 static void
805 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
807 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
808 event->attach_state |= PERF_ATTACH_CONTEXT;
811 * If we're a stand alone event or group leader, we go to the context
812 * list, group events are kept attached to the group so that
813 * perf_group_detach can, at all times, locate all siblings.
815 if (event->group_leader == event) {
816 struct list_head *list;
818 if (is_software_event(event))
819 event->group_flags |= PERF_GROUP_SOFTWARE;
821 list = ctx_group_list(event, ctx);
822 list_add_tail(&event->group_entry, list);
825 if (is_cgroup_event(event))
826 ctx->nr_cgroups++;
828 list_add_rcu(&event->event_entry, &ctx->event_list);
829 if (!ctx->nr_events)
830 perf_pmu_rotate_start(ctx->pmu);
831 ctx->nr_events++;
832 if (event->attr.inherit_stat)
833 ctx->nr_stat++;
837 * Called at perf_event creation and when events are attached/detached from a
838 * group.
840 static void perf_event__read_size(struct perf_event *event)
842 int entry = sizeof(u64); /* value */
843 int size = 0;
844 int nr = 1;
846 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
847 size += sizeof(u64);
849 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
850 size += sizeof(u64);
852 if (event->attr.read_format & PERF_FORMAT_ID)
853 entry += sizeof(u64);
855 if (event->attr.read_format & PERF_FORMAT_GROUP) {
856 nr += event->group_leader->nr_siblings;
857 size += sizeof(u64);
860 size += entry * nr;
861 event->read_size = size;
864 static void perf_event__header_size(struct perf_event *event)
866 struct perf_sample_data *data;
867 u64 sample_type = event->attr.sample_type;
868 u16 size = 0;
870 perf_event__read_size(event);
872 if (sample_type & PERF_SAMPLE_IP)
873 size += sizeof(data->ip);
875 if (sample_type & PERF_SAMPLE_ADDR)
876 size += sizeof(data->addr);
878 if (sample_type & PERF_SAMPLE_PERIOD)
879 size += sizeof(data->period);
881 if (sample_type & PERF_SAMPLE_READ)
882 size += event->read_size;
884 event->header_size = size;
887 static void perf_event__id_header_size(struct perf_event *event)
889 struct perf_sample_data *data;
890 u64 sample_type = event->attr.sample_type;
891 u16 size = 0;
893 if (sample_type & PERF_SAMPLE_TID)
894 size += sizeof(data->tid_entry);
896 if (sample_type & PERF_SAMPLE_TIME)
897 size += sizeof(data->time);
899 if (sample_type & PERF_SAMPLE_ID)
900 size += sizeof(data->id);
902 if (sample_type & PERF_SAMPLE_STREAM_ID)
903 size += sizeof(data->stream_id);
905 if (sample_type & PERF_SAMPLE_CPU)
906 size += sizeof(data->cpu_entry);
908 event->id_header_size = size;
911 static void perf_group_attach(struct perf_event *event)
913 struct perf_event *group_leader = event->group_leader, *pos;
916 * We can have double attach due to group movement in perf_event_open.
918 if (event->attach_state & PERF_ATTACH_GROUP)
919 return;
921 event->attach_state |= PERF_ATTACH_GROUP;
923 if (group_leader == event)
924 return;
926 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
927 !is_software_event(event))
928 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
930 list_add_tail(&event->group_entry, &group_leader->sibling_list);
931 group_leader->nr_siblings++;
933 perf_event__header_size(group_leader);
935 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
936 perf_event__header_size(pos);
940 * Remove a event from the lists for its context.
941 * Must be called with ctx->mutex and ctx->lock held.
943 static void
944 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
946 struct perf_cpu_context *cpuctx;
948 * We can have double detach due to exit/hot-unplug + close.
950 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
951 return;
953 event->attach_state &= ~PERF_ATTACH_CONTEXT;
955 if (is_cgroup_event(event)) {
956 ctx->nr_cgroups--;
957 cpuctx = __get_cpu_context(ctx);
959 * if there are no more cgroup events
960 * then cler cgrp to avoid stale pointer
961 * in update_cgrp_time_from_cpuctx()
963 if (!ctx->nr_cgroups)
964 cpuctx->cgrp = NULL;
967 ctx->nr_events--;
968 if (event->attr.inherit_stat)
969 ctx->nr_stat--;
971 list_del_rcu(&event->event_entry);
973 if (event->group_leader == event)
974 list_del_init(&event->group_entry);
976 update_group_times(event);
979 * If event was in error state, then keep it
980 * that way, otherwise bogus counts will be
981 * returned on read(). The only way to get out
982 * of error state is by explicit re-enabling
983 * of the event
985 if (event->state > PERF_EVENT_STATE_OFF)
986 event->state = PERF_EVENT_STATE_OFF;
989 static void perf_group_detach(struct perf_event *event)
991 struct perf_event *sibling, *tmp;
992 struct list_head *list = NULL;
995 * We can have double detach due to exit/hot-unplug + close.
997 if (!(event->attach_state & PERF_ATTACH_GROUP))
998 return;
1000 event->attach_state &= ~PERF_ATTACH_GROUP;
1003 * If this is a sibling, remove it from its group.
1005 if (event->group_leader != event) {
1006 list_del_init(&event->group_entry);
1007 event->group_leader->nr_siblings--;
1008 goto out;
1011 if (!list_empty(&event->group_entry))
1012 list = &event->group_entry;
1015 * If this was a group event with sibling events then
1016 * upgrade the siblings to singleton events by adding them
1017 * to whatever list we are on.
1019 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1020 if (list)
1021 list_move_tail(&sibling->group_entry, list);
1022 sibling->group_leader = sibling;
1024 /* Inherit group flags from the previous leader */
1025 sibling->group_flags = event->group_flags;
1028 out:
1029 perf_event__header_size(event->group_leader);
1031 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1032 perf_event__header_size(tmp);
1035 static inline int
1036 event_filter_match(struct perf_event *event)
1038 return (event->cpu == -1 || event->cpu == smp_processor_id())
1039 && perf_cgroup_match(event);
1042 static void
1043 event_sched_out(struct perf_event *event,
1044 struct perf_cpu_context *cpuctx,
1045 struct perf_event_context *ctx)
1047 u64 tstamp = perf_event_time(event);
1048 u64 delta;
1050 * An event which could not be activated because of
1051 * filter mismatch still needs to have its timings
1052 * maintained, otherwise bogus information is return
1053 * via read() for time_enabled, time_running:
1055 if (event->state == PERF_EVENT_STATE_INACTIVE
1056 && !event_filter_match(event)) {
1057 delta = tstamp - event->tstamp_stopped;
1058 event->tstamp_running += delta;
1059 event->tstamp_stopped = tstamp;
1062 if (event->state != PERF_EVENT_STATE_ACTIVE)
1063 return;
1065 event->state = PERF_EVENT_STATE_INACTIVE;
1066 if (event->pending_disable) {
1067 event->pending_disable = 0;
1068 event->state = PERF_EVENT_STATE_OFF;
1070 event->tstamp_stopped = tstamp;
1071 event->pmu->del(event, 0);
1072 event->oncpu = -1;
1074 if (!is_software_event(event))
1075 cpuctx->active_oncpu--;
1076 ctx->nr_active--;
1077 if (event->attr.exclusive || !cpuctx->active_oncpu)
1078 cpuctx->exclusive = 0;
1081 static void
1082 group_sched_out(struct perf_event *group_event,
1083 struct perf_cpu_context *cpuctx,
1084 struct perf_event_context *ctx)
1086 struct perf_event *event;
1087 int state = group_event->state;
1089 event_sched_out(group_event, cpuctx, ctx);
1092 * Schedule out siblings (if any):
1094 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1095 event_sched_out(event, cpuctx, ctx);
1097 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1098 cpuctx->exclusive = 0;
1102 * Cross CPU call to remove a performance event
1104 * We disable the event on the hardware level first. After that we
1105 * remove it from the context list.
1107 static int __perf_remove_from_context(void *info)
1109 struct perf_event *event = info;
1110 struct perf_event_context *ctx = event->ctx;
1111 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1113 raw_spin_lock(&ctx->lock);
1114 event_sched_out(event, cpuctx, ctx);
1115 list_del_event(event, ctx);
1116 raw_spin_unlock(&ctx->lock);
1118 return 0;
1123 * Remove the event from a task's (or a CPU's) list of events.
1125 * CPU events are removed with a smp call. For task events we only
1126 * call when the task is on a CPU.
1128 * If event->ctx is a cloned context, callers must make sure that
1129 * every task struct that event->ctx->task could possibly point to
1130 * remains valid. This is OK when called from perf_release since
1131 * that only calls us on the top-level context, which can't be a clone.
1132 * When called from perf_event_exit_task, it's OK because the
1133 * context has been detached from its task.
1135 static void perf_remove_from_context(struct perf_event *event)
1137 struct perf_event_context *ctx = event->ctx;
1138 struct task_struct *task = ctx->task;
1140 lockdep_assert_held(&ctx->mutex);
1142 if (!task) {
1144 * Per cpu events are removed via an smp call and
1145 * the removal is always successful.
1147 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1148 return;
1151 retry:
1152 if (!task_function_call(task, __perf_remove_from_context, event))
1153 return;
1155 raw_spin_lock_irq(&ctx->lock);
1157 * If we failed to find a running task, but find the context active now
1158 * that we've acquired the ctx->lock, retry.
1160 if (ctx->is_active) {
1161 raw_spin_unlock_irq(&ctx->lock);
1162 goto retry;
1166 * Since the task isn't running, its safe to remove the event, us
1167 * holding the ctx->lock ensures the task won't get scheduled in.
1169 list_del_event(event, ctx);
1170 raw_spin_unlock_irq(&ctx->lock);
1174 * Cross CPU call to disable a performance event
1176 static int __perf_event_disable(void *info)
1178 struct perf_event *event = info;
1179 struct perf_event_context *ctx = event->ctx;
1180 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1183 * If this is a per-task event, need to check whether this
1184 * event's task is the current task on this cpu.
1186 * Can trigger due to concurrent perf_event_context_sched_out()
1187 * flipping contexts around.
1189 if (ctx->task && cpuctx->task_ctx != ctx)
1190 return -EINVAL;
1192 raw_spin_lock(&ctx->lock);
1195 * If the event is on, turn it off.
1196 * If it is in error state, leave it in error state.
1198 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1199 update_context_time(ctx);
1200 update_cgrp_time_from_event(event);
1201 update_group_times(event);
1202 if (event == event->group_leader)
1203 group_sched_out(event, cpuctx, ctx);
1204 else
1205 event_sched_out(event, cpuctx, ctx);
1206 event->state = PERF_EVENT_STATE_OFF;
1209 raw_spin_unlock(&ctx->lock);
1211 return 0;
1215 * Disable a event.
1217 * If event->ctx is a cloned context, callers must make sure that
1218 * every task struct that event->ctx->task could possibly point to
1219 * remains valid. This condition is satisifed when called through
1220 * perf_event_for_each_child or perf_event_for_each because they
1221 * hold the top-level event's child_mutex, so any descendant that
1222 * goes to exit will block in sync_child_event.
1223 * When called from perf_pending_event it's OK because event->ctx
1224 * is the current context on this CPU and preemption is disabled,
1225 * hence we can't get into perf_event_task_sched_out for this context.
1227 void perf_event_disable(struct perf_event *event)
1229 struct perf_event_context *ctx = event->ctx;
1230 struct task_struct *task = ctx->task;
1232 if (!task) {
1234 * Disable the event on the cpu that it's on
1236 cpu_function_call(event->cpu, __perf_event_disable, event);
1237 return;
1240 retry:
1241 if (!task_function_call(task, __perf_event_disable, event))
1242 return;
1244 raw_spin_lock_irq(&ctx->lock);
1246 * If the event is still active, we need to retry the cross-call.
1248 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1249 raw_spin_unlock_irq(&ctx->lock);
1251 * Reload the task pointer, it might have been changed by
1252 * a concurrent perf_event_context_sched_out().
1254 task = ctx->task;
1255 goto retry;
1259 * Since we have the lock this context can't be scheduled
1260 * in, so we can change the state safely.
1262 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1263 update_group_times(event);
1264 event->state = PERF_EVENT_STATE_OFF;
1266 raw_spin_unlock_irq(&ctx->lock);
1269 static void perf_set_shadow_time(struct perf_event *event,
1270 struct perf_event_context *ctx,
1271 u64 tstamp)
1274 * use the correct time source for the time snapshot
1276 * We could get by without this by leveraging the
1277 * fact that to get to this function, the caller
1278 * has most likely already called update_context_time()
1279 * and update_cgrp_time_xx() and thus both timestamp
1280 * are identical (or very close). Given that tstamp is,
1281 * already adjusted for cgroup, we could say that:
1282 * tstamp - ctx->timestamp
1283 * is equivalent to
1284 * tstamp - cgrp->timestamp.
1286 * Then, in perf_output_read(), the calculation would
1287 * work with no changes because:
1288 * - event is guaranteed scheduled in
1289 * - no scheduled out in between
1290 * - thus the timestamp would be the same
1292 * But this is a bit hairy.
1294 * So instead, we have an explicit cgroup call to remain
1295 * within the time time source all along. We believe it
1296 * is cleaner and simpler to understand.
1298 if (is_cgroup_event(event))
1299 perf_cgroup_set_shadow_time(event, tstamp);
1300 else
1301 event->shadow_ctx_time = tstamp - ctx->timestamp;
1304 #define MAX_INTERRUPTS (~0ULL)
1306 static void perf_log_throttle(struct perf_event *event, int enable);
1308 static int
1309 event_sched_in(struct perf_event *event,
1310 struct perf_cpu_context *cpuctx,
1311 struct perf_event_context *ctx)
1313 u64 tstamp = perf_event_time(event);
1315 if (event->state <= PERF_EVENT_STATE_OFF)
1316 return 0;
1318 event->state = PERF_EVENT_STATE_ACTIVE;
1319 event->oncpu = smp_processor_id();
1322 * Unthrottle events, since we scheduled we might have missed several
1323 * ticks already, also for a heavily scheduling task there is little
1324 * guarantee it'll get a tick in a timely manner.
1326 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1327 perf_log_throttle(event, 1);
1328 event->hw.interrupts = 0;
1332 * The new state must be visible before we turn it on in the hardware:
1334 smp_wmb();
1336 if (event->pmu->add(event, PERF_EF_START)) {
1337 event->state = PERF_EVENT_STATE_INACTIVE;
1338 event->oncpu = -1;
1339 return -EAGAIN;
1342 event->tstamp_running += tstamp - event->tstamp_stopped;
1344 perf_set_shadow_time(event, ctx, tstamp);
1346 if (!is_software_event(event))
1347 cpuctx->active_oncpu++;
1348 ctx->nr_active++;
1350 if (event->attr.exclusive)
1351 cpuctx->exclusive = 1;
1353 return 0;
1356 static int
1357 group_sched_in(struct perf_event *group_event,
1358 struct perf_cpu_context *cpuctx,
1359 struct perf_event_context *ctx)
1361 struct perf_event *event, *partial_group = NULL;
1362 struct pmu *pmu = group_event->pmu;
1363 u64 now = ctx->time;
1364 bool simulate = false;
1366 if (group_event->state == PERF_EVENT_STATE_OFF)
1367 return 0;
1369 pmu->start_txn(pmu);
1371 if (event_sched_in(group_event, cpuctx, ctx)) {
1372 pmu->cancel_txn(pmu);
1373 return -EAGAIN;
1377 * Schedule in siblings as one group (if any):
1379 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1380 if (event_sched_in(event, cpuctx, ctx)) {
1381 partial_group = event;
1382 goto group_error;
1386 if (!pmu->commit_txn(pmu))
1387 return 0;
1389 group_error:
1391 * Groups can be scheduled in as one unit only, so undo any
1392 * partial group before returning:
1393 * The events up to the failed event are scheduled out normally,
1394 * tstamp_stopped will be updated.
1396 * The failed events and the remaining siblings need to have
1397 * their timings updated as if they had gone thru event_sched_in()
1398 * and event_sched_out(). This is required to get consistent timings
1399 * across the group. This also takes care of the case where the group
1400 * could never be scheduled by ensuring tstamp_stopped is set to mark
1401 * the time the event was actually stopped, such that time delta
1402 * calculation in update_event_times() is correct.
1404 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1405 if (event == partial_group)
1406 simulate = true;
1408 if (simulate) {
1409 event->tstamp_running += now - event->tstamp_stopped;
1410 event->tstamp_stopped = now;
1411 } else {
1412 event_sched_out(event, cpuctx, ctx);
1415 event_sched_out(group_event, cpuctx, ctx);
1417 pmu->cancel_txn(pmu);
1419 return -EAGAIN;
1423 * Work out whether we can put this event group on the CPU now.
1425 static int group_can_go_on(struct perf_event *event,
1426 struct perf_cpu_context *cpuctx,
1427 int can_add_hw)
1430 * Groups consisting entirely of software events can always go on.
1432 if (event->group_flags & PERF_GROUP_SOFTWARE)
1433 return 1;
1435 * If an exclusive group is already on, no other hardware
1436 * events can go on.
1438 if (cpuctx->exclusive)
1439 return 0;
1441 * If this group is exclusive and there are already
1442 * events on the CPU, it can't go on.
1444 if (event->attr.exclusive && cpuctx->active_oncpu)
1445 return 0;
1447 * Otherwise, try to add it if all previous groups were able
1448 * to go on.
1450 return can_add_hw;
1453 static void add_event_to_ctx(struct perf_event *event,
1454 struct perf_event_context *ctx)
1456 u64 tstamp = perf_event_time(event);
1458 list_add_event(event, ctx);
1459 perf_group_attach(event);
1460 event->tstamp_enabled = tstamp;
1461 event->tstamp_running = tstamp;
1462 event->tstamp_stopped = tstamp;
1465 static void perf_event_context_sched_in(struct perf_event_context *ctx,
1466 struct task_struct *tsk);
1469 * Cross CPU call to install and enable a performance event
1471 * Must be called with ctx->mutex held
1473 static int __perf_install_in_context(void *info)
1475 struct perf_event *event = info;
1476 struct perf_event_context *ctx = event->ctx;
1477 struct perf_event *leader = event->group_leader;
1478 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1479 int err;
1482 * In case we're installing a new context to an already running task,
1483 * could also happen before perf_event_task_sched_in() on architectures
1484 * which do context switches with IRQs enabled.
1486 if (ctx->task && !cpuctx->task_ctx)
1487 perf_event_context_sched_in(ctx, ctx->task);
1489 raw_spin_lock(&ctx->lock);
1490 ctx->is_active = 1;
1491 update_context_time(ctx);
1493 * update cgrp time only if current cgrp
1494 * matches event->cgrp. Must be done before
1495 * calling add_event_to_ctx()
1497 update_cgrp_time_from_event(event);
1499 add_event_to_ctx(event, ctx);
1501 if (!event_filter_match(event))
1502 goto unlock;
1505 * Don't put the event on if it is disabled or if
1506 * it is in a group and the group isn't on.
1508 if (event->state != PERF_EVENT_STATE_INACTIVE ||
1509 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
1510 goto unlock;
1513 * An exclusive event can't go on if there are already active
1514 * hardware events, and no hardware event can go on if there
1515 * is already an exclusive event on.
1517 if (!group_can_go_on(event, cpuctx, 1))
1518 err = -EEXIST;
1519 else
1520 err = event_sched_in(event, cpuctx, ctx);
1522 if (err) {
1524 * This event couldn't go on. If it is in a group
1525 * then we have to pull the whole group off.
1526 * If the event group is pinned then put it in error state.
1528 if (leader != event)
1529 group_sched_out(leader, cpuctx, ctx);
1530 if (leader->attr.pinned) {
1531 update_group_times(leader);
1532 leader->state = PERF_EVENT_STATE_ERROR;
1536 unlock:
1537 raw_spin_unlock(&ctx->lock);
1539 return 0;
1543 * Attach a performance event to a context
1545 * First we add the event to the list with the hardware enable bit
1546 * in event->hw_config cleared.
1548 * If the event is attached to a task which is on a CPU we use a smp
1549 * call to enable it in the task context. The task might have been
1550 * scheduled away, but we check this in the smp call again.
1552 static void
1553 perf_install_in_context(struct perf_event_context *ctx,
1554 struct perf_event *event,
1555 int cpu)
1557 struct task_struct *task = ctx->task;
1559 lockdep_assert_held(&ctx->mutex);
1561 event->ctx = ctx;
1563 if (!task) {
1565 * Per cpu events are installed via an smp call and
1566 * the install is always successful.
1568 cpu_function_call(cpu, __perf_install_in_context, event);
1569 return;
1572 retry:
1573 if (!task_function_call(task, __perf_install_in_context, event))
1574 return;
1576 raw_spin_lock_irq(&ctx->lock);
1578 * If we failed to find a running task, but find the context active now
1579 * that we've acquired the ctx->lock, retry.
1581 if (ctx->is_active) {
1582 raw_spin_unlock_irq(&ctx->lock);
1583 goto retry;
1587 * Since the task isn't running, its safe to add the event, us holding
1588 * the ctx->lock ensures the task won't get scheduled in.
1590 add_event_to_ctx(event, ctx);
1591 raw_spin_unlock_irq(&ctx->lock);
1595 * Put a event into inactive state and update time fields.
1596 * Enabling the leader of a group effectively enables all
1597 * the group members that aren't explicitly disabled, so we
1598 * have to update their ->tstamp_enabled also.
1599 * Note: this works for group members as well as group leaders
1600 * since the non-leader members' sibling_lists will be empty.
1602 static void __perf_event_mark_enabled(struct perf_event *event,
1603 struct perf_event_context *ctx)
1605 struct perf_event *sub;
1606 u64 tstamp = perf_event_time(event);
1608 event->state = PERF_EVENT_STATE_INACTIVE;
1609 event->tstamp_enabled = tstamp - event->total_time_enabled;
1610 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1611 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1612 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1617 * Cross CPU call to enable a performance event
1619 static int __perf_event_enable(void *info)
1621 struct perf_event *event = info;
1622 struct perf_event_context *ctx = event->ctx;
1623 struct perf_event *leader = event->group_leader;
1624 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1625 int err;
1627 if (WARN_ON_ONCE(!ctx->is_active))
1628 return -EINVAL;
1630 raw_spin_lock(&ctx->lock);
1631 update_context_time(ctx);
1633 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1634 goto unlock;
1637 * set current task's cgroup time reference point
1639 perf_cgroup_set_timestamp(current, ctx);
1641 __perf_event_mark_enabled(event, ctx);
1643 if (!event_filter_match(event)) {
1644 if (is_cgroup_event(event))
1645 perf_cgroup_defer_enabled(event);
1646 goto unlock;
1650 * If the event is in a group and isn't the group leader,
1651 * then don't put it on unless the group is on.
1653 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1654 goto unlock;
1656 if (!group_can_go_on(event, cpuctx, 1)) {
1657 err = -EEXIST;
1658 } else {
1659 if (event == leader)
1660 err = group_sched_in(event, cpuctx, ctx);
1661 else
1662 err = event_sched_in(event, cpuctx, ctx);
1665 if (err) {
1667 * If this event can't go on and it's part of a
1668 * group, then the whole group has to come off.
1670 if (leader != event)
1671 group_sched_out(leader, cpuctx, ctx);
1672 if (leader->attr.pinned) {
1673 update_group_times(leader);
1674 leader->state = PERF_EVENT_STATE_ERROR;
1678 unlock:
1679 raw_spin_unlock(&ctx->lock);
1681 return 0;
1685 * Enable a event.
1687 * If event->ctx is a cloned context, callers must make sure that
1688 * every task struct that event->ctx->task could possibly point to
1689 * remains valid. This condition is satisfied when called through
1690 * perf_event_for_each_child or perf_event_for_each as described
1691 * for perf_event_disable.
1693 void perf_event_enable(struct perf_event *event)
1695 struct perf_event_context *ctx = event->ctx;
1696 struct task_struct *task = ctx->task;
1698 if (!task) {
1700 * Enable the event on the cpu that it's on
1702 cpu_function_call(event->cpu, __perf_event_enable, event);
1703 return;
1706 raw_spin_lock_irq(&ctx->lock);
1707 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1708 goto out;
1711 * If the event is in error state, clear that first.
1712 * That way, if we see the event in error state below, we
1713 * know that it has gone back into error state, as distinct
1714 * from the task having been scheduled away before the
1715 * cross-call arrived.
1717 if (event->state == PERF_EVENT_STATE_ERROR)
1718 event->state = PERF_EVENT_STATE_OFF;
1720 retry:
1721 if (!ctx->is_active) {
1722 __perf_event_mark_enabled(event, ctx);
1723 goto out;
1726 raw_spin_unlock_irq(&ctx->lock);
1728 if (!task_function_call(task, __perf_event_enable, event))
1729 return;
1731 raw_spin_lock_irq(&ctx->lock);
1734 * If the context is active and the event is still off,
1735 * we need to retry the cross-call.
1737 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1739 * task could have been flipped by a concurrent
1740 * perf_event_context_sched_out()
1742 task = ctx->task;
1743 goto retry;
1746 out:
1747 raw_spin_unlock_irq(&ctx->lock);
1750 static int perf_event_refresh(struct perf_event *event, int refresh)
1753 * not supported on inherited events
1755 if (event->attr.inherit || !is_sampling_event(event))
1756 return -EINVAL;
1758 atomic_add(refresh, &event->event_limit);
1759 perf_event_enable(event);
1761 return 0;
1764 static void ctx_sched_out(struct perf_event_context *ctx,
1765 struct perf_cpu_context *cpuctx,
1766 enum event_type_t event_type)
1768 struct perf_event *event;
1770 raw_spin_lock(&ctx->lock);
1771 perf_pmu_disable(ctx->pmu);
1772 ctx->is_active = 0;
1773 if (likely(!ctx->nr_events))
1774 goto out;
1775 update_context_time(ctx);
1776 update_cgrp_time_from_cpuctx(cpuctx);
1778 if (!ctx->nr_active)
1779 goto out;
1781 if (event_type & EVENT_PINNED) {
1782 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1783 group_sched_out(event, cpuctx, ctx);
1786 if (event_type & EVENT_FLEXIBLE) {
1787 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1788 group_sched_out(event, cpuctx, ctx);
1790 out:
1791 perf_pmu_enable(ctx->pmu);
1792 raw_spin_unlock(&ctx->lock);
1796 * Test whether two contexts are equivalent, i.e. whether they
1797 * have both been cloned from the same version of the same context
1798 * and they both have the same number of enabled events.
1799 * If the number of enabled events is the same, then the set
1800 * of enabled events should be the same, because these are both
1801 * inherited contexts, therefore we can't access individual events
1802 * in them directly with an fd; we can only enable/disable all
1803 * events via prctl, or enable/disable all events in a family
1804 * via ioctl, which will have the same effect on both contexts.
1806 static int context_equiv(struct perf_event_context *ctx1,
1807 struct perf_event_context *ctx2)
1809 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1810 && ctx1->parent_gen == ctx2->parent_gen
1811 && !ctx1->pin_count && !ctx2->pin_count;
1814 static void __perf_event_sync_stat(struct perf_event *event,
1815 struct perf_event *next_event)
1817 u64 value;
1819 if (!event->attr.inherit_stat)
1820 return;
1823 * Update the event value, we cannot use perf_event_read()
1824 * because we're in the middle of a context switch and have IRQs
1825 * disabled, which upsets smp_call_function_single(), however
1826 * we know the event must be on the current CPU, therefore we
1827 * don't need to use it.
1829 switch (event->state) {
1830 case PERF_EVENT_STATE_ACTIVE:
1831 event->pmu->read(event);
1832 /* fall-through */
1834 case PERF_EVENT_STATE_INACTIVE:
1835 update_event_times(event);
1836 break;
1838 default:
1839 break;
1843 * In order to keep per-task stats reliable we need to flip the event
1844 * values when we flip the contexts.
1846 value = local64_read(&next_event->count);
1847 value = local64_xchg(&event->count, value);
1848 local64_set(&next_event->count, value);
1850 swap(event->total_time_enabled, next_event->total_time_enabled);
1851 swap(event->total_time_running, next_event->total_time_running);
1854 * Since we swizzled the values, update the user visible data too.
1856 perf_event_update_userpage(event);
1857 perf_event_update_userpage(next_event);
1860 #define list_next_entry(pos, member) \
1861 list_entry(pos->member.next, typeof(*pos), member)
1863 static void perf_event_sync_stat(struct perf_event_context *ctx,
1864 struct perf_event_context *next_ctx)
1866 struct perf_event *event, *next_event;
1868 if (!ctx->nr_stat)
1869 return;
1871 update_context_time(ctx);
1873 event = list_first_entry(&ctx->event_list,
1874 struct perf_event, event_entry);
1876 next_event = list_first_entry(&next_ctx->event_list,
1877 struct perf_event, event_entry);
1879 while (&event->event_entry != &ctx->event_list &&
1880 &next_event->event_entry != &next_ctx->event_list) {
1882 __perf_event_sync_stat(event, next_event);
1884 event = list_next_entry(event, event_entry);
1885 next_event = list_next_entry(next_event, event_entry);
1889 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1890 struct task_struct *next)
1892 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1893 struct perf_event_context *next_ctx;
1894 struct perf_event_context *parent;
1895 struct perf_cpu_context *cpuctx;
1896 int do_switch = 1;
1898 if (likely(!ctx))
1899 return;
1901 cpuctx = __get_cpu_context(ctx);
1902 if (!cpuctx->task_ctx)
1903 return;
1905 rcu_read_lock();
1906 parent = rcu_dereference(ctx->parent_ctx);
1907 next_ctx = next->perf_event_ctxp[ctxn];
1908 if (parent && next_ctx &&
1909 rcu_dereference(next_ctx->parent_ctx) == parent) {
1911 * Looks like the two contexts are clones, so we might be
1912 * able to optimize the context switch. We lock both
1913 * contexts and check that they are clones under the
1914 * lock (including re-checking that neither has been
1915 * uncloned in the meantime). It doesn't matter which
1916 * order we take the locks because no other cpu could
1917 * be trying to lock both of these tasks.
1919 raw_spin_lock(&ctx->lock);
1920 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1921 if (context_equiv(ctx, next_ctx)) {
1923 * XXX do we need a memory barrier of sorts
1924 * wrt to rcu_dereference() of perf_event_ctxp
1926 task->perf_event_ctxp[ctxn] = next_ctx;
1927 next->perf_event_ctxp[ctxn] = ctx;
1928 ctx->task = next;
1929 next_ctx->task = task;
1930 do_switch = 0;
1932 perf_event_sync_stat(ctx, next_ctx);
1934 raw_spin_unlock(&next_ctx->lock);
1935 raw_spin_unlock(&ctx->lock);
1937 rcu_read_unlock();
1939 if (do_switch) {
1940 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1941 cpuctx->task_ctx = NULL;
1945 #define for_each_task_context_nr(ctxn) \
1946 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1949 * Called from scheduler to remove the events of the current task,
1950 * with interrupts disabled.
1952 * We stop each event and update the event value in event->count.
1954 * This does not protect us against NMI, but disable()
1955 * sets the disabled bit in the control field of event _before_
1956 * accessing the event control register. If a NMI hits, then it will
1957 * not restart the event.
1959 void __perf_event_task_sched_out(struct task_struct *task,
1960 struct task_struct *next)
1962 int ctxn;
1964 for_each_task_context_nr(ctxn)
1965 perf_event_context_sched_out(task, ctxn, next);
1968 * if cgroup events exist on this CPU, then we need
1969 * to check if we have to switch out PMU state.
1970 * cgroup event are system-wide mode only
1972 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
1973 perf_cgroup_sched_out(task);
1976 static void task_ctx_sched_out(struct perf_event_context *ctx,
1977 enum event_type_t event_type)
1979 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1981 if (!cpuctx->task_ctx)
1982 return;
1984 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1985 return;
1987 ctx_sched_out(ctx, cpuctx, event_type);
1988 cpuctx->task_ctx = NULL;
1992 * Called with IRQs disabled
1994 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1995 enum event_type_t event_type)
1997 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2000 static void
2001 ctx_pinned_sched_in(struct perf_event_context *ctx,
2002 struct perf_cpu_context *cpuctx)
2004 struct perf_event *event;
2006 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2007 if (event->state <= PERF_EVENT_STATE_OFF)
2008 continue;
2009 if (!event_filter_match(event))
2010 continue;
2012 /* may need to reset tstamp_enabled */
2013 if (is_cgroup_event(event))
2014 perf_cgroup_mark_enabled(event, ctx);
2016 if (group_can_go_on(event, cpuctx, 1))
2017 group_sched_in(event, cpuctx, ctx);
2020 * If this pinned group hasn't been scheduled,
2021 * put it in error state.
2023 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2024 update_group_times(event);
2025 event->state = PERF_EVENT_STATE_ERROR;
2030 static void
2031 ctx_flexible_sched_in(struct perf_event_context *ctx,
2032 struct perf_cpu_context *cpuctx)
2034 struct perf_event *event;
2035 int can_add_hw = 1;
2037 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2038 /* Ignore events in OFF or ERROR state */
2039 if (event->state <= PERF_EVENT_STATE_OFF)
2040 continue;
2042 * Listen to the 'cpu' scheduling filter constraint
2043 * of events:
2045 if (!event_filter_match(event))
2046 continue;
2048 /* may need to reset tstamp_enabled */
2049 if (is_cgroup_event(event))
2050 perf_cgroup_mark_enabled(event, ctx);
2052 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2053 if (group_sched_in(event, cpuctx, ctx))
2054 can_add_hw = 0;
2059 static void
2060 ctx_sched_in(struct perf_event_context *ctx,
2061 struct perf_cpu_context *cpuctx,
2062 enum event_type_t event_type,
2063 struct task_struct *task)
2065 u64 now;
2067 raw_spin_lock(&ctx->lock);
2068 ctx->is_active = 1;
2069 if (likely(!ctx->nr_events))
2070 goto out;
2072 now = perf_clock();
2073 ctx->timestamp = now;
2074 perf_cgroup_set_timestamp(task, ctx);
2076 * First go through the list and put on any pinned groups
2077 * in order to give them the best chance of going on.
2079 if (event_type & EVENT_PINNED)
2080 ctx_pinned_sched_in(ctx, cpuctx);
2082 /* Then walk through the lower prio flexible groups */
2083 if (event_type & EVENT_FLEXIBLE)
2084 ctx_flexible_sched_in(ctx, cpuctx);
2086 out:
2087 raw_spin_unlock(&ctx->lock);
2090 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2091 enum event_type_t event_type,
2092 struct task_struct *task)
2094 struct perf_event_context *ctx = &cpuctx->ctx;
2096 ctx_sched_in(ctx, cpuctx, event_type, task);
2099 static void task_ctx_sched_in(struct perf_event_context *ctx,
2100 enum event_type_t event_type)
2102 struct perf_cpu_context *cpuctx;
2104 cpuctx = __get_cpu_context(ctx);
2105 if (cpuctx->task_ctx == ctx)
2106 return;
2108 ctx_sched_in(ctx, cpuctx, event_type, NULL);
2109 cpuctx->task_ctx = ctx;
2112 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2113 struct task_struct *task)
2115 struct perf_cpu_context *cpuctx;
2117 cpuctx = __get_cpu_context(ctx);
2118 if (cpuctx->task_ctx == ctx)
2119 return;
2121 perf_pmu_disable(ctx->pmu);
2123 * We want to keep the following priority order:
2124 * cpu pinned (that don't need to move), task pinned,
2125 * cpu flexible, task flexible.
2127 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2129 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2130 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2131 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2133 cpuctx->task_ctx = ctx;
2136 * Since these rotations are per-cpu, we need to ensure the
2137 * cpu-context we got scheduled on is actually rotating.
2139 perf_pmu_rotate_start(ctx->pmu);
2140 perf_pmu_enable(ctx->pmu);
2144 * Called from scheduler to add the events of the current task
2145 * with interrupts disabled.
2147 * We restore the event value and then enable it.
2149 * This does not protect us against NMI, but enable()
2150 * sets the enabled bit in the control field of event _before_
2151 * accessing the event control register. If a NMI hits, then it will
2152 * keep the event running.
2154 void __perf_event_task_sched_in(struct task_struct *task)
2156 struct perf_event_context *ctx;
2157 int ctxn;
2159 for_each_task_context_nr(ctxn) {
2160 ctx = task->perf_event_ctxp[ctxn];
2161 if (likely(!ctx))
2162 continue;
2164 perf_event_context_sched_in(ctx, task);
2167 * if cgroup events exist on this CPU, then we need
2168 * to check if we have to switch in PMU state.
2169 * cgroup event are system-wide mode only
2171 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2172 perf_cgroup_sched_in(task);
2175 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2177 u64 frequency = event->attr.sample_freq;
2178 u64 sec = NSEC_PER_SEC;
2179 u64 divisor, dividend;
2181 int count_fls, nsec_fls, frequency_fls, sec_fls;
2183 count_fls = fls64(count);
2184 nsec_fls = fls64(nsec);
2185 frequency_fls = fls64(frequency);
2186 sec_fls = 30;
2189 * We got @count in @nsec, with a target of sample_freq HZ
2190 * the target period becomes:
2192 * @count * 10^9
2193 * period = -------------------
2194 * @nsec * sample_freq
2199 * Reduce accuracy by one bit such that @a and @b converge
2200 * to a similar magnitude.
2202 #define REDUCE_FLS(a, b) \
2203 do { \
2204 if (a##_fls > b##_fls) { \
2205 a >>= 1; \
2206 a##_fls--; \
2207 } else { \
2208 b >>= 1; \
2209 b##_fls--; \
2211 } while (0)
2214 * Reduce accuracy until either term fits in a u64, then proceed with
2215 * the other, so that finally we can do a u64/u64 division.
2217 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2218 REDUCE_FLS(nsec, frequency);
2219 REDUCE_FLS(sec, count);
2222 if (count_fls + sec_fls > 64) {
2223 divisor = nsec * frequency;
2225 while (count_fls + sec_fls > 64) {
2226 REDUCE_FLS(count, sec);
2227 divisor >>= 1;
2230 dividend = count * sec;
2231 } else {
2232 dividend = count * sec;
2234 while (nsec_fls + frequency_fls > 64) {
2235 REDUCE_FLS(nsec, frequency);
2236 dividend >>= 1;
2239 divisor = nsec * frequency;
2242 if (!divisor)
2243 return dividend;
2245 return div64_u64(dividend, divisor);
2248 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2250 struct hw_perf_event *hwc = &event->hw;
2251 s64 period, sample_period;
2252 s64 delta;
2254 period = perf_calculate_period(event, nsec, count);
2256 delta = (s64)(period - hwc->sample_period);
2257 delta = (delta + 7) / 8; /* low pass filter */
2259 sample_period = hwc->sample_period + delta;
2261 if (!sample_period)
2262 sample_period = 1;
2264 hwc->sample_period = sample_period;
2266 if (local64_read(&hwc->period_left) > 8*sample_period) {
2267 event->pmu->stop(event, PERF_EF_UPDATE);
2268 local64_set(&hwc->period_left, 0);
2269 event->pmu->start(event, PERF_EF_RELOAD);
2273 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2275 struct perf_event *event;
2276 struct hw_perf_event *hwc;
2277 u64 interrupts, now;
2278 s64 delta;
2280 raw_spin_lock(&ctx->lock);
2281 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2282 if (event->state != PERF_EVENT_STATE_ACTIVE)
2283 continue;
2285 if (!event_filter_match(event))
2286 continue;
2288 hwc = &event->hw;
2290 interrupts = hwc->interrupts;
2291 hwc->interrupts = 0;
2294 * unthrottle events on the tick
2296 if (interrupts == MAX_INTERRUPTS) {
2297 perf_log_throttle(event, 1);
2298 event->pmu->start(event, 0);
2301 if (!event->attr.freq || !event->attr.sample_freq)
2302 continue;
2304 event->pmu->read(event);
2305 now = local64_read(&event->count);
2306 delta = now - hwc->freq_count_stamp;
2307 hwc->freq_count_stamp = now;
2309 if (delta > 0)
2310 perf_adjust_period(event, period, delta);
2312 raw_spin_unlock(&ctx->lock);
2316 * Round-robin a context's events:
2318 static void rotate_ctx(struct perf_event_context *ctx)
2320 raw_spin_lock(&ctx->lock);
2323 * Rotate the first entry last of non-pinned groups. Rotation might be
2324 * disabled by the inheritance code.
2326 if (!ctx->rotate_disable)
2327 list_rotate_left(&ctx->flexible_groups);
2329 raw_spin_unlock(&ctx->lock);
2333 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2334 * because they're strictly cpu affine and rotate_start is called with IRQs
2335 * disabled, while rotate_context is called from IRQ context.
2337 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2339 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
2340 struct perf_event_context *ctx = NULL;
2341 int rotate = 0, remove = 1;
2343 if (cpuctx->ctx.nr_events) {
2344 remove = 0;
2345 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2346 rotate = 1;
2349 ctx = cpuctx->task_ctx;
2350 if (ctx && ctx->nr_events) {
2351 remove = 0;
2352 if (ctx->nr_events != ctx->nr_active)
2353 rotate = 1;
2356 perf_pmu_disable(cpuctx->ctx.pmu);
2357 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2358 if (ctx)
2359 perf_ctx_adjust_freq(ctx, interval);
2361 if (!rotate)
2362 goto done;
2364 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2365 if (ctx)
2366 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
2368 rotate_ctx(&cpuctx->ctx);
2369 if (ctx)
2370 rotate_ctx(ctx);
2372 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, current);
2373 if (ctx)
2374 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
2376 done:
2377 if (remove)
2378 list_del_init(&cpuctx->rotation_list);
2380 perf_pmu_enable(cpuctx->ctx.pmu);
2383 void perf_event_task_tick(void)
2385 struct list_head *head = &__get_cpu_var(rotation_list);
2386 struct perf_cpu_context *cpuctx, *tmp;
2388 WARN_ON(!irqs_disabled());
2390 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2391 if (cpuctx->jiffies_interval == 1 ||
2392 !(jiffies % cpuctx->jiffies_interval))
2393 perf_rotate_context(cpuctx);
2397 static int event_enable_on_exec(struct perf_event *event,
2398 struct perf_event_context *ctx)
2400 if (!event->attr.enable_on_exec)
2401 return 0;
2403 event->attr.enable_on_exec = 0;
2404 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2405 return 0;
2407 __perf_event_mark_enabled(event, ctx);
2409 return 1;
2413 * Enable all of a task's events that have been marked enable-on-exec.
2414 * This expects task == current.
2416 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2418 struct perf_event *event;
2419 unsigned long flags;
2420 int enabled = 0;
2421 int ret;
2423 local_irq_save(flags);
2424 if (!ctx || !ctx->nr_events)
2425 goto out;
2428 * We must ctxsw out cgroup events to avoid conflict
2429 * when invoking perf_task_event_sched_in() later on
2430 * in this function. Otherwise we end up trying to
2431 * ctxswin cgroup events which are already scheduled
2432 * in.
2434 perf_cgroup_sched_out(current);
2435 task_ctx_sched_out(ctx, EVENT_ALL);
2437 raw_spin_lock(&ctx->lock);
2439 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2440 ret = event_enable_on_exec(event, ctx);
2441 if (ret)
2442 enabled = 1;
2445 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2446 ret = event_enable_on_exec(event, ctx);
2447 if (ret)
2448 enabled = 1;
2452 * Unclone this context if we enabled any event.
2454 if (enabled)
2455 unclone_ctx(ctx);
2457 raw_spin_unlock(&ctx->lock);
2460 * Also calls ctxswin for cgroup events, if any:
2462 perf_event_context_sched_in(ctx, ctx->task);
2463 out:
2464 local_irq_restore(flags);
2468 * Cross CPU call to read the hardware event
2470 static void __perf_event_read(void *info)
2472 struct perf_event *event = info;
2473 struct perf_event_context *ctx = event->ctx;
2474 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2477 * If this is a task context, we need to check whether it is
2478 * the current task context of this cpu. If not it has been
2479 * scheduled out before the smp call arrived. In that case
2480 * event->count would have been updated to a recent sample
2481 * when the event was scheduled out.
2483 if (ctx->task && cpuctx->task_ctx != ctx)
2484 return;
2486 raw_spin_lock(&ctx->lock);
2487 if (ctx->is_active) {
2488 update_context_time(ctx);
2489 update_cgrp_time_from_event(event);
2491 update_event_times(event);
2492 if (event->state == PERF_EVENT_STATE_ACTIVE)
2493 event->pmu->read(event);
2494 raw_spin_unlock(&ctx->lock);
2497 static inline u64 perf_event_count(struct perf_event *event)
2499 return local64_read(&event->count) + atomic64_read(&event->child_count);
2502 static u64 perf_event_read(struct perf_event *event)
2505 * If event is enabled and currently active on a CPU, update the
2506 * value in the event structure:
2508 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2509 smp_call_function_single(event->oncpu,
2510 __perf_event_read, event, 1);
2511 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2512 struct perf_event_context *ctx = event->ctx;
2513 unsigned long flags;
2515 raw_spin_lock_irqsave(&ctx->lock, flags);
2517 * may read while context is not active
2518 * (e.g., thread is blocked), in that case
2519 * we cannot update context time
2521 if (ctx->is_active) {
2522 update_context_time(ctx);
2523 update_cgrp_time_from_event(event);
2525 update_event_times(event);
2526 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2529 return perf_event_count(event);
2533 * Callchain support
2536 struct callchain_cpus_entries {
2537 struct rcu_head rcu_head;
2538 struct perf_callchain_entry *cpu_entries[0];
2541 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2542 static atomic_t nr_callchain_events;
2543 static DEFINE_MUTEX(callchain_mutex);
2544 struct callchain_cpus_entries *callchain_cpus_entries;
2547 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
2548 struct pt_regs *regs)
2552 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
2553 struct pt_regs *regs)
2557 static void release_callchain_buffers_rcu(struct rcu_head *head)
2559 struct callchain_cpus_entries *entries;
2560 int cpu;
2562 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
2564 for_each_possible_cpu(cpu)
2565 kfree(entries->cpu_entries[cpu]);
2567 kfree(entries);
2570 static void release_callchain_buffers(void)
2572 struct callchain_cpus_entries *entries;
2574 entries = callchain_cpus_entries;
2575 rcu_assign_pointer(callchain_cpus_entries, NULL);
2576 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
2579 static int alloc_callchain_buffers(void)
2581 int cpu;
2582 int size;
2583 struct callchain_cpus_entries *entries;
2586 * We can't use the percpu allocation API for data that can be
2587 * accessed from NMI. Use a temporary manual per cpu allocation
2588 * until that gets sorted out.
2590 size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2592 entries = kzalloc(size, GFP_KERNEL);
2593 if (!entries)
2594 return -ENOMEM;
2596 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
2598 for_each_possible_cpu(cpu) {
2599 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
2600 cpu_to_node(cpu));
2601 if (!entries->cpu_entries[cpu])
2602 goto fail;
2605 rcu_assign_pointer(callchain_cpus_entries, entries);
2607 return 0;
2609 fail:
2610 for_each_possible_cpu(cpu)
2611 kfree(entries->cpu_entries[cpu]);
2612 kfree(entries);
2614 return -ENOMEM;
2617 static int get_callchain_buffers(void)
2619 int err = 0;
2620 int count;
2622 mutex_lock(&callchain_mutex);
2624 count = atomic_inc_return(&nr_callchain_events);
2625 if (WARN_ON_ONCE(count < 1)) {
2626 err = -EINVAL;
2627 goto exit;
2630 if (count > 1) {
2631 /* If the allocation failed, give up */
2632 if (!callchain_cpus_entries)
2633 err = -ENOMEM;
2634 goto exit;
2637 err = alloc_callchain_buffers();
2638 if (err)
2639 release_callchain_buffers();
2640 exit:
2641 mutex_unlock(&callchain_mutex);
2643 return err;
2646 static void put_callchain_buffers(void)
2648 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2649 release_callchain_buffers();
2650 mutex_unlock(&callchain_mutex);
2654 static int get_recursion_context(int *recursion)
2656 int rctx;
2658 if (in_nmi())
2659 rctx = 3;
2660 else if (in_irq())
2661 rctx = 2;
2662 else if (in_softirq())
2663 rctx = 1;
2664 else
2665 rctx = 0;
2667 if (recursion[rctx])
2668 return -1;
2670 recursion[rctx]++;
2671 barrier();
2673 return rctx;
2676 static inline void put_recursion_context(int *recursion, int rctx)
2678 barrier();
2679 recursion[rctx]--;
2682 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2684 int cpu;
2685 struct callchain_cpus_entries *entries;
2687 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2688 if (*rctx == -1)
2689 return NULL;
2691 entries = rcu_dereference(callchain_cpus_entries);
2692 if (!entries)
2693 return NULL;
2695 cpu = smp_processor_id();
2697 return &entries->cpu_entries[cpu][*rctx];
2700 static void
2701 put_callchain_entry(int rctx)
2703 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2706 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2708 int rctx;
2709 struct perf_callchain_entry *entry;
2712 entry = get_callchain_entry(&rctx);
2713 if (rctx == -1)
2714 return NULL;
2716 if (!entry)
2717 goto exit_put;
2719 entry->nr = 0;
2721 if (!user_mode(regs)) {
2722 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2723 perf_callchain_kernel(entry, regs);
2724 if (current->mm)
2725 regs = task_pt_regs(current);
2726 else
2727 regs = NULL;
2730 if (regs) {
2731 perf_callchain_store(entry, PERF_CONTEXT_USER);
2732 perf_callchain_user(entry, regs);
2735 exit_put:
2736 put_callchain_entry(rctx);
2738 return entry;
2742 * Initialize the perf_event context in a task_struct:
2744 static void __perf_event_init_context(struct perf_event_context *ctx)
2746 raw_spin_lock_init(&ctx->lock);
2747 mutex_init(&ctx->mutex);
2748 INIT_LIST_HEAD(&ctx->pinned_groups);
2749 INIT_LIST_HEAD(&ctx->flexible_groups);
2750 INIT_LIST_HEAD(&ctx->event_list);
2751 atomic_set(&ctx->refcount, 1);
2754 static struct perf_event_context *
2755 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2757 struct perf_event_context *ctx;
2759 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2760 if (!ctx)
2761 return NULL;
2763 __perf_event_init_context(ctx);
2764 if (task) {
2765 ctx->task = task;
2766 get_task_struct(task);
2768 ctx->pmu = pmu;
2770 return ctx;
2773 static struct task_struct *
2774 find_lively_task_by_vpid(pid_t vpid)
2776 struct task_struct *task;
2777 int err;
2779 rcu_read_lock();
2780 if (!vpid)
2781 task = current;
2782 else
2783 task = find_task_by_vpid(vpid);
2784 if (task)
2785 get_task_struct(task);
2786 rcu_read_unlock();
2788 if (!task)
2789 return ERR_PTR(-ESRCH);
2791 /* Reuse ptrace permission checks for now. */
2792 err = -EACCES;
2793 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2794 goto errout;
2796 return task;
2797 errout:
2798 put_task_struct(task);
2799 return ERR_PTR(err);
2804 * Returns a matching context with refcount and pincount.
2806 static struct perf_event_context *
2807 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2809 struct perf_event_context *ctx;
2810 struct perf_cpu_context *cpuctx;
2811 unsigned long flags;
2812 int ctxn, err;
2814 if (!task) {
2815 /* Must be root to operate on a CPU event: */
2816 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2817 return ERR_PTR(-EACCES);
2820 * We could be clever and allow to attach a event to an
2821 * offline CPU and activate it when the CPU comes up, but
2822 * that's for later.
2824 if (!cpu_online(cpu))
2825 return ERR_PTR(-ENODEV);
2827 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2828 ctx = &cpuctx->ctx;
2829 get_ctx(ctx);
2830 ++ctx->pin_count;
2832 return ctx;
2835 err = -EINVAL;
2836 ctxn = pmu->task_ctx_nr;
2837 if (ctxn < 0)
2838 goto errout;
2840 retry:
2841 ctx = perf_lock_task_context(task, ctxn, &flags);
2842 if (ctx) {
2843 unclone_ctx(ctx);
2844 ++ctx->pin_count;
2845 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2848 if (!ctx) {
2849 ctx = alloc_perf_context(pmu, task);
2850 err = -ENOMEM;
2851 if (!ctx)
2852 goto errout;
2854 get_ctx(ctx);
2856 err = 0;
2857 mutex_lock(&task->perf_event_mutex);
2859 * If it has already passed perf_event_exit_task().
2860 * we must see PF_EXITING, it takes this mutex too.
2862 if (task->flags & PF_EXITING)
2863 err = -ESRCH;
2864 else if (task->perf_event_ctxp[ctxn])
2865 err = -EAGAIN;
2866 else {
2867 ++ctx->pin_count;
2868 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2870 mutex_unlock(&task->perf_event_mutex);
2872 if (unlikely(err)) {
2873 put_task_struct(task);
2874 kfree(ctx);
2876 if (err == -EAGAIN)
2877 goto retry;
2878 goto errout;
2882 return ctx;
2884 errout:
2885 return ERR_PTR(err);
2888 static void perf_event_free_filter(struct perf_event *event);
2890 static void free_event_rcu(struct rcu_head *head)
2892 struct perf_event *event;
2894 event = container_of(head, struct perf_event, rcu_head);
2895 if (event->ns)
2896 put_pid_ns(event->ns);
2897 perf_event_free_filter(event);
2898 kfree(event);
2901 static void perf_buffer_put(struct perf_buffer *buffer);
2903 static void free_event(struct perf_event *event)
2905 irq_work_sync(&event->pending);
2907 if (!event->parent) {
2908 if (event->attach_state & PERF_ATTACH_TASK)
2909 jump_label_dec(&perf_sched_events);
2910 if (event->attr.mmap || event->attr.mmap_data)
2911 atomic_dec(&nr_mmap_events);
2912 if (event->attr.comm)
2913 atomic_dec(&nr_comm_events);
2914 if (event->attr.task)
2915 atomic_dec(&nr_task_events);
2916 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2917 put_callchain_buffers();
2918 if (is_cgroup_event(event)) {
2919 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2920 jump_label_dec(&perf_sched_events);
2924 if (event->buffer) {
2925 perf_buffer_put(event->buffer);
2926 event->buffer = NULL;
2929 if (is_cgroup_event(event))
2930 perf_detach_cgroup(event);
2932 if (event->destroy)
2933 event->destroy(event);
2935 if (event->ctx)
2936 put_ctx(event->ctx);
2938 call_rcu(&event->rcu_head, free_event_rcu);
2941 int perf_event_release_kernel(struct perf_event *event)
2943 struct perf_event_context *ctx = event->ctx;
2946 * Remove from the PMU, can't get re-enabled since we got
2947 * here because the last ref went.
2949 perf_event_disable(event);
2951 WARN_ON_ONCE(ctx->parent_ctx);
2953 * There are two ways this annotation is useful:
2955 * 1) there is a lock recursion from perf_event_exit_task
2956 * see the comment there.
2958 * 2) there is a lock-inversion with mmap_sem through
2959 * perf_event_read_group(), which takes faults while
2960 * holding ctx->mutex, however this is called after
2961 * the last filedesc died, so there is no possibility
2962 * to trigger the AB-BA case.
2964 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2965 raw_spin_lock_irq(&ctx->lock);
2966 perf_group_detach(event);
2967 list_del_event(event, ctx);
2968 raw_spin_unlock_irq(&ctx->lock);
2969 mutex_unlock(&ctx->mutex);
2971 free_event(event);
2973 return 0;
2975 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2978 * Called when the last reference to the file is gone.
2980 static int perf_release(struct inode *inode, struct file *file)
2982 struct perf_event *event = file->private_data;
2983 struct task_struct *owner;
2985 file->private_data = NULL;
2987 rcu_read_lock();
2988 owner = ACCESS_ONCE(event->owner);
2990 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2991 * !owner it means the list deletion is complete and we can indeed
2992 * free this event, otherwise we need to serialize on
2993 * owner->perf_event_mutex.
2995 smp_read_barrier_depends();
2996 if (owner) {
2998 * Since delayed_put_task_struct() also drops the last
2999 * task reference we can safely take a new reference
3000 * while holding the rcu_read_lock().
3002 get_task_struct(owner);
3004 rcu_read_unlock();
3006 if (owner) {
3007 mutex_lock(&owner->perf_event_mutex);
3009 * We have to re-check the event->owner field, if it is cleared
3010 * we raced with perf_event_exit_task(), acquiring the mutex
3011 * ensured they're done, and we can proceed with freeing the
3012 * event.
3014 if (event->owner)
3015 list_del_init(&event->owner_entry);
3016 mutex_unlock(&owner->perf_event_mutex);
3017 put_task_struct(owner);
3020 return perf_event_release_kernel(event);
3023 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3025 struct perf_event *child;
3026 u64 total = 0;
3028 *enabled = 0;
3029 *running = 0;
3031 mutex_lock(&event->child_mutex);
3032 total += perf_event_read(event);
3033 *enabled += event->total_time_enabled +
3034 atomic64_read(&event->child_total_time_enabled);
3035 *running += event->total_time_running +
3036 atomic64_read(&event->child_total_time_running);
3038 list_for_each_entry(child, &event->child_list, child_list) {
3039 total += perf_event_read(child);
3040 *enabled += child->total_time_enabled;
3041 *running += child->total_time_running;
3043 mutex_unlock(&event->child_mutex);
3045 return total;
3047 EXPORT_SYMBOL_GPL(perf_event_read_value);
3049 static int perf_event_read_group(struct perf_event *event,
3050 u64 read_format, char __user *buf)
3052 struct perf_event *leader = event->group_leader, *sub;
3053 int n = 0, size = 0, ret = -EFAULT;
3054 struct perf_event_context *ctx = leader->ctx;
3055 u64 values[5];
3056 u64 count, enabled, running;
3058 mutex_lock(&ctx->mutex);
3059 count = perf_event_read_value(leader, &enabled, &running);
3061 values[n++] = 1 + leader->nr_siblings;
3062 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3063 values[n++] = enabled;
3064 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3065 values[n++] = running;
3066 values[n++] = count;
3067 if (read_format & PERF_FORMAT_ID)
3068 values[n++] = primary_event_id(leader);
3070 size = n * sizeof(u64);
3072 if (copy_to_user(buf, values, size))
3073 goto unlock;
3075 ret = size;
3077 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3078 n = 0;
3080 values[n++] = perf_event_read_value(sub, &enabled, &running);
3081 if (read_format & PERF_FORMAT_ID)
3082 values[n++] = primary_event_id(sub);
3084 size = n * sizeof(u64);
3086 if (copy_to_user(buf + ret, values, size)) {
3087 ret = -EFAULT;
3088 goto unlock;
3091 ret += size;
3093 unlock:
3094 mutex_unlock(&ctx->mutex);
3096 return ret;
3099 static int perf_event_read_one(struct perf_event *event,
3100 u64 read_format, char __user *buf)
3102 u64 enabled, running;
3103 u64 values[4];
3104 int n = 0;
3106 values[n++] = perf_event_read_value(event, &enabled, &running);
3107 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3108 values[n++] = enabled;
3109 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3110 values[n++] = running;
3111 if (read_format & PERF_FORMAT_ID)
3112 values[n++] = primary_event_id(event);
3114 if (copy_to_user(buf, values, n * sizeof(u64)))
3115 return -EFAULT;
3117 return n * sizeof(u64);
3121 * Read the performance event - simple non blocking version for now
3123 static ssize_t
3124 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3126 u64 read_format = event->attr.read_format;
3127 int ret;
3130 * Return end-of-file for a read on a event that is in
3131 * error state (i.e. because it was pinned but it couldn't be
3132 * scheduled on to the CPU at some point).
3134 if (event->state == PERF_EVENT_STATE_ERROR)
3135 return 0;
3137 if (count < event->read_size)
3138 return -ENOSPC;
3140 WARN_ON_ONCE(event->ctx->parent_ctx);
3141 if (read_format & PERF_FORMAT_GROUP)
3142 ret = perf_event_read_group(event, read_format, buf);
3143 else
3144 ret = perf_event_read_one(event, read_format, buf);
3146 return ret;
3149 static ssize_t
3150 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3152 struct perf_event *event = file->private_data;
3154 return perf_read_hw(event, buf, count);
3157 static unsigned int perf_poll(struct file *file, poll_table *wait)
3159 struct perf_event *event = file->private_data;
3160 struct perf_buffer *buffer;
3161 unsigned int events = POLL_HUP;
3163 rcu_read_lock();
3164 buffer = rcu_dereference(event->buffer);
3165 if (buffer)
3166 events = atomic_xchg(&buffer->poll, 0);
3167 rcu_read_unlock();
3169 poll_wait(file, &event->waitq, wait);
3171 return events;
3174 static void perf_event_reset(struct perf_event *event)
3176 (void)perf_event_read(event);
3177 local64_set(&event->count, 0);
3178 perf_event_update_userpage(event);
3182 * Holding the top-level event's child_mutex means that any
3183 * descendant process that has inherited this event will block
3184 * in sync_child_event if it goes to exit, thus satisfying the
3185 * task existence requirements of perf_event_enable/disable.
3187 static void perf_event_for_each_child(struct perf_event *event,
3188 void (*func)(struct perf_event *))
3190 struct perf_event *child;
3192 WARN_ON_ONCE(event->ctx->parent_ctx);
3193 mutex_lock(&event->child_mutex);
3194 func(event);
3195 list_for_each_entry(child, &event->child_list, child_list)
3196 func(child);
3197 mutex_unlock(&event->child_mutex);
3200 static void perf_event_for_each(struct perf_event *event,
3201 void (*func)(struct perf_event *))
3203 struct perf_event_context *ctx = event->ctx;
3204 struct perf_event *sibling;
3206 WARN_ON_ONCE(ctx->parent_ctx);
3207 mutex_lock(&ctx->mutex);
3208 event = event->group_leader;
3210 perf_event_for_each_child(event, func);
3211 func(event);
3212 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3213 perf_event_for_each_child(event, func);
3214 mutex_unlock(&ctx->mutex);
3217 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3219 struct perf_event_context *ctx = event->ctx;
3220 int ret = 0;
3221 u64 value;
3223 if (!is_sampling_event(event))
3224 return -EINVAL;
3226 if (copy_from_user(&value, arg, sizeof(value)))
3227 return -EFAULT;
3229 if (!value)
3230 return -EINVAL;
3232 raw_spin_lock_irq(&ctx->lock);
3233 if (event->attr.freq) {
3234 if (value > sysctl_perf_event_sample_rate) {
3235 ret = -EINVAL;
3236 goto unlock;
3239 event->attr.sample_freq = value;
3240 } else {
3241 event->attr.sample_period = value;
3242 event->hw.sample_period = value;
3244 unlock:
3245 raw_spin_unlock_irq(&ctx->lock);
3247 return ret;
3250 static const struct file_operations perf_fops;
3252 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3254 struct file *file;
3256 file = fget_light(fd, fput_needed);
3257 if (!file)
3258 return ERR_PTR(-EBADF);
3260 if (file->f_op != &perf_fops) {
3261 fput_light(file, *fput_needed);
3262 *fput_needed = 0;
3263 return ERR_PTR(-EBADF);
3266 return file->private_data;
3269 static int perf_event_set_output(struct perf_event *event,
3270 struct perf_event *output_event);
3271 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3273 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3275 struct perf_event *event = file->private_data;
3276 void (*func)(struct perf_event *);
3277 u32 flags = arg;
3279 switch (cmd) {
3280 case PERF_EVENT_IOC_ENABLE:
3281 func = perf_event_enable;
3282 break;
3283 case PERF_EVENT_IOC_DISABLE:
3284 func = perf_event_disable;
3285 break;
3286 case PERF_EVENT_IOC_RESET:
3287 func = perf_event_reset;
3288 break;
3290 case PERF_EVENT_IOC_REFRESH:
3291 return perf_event_refresh(event, arg);
3293 case PERF_EVENT_IOC_PERIOD:
3294 return perf_event_period(event, (u64 __user *)arg);
3296 case PERF_EVENT_IOC_SET_OUTPUT:
3298 struct perf_event *output_event = NULL;
3299 int fput_needed = 0;
3300 int ret;
3302 if (arg != -1) {
3303 output_event = perf_fget_light(arg, &fput_needed);
3304 if (IS_ERR(output_event))
3305 return PTR_ERR(output_event);
3308 ret = perf_event_set_output(event, output_event);
3309 if (output_event)
3310 fput_light(output_event->filp, fput_needed);
3312 return ret;
3315 case PERF_EVENT_IOC_SET_FILTER:
3316 return perf_event_set_filter(event, (void __user *)arg);
3318 default:
3319 return -ENOTTY;
3322 if (flags & PERF_IOC_FLAG_GROUP)
3323 perf_event_for_each(event, func);
3324 else
3325 perf_event_for_each_child(event, func);
3327 return 0;
3330 int perf_event_task_enable(void)
3332 struct perf_event *event;
3334 mutex_lock(&current->perf_event_mutex);
3335 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3336 perf_event_for_each_child(event, perf_event_enable);
3337 mutex_unlock(&current->perf_event_mutex);
3339 return 0;
3342 int perf_event_task_disable(void)
3344 struct perf_event *event;
3346 mutex_lock(&current->perf_event_mutex);
3347 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3348 perf_event_for_each_child(event, perf_event_disable);
3349 mutex_unlock(&current->perf_event_mutex);
3351 return 0;
3354 #ifndef PERF_EVENT_INDEX_OFFSET
3355 # define PERF_EVENT_INDEX_OFFSET 0
3356 #endif
3358 static int perf_event_index(struct perf_event *event)
3360 if (event->hw.state & PERF_HES_STOPPED)
3361 return 0;
3363 if (event->state != PERF_EVENT_STATE_ACTIVE)
3364 return 0;
3366 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3370 * Callers need to ensure there can be no nesting of this function, otherwise
3371 * the seqlock logic goes bad. We can not serialize this because the arch
3372 * code calls this from NMI context.
3374 void perf_event_update_userpage(struct perf_event *event)
3376 struct perf_event_mmap_page *userpg;
3377 struct perf_buffer *buffer;
3379 rcu_read_lock();
3380 buffer = rcu_dereference(event->buffer);
3381 if (!buffer)
3382 goto unlock;
3384 userpg = buffer->user_page;
3387 * Disable preemption so as to not let the corresponding user-space
3388 * spin too long if we get preempted.
3390 preempt_disable();
3391 ++userpg->lock;
3392 barrier();
3393 userpg->index = perf_event_index(event);
3394 userpg->offset = perf_event_count(event);
3395 if (event->state == PERF_EVENT_STATE_ACTIVE)
3396 userpg->offset -= local64_read(&event->hw.prev_count);
3398 userpg->time_enabled = event->total_time_enabled +
3399 atomic64_read(&event->child_total_time_enabled);
3401 userpg->time_running = event->total_time_running +
3402 atomic64_read(&event->child_total_time_running);
3404 barrier();
3405 ++userpg->lock;
3406 preempt_enable();
3407 unlock:
3408 rcu_read_unlock();
3411 static unsigned long perf_data_size(struct perf_buffer *buffer);
3413 static void
3414 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
3416 long max_size = perf_data_size(buffer);
3418 if (watermark)
3419 buffer->watermark = min(max_size, watermark);
3421 if (!buffer->watermark)
3422 buffer->watermark = max_size / 2;
3424 if (flags & PERF_BUFFER_WRITABLE)
3425 buffer->writable = 1;
3427 atomic_set(&buffer->refcount, 1);
3430 #ifndef CONFIG_PERF_USE_VMALLOC
3433 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
3436 static struct page *
3437 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3439 if (pgoff > buffer->nr_pages)
3440 return NULL;
3442 if (pgoff == 0)
3443 return virt_to_page(buffer->user_page);
3445 return virt_to_page(buffer->data_pages[pgoff - 1]);
3448 static void *perf_mmap_alloc_page(int cpu)
3450 struct page *page;
3451 int node;
3453 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
3454 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
3455 if (!page)
3456 return NULL;
3458 return page_address(page);
3461 static struct perf_buffer *
3462 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3464 struct perf_buffer *buffer;
3465 unsigned long size;
3466 int i;
3468 size = sizeof(struct perf_buffer);
3469 size += nr_pages * sizeof(void *);
3471 buffer = kzalloc(size, GFP_KERNEL);
3472 if (!buffer)
3473 goto fail;
3475 buffer->user_page = perf_mmap_alloc_page(cpu);
3476 if (!buffer->user_page)
3477 goto fail_user_page;
3479 for (i = 0; i < nr_pages; i++) {
3480 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
3481 if (!buffer->data_pages[i])
3482 goto fail_data_pages;
3485 buffer->nr_pages = nr_pages;
3487 perf_buffer_init(buffer, watermark, flags);
3489 return buffer;
3491 fail_data_pages:
3492 for (i--; i >= 0; i--)
3493 free_page((unsigned long)buffer->data_pages[i]);
3495 free_page((unsigned long)buffer->user_page);
3497 fail_user_page:
3498 kfree(buffer);
3500 fail:
3501 return NULL;
3504 static void perf_mmap_free_page(unsigned long addr)
3506 struct page *page = virt_to_page((void *)addr);
3508 page->mapping = NULL;
3509 __free_page(page);
3512 static void perf_buffer_free(struct perf_buffer *buffer)
3514 int i;
3516 perf_mmap_free_page((unsigned long)buffer->user_page);
3517 for (i = 0; i < buffer->nr_pages; i++)
3518 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
3519 kfree(buffer);
3522 static inline int page_order(struct perf_buffer *buffer)
3524 return 0;
3527 #else
3530 * Back perf_mmap() with vmalloc memory.
3532 * Required for architectures that have d-cache aliasing issues.
3535 static inline int page_order(struct perf_buffer *buffer)
3537 return buffer->page_order;
3540 static struct page *
3541 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3543 if (pgoff > (1UL << page_order(buffer)))
3544 return NULL;
3546 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
3549 static void perf_mmap_unmark_page(void *addr)
3551 struct page *page = vmalloc_to_page(addr);
3553 page->mapping = NULL;
3556 static void perf_buffer_free_work(struct work_struct *work)
3558 struct perf_buffer *buffer;
3559 void *base;
3560 int i, nr;
3562 buffer = container_of(work, struct perf_buffer, work);
3563 nr = 1 << page_order(buffer);
3565 base = buffer->user_page;
3566 for (i = 0; i < nr + 1; i++)
3567 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
3569 vfree(base);
3570 kfree(buffer);
3573 static void perf_buffer_free(struct perf_buffer *buffer)
3575 schedule_work(&buffer->work);
3578 static struct perf_buffer *
3579 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3581 struct perf_buffer *buffer;
3582 unsigned long size;
3583 void *all_buf;
3585 size = sizeof(struct perf_buffer);
3586 size += sizeof(void *);
3588 buffer = kzalloc(size, GFP_KERNEL);
3589 if (!buffer)
3590 goto fail;
3592 INIT_WORK(&buffer->work, perf_buffer_free_work);
3594 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
3595 if (!all_buf)
3596 goto fail_all_buf;
3598 buffer->user_page = all_buf;
3599 buffer->data_pages[0] = all_buf + PAGE_SIZE;
3600 buffer->page_order = ilog2(nr_pages);
3601 buffer->nr_pages = 1;
3603 perf_buffer_init(buffer, watermark, flags);
3605 return buffer;
3607 fail_all_buf:
3608 kfree(buffer);
3610 fail:
3611 return NULL;
3614 #endif
3616 static unsigned long perf_data_size(struct perf_buffer *buffer)
3618 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
3621 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3623 struct perf_event *event = vma->vm_file->private_data;
3624 struct perf_buffer *buffer;
3625 int ret = VM_FAULT_SIGBUS;
3627 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3628 if (vmf->pgoff == 0)
3629 ret = 0;
3630 return ret;
3633 rcu_read_lock();
3634 buffer = rcu_dereference(event->buffer);
3635 if (!buffer)
3636 goto unlock;
3638 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3639 goto unlock;
3641 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3642 if (!vmf->page)
3643 goto unlock;
3645 get_page(vmf->page);
3646 vmf->page->mapping = vma->vm_file->f_mapping;
3647 vmf->page->index = vmf->pgoff;
3649 ret = 0;
3650 unlock:
3651 rcu_read_unlock();
3653 return ret;
3656 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3658 struct perf_buffer *buffer;
3660 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
3661 perf_buffer_free(buffer);
3664 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3666 struct perf_buffer *buffer;
3668 rcu_read_lock();
3669 buffer = rcu_dereference(event->buffer);
3670 if (buffer) {
3671 if (!atomic_inc_not_zero(&buffer->refcount))
3672 buffer = NULL;
3674 rcu_read_unlock();
3676 return buffer;
3679 static void perf_buffer_put(struct perf_buffer *buffer)
3681 if (!atomic_dec_and_test(&buffer->refcount))
3682 return;
3684 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3687 static void perf_mmap_open(struct vm_area_struct *vma)
3689 struct perf_event *event = vma->vm_file->private_data;
3691 atomic_inc(&event->mmap_count);
3694 static void perf_mmap_close(struct vm_area_struct *vma)
3696 struct perf_event *event = vma->vm_file->private_data;
3698 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3699 unsigned long size = perf_data_size(event->buffer);
3700 struct user_struct *user = event->mmap_user;
3701 struct perf_buffer *buffer = event->buffer;
3703 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3704 vma->vm_mm->locked_vm -= event->mmap_locked;
3705 rcu_assign_pointer(event->buffer, NULL);
3706 mutex_unlock(&event->mmap_mutex);
3708 perf_buffer_put(buffer);
3709 free_uid(user);
3713 static const struct vm_operations_struct perf_mmap_vmops = {
3714 .open = perf_mmap_open,
3715 .close = perf_mmap_close,
3716 .fault = perf_mmap_fault,
3717 .page_mkwrite = perf_mmap_fault,
3720 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3722 struct perf_event *event = file->private_data;
3723 unsigned long user_locked, user_lock_limit;
3724 struct user_struct *user = current_user();
3725 unsigned long locked, lock_limit;
3726 struct perf_buffer *buffer;
3727 unsigned long vma_size;
3728 unsigned long nr_pages;
3729 long user_extra, extra;
3730 int ret = 0, flags = 0;
3733 * Don't allow mmap() of inherited per-task counters. This would
3734 * create a performance issue due to all children writing to the
3735 * same buffer.
3737 if (event->cpu == -1 && event->attr.inherit)
3738 return -EINVAL;
3740 if (!(vma->vm_flags & VM_SHARED))
3741 return -EINVAL;
3743 vma_size = vma->vm_end - vma->vm_start;
3744 nr_pages = (vma_size / PAGE_SIZE) - 1;
3747 * If we have buffer pages ensure they're a power-of-two number, so we
3748 * can do bitmasks instead of modulo.
3750 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3751 return -EINVAL;
3753 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3754 return -EINVAL;
3756 if (vma->vm_pgoff != 0)
3757 return -EINVAL;
3759 WARN_ON_ONCE(event->ctx->parent_ctx);
3760 mutex_lock(&event->mmap_mutex);
3761 if (event->buffer) {
3762 if (event->buffer->nr_pages == nr_pages)
3763 atomic_inc(&event->buffer->refcount);
3764 else
3765 ret = -EINVAL;
3766 goto unlock;
3769 user_extra = nr_pages + 1;
3770 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3773 * Increase the limit linearly with more CPUs:
3775 user_lock_limit *= num_online_cpus();
3777 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3779 extra = 0;
3780 if (user_locked > user_lock_limit)
3781 extra = user_locked - user_lock_limit;
3783 lock_limit = rlimit(RLIMIT_MEMLOCK);
3784 lock_limit >>= PAGE_SHIFT;
3785 locked = vma->vm_mm->locked_vm + extra;
3787 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3788 !capable(CAP_IPC_LOCK)) {
3789 ret = -EPERM;
3790 goto unlock;
3793 WARN_ON(event->buffer);
3795 if (vma->vm_flags & VM_WRITE)
3796 flags |= PERF_BUFFER_WRITABLE;
3798 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3799 event->cpu, flags);
3800 if (!buffer) {
3801 ret = -ENOMEM;
3802 goto unlock;
3804 rcu_assign_pointer(event->buffer, buffer);
3806 atomic_long_add(user_extra, &user->locked_vm);
3807 event->mmap_locked = extra;
3808 event->mmap_user = get_current_user();
3809 vma->vm_mm->locked_vm += event->mmap_locked;
3811 unlock:
3812 if (!ret)
3813 atomic_inc(&event->mmap_count);
3814 mutex_unlock(&event->mmap_mutex);
3816 vma->vm_flags |= VM_RESERVED;
3817 vma->vm_ops = &perf_mmap_vmops;
3819 return ret;
3822 static int perf_fasync(int fd, struct file *filp, int on)
3824 struct inode *inode = filp->f_path.dentry->d_inode;
3825 struct perf_event *event = filp->private_data;
3826 int retval;
3828 mutex_lock(&inode->i_mutex);
3829 retval = fasync_helper(fd, filp, on, &event->fasync);
3830 mutex_unlock(&inode->i_mutex);
3832 if (retval < 0)
3833 return retval;
3835 return 0;
3838 static const struct file_operations perf_fops = {
3839 .llseek = no_llseek,
3840 .release = perf_release,
3841 .read = perf_read,
3842 .poll = perf_poll,
3843 .unlocked_ioctl = perf_ioctl,
3844 .compat_ioctl = perf_ioctl,
3845 .mmap = perf_mmap,
3846 .fasync = perf_fasync,
3850 * Perf event wakeup
3852 * If there's data, ensure we set the poll() state and publish everything
3853 * to user-space before waking everybody up.
3856 void perf_event_wakeup(struct perf_event *event)
3858 wake_up_all(&event->waitq);
3860 if (event->pending_kill) {
3861 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3862 event->pending_kill = 0;
3866 static void perf_pending_event(struct irq_work *entry)
3868 struct perf_event *event = container_of(entry,
3869 struct perf_event, pending);
3871 if (event->pending_disable) {
3872 event->pending_disable = 0;
3873 __perf_event_disable(event);
3876 if (event->pending_wakeup) {
3877 event->pending_wakeup = 0;
3878 perf_event_wakeup(event);
3883 * We assume there is only KVM supporting the callbacks.
3884 * Later on, we might change it to a list if there is
3885 * another virtualization implementation supporting the callbacks.
3887 struct perf_guest_info_callbacks *perf_guest_cbs;
3889 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3891 perf_guest_cbs = cbs;
3892 return 0;
3894 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3896 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3898 perf_guest_cbs = NULL;
3899 return 0;
3901 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3904 * Output
3906 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3907 unsigned long offset, unsigned long head)
3909 unsigned long mask;
3911 if (!buffer->writable)
3912 return true;
3914 mask = perf_data_size(buffer) - 1;
3916 offset = (offset - tail) & mask;
3917 head = (head - tail) & mask;
3919 if ((int)(head - offset) < 0)
3920 return false;
3922 return true;
3925 static void perf_output_wakeup(struct perf_output_handle *handle)
3927 atomic_set(&handle->buffer->poll, POLL_IN);
3929 if (handle->nmi) {
3930 handle->event->pending_wakeup = 1;
3931 irq_work_queue(&handle->event->pending);
3932 } else
3933 perf_event_wakeup(handle->event);
3937 * We need to ensure a later event_id doesn't publish a head when a former
3938 * event isn't done writing. However since we need to deal with NMIs we
3939 * cannot fully serialize things.
3941 * We only publish the head (and generate a wakeup) when the outer-most
3942 * event completes.
3944 static void perf_output_get_handle(struct perf_output_handle *handle)
3946 struct perf_buffer *buffer = handle->buffer;
3948 preempt_disable();
3949 local_inc(&buffer->nest);
3950 handle->wakeup = local_read(&buffer->wakeup);
3953 static void perf_output_put_handle(struct perf_output_handle *handle)
3955 struct perf_buffer *buffer = handle->buffer;
3956 unsigned long head;
3958 again:
3959 head = local_read(&buffer->head);
3962 * IRQ/NMI can happen here, which means we can miss a head update.
3965 if (!local_dec_and_test(&buffer->nest))
3966 goto out;
3969 * Publish the known good head. Rely on the full barrier implied
3970 * by atomic_dec_and_test() order the buffer->head read and this
3971 * write.
3973 buffer->user_page->data_head = head;
3976 * Now check if we missed an update, rely on the (compiler)
3977 * barrier in atomic_dec_and_test() to re-read buffer->head.
3979 if (unlikely(head != local_read(&buffer->head))) {
3980 local_inc(&buffer->nest);
3981 goto again;
3984 if (handle->wakeup != local_read(&buffer->wakeup))
3985 perf_output_wakeup(handle);
3987 out:
3988 preempt_enable();
3991 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3992 const void *buf, unsigned int len)
3994 do {
3995 unsigned long size = min_t(unsigned long, handle->size, len);
3997 memcpy(handle->addr, buf, size);
3999 len -= size;
4000 handle->addr += size;
4001 buf += size;
4002 handle->size -= size;
4003 if (!handle->size) {
4004 struct perf_buffer *buffer = handle->buffer;
4006 handle->page++;
4007 handle->page &= buffer->nr_pages - 1;
4008 handle->addr = buffer->data_pages[handle->page];
4009 handle->size = PAGE_SIZE << page_order(buffer);
4011 } while (len);
4014 static void __perf_event_header__init_id(struct perf_event_header *header,
4015 struct perf_sample_data *data,
4016 struct perf_event *event)
4018 u64 sample_type = event->attr.sample_type;
4020 data->type = sample_type;
4021 header->size += event->id_header_size;
4023 if (sample_type & PERF_SAMPLE_TID) {
4024 /* namespace issues */
4025 data->tid_entry.pid = perf_event_pid(event, current);
4026 data->tid_entry.tid = perf_event_tid(event, current);
4029 if (sample_type & PERF_SAMPLE_TIME)
4030 data->time = perf_clock();
4032 if (sample_type & PERF_SAMPLE_ID)
4033 data->id = primary_event_id(event);
4035 if (sample_type & PERF_SAMPLE_STREAM_ID)
4036 data->stream_id = event->id;
4038 if (sample_type & PERF_SAMPLE_CPU) {
4039 data->cpu_entry.cpu = raw_smp_processor_id();
4040 data->cpu_entry.reserved = 0;
4044 static void perf_event_header__init_id(struct perf_event_header *header,
4045 struct perf_sample_data *data,
4046 struct perf_event *event)
4048 if (event->attr.sample_id_all)
4049 __perf_event_header__init_id(header, data, event);
4052 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4053 struct perf_sample_data *data)
4055 u64 sample_type = data->type;
4057 if (sample_type & PERF_SAMPLE_TID)
4058 perf_output_put(handle, data->tid_entry);
4060 if (sample_type & PERF_SAMPLE_TIME)
4061 perf_output_put(handle, data->time);
4063 if (sample_type & PERF_SAMPLE_ID)
4064 perf_output_put(handle, data->id);
4066 if (sample_type & PERF_SAMPLE_STREAM_ID)
4067 perf_output_put(handle, data->stream_id);
4069 if (sample_type & PERF_SAMPLE_CPU)
4070 perf_output_put(handle, data->cpu_entry);
4073 static void perf_event__output_id_sample(struct perf_event *event,
4074 struct perf_output_handle *handle,
4075 struct perf_sample_data *sample)
4077 if (event->attr.sample_id_all)
4078 __perf_event__output_id_sample(handle, sample);
4081 int perf_output_begin(struct perf_output_handle *handle,
4082 struct perf_event *event, unsigned int size,
4083 int nmi, int sample)
4085 struct perf_buffer *buffer;
4086 unsigned long tail, offset, head;
4087 int have_lost;
4088 struct perf_sample_data sample_data;
4089 struct {
4090 struct perf_event_header header;
4091 u64 id;
4092 u64 lost;
4093 } lost_event;
4095 rcu_read_lock();
4097 * For inherited events we send all the output towards the parent.
4099 if (event->parent)
4100 event = event->parent;
4102 buffer = rcu_dereference(event->buffer);
4103 if (!buffer)
4104 goto out;
4106 handle->buffer = buffer;
4107 handle->event = event;
4108 handle->nmi = nmi;
4109 handle->sample = sample;
4111 if (!buffer->nr_pages)
4112 goto out;
4114 have_lost = local_read(&buffer->lost);
4115 if (have_lost) {
4116 lost_event.header.size = sizeof(lost_event);
4117 perf_event_header__init_id(&lost_event.header, &sample_data,
4118 event);
4119 size += lost_event.header.size;
4122 perf_output_get_handle(handle);
4124 do {
4126 * Userspace could choose to issue a mb() before updating the
4127 * tail pointer. So that all reads will be completed before the
4128 * write is issued.
4130 tail = ACCESS_ONCE(buffer->user_page->data_tail);
4131 smp_rmb();
4132 offset = head = local_read(&buffer->head);
4133 head += size;
4134 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
4135 goto fail;
4136 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
4138 if (head - local_read(&buffer->wakeup) > buffer->watermark)
4139 local_add(buffer->watermark, &buffer->wakeup);
4141 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
4142 handle->page &= buffer->nr_pages - 1;
4143 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
4144 handle->addr = buffer->data_pages[handle->page];
4145 handle->addr += handle->size;
4146 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
4148 if (have_lost) {
4149 lost_event.header.type = PERF_RECORD_LOST;
4150 lost_event.header.misc = 0;
4151 lost_event.id = event->id;
4152 lost_event.lost = local_xchg(&buffer->lost, 0);
4154 perf_output_put(handle, lost_event);
4155 perf_event__output_id_sample(event, handle, &sample_data);
4158 return 0;
4160 fail:
4161 local_inc(&buffer->lost);
4162 perf_output_put_handle(handle);
4163 out:
4164 rcu_read_unlock();
4166 return -ENOSPC;
4169 void perf_output_end(struct perf_output_handle *handle)
4171 struct perf_event *event = handle->event;
4172 struct perf_buffer *buffer = handle->buffer;
4174 int wakeup_events = event->attr.wakeup_events;
4176 if (handle->sample && wakeup_events) {
4177 int events = local_inc_return(&buffer->events);
4178 if (events >= wakeup_events) {
4179 local_sub(wakeup_events, &buffer->events);
4180 local_inc(&buffer->wakeup);
4184 perf_output_put_handle(handle);
4185 rcu_read_unlock();
4188 static void perf_output_read_one(struct perf_output_handle *handle,
4189 struct perf_event *event,
4190 u64 enabled, u64 running)
4192 u64 read_format = event->attr.read_format;
4193 u64 values[4];
4194 int n = 0;
4196 values[n++] = perf_event_count(event);
4197 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4198 values[n++] = enabled +
4199 atomic64_read(&event->child_total_time_enabled);
4201 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4202 values[n++] = running +
4203 atomic64_read(&event->child_total_time_running);
4205 if (read_format & PERF_FORMAT_ID)
4206 values[n++] = primary_event_id(event);
4208 perf_output_copy(handle, values, n * sizeof(u64));
4212 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4214 static void perf_output_read_group(struct perf_output_handle *handle,
4215 struct perf_event *event,
4216 u64 enabled, u64 running)
4218 struct perf_event *leader = event->group_leader, *sub;
4219 u64 read_format = event->attr.read_format;
4220 u64 values[5];
4221 int n = 0;
4223 values[n++] = 1 + leader->nr_siblings;
4225 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4226 values[n++] = enabled;
4228 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4229 values[n++] = running;
4231 if (leader != event)
4232 leader->pmu->read(leader);
4234 values[n++] = perf_event_count(leader);
4235 if (read_format & PERF_FORMAT_ID)
4236 values[n++] = primary_event_id(leader);
4238 perf_output_copy(handle, values, n * sizeof(u64));
4240 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4241 n = 0;
4243 if (sub != event)
4244 sub->pmu->read(sub);
4246 values[n++] = perf_event_count(sub);
4247 if (read_format & PERF_FORMAT_ID)
4248 values[n++] = primary_event_id(sub);
4250 perf_output_copy(handle, values, n * sizeof(u64));
4254 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4255 PERF_FORMAT_TOTAL_TIME_RUNNING)
4257 static void perf_output_read(struct perf_output_handle *handle,
4258 struct perf_event *event)
4260 u64 enabled = 0, running = 0, now, ctx_time;
4261 u64 read_format = event->attr.read_format;
4264 * compute total_time_enabled, total_time_running
4265 * based on snapshot values taken when the event
4266 * was last scheduled in.
4268 * we cannot simply called update_context_time()
4269 * because of locking issue as we are called in
4270 * NMI context
4272 if (read_format & PERF_FORMAT_TOTAL_TIMES) {
4273 now = perf_clock();
4274 ctx_time = event->shadow_ctx_time + now;
4275 enabled = ctx_time - event->tstamp_enabled;
4276 running = ctx_time - event->tstamp_running;
4279 if (event->attr.read_format & PERF_FORMAT_GROUP)
4280 perf_output_read_group(handle, event, enabled, running);
4281 else
4282 perf_output_read_one(handle, event, enabled, running);
4285 void perf_output_sample(struct perf_output_handle *handle,
4286 struct perf_event_header *header,
4287 struct perf_sample_data *data,
4288 struct perf_event *event)
4290 u64 sample_type = data->type;
4292 perf_output_put(handle, *header);
4294 if (sample_type & PERF_SAMPLE_IP)
4295 perf_output_put(handle, data->ip);
4297 if (sample_type & PERF_SAMPLE_TID)
4298 perf_output_put(handle, data->tid_entry);
4300 if (sample_type & PERF_SAMPLE_TIME)
4301 perf_output_put(handle, data->time);
4303 if (sample_type & PERF_SAMPLE_ADDR)
4304 perf_output_put(handle, data->addr);
4306 if (sample_type & PERF_SAMPLE_ID)
4307 perf_output_put(handle, data->id);
4309 if (sample_type & PERF_SAMPLE_STREAM_ID)
4310 perf_output_put(handle, data->stream_id);
4312 if (sample_type & PERF_SAMPLE_CPU)
4313 perf_output_put(handle, data->cpu_entry);
4315 if (sample_type & PERF_SAMPLE_PERIOD)
4316 perf_output_put(handle, data->period);
4318 if (sample_type & PERF_SAMPLE_READ)
4319 perf_output_read(handle, event);
4321 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4322 if (data->callchain) {
4323 int size = 1;
4325 if (data->callchain)
4326 size += data->callchain->nr;
4328 size *= sizeof(u64);
4330 perf_output_copy(handle, data->callchain, size);
4331 } else {
4332 u64 nr = 0;
4333 perf_output_put(handle, nr);
4337 if (sample_type & PERF_SAMPLE_RAW) {
4338 if (data->raw) {
4339 perf_output_put(handle, data->raw->size);
4340 perf_output_copy(handle, data->raw->data,
4341 data->raw->size);
4342 } else {
4343 struct {
4344 u32 size;
4345 u32 data;
4346 } raw = {
4347 .size = sizeof(u32),
4348 .data = 0,
4350 perf_output_put(handle, raw);
4355 void perf_prepare_sample(struct perf_event_header *header,
4356 struct perf_sample_data *data,
4357 struct perf_event *event,
4358 struct pt_regs *regs)
4360 u64 sample_type = event->attr.sample_type;
4362 header->type = PERF_RECORD_SAMPLE;
4363 header->size = sizeof(*header) + event->header_size;
4365 header->misc = 0;
4366 header->misc |= perf_misc_flags(regs);
4368 __perf_event_header__init_id(header, data, event);
4370 if (sample_type & PERF_SAMPLE_IP)
4371 data->ip = perf_instruction_pointer(regs);
4373 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4374 int size = 1;
4376 data->callchain = perf_callchain(regs);
4378 if (data->callchain)
4379 size += data->callchain->nr;
4381 header->size += size * sizeof(u64);
4384 if (sample_type & PERF_SAMPLE_RAW) {
4385 int size = sizeof(u32);
4387 if (data->raw)
4388 size += data->raw->size;
4389 else
4390 size += sizeof(u32);
4392 WARN_ON_ONCE(size & (sizeof(u64)-1));
4393 header->size += size;
4397 static void perf_event_output(struct perf_event *event, int nmi,
4398 struct perf_sample_data *data,
4399 struct pt_regs *regs)
4401 struct perf_output_handle handle;
4402 struct perf_event_header header;
4404 /* protect the callchain buffers */
4405 rcu_read_lock();
4407 perf_prepare_sample(&header, data, event, regs);
4409 if (perf_output_begin(&handle, event, header.size, nmi, 1))
4410 goto exit;
4412 perf_output_sample(&handle, &header, data, event);
4414 perf_output_end(&handle);
4416 exit:
4417 rcu_read_unlock();
4421 * read event_id
4424 struct perf_read_event {
4425 struct perf_event_header header;
4427 u32 pid;
4428 u32 tid;
4431 static void
4432 perf_event_read_event(struct perf_event *event,
4433 struct task_struct *task)
4435 struct perf_output_handle handle;
4436 struct perf_sample_data sample;
4437 struct perf_read_event read_event = {
4438 .header = {
4439 .type = PERF_RECORD_READ,
4440 .misc = 0,
4441 .size = sizeof(read_event) + event->read_size,
4443 .pid = perf_event_pid(event, task),
4444 .tid = perf_event_tid(event, task),
4446 int ret;
4448 perf_event_header__init_id(&read_event.header, &sample, event);
4449 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
4450 if (ret)
4451 return;
4453 perf_output_put(&handle, read_event);
4454 perf_output_read(&handle, event);
4455 perf_event__output_id_sample(event, &handle, &sample);
4457 perf_output_end(&handle);
4461 * task tracking -- fork/exit
4463 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4466 struct perf_task_event {
4467 struct task_struct *task;
4468 struct perf_event_context *task_ctx;
4470 struct {
4471 struct perf_event_header header;
4473 u32 pid;
4474 u32 ppid;
4475 u32 tid;
4476 u32 ptid;
4477 u64 time;
4478 } event_id;
4481 static void perf_event_task_output(struct perf_event *event,
4482 struct perf_task_event *task_event)
4484 struct perf_output_handle handle;
4485 struct perf_sample_data sample;
4486 struct task_struct *task = task_event->task;
4487 int ret, size = task_event->event_id.header.size;
4489 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4491 ret = perf_output_begin(&handle, event,
4492 task_event->event_id.header.size, 0, 0);
4493 if (ret)
4494 goto out;
4496 task_event->event_id.pid = perf_event_pid(event, task);
4497 task_event->event_id.ppid = perf_event_pid(event, current);
4499 task_event->event_id.tid = perf_event_tid(event, task);
4500 task_event->event_id.ptid = perf_event_tid(event, current);
4502 perf_output_put(&handle, task_event->event_id);
4504 perf_event__output_id_sample(event, &handle, &sample);
4506 perf_output_end(&handle);
4507 out:
4508 task_event->event_id.header.size = size;
4511 static int perf_event_task_match(struct perf_event *event)
4513 if (event->state < PERF_EVENT_STATE_INACTIVE)
4514 return 0;
4516 if (!event_filter_match(event))
4517 return 0;
4519 if (event->attr.comm || event->attr.mmap ||
4520 event->attr.mmap_data || event->attr.task)
4521 return 1;
4523 return 0;
4526 static void perf_event_task_ctx(struct perf_event_context *ctx,
4527 struct perf_task_event *task_event)
4529 struct perf_event *event;
4531 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4532 if (perf_event_task_match(event))
4533 perf_event_task_output(event, task_event);
4537 static void perf_event_task_event(struct perf_task_event *task_event)
4539 struct perf_cpu_context *cpuctx;
4540 struct perf_event_context *ctx;
4541 struct pmu *pmu;
4542 int ctxn;
4544 rcu_read_lock();
4545 list_for_each_entry_rcu(pmu, &pmus, entry) {
4546 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4547 if (cpuctx->active_pmu != pmu)
4548 goto next;
4549 perf_event_task_ctx(&cpuctx->ctx, task_event);
4551 ctx = task_event->task_ctx;
4552 if (!ctx) {
4553 ctxn = pmu->task_ctx_nr;
4554 if (ctxn < 0)
4555 goto next;
4556 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4558 if (ctx)
4559 perf_event_task_ctx(ctx, task_event);
4560 next:
4561 put_cpu_ptr(pmu->pmu_cpu_context);
4563 rcu_read_unlock();
4566 static void perf_event_task(struct task_struct *task,
4567 struct perf_event_context *task_ctx,
4568 int new)
4570 struct perf_task_event task_event;
4572 if (!atomic_read(&nr_comm_events) &&
4573 !atomic_read(&nr_mmap_events) &&
4574 !atomic_read(&nr_task_events))
4575 return;
4577 task_event = (struct perf_task_event){
4578 .task = task,
4579 .task_ctx = task_ctx,
4580 .event_id = {
4581 .header = {
4582 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4583 .misc = 0,
4584 .size = sizeof(task_event.event_id),
4586 /* .pid */
4587 /* .ppid */
4588 /* .tid */
4589 /* .ptid */
4590 .time = perf_clock(),
4594 perf_event_task_event(&task_event);
4597 void perf_event_fork(struct task_struct *task)
4599 perf_event_task(task, NULL, 1);
4603 * comm tracking
4606 struct perf_comm_event {
4607 struct task_struct *task;
4608 char *comm;
4609 int comm_size;
4611 struct {
4612 struct perf_event_header header;
4614 u32 pid;
4615 u32 tid;
4616 } event_id;
4619 static void perf_event_comm_output(struct perf_event *event,
4620 struct perf_comm_event *comm_event)
4622 struct perf_output_handle handle;
4623 struct perf_sample_data sample;
4624 int size = comm_event->event_id.header.size;
4625 int ret;
4627 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4628 ret = perf_output_begin(&handle, event,
4629 comm_event->event_id.header.size, 0, 0);
4631 if (ret)
4632 goto out;
4634 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4635 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4637 perf_output_put(&handle, comm_event->event_id);
4638 perf_output_copy(&handle, comm_event->comm,
4639 comm_event->comm_size);
4641 perf_event__output_id_sample(event, &handle, &sample);
4643 perf_output_end(&handle);
4644 out:
4645 comm_event->event_id.header.size = size;
4648 static int perf_event_comm_match(struct perf_event *event)
4650 if (event->state < PERF_EVENT_STATE_INACTIVE)
4651 return 0;
4653 if (!event_filter_match(event))
4654 return 0;
4656 if (event->attr.comm)
4657 return 1;
4659 return 0;
4662 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4663 struct perf_comm_event *comm_event)
4665 struct perf_event *event;
4667 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4668 if (perf_event_comm_match(event))
4669 perf_event_comm_output(event, comm_event);
4673 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4675 struct perf_cpu_context *cpuctx;
4676 struct perf_event_context *ctx;
4677 char comm[TASK_COMM_LEN];
4678 unsigned int size;
4679 struct pmu *pmu;
4680 int ctxn;
4682 memset(comm, 0, sizeof(comm));
4683 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4684 size = ALIGN(strlen(comm)+1, sizeof(u64));
4686 comm_event->comm = comm;
4687 comm_event->comm_size = size;
4689 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4690 rcu_read_lock();
4691 list_for_each_entry_rcu(pmu, &pmus, entry) {
4692 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4693 if (cpuctx->active_pmu != pmu)
4694 goto next;
4695 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4697 ctxn = pmu->task_ctx_nr;
4698 if (ctxn < 0)
4699 goto next;
4701 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4702 if (ctx)
4703 perf_event_comm_ctx(ctx, comm_event);
4704 next:
4705 put_cpu_ptr(pmu->pmu_cpu_context);
4707 rcu_read_unlock();
4710 void perf_event_comm(struct task_struct *task)
4712 struct perf_comm_event comm_event;
4713 struct perf_event_context *ctx;
4714 int ctxn;
4716 for_each_task_context_nr(ctxn) {
4717 ctx = task->perf_event_ctxp[ctxn];
4718 if (!ctx)
4719 continue;
4721 perf_event_enable_on_exec(ctx);
4724 if (!atomic_read(&nr_comm_events))
4725 return;
4727 comm_event = (struct perf_comm_event){
4728 .task = task,
4729 /* .comm */
4730 /* .comm_size */
4731 .event_id = {
4732 .header = {
4733 .type = PERF_RECORD_COMM,
4734 .misc = 0,
4735 /* .size */
4737 /* .pid */
4738 /* .tid */
4742 perf_event_comm_event(&comm_event);
4746 * mmap tracking
4749 struct perf_mmap_event {
4750 struct vm_area_struct *vma;
4752 const char *file_name;
4753 int file_size;
4755 struct {
4756 struct perf_event_header header;
4758 u32 pid;
4759 u32 tid;
4760 u64 start;
4761 u64 len;
4762 u64 pgoff;
4763 } event_id;
4766 static void perf_event_mmap_output(struct perf_event *event,
4767 struct perf_mmap_event *mmap_event)
4769 struct perf_output_handle handle;
4770 struct perf_sample_data sample;
4771 int size = mmap_event->event_id.header.size;
4772 int ret;
4774 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4775 ret = perf_output_begin(&handle, event,
4776 mmap_event->event_id.header.size, 0, 0);
4777 if (ret)
4778 goto out;
4780 mmap_event->event_id.pid = perf_event_pid(event, current);
4781 mmap_event->event_id.tid = perf_event_tid(event, current);
4783 perf_output_put(&handle, mmap_event->event_id);
4784 perf_output_copy(&handle, mmap_event->file_name,
4785 mmap_event->file_size);
4787 perf_event__output_id_sample(event, &handle, &sample);
4789 perf_output_end(&handle);
4790 out:
4791 mmap_event->event_id.header.size = size;
4794 static int perf_event_mmap_match(struct perf_event *event,
4795 struct perf_mmap_event *mmap_event,
4796 int executable)
4798 if (event->state < PERF_EVENT_STATE_INACTIVE)
4799 return 0;
4801 if (!event_filter_match(event))
4802 return 0;
4804 if ((!executable && event->attr.mmap_data) ||
4805 (executable && event->attr.mmap))
4806 return 1;
4808 return 0;
4811 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4812 struct perf_mmap_event *mmap_event,
4813 int executable)
4815 struct perf_event *event;
4817 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4818 if (perf_event_mmap_match(event, mmap_event, executable))
4819 perf_event_mmap_output(event, mmap_event);
4823 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4825 struct perf_cpu_context *cpuctx;
4826 struct perf_event_context *ctx;
4827 struct vm_area_struct *vma = mmap_event->vma;
4828 struct file *file = vma->vm_file;
4829 unsigned int size;
4830 char tmp[16];
4831 char *buf = NULL;
4832 const char *name;
4833 struct pmu *pmu;
4834 int ctxn;
4836 memset(tmp, 0, sizeof(tmp));
4838 if (file) {
4840 * d_path works from the end of the buffer backwards, so we
4841 * need to add enough zero bytes after the string to handle
4842 * the 64bit alignment we do later.
4844 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4845 if (!buf) {
4846 name = strncpy(tmp, "//enomem", sizeof(tmp));
4847 goto got_name;
4849 name = d_path(&file->f_path, buf, PATH_MAX);
4850 if (IS_ERR(name)) {
4851 name = strncpy(tmp, "//toolong", sizeof(tmp));
4852 goto got_name;
4854 } else {
4855 if (arch_vma_name(mmap_event->vma)) {
4856 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4857 sizeof(tmp));
4858 goto got_name;
4861 if (!vma->vm_mm) {
4862 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4863 goto got_name;
4864 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4865 vma->vm_end >= vma->vm_mm->brk) {
4866 name = strncpy(tmp, "[heap]", sizeof(tmp));
4867 goto got_name;
4868 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4869 vma->vm_end >= vma->vm_mm->start_stack) {
4870 name = strncpy(tmp, "[stack]", sizeof(tmp));
4871 goto got_name;
4874 name = strncpy(tmp, "//anon", sizeof(tmp));
4875 goto got_name;
4878 got_name:
4879 size = ALIGN(strlen(name)+1, sizeof(u64));
4881 mmap_event->file_name = name;
4882 mmap_event->file_size = size;
4884 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4886 rcu_read_lock();
4887 list_for_each_entry_rcu(pmu, &pmus, entry) {
4888 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4889 if (cpuctx->active_pmu != pmu)
4890 goto next;
4891 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4892 vma->vm_flags & VM_EXEC);
4894 ctxn = pmu->task_ctx_nr;
4895 if (ctxn < 0)
4896 goto next;
4898 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4899 if (ctx) {
4900 perf_event_mmap_ctx(ctx, mmap_event,
4901 vma->vm_flags & VM_EXEC);
4903 next:
4904 put_cpu_ptr(pmu->pmu_cpu_context);
4906 rcu_read_unlock();
4908 kfree(buf);
4911 void perf_event_mmap(struct vm_area_struct *vma)
4913 struct perf_mmap_event mmap_event;
4915 if (!atomic_read(&nr_mmap_events))
4916 return;
4918 mmap_event = (struct perf_mmap_event){
4919 .vma = vma,
4920 /* .file_name */
4921 /* .file_size */
4922 .event_id = {
4923 .header = {
4924 .type = PERF_RECORD_MMAP,
4925 .misc = PERF_RECORD_MISC_USER,
4926 /* .size */
4928 /* .pid */
4929 /* .tid */
4930 .start = vma->vm_start,
4931 .len = vma->vm_end - vma->vm_start,
4932 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4936 perf_event_mmap_event(&mmap_event);
4940 * IRQ throttle logging
4943 static void perf_log_throttle(struct perf_event *event, int enable)
4945 struct perf_output_handle handle;
4946 struct perf_sample_data sample;
4947 int ret;
4949 struct {
4950 struct perf_event_header header;
4951 u64 time;
4952 u64 id;
4953 u64 stream_id;
4954 } throttle_event = {
4955 .header = {
4956 .type = PERF_RECORD_THROTTLE,
4957 .misc = 0,
4958 .size = sizeof(throttle_event),
4960 .time = perf_clock(),
4961 .id = primary_event_id(event),
4962 .stream_id = event->id,
4965 if (enable)
4966 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4968 perf_event_header__init_id(&throttle_event.header, &sample, event);
4970 ret = perf_output_begin(&handle, event,
4971 throttle_event.header.size, 1, 0);
4972 if (ret)
4973 return;
4975 perf_output_put(&handle, throttle_event);
4976 perf_event__output_id_sample(event, &handle, &sample);
4977 perf_output_end(&handle);
4981 * Generic event overflow handling, sampling.
4984 static int __perf_event_overflow(struct perf_event *event, int nmi,
4985 int throttle, struct perf_sample_data *data,
4986 struct pt_regs *regs)
4988 int events = atomic_read(&event->event_limit);
4989 struct hw_perf_event *hwc = &event->hw;
4990 int ret = 0;
4993 * Non-sampling counters might still use the PMI to fold short
4994 * hardware counters, ignore those.
4996 if (unlikely(!is_sampling_event(event)))
4997 return 0;
4999 if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
5000 if (throttle) {
5001 hwc->interrupts = MAX_INTERRUPTS;
5002 perf_log_throttle(event, 0);
5003 ret = 1;
5005 } else
5006 hwc->interrupts++;
5008 if (event->attr.freq) {
5009 u64 now = perf_clock();
5010 s64 delta = now - hwc->freq_time_stamp;
5012 hwc->freq_time_stamp = now;
5014 if (delta > 0 && delta < 2*TICK_NSEC)
5015 perf_adjust_period(event, delta, hwc->last_period);
5019 * XXX event_limit might not quite work as expected on inherited
5020 * events
5023 event->pending_kill = POLL_IN;
5024 if (events && atomic_dec_and_test(&event->event_limit)) {
5025 ret = 1;
5026 event->pending_kill = POLL_HUP;
5027 if (nmi) {
5028 event->pending_disable = 1;
5029 irq_work_queue(&event->pending);
5030 } else
5031 perf_event_disable(event);
5034 if (event->overflow_handler)
5035 event->overflow_handler(event, nmi, data, regs);
5036 else
5037 perf_event_output(event, nmi, data, regs);
5039 return ret;
5042 int perf_event_overflow(struct perf_event *event, int nmi,
5043 struct perf_sample_data *data,
5044 struct pt_regs *regs)
5046 return __perf_event_overflow(event, nmi, 1, data, regs);
5050 * Generic software event infrastructure
5053 struct swevent_htable {
5054 struct swevent_hlist *swevent_hlist;
5055 struct mutex hlist_mutex;
5056 int hlist_refcount;
5058 /* Recursion avoidance in each contexts */
5059 int recursion[PERF_NR_CONTEXTS];
5062 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5065 * We directly increment event->count and keep a second value in
5066 * event->hw.period_left to count intervals. This period event
5067 * is kept in the range [-sample_period, 0] so that we can use the
5068 * sign as trigger.
5071 static u64 perf_swevent_set_period(struct perf_event *event)
5073 struct hw_perf_event *hwc = &event->hw;
5074 u64 period = hwc->last_period;
5075 u64 nr, offset;
5076 s64 old, val;
5078 hwc->last_period = hwc->sample_period;
5080 again:
5081 old = val = local64_read(&hwc->period_left);
5082 if (val < 0)
5083 return 0;
5085 nr = div64_u64(period + val, period);
5086 offset = nr * period;
5087 val -= offset;
5088 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5089 goto again;
5091 return nr;
5094 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5095 int nmi, struct perf_sample_data *data,
5096 struct pt_regs *regs)
5098 struct hw_perf_event *hwc = &event->hw;
5099 int throttle = 0;
5101 data->period = event->hw.last_period;
5102 if (!overflow)
5103 overflow = perf_swevent_set_period(event);
5105 if (hwc->interrupts == MAX_INTERRUPTS)
5106 return;
5108 for (; overflow; overflow--) {
5109 if (__perf_event_overflow(event, nmi, throttle,
5110 data, regs)) {
5112 * We inhibit the overflow from happening when
5113 * hwc->interrupts == MAX_INTERRUPTS.
5115 break;
5117 throttle = 1;
5121 static void perf_swevent_event(struct perf_event *event, u64 nr,
5122 int nmi, struct perf_sample_data *data,
5123 struct pt_regs *regs)
5125 struct hw_perf_event *hwc = &event->hw;
5127 local64_add(nr, &event->count);
5129 if (!regs)
5130 return;
5132 if (!is_sampling_event(event))
5133 return;
5135 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5136 return perf_swevent_overflow(event, 1, nmi, data, regs);
5138 if (local64_add_negative(nr, &hwc->period_left))
5139 return;
5141 perf_swevent_overflow(event, 0, nmi, data, regs);
5144 static int perf_exclude_event(struct perf_event *event,
5145 struct pt_regs *regs)
5147 if (event->hw.state & PERF_HES_STOPPED)
5148 return 1;
5150 if (regs) {
5151 if (event->attr.exclude_user && user_mode(regs))
5152 return 1;
5154 if (event->attr.exclude_kernel && !user_mode(regs))
5155 return 1;
5158 return 0;
5161 static int perf_swevent_match(struct perf_event *event,
5162 enum perf_type_id type,
5163 u32 event_id,
5164 struct perf_sample_data *data,
5165 struct pt_regs *regs)
5167 if (event->attr.type != type)
5168 return 0;
5170 if (event->attr.config != event_id)
5171 return 0;
5173 if (perf_exclude_event(event, regs))
5174 return 0;
5176 return 1;
5179 static inline u64 swevent_hash(u64 type, u32 event_id)
5181 u64 val = event_id | (type << 32);
5183 return hash_64(val, SWEVENT_HLIST_BITS);
5186 static inline struct hlist_head *
5187 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5189 u64 hash = swevent_hash(type, event_id);
5191 return &hlist->heads[hash];
5194 /* For the read side: events when they trigger */
5195 static inline struct hlist_head *
5196 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5198 struct swevent_hlist *hlist;
5200 hlist = rcu_dereference(swhash->swevent_hlist);
5201 if (!hlist)
5202 return NULL;
5204 return __find_swevent_head(hlist, type, event_id);
5207 /* For the event head insertion and removal in the hlist */
5208 static inline struct hlist_head *
5209 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5211 struct swevent_hlist *hlist;
5212 u32 event_id = event->attr.config;
5213 u64 type = event->attr.type;
5216 * Event scheduling is always serialized against hlist allocation
5217 * and release. Which makes the protected version suitable here.
5218 * The context lock guarantees that.
5220 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5221 lockdep_is_held(&event->ctx->lock));
5222 if (!hlist)
5223 return NULL;
5225 return __find_swevent_head(hlist, type, event_id);
5228 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5229 u64 nr, int nmi,
5230 struct perf_sample_data *data,
5231 struct pt_regs *regs)
5233 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5234 struct perf_event *event;
5235 struct hlist_node *node;
5236 struct hlist_head *head;
5238 rcu_read_lock();
5239 head = find_swevent_head_rcu(swhash, type, event_id);
5240 if (!head)
5241 goto end;
5243 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5244 if (perf_swevent_match(event, type, event_id, data, regs))
5245 perf_swevent_event(event, nr, nmi, data, regs);
5247 end:
5248 rcu_read_unlock();
5251 int perf_swevent_get_recursion_context(void)
5253 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5255 return get_recursion_context(swhash->recursion);
5257 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5259 inline void perf_swevent_put_recursion_context(int rctx)
5261 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5263 put_recursion_context(swhash->recursion, rctx);
5266 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
5267 struct pt_regs *regs, u64 addr)
5269 struct perf_sample_data data;
5270 int rctx;
5272 preempt_disable_notrace();
5273 rctx = perf_swevent_get_recursion_context();
5274 if (rctx < 0)
5275 return;
5277 perf_sample_data_init(&data, addr);
5279 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
5281 perf_swevent_put_recursion_context(rctx);
5282 preempt_enable_notrace();
5285 static void perf_swevent_read(struct perf_event *event)
5289 static int perf_swevent_add(struct perf_event *event, int flags)
5291 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5292 struct hw_perf_event *hwc = &event->hw;
5293 struct hlist_head *head;
5295 if (is_sampling_event(event)) {
5296 hwc->last_period = hwc->sample_period;
5297 perf_swevent_set_period(event);
5300 hwc->state = !(flags & PERF_EF_START);
5302 head = find_swevent_head(swhash, event);
5303 if (WARN_ON_ONCE(!head))
5304 return -EINVAL;
5306 hlist_add_head_rcu(&event->hlist_entry, head);
5308 return 0;
5311 static void perf_swevent_del(struct perf_event *event, int flags)
5313 hlist_del_rcu(&event->hlist_entry);
5316 static void perf_swevent_start(struct perf_event *event, int flags)
5318 event->hw.state = 0;
5321 static void perf_swevent_stop(struct perf_event *event, int flags)
5323 event->hw.state = PERF_HES_STOPPED;
5326 /* Deref the hlist from the update side */
5327 static inline struct swevent_hlist *
5328 swevent_hlist_deref(struct swevent_htable *swhash)
5330 return rcu_dereference_protected(swhash->swevent_hlist,
5331 lockdep_is_held(&swhash->hlist_mutex));
5334 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
5336 struct swevent_hlist *hlist;
5338 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
5339 kfree(hlist);
5342 static void swevent_hlist_release(struct swevent_htable *swhash)
5344 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5346 if (!hlist)
5347 return;
5349 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5350 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
5353 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5355 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5357 mutex_lock(&swhash->hlist_mutex);
5359 if (!--swhash->hlist_refcount)
5360 swevent_hlist_release(swhash);
5362 mutex_unlock(&swhash->hlist_mutex);
5365 static void swevent_hlist_put(struct perf_event *event)
5367 int cpu;
5369 if (event->cpu != -1) {
5370 swevent_hlist_put_cpu(event, event->cpu);
5371 return;
5374 for_each_possible_cpu(cpu)
5375 swevent_hlist_put_cpu(event, cpu);
5378 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5380 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5381 int err = 0;
5383 mutex_lock(&swhash->hlist_mutex);
5385 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5386 struct swevent_hlist *hlist;
5388 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5389 if (!hlist) {
5390 err = -ENOMEM;
5391 goto exit;
5393 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5395 swhash->hlist_refcount++;
5396 exit:
5397 mutex_unlock(&swhash->hlist_mutex);
5399 return err;
5402 static int swevent_hlist_get(struct perf_event *event)
5404 int err;
5405 int cpu, failed_cpu;
5407 if (event->cpu != -1)
5408 return swevent_hlist_get_cpu(event, event->cpu);
5410 get_online_cpus();
5411 for_each_possible_cpu(cpu) {
5412 err = swevent_hlist_get_cpu(event, cpu);
5413 if (err) {
5414 failed_cpu = cpu;
5415 goto fail;
5418 put_online_cpus();
5420 return 0;
5421 fail:
5422 for_each_possible_cpu(cpu) {
5423 if (cpu == failed_cpu)
5424 break;
5425 swevent_hlist_put_cpu(event, cpu);
5428 put_online_cpus();
5429 return err;
5432 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
5434 static void sw_perf_event_destroy(struct perf_event *event)
5436 u64 event_id = event->attr.config;
5438 WARN_ON(event->parent);
5440 jump_label_dec(&perf_swevent_enabled[event_id]);
5441 swevent_hlist_put(event);
5444 static int perf_swevent_init(struct perf_event *event)
5446 int event_id = event->attr.config;
5448 if (event->attr.type != PERF_TYPE_SOFTWARE)
5449 return -ENOENT;
5451 switch (event_id) {
5452 case PERF_COUNT_SW_CPU_CLOCK:
5453 case PERF_COUNT_SW_TASK_CLOCK:
5454 return -ENOENT;
5456 default:
5457 break;
5460 if (event_id >= PERF_COUNT_SW_MAX)
5461 return -ENOENT;
5463 if (!event->parent) {
5464 int err;
5466 err = swevent_hlist_get(event);
5467 if (err)
5468 return err;
5470 jump_label_inc(&perf_swevent_enabled[event_id]);
5471 event->destroy = sw_perf_event_destroy;
5474 return 0;
5477 static struct pmu perf_swevent = {
5478 .task_ctx_nr = perf_sw_context,
5480 .event_init = perf_swevent_init,
5481 .add = perf_swevent_add,
5482 .del = perf_swevent_del,
5483 .start = perf_swevent_start,
5484 .stop = perf_swevent_stop,
5485 .read = perf_swevent_read,
5488 #ifdef CONFIG_EVENT_TRACING
5490 static int perf_tp_filter_match(struct perf_event *event,
5491 struct perf_sample_data *data)
5493 void *record = data->raw->data;
5495 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5496 return 1;
5497 return 0;
5500 static int perf_tp_event_match(struct perf_event *event,
5501 struct perf_sample_data *data,
5502 struct pt_regs *regs)
5504 if (event->hw.state & PERF_HES_STOPPED)
5505 return 0;
5507 * All tracepoints are from kernel-space.
5509 if (event->attr.exclude_kernel)
5510 return 0;
5512 if (!perf_tp_filter_match(event, data))
5513 return 0;
5515 return 1;
5518 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5519 struct pt_regs *regs, struct hlist_head *head, int rctx)
5521 struct perf_sample_data data;
5522 struct perf_event *event;
5523 struct hlist_node *node;
5525 struct perf_raw_record raw = {
5526 .size = entry_size,
5527 .data = record,
5530 perf_sample_data_init(&data, addr);
5531 data.raw = &raw;
5533 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5534 if (perf_tp_event_match(event, &data, regs))
5535 perf_swevent_event(event, count, 1, &data, regs);
5538 perf_swevent_put_recursion_context(rctx);
5540 EXPORT_SYMBOL_GPL(perf_tp_event);
5542 static void tp_perf_event_destroy(struct perf_event *event)
5544 perf_trace_destroy(event);
5547 static int perf_tp_event_init(struct perf_event *event)
5549 int err;
5551 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5552 return -ENOENT;
5554 err = perf_trace_init(event);
5555 if (err)
5556 return err;
5558 event->destroy = tp_perf_event_destroy;
5560 return 0;
5563 static struct pmu perf_tracepoint = {
5564 .task_ctx_nr = perf_sw_context,
5566 .event_init = perf_tp_event_init,
5567 .add = perf_trace_add,
5568 .del = perf_trace_del,
5569 .start = perf_swevent_start,
5570 .stop = perf_swevent_stop,
5571 .read = perf_swevent_read,
5574 static inline void perf_tp_register(void)
5576 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5579 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5581 char *filter_str;
5582 int ret;
5584 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5585 return -EINVAL;
5587 filter_str = strndup_user(arg, PAGE_SIZE);
5588 if (IS_ERR(filter_str))
5589 return PTR_ERR(filter_str);
5591 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5593 kfree(filter_str);
5594 return ret;
5597 static void perf_event_free_filter(struct perf_event *event)
5599 ftrace_profile_free_filter(event);
5602 #else
5604 static inline void perf_tp_register(void)
5608 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5610 return -ENOENT;
5613 static void perf_event_free_filter(struct perf_event *event)
5617 #endif /* CONFIG_EVENT_TRACING */
5619 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5620 void perf_bp_event(struct perf_event *bp, void *data)
5622 struct perf_sample_data sample;
5623 struct pt_regs *regs = data;
5625 perf_sample_data_init(&sample, bp->attr.bp_addr);
5627 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5628 perf_swevent_event(bp, 1, 1, &sample, regs);
5630 #endif
5633 * hrtimer based swevent callback
5636 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5638 enum hrtimer_restart ret = HRTIMER_RESTART;
5639 struct perf_sample_data data;
5640 struct pt_regs *regs;
5641 struct perf_event *event;
5642 u64 period;
5644 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5646 if (event->state != PERF_EVENT_STATE_ACTIVE)
5647 return HRTIMER_NORESTART;
5649 event->pmu->read(event);
5651 perf_sample_data_init(&data, 0);
5652 data.period = event->hw.last_period;
5653 regs = get_irq_regs();
5655 if (regs && !perf_exclude_event(event, regs)) {
5656 if (!(event->attr.exclude_idle && current->pid == 0))
5657 if (perf_event_overflow(event, 0, &data, regs))
5658 ret = HRTIMER_NORESTART;
5661 period = max_t(u64, 10000, event->hw.sample_period);
5662 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5664 return ret;
5667 static void perf_swevent_start_hrtimer(struct perf_event *event)
5669 struct hw_perf_event *hwc = &event->hw;
5670 s64 period;
5672 if (!is_sampling_event(event))
5673 return;
5675 period = local64_read(&hwc->period_left);
5676 if (period) {
5677 if (period < 0)
5678 period = 10000;
5680 local64_set(&hwc->period_left, 0);
5681 } else {
5682 period = max_t(u64, 10000, hwc->sample_period);
5684 __hrtimer_start_range_ns(&hwc->hrtimer,
5685 ns_to_ktime(period), 0,
5686 HRTIMER_MODE_REL_PINNED, 0);
5689 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5691 struct hw_perf_event *hwc = &event->hw;
5693 if (is_sampling_event(event)) {
5694 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5695 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5697 hrtimer_cancel(&hwc->hrtimer);
5701 static void perf_swevent_init_hrtimer(struct perf_event *event)
5703 struct hw_perf_event *hwc = &event->hw;
5705 if (!is_sampling_event(event))
5706 return;
5708 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5709 hwc->hrtimer.function = perf_swevent_hrtimer;
5712 * Since hrtimers have a fixed rate, we can do a static freq->period
5713 * mapping and avoid the whole period adjust feedback stuff.
5715 if (event->attr.freq) {
5716 long freq = event->attr.sample_freq;
5718 event->attr.sample_period = NSEC_PER_SEC / freq;
5719 hwc->sample_period = event->attr.sample_period;
5720 local64_set(&hwc->period_left, hwc->sample_period);
5721 event->attr.freq = 0;
5726 * Software event: cpu wall time clock
5729 static void cpu_clock_event_update(struct perf_event *event)
5731 s64 prev;
5732 u64 now;
5734 now = local_clock();
5735 prev = local64_xchg(&event->hw.prev_count, now);
5736 local64_add(now - prev, &event->count);
5739 static void cpu_clock_event_start(struct perf_event *event, int flags)
5741 local64_set(&event->hw.prev_count, local_clock());
5742 perf_swevent_start_hrtimer(event);
5745 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5747 perf_swevent_cancel_hrtimer(event);
5748 cpu_clock_event_update(event);
5751 static int cpu_clock_event_add(struct perf_event *event, int flags)
5753 if (flags & PERF_EF_START)
5754 cpu_clock_event_start(event, flags);
5756 return 0;
5759 static void cpu_clock_event_del(struct perf_event *event, int flags)
5761 cpu_clock_event_stop(event, flags);
5764 static void cpu_clock_event_read(struct perf_event *event)
5766 cpu_clock_event_update(event);
5769 static int cpu_clock_event_init(struct perf_event *event)
5771 if (event->attr.type != PERF_TYPE_SOFTWARE)
5772 return -ENOENT;
5774 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5775 return -ENOENT;
5777 perf_swevent_init_hrtimer(event);
5779 return 0;
5782 static struct pmu perf_cpu_clock = {
5783 .task_ctx_nr = perf_sw_context,
5785 .event_init = cpu_clock_event_init,
5786 .add = cpu_clock_event_add,
5787 .del = cpu_clock_event_del,
5788 .start = cpu_clock_event_start,
5789 .stop = cpu_clock_event_stop,
5790 .read = cpu_clock_event_read,
5794 * Software event: task time clock
5797 static void task_clock_event_update(struct perf_event *event, u64 now)
5799 u64 prev;
5800 s64 delta;
5802 prev = local64_xchg(&event->hw.prev_count, now);
5803 delta = now - prev;
5804 local64_add(delta, &event->count);
5807 static void task_clock_event_start(struct perf_event *event, int flags)
5809 local64_set(&event->hw.prev_count, event->ctx->time);
5810 perf_swevent_start_hrtimer(event);
5813 static void task_clock_event_stop(struct perf_event *event, int flags)
5815 perf_swevent_cancel_hrtimer(event);
5816 task_clock_event_update(event, event->ctx->time);
5819 static int task_clock_event_add(struct perf_event *event, int flags)
5821 if (flags & PERF_EF_START)
5822 task_clock_event_start(event, flags);
5824 return 0;
5827 static void task_clock_event_del(struct perf_event *event, int flags)
5829 task_clock_event_stop(event, PERF_EF_UPDATE);
5832 static void task_clock_event_read(struct perf_event *event)
5834 u64 now = perf_clock();
5835 u64 delta = now - event->ctx->timestamp;
5836 u64 time = event->ctx->time + delta;
5838 task_clock_event_update(event, time);
5841 static int task_clock_event_init(struct perf_event *event)
5843 if (event->attr.type != PERF_TYPE_SOFTWARE)
5844 return -ENOENT;
5846 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5847 return -ENOENT;
5849 perf_swevent_init_hrtimer(event);
5851 return 0;
5854 static struct pmu perf_task_clock = {
5855 .task_ctx_nr = perf_sw_context,
5857 .event_init = task_clock_event_init,
5858 .add = task_clock_event_add,
5859 .del = task_clock_event_del,
5860 .start = task_clock_event_start,
5861 .stop = task_clock_event_stop,
5862 .read = task_clock_event_read,
5865 static void perf_pmu_nop_void(struct pmu *pmu)
5869 static int perf_pmu_nop_int(struct pmu *pmu)
5871 return 0;
5874 static void perf_pmu_start_txn(struct pmu *pmu)
5876 perf_pmu_disable(pmu);
5879 static int perf_pmu_commit_txn(struct pmu *pmu)
5881 perf_pmu_enable(pmu);
5882 return 0;
5885 static void perf_pmu_cancel_txn(struct pmu *pmu)
5887 perf_pmu_enable(pmu);
5891 * Ensures all contexts with the same task_ctx_nr have the same
5892 * pmu_cpu_context too.
5894 static void *find_pmu_context(int ctxn)
5896 struct pmu *pmu;
5898 if (ctxn < 0)
5899 return NULL;
5901 list_for_each_entry(pmu, &pmus, entry) {
5902 if (pmu->task_ctx_nr == ctxn)
5903 return pmu->pmu_cpu_context;
5906 return NULL;
5909 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5911 int cpu;
5913 for_each_possible_cpu(cpu) {
5914 struct perf_cpu_context *cpuctx;
5916 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5918 if (cpuctx->active_pmu == old_pmu)
5919 cpuctx->active_pmu = pmu;
5923 static void free_pmu_context(struct pmu *pmu)
5925 struct pmu *i;
5927 mutex_lock(&pmus_lock);
5929 * Like a real lame refcount.
5931 list_for_each_entry(i, &pmus, entry) {
5932 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5933 update_pmu_context(i, pmu);
5934 goto out;
5938 free_percpu(pmu->pmu_cpu_context);
5939 out:
5940 mutex_unlock(&pmus_lock);
5942 static struct idr pmu_idr;
5944 static ssize_t
5945 type_show(struct device *dev, struct device_attribute *attr, char *page)
5947 struct pmu *pmu = dev_get_drvdata(dev);
5949 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5952 static struct device_attribute pmu_dev_attrs[] = {
5953 __ATTR_RO(type),
5954 __ATTR_NULL,
5957 static int pmu_bus_running;
5958 static struct bus_type pmu_bus = {
5959 .name = "event_source",
5960 .dev_attrs = pmu_dev_attrs,
5963 static void pmu_dev_release(struct device *dev)
5965 kfree(dev);
5968 static int pmu_dev_alloc(struct pmu *pmu)
5970 int ret = -ENOMEM;
5972 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5973 if (!pmu->dev)
5974 goto out;
5976 device_initialize(pmu->dev);
5977 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5978 if (ret)
5979 goto free_dev;
5981 dev_set_drvdata(pmu->dev, pmu);
5982 pmu->dev->bus = &pmu_bus;
5983 pmu->dev->release = pmu_dev_release;
5984 ret = device_add(pmu->dev);
5985 if (ret)
5986 goto free_dev;
5988 out:
5989 return ret;
5991 free_dev:
5992 put_device(pmu->dev);
5993 goto out;
5996 static struct lock_class_key cpuctx_mutex;
5998 int perf_pmu_register(struct pmu *pmu, char *name, int type)
6000 int cpu, ret;
6002 mutex_lock(&pmus_lock);
6003 ret = -ENOMEM;
6004 pmu->pmu_disable_count = alloc_percpu(int);
6005 if (!pmu->pmu_disable_count)
6006 goto unlock;
6008 pmu->type = -1;
6009 if (!name)
6010 goto skip_type;
6011 pmu->name = name;
6013 if (type < 0) {
6014 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
6015 if (!err)
6016 goto free_pdc;
6018 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
6019 if (err) {
6020 ret = err;
6021 goto free_pdc;
6024 pmu->type = type;
6026 if (pmu_bus_running) {
6027 ret = pmu_dev_alloc(pmu);
6028 if (ret)
6029 goto free_idr;
6032 skip_type:
6033 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6034 if (pmu->pmu_cpu_context)
6035 goto got_cpu_context;
6037 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6038 if (!pmu->pmu_cpu_context)
6039 goto free_dev;
6041 for_each_possible_cpu(cpu) {
6042 struct perf_cpu_context *cpuctx;
6044 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6045 __perf_event_init_context(&cpuctx->ctx);
6046 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6047 cpuctx->ctx.type = cpu_context;
6048 cpuctx->ctx.pmu = pmu;
6049 cpuctx->jiffies_interval = 1;
6050 INIT_LIST_HEAD(&cpuctx->rotation_list);
6051 cpuctx->active_pmu = pmu;
6054 got_cpu_context:
6055 if (!pmu->start_txn) {
6056 if (pmu->pmu_enable) {
6058 * If we have pmu_enable/pmu_disable calls, install
6059 * transaction stubs that use that to try and batch
6060 * hardware accesses.
6062 pmu->start_txn = perf_pmu_start_txn;
6063 pmu->commit_txn = perf_pmu_commit_txn;
6064 pmu->cancel_txn = perf_pmu_cancel_txn;
6065 } else {
6066 pmu->start_txn = perf_pmu_nop_void;
6067 pmu->commit_txn = perf_pmu_nop_int;
6068 pmu->cancel_txn = perf_pmu_nop_void;
6072 if (!pmu->pmu_enable) {
6073 pmu->pmu_enable = perf_pmu_nop_void;
6074 pmu->pmu_disable = perf_pmu_nop_void;
6077 list_add_rcu(&pmu->entry, &pmus);
6078 ret = 0;
6079 unlock:
6080 mutex_unlock(&pmus_lock);
6082 return ret;
6084 free_dev:
6085 device_del(pmu->dev);
6086 put_device(pmu->dev);
6088 free_idr:
6089 if (pmu->type >= PERF_TYPE_MAX)
6090 idr_remove(&pmu_idr, pmu->type);
6092 free_pdc:
6093 free_percpu(pmu->pmu_disable_count);
6094 goto unlock;
6097 void perf_pmu_unregister(struct pmu *pmu)
6099 mutex_lock(&pmus_lock);
6100 list_del_rcu(&pmu->entry);
6101 mutex_unlock(&pmus_lock);
6104 * We dereference the pmu list under both SRCU and regular RCU, so
6105 * synchronize against both of those.
6107 synchronize_srcu(&pmus_srcu);
6108 synchronize_rcu();
6110 free_percpu(pmu->pmu_disable_count);
6111 if (pmu->type >= PERF_TYPE_MAX)
6112 idr_remove(&pmu_idr, pmu->type);
6113 device_del(pmu->dev);
6114 put_device(pmu->dev);
6115 free_pmu_context(pmu);
6118 struct pmu *perf_init_event(struct perf_event *event)
6120 struct pmu *pmu = NULL;
6121 int idx;
6122 int ret;
6124 idx = srcu_read_lock(&pmus_srcu);
6126 rcu_read_lock();
6127 pmu = idr_find(&pmu_idr, event->attr.type);
6128 rcu_read_unlock();
6129 if (pmu) {
6130 ret = pmu->event_init(event);
6131 if (ret)
6132 pmu = ERR_PTR(ret);
6133 goto unlock;
6136 list_for_each_entry_rcu(pmu, &pmus, entry) {
6137 ret = pmu->event_init(event);
6138 if (!ret)
6139 goto unlock;
6141 if (ret != -ENOENT) {
6142 pmu = ERR_PTR(ret);
6143 goto unlock;
6146 pmu = ERR_PTR(-ENOENT);
6147 unlock:
6148 srcu_read_unlock(&pmus_srcu, idx);
6150 return pmu;
6154 * Allocate and initialize a event structure
6156 static struct perf_event *
6157 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6158 struct task_struct *task,
6159 struct perf_event *group_leader,
6160 struct perf_event *parent_event,
6161 perf_overflow_handler_t overflow_handler)
6163 struct pmu *pmu;
6164 struct perf_event *event;
6165 struct hw_perf_event *hwc;
6166 long err;
6168 if ((unsigned)cpu >= nr_cpu_ids) {
6169 if (!task || cpu != -1)
6170 return ERR_PTR(-EINVAL);
6173 event = kzalloc(sizeof(*event), GFP_KERNEL);
6174 if (!event)
6175 return ERR_PTR(-ENOMEM);
6178 * Single events are their own group leaders, with an
6179 * empty sibling list:
6181 if (!group_leader)
6182 group_leader = event;
6184 mutex_init(&event->child_mutex);
6185 INIT_LIST_HEAD(&event->child_list);
6187 INIT_LIST_HEAD(&event->group_entry);
6188 INIT_LIST_HEAD(&event->event_entry);
6189 INIT_LIST_HEAD(&event->sibling_list);
6190 init_waitqueue_head(&event->waitq);
6191 init_irq_work(&event->pending, perf_pending_event);
6193 mutex_init(&event->mmap_mutex);
6195 event->cpu = cpu;
6196 event->attr = *attr;
6197 event->group_leader = group_leader;
6198 event->pmu = NULL;
6199 event->oncpu = -1;
6201 event->parent = parent_event;
6203 event->ns = get_pid_ns(current->nsproxy->pid_ns);
6204 event->id = atomic64_inc_return(&perf_event_id);
6206 event->state = PERF_EVENT_STATE_INACTIVE;
6208 if (task) {
6209 event->attach_state = PERF_ATTACH_TASK;
6210 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6212 * hw_breakpoint is a bit difficult here..
6214 if (attr->type == PERF_TYPE_BREAKPOINT)
6215 event->hw.bp_target = task;
6216 #endif
6219 if (!overflow_handler && parent_event)
6220 overflow_handler = parent_event->overflow_handler;
6222 event->overflow_handler = overflow_handler;
6224 if (attr->disabled)
6225 event->state = PERF_EVENT_STATE_OFF;
6227 pmu = NULL;
6229 hwc = &event->hw;
6230 hwc->sample_period = attr->sample_period;
6231 if (attr->freq && attr->sample_freq)
6232 hwc->sample_period = 1;
6233 hwc->last_period = hwc->sample_period;
6235 local64_set(&hwc->period_left, hwc->sample_period);
6238 * we currently do not support PERF_FORMAT_GROUP on inherited events
6240 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6241 goto done;
6243 pmu = perf_init_event(event);
6245 done:
6246 err = 0;
6247 if (!pmu)
6248 err = -EINVAL;
6249 else if (IS_ERR(pmu))
6250 err = PTR_ERR(pmu);
6252 if (err) {
6253 if (event->ns)
6254 put_pid_ns(event->ns);
6255 kfree(event);
6256 return ERR_PTR(err);
6259 event->pmu = pmu;
6261 if (!event->parent) {
6262 if (event->attach_state & PERF_ATTACH_TASK)
6263 jump_label_inc(&perf_sched_events);
6264 if (event->attr.mmap || event->attr.mmap_data)
6265 atomic_inc(&nr_mmap_events);
6266 if (event->attr.comm)
6267 atomic_inc(&nr_comm_events);
6268 if (event->attr.task)
6269 atomic_inc(&nr_task_events);
6270 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6271 err = get_callchain_buffers();
6272 if (err) {
6273 free_event(event);
6274 return ERR_PTR(err);
6279 return event;
6282 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6283 struct perf_event_attr *attr)
6285 u32 size;
6286 int ret;
6288 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6289 return -EFAULT;
6292 * zero the full structure, so that a short copy will be nice.
6294 memset(attr, 0, sizeof(*attr));
6296 ret = get_user(size, &uattr->size);
6297 if (ret)
6298 return ret;
6300 if (size > PAGE_SIZE) /* silly large */
6301 goto err_size;
6303 if (!size) /* abi compat */
6304 size = PERF_ATTR_SIZE_VER0;
6306 if (size < PERF_ATTR_SIZE_VER0)
6307 goto err_size;
6310 * If we're handed a bigger struct than we know of,
6311 * ensure all the unknown bits are 0 - i.e. new
6312 * user-space does not rely on any kernel feature
6313 * extensions we dont know about yet.
6315 if (size > sizeof(*attr)) {
6316 unsigned char __user *addr;
6317 unsigned char __user *end;
6318 unsigned char val;
6320 addr = (void __user *)uattr + sizeof(*attr);
6321 end = (void __user *)uattr + size;
6323 for (; addr < end; addr++) {
6324 ret = get_user(val, addr);
6325 if (ret)
6326 return ret;
6327 if (val)
6328 goto err_size;
6330 size = sizeof(*attr);
6333 ret = copy_from_user(attr, uattr, size);
6334 if (ret)
6335 return -EFAULT;
6338 * If the type exists, the corresponding creation will verify
6339 * the attr->config.
6341 if (attr->type >= PERF_TYPE_MAX)
6342 return -EINVAL;
6344 if (attr->__reserved_1)
6345 return -EINVAL;
6347 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6348 return -EINVAL;
6350 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6351 return -EINVAL;
6353 out:
6354 return ret;
6356 err_size:
6357 put_user(sizeof(*attr), &uattr->size);
6358 ret = -E2BIG;
6359 goto out;
6362 static int
6363 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6365 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
6366 int ret = -EINVAL;
6368 if (!output_event)
6369 goto set;
6371 /* don't allow circular references */
6372 if (event == output_event)
6373 goto out;
6376 * Don't allow cross-cpu buffers
6378 if (output_event->cpu != event->cpu)
6379 goto out;
6382 * If its not a per-cpu buffer, it must be the same task.
6384 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6385 goto out;
6387 set:
6388 mutex_lock(&event->mmap_mutex);
6389 /* Can't redirect output if we've got an active mmap() */
6390 if (atomic_read(&event->mmap_count))
6391 goto unlock;
6393 if (output_event) {
6394 /* get the buffer we want to redirect to */
6395 buffer = perf_buffer_get(output_event);
6396 if (!buffer)
6397 goto unlock;
6400 old_buffer = event->buffer;
6401 rcu_assign_pointer(event->buffer, buffer);
6402 ret = 0;
6403 unlock:
6404 mutex_unlock(&event->mmap_mutex);
6406 if (old_buffer)
6407 perf_buffer_put(old_buffer);
6408 out:
6409 return ret;
6413 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6415 * @attr_uptr: event_id type attributes for monitoring/sampling
6416 * @pid: target pid
6417 * @cpu: target cpu
6418 * @group_fd: group leader event fd
6420 SYSCALL_DEFINE5(perf_event_open,
6421 struct perf_event_attr __user *, attr_uptr,
6422 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6424 struct perf_event *group_leader = NULL, *output_event = NULL;
6425 struct perf_event *event, *sibling;
6426 struct perf_event_attr attr;
6427 struct perf_event_context *ctx;
6428 struct file *event_file = NULL;
6429 struct file *group_file = NULL;
6430 struct task_struct *task = NULL;
6431 struct pmu *pmu;
6432 int event_fd;
6433 int move_group = 0;
6434 int fput_needed = 0;
6435 int err;
6437 /* for future expandability... */
6438 if (flags & ~PERF_FLAG_ALL)
6439 return -EINVAL;
6441 err = perf_copy_attr(attr_uptr, &attr);
6442 if (err)
6443 return err;
6445 if (!attr.exclude_kernel) {
6446 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6447 return -EACCES;
6450 if (attr.freq) {
6451 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6452 return -EINVAL;
6456 * In cgroup mode, the pid argument is used to pass the fd
6457 * opened to the cgroup directory in cgroupfs. The cpu argument
6458 * designates the cpu on which to monitor threads from that
6459 * cgroup.
6461 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6462 return -EINVAL;
6464 event_fd = get_unused_fd_flags(O_RDWR);
6465 if (event_fd < 0)
6466 return event_fd;
6468 if (group_fd != -1) {
6469 group_leader = perf_fget_light(group_fd, &fput_needed);
6470 if (IS_ERR(group_leader)) {
6471 err = PTR_ERR(group_leader);
6472 goto err_fd;
6474 group_file = group_leader->filp;
6475 if (flags & PERF_FLAG_FD_OUTPUT)
6476 output_event = group_leader;
6477 if (flags & PERF_FLAG_FD_NO_GROUP)
6478 group_leader = NULL;
6481 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6482 task = find_lively_task_by_vpid(pid);
6483 if (IS_ERR(task)) {
6484 err = PTR_ERR(task);
6485 goto err_group_fd;
6489 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
6490 if (IS_ERR(event)) {
6491 err = PTR_ERR(event);
6492 goto err_task;
6495 if (flags & PERF_FLAG_PID_CGROUP) {
6496 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6497 if (err)
6498 goto err_alloc;
6500 * one more event:
6501 * - that has cgroup constraint on event->cpu
6502 * - that may need work on context switch
6504 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6505 jump_label_inc(&perf_sched_events);
6509 * Special case software events and allow them to be part of
6510 * any hardware group.
6512 pmu = event->pmu;
6514 if (group_leader &&
6515 (is_software_event(event) != is_software_event(group_leader))) {
6516 if (is_software_event(event)) {
6518 * If event and group_leader are not both a software
6519 * event, and event is, then group leader is not.
6521 * Allow the addition of software events to !software
6522 * groups, this is safe because software events never
6523 * fail to schedule.
6525 pmu = group_leader->pmu;
6526 } else if (is_software_event(group_leader) &&
6527 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6529 * In case the group is a pure software group, and we
6530 * try to add a hardware event, move the whole group to
6531 * the hardware context.
6533 move_group = 1;
6538 * Get the target context (task or percpu):
6540 ctx = find_get_context(pmu, task, cpu);
6541 if (IS_ERR(ctx)) {
6542 err = PTR_ERR(ctx);
6543 goto err_alloc;
6546 if (task) {
6547 put_task_struct(task);
6548 task = NULL;
6552 * Look up the group leader (we will attach this event to it):
6554 if (group_leader) {
6555 err = -EINVAL;
6558 * Do not allow a recursive hierarchy (this new sibling
6559 * becoming part of another group-sibling):
6561 if (group_leader->group_leader != group_leader)
6562 goto err_context;
6564 * Do not allow to attach to a group in a different
6565 * task or CPU context:
6567 if (move_group) {
6568 if (group_leader->ctx->type != ctx->type)
6569 goto err_context;
6570 } else {
6571 if (group_leader->ctx != ctx)
6572 goto err_context;
6576 * Only a group leader can be exclusive or pinned
6578 if (attr.exclusive || attr.pinned)
6579 goto err_context;
6582 if (output_event) {
6583 err = perf_event_set_output(event, output_event);
6584 if (err)
6585 goto err_context;
6588 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6589 if (IS_ERR(event_file)) {
6590 err = PTR_ERR(event_file);
6591 goto err_context;
6594 if (move_group) {
6595 struct perf_event_context *gctx = group_leader->ctx;
6597 mutex_lock(&gctx->mutex);
6598 perf_remove_from_context(group_leader);
6599 list_for_each_entry(sibling, &group_leader->sibling_list,
6600 group_entry) {
6601 perf_remove_from_context(sibling);
6602 put_ctx(gctx);
6604 mutex_unlock(&gctx->mutex);
6605 put_ctx(gctx);
6608 event->filp = event_file;
6609 WARN_ON_ONCE(ctx->parent_ctx);
6610 mutex_lock(&ctx->mutex);
6612 if (move_group) {
6613 perf_install_in_context(ctx, group_leader, cpu);
6614 get_ctx(ctx);
6615 list_for_each_entry(sibling, &group_leader->sibling_list,
6616 group_entry) {
6617 perf_install_in_context(ctx, sibling, cpu);
6618 get_ctx(ctx);
6622 perf_install_in_context(ctx, event, cpu);
6623 ++ctx->generation;
6624 perf_unpin_context(ctx);
6625 mutex_unlock(&ctx->mutex);
6627 event->owner = current;
6629 mutex_lock(&current->perf_event_mutex);
6630 list_add_tail(&event->owner_entry, &current->perf_event_list);
6631 mutex_unlock(&current->perf_event_mutex);
6634 * Precalculate sample_data sizes
6636 perf_event__header_size(event);
6637 perf_event__id_header_size(event);
6640 * Drop the reference on the group_event after placing the
6641 * new event on the sibling_list. This ensures destruction
6642 * of the group leader will find the pointer to itself in
6643 * perf_group_detach().
6645 fput_light(group_file, fput_needed);
6646 fd_install(event_fd, event_file);
6647 return event_fd;
6649 err_context:
6650 perf_unpin_context(ctx);
6651 put_ctx(ctx);
6652 err_alloc:
6653 free_event(event);
6654 err_task:
6655 if (task)
6656 put_task_struct(task);
6657 err_group_fd:
6658 fput_light(group_file, fput_needed);
6659 err_fd:
6660 put_unused_fd(event_fd);
6661 return err;
6665 * perf_event_create_kernel_counter
6667 * @attr: attributes of the counter to create
6668 * @cpu: cpu in which the counter is bound
6669 * @task: task to profile (NULL for percpu)
6671 struct perf_event *
6672 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6673 struct task_struct *task,
6674 perf_overflow_handler_t overflow_handler)
6676 struct perf_event_context *ctx;
6677 struct perf_event *event;
6678 int err;
6681 * Get the target context (task or percpu):
6684 event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6685 if (IS_ERR(event)) {
6686 err = PTR_ERR(event);
6687 goto err;
6690 ctx = find_get_context(event->pmu, task, cpu);
6691 if (IS_ERR(ctx)) {
6692 err = PTR_ERR(ctx);
6693 goto err_free;
6696 event->filp = NULL;
6697 WARN_ON_ONCE(ctx->parent_ctx);
6698 mutex_lock(&ctx->mutex);
6699 perf_install_in_context(ctx, event, cpu);
6700 ++ctx->generation;
6701 perf_unpin_context(ctx);
6702 mutex_unlock(&ctx->mutex);
6704 return event;
6706 err_free:
6707 free_event(event);
6708 err:
6709 return ERR_PTR(err);
6711 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6713 static void sync_child_event(struct perf_event *child_event,
6714 struct task_struct *child)
6716 struct perf_event *parent_event = child_event->parent;
6717 u64 child_val;
6719 if (child_event->attr.inherit_stat)
6720 perf_event_read_event(child_event, child);
6722 child_val = perf_event_count(child_event);
6725 * Add back the child's count to the parent's count:
6727 atomic64_add(child_val, &parent_event->child_count);
6728 atomic64_add(child_event->total_time_enabled,
6729 &parent_event->child_total_time_enabled);
6730 atomic64_add(child_event->total_time_running,
6731 &parent_event->child_total_time_running);
6734 * Remove this event from the parent's list
6736 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6737 mutex_lock(&parent_event->child_mutex);
6738 list_del_init(&child_event->child_list);
6739 mutex_unlock(&parent_event->child_mutex);
6742 * Release the parent event, if this was the last
6743 * reference to it.
6745 fput(parent_event->filp);
6748 static void
6749 __perf_event_exit_task(struct perf_event *child_event,
6750 struct perf_event_context *child_ctx,
6751 struct task_struct *child)
6753 if (child_event->parent) {
6754 raw_spin_lock_irq(&child_ctx->lock);
6755 perf_group_detach(child_event);
6756 raw_spin_unlock_irq(&child_ctx->lock);
6759 perf_remove_from_context(child_event);
6762 * It can happen that the parent exits first, and has events
6763 * that are still around due to the child reference. These
6764 * events need to be zapped.
6766 if (child_event->parent) {
6767 sync_child_event(child_event, child);
6768 free_event(child_event);
6772 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6774 struct perf_event *child_event, *tmp;
6775 struct perf_event_context *child_ctx;
6776 unsigned long flags;
6778 if (likely(!child->perf_event_ctxp[ctxn])) {
6779 perf_event_task(child, NULL, 0);
6780 return;
6783 local_irq_save(flags);
6785 * We can't reschedule here because interrupts are disabled,
6786 * and either child is current or it is a task that can't be
6787 * scheduled, so we are now safe from rescheduling changing
6788 * our context.
6790 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6791 task_ctx_sched_out(child_ctx, EVENT_ALL);
6794 * Take the context lock here so that if find_get_context is
6795 * reading child->perf_event_ctxp, we wait until it has
6796 * incremented the context's refcount before we do put_ctx below.
6798 raw_spin_lock(&child_ctx->lock);
6799 child->perf_event_ctxp[ctxn] = NULL;
6801 * If this context is a clone; unclone it so it can't get
6802 * swapped to another process while we're removing all
6803 * the events from it.
6805 unclone_ctx(child_ctx);
6806 update_context_time(child_ctx);
6807 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6810 * Report the task dead after unscheduling the events so that we
6811 * won't get any samples after PERF_RECORD_EXIT. We can however still
6812 * get a few PERF_RECORD_READ events.
6814 perf_event_task(child, child_ctx, 0);
6817 * We can recurse on the same lock type through:
6819 * __perf_event_exit_task()
6820 * sync_child_event()
6821 * fput(parent_event->filp)
6822 * perf_release()
6823 * mutex_lock(&ctx->mutex)
6825 * But since its the parent context it won't be the same instance.
6827 mutex_lock(&child_ctx->mutex);
6829 again:
6830 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6831 group_entry)
6832 __perf_event_exit_task(child_event, child_ctx, child);
6834 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6835 group_entry)
6836 __perf_event_exit_task(child_event, child_ctx, child);
6839 * If the last event was a group event, it will have appended all
6840 * its siblings to the list, but we obtained 'tmp' before that which
6841 * will still point to the list head terminating the iteration.
6843 if (!list_empty(&child_ctx->pinned_groups) ||
6844 !list_empty(&child_ctx->flexible_groups))
6845 goto again;
6847 mutex_unlock(&child_ctx->mutex);
6849 put_ctx(child_ctx);
6853 * When a child task exits, feed back event values to parent events.
6855 void perf_event_exit_task(struct task_struct *child)
6857 struct perf_event *event, *tmp;
6858 int ctxn;
6860 mutex_lock(&child->perf_event_mutex);
6861 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6862 owner_entry) {
6863 list_del_init(&event->owner_entry);
6866 * Ensure the list deletion is visible before we clear
6867 * the owner, closes a race against perf_release() where
6868 * we need to serialize on the owner->perf_event_mutex.
6870 smp_wmb();
6871 event->owner = NULL;
6873 mutex_unlock(&child->perf_event_mutex);
6875 for_each_task_context_nr(ctxn)
6876 perf_event_exit_task_context(child, ctxn);
6879 static void perf_free_event(struct perf_event *event,
6880 struct perf_event_context *ctx)
6882 struct perf_event *parent = event->parent;
6884 if (WARN_ON_ONCE(!parent))
6885 return;
6887 mutex_lock(&parent->child_mutex);
6888 list_del_init(&event->child_list);
6889 mutex_unlock(&parent->child_mutex);
6891 fput(parent->filp);
6893 perf_group_detach(event);
6894 list_del_event(event, ctx);
6895 free_event(event);
6899 * free an unexposed, unused context as created by inheritance by
6900 * perf_event_init_task below, used by fork() in case of fail.
6902 void perf_event_free_task(struct task_struct *task)
6904 struct perf_event_context *ctx;
6905 struct perf_event *event, *tmp;
6906 int ctxn;
6908 for_each_task_context_nr(ctxn) {
6909 ctx = task->perf_event_ctxp[ctxn];
6910 if (!ctx)
6911 continue;
6913 mutex_lock(&ctx->mutex);
6914 again:
6915 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6916 group_entry)
6917 perf_free_event(event, ctx);
6919 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6920 group_entry)
6921 perf_free_event(event, ctx);
6923 if (!list_empty(&ctx->pinned_groups) ||
6924 !list_empty(&ctx->flexible_groups))
6925 goto again;
6927 mutex_unlock(&ctx->mutex);
6929 put_ctx(ctx);
6933 void perf_event_delayed_put(struct task_struct *task)
6935 int ctxn;
6937 for_each_task_context_nr(ctxn)
6938 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6942 * inherit a event from parent task to child task:
6944 static struct perf_event *
6945 inherit_event(struct perf_event *parent_event,
6946 struct task_struct *parent,
6947 struct perf_event_context *parent_ctx,
6948 struct task_struct *child,
6949 struct perf_event *group_leader,
6950 struct perf_event_context *child_ctx)
6952 struct perf_event *child_event;
6953 unsigned long flags;
6956 * Instead of creating recursive hierarchies of events,
6957 * we link inherited events back to the original parent,
6958 * which has a filp for sure, which we use as the reference
6959 * count:
6961 if (parent_event->parent)
6962 parent_event = parent_event->parent;
6964 child_event = perf_event_alloc(&parent_event->attr,
6965 parent_event->cpu,
6966 child,
6967 group_leader, parent_event,
6968 NULL);
6969 if (IS_ERR(child_event))
6970 return child_event;
6971 get_ctx(child_ctx);
6974 * Make the child state follow the state of the parent event,
6975 * not its attr.disabled bit. We hold the parent's mutex,
6976 * so we won't race with perf_event_{en, dis}able_family.
6978 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6979 child_event->state = PERF_EVENT_STATE_INACTIVE;
6980 else
6981 child_event->state = PERF_EVENT_STATE_OFF;
6983 if (parent_event->attr.freq) {
6984 u64 sample_period = parent_event->hw.sample_period;
6985 struct hw_perf_event *hwc = &child_event->hw;
6987 hwc->sample_period = sample_period;
6988 hwc->last_period = sample_period;
6990 local64_set(&hwc->period_left, sample_period);
6993 child_event->ctx = child_ctx;
6994 child_event->overflow_handler = parent_event->overflow_handler;
6997 * Precalculate sample_data sizes
6999 perf_event__header_size(child_event);
7000 perf_event__id_header_size(child_event);
7003 * Link it up in the child's context:
7005 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7006 add_event_to_ctx(child_event, child_ctx);
7007 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7010 * Get a reference to the parent filp - we will fput it
7011 * when the child event exits. This is safe to do because
7012 * we are in the parent and we know that the filp still
7013 * exists and has a nonzero count:
7015 atomic_long_inc(&parent_event->filp->f_count);
7018 * Link this into the parent event's child list
7020 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7021 mutex_lock(&parent_event->child_mutex);
7022 list_add_tail(&child_event->child_list, &parent_event->child_list);
7023 mutex_unlock(&parent_event->child_mutex);
7025 return child_event;
7028 static int inherit_group(struct perf_event *parent_event,
7029 struct task_struct *parent,
7030 struct perf_event_context *parent_ctx,
7031 struct task_struct *child,
7032 struct perf_event_context *child_ctx)
7034 struct perf_event *leader;
7035 struct perf_event *sub;
7036 struct perf_event *child_ctr;
7038 leader = inherit_event(parent_event, parent, parent_ctx,
7039 child, NULL, child_ctx);
7040 if (IS_ERR(leader))
7041 return PTR_ERR(leader);
7042 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7043 child_ctr = inherit_event(sub, parent, parent_ctx,
7044 child, leader, child_ctx);
7045 if (IS_ERR(child_ctr))
7046 return PTR_ERR(child_ctr);
7048 return 0;
7051 static int
7052 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7053 struct perf_event_context *parent_ctx,
7054 struct task_struct *child, int ctxn,
7055 int *inherited_all)
7057 int ret;
7058 struct perf_event_context *child_ctx;
7060 if (!event->attr.inherit) {
7061 *inherited_all = 0;
7062 return 0;
7065 child_ctx = child->perf_event_ctxp[ctxn];
7066 if (!child_ctx) {
7068 * This is executed from the parent task context, so
7069 * inherit events that have been marked for cloning.
7070 * First allocate and initialize a context for the
7071 * child.
7074 child_ctx = alloc_perf_context(event->pmu, child);
7075 if (!child_ctx)
7076 return -ENOMEM;
7078 child->perf_event_ctxp[ctxn] = child_ctx;
7081 ret = inherit_group(event, parent, parent_ctx,
7082 child, child_ctx);
7084 if (ret)
7085 *inherited_all = 0;
7087 return ret;
7091 * Initialize the perf_event context in task_struct
7093 int perf_event_init_context(struct task_struct *child, int ctxn)
7095 struct perf_event_context *child_ctx, *parent_ctx;
7096 struct perf_event_context *cloned_ctx;
7097 struct perf_event *event;
7098 struct task_struct *parent = current;
7099 int inherited_all = 1;
7100 unsigned long flags;
7101 int ret = 0;
7103 if (likely(!parent->perf_event_ctxp[ctxn]))
7104 return 0;
7107 * If the parent's context is a clone, pin it so it won't get
7108 * swapped under us.
7110 parent_ctx = perf_pin_task_context(parent, ctxn);
7113 * No need to check if parent_ctx != NULL here; since we saw
7114 * it non-NULL earlier, the only reason for it to become NULL
7115 * is if we exit, and since we're currently in the middle of
7116 * a fork we can't be exiting at the same time.
7120 * Lock the parent list. No need to lock the child - not PID
7121 * hashed yet and not running, so nobody can access it.
7123 mutex_lock(&parent_ctx->mutex);
7126 * We dont have to disable NMIs - we are only looking at
7127 * the list, not manipulating it:
7129 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7130 ret = inherit_task_group(event, parent, parent_ctx,
7131 child, ctxn, &inherited_all);
7132 if (ret)
7133 break;
7137 * We can't hold ctx->lock when iterating the ->flexible_group list due
7138 * to allocations, but we need to prevent rotation because
7139 * rotate_ctx() will change the list from interrupt context.
7141 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7142 parent_ctx->rotate_disable = 1;
7143 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7145 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7146 ret = inherit_task_group(event, parent, parent_ctx,
7147 child, ctxn, &inherited_all);
7148 if (ret)
7149 break;
7152 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7153 parent_ctx->rotate_disable = 0;
7155 child_ctx = child->perf_event_ctxp[ctxn];
7157 if (child_ctx && inherited_all) {
7159 * Mark the child context as a clone of the parent
7160 * context, or of whatever the parent is a clone of.
7162 * Note that if the parent is a clone, the holding of
7163 * parent_ctx->lock avoids it from being uncloned.
7165 cloned_ctx = parent_ctx->parent_ctx;
7166 if (cloned_ctx) {
7167 child_ctx->parent_ctx = cloned_ctx;
7168 child_ctx->parent_gen = parent_ctx->parent_gen;
7169 } else {
7170 child_ctx->parent_ctx = parent_ctx;
7171 child_ctx->parent_gen = parent_ctx->generation;
7173 get_ctx(child_ctx->parent_ctx);
7176 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7177 mutex_unlock(&parent_ctx->mutex);
7179 perf_unpin_context(parent_ctx);
7180 put_ctx(parent_ctx);
7182 return ret;
7186 * Initialize the perf_event context in task_struct
7188 int perf_event_init_task(struct task_struct *child)
7190 int ctxn, ret;
7192 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7193 mutex_init(&child->perf_event_mutex);
7194 INIT_LIST_HEAD(&child->perf_event_list);
7196 for_each_task_context_nr(ctxn) {
7197 ret = perf_event_init_context(child, ctxn);
7198 if (ret)
7199 return ret;
7202 return 0;
7205 static void __init perf_event_init_all_cpus(void)
7207 struct swevent_htable *swhash;
7208 int cpu;
7210 for_each_possible_cpu(cpu) {
7211 swhash = &per_cpu(swevent_htable, cpu);
7212 mutex_init(&swhash->hlist_mutex);
7213 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7217 static void __cpuinit perf_event_init_cpu(int cpu)
7219 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7221 mutex_lock(&swhash->hlist_mutex);
7222 if (swhash->hlist_refcount > 0) {
7223 struct swevent_hlist *hlist;
7225 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7226 WARN_ON(!hlist);
7227 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7229 mutex_unlock(&swhash->hlist_mutex);
7232 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7233 static void perf_pmu_rotate_stop(struct pmu *pmu)
7235 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7237 WARN_ON(!irqs_disabled());
7239 list_del_init(&cpuctx->rotation_list);
7242 static void __perf_event_exit_context(void *__info)
7244 struct perf_event_context *ctx = __info;
7245 struct perf_event *event, *tmp;
7247 perf_pmu_rotate_stop(ctx->pmu);
7249 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7250 __perf_remove_from_context(event);
7251 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7252 __perf_remove_from_context(event);
7255 static void perf_event_exit_cpu_context(int cpu)
7257 struct perf_event_context *ctx;
7258 struct pmu *pmu;
7259 int idx;
7261 idx = srcu_read_lock(&pmus_srcu);
7262 list_for_each_entry_rcu(pmu, &pmus, entry) {
7263 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7265 mutex_lock(&ctx->mutex);
7266 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7267 mutex_unlock(&ctx->mutex);
7269 srcu_read_unlock(&pmus_srcu, idx);
7272 static void perf_event_exit_cpu(int cpu)
7274 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7276 mutex_lock(&swhash->hlist_mutex);
7277 swevent_hlist_release(swhash);
7278 mutex_unlock(&swhash->hlist_mutex);
7280 perf_event_exit_cpu_context(cpu);
7282 #else
7283 static inline void perf_event_exit_cpu(int cpu) { }
7284 #endif
7286 static int
7287 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7289 int cpu;
7291 for_each_online_cpu(cpu)
7292 perf_event_exit_cpu(cpu);
7294 return NOTIFY_OK;
7298 * Run the perf reboot notifier at the very last possible moment so that
7299 * the generic watchdog code runs as long as possible.
7301 static struct notifier_block perf_reboot_notifier = {
7302 .notifier_call = perf_reboot,
7303 .priority = INT_MIN,
7306 static int __cpuinit
7307 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7309 unsigned int cpu = (long)hcpu;
7311 switch (action & ~CPU_TASKS_FROZEN) {
7313 case CPU_UP_PREPARE:
7314 case CPU_DOWN_FAILED:
7315 perf_event_init_cpu(cpu);
7316 break;
7318 case CPU_UP_CANCELED:
7319 case CPU_DOWN_PREPARE:
7320 perf_event_exit_cpu(cpu);
7321 break;
7323 default:
7324 break;
7327 return NOTIFY_OK;
7330 void __init perf_event_init(void)
7332 int ret;
7334 idr_init(&pmu_idr);
7336 perf_event_init_all_cpus();
7337 init_srcu_struct(&pmus_srcu);
7338 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7339 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7340 perf_pmu_register(&perf_task_clock, NULL, -1);
7341 perf_tp_register();
7342 perf_cpu_notifier(perf_cpu_notify);
7343 register_reboot_notifier(&perf_reboot_notifier);
7345 ret = init_hw_breakpoint();
7346 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7349 static int __init perf_event_sysfs_init(void)
7351 struct pmu *pmu;
7352 int ret;
7354 mutex_lock(&pmus_lock);
7356 ret = bus_register(&pmu_bus);
7357 if (ret)
7358 goto unlock;
7360 list_for_each_entry(pmu, &pmus, entry) {
7361 if (!pmu->name || pmu->type < 0)
7362 continue;
7364 ret = pmu_dev_alloc(pmu);
7365 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7367 pmu_bus_running = 1;
7368 ret = 0;
7370 unlock:
7371 mutex_unlock(&pmus_lock);
7373 return ret;
7375 device_initcall(perf_event_sysfs_init);
7377 #ifdef CONFIG_CGROUP_PERF
7378 static struct cgroup_subsys_state *perf_cgroup_create(
7379 struct cgroup_subsys *ss, struct cgroup *cont)
7381 struct perf_cgroup *jc;
7383 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7384 if (!jc)
7385 return ERR_PTR(-ENOMEM);
7387 jc->info = alloc_percpu(struct perf_cgroup_info);
7388 if (!jc->info) {
7389 kfree(jc);
7390 return ERR_PTR(-ENOMEM);
7393 return &jc->css;
7396 static void perf_cgroup_destroy(struct cgroup_subsys *ss,
7397 struct cgroup *cont)
7399 struct perf_cgroup *jc;
7400 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7401 struct perf_cgroup, css);
7402 free_percpu(jc->info);
7403 kfree(jc);
7406 static int __perf_cgroup_move(void *info)
7408 struct task_struct *task = info;
7409 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7410 return 0;
7413 static void perf_cgroup_move(struct task_struct *task)
7415 task_function_call(task, __perf_cgroup_move, task);
7418 static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7419 struct cgroup *old_cgrp, struct task_struct *task,
7420 bool threadgroup)
7422 perf_cgroup_move(task);
7423 if (threadgroup) {
7424 struct task_struct *c;
7425 rcu_read_lock();
7426 list_for_each_entry_rcu(c, &task->thread_group, thread_group) {
7427 perf_cgroup_move(c);
7429 rcu_read_unlock();
7433 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7434 struct cgroup *old_cgrp, struct task_struct *task)
7437 * cgroup_exit() is called in the copy_process() failure path.
7438 * Ignore this case since the task hasn't ran yet, this avoids
7439 * trying to poke a half freed task state from generic code.
7441 if (!(task->flags & PF_EXITING))
7442 return;
7444 perf_cgroup_move(task);
7447 struct cgroup_subsys perf_subsys = {
7448 .name = "perf_event",
7449 .subsys_id = perf_subsys_id,
7450 .create = perf_cgroup_create,
7451 .destroy = perf_cgroup_destroy,
7452 .exit = perf_cgroup_exit,
7453 .attach = perf_cgroup_attach,
7455 #endif /* CONFIG_CGROUP_PERF */