fsldma: clean up the OF subsystem routines
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / dma / fsldma.c
blob507b29716bbd426b2db1b0f20da89c8b8ce8838e
1 /*
2 * Freescale MPC85xx, MPC83xx DMA Engine support
4 * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
6 * Author:
7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
10 * Description:
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA contorller is also added.
15 * This driver instructs the DMA controller to issue the PCI Read Multiple
16 * command for PCI read operations, instead of using the default PCI Read Line
17 * command. Please be aware that this setting may result in read pre-fetching
18 * on some platforms.
20 * This is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/interrupt.h>
31 #include <linux/dmaengine.h>
32 #include <linux/delay.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/dmapool.h>
35 #include <linux/of_platform.h>
37 #include <asm/fsldma.h>
38 #include "fsldma.h"
40 static void dma_init(struct fsldma_chan *fsl_chan)
42 /* Reset the channel */
43 DMA_OUT(fsl_chan, &fsl_chan->regs->mr, 0, 32);
45 switch (fsl_chan->feature & FSL_DMA_IP_MASK) {
46 case FSL_DMA_IP_85XX:
47 /* Set the channel to below modes:
48 * EIE - Error interrupt enable
49 * EOSIE - End of segments interrupt enable (basic mode)
50 * EOLNIE - End of links interrupt enable
52 DMA_OUT(fsl_chan, &fsl_chan->regs->mr, FSL_DMA_MR_EIE
53 | FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32);
54 break;
55 case FSL_DMA_IP_83XX:
56 /* Set the channel to below modes:
57 * EOTIE - End-of-transfer interrupt enable
58 * PRC_RM - PCI read multiple
60 DMA_OUT(fsl_chan, &fsl_chan->regs->mr, FSL_DMA_MR_EOTIE
61 | FSL_DMA_MR_PRC_RM, 32);
62 break;
67 static void set_sr(struct fsldma_chan *fsl_chan, u32 val)
69 DMA_OUT(fsl_chan, &fsl_chan->regs->sr, val, 32);
72 static u32 get_sr(struct fsldma_chan *fsl_chan)
74 return DMA_IN(fsl_chan, &fsl_chan->regs->sr, 32);
77 static void set_desc_cnt(struct fsldma_chan *fsl_chan,
78 struct fsl_dma_ld_hw *hw, u32 count)
80 hw->count = CPU_TO_DMA(fsl_chan, count, 32);
83 static void set_desc_src(struct fsldma_chan *fsl_chan,
84 struct fsl_dma_ld_hw *hw, dma_addr_t src)
86 u64 snoop_bits;
88 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
89 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
90 hw->src_addr = CPU_TO_DMA(fsl_chan, snoop_bits | src, 64);
93 static void set_desc_dst(struct fsldma_chan *fsl_chan,
94 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
96 u64 snoop_bits;
98 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
99 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
100 hw->dst_addr = CPU_TO_DMA(fsl_chan, snoop_bits | dst, 64);
103 static void set_desc_next(struct fsldma_chan *fsl_chan,
104 struct fsl_dma_ld_hw *hw, dma_addr_t next)
106 u64 snoop_bits;
108 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
109 ? FSL_DMA_SNEN : 0;
110 hw->next_ln_addr = CPU_TO_DMA(fsl_chan, snoop_bits | next, 64);
113 static void set_cdar(struct fsldma_chan *fsl_chan, dma_addr_t addr)
115 DMA_OUT(fsl_chan, &fsl_chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
118 static dma_addr_t get_cdar(struct fsldma_chan *fsl_chan)
120 return DMA_IN(fsl_chan, &fsl_chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
123 static void set_ndar(struct fsldma_chan *fsl_chan, dma_addr_t addr)
125 DMA_OUT(fsl_chan, &fsl_chan->regs->ndar, addr, 64);
128 static dma_addr_t get_ndar(struct fsldma_chan *fsl_chan)
130 return DMA_IN(fsl_chan, &fsl_chan->regs->ndar, 64);
133 static u32 get_bcr(struct fsldma_chan *fsl_chan)
135 return DMA_IN(fsl_chan, &fsl_chan->regs->bcr, 32);
138 static int dma_is_idle(struct fsldma_chan *fsl_chan)
140 u32 sr = get_sr(fsl_chan);
141 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
144 static void dma_start(struct fsldma_chan *fsl_chan)
146 u32 mode;
148 mode = DMA_IN(fsl_chan, &fsl_chan->regs->mr, 32);
150 if ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
151 if (fsl_chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
152 DMA_OUT(fsl_chan, &fsl_chan->regs->bcr, 0, 32);
153 mode |= FSL_DMA_MR_EMP_EN;
154 } else {
155 mode &= ~FSL_DMA_MR_EMP_EN;
159 if (fsl_chan->feature & FSL_DMA_CHAN_START_EXT)
160 mode |= FSL_DMA_MR_EMS_EN;
161 else
162 mode |= FSL_DMA_MR_CS;
164 DMA_OUT(fsl_chan, &fsl_chan->regs->mr, mode, 32);
167 static void dma_halt(struct fsldma_chan *fsl_chan)
169 u32 mode;
170 int i;
172 mode = DMA_IN(fsl_chan, &fsl_chan->regs->mr, 32);
173 mode |= FSL_DMA_MR_CA;
174 DMA_OUT(fsl_chan, &fsl_chan->regs->mr, mode, 32);
176 mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA);
177 DMA_OUT(fsl_chan, &fsl_chan->regs->mr, mode, 32);
179 for (i = 0; i < 100; i++) {
180 if (dma_is_idle(fsl_chan))
181 break;
182 udelay(10);
185 if (i >= 100 && !dma_is_idle(fsl_chan))
186 dev_err(fsl_chan->dev, "DMA halt timeout!\n");
189 static void set_ld_eol(struct fsldma_chan *fsl_chan,
190 struct fsl_desc_sw *desc)
192 u64 snoop_bits;
194 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
195 ? FSL_DMA_SNEN : 0;
197 desc->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
198 DMA_TO_CPU(fsl_chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
199 | snoop_bits, 64);
202 static void append_ld_queue(struct fsldma_chan *fsl_chan,
203 struct fsl_desc_sw *new_desc)
205 struct fsl_desc_sw *queue_tail = to_fsl_desc(fsl_chan->ld_queue.prev);
207 if (list_empty(&fsl_chan->ld_queue))
208 return;
210 /* Link to the new descriptor physical address and
211 * Enable End-of-segment interrupt for
212 * the last link descriptor.
213 * (the previous node's next link descriptor)
215 * For FSL_DMA_IP_83xx, the snoop enable bit need be set.
217 queue_tail->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
218 new_desc->async_tx.phys | FSL_DMA_EOSIE |
219 (((fsl_chan->feature & FSL_DMA_IP_MASK)
220 == FSL_DMA_IP_83XX) ? FSL_DMA_SNEN : 0), 64);
224 * fsl_chan_set_src_loop_size - Set source address hold transfer size
225 * @fsl_chan : Freescale DMA channel
226 * @size : Address loop size, 0 for disable loop
228 * The set source address hold transfer size. The source
229 * address hold or loop transfer size is when the DMA transfer
230 * data from source address (SA), if the loop size is 4, the DMA will
231 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
232 * SA + 1 ... and so on.
234 static void fsl_chan_set_src_loop_size(struct fsldma_chan *fsl_chan, int size)
236 u32 mode;
238 mode = DMA_IN(fsl_chan, &fsl_chan->regs->mr, 32);
240 switch (size) {
241 case 0:
242 mode &= ~FSL_DMA_MR_SAHE;
243 break;
244 case 1:
245 case 2:
246 case 4:
247 case 8:
248 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
249 break;
252 DMA_OUT(fsl_chan, &fsl_chan->regs->mr, mode, 32);
256 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
257 * @fsl_chan : Freescale DMA channel
258 * @size : Address loop size, 0 for disable loop
260 * The set destination address hold transfer size. The destination
261 * address hold or loop transfer size is when the DMA transfer
262 * data to destination address (TA), if the loop size is 4, the DMA will
263 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
264 * TA + 1 ... and so on.
266 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *fsl_chan, int size)
268 u32 mode;
270 mode = DMA_IN(fsl_chan, &fsl_chan->regs->mr, 32);
272 switch (size) {
273 case 0:
274 mode &= ~FSL_DMA_MR_DAHE;
275 break;
276 case 1:
277 case 2:
278 case 4:
279 case 8:
280 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
281 break;
284 DMA_OUT(fsl_chan, &fsl_chan->regs->mr, mode, 32);
288 * fsl_chan_set_request_count - Set DMA Request Count for external control
289 * @fsl_chan : Freescale DMA channel
290 * @size : Number of bytes to transfer in a single request
292 * The Freescale DMA channel can be controlled by the external signal DREQ#.
293 * The DMA request count is how many bytes are allowed to transfer before
294 * pausing the channel, after which a new assertion of DREQ# resumes channel
295 * operation.
297 * A size of 0 disables external pause control. The maximum size is 1024.
299 static void fsl_chan_set_request_count(struct fsldma_chan *fsl_chan, int size)
301 u32 mode;
303 BUG_ON(size > 1024);
305 mode = DMA_IN(fsl_chan, &fsl_chan->regs->mr, 32);
306 mode |= (__ilog2(size) << 24) & 0x0f000000;
308 DMA_OUT(fsl_chan, &fsl_chan->regs->mr, mode, 32);
312 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
313 * @fsl_chan : Freescale DMA channel
314 * @enable : 0 is disabled, 1 is enabled.
316 * The Freescale DMA channel can be controlled by the external signal DREQ#.
317 * The DMA Request Count feature should be used in addition to this feature
318 * to set the number of bytes to transfer before pausing the channel.
320 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *fsl_chan, int enable)
322 if (enable)
323 fsl_chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
324 else
325 fsl_chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
329 * fsl_chan_toggle_ext_start - Toggle channel external start status
330 * @fsl_chan : Freescale DMA channel
331 * @enable : 0 is disabled, 1 is enabled.
333 * If enable the external start, the channel can be started by an
334 * external DMA start pin. So the dma_start() does not start the
335 * transfer immediately. The DMA channel will wait for the
336 * control pin asserted.
338 static void fsl_chan_toggle_ext_start(struct fsldma_chan *fsl_chan, int enable)
340 if (enable)
341 fsl_chan->feature |= FSL_DMA_CHAN_START_EXT;
342 else
343 fsl_chan->feature &= ~FSL_DMA_CHAN_START_EXT;
346 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
348 struct fsldma_chan *fsl_chan = to_fsl_chan(tx->chan);
349 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
350 struct fsl_desc_sw *child;
351 unsigned long flags;
352 dma_cookie_t cookie;
354 /* cookie increment and adding to ld_queue must be atomic */
355 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
357 cookie = fsl_chan->common.cookie;
358 list_for_each_entry(child, &desc->tx_list, node) {
359 cookie++;
360 if (cookie < 0)
361 cookie = 1;
363 desc->async_tx.cookie = cookie;
366 fsl_chan->common.cookie = cookie;
367 append_ld_queue(fsl_chan, desc);
368 list_splice_init(&desc->tx_list, fsl_chan->ld_queue.prev);
370 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
372 return cookie;
376 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
377 * @fsl_chan : Freescale DMA channel
379 * Return - The descriptor allocated. NULL for failed.
381 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
382 struct fsldma_chan *fsl_chan)
384 dma_addr_t pdesc;
385 struct fsl_desc_sw *desc_sw;
387 desc_sw = dma_pool_alloc(fsl_chan->desc_pool, GFP_ATOMIC, &pdesc);
388 if (desc_sw) {
389 memset(desc_sw, 0, sizeof(struct fsl_desc_sw));
390 INIT_LIST_HEAD(&desc_sw->tx_list);
391 dma_async_tx_descriptor_init(&desc_sw->async_tx,
392 &fsl_chan->common);
393 desc_sw->async_tx.tx_submit = fsl_dma_tx_submit;
394 desc_sw->async_tx.phys = pdesc;
397 return desc_sw;
402 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
403 * @fsl_chan : Freescale DMA channel
405 * This function will create a dma pool for descriptor allocation.
407 * Return - The number of descriptors allocated.
409 static int fsl_dma_alloc_chan_resources(struct dma_chan *chan)
411 struct fsldma_chan *fsl_chan = to_fsl_chan(chan);
413 /* Has this channel already been allocated? */
414 if (fsl_chan->desc_pool)
415 return 1;
417 /* We need the descriptor to be aligned to 32bytes
418 * for meeting FSL DMA specification requirement.
420 fsl_chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool",
421 fsl_chan->dev, sizeof(struct fsl_desc_sw),
422 32, 0);
423 if (!fsl_chan->desc_pool) {
424 dev_err(fsl_chan->dev, "No memory for channel %d "
425 "descriptor dma pool.\n", fsl_chan->id);
426 return 0;
429 return 1;
433 * fsl_dma_free_chan_resources - Free all resources of the channel.
434 * @fsl_chan : Freescale DMA channel
436 static void fsl_dma_free_chan_resources(struct dma_chan *chan)
438 struct fsldma_chan *fsl_chan = to_fsl_chan(chan);
439 struct fsl_desc_sw *desc, *_desc;
440 unsigned long flags;
442 dev_dbg(fsl_chan->dev, "Free all channel resources.\n");
443 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
444 list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
445 #ifdef FSL_DMA_LD_DEBUG
446 dev_dbg(fsl_chan->dev,
447 "LD %p will be released.\n", desc);
448 #endif
449 list_del(&desc->node);
450 /* free link descriptor */
451 dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
453 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
454 dma_pool_destroy(fsl_chan->desc_pool);
456 fsl_chan->desc_pool = NULL;
459 static struct dma_async_tx_descriptor *
460 fsl_dma_prep_interrupt(struct dma_chan *chan, unsigned long flags)
462 struct fsldma_chan *fsl_chan;
463 struct fsl_desc_sw *new;
465 if (!chan)
466 return NULL;
468 fsl_chan = to_fsl_chan(chan);
470 new = fsl_dma_alloc_descriptor(fsl_chan);
471 if (!new) {
472 dev_err(fsl_chan->dev, "No free memory for link descriptor\n");
473 return NULL;
476 new->async_tx.cookie = -EBUSY;
477 new->async_tx.flags = flags;
479 /* Insert the link descriptor to the LD ring */
480 list_add_tail(&new->node, &new->tx_list);
482 /* Set End-of-link to the last link descriptor of new list*/
483 set_ld_eol(fsl_chan, new);
485 return &new->async_tx;
488 static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
489 struct dma_chan *chan, dma_addr_t dma_dst, dma_addr_t dma_src,
490 size_t len, unsigned long flags)
492 struct fsldma_chan *fsl_chan;
493 struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
494 struct list_head *list;
495 size_t copy;
497 if (!chan)
498 return NULL;
500 if (!len)
501 return NULL;
503 fsl_chan = to_fsl_chan(chan);
505 do {
507 /* Allocate the link descriptor from DMA pool */
508 new = fsl_dma_alloc_descriptor(fsl_chan);
509 if (!new) {
510 dev_err(fsl_chan->dev,
511 "No free memory for link descriptor\n");
512 goto fail;
514 #ifdef FSL_DMA_LD_DEBUG
515 dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new);
516 #endif
518 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
520 set_desc_cnt(fsl_chan, &new->hw, copy);
521 set_desc_src(fsl_chan, &new->hw, dma_src);
522 set_desc_dst(fsl_chan, &new->hw, dma_dst);
524 if (!first)
525 first = new;
526 else
527 set_desc_next(fsl_chan, &prev->hw, new->async_tx.phys);
529 new->async_tx.cookie = 0;
530 async_tx_ack(&new->async_tx);
532 prev = new;
533 len -= copy;
534 dma_src += copy;
535 dma_dst += copy;
537 /* Insert the link descriptor to the LD ring */
538 list_add_tail(&new->node, &first->tx_list);
539 } while (len);
541 new->async_tx.flags = flags; /* client is in control of this ack */
542 new->async_tx.cookie = -EBUSY;
544 /* Set End-of-link to the last link descriptor of new list*/
545 set_ld_eol(fsl_chan, new);
547 return &first->async_tx;
549 fail:
550 if (!first)
551 return NULL;
553 list = &first->tx_list;
554 list_for_each_entry_safe_reverse(new, prev, list, node) {
555 list_del(&new->node);
556 dma_pool_free(fsl_chan->desc_pool, new, new->async_tx.phys);
559 return NULL;
563 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
564 * @chan: DMA channel
565 * @sgl: scatterlist to transfer to/from
566 * @sg_len: number of entries in @scatterlist
567 * @direction: DMA direction
568 * @flags: DMAEngine flags
570 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
571 * DMA_SLAVE API, this gets the device-specific information from the
572 * chan->private variable.
574 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
575 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
576 enum dma_data_direction direction, unsigned long flags)
578 struct fsldma_chan *fsl_chan;
579 struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
580 struct fsl_dma_slave *slave;
581 struct list_head *tx_list;
582 size_t copy;
584 int i;
585 struct scatterlist *sg;
586 size_t sg_used;
587 size_t hw_used;
588 struct fsl_dma_hw_addr *hw;
589 dma_addr_t dma_dst, dma_src;
591 if (!chan)
592 return NULL;
594 if (!chan->private)
595 return NULL;
597 fsl_chan = to_fsl_chan(chan);
598 slave = chan->private;
600 if (list_empty(&slave->addresses))
601 return NULL;
603 hw = list_first_entry(&slave->addresses, struct fsl_dma_hw_addr, entry);
604 hw_used = 0;
607 * Build the hardware transaction to copy from the scatterlist to
608 * the hardware, or from the hardware to the scatterlist
610 * If you are copying from the hardware to the scatterlist and it
611 * takes two hardware entries to fill an entire page, then both
612 * hardware entries will be coalesced into the same page
614 * If you are copying from the scatterlist to the hardware and a
615 * single page can fill two hardware entries, then the data will
616 * be read out of the page into the first hardware entry, and so on
618 for_each_sg(sgl, sg, sg_len, i) {
619 sg_used = 0;
621 /* Loop until the entire scatterlist entry is used */
622 while (sg_used < sg_dma_len(sg)) {
625 * If we've used up the current hardware address/length
626 * pair, we need to load a new one
628 * This is done in a while loop so that descriptors with
629 * length == 0 will be skipped
631 while (hw_used >= hw->length) {
634 * If the current hardware entry is the last
635 * entry in the list, we're finished
637 if (list_is_last(&hw->entry, &slave->addresses))
638 goto finished;
640 /* Get the next hardware address/length pair */
641 hw = list_entry(hw->entry.next,
642 struct fsl_dma_hw_addr, entry);
643 hw_used = 0;
646 /* Allocate the link descriptor from DMA pool */
647 new = fsl_dma_alloc_descriptor(fsl_chan);
648 if (!new) {
649 dev_err(fsl_chan->dev, "No free memory for "
650 "link descriptor\n");
651 goto fail;
653 #ifdef FSL_DMA_LD_DEBUG
654 dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new);
655 #endif
658 * Calculate the maximum number of bytes to transfer,
659 * making sure it is less than the DMA controller limit
661 copy = min_t(size_t, sg_dma_len(sg) - sg_used,
662 hw->length - hw_used);
663 copy = min_t(size_t, copy, FSL_DMA_BCR_MAX_CNT);
666 * DMA_FROM_DEVICE
667 * from the hardware to the scatterlist
669 * DMA_TO_DEVICE
670 * from the scatterlist to the hardware
672 if (direction == DMA_FROM_DEVICE) {
673 dma_src = hw->address + hw_used;
674 dma_dst = sg_dma_address(sg) + sg_used;
675 } else {
676 dma_src = sg_dma_address(sg) + sg_used;
677 dma_dst = hw->address + hw_used;
680 /* Fill in the descriptor */
681 set_desc_cnt(fsl_chan, &new->hw, copy);
682 set_desc_src(fsl_chan, &new->hw, dma_src);
683 set_desc_dst(fsl_chan, &new->hw, dma_dst);
686 * If this is not the first descriptor, chain the
687 * current descriptor after the previous descriptor
689 if (!first) {
690 first = new;
691 } else {
692 set_desc_next(fsl_chan, &prev->hw,
693 new->async_tx.phys);
696 new->async_tx.cookie = 0;
697 async_tx_ack(&new->async_tx);
699 prev = new;
700 sg_used += copy;
701 hw_used += copy;
703 /* Insert the link descriptor into the LD ring */
704 list_add_tail(&new->node, &first->tx_list);
708 finished:
710 /* All of the hardware address/length pairs had length == 0 */
711 if (!first || !new)
712 return NULL;
714 new->async_tx.flags = flags;
715 new->async_tx.cookie = -EBUSY;
717 /* Set End-of-link to the last link descriptor of new list */
718 set_ld_eol(fsl_chan, new);
720 /* Enable extra controller features */
721 if (fsl_chan->set_src_loop_size)
722 fsl_chan->set_src_loop_size(fsl_chan, slave->src_loop_size);
724 if (fsl_chan->set_dst_loop_size)
725 fsl_chan->set_dst_loop_size(fsl_chan, slave->dst_loop_size);
727 if (fsl_chan->toggle_ext_start)
728 fsl_chan->toggle_ext_start(fsl_chan, slave->external_start);
730 if (fsl_chan->toggle_ext_pause)
731 fsl_chan->toggle_ext_pause(fsl_chan, slave->external_pause);
733 if (fsl_chan->set_request_count)
734 fsl_chan->set_request_count(fsl_chan, slave->request_count);
736 return &first->async_tx;
738 fail:
739 /* If first was not set, then we failed to allocate the very first
740 * descriptor, and we're done */
741 if (!first)
742 return NULL;
745 * First is set, so all of the descriptors we allocated have been added
746 * to first->tx_list, INCLUDING "first" itself. Therefore we
747 * must traverse the list backwards freeing each descriptor in turn
749 * We're re-using variables for the loop, oh well
751 tx_list = &first->tx_list;
752 list_for_each_entry_safe_reverse(new, prev, tx_list, node) {
753 list_del_init(&new->node);
754 dma_pool_free(fsl_chan->desc_pool, new, new->async_tx.phys);
757 return NULL;
760 static void fsl_dma_device_terminate_all(struct dma_chan *chan)
762 struct fsldma_chan *fsl_chan;
763 struct fsl_desc_sw *desc, *tmp;
764 unsigned long flags;
766 if (!chan)
767 return;
769 fsl_chan = to_fsl_chan(chan);
771 /* Halt the DMA engine */
772 dma_halt(fsl_chan);
774 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
776 /* Remove and free all of the descriptors in the LD queue */
777 list_for_each_entry_safe(desc, tmp, &fsl_chan->ld_queue, node) {
778 list_del(&desc->node);
779 dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
782 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
786 * fsl_dma_update_completed_cookie - Update the completed cookie.
787 * @fsl_chan : Freescale DMA channel
789 static void fsl_dma_update_completed_cookie(struct fsldma_chan *fsl_chan)
791 struct fsl_desc_sw *cur_desc, *desc;
792 dma_addr_t ld_phy;
794 ld_phy = get_cdar(fsl_chan) & FSL_DMA_NLDA_MASK;
796 if (ld_phy) {
797 cur_desc = NULL;
798 list_for_each_entry(desc, &fsl_chan->ld_queue, node)
799 if (desc->async_tx.phys == ld_phy) {
800 cur_desc = desc;
801 break;
804 if (cur_desc && cur_desc->async_tx.cookie) {
805 if (dma_is_idle(fsl_chan))
806 fsl_chan->completed_cookie =
807 cur_desc->async_tx.cookie;
808 else
809 fsl_chan->completed_cookie =
810 cur_desc->async_tx.cookie - 1;
816 * fsl_chan_ld_cleanup - Clean up link descriptors
817 * @fsl_chan : Freescale DMA channel
819 * This function clean up the ld_queue of DMA channel.
820 * If 'in_intr' is set, the function will move the link descriptor to
821 * the recycle list. Otherwise, free it directly.
823 static void fsl_chan_ld_cleanup(struct fsldma_chan *fsl_chan)
825 struct fsl_desc_sw *desc, *_desc;
826 unsigned long flags;
828 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
830 dev_dbg(fsl_chan->dev, "chan completed_cookie = %d\n",
831 fsl_chan->completed_cookie);
832 list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
833 dma_async_tx_callback callback;
834 void *callback_param;
836 if (dma_async_is_complete(desc->async_tx.cookie,
837 fsl_chan->completed_cookie, fsl_chan->common.cookie)
838 == DMA_IN_PROGRESS)
839 break;
841 callback = desc->async_tx.callback;
842 callback_param = desc->async_tx.callback_param;
844 /* Remove from ld_queue list */
845 list_del(&desc->node);
847 dev_dbg(fsl_chan->dev, "link descriptor %p will be recycle.\n",
848 desc);
849 dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
851 /* Run the link descriptor callback function */
852 if (callback) {
853 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
854 dev_dbg(fsl_chan->dev, "link descriptor %p callback\n",
855 desc);
856 callback(callback_param);
857 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
860 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
864 * fsl_chan_xfer_ld_queue - Transfer link descriptors in channel ld_queue.
865 * @fsl_chan : Freescale DMA channel
867 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *fsl_chan)
869 struct list_head *ld_node;
870 dma_addr_t next_dst_addr;
871 unsigned long flags;
873 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
875 if (!dma_is_idle(fsl_chan))
876 goto out_unlock;
878 dma_halt(fsl_chan);
880 /* If there are some link descriptors
881 * not transfered in queue. We need to start it.
884 /* Find the first un-transfer desciptor */
885 for (ld_node = fsl_chan->ld_queue.next;
886 (ld_node != &fsl_chan->ld_queue)
887 && (dma_async_is_complete(
888 to_fsl_desc(ld_node)->async_tx.cookie,
889 fsl_chan->completed_cookie,
890 fsl_chan->common.cookie) == DMA_SUCCESS);
891 ld_node = ld_node->next);
893 if (ld_node != &fsl_chan->ld_queue) {
894 /* Get the ld start address from ld_queue */
895 next_dst_addr = to_fsl_desc(ld_node)->async_tx.phys;
896 dev_dbg(fsl_chan->dev, "xfer LDs staring from 0x%llx\n",
897 (unsigned long long)next_dst_addr);
898 set_cdar(fsl_chan, next_dst_addr);
899 dma_start(fsl_chan);
900 } else {
901 set_cdar(fsl_chan, 0);
902 set_ndar(fsl_chan, 0);
905 out_unlock:
906 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
910 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
911 * @fsl_chan : Freescale DMA channel
913 static void fsl_dma_memcpy_issue_pending(struct dma_chan *chan)
915 struct fsldma_chan *fsl_chan = to_fsl_chan(chan);
917 #ifdef FSL_DMA_LD_DEBUG
918 struct fsl_desc_sw *ld;
919 unsigned long flags;
921 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
922 if (list_empty(&fsl_chan->ld_queue)) {
923 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
924 return;
927 dev_dbg(fsl_chan->dev, "--memcpy issue--\n");
928 list_for_each_entry(ld, &fsl_chan->ld_queue, node) {
929 int i;
930 dev_dbg(fsl_chan->dev, "Ch %d, LD %08x\n",
931 fsl_chan->id, ld->async_tx.phys);
932 for (i = 0; i < 8; i++)
933 dev_dbg(fsl_chan->dev, "LD offset %d: %08x\n",
934 i, *(((u32 *)&ld->hw) + i));
936 dev_dbg(fsl_chan->dev, "----------------\n");
937 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
938 #endif
940 fsl_chan_xfer_ld_queue(fsl_chan);
944 * fsl_dma_is_complete - Determine the DMA status
945 * @fsl_chan : Freescale DMA channel
947 static enum dma_status fsl_dma_is_complete(struct dma_chan *chan,
948 dma_cookie_t cookie,
949 dma_cookie_t *done,
950 dma_cookie_t *used)
952 struct fsldma_chan *fsl_chan = to_fsl_chan(chan);
953 dma_cookie_t last_used;
954 dma_cookie_t last_complete;
956 fsl_chan_ld_cleanup(fsl_chan);
958 last_used = chan->cookie;
959 last_complete = fsl_chan->completed_cookie;
961 if (done)
962 *done = last_complete;
964 if (used)
965 *used = last_used;
967 return dma_async_is_complete(cookie, last_complete, last_used);
970 static irqreturn_t fsldma_chan_irq(int irq, void *data)
972 struct fsldma_chan *fsl_chan = data;
973 u32 stat;
974 int update_cookie = 0;
975 int xfer_ld_q = 0;
977 stat = get_sr(fsl_chan);
978 dev_dbg(fsl_chan->dev, "event: channel %d, stat = 0x%x\n",
979 fsl_chan->id, stat);
980 set_sr(fsl_chan, stat); /* Clear the event register */
982 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
983 if (!stat)
984 return IRQ_NONE;
986 if (stat & FSL_DMA_SR_TE)
987 dev_err(fsl_chan->dev, "Transfer Error!\n");
989 /* Programming Error
990 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
991 * triger a PE interrupt.
993 if (stat & FSL_DMA_SR_PE) {
994 dev_dbg(fsl_chan->dev, "event: Programming Error INT\n");
995 if (get_bcr(fsl_chan) == 0) {
996 /* BCR register is 0, this is a DMA_INTERRUPT async_tx.
997 * Now, update the completed cookie, and continue the
998 * next uncompleted transfer.
1000 update_cookie = 1;
1001 xfer_ld_q = 1;
1003 stat &= ~FSL_DMA_SR_PE;
1006 /* If the link descriptor segment transfer finishes,
1007 * we will recycle the used descriptor.
1009 if (stat & FSL_DMA_SR_EOSI) {
1010 dev_dbg(fsl_chan->dev, "event: End-of-segments INT\n");
1011 dev_dbg(fsl_chan->dev, "event: clndar 0x%llx, nlndar 0x%llx\n",
1012 (unsigned long long)get_cdar(fsl_chan),
1013 (unsigned long long)get_ndar(fsl_chan));
1014 stat &= ~FSL_DMA_SR_EOSI;
1015 update_cookie = 1;
1018 /* For MPC8349, EOCDI event need to update cookie
1019 * and start the next transfer if it exist.
1021 if (stat & FSL_DMA_SR_EOCDI) {
1022 dev_dbg(fsl_chan->dev, "event: End-of-Chain link INT\n");
1023 stat &= ~FSL_DMA_SR_EOCDI;
1024 update_cookie = 1;
1025 xfer_ld_q = 1;
1028 /* If it current transfer is the end-of-transfer,
1029 * we should clear the Channel Start bit for
1030 * prepare next transfer.
1032 if (stat & FSL_DMA_SR_EOLNI) {
1033 dev_dbg(fsl_chan->dev, "event: End-of-link INT\n");
1034 stat &= ~FSL_DMA_SR_EOLNI;
1035 xfer_ld_q = 1;
1038 if (update_cookie)
1039 fsl_dma_update_completed_cookie(fsl_chan);
1040 if (xfer_ld_q)
1041 fsl_chan_xfer_ld_queue(fsl_chan);
1042 if (stat)
1043 dev_dbg(fsl_chan->dev, "event: unhandled sr 0x%02x\n",
1044 stat);
1046 dev_dbg(fsl_chan->dev, "event: Exit\n");
1047 tasklet_schedule(&fsl_chan->tasklet);
1048 return IRQ_HANDLED;
1051 static irqreturn_t fsldma_irq(int irq, void *data)
1053 struct fsldma_device *fdev = data;
1054 int ch_nr;
1055 u32 gsr;
1057 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1058 : in_le32(fdev->regs);
1059 ch_nr = (32 - ffs(gsr)) / 8;
1061 return fdev->chan[ch_nr] ? fsldma_chan_irq(irq,
1062 fdev->chan[ch_nr]) : IRQ_NONE;
1065 static void dma_do_tasklet(unsigned long data)
1067 struct fsldma_chan *fsl_chan = (struct fsldma_chan *)data;
1068 fsl_chan_ld_cleanup(fsl_chan);
1071 /*----------------------------------------------------------------------------*/
1072 /* OpenFirmware Subsystem */
1073 /*----------------------------------------------------------------------------*/
1075 static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev,
1076 struct device_node *node, u32 feature, const char *compatible)
1078 struct fsldma_chan *fchan;
1079 struct resource res;
1080 int err;
1082 /* alloc channel */
1083 fchan = kzalloc(sizeof(*fchan), GFP_KERNEL);
1084 if (!fchan) {
1085 dev_err(fdev->dev, "no free memory for DMA channels!\n");
1086 err = -ENOMEM;
1087 goto out_return;
1090 /* ioremap registers for use */
1091 fchan->regs = of_iomap(node, 0);
1092 if (!fchan->regs) {
1093 dev_err(fdev->dev, "unable to ioremap registers\n");
1094 err = -ENOMEM;
1095 goto out_free_fchan;
1098 err = of_address_to_resource(node, 0, &res);
1099 if (err) {
1100 dev_err(fdev->dev, "unable to find 'reg' property\n");
1101 goto out_iounmap_regs;
1104 fchan->feature = feature;
1105 if (!fdev->feature)
1106 fdev->feature = fchan->feature;
1109 * If the DMA device's feature is different than the feature
1110 * of its channels, report the bug
1112 WARN_ON(fdev->feature != fchan->feature);
1114 fchan->dev = fdev->dev;
1115 fchan->id = ((res.start - 0x100) & 0xfff) >> 7;
1116 if (fchan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1117 dev_err(fdev->dev, "too many channels for device\n");
1118 err = -EINVAL;
1119 goto out_iounmap_regs;
1122 fdev->chan[fchan->id] = fchan;
1123 tasklet_init(&fchan->tasklet, dma_do_tasklet, (unsigned long)fchan);
1125 /* Initialize the channel */
1126 dma_init(fchan);
1128 /* Clear cdar registers */
1129 set_cdar(fchan, 0);
1131 switch (fchan->feature & FSL_DMA_IP_MASK) {
1132 case FSL_DMA_IP_85XX:
1133 fchan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1134 case FSL_DMA_IP_83XX:
1135 fchan->toggle_ext_start = fsl_chan_toggle_ext_start;
1136 fchan->set_src_loop_size = fsl_chan_set_src_loop_size;
1137 fchan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1138 fchan->set_request_count = fsl_chan_set_request_count;
1141 spin_lock_init(&fchan->desc_lock);
1142 INIT_LIST_HEAD(&fchan->ld_queue);
1144 fchan->common.device = &fdev->common;
1146 /* Add the channel to DMA device channel list */
1147 list_add_tail(&fchan->common.device_node, &fdev->common.channels);
1148 fdev->common.chancnt++;
1150 fchan->irq = irq_of_parse_and_map(node, 0);
1151 if (fchan->irq != NO_IRQ) {
1152 err = request_irq(fchan->irq, &fsldma_chan_irq,
1153 IRQF_SHARED, "fsldma-channel", fchan);
1154 if (err) {
1155 dev_err(fdev->dev, "unable to request IRQ "
1156 "for channel %d\n", fchan->id);
1157 goto out_list_del;
1161 dev_info(fdev->dev, "#%d (%s), irq %d\n", fchan->id, compatible,
1162 fchan->irq != NO_IRQ ? fchan->irq : fdev->irq);
1164 return 0;
1166 out_list_del:
1167 irq_dispose_mapping(fchan->irq);
1168 list_del_init(&fchan->common.device_node);
1169 out_iounmap_regs:
1170 iounmap(fchan->regs);
1171 out_free_fchan:
1172 kfree(fchan);
1173 out_return:
1174 return err;
1177 static void fsl_dma_chan_remove(struct fsldma_chan *fchan)
1179 if (fchan->irq != NO_IRQ) {
1180 free_irq(fchan->irq, fchan);
1181 irq_dispose_mapping(fchan->irq);
1184 list_del(&fchan->common.device_node);
1185 iounmap(fchan->regs);
1186 kfree(fchan);
1189 static int __devinit fsldma_of_probe(struct of_device *op,
1190 const struct of_device_id *match)
1192 struct fsldma_device *fdev;
1193 struct device_node *child;
1194 int err;
1196 fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1197 if (!fdev) {
1198 dev_err(&op->dev, "No enough memory for 'priv'\n");
1199 err = -ENOMEM;
1200 goto out_return;
1203 fdev->dev = &op->dev;
1204 INIT_LIST_HEAD(&fdev->common.channels);
1206 /* ioremap the registers for use */
1207 fdev->regs = of_iomap(op->node, 0);
1208 if (!fdev->regs) {
1209 dev_err(&op->dev, "unable to ioremap registers\n");
1210 err = -ENOMEM;
1211 goto out_free_fdev;
1214 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1215 dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1216 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1217 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1218 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1219 fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1220 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1221 fdev->common.device_is_tx_complete = fsl_dma_is_complete;
1222 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1223 fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1224 fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1225 fdev->common.dev = &op->dev;
1227 fdev->irq = irq_of_parse_and_map(op->node, 0);
1228 if (fdev->irq != NO_IRQ) {
1229 err = request_irq(fdev->irq, &fsldma_irq, IRQF_SHARED,
1230 "fsldma-device", fdev);
1231 if (err) {
1232 dev_err(&op->dev, "unable to request IRQ\n");
1233 goto out_iounmap_regs;
1237 dev_set_drvdata(&op->dev, fdev);
1240 * We cannot use of_platform_bus_probe() because there is no
1241 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1242 * channel object.
1244 for_each_child_of_node(op->node, child) {
1245 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1246 fsl_dma_chan_probe(fdev, child,
1247 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1248 "fsl,eloplus-dma-channel");
1251 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1252 fsl_dma_chan_probe(fdev, child,
1253 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1254 "fsl,elo-dma-channel");
1258 dma_async_device_register(&fdev->common);
1259 return 0;
1261 out_iounmap_regs:
1262 iounmap(fdev->regs);
1263 out_free_fdev:
1264 kfree(fdev);
1265 out_return:
1266 return err;
1269 static int fsldma_of_remove(struct of_device *op)
1271 struct fsldma_device *fdev;
1272 unsigned int i;
1274 fdev = dev_get_drvdata(&op->dev);
1275 dma_async_device_unregister(&fdev->common);
1277 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1278 if (fdev->chan[i])
1279 fsl_dma_chan_remove(fdev->chan[i]);
1282 if (fdev->irq != NO_IRQ)
1283 free_irq(fdev->irq, fdev);
1285 iounmap(fdev->regs);
1286 dev_set_drvdata(&op->dev, NULL);
1287 kfree(fdev);
1289 return 0;
1292 static struct of_device_id fsldma_of_ids[] = {
1293 { .compatible = "fsl,eloplus-dma", },
1294 { .compatible = "fsl,elo-dma", },
1298 static struct of_platform_driver fsldma_of_driver = {
1299 .name = "fsl-elo-dma",
1300 .match_table = fsldma_of_ids,
1301 .probe = fsldma_of_probe,
1302 .remove = fsldma_of_remove,
1305 /*----------------------------------------------------------------------------*/
1306 /* Module Init / Exit */
1307 /*----------------------------------------------------------------------------*/
1309 static __init int fsldma_init(void)
1311 int ret;
1313 pr_info("Freescale Elo / Elo Plus DMA driver\n");
1315 ret = of_register_platform_driver(&fsldma_of_driver);
1316 if (ret)
1317 pr_err("fsldma: failed to register platform driver\n");
1319 return ret;
1322 static void __exit fsldma_exit(void)
1324 of_unregister_platform_driver(&fsldma_of_driver);
1327 subsys_initcall(fsldma_init);
1328 module_exit(fsldma_exit);
1330 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1331 MODULE_LICENSE("GPL");