Merge branch 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / cgroup.c
blob3737a682cdf52229ee78efa5c637164ba60dcc28
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
27 #include <linux/fs.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
47 #include <linux/hash.h>
48 #include <linux/namei.h>
49 #include <linux/smp_lock.h>
51 #include <asm/atomic.h>
53 static DEFINE_MUTEX(cgroup_mutex);
55 /* Generate an array of cgroup subsystem pointers */
56 #define SUBSYS(_x) &_x ## _subsys,
58 static struct cgroup_subsys *subsys[] = {
59 #include <linux/cgroup_subsys.h>
63 * A cgroupfs_root represents the root of a cgroup hierarchy,
64 * and may be associated with a superblock to form an active
65 * hierarchy
67 struct cgroupfs_root {
68 struct super_block *sb;
71 * The bitmask of subsystems intended to be attached to this
72 * hierarchy
74 unsigned long subsys_bits;
76 /* The bitmask of subsystems currently attached to this hierarchy */
77 unsigned long actual_subsys_bits;
79 /* A list running through the attached subsystems */
80 struct list_head subsys_list;
82 /* The root cgroup for this hierarchy */
83 struct cgroup top_cgroup;
85 /* Tracks how many cgroups are currently defined in hierarchy.*/
86 int number_of_cgroups;
88 /* A list running through the active hierarchies */
89 struct list_head root_list;
91 /* Hierarchy-specific flags */
92 unsigned long flags;
94 /* The path to use for release notifications. */
95 char release_agent_path[PATH_MAX];
99 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
100 * subsystems that are otherwise unattached - it never has more than a
101 * single cgroup, and all tasks are part of that cgroup.
103 static struct cgroupfs_root rootnode;
106 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
107 * cgroup_subsys->use_id != 0.
109 #define CSS_ID_MAX (65535)
110 struct css_id {
112 * The css to which this ID points. This pointer is set to valid value
113 * after cgroup is populated. If cgroup is removed, this will be NULL.
114 * This pointer is expected to be RCU-safe because destroy()
115 * is called after synchronize_rcu(). But for safe use, css_is_removed()
116 * css_tryget() should be used for avoiding race.
118 struct cgroup_subsys_state *css;
120 * ID of this css.
122 unsigned short id;
124 * Depth in hierarchy which this ID belongs to.
126 unsigned short depth;
128 * ID is freed by RCU. (and lookup routine is RCU safe.)
130 struct rcu_head rcu_head;
132 * Hierarchy of CSS ID belongs to.
134 unsigned short stack[0]; /* Array of Length (depth+1) */
138 /* The list of hierarchy roots */
140 static LIST_HEAD(roots);
141 static int root_count;
143 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
144 #define dummytop (&rootnode.top_cgroup)
146 /* This flag indicates whether tasks in the fork and exit paths should
147 * check for fork/exit handlers to call. This avoids us having to do
148 * extra work in the fork/exit path if none of the subsystems need to
149 * be called.
151 static int need_forkexit_callback __read_mostly;
153 /* convenient tests for these bits */
154 inline int cgroup_is_removed(const struct cgroup *cgrp)
156 return test_bit(CGRP_REMOVED, &cgrp->flags);
159 /* bits in struct cgroupfs_root flags field */
160 enum {
161 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
164 static int cgroup_is_releasable(const struct cgroup *cgrp)
166 const int bits =
167 (1 << CGRP_RELEASABLE) |
168 (1 << CGRP_NOTIFY_ON_RELEASE);
169 return (cgrp->flags & bits) == bits;
172 static int notify_on_release(const struct cgroup *cgrp)
174 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
178 * for_each_subsys() allows you to iterate on each subsystem attached to
179 * an active hierarchy
181 #define for_each_subsys(_root, _ss) \
182 list_for_each_entry(_ss, &_root->subsys_list, sibling)
184 /* for_each_active_root() allows you to iterate across the active hierarchies */
185 #define for_each_active_root(_root) \
186 list_for_each_entry(_root, &roots, root_list)
188 /* the list of cgroups eligible for automatic release. Protected by
189 * release_list_lock */
190 static LIST_HEAD(release_list);
191 static DEFINE_SPINLOCK(release_list_lock);
192 static void cgroup_release_agent(struct work_struct *work);
193 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
194 static void check_for_release(struct cgroup *cgrp);
196 /* Link structure for associating css_set objects with cgroups */
197 struct cg_cgroup_link {
199 * List running through cg_cgroup_links associated with a
200 * cgroup, anchored on cgroup->css_sets
202 struct list_head cgrp_link_list;
204 * List running through cg_cgroup_links pointing at a
205 * single css_set object, anchored on css_set->cg_links
207 struct list_head cg_link_list;
208 struct css_set *cg;
211 /* The default css_set - used by init and its children prior to any
212 * hierarchies being mounted. It contains a pointer to the root state
213 * for each subsystem. Also used to anchor the list of css_sets. Not
214 * reference-counted, to improve performance when child cgroups
215 * haven't been created.
218 static struct css_set init_css_set;
219 static struct cg_cgroup_link init_css_set_link;
221 static int cgroup_subsys_init_idr(struct cgroup_subsys *ss);
223 /* css_set_lock protects the list of css_set objects, and the
224 * chain of tasks off each css_set. Nests outside task->alloc_lock
225 * due to cgroup_iter_start() */
226 static DEFINE_RWLOCK(css_set_lock);
227 static int css_set_count;
229 /* hash table for cgroup groups. This improves the performance to
230 * find an existing css_set */
231 #define CSS_SET_HASH_BITS 7
232 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
233 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
235 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
237 int i;
238 int index;
239 unsigned long tmp = 0UL;
241 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
242 tmp += (unsigned long)css[i];
243 tmp = (tmp >> 16) ^ tmp;
245 index = hash_long(tmp, CSS_SET_HASH_BITS);
247 return &css_set_table[index];
250 /* We don't maintain the lists running through each css_set to its
251 * task until after the first call to cgroup_iter_start(). This
252 * reduces the fork()/exit() overhead for people who have cgroups
253 * compiled into their kernel but not actually in use */
254 static int use_task_css_set_links __read_mostly;
256 /* When we create or destroy a css_set, the operation simply
257 * takes/releases a reference count on all the cgroups referenced
258 * by subsystems in this css_set. This can end up multiple-counting
259 * some cgroups, but that's OK - the ref-count is just a
260 * busy/not-busy indicator; ensuring that we only count each cgroup
261 * once would require taking a global lock to ensure that no
262 * subsystems moved between hierarchies while we were doing so.
264 * Possible TODO: decide at boot time based on the number of
265 * registered subsystems and the number of CPUs or NUMA nodes whether
266 * it's better for performance to ref-count every subsystem, or to
267 * take a global lock and only add one ref count to each hierarchy.
271 * unlink a css_set from the list and free it
273 static void unlink_css_set(struct css_set *cg)
275 struct cg_cgroup_link *link;
276 struct cg_cgroup_link *saved_link;
278 hlist_del(&cg->hlist);
279 css_set_count--;
281 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
282 cg_link_list) {
283 list_del(&link->cg_link_list);
284 list_del(&link->cgrp_link_list);
285 kfree(link);
289 static void __put_css_set(struct css_set *cg, int taskexit)
291 int i;
293 * Ensure that the refcount doesn't hit zero while any readers
294 * can see it. Similar to atomic_dec_and_lock(), but for an
295 * rwlock
297 if (atomic_add_unless(&cg->refcount, -1, 1))
298 return;
299 write_lock(&css_set_lock);
300 if (!atomic_dec_and_test(&cg->refcount)) {
301 write_unlock(&css_set_lock);
302 return;
304 unlink_css_set(cg);
305 write_unlock(&css_set_lock);
307 rcu_read_lock();
308 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
309 struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup);
310 if (atomic_dec_and_test(&cgrp->count) &&
311 notify_on_release(cgrp)) {
312 if (taskexit)
313 set_bit(CGRP_RELEASABLE, &cgrp->flags);
314 check_for_release(cgrp);
317 rcu_read_unlock();
318 kfree(cg);
322 * refcounted get/put for css_set objects
324 static inline void get_css_set(struct css_set *cg)
326 atomic_inc(&cg->refcount);
329 static inline void put_css_set(struct css_set *cg)
331 __put_css_set(cg, 0);
334 static inline void put_css_set_taskexit(struct css_set *cg)
336 __put_css_set(cg, 1);
340 * find_existing_css_set() is a helper for
341 * find_css_set(), and checks to see whether an existing
342 * css_set is suitable.
344 * oldcg: the cgroup group that we're using before the cgroup
345 * transition
347 * cgrp: the cgroup that we're moving into
349 * template: location in which to build the desired set of subsystem
350 * state objects for the new cgroup group
352 static struct css_set *find_existing_css_set(
353 struct css_set *oldcg,
354 struct cgroup *cgrp,
355 struct cgroup_subsys_state *template[])
357 int i;
358 struct cgroupfs_root *root = cgrp->root;
359 struct hlist_head *hhead;
360 struct hlist_node *node;
361 struct css_set *cg;
363 /* Built the set of subsystem state objects that we want to
364 * see in the new css_set */
365 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
366 if (root->subsys_bits & (1UL << i)) {
367 /* Subsystem is in this hierarchy. So we want
368 * the subsystem state from the new
369 * cgroup */
370 template[i] = cgrp->subsys[i];
371 } else {
372 /* Subsystem is not in this hierarchy, so we
373 * don't want to change the subsystem state */
374 template[i] = oldcg->subsys[i];
378 hhead = css_set_hash(template);
379 hlist_for_each_entry(cg, node, hhead, hlist) {
380 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
381 /* All subsystems matched */
382 return cg;
386 /* No existing cgroup group matched */
387 return NULL;
390 static void free_cg_links(struct list_head *tmp)
392 struct cg_cgroup_link *link;
393 struct cg_cgroup_link *saved_link;
395 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
396 list_del(&link->cgrp_link_list);
397 kfree(link);
402 * allocate_cg_links() allocates "count" cg_cgroup_link structures
403 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
404 * success or a negative error
406 static int allocate_cg_links(int count, struct list_head *tmp)
408 struct cg_cgroup_link *link;
409 int i;
410 INIT_LIST_HEAD(tmp);
411 for (i = 0; i < count; i++) {
412 link = kmalloc(sizeof(*link), GFP_KERNEL);
413 if (!link) {
414 free_cg_links(tmp);
415 return -ENOMEM;
417 list_add(&link->cgrp_link_list, tmp);
419 return 0;
423 * link_css_set - a helper function to link a css_set to a cgroup
424 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
425 * @cg: the css_set to be linked
426 * @cgrp: the destination cgroup
428 static void link_css_set(struct list_head *tmp_cg_links,
429 struct css_set *cg, struct cgroup *cgrp)
431 struct cg_cgroup_link *link;
433 BUG_ON(list_empty(tmp_cg_links));
434 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
435 cgrp_link_list);
436 link->cg = cg;
437 list_move(&link->cgrp_link_list, &cgrp->css_sets);
438 list_add(&link->cg_link_list, &cg->cg_links);
442 * find_css_set() takes an existing cgroup group and a
443 * cgroup object, and returns a css_set object that's
444 * equivalent to the old group, but with the given cgroup
445 * substituted into the appropriate hierarchy. Must be called with
446 * cgroup_mutex held
448 static struct css_set *find_css_set(
449 struct css_set *oldcg, struct cgroup *cgrp)
451 struct css_set *res;
452 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
453 int i;
455 struct list_head tmp_cg_links;
457 struct hlist_head *hhead;
459 /* First see if we already have a cgroup group that matches
460 * the desired set */
461 read_lock(&css_set_lock);
462 res = find_existing_css_set(oldcg, cgrp, template);
463 if (res)
464 get_css_set(res);
465 read_unlock(&css_set_lock);
467 if (res)
468 return res;
470 res = kmalloc(sizeof(*res), GFP_KERNEL);
471 if (!res)
472 return NULL;
474 /* Allocate all the cg_cgroup_link objects that we'll need */
475 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
476 kfree(res);
477 return NULL;
480 atomic_set(&res->refcount, 1);
481 INIT_LIST_HEAD(&res->cg_links);
482 INIT_LIST_HEAD(&res->tasks);
483 INIT_HLIST_NODE(&res->hlist);
485 /* Copy the set of subsystem state objects generated in
486 * find_existing_css_set() */
487 memcpy(res->subsys, template, sizeof(res->subsys));
489 write_lock(&css_set_lock);
490 /* Add reference counts and links from the new css_set. */
491 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
492 struct cgroup *cgrp = res->subsys[i]->cgroup;
493 struct cgroup_subsys *ss = subsys[i];
494 atomic_inc(&cgrp->count);
496 * We want to add a link once per cgroup, so we
497 * only do it for the first subsystem in each
498 * hierarchy
500 if (ss->root->subsys_list.next == &ss->sibling)
501 link_css_set(&tmp_cg_links, res, cgrp);
503 if (list_empty(&rootnode.subsys_list))
504 link_css_set(&tmp_cg_links, res, dummytop);
506 BUG_ON(!list_empty(&tmp_cg_links));
508 css_set_count++;
510 /* Add this cgroup group to the hash table */
511 hhead = css_set_hash(res->subsys);
512 hlist_add_head(&res->hlist, hhead);
514 write_unlock(&css_set_lock);
516 return res;
520 * There is one global cgroup mutex. We also require taking
521 * task_lock() when dereferencing a task's cgroup subsys pointers.
522 * See "The task_lock() exception", at the end of this comment.
524 * A task must hold cgroup_mutex to modify cgroups.
526 * Any task can increment and decrement the count field without lock.
527 * So in general, code holding cgroup_mutex can't rely on the count
528 * field not changing. However, if the count goes to zero, then only
529 * cgroup_attach_task() can increment it again. Because a count of zero
530 * means that no tasks are currently attached, therefore there is no
531 * way a task attached to that cgroup can fork (the other way to
532 * increment the count). So code holding cgroup_mutex can safely
533 * assume that if the count is zero, it will stay zero. Similarly, if
534 * a task holds cgroup_mutex on a cgroup with zero count, it
535 * knows that the cgroup won't be removed, as cgroup_rmdir()
536 * needs that mutex.
538 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
539 * (usually) take cgroup_mutex. These are the two most performance
540 * critical pieces of code here. The exception occurs on cgroup_exit(),
541 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
542 * is taken, and if the cgroup count is zero, a usermode call made
543 * to the release agent with the name of the cgroup (path relative to
544 * the root of cgroup file system) as the argument.
546 * A cgroup can only be deleted if both its 'count' of using tasks
547 * is zero, and its list of 'children' cgroups is empty. Since all
548 * tasks in the system use _some_ cgroup, and since there is always at
549 * least one task in the system (init, pid == 1), therefore, top_cgroup
550 * always has either children cgroups and/or using tasks. So we don't
551 * need a special hack to ensure that top_cgroup cannot be deleted.
553 * The task_lock() exception
555 * The need for this exception arises from the action of
556 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
557 * another. It does so using cgroup_mutex, however there are
558 * several performance critical places that need to reference
559 * task->cgroup without the expense of grabbing a system global
560 * mutex. Therefore except as noted below, when dereferencing or, as
561 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
562 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
563 * the task_struct routinely used for such matters.
565 * P.S. One more locking exception. RCU is used to guard the
566 * update of a tasks cgroup pointer by cgroup_attach_task()
570 * cgroup_lock - lock out any changes to cgroup structures
573 void cgroup_lock(void)
575 mutex_lock(&cgroup_mutex);
579 * cgroup_unlock - release lock on cgroup changes
581 * Undo the lock taken in a previous cgroup_lock() call.
583 void cgroup_unlock(void)
585 mutex_unlock(&cgroup_mutex);
589 * A couple of forward declarations required, due to cyclic reference loop:
590 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
591 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
592 * -> cgroup_mkdir.
595 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
596 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
597 static int cgroup_populate_dir(struct cgroup *cgrp);
598 static struct inode_operations cgroup_dir_inode_operations;
599 static struct file_operations proc_cgroupstats_operations;
601 static struct backing_dev_info cgroup_backing_dev_info = {
602 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
605 static int alloc_css_id(struct cgroup_subsys *ss,
606 struct cgroup *parent, struct cgroup *child);
608 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
610 struct inode *inode = new_inode(sb);
612 if (inode) {
613 inode->i_mode = mode;
614 inode->i_uid = current_fsuid();
615 inode->i_gid = current_fsgid();
616 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
617 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
619 return inode;
623 * Call subsys's pre_destroy handler.
624 * This is called before css refcnt check.
626 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
628 struct cgroup_subsys *ss;
629 int ret = 0;
631 for_each_subsys(cgrp->root, ss)
632 if (ss->pre_destroy) {
633 ret = ss->pre_destroy(ss, cgrp);
634 if (ret)
635 break;
637 return ret;
640 static void free_cgroup_rcu(struct rcu_head *obj)
642 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
644 kfree(cgrp);
647 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
649 /* is dentry a directory ? if so, kfree() associated cgroup */
650 if (S_ISDIR(inode->i_mode)) {
651 struct cgroup *cgrp = dentry->d_fsdata;
652 struct cgroup_subsys *ss;
653 BUG_ON(!(cgroup_is_removed(cgrp)));
654 /* It's possible for external users to be holding css
655 * reference counts on a cgroup; css_put() needs to
656 * be able to access the cgroup after decrementing
657 * the reference count in order to know if it needs to
658 * queue the cgroup to be handled by the release
659 * agent */
660 synchronize_rcu();
662 mutex_lock(&cgroup_mutex);
664 * Release the subsystem state objects.
666 for_each_subsys(cgrp->root, ss)
667 ss->destroy(ss, cgrp);
669 cgrp->root->number_of_cgroups--;
670 mutex_unlock(&cgroup_mutex);
673 * Drop the active superblock reference that we took when we
674 * created the cgroup
676 deactivate_super(cgrp->root->sb);
678 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
680 iput(inode);
683 static void remove_dir(struct dentry *d)
685 struct dentry *parent = dget(d->d_parent);
687 d_delete(d);
688 simple_rmdir(parent->d_inode, d);
689 dput(parent);
692 static void cgroup_clear_directory(struct dentry *dentry)
694 struct list_head *node;
696 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
697 spin_lock(&dcache_lock);
698 node = dentry->d_subdirs.next;
699 while (node != &dentry->d_subdirs) {
700 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
701 list_del_init(node);
702 if (d->d_inode) {
703 /* This should never be called on a cgroup
704 * directory with child cgroups */
705 BUG_ON(d->d_inode->i_mode & S_IFDIR);
706 d = dget_locked(d);
707 spin_unlock(&dcache_lock);
708 d_delete(d);
709 simple_unlink(dentry->d_inode, d);
710 dput(d);
711 spin_lock(&dcache_lock);
713 node = dentry->d_subdirs.next;
715 spin_unlock(&dcache_lock);
719 * NOTE : the dentry must have been dget()'ed
721 static void cgroup_d_remove_dir(struct dentry *dentry)
723 cgroup_clear_directory(dentry);
725 spin_lock(&dcache_lock);
726 list_del_init(&dentry->d_u.d_child);
727 spin_unlock(&dcache_lock);
728 remove_dir(dentry);
732 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
733 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
734 * reference to css->refcnt. In general, this refcnt is expected to goes down
735 * to zero, soon.
737 * CGRP_WAIT_ON_RMDIR flag is modified under cgroup's inode->i_mutex;
739 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
741 static void cgroup_wakeup_rmdir_waiters(const struct cgroup *cgrp)
743 if (unlikely(test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
744 wake_up_all(&cgroup_rmdir_waitq);
747 static int rebind_subsystems(struct cgroupfs_root *root,
748 unsigned long final_bits)
750 unsigned long added_bits, removed_bits;
751 struct cgroup *cgrp = &root->top_cgroup;
752 int i;
754 removed_bits = root->actual_subsys_bits & ~final_bits;
755 added_bits = final_bits & ~root->actual_subsys_bits;
756 /* Check that any added subsystems are currently free */
757 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
758 unsigned long bit = 1UL << i;
759 struct cgroup_subsys *ss = subsys[i];
760 if (!(bit & added_bits))
761 continue;
762 if (ss->root != &rootnode) {
763 /* Subsystem isn't free */
764 return -EBUSY;
768 /* Currently we don't handle adding/removing subsystems when
769 * any child cgroups exist. This is theoretically supportable
770 * but involves complex error handling, so it's being left until
771 * later */
772 if (root->number_of_cgroups > 1)
773 return -EBUSY;
775 /* Process each subsystem */
776 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
777 struct cgroup_subsys *ss = subsys[i];
778 unsigned long bit = 1UL << i;
779 if (bit & added_bits) {
780 /* We're binding this subsystem to this hierarchy */
781 BUG_ON(cgrp->subsys[i]);
782 BUG_ON(!dummytop->subsys[i]);
783 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
784 mutex_lock(&ss->hierarchy_mutex);
785 cgrp->subsys[i] = dummytop->subsys[i];
786 cgrp->subsys[i]->cgroup = cgrp;
787 list_move(&ss->sibling, &root->subsys_list);
788 ss->root = root;
789 if (ss->bind)
790 ss->bind(ss, cgrp);
791 mutex_unlock(&ss->hierarchy_mutex);
792 } else if (bit & removed_bits) {
793 /* We're removing this subsystem */
794 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
795 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
796 mutex_lock(&ss->hierarchy_mutex);
797 if (ss->bind)
798 ss->bind(ss, dummytop);
799 dummytop->subsys[i]->cgroup = dummytop;
800 cgrp->subsys[i] = NULL;
801 subsys[i]->root = &rootnode;
802 list_move(&ss->sibling, &rootnode.subsys_list);
803 mutex_unlock(&ss->hierarchy_mutex);
804 } else if (bit & final_bits) {
805 /* Subsystem state should already exist */
806 BUG_ON(!cgrp->subsys[i]);
807 } else {
808 /* Subsystem state shouldn't exist */
809 BUG_ON(cgrp->subsys[i]);
812 root->subsys_bits = root->actual_subsys_bits = final_bits;
813 synchronize_rcu();
815 return 0;
818 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
820 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
821 struct cgroup_subsys *ss;
823 mutex_lock(&cgroup_mutex);
824 for_each_subsys(root, ss)
825 seq_printf(seq, ",%s", ss->name);
826 if (test_bit(ROOT_NOPREFIX, &root->flags))
827 seq_puts(seq, ",noprefix");
828 if (strlen(root->release_agent_path))
829 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
830 mutex_unlock(&cgroup_mutex);
831 return 0;
834 struct cgroup_sb_opts {
835 unsigned long subsys_bits;
836 unsigned long flags;
837 char *release_agent;
840 /* Convert a hierarchy specifier into a bitmask of subsystems and
841 * flags. */
842 static int parse_cgroupfs_options(char *data,
843 struct cgroup_sb_opts *opts)
845 char *token, *o = data ?: "all";
846 unsigned long mask = (unsigned long)-1;
848 #ifdef CONFIG_CPUSETS
849 mask = ~(1UL << cpuset_subsys_id);
850 #endif
852 opts->subsys_bits = 0;
853 opts->flags = 0;
854 opts->release_agent = NULL;
856 while ((token = strsep(&o, ",")) != NULL) {
857 if (!*token)
858 return -EINVAL;
859 if (!strcmp(token, "all")) {
860 /* Add all non-disabled subsystems */
861 int i;
862 opts->subsys_bits = 0;
863 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
864 struct cgroup_subsys *ss = subsys[i];
865 if (!ss->disabled)
866 opts->subsys_bits |= 1ul << i;
868 } else if (!strcmp(token, "noprefix")) {
869 set_bit(ROOT_NOPREFIX, &opts->flags);
870 } else if (!strncmp(token, "release_agent=", 14)) {
871 /* Specifying two release agents is forbidden */
872 if (opts->release_agent)
873 return -EINVAL;
874 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
875 if (!opts->release_agent)
876 return -ENOMEM;
877 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
878 opts->release_agent[PATH_MAX - 1] = 0;
879 } else {
880 struct cgroup_subsys *ss;
881 int i;
882 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
883 ss = subsys[i];
884 if (!strcmp(token, ss->name)) {
885 if (!ss->disabled)
886 set_bit(i, &opts->subsys_bits);
887 break;
890 if (i == CGROUP_SUBSYS_COUNT)
891 return -ENOENT;
896 * Option noprefix was introduced just for backward compatibility
897 * with the old cpuset, so we allow noprefix only if mounting just
898 * the cpuset subsystem.
900 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
901 (opts->subsys_bits & mask))
902 return -EINVAL;
904 /* We can't have an empty hierarchy */
905 if (!opts->subsys_bits)
906 return -EINVAL;
908 return 0;
911 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
913 int ret = 0;
914 struct cgroupfs_root *root = sb->s_fs_info;
915 struct cgroup *cgrp = &root->top_cgroup;
916 struct cgroup_sb_opts opts;
918 lock_kernel();
919 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
920 mutex_lock(&cgroup_mutex);
922 /* See what subsystems are wanted */
923 ret = parse_cgroupfs_options(data, &opts);
924 if (ret)
925 goto out_unlock;
927 /* Don't allow flags to change at remount */
928 if (opts.flags != root->flags) {
929 ret = -EINVAL;
930 goto out_unlock;
933 ret = rebind_subsystems(root, opts.subsys_bits);
934 if (ret)
935 goto out_unlock;
937 /* (re)populate subsystem files */
938 cgroup_populate_dir(cgrp);
940 if (opts.release_agent)
941 strcpy(root->release_agent_path, opts.release_agent);
942 out_unlock:
943 kfree(opts.release_agent);
944 mutex_unlock(&cgroup_mutex);
945 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
946 unlock_kernel();
947 return ret;
950 static struct super_operations cgroup_ops = {
951 .statfs = simple_statfs,
952 .drop_inode = generic_delete_inode,
953 .show_options = cgroup_show_options,
954 .remount_fs = cgroup_remount,
957 static void init_cgroup_housekeeping(struct cgroup *cgrp)
959 INIT_LIST_HEAD(&cgrp->sibling);
960 INIT_LIST_HEAD(&cgrp->children);
961 INIT_LIST_HEAD(&cgrp->css_sets);
962 INIT_LIST_HEAD(&cgrp->release_list);
963 init_rwsem(&cgrp->pids_mutex);
965 static void init_cgroup_root(struct cgroupfs_root *root)
967 struct cgroup *cgrp = &root->top_cgroup;
968 INIT_LIST_HEAD(&root->subsys_list);
969 INIT_LIST_HEAD(&root->root_list);
970 root->number_of_cgroups = 1;
971 cgrp->root = root;
972 cgrp->top_cgroup = cgrp;
973 init_cgroup_housekeeping(cgrp);
976 static int cgroup_test_super(struct super_block *sb, void *data)
978 struct cgroupfs_root *new = data;
979 struct cgroupfs_root *root = sb->s_fs_info;
981 /* First check subsystems */
982 if (new->subsys_bits != root->subsys_bits)
983 return 0;
985 /* Next check flags */
986 if (new->flags != root->flags)
987 return 0;
989 return 1;
992 static int cgroup_set_super(struct super_block *sb, void *data)
994 int ret;
995 struct cgroupfs_root *root = data;
997 ret = set_anon_super(sb, NULL);
998 if (ret)
999 return ret;
1001 sb->s_fs_info = root;
1002 root->sb = sb;
1004 sb->s_blocksize = PAGE_CACHE_SIZE;
1005 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1006 sb->s_magic = CGROUP_SUPER_MAGIC;
1007 sb->s_op = &cgroup_ops;
1009 return 0;
1012 static int cgroup_get_rootdir(struct super_block *sb)
1014 struct inode *inode =
1015 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1016 struct dentry *dentry;
1018 if (!inode)
1019 return -ENOMEM;
1021 inode->i_fop = &simple_dir_operations;
1022 inode->i_op = &cgroup_dir_inode_operations;
1023 /* directories start off with i_nlink == 2 (for "." entry) */
1024 inc_nlink(inode);
1025 dentry = d_alloc_root(inode);
1026 if (!dentry) {
1027 iput(inode);
1028 return -ENOMEM;
1030 sb->s_root = dentry;
1031 return 0;
1034 static int cgroup_get_sb(struct file_system_type *fs_type,
1035 int flags, const char *unused_dev_name,
1036 void *data, struct vfsmount *mnt)
1038 struct cgroup_sb_opts opts;
1039 int ret = 0;
1040 struct super_block *sb;
1041 struct cgroupfs_root *root;
1042 struct list_head tmp_cg_links;
1044 /* First find the desired set of subsystems */
1045 ret = parse_cgroupfs_options(data, &opts);
1046 if (ret) {
1047 kfree(opts.release_agent);
1048 return ret;
1051 root = kzalloc(sizeof(*root), GFP_KERNEL);
1052 if (!root) {
1053 kfree(opts.release_agent);
1054 return -ENOMEM;
1057 init_cgroup_root(root);
1058 root->subsys_bits = opts.subsys_bits;
1059 root->flags = opts.flags;
1060 if (opts.release_agent) {
1061 strcpy(root->release_agent_path, opts.release_agent);
1062 kfree(opts.release_agent);
1065 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
1067 if (IS_ERR(sb)) {
1068 kfree(root);
1069 return PTR_ERR(sb);
1072 if (sb->s_fs_info != root) {
1073 /* Reusing an existing superblock */
1074 BUG_ON(sb->s_root == NULL);
1075 kfree(root);
1076 root = NULL;
1077 } else {
1078 /* New superblock */
1079 struct cgroup *root_cgrp = &root->top_cgroup;
1080 struct inode *inode;
1081 int i;
1083 BUG_ON(sb->s_root != NULL);
1085 ret = cgroup_get_rootdir(sb);
1086 if (ret)
1087 goto drop_new_super;
1088 inode = sb->s_root->d_inode;
1090 mutex_lock(&inode->i_mutex);
1091 mutex_lock(&cgroup_mutex);
1094 * We're accessing css_set_count without locking
1095 * css_set_lock here, but that's OK - it can only be
1096 * increased by someone holding cgroup_lock, and
1097 * that's us. The worst that can happen is that we
1098 * have some link structures left over
1100 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1101 if (ret) {
1102 mutex_unlock(&cgroup_mutex);
1103 mutex_unlock(&inode->i_mutex);
1104 goto drop_new_super;
1107 ret = rebind_subsystems(root, root->subsys_bits);
1108 if (ret == -EBUSY) {
1109 mutex_unlock(&cgroup_mutex);
1110 mutex_unlock(&inode->i_mutex);
1111 goto free_cg_links;
1114 /* EBUSY should be the only error here */
1115 BUG_ON(ret);
1117 list_add(&root->root_list, &roots);
1118 root_count++;
1120 sb->s_root->d_fsdata = root_cgrp;
1121 root->top_cgroup.dentry = sb->s_root;
1123 /* Link the top cgroup in this hierarchy into all
1124 * the css_set objects */
1125 write_lock(&css_set_lock);
1126 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1127 struct hlist_head *hhead = &css_set_table[i];
1128 struct hlist_node *node;
1129 struct css_set *cg;
1131 hlist_for_each_entry(cg, node, hhead, hlist)
1132 link_css_set(&tmp_cg_links, cg, root_cgrp);
1134 write_unlock(&css_set_lock);
1136 free_cg_links(&tmp_cg_links);
1138 BUG_ON(!list_empty(&root_cgrp->sibling));
1139 BUG_ON(!list_empty(&root_cgrp->children));
1140 BUG_ON(root->number_of_cgroups != 1);
1142 cgroup_populate_dir(root_cgrp);
1143 mutex_unlock(&inode->i_mutex);
1144 mutex_unlock(&cgroup_mutex);
1147 simple_set_mnt(mnt, sb);
1148 return 0;
1150 free_cg_links:
1151 free_cg_links(&tmp_cg_links);
1152 drop_new_super:
1153 deactivate_locked_super(sb);
1154 return ret;
1157 static void cgroup_kill_sb(struct super_block *sb) {
1158 struct cgroupfs_root *root = sb->s_fs_info;
1159 struct cgroup *cgrp = &root->top_cgroup;
1160 int ret;
1161 struct cg_cgroup_link *link;
1162 struct cg_cgroup_link *saved_link;
1164 BUG_ON(!root);
1166 BUG_ON(root->number_of_cgroups != 1);
1167 BUG_ON(!list_empty(&cgrp->children));
1168 BUG_ON(!list_empty(&cgrp->sibling));
1170 mutex_lock(&cgroup_mutex);
1172 /* Rebind all subsystems back to the default hierarchy */
1173 ret = rebind_subsystems(root, 0);
1174 /* Shouldn't be able to fail ... */
1175 BUG_ON(ret);
1178 * Release all the links from css_sets to this hierarchy's
1179 * root cgroup
1181 write_lock(&css_set_lock);
1183 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1184 cgrp_link_list) {
1185 list_del(&link->cg_link_list);
1186 list_del(&link->cgrp_link_list);
1187 kfree(link);
1189 write_unlock(&css_set_lock);
1191 if (!list_empty(&root->root_list)) {
1192 list_del(&root->root_list);
1193 root_count--;
1196 mutex_unlock(&cgroup_mutex);
1198 kill_litter_super(sb);
1199 kfree(root);
1202 static struct file_system_type cgroup_fs_type = {
1203 .name = "cgroup",
1204 .get_sb = cgroup_get_sb,
1205 .kill_sb = cgroup_kill_sb,
1208 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1210 return dentry->d_fsdata;
1213 static inline struct cftype *__d_cft(struct dentry *dentry)
1215 return dentry->d_fsdata;
1219 * cgroup_path - generate the path of a cgroup
1220 * @cgrp: the cgroup in question
1221 * @buf: the buffer to write the path into
1222 * @buflen: the length of the buffer
1224 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1225 * reference. Writes path of cgroup into buf. Returns 0 on success,
1226 * -errno on error.
1228 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1230 char *start;
1231 struct dentry *dentry = rcu_dereference(cgrp->dentry);
1233 if (!dentry || cgrp == dummytop) {
1235 * Inactive subsystems have no dentry for their root
1236 * cgroup
1238 strcpy(buf, "/");
1239 return 0;
1242 start = buf + buflen;
1244 *--start = '\0';
1245 for (;;) {
1246 int len = dentry->d_name.len;
1247 if ((start -= len) < buf)
1248 return -ENAMETOOLONG;
1249 memcpy(start, cgrp->dentry->d_name.name, len);
1250 cgrp = cgrp->parent;
1251 if (!cgrp)
1252 break;
1253 dentry = rcu_dereference(cgrp->dentry);
1254 if (!cgrp->parent)
1255 continue;
1256 if (--start < buf)
1257 return -ENAMETOOLONG;
1258 *start = '/';
1260 memmove(buf, start, buf + buflen - start);
1261 return 0;
1265 * Return the first subsystem attached to a cgroup's hierarchy, and
1266 * its subsystem id.
1269 static void get_first_subsys(const struct cgroup *cgrp,
1270 struct cgroup_subsys_state **css, int *subsys_id)
1272 const struct cgroupfs_root *root = cgrp->root;
1273 const struct cgroup_subsys *test_ss;
1274 BUG_ON(list_empty(&root->subsys_list));
1275 test_ss = list_entry(root->subsys_list.next,
1276 struct cgroup_subsys, sibling);
1277 if (css) {
1278 *css = cgrp->subsys[test_ss->subsys_id];
1279 BUG_ON(!*css);
1281 if (subsys_id)
1282 *subsys_id = test_ss->subsys_id;
1286 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1287 * @cgrp: the cgroup the task is attaching to
1288 * @tsk: the task to be attached
1290 * Call holding cgroup_mutex. May take task_lock of
1291 * the task 'tsk' during call.
1293 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1295 int retval = 0;
1296 struct cgroup_subsys *ss;
1297 struct cgroup *oldcgrp;
1298 struct css_set *cg;
1299 struct css_set *newcg;
1300 struct cgroupfs_root *root = cgrp->root;
1301 int subsys_id;
1303 get_first_subsys(cgrp, NULL, &subsys_id);
1305 /* Nothing to do if the task is already in that cgroup */
1306 oldcgrp = task_cgroup(tsk, subsys_id);
1307 if (cgrp == oldcgrp)
1308 return 0;
1310 for_each_subsys(root, ss) {
1311 if (ss->can_attach) {
1312 retval = ss->can_attach(ss, cgrp, tsk);
1313 if (retval)
1314 return retval;
1318 task_lock(tsk);
1319 cg = tsk->cgroups;
1320 get_css_set(cg);
1321 task_unlock(tsk);
1323 * Locate or allocate a new css_set for this task,
1324 * based on its final set of cgroups
1326 newcg = find_css_set(cg, cgrp);
1327 put_css_set(cg);
1328 if (!newcg)
1329 return -ENOMEM;
1331 task_lock(tsk);
1332 if (tsk->flags & PF_EXITING) {
1333 task_unlock(tsk);
1334 put_css_set(newcg);
1335 return -ESRCH;
1337 rcu_assign_pointer(tsk->cgroups, newcg);
1338 task_unlock(tsk);
1340 /* Update the css_set linked lists if we're using them */
1341 write_lock(&css_set_lock);
1342 if (!list_empty(&tsk->cg_list)) {
1343 list_del(&tsk->cg_list);
1344 list_add(&tsk->cg_list, &newcg->tasks);
1346 write_unlock(&css_set_lock);
1348 for_each_subsys(root, ss) {
1349 if (ss->attach)
1350 ss->attach(ss, cgrp, oldcgrp, tsk);
1352 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1353 synchronize_rcu();
1354 put_css_set(cg);
1357 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1358 * is no longer empty.
1360 cgroup_wakeup_rmdir_waiters(cgrp);
1361 return 0;
1365 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1366 * held. May take task_lock of task
1368 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1370 struct task_struct *tsk;
1371 const struct cred *cred = current_cred(), *tcred;
1372 int ret;
1374 if (pid) {
1375 rcu_read_lock();
1376 tsk = find_task_by_vpid(pid);
1377 if (!tsk || tsk->flags & PF_EXITING) {
1378 rcu_read_unlock();
1379 return -ESRCH;
1382 tcred = __task_cred(tsk);
1383 if (cred->euid &&
1384 cred->euid != tcred->uid &&
1385 cred->euid != tcred->suid) {
1386 rcu_read_unlock();
1387 return -EACCES;
1389 get_task_struct(tsk);
1390 rcu_read_unlock();
1391 } else {
1392 tsk = current;
1393 get_task_struct(tsk);
1396 ret = cgroup_attach_task(cgrp, tsk);
1397 put_task_struct(tsk);
1398 return ret;
1401 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1403 int ret;
1404 if (!cgroup_lock_live_group(cgrp))
1405 return -ENODEV;
1406 ret = attach_task_by_pid(cgrp, pid);
1407 cgroup_unlock();
1408 return ret;
1411 /* The various types of files and directories in a cgroup file system */
1412 enum cgroup_filetype {
1413 FILE_ROOT,
1414 FILE_DIR,
1415 FILE_TASKLIST,
1416 FILE_NOTIFY_ON_RELEASE,
1417 FILE_RELEASE_AGENT,
1421 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1422 * @cgrp: the cgroup to be checked for liveness
1424 * On success, returns true; the lock should be later released with
1425 * cgroup_unlock(). On failure returns false with no lock held.
1427 bool cgroup_lock_live_group(struct cgroup *cgrp)
1429 mutex_lock(&cgroup_mutex);
1430 if (cgroup_is_removed(cgrp)) {
1431 mutex_unlock(&cgroup_mutex);
1432 return false;
1434 return true;
1437 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1438 const char *buffer)
1440 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1441 if (!cgroup_lock_live_group(cgrp))
1442 return -ENODEV;
1443 strcpy(cgrp->root->release_agent_path, buffer);
1444 cgroup_unlock();
1445 return 0;
1448 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1449 struct seq_file *seq)
1451 if (!cgroup_lock_live_group(cgrp))
1452 return -ENODEV;
1453 seq_puts(seq, cgrp->root->release_agent_path);
1454 seq_putc(seq, '\n');
1455 cgroup_unlock();
1456 return 0;
1459 /* A buffer size big enough for numbers or short strings */
1460 #define CGROUP_LOCAL_BUFFER_SIZE 64
1462 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1463 struct file *file,
1464 const char __user *userbuf,
1465 size_t nbytes, loff_t *unused_ppos)
1467 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1468 int retval = 0;
1469 char *end;
1471 if (!nbytes)
1472 return -EINVAL;
1473 if (nbytes >= sizeof(buffer))
1474 return -E2BIG;
1475 if (copy_from_user(buffer, userbuf, nbytes))
1476 return -EFAULT;
1478 buffer[nbytes] = 0; /* nul-terminate */
1479 strstrip(buffer);
1480 if (cft->write_u64) {
1481 u64 val = simple_strtoull(buffer, &end, 0);
1482 if (*end)
1483 return -EINVAL;
1484 retval = cft->write_u64(cgrp, cft, val);
1485 } else {
1486 s64 val = simple_strtoll(buffer, &end, 0);
1487 if (*end)
1488 return -EINVAL;
1489 retval = cft->write_s64(cgrp, cft, val);
1491 if (!retval)
1492 retval = nbytes;
1493 return retval;
1496 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1497 struct file *file,
1498 const char __user *userbuf,
1499 size_t nbytes, loff_t *unused_ppos)
1501 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1502 int retval = 0;
1503 size_t max_bytes = cft->max_write_len;
1504 char *buffer = local_buffer;
1506 if (!max_bytes)
1507 max_bytes = sizeof(local_buffer) - 1;
1508 if (nbytes >= max_bytes)
1509 return -E2BIG;
1510 /* Allocate a dynamic buffer if we need one */
1511 if (nbytes >= sizeof(local_buffer)) {
1512 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1513 if (buffer == NULL)
1514 return -ENOMEM;
1516 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
1517 retval = -EFAULT;
1518 goto out;
1521 buffer[nbytes] = 0; /* nul-terminate */
1522 strstrip(buffer);
1523 retval = cft->write_string(cgrp, cft, buffer);
1524 if (!retval)
1525 retval = nbytes;
1526 out:
1527 if (buffer != local_buffer)
1528 kfree(buffer);
1529 return retval;
1532 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1533 size_t nbytes, loff_t *ppos)
1535 struct cftype *cft = __d_cft(file->f_dentry);
1536 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1538 if (cgroup_is_removed(cgrp))
1539 return -ENODEV;
1540 if (cft->write)
1541 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1542 if (cft->write_u64 || cft->write_s64)
1543 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1544 if (cft->write_string)
1545 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1546 if (cft->trigger) {
1547 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1548 return ret ? ret : nbytes;
1550 return -EINVAL;
1553 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1554 struct file *file,
1555 char __user *buf, size_t nbytes,
1556 loff_t *ppos)
1558 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1559 u64 val = cft->read_u64(cgrp, cft);
1560 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1562 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1565 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1566 struct file *file,
1567 char __user *buf, size_t nbytes,
1568 loff_t *ppos)
1570 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1571 s64 val = cft->read_s64(cgrp, cft);
1572 int len = sprintf(tmp, "%lld\n", (long long) val);
1574 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1577 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1578 size_t nbytes, loff_t *ppos)
1580 struct cftype *cft = __d_cft(file->f_dentry);
1581 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1583 if (cgroup_is_removed(cgrp))
1584 return -ENODEV;
1586 if (cft->read)
1587 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1588 if (cft->read_u64)
1589 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1590 if (cft->read_s64)
1591 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1592 return -EINVAL;
1596 * seqfile ops/methods for returning structured data. Currently just
1597 * supports string->u64 maps, but can be extended in future.
1600 struct cgroup_seqfile_state {
1601 struct cftype *cft;
1602 struct cgroup *cgroup;
1605 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1607 struct seq_file *sf = cb->state;
1608 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1611 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1613 struct cgroup_seqfile_state *state = m->private;
1614 struct cftype *cft = state->cft;
1615 if (cft->read_map) {
1616 struct cgroup_map_cb cb = {
1617 .fill = cgroup_map_add,
1618 .state = m,
1620 return cft->read_map(state->cgroup, cft, &cb);
1622 return cft->read_seq_string(state->cgroup, cft, m);
1625 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1627 struct seq_file *seq = file->private_data;
1628 kfree(seq->private);
1629 return single_release(inode, file);
1632 static struct file_operations cgroup_seqfile_operations = {
1633 .read = seq_read,
1634 .write = cgroup_file_write,
1635 .llseek = seq_lseek,
1636 .release = cgroup_seqfile_release,
1639 static int cgroup_file_open(struct inode *inode, struct file *file)
1641 int err;
1642 struct cftype *cft;
1644 err = generic_file_open(inode, file);
1645 if (err)
1646 return err;
1647 cft = __d_cft(file->f_dentry);
1649 if (cft->read_map || cft->read_seq_string) {
1650 struct cgroup_seqfile_state *state =
1651 kzalloc(sizeof(*state), GFP_USER);
1652 if (!state)
1653 return -ENOMEM;
1654 state->cft = cft;
1655 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1656 file->f_op = &cgroup_seqfile_operations;
1657 err = single_open(file, cgroup_seqfile_show, state);
1658 if (err < 0)
1659 kfree(state);
1660 } else if (cft->open)
1661 err = cft->open(inode, file);
1662 else
1663 err = 0;
1665 return err;
1668 static int cgroup_file_release(struct inode *inode, struct file *file)
1670 struct cftype *cft = __d_cft(file->f_dentry);
1671 if (cft->release)
1672 return cft->release(inode, file);
1673 return 0;
1677 * cgroup_rename - Only allow simple rename of directories in place.
1679 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1680 struct inode *new_dir, struct dentry *new_dentry)
1682 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1683 return -ENOTDIR;
1684 if (new_dentry->d_inode)
1685 return -EEXIST;
1686 if (old_dir != new_dir)
1687 return -EIO;
1688 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1691 static struct file_operations cgroup_file_operations = {
1692 .read = cgroup_file_read,
1693 .write = cgroup_file_write,
1694 .llseek = generic_file_llseek,
1695 .open = cgroup_file_open,
1696 .release = cgroup_file_release,
1699 static struct inode_operations cgroup_dir_inode_operations = {
1700 .lookup = simple_lookup,
1701 .mkdir = cgroup_mkdir,
1702 .rmdir = cgroup_rmdir,
1703 .rename = cgroup_rename,
1706 static int cgroup_create_file(struct dentry *dentry, mode_t mode,
1707 struct super_block *sb)
1709 static const struct dentry_operations cgroup_dops = {
1710 .d_iput = cgroup_diput,
1713 struct inode *inode;
1715 if (!dentry)
1716 return -ENOENT;
1717 if (dentry->d_inode)
1718 return -EEXIST;
1720 inode = cgroup_new_inode(mode, sb);
1721 if (!inode)
1722 return -ENOMEM;
1724 if (S_ISDIR(mode)) {
1725 inode->i_op = &cgroup_dir_inode_operations;
1726 inode->i_fop = &simple_dir_operations;
1728 /* start off with i_nlink == 2 (for "." entry) */
1729 inc_nlink(inode);
1731 /* start with the directory inode held, so that we can
1732 * populate it without racing with another mkdir */
1733 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1734 } else if (S_ISREG(mode)) {
1735 inode->i_size = 0;
1736 inode->i_fop = &cgroup_file_operations;
1738 dentry->d_op = &cgroup_dops;
1739 d_instantiate(dentry, inode);
1740 dget(dentry); /* Extra count - pin the dentry in core */
1741 return 0;
1745 * cgroup_create_dir - create a directory for an object.
1746 * @cgrp: the cgroup we create the directory for. It must have a valid
1747 * ->parent field. And we are going to fill its ->dentry field.
1748 * @dentry: dentry of the new cgroup
1749 * @mode: mode to set on new directory.
1751 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1752 mode_t mode)
1754 struct dentry *parent;
1755 int error = 0;
1757 parent = cgrp->parent->dentry;
1758 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1759 if (!error) {
1760 dentry->d_fsdata = cgrp;
1761 inc_nlink(parent->d_inode);
1762 rcu_assign_pointer(cgrp->dentry, dentry);
1763 dget(dentry);
1765 dput(dentry);
1767 return error;
1771 * cgroup_file_mode - deduce file mode of a control file
1772 * @cft: the control file in question
1774 * returns cft->mode if ->mode is not 0
1775 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1776 * returns S_IRUGO if it has only a read handler
1777 * returns S_IWUSR if it has only a write hander
1779 static mode_t cgroup_file_mode(const struct cftype *cft)
1781 mode_t mode = 0;
1783 if (cft->mode)
1784 return cft->mode;
1786 if (cft->read || cft->read_u64 || cft->read_s64 ||
1787 cft->read_map || cft->read_seq_string)
1788 mode |= S_IRUGO;
1790 if (cft->write || cft->write_u64 || cft->write_s64 ||
1791 cft->write_string || cft->trigger)
1792 mode |= S_IWUSR;
1794 return mode;
1797 int cgroup_add_file(struct cgroup *cgrp,
1798 struct cgroup_subsys *subsys,
1799 const struct cftype *cft)
1801 struct dentry *dir = cgrp->dentry;
1802 struct dentry *dentry;
1803 int error;
1804 mode_t mode;
1806 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1807 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1808 strcpy(name, subsys->name);
1809 strcat(name, ".");
1811 strcat(name, cft->name);
1812 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1813 dentry = lookup_one_len(name, dir, strlen(name));
1814 if (!IS_ERR(dentry)) {
1815 mode = cgroup_file_mode(cft);
1816 error = cgroup_create_file(dentry, mode | S_IFREG,
1817 cgrp->root->sb);
1818 if (!error)
1819 dentry->d_fsdata = (void *)cft;
1820 dput(dentry);
1821 } else
1822 error = PTR_ERR(dentry);
1823 return error;
1826 int cgroup_add_files(struct cgroup *cgrp,
1827 struct cgroup_subsys *subsys,
1828 const struct cftype cft[],
1829 int count)
1831 int i, err;
1832 for (i = 0; i < count; i++) {
1833 err = cgroup_add_file(cgrp, subsys, &cft[i]);
1834 if (err)
1835 return err;
1837 return 0;
1841 * cgroup_task_count - count the number of tasks in a cgroup.
1842 * @cgrp: the cgroup in question
1844 * Return the number of tasks in the cgroup.
1846 int cgroup_task_count(const struct cgroup *cgrp)
1848 int count = 0;
1849 struct cg_cgroup_link *link;
1851 read_lock(&css_set_lock);
1852 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1853 count += atomic_read(&link->cg->refcount);
1855 read_unlock(&css_set_lock);
1856 return count;
1860 * Advance a list_head iterator. The iterator should be positioned at
1861 * the start of a css_set
1863 static void cgroup_advance_iter(struct cgroup *cgrp,
1864 struct cgroup_iter *it)
1866 struct list_head *l = it->cg_link;
1867 struct cg_cgroup_link *link;
1868 struct css_set *cg;
1870 /* Advance to the next non-empty css_set */
1871 do {
1872 l = l->next;
1873 if (l == &cgrp->css_sets) {
1874 it->cg_link = NULL;
1875 return;
1877 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1878 cg = link->cg;
1879 } while (list_empty(&cg->tasks));
1880 it->cg_link = l;
1881 it->task = cg->tasks.next;
1885 * To reduce the fork() overhead for systems that are not actually
1886 * using their cgroups capability, we don't maintain the lists running
1887 * through each css_set to its tasks until we see the list actually
1888 * used - in other words after the first call to cgroup_iter_start().
1890 * The tasklist_lock is not held here, as do_each_thread() and
1891 * while_each_thread() are protected by RCU.
1893 static void cgroup_enable_task_cg_lists(void)
1895 struct task_struct *p, *g;
1896 write_lock(&css_set_lock);
1897 use_task_css_set_links = 1;
1898 do_each_thread(g, p) {
1899 task_lock(p);
1901 * We should check if the process is exiting, otherwise
1902 * it will race with cgroup_exit() in that the list
1903 * entry won't be deleted though the process has exited.
1905 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1906 list_add(&p->cg_list, &p->cgroups->tasks);
1907 task_unlock(p);
1908 } while_each_thread(g, p);
1909 write_unlock(&css_set_lock);
1912 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1915 * The first time anyone tries to iterate across a cgroup,
1916 * we need to enable the list linking each css_set to its
1917 * tasks, and fix up all existing tasks.
1919 if (!use_task_css_set_links)
1920 cgroup_enable_task_cg_lists();
1922 read_lock(&css_set_lock);
1923 it->cg_link = &cgrp->css_sets;
1924 cgroup_advance_iter(cgrp, it);
1927 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1928 struct cgroup_iter *it)
1930 struct task_struct *res;
1931 struct list_head *l = it->task;
1932 struct cg_cgroup_link *link;
1934 /* If the iterator cg is NULL, we have no tasks */
1935 if (!it->cg_link)
1936 return NULL;
1937 res = list_entry(l, struct task_struct, cg_list);
1938 /* Advance iterator to find next entry */
1939 l = l->next;
1940 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
1941 if (l == &link->cg->tasks) {
1942 /* We reached the end of this task list - move on to
1943 * the next cg_cgroup_link */
1944 cgroup_advance_iter(cgrp, it);
1945 } else {
1946 it->task = l;
1948 return res;
1951 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1953 read_unlock(&css_set_lock);
1956 static inline int started_after_time(struct task_struct *t1,
1957 struct timespec *time,
1958 struct task_struct *t2)
1960 int start_diff = timespec_compare(&t1->start_time, time);
1961 if (start_diff > 0) {
1962 return 1;
1963 } else if (start_diff < 0) {
1964 return 0;
1965 } else {
1967 * Arbitrarily, if two processes started at the same
1968 * time, we'll say that the lower pointer value
1969 * started first. Note that t2 may have exited by now
1970 * so this may not be a valid pointer any longer, but
1971 * that's fine - it still serves to distinguish
1972 * between two tasks started (effectively) simultaneously.
1974 return t1 > t2;
1979 * This function is a callback from heap_insert() and is used to order
1980 * the heap.
1981 * In this case we order the heap in descending task start time.
1983 static inline int started_after(void *p1, void *p2)
1985 struct task_struct *t1 = p1;
1986 struct task_struct *t2 = p2;
1987 return started_after_time(t1, &t2->start_time, t2);
1991 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1992 * @scan: struct cgroup_scanner containing arguments for the scan
1994 * Arguments include pointers to callback functions test_task() and
1995 * process_task().
1996 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1997 * and if it returns true, call process_task() for it also.
1998 * The test_task pointer may be NULL, meaning always true (select all tasks).
1999 * Effectively duplicates cgroup_iter_{start,next,end}()
2000 * but does not lock css_set_lock for the call to process_task().
2001 * The struct cgroup_scanner may be embedded in any structure of the caller's
2002 * creation.
2003 * It is guaranteed that process_task() will act on every task that
2004 * is a member of the cgroup for the duration of this call. This
2005 * function may or may not call process_task() for tasks that exit
2006 * or move to a different cgroup during the call, or are forked or
2007 * move into the cgroup during the call.
2009 * Note that test_task() may be called with locks held, and may in some
2010 * situations be called multiple times for the same task, so it should
2011 * be cheap.
2012 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2013 * pre-allocated and will be used for heap operations (and its "gt" member will
2014 * be overwritten), else a temporary heap will be used (allocation of which
2015 * may cause this function to fail).
2017 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2019 int retval, i;
2020 struct cgroup_iter it;
2021 struct task_struct *p, *dropped;
2022 /* Never dereference latest_task, since it's not refcounted */
2023 struct task_struct *latest_task = NULL;
2024 struct ptr_heap tmp_heap;
2025 struct ptr_heap *heap;
2026 struct timespec latest_time = { 0, 0 };
2028 if (scan->heap) {
2029 /* The caller supplied our heap and pre-allocated its memory */
2030 heap = scan->heap;
2031 heap->gt = &started_after;
2032 } else {
2033 /* We need to allocate our own heap memory */
2034 heap = &tmp_heap;
2035 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2036 if (retval)
2037 /* cannot allocate the heap */
2038 return retval;
2041 again:
2043 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2044 * to determine which are of interest, and using the scanner's
2045 * "process_task" callback to process any of them that need an update.
2046 * Since we don't want to hold any locks during the task updates,
2047 * gather tasks to be processed in a heap structure.
2048 * The heap is sorted by descending task start time.
2049 * If the statically-sized heap fills up, we overflow tasks that
2050 * started later, and in future iterations only consider tasks that
2051 * started after the latest task in the previous pass. This
2052 * guarantees forward progress and that we don't miss any tasks.
2054 heap->size = 0;
2055 cgroup_iter_start(scan->cg, &it);
2056 while ((p = cgroup_iter_next(scan->cg, &it))) {
2058 * Only affect tasks that qualify per the caller's callback,
2059 * if he provided one
2061 if (scan->test_task && !scan->test_task(p, scan))
2062 continue;
2064 * Only process tasks that started after the last task
2065 * we processed
2067 if (!started_after_time(p, &latest_time, latest_task))
2068 continue;
2069 dropped = heap_insert(heap, p);
2070 if (dropped == NULL) {
2072 * The new task was inserted; the heap wasn't
2073 * previously full
2075 get_task_struct(p);
2076 } else if (dropped != p) {
2078 * The new task was inserted, and pushed out a
2079 * different task
2081 get_task_struct(p);
2082 put_task_struct(dropped);
2085 * Else the new task was newer than anything already in
2086 * the heap and wasn't inserted
2089 cgroup_iter_end(scan->cg, &it);
2091 if (heap->size) {
2092 for (i = 0; i < heap->size; i++) {
2093 struct task_struct *q = heap->ptrs[i];
2094 if (i == 0) {
2095 latest_time = q->start_time;
2096 latest_task = q;
2098 /* Process the task per the caller's callback */
2099 scan->process_task(q, scan);
2100 put_task_struct(q);
2103 * If we had to process any tasks at all, scan again
2104 * in case some of them were in the middle of forking
2105 * children that didn't get processed.
2106 * Not the most efficient way to do it, but it avoids
2107 * having to take callback_mutex in the fork path
2109 goto again;
2111 if (heap == &tmp_heap)
2112 heap_free(&tmp_heap);
2113 return 0;
2117 * Stuff for reading the 'tasks' file.
2119 * Reading this file can return large amounts of data if a cgroup has
2120 * *lots* of attached tasks. So it may need several calls to read(),
2121 * but we cannot guarantee that the information we produce is correct
2122 * unless we produce it entirely atomically.
2127 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2128 * 'cgrp'. Return actual number of pids loaded. No need to
2129 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2130 * read section, so the css_set can't go away, and is
2131 * immutable after creation.
2133 static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2135 int n = 0, pid;
2136 struct cgroup_iter it;
2137 struct task_struct *tsk;
2138 cgroup_iter_start(cgrp, &it);
2139 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2140 if (unlikely(n == npids))
2141 break;
2142 pid = task_pid_vnr(tsk);
2143 if (pid > 0)
2144 pidarray[n++] = pid;
2146 cgroup_iter_end(cgrp, &it);
2147 return n;
2151 * cgroupstats_build - build and fill cgroupstats
2152 * @stats: cgroupstats to fill information into
2153 * @dentry: A dentry entry belonging to the cgroup for which stats have
2154 * been requested.
2156 * Build and fill cgroupstats so that taskstats can export it to user
2157 * space.
2159 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2161 int ret = -EINVAL;
2162 struct cgroup *cgrp;
2163 struct cgroup_iter it;
2164 struct task_struct *tsk;
2167 * Validate dentry by checking the superblock operations,
2168 * and make sure it's a directory.
2170 if (dentry->d_sb->s_op != &cgroup_ops ||
2171 !S_ISDIR(dentry->d_inode->i_mode))
2172 goto err;
2174 ret = 0;
2175 cgrp = dentry->d_fsdata;
2177 cgroup_iter_start(cgrp, &it);
2178 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2179 switch (tsk->state) {
2180 case TASK_RUNNING:
2181 stats->nr_running++;
2182 break;
2183 case TASK_INTERRUPTIBLE:
2184 stats->nr_sleeping++;
2185 break;
2186 case TASK_UNINTERRUPTIBLE:
2187 stats->nr_uninterruptible++;
2188 break;
2189 case TASK_STOPPED:
2190 stats->nr_stopped++;
2191 break;
2192 default:
2193 if (delayacct_is_task_waiting_on_io(tsk))
2194 stats->nr_io_wait++;
2195 break;
2198 cgroup_iter_end(cgrp, &it);
2200 err:
2201 return ret;
2204 static int cmppid(const void *a, const void *b)
2206 return *(pid_t *)a - *(pid_t *)b;
2211 * seq_file methods for the "tasks" file. The seq_file position is the
2212 * next pid to display; the seq_file iterator is a pointer to the pid
2213 * in the cgroup->tasks_pids array.
2216 static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2219 * Initially we receive a position value that corresponds to
2220 * one more than the last pid shown (or 0 on the first call or
2221 * after a seek to the start). Use a binary-search to find the
2222 * next pid to display, if any
2224 struct cgroup *cgrp = s->private;
2225 int index = 0, pid = *pos;
2226 int *iter;
2228 down_read(&cgrp->pids_mutex);
2229 if (pid) {
2230 int end = cgrp->pids_length;
2232 while (index < end) {
2233 int mid = (index + end) / 2;
2234 if (cgrp->tasks_pids[mid] == pid) {
2235 index = mid;
2236 break;
2237 } else if (cgrp->tasks_pids[mid] <= pid)
2238 index = mid + 1;
2239 else
2240 end = mid;
2243 /* If we're off the end of the array, we're done */
2244 if (index >= cgrp->pids_length)
2245 return NULL;
2246 /* Update the abstract position to be the actual pid that we found */
2247 iter = cgrp->tasks_pids + index;
2248 *pos = *iter;
2249 return iter;
2252 static void cgroup_tasks_stop(struct seq_file *s, void *v)
2254 struct cgroup *cgrp = s->private;
2255 up_read(&cgrp->pids_mutex);
2258 static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
2260 struct cgroup *cgrp = s->private;
2261 int *p = v;
2262 int *end = cgrp->tasks_pids + cgrp->pids_length;
2265 * Advance to the next pid in the array. If this goes off the
2266 * end, we're done
2268 p++;
2269 if (p >= end) {
2270 return NULL;
2271 } else {
2272 *pos = *p;
2273 return p;
2277 static int cgroup_tasks_show(struct seq_file *s, void *v)
2279 return seq_printf(s, "%d\n", *(int *)v);
2282 static struct seq_operations cgroup_tasks_seq_operations = {
2283 .start = cgroup_tasks_start,
2284 .stop = cgroup_tasks_stop,
2285 .next = cgroup_tasks_next,
2286 .show = cgroup_tasks_show,
2289 static void release_cgroup_pid_array(struct cgroup *cgrp)
2291 down_write(&cgrp->pids_mutex);
2292 BUG_ON(!cgrp->pids_use_count);
2293 if (!--cgrp->pids_use_count) {
2294 kfree(cgrp->tasks_pids);
2295 cgrp->tasks_pids = NULL;
2296 cgrp->pids_length = 0;
2298 up_write(&cgrp->pids_mutex);
2301 static int cgroup_tasks_release(struct inode *inode, struct file *file)
2303 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2305 if (!(file->f_mode & FMODE_READ))
2306 return 0;
2308 release_cgroup_pid_array(cgrp);
2309 return seq_release(inode, file);
2312 static struct file_operations cgroup_tasks_operations = {
2313 .read = seq_read,
2314 .llseek = seq_lseek,
2315 .write = cgroup_file_write,
2316 .release = cgroup_tasks_release,
2320 * Handle an open on 'tasks' file. Prepare an array containing the
2321 * process id's of tasks currently attached to the cgroup being opened.
2324 static int cgroup_tasks_open(struct inode *unused, struct file *file)
2326 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2327 pid_t *pidarray;
2328 int npids;
2329 int retval;
2331 /* Nothing to do for write-only files */
2332 if (!(file->f_mode & FMODE_READ))
2333 return 0;
2336 * If cgroup gets more users after we read count, we won't have
2337 * enough space - tough. This race is indistinguishable to the
2338 * caller from the case that the additional cgroup users didn't
2339 * show up until sometime later on.
2341 npids = cgroup_task_count(cgrp);
2342 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2343 if (!pidarray)
2344 return -ENOMEM;
2345 npids = pid_array_load(pidarray, npids, cgrp);
2346 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2349 * Store the array in the cgroup, freeing the old
2350 * array if necessary
2352 down_write(&cgrp->pids_mutex);
2353 kfree(cgrp->tasks_pids);
2354 cgrp->tasks_pids = pidarray;
2355 cgrp->pids_length = npids;
2356 cgrp->pids_use_count++;
2357 up_write(&cgrp->pids_mutex);
2359 file->f_op = &cgroup_tasks_operations;
2361 retval = seq_open(file, &cgroup_tasks_seq_operations);
2362 if (retval) {
2363 release_cgroup_pid_array(cgrp);
2364 return retval;
2366 ((struct seq_file *)file->private_data)->private = cgrp;
2367 return 0;
2370 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2371 struct cftype *cft)
2373 return notify_on_release(cgrp);
2376 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
2377 struct cftype *cft,
2378 u64 val)
2380 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
2381 if (val)
2382 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2383 else
2384 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2385 return 0;
2389 * for the common functions, 'private' gives the type of file
2391 static struct cftype files[] = {
2393 .name = "tasks",
2394 .open = cgroup_tasks_open,
2395 .write_u64 = cgroup_tasks_write,
2396 .release = cgroup_tasks_release,
2397 .private = FILE_TASKLIST,
2398 .mode = S_IRUGO | S_IWUSR,
2402 .name = "notify_on_release",
2403 .read_u64 = cgroup_read_notify_on_release,
2404 .write_u64 = cgroup_write_notify_on_release,
2405 .private = FILE_NOTIFY_ON_RELEASE,
2409 static struct cftype cft_release_agent = {
2410 .name = "release_agent",
2411 .read_seq_string = cgroup_release_agent_show,
2412 .write_string = cgroup_release_agent_write,
2413 .max_write_len = PATH_MAX,
2414 .private = FILE_RELEASE_AGENT,
2417 static int cgroup_populate_dir(struct cgroup *cgrp)
2419 int err;
2420 struct cgroup_subsys *ss;
2422 /* First clear out any existing files */
2423 cgroup_clear_directory(cgrp->dentry);
2425 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2426 if (err < 0)
2427 return err;
2429 if (cgrp == cgrp->top_cgroup) {
2430 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2431 return err;
2434 for_each_subsys(cgrp->root, ss) {
2435 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2436 return err;
2438 /* This cgroup is ready now */
2439 for_each_subsys(cgrp->root, ss) {
2440 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2442 * Update id->css pointer and make this css visible from
2443 * CSS ID functions. This pointer will be dereferened
2444 * from RCU-read-side without locks.
2446 if (css->id)
2447 rcu_assign_pointer(css->id->css, css);
2450 return 0;
2453 static void init_cgroup_css(struct cgroup_subsys_state *css,
2454 struct cgroup_subsys *ss,
2455 struct cgroup *cgrp)
2457 css->cgroup = cgrp;
2458 atomic_set(&css->refcnt, 1);
2459 css->flags = 0;
2460 css->id = NULL;
2461 if (cgrp == dummytop)
2462 set_bit(CSS_ROOT, &css->flags);
2463 BUG_ON(cgrp->subsys[ss->subsys_id]);
2464 cgrp->subsys[ss->subsys_id] = css;
2467 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
2469 /* We need to take each hierarchy_mutex in a consistent order */
2470 int i;
2472 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2473 struct cgroup_subsys *ss = subsys[i];
2474 if (ss->root == root)
2475 mutex_lock(&ss->hierarchy_mutex);
2479 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
2481 int i;
2483 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2484 struct cgroup_subsys *ss = subsys[i];
2485 if (ss->root == root)
2486 mutex_unlock(&ss->hierarchy_mutex);
2491 * cgroup_create - create a cgroup
2492 * @parent: cgroup that will be parent of the new cgroup
2493 * @dentry: dentry of the new cgroup
2494 * @mode: mode to set on new inode
2496 * Must be called with the mutex on the parent inode held
2498 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2499 mode_t mode)
2501 struct cgroup *cgrp;
2502 struct cgroupfs_root *root = parent->root;
2503 int err = 0;
2504 struct cgroup_subsys *ss;
2505 struct super_block *sb = root->sb;
2507 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2508 if (!cgrp)
2509 return -ENOMEM;
2511 /* Grab a reference on the superblock so the hierarchy doesn't
2512 * get deleted on unmount if there are child cgroups. This
2513 * can be done outside cgroup_mutex, since the sb can't
2514 * disappear while someone has an open control file on the
2515 * fs */
2516 atomic_inc(&sb->s_active);
2518 mutex_lock(&cgroup_mutex);
2520 init_cgroup_housekeeping(cgrp);
2522 cgrp->parent = parent;
2523 cgrp->root = parent->root;
2524 cgrp->top_cgroup = parent->top_cgroup;
2526 if (notify_on_release(parent))
2527 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2529 for_each_subsys(root, ss) {
2530 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2531 if (IS_ERR(css)) {
2532 err = PTR_ERR(css);
2533 goto err_destroy;
2535 init_cgroup_css(css, ss, cgrp);
2536 if (ss->use_id)
2537 if (alloc_css_id(ss, parent, cgrp))
2538 goto err_destroy;
2539 /* At error, ->destroy() callback has to free assigned ID. */
2542 cgroup_lock_hierarchy(root);
2543 list_add(&cgrp->sibling, &cgrp->parent->children);
2544 cgroup_unlock_hierarchy(root);
2545 root->number_of_cgroups++;
2547 err = cgroup_create_dir(cgrp, dentry, mode);
2548 if (err < 0)
2549 goto err_remove;
2551 /* The cgroup directory was pre-locked for us */
2552 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2554 err = cgroup_populate_dir(cgrp);
2555 /* If err < 0, we have a half-filled directory - oh well ;) */
2557 mutex_unlock(&cgroup_mutex);
2558 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2560 return 0;
2562 err_remove:
2564 cgroup_lock_hierarchy(root);
2565 list_del(&cgrp->sibling);
2566 cgroup_unlock_hierarchy(root);
2567 root->number_of_cgroups--;
2569 err_destroy:
2571 for_each_subsys(root, ss) {
2572 if (cgrp->subsys[ss->subsys_id])
2573 ss->destroy(ss, cgrp);
2576 mutex_unlock(&cgroup_mutex);
2578 /* Release the reference count that we took on the superblock */
2579 deactivate_super(sb);
2581 kfree(cgrp);
2582 return err;
2585 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2587 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2589 /* the vfs holds inode->i_mutex already */
2590 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2593 static int cgroup_has_css_refs(struct cgroup *cgrp)
2595 /* Check the reference count on each subsystem. Since we
2596 * already established that there are no tasks in the
2597 * cgroup, if the css refcount is also 1, then there should
2598 * be no outstanding references, so the subsystem is safe to
2599 * destroy. We scan across all subsystems rather than using
2600 * the per-hierarchy linked list of mounted subsystems since
2601 * we can be called via check_for_release() with no
2602 * synchronization other than RCU, and the subsystem linked
2603 * list isn't RCU-safe */
2604 int i;
2605 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2606 struct cgroup_subsys *ss = subsys[i];
2607 struct cgroup_subsys_state *css;
2608 /* Skip subsystems not in this hierarchy */
2609 if (ss->root != cgrp->root)
2610 continue;
2611 css = cgrp->subsys[ss->subsys_id];
2612 /* When called from check_for_release() it's possible
2613 * that by this point the cgroup has been removed
2614 * and the css deleted. But a false-positive doesn't
2615 * matter, since it can only happen if the cgroup
2616 * has been deleted and hence no longer needs the
2617 * release agent to be called anyway. */
2618 if (css && (atomic_read(&css->refcnt) > 1))
2619 return 1;
2621 return 0;
2625 * Atomically mark all (or else none) of the cgroup's CSS objects as
2626 * CSS_REMOVED. Return true on success, or false if the cgroup has
2627 * busy subsystems. Call with cgroup_mutex held
2630 static int cgroup_clear_css_refs(struct cgroup *cgrp)
2632 struct cgroup_subsys *ss;
2633 unsigned long flags;
2634 bool failed = false;
2635 local_irq_save(flags);
2636 for_each_subsys(cgrp->root, ss) {
2637 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2638 int refcnt;
2639 while (1) {
2640 /* We can only remove a CSS with a refcnt==1 */
2641 refcnt = atomic_read(&css->refcnt);
2642 if (refcnt > 1) {
2643 failed = true;
2644 goto done;
2646 BUG_ON(!refcnt);
2648 * Drop the refcnt to 0 while we check other
2649 * subsystems. This will cause any racing
2650 * css_tryget() to spin until we set the
2651 * CSS_REMOVED bits or abort
2653 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
2654 break;
2655 cpu_relax();
2658 done:
2659 for_each_subsys(cgrp->root, ss) {
2660 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2661 if (failed) {
2663 * Restore old refcnt if we previously managed
2664 * to clear it from 1 to 0
2666 if (!atomic_read(&css->refcnt))
2667 atomic_set(&css->refcnt, 1);
2668 } else {
2669 /* Commit the fact that the CSS is removed */
2670 set_bit(CSS_REMOVED, &css->flags);
2673 local_irq_restore(flags);
2674 return !failed;
2677 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2679 struct cgroup *cgrp = dentry->d_fsdata;
2680 struct dentry *d;
2681 struct cgroup *parent;
2682 DEFINE_WAIT(wait);
2683 int ret;
2685 /* the vfs holds both inode->i_mutex already */
2686 again:
2687 mutex_lock(&cgroup_mutex);
2688 if (atomic_read(&cgrp->count) != 0) {
2689 mutex_unlock(&cgroup_mutex);
2690 return -EBUSY;
2692 if (!list_empty(&cgrp->children)) {
2693 mutex_unlock(&cgroup_mutex);
2694 return -EBUSY;
2696 mutex_unlock(&cgroup_mutex);
2699 * Call pre_destroy handlers of subsys. Notify subsystems
2700 * that rmdir() request comes.
2702 ret = cgroup_call_pre_destroy(cgrp);
2703 if (ret)
2704 return ret;
2706 mutex_lock(&cgroup_mutex);
2707 parent = cgrp->parent;
2708 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
2709 mutex_unlock(&cgroup_mutex);
2710 return -EBUSY;
2713 * css_put/get is provided for subsys to grab refcnt to css. In typical
2714 * case, subsystem has no reference after pre_destroy(). But, under
2715 * hierarchy management, some *temporal* refcnt can be hold.
2716 * To avoid returning -EBUSY to a user, waitqueue is used. If subsys
2717 * is really busy, it should return -EBUSY at pre_destroy(). wake_up
2718 * is called when css_put() is called and refcnt goes down to 0.
2720 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2721 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
2723 if (!cgroup_clear_css_refs(cgrp)) {
2724 mutex_unlock(&cgroup_mutex);
2725 schedule();
2726 finish_wait(&cgroup_rmdir_waitq, &wait);
2727 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2728 if (signal_pending(current))
2729 return -EINTR;
2730 goto again;
2732 /* NO css_tryget() can success after here. */
2733 finish_wait(&cgroup_rmdir_waitq, &wait);
2734 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2736 spin_lock(&release_list_lock);
2737 set_bit(CGRP_REMOVED, &cgrp->flags);
2738 if (!list_empty(&cgrp->release_list))
2739 list_del(&cgrp->release_list);
2740 spin_unlock(&release_list_lock);
2742 cgroup_lock_hierarchy(cgrp->root);
2743 /* delete this cgroup from parent->children */
2744 list_del(&cgrp->sibling);
2745 cgroup_unlock_hierarchy(cgrp->root);
2747 spin_lock(&cgrp->dentry->d_lock);
2748 d = dget(cgrp->dentry);
2749 spin_unlock(&d->d_lock);
2751 cgroup_d_remove_dir(d);
2752 dput(d);
2754 set_bit(CGRP_RELEASABLE, &parent->flags);
2755 check_for_release(parent);
2757 mutex_unlock(&cgroup_mutex);
2758 return 0;
2761 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2763 struct cgroup_subsys_state *css;
2765 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2767 /* Create the top cgroup state for this subsystem */
2768 list_add(&ss->sibling, &rootnode.subsys_list);
2769 ss->root = &rootnode;
2770 css = ss->create(ss, dummytop);
2771 /* We don't handle early failures gracefully */
2772 BUG_ON(IS_ERR(css));
2773 init_cgroup_css(css, ss, dummytop);
2775 /* Update the init_css_set to contain a subsys
2776 * pointer to this state - since the subsystem is
2777 * newly registered, all tasks and hence the
2778 * init_css_set is in the subsystem's top cgroup. */
2779 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2781 need_forkexit_callback |= ss->fork || ss->exit;
2783 /* At system boot, before all subsystems have been
2784 * registered, no tasks have been forked, so we don't
2785 * need to invoke fork callbacks here. */
2786 BUG_ON(!list_empty(&init_task.tasks));
2788 mutex_init(&ss->hierarchy_mutex);
2789 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
2790 ss->active = 1;
2794 * cgroup_init_early - cgroup initialization at system boot
2796 * Initialize cgroups at system boot, and initialize any
2797 * subsystems that request early init.
2799 int __init cgroup_init_early(void)
2801 int i;
2802 atomic_set(&init_css_set.refcount, 1);
2803 INIT_LIST_HEAD(&init_css_set.cg_links);
2804 INIT_LIST_HEAD(&init_css_set.tasks);
2805 INIT_HLIST_NODE(&init_css_set.hlist);
2806 css_set_count = 1;
2807 init_cgroup_root(&rootnode);
2808 root_count = 1;
2809 init_task.cgroups = &init_css_set;
2811 init_css_set_link.cg = &init_css_set;
2812 list_add(&init_css_set_link.cgrp_link_list,
2813 &rootnode.top_cgroup.css_sets);
2814 list_add(&init_css_set_link.cg_link_list,
2815 &init_css_set.cg_links);
2817 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
2818 INIT_HLIST_HEAD(&css_set_table[i]);
2820 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2821 struct cgroup_subsys *ss = subsys[i];
2823 BUG_ON(!ss->name);
2824 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2825 BUG_ON(!ss->create);
2826 BUG_ON(!ss->destroy);
2827 if (ss->subsys_id != i) {
2828 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2829 ss->name, ss->subsys_id);
2830 BUG();
2833 if (ss->early_init)
2834 cgroup_init_subsys(ss);
2836 return 0;
2840 * cgroup_init - cgroup initialization
2842 * Register cgroup filesystem and /proc file, and initialize
2843 * any subsystems that didn't request early init.
2845 int __init cgroup_init(void)
2847 int err;
2848 int i;
2849 struct hlist_head *hhead;
2851 err = bdi_init(&cgroup_backing_dev_info);
2852 if (err)
2853 return err;
2855 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2856 struct cgroup_subsys *ss = subsys[i];
2857 if (!ss->early_init)
2858 cgroup_init_subsys(ss);
2859 if (ss->use_id)
2860 cgroup_subsys_init_idr(ss);
2863 /* Add init_css_set to the hash table */
2864 hhead = css_set_hash(init_css_set.subsys);
2865 hlist_add_head(&init_css_set.hlist, hhead);
2867 err = register_filesystem(&cgroup_fs_type);
2868 if (err < 0)
2869 goto out;
2871 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2873 out:
2874 if (err)
2875 bdi_destroy(&cgroup_backing_dev_info);
2877 return err;
2881 * proc_cgroup_show()
2882 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2883 * - Used for /proc/<pid>/cgroup.
2884 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2885 * doesn't really matter if tsk->cgroup changes after we read it,
2886 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2887 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2888 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2889 * cgroup to top_cgroup.
2892 /* TODO: Use a proper seq_file iterator */
2893 static int proc_cgroup_show(struct seq_file *m, void *v)
2895 struct pid *pid;
2896 struct task_struct *tsk;
2897 char *buf;
2898 int retval;
2899 struct cgroupfs_root *root;
2901 retval = -ENOMEM;
2902 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2903 if (!buf)
2904 goto out;
2906 retval = -ESRCH;
2907 pid = m->private;
2908 tsk = get_pid_task(pid, PIDTYPE_PID);
2909 if (!tsk)
2910 goto out_free;
2912 retval = 0;
2914 mutex_lock(&cgroup_mutex);
2916 for_each_active_root(root) {
2917 struct cgroup_subsys *ss;
2918 struct cgroup *cgrp;
2919 int subsys_id;
2920 int count = 0;
2922 seq_printf(m, "%lu:", root->subsys_bits);
2923 for_each_subsys(root, ss)
2924 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2925 seq_putc(m, ':');
2926 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2927 cgrp = task_cgroup(tsk, subsys_id);
2928 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2929 if (retval < 0)
2930 goto out_unlock;
2931 seq_puts(m, buf);
2932 seq_putc(m, '\n');
2935 out_unlock:
2936 mutex_unlock(&cgroup_mutex);
2937 put_task_struct(tsk);
2938 out_free:
2939 kfree(buf);
2940 out:
2941 return retval;
2944 static int cgroup_open(struct inode *inode, struct file *file)
2946 struct pid *pid = PROC_I(inode)->pid;
2947 return single_open(file, proc_cgroup_show, pid);
2950 struct file_operations proc_cgroup_operations = {
2951 .open = cgroup_open,
2952 .read = seq_read,
2953 .llseek = seq_lseek,
2954 .release = single_release,
2957 /* Display information about each subsystem and each hierarchy */
2958 static int proc_cgroupstats_show(struct seq_file *m, void *v)
2960 int i;
2962 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2963 mutex_lock(&cgroup_mutex);
2964 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2965 struct cgroup_subsys *ss = subsys[i];
2966 seq_printf(m, "%s\t%lu\t%d\t%d\n",
2967 ss->name, ss->root->subsys_bits,
2968 ss->root->number_of_cgroups, !ss->disabled);
2970 mutex_unlock(&cgroup_mutex);
2971 return 0;
2974 static int cgroupstats_open(struct inode *inode, struct file *file)
2976 return single_open(file, proc_cgroupstats_show, NULL);
2979 static struct file_operations proc_cgroupstats_operations = {
2980 .open = cgroupstats_open,
2981 .read = seq_read,
2982 .llseek = seq_lseek,
2983 .release = single_release,
2987 * cgroup_fork - attach newly forked task to its parents cgroup.
2988 * @child: pointer to task_struct of forking parent process.
2990 * Description: A task inherits its parent's cgroup at fork().
2992 * A pointer to the shared css_set was automatically copied in
2993 * fork.c by dup_task_struct(). However, we ignore that copy, since
2994 * it was not made under the protection of RCU or cgroup_mutex, so
2995 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
2996 * have already changed current->cgroups, allowing the previously
2997 * referenced cgroup group to be removed and freed.
2999 * At the point that cgroup_fork() is called, 'current' is the parent
3000 * task, and the passed argument 'child' points to the child task.
3002 void cgroup_fork(struct task_struct *child)
3004 task_lock(current);
3005 child->cgroups = current->cgroups;
3006 get_css_set(child->cgroups);
3007 task_unlock(current);
3008 INIT_LIST_HEAD(&child->cg_list);
3012 * cgroup_fork_callbacks - run fork callbacks
3013 * @child: the new task
3015 * Called on a new task very soon before adding it to the
3016 * tasklist. No need to take any locks since no-one can
3017 * be operating on this task.
3019 void cgroup_fork_callbacks(struct task_struct *child)
3021 if (need_forkexit_callback) {
3022 int i;
3023 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3024 struct cgroup_subsys *ss = subsys[i];
3025 if (ss->fork)
3026 ss->fork(ss, child);
3032 * cgroup_post_fork - called on a new task after adding it to the task list
3033 * @child: the task in question
3035 * Adds the task to the list running through its css_set if necessary.
3036 * Has to be after the task is visible on the task list in case we race
3037 * with the first call to cgroup_iter_start() - to guarantee that the
3038 * new task ends up on its list.
3040 void cgroup_post_fork(struct task_struct *child)
3042 if (use_task_css_set_links) {
3043 write_lock(&css_set_lock);
3044 task_lock(child);
3045 if (list_empty(&child->cg_list))
3046 list_add(&child->cg_list, &child->cgroups->tasks);
3047 task_unlock(child);
3048 write_unlock(&css_set_lock);
3052 * cgroup_exit - detach cgroup from exiting task
3053 * @tsk: pointer to task_struct of exiting process
3054 * @run_callback: run exit callbacks?
3056 * Description: Detach cgroup from @tsk and release it.
3058 * Note that cgroups marked notify_on_release force every task in
3059 * them to take the global cgroup_mutex mutex when exiting.
3060 * This could impact scaling on very large systems. Be reluctant to
3061 * use notify_on_release cgroups where very high task exit scaling
3062 * is required on large systems.
3064 * the_top_cgroup_hack:
3066 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
3068 * We call cgroup_exit() while the task is still competent to
3069 * handle notify_on_release(), then leave the task attached to the
3070 * root cgroup in each hierarchy for the remainder of its exit.
3072 * To do this properly, we would increment the reference count on
3073 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
3074 * code we would add a second cgroup function call, to drop that
3075 * reference. This would just create an unnecessary hot spot on
3076 * the top_cgroup reference count, to no avail.
3078 * Normally, holding a reference to a cgroup without bumping its
3079 * count is unsafe. The cgroup could go away, or someone could
3080 * attach us to a different cgroup, decrementing the count on
3081 * the first cgroup that we never incremented. But in this case,
3082 * top_cgroup isn't going away, and either task has PF_EXITING set,
3083 * which wards off any cgroup_attach_task() attempts, or task is a failed
3084 * fork, never visible to cgroup_attach_task.
3086 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
3088 int i;
3089 struct css_set *cg;
3091 if (run_callbacks && need_forkexit_callback) {
3092 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3093 struct cgroup_subsys *ss = subsys[i];
3094 if (ss->exit)
3095 ss->exit(ss, tsk);
3100 * Unlink from the css_set task list if necessary.
3101 * Optimistically check cg_list before taking
3102 * css_set_lock
3104 if (!list_empty(&tsk->cg_list)) {
3105 write_lock(&css_set_lock);
3106 if (!list_empty(&tsk->cg_list))
3107 list_del(&tsk->cg_list);
3108 write_unlock(&css_set_lock);
3111 /* Reassign the task to the init_css_set. */
3112 task_lock(tsk);
3113 cg = tsk->cgroups;
3114 tsk->cgroups = &init_css_set;
3115 task_unlock(tsk);
3116 if (cg)
3117 put_css_set_taskexit(cg);
3121 * cgroup_clone - clone the cgroup the given subsystem is attached to
3122 * @tsk: the task to be moved
3123 * @subsys: the given subsystem
3124 * @nodename: the name for the new cgroup
3126 * Duplicate the current cgroup in the hierarchy that the given
3127 * subsystem is attached to, and move this task into the new
3128 * child.
3130 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
3131 char *nodename)
3133 struct dentry *dentry;
3134 int ret = 0;
3135 struct cgroup *parent, *child;
3136 struct inode *inode;
3137 struct css_set *cg;
3138 struct cgroupfs_root *root;
3139 struct cgroup_subsys *ss;
3141 /* We shouldn't be called by an unregistered subsystem */
3142 BUG_ON(!subsys->active);
3144 /* First figure out what hierarchy and cgroup we're dealing
3145 * with, and pin them so we can drop cgroup_mutex */
3146 mutex_lock(&cgroup_mutex);
3147 again:
3148 root = subsys->root;
3149 if (root == &rootnode) {
3150 mutex_unlock(&cgroup_mutex);
3151 return 0;
3154 /* Pin the hierarchy */
3155 if (!atomic_inc_not_zero(&root->sb->s_active)) {
3156 /* We race with the final deactivate_super() */
3157 mutex_unlock(&cgroup_mutex);
3158 return 0;
3161 /* Keep the cgroup alive */
3162 task_lock(tsk);
3163 parent = task_cgroup(tsk, subsys->subsys_id);
3164 cg = tsk->cgroups;
3165 get_css_set(cg);
3166 task_unlock(tsk);
3168 mutex_unlock(&cgroup_mutex);
3170 /* Now do the VFS work to create a cgroup */
3171 inode = parent->dentry->d_inode;
3173 /* Hold the parent directory mutex across this operation to
3174 * stop anyone else deleting the new cgroup */
3175 mutex_lock(&inode->i_mutex);
3176 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
3177 if (IS_ERR(dentry)) {
3178 printk(KERN_INFO
3179 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
3180 PTR_ERR(dentry));
3181 ret = PTR_ERR(dentry);
3182 goto out_release;
3185 /* Create the cgroup directory, which also creates the cgroup */
3186 ret = vfs_mkdir(inode, dentry, 0755);
3187 child = __d_cgrp(dentry);
3188 dput(dentry);
3189 if (ret) {
3190 printk(KERN_INFO
3191 "Failed to create cgroup %s: %d\n", nodename,
3192 ret);
3193 goto out_release;
3196 /* The cgroup now exists. Retake cgroup_mutex and check
3197 * that we're still in the same state that we thought we
3198 * were. */
3199 mutex_lock(&cgroup_mutex);
3200 if ((root != subsys->root) ||
3201 (parent != task_cgroup(tsk, subsys->subsys_id))) {
3202 /* Aargh, we raced ... */
3203 mutex_unlock(&inode->i_mutex);
3204 put_css_set(cg);
3206 deactivate_super(root->sb);
3207 /* The cgroup is still accessible in the VFS, but
3208 * we're not going to try to rmdir() it at this
3209 * point. */
3210 printk(KERN_INFO
3211 "Race in cgroup_clone() - leaking cgroup %s\n",
3212 nodename);
3213 goto again;
3216 /* do any required auto-setup */
3217 for_each_subsys(root, ss) {
3218 if (ss->post_clone)
3219 ss->post_clone(ss, child);
3222 /* All seems fine. Finish by moving the task into the new cgroup */
3223 ret = cgroup_attach_task(child, tsk);
3224 mutex_unlock(&cgroup_mutex);
3226 out_release:
3227 mutex_unlock(&inode->i_mutex);
3229 mutex_lock(&cgroup_mutex);
3230 put_css_set(cg);
3231 mutex_unlock(&cgroup_mutex);
3232 deactivate_super(root->sb);
3233 return ret;
3237 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
3238 * @cgrp: the cgroup in question
3239 * @task: the task in question
3241 * See if @cgrp is a descendant of @task's cgroup in the appropriate
3242 * hierarchy.
3244 * If we are sending in dummytop, then presumably we are creating
3245 * the top cgroup in the subsystem.
3247 * Called only by the ns (nsproxy) cgroup.
3249 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
3251 int ret;
3252 struct cgroup *target;
3253 int subsys_id;
3255 if (cgrp == dummytop)
3256 return 1;
3258 get_first_subsys(cgrp, NULL, &subsys_id);
3259 target = task_cgroup(task, subsys_id);
3260 while (cgrp != target && cgrp!= cgrp->top_cgroup)
3261 cgrp = cgrp->parent;
3262 ret = (cgrp == target);
3263 return ret;
3266 static void check_for_release(struct cgroup *cgrp)
3268 /* All of these checks rely on RCU to keep the cgroup
3269 * structure alive */
3270 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
3271 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3272 /* Control Group is currently removeable. If it's not
3273 * already queued for a userspace notification, queue
3274 * it now */
3275 int need_schedule_work = 0;
3276 spin_lock(&release_list_lock);
3277 if (!cgroup_is_removed(cgrp) &&
3278 list_empty(&cgrp->release_list)) {
3279 list_add(&cgrp->release_list, &release_list);
3280 need_schedule_work = 1;
3282 spin_unlock(&release_list_lock);
3283 if (need_schedule_work)
3284 schedule_work(&release_agent_work);
3288 void __css_put(struct cgroup_subsys_state *css)
3290 struct cgroup *cgrp = css->cgroup;
3291 rcu_read_lock();
3292 if (atomic_dec_return(&css->refcnt) == 1) {
3293 if (notify_on_release(cgrp)) {
3294 set_bit(CGRP_RELEASABLE, &cgrp->flags);
3295 check_for_release(cgrp);
3297 cgroup_wakeup_rmdir_waiters(cgrp);
3299 rcu_read_unlock();
3303 * Notify userspace when a cgroup is released, by running the
3304 * configured release agent with the name of the cgroup (path
3305 * relative to the root of cgroup file system) as the argument.
3307 * Most likely, this user command will try to rmdir this cgroup.
3309 * This races with the possibility that some other task will be
3310 * attached to this cgroup before it is removed, or that some other
3311 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3312 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3313 * unused, and this cgroup will be reprieved from its death sentence,
3314 * to continue to serve a useful existence. Next time it's released,
3315 * we will get notified again, if it still has 'notify_on_release' set.
3317 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3318 * means only wait until the task is successfully execve()'d. The
3319 * separate release agent task is forked by call_usermodehelper(),
3320 * then control in this thread returns here, without waiting for the
3321 * release agent task. We don't bother to wait because the caller of
3322 * this routine has no use for the exit status of the release agent
3323 * task, so no sense holding our caller up for that.
3325 static void cgroup_release_agent(struct work_struct *work)
3327 BUG_ON(work != &release_agent_work);
3328 mutex_lock(&cgroup_mutex);
3329 spin_lock(&release_list_lock);
3330 while (!list_empty(&release_list)) {
3331 char *argv[3], *envp[3];
3332 int i;
3333 char *pathbuf = NULL, *agentbuf = NULL;
3334 struct cgroup *cgrp = list_entry(release_list.next,
3335 struct cgroup,
3336 release_list);
3337 list_del_init(&cgrp->release_list);
3338 spin_unlock(&release_list_lock);
3339 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3340 if (!pathbuf)
3341 goto continue_free;
3342 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
3343 goto continue_free;
3344 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
3345 if (!agentbuf)
3346 goto continue_free;
3348 i = 0;
3349 argv[i++] = agentbuf;
3350 argv[i++] = pathbuf;
3351 argv[i] = NULL;
3353 i = 0;
3354 /* minimal command environment */
3355 envp[i++] = "HOME=/";
3356 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3357 envp[i] = NULL;
3359 /* Drop the lock while we invoke the usermode helper,
3360 * since the exec could involve hitting disk and hence
3361 * be a slow process */
3362 mutex_unlock(&cgroup_mutex);
3363 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3364 mutex_lock(&cgroup_mutex);
3365 continue_free:
3366 kfree(pathbuf);
3367 kfree(agentbuf);
3368 spin_lock(&release_list_lock);
3370 spin_unlock(&release_list_lock);
3371 mutex_unlock(&cgroup_mutex);
3374 static int __init cgroup_disable(char *str)
3376 int i;
3377 char *token;
3379 while ((token = strsep(&str, ",")) != NULL) {
3380 if (!*token)
3381 continue;
3383 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3384 struct cgroup_subsys *ss = subsys[i];
3386 if (!strcmp(token, ss->name)) {
3387 ss->disabled = 1;
3388 printk(KERN_INFO "Disabling %s control group"
3389 " subsystem\n", ss->name);
3390 break;
3394 return 1;
3396 __setup("cgroup_disable=", cgroup_disable);
3399 * Functons for CSS ID.
3403 *To get ID other than 0, this should be called when !cgroup_is_removed().
3405 unsigned short css_id(struct cgroup_subsys_state *css)
3407 struct css_id *cssid = rcu_dereference(css->id);
3409 if (cssid)
3410 return cssid->id;
3411 return 0;
3414 unsigned short css_depth(struct cgroup_subsys_state *css)
3416 struct css_id *cssid = rcu_dereference(css->id);
3418 if (cssid)
3419 return cssid->depth;
3420 return 0;
3423 bool css_is_ancestor(struct cgroup_subsys_state *child,
3424 const struct cgroup_subsys_state *root)
3426 struct css_id *child_id = rcu_dereference(child->id);
3427 struct css_id *root_id = rcu_dereference(root->id);
3429 if (!child_id || !root_id || (child_id->depth < root_id->depth))
3430 return false;
3431 return child_id->stack[root_id->depth] == root_id->id;
3434 static void __free_css_id_cb(struct rcu_head *head)
3436 struct css_id *id;
3438 id = container_of(head, struct css_id, rcu_head);
3439 kfree(id);
3442 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
3444 struct css_id *id = css->id;
3445 /* When this is called before css_id initialization, id can be NULL */
3446 if (!id)
3447 return;
3449 BUG_ON(!ss->use_id);
3451 rcu_assign_pointer(id->css, NULL);
3452 rcu_assign_pointer(css->id, NULL);
3453 spin_lock(&ss->id_lock);
3454 idr_remove(&ss->idr, id->id);
3455 spin_unlock(&ss->id_lock);
3456 call_rcu(&id->rcu_head, __free_css_id_cb);
3460 * This is called by init or create(). Then, calls to this function are
3461 * always serialized (By cgroup_mutex() at create()).
3464 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
3466 struct css_id *newid;
3467 int myid, error, size;
3469 BUG_ON(!ss->use_id);
3471 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
3472 newid = kzalloc(size, GFP_KERNEL);
3473 if (!newid)
3474 return ERR_PTR(-ENOMEM);
3475 /* get id */
3476 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
3477 error = -ENOMEM;
3478 goto err_out;
3480 spin_lock(&ss->id_lock);
3481 /* Don't use 0. allocates an ID of 1-65535 */
3482 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
3483 spin_unlock(&ss->id_lock);
3485 /* Returns error when there are no free spaces for new ID.*/
3486 if (error) {
3487 error = -ENOSPC;
3488 goto err_out;
3490 if (myid > CSS_ID_MAX)
3491 goto remove_idr;
3493 newid->id = myid;
3494 newid->depth = depth;
3495 return newid;
3496 remove_idr:
3497 error = -ENOSPC;
3498 spin_lock(&ss->id_lock);
3499 idr_remove(&ss->idr, myid);
3500 spin_unlock(&ss->id_lock);
3501 err_out:
3502 kfree(newid);
3503 return ERR_PTR(error);
3507 static int __init cgroup_subsys_init_idr(struct cgroup_subsys *ss)
3509 struct css_id *newid;
3510 struct cgroup_subsys_state *rootcss;
3512 spin_lock_init(&ss->id_lock);
3513 idr_init(&ss->idr);
3515 rootcss = init_css_set.subsys[ss->subsys_id];
3516 newid = get_new_cssid(ss, 0);
3517 if (IS_ERR(newid))
3518 return PTR_ERR(newid);
3520 newid->stack[0] = newid->id;
3521 newid->css = rootcss;
3522 rootcss->id = newid;
3523 return 0;
3526 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
3527 struct cgroup *child)
3529 int subsys_id, i, depth = 0;
3530 struct cgroup_subsys_state *parent_css, *child_css;
3531 struct css_id *child_id, *parent_id = NULL;
3533 subsys_id = ss->subsys_id;
3534 parent_css = parent->subsys[subsys_id];
3535 child_css = child->subsys[subsys_id];
3536 depth = css_depth(parent_css) + 1;
3537 parent_id = parent_css->id;
3539 child_id = get_new_cssid(ss, depth);
3540 if (IS_ERR(child_id))
3541 return PTR_ERR(child_id);
3543 for (i = 0; i < depth; i++)
3544 child_id->stack[i] = parent_id->stack[i];
3545 child_id->stack[depth] = child_id->id;
3547 * child_id->css pointer will be set after this cgroup is available
3548 * see cgroup_populate_dir()
3550 rcu_assign_pointer(child_css->id, child_id);
3552 return 0;
3556 * css_lookup - lookup css by id
3557 * @ss: cgroup subsys to be looked into.
3558 * @id: the id
3560 * Returns pointer to cgroup_subsys_state if there is valid one with id.
3561 * NULL if not. Should be called under rcu_read_lock()
3563 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
3565 struct css_id *cssid = NULL;
3567 BUG_ON(!ss->use_id);
3568 cssid = idr_find(&ss->idr, id);
3570 if (unlikely(!cssid))
3571 return NULL;
3573 return rcu_dereference(cssid->css);
3577 * css_get_next - lookup next cgroup under specified hierarchy.
3578 * @ss: pointer to subsystem
3579 * @id: current position of iteration.
3580 * @root: pointer to css. search tree under this.
3581 * @foundid: position of found object.
3583 * Search next css under the specified hierarchy of rootid. Calling under
3584 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
3586 struct cgroup_subsys_state *
3587 css_get_next(struct cgroup_subsys *ss, int id,
3588 struct cgroup_subsys_state *root, int *foundid)
3590 struct cgroup_subsys_state *ret = NULL;
3591 struct css_id *tmp;
3592 int tmpid;
3593 int rootid = css_id(root);
3594 int depth = css_depth(root);
3596 if (!rootid)
3597 return NULL;
3599 BUG_ON(!ss->use_id);
3600 /* fill start point for scan */
3601 tmpid = id;
3602 while (1) {
3604 * scan next entry from bitmap(tree), tmpid is updated after
3605 * idr_get_next().
3607 spin_lock(&ss->id_lock);
3608 tmp = idr_get_next(&ss->idr, &tmpid);
3609 spin_unlock(&ss->id_lock);
3611 if (!tmp)
3612 break;
3613 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
3614 ret = rcu_dereference(tmp->css);
3615 if (ret) {
3616 *foundid = tmpid;
3617 break;
3620 /* continue to scan from next id */
3621 tmpid = tmpid + 1;
3623 return ret;