Btrfs: fix the amount of space reserved for unlink
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / inode.c
blob1f013c5c36aaacb79c0344d1b576785721b6e089
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include "compat.h"
42 #include "ctree.h"
43 #include "disk-io.h"
44 #include "transaction.h"
45 #include "btrfs_inode.h"
46 #include "ioctl.h"
47 #include "print-tree.h"
48 #include "volumes.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "compression.h"
53 #include "locking.h"
54 #include "free-space-cache.h"
55 #include "inode-map.h"
57 struct btrfs_iget_args {
58 u64 ino;
59 struct btrfs_root *root;
62 static const struct inode_operations btrfs_dir_inode_operations;
63 static const struct inode_operations btrfs_symlink_inode_operations;
64 static const struct inode_operations btrfs_dir_ro_inode_operations;
65 static const struct inode_operations btrfs_special_inode_operations;
66 static const struct inode_operations btrfs_file_inode_operations;
67 static const struct address_space_operations btrfs_aops;
68 static const struct address_space_operations btrfs_symlink_aops;
69 static const struct file_operations btrfs_dir_file_operations;
70 static struct extent_io_ops btrfs_extent_io_ops;
72 static struct kmem_cache *btrfs_inode_cachep;
73 struct kmem_cache *btrfs_trans_handle_cachep;
74 struct kmem_cache *btrfs_transaction_cachep;
75 struct kmem_cache *btrfs_path_cachep;
76 struct kmem_cache *btrfs_free_space_cachep;
78 #define S_SHIFT 12
79 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
80 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
81 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
82 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
83 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
84 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
85 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
86 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
89 static int btrfs_setsize(struct inode *inode, loff_t newsize);
90 static int btrfs_truncate(struct inode *inode);
91 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
92 static noinline int cow_file_range(struct inode *inode,
93 struct page *locked_page,
94 u64 start, u64 end, int *page_started,
95 unsigned long *nr_written, int unlock);
97 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
98 struct inode *inode, struct inode *dir,
99 const struct qstr *qstr)
101 int err;
103 err = btrfs_init_acl(trans, inode, dir);
104 if (!err)
105 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
106 return err;
110 * this does all the hard work for inserting an inline extent into
111 * the btree. The caller should have done a btrfs_drop_extents so that
112 * no overlapping inline items exist in the btree
114 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
115 struct btrfs_root *root, struct inode *inode,
116 u64 start, size_t size, size_t compressed_size,
117 int compress_type,
118 struct page **compressed_pages)
120 struct btrfs_key key;
121 struct btrfs_path *path;
122 struct extent_buffer *leaf;
123 struct page *page = NULL;
124 char *kaddr;
125 unsigned long ptr;
126 struct btrfs_file_extent_item *ei;
127 int err = 0;
128 int ret;
129 size_t cur_size = size;
130 size_t datasize;
131 unsigned long offset;
133 if (compressed_size && compressed_pages)
134 cur_size = compressed_size;
136 path = btrfs_alloc_path();
137 if (!path)
138 return -ENOMEM;
140 path->leave_spinning = 1;
142 key.objectid = btrfs_ino(inode);
143 key.offset = start;
144 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
145 datasize = btrfs_file_extent_calc_inline_size(cur_size);
147 inode_add_bytes(inode, size);
148 ret = btrfs_insert_empty_item(trans, root, path, &key,
149 datasize);
150 BUG_ON(ret);
151 if (ret) {
152 err = ret;
153 goto fail;
155 leaf = path->nodes[0];
156 ei = btrfs_item_ptr(leaf, path->slots[0],
157 struct btrfs_file_extent_item);
158 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160 btrfs_set_file_extent_encryption(leaf, ei, 0);
161 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163 ptr = btrfs_file_extent_inline_start(ei);
165 if (compress_type != BTRFS_COMPRESS_NONE) {
166 struct page *cpage;
167 int i = 0;
168 while (compressed_size > 0) {
169 cpage = compressed_pages[i];
170 cur_size = min_t(unsigned long, compressed_size,
171 PAGE_CACHE_SIZE);
173 kaddr = kmap_atomic(cpage, KM_USER0);
174 write_extent_buffer(leaf, kaddr, ptr, cur_size);
175 kunmap_atomic(kaddr, KM_USER0);
177 i++;
178 ptr += cur_size;
179 compressed_size -= cur_size;
181 btrfs_set_file_extent_compression(leaf, ei,
182 compress_type);
183 } else {
184 page = find_get_page(inode->i_mapping,
185 start >> PAGE_CACHE_SHIFT);
186 btrfs_set_file_extent_compression(leaf, ei, 0);
187 kaddr = kmap_atomic(page, KM_USER0);
188 offset = start & (PAGE_CACHE_SIZE - 1);
189 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190 kunmap_atomic(kaddr, KM_USER0);
191 page_cache_release(page);
193 btrfs_mark_buffer_dirty(leaf);
194 btrfs_free_path(path);
197 * we're an inline extent, so nobody can
198 * extend the file past i_size without locking
199 * a page we already have locked.
201 * We must do any isize and inode updates
202 * before we unlock the pages. Otherwise we
203 * could end up racing with unlink.
205 BTRFS_I(inode)->disk_i_size = inode->i_size;
206 btrfs_update_inode(trans, root, inode);
208 return 0;
209 fail:
210 btrfs_free_path(path);
211 return err;
216 * conditionally insert an inline extent into the file. This
217 * does the checks required to make sure the data is small enough
218 * to fit as an inline extent.
220 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
221 struct btrfs_root *root,
222 struct inode *inode, u64 start, u64 end,
223 size_t compressed_size, int compress_type,
224 struct page **compressed_pages)
226 u64 isize = i_size_read(inode);
227 u64 actual_end = min(end + 1, isize);
228 u64 inline_len = actual_end - start;
229 u64 aligned_end = (end + root->sectorsize - 1) &
230 ~((u64)root->sectorsize - 1);
231 u64 hint_byte;
232 u64 data_len = inline_len;
233 int ret;
235 if (compressed_size)
236 data_len = compressed_size;
238 if (start > 0 ||
239 actual_end >= PAGE_CACHE_SIZE ||
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 (!compressed_size &&
242 (actual_end & (root->sectorsize - 1)) == 0) ||
243 end + 1 < isize ||
244 data_len > root->fs_info->max_inline) {
245 return 1;
248 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
249 &hint_byte, 1);
250 BUG_ON(ret);
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
256 compress_type, compressed_pages);
257 BUG_ON(ret);
258 btrfs_delalloc_release_metadata(inode, end + 1 - start);
259 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
260 return 0;
263 struct async_extent {
264 u64 start;
265 u64 ram_size;
266 u64 compressed_size;
267 struct page **pages;
268 unsigned long nr_pages;
269 int compress_type;
270 struct list_head list;
273 struct async_cow {
274 struct inode *inode;
275 struct btrfs_root *root;
276 struct page *locked_page;
277 u64 start;
278 u64 end;
279 struct list_head extents;
280 struct btrfs_work work;
283 static noinline int add_async_extent(struct async_cow *cow,
284 u64 start, u64 ram_size,
285 u64 compressed_size,
286 struct page **pages,
287 unsigned long nr_pages,
288 int compress_type)
290 struct async_extent *async_extent;
292 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
293 BUG_ON(!async_extent);
294 async_extent->start = start;
295 async_extent->ram_size = ram_size;
296 async_extent->compressed_size = compressed_size;
297 async_extent->pages = pages;
298 async_extent->nr_pages = nr_pages;
299 async_extent->compress_type = compress_type;
300 list_add_tail(&async_extent->list, &cow->extents);
301 return 0;
305 * we create compressed extents in two phases. The first
306 * phase compresses a range of pages that have already been
307 * locked (both pages and state bits are locked).
309 * This is done inside an ordered work queue, and the compression
310 * is spread across many cpus. The actual IO submission is step
311 * two, and the ordered work queue takes care of making sure that
312 * happens in the same order things were put onto the queue by
313 * writepages and friends.
315 * If this code finds it can't get good compression, it puts an
316 * entry onto the work queue to write the uncompressed bytes. This
317 * makes sure that both compressed inodes and uncompressed inodes
318 * are written in the same order that pdflush sent them down.
320 static noinline int compress_file_range(struct inode *inode,
321 struct page *locked_page,
322 u64 start, u64 end,
323 struct async_cow *async_cow,
324 int *num_added)
326 struct btrfs_root *root = BTRFS_I(inode)->root;
327 struct btrfs_trans_handle *trans;
328 u64 num_bytes;
329 u64 blocksize = root->sectorsize;
330 u64 actual_end;
331 u64 isize = i_size_read(inode);
332 int ret = 0;
333 struct page **pages = NULL;
334 unsigned long nr_pages;
335 unsigned long nr_pages_ret = 0;
336 unsigned long total_compressed = 0;
337 unsigned long total_in = 0;
338 unsigned long max_compressed = 128 * 1024;
339 unsigned long max_uncompressed = 128 * 1024;
340 int i;
341 int will_compress;
342 int compress_type = root->fs_info->compress_type;
344 /* if this is a small write inside eof, kick off a defragbot */
345 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
346 btrfs_add_inode_defrag(NULL, inode);
348 actual_end = min_t(u64, isize, end + 1);
349 again:
350 will_compress = 0;
351 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
352 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
355 * we don't want to send crud past the end of i_size through
356 * compression, that's just a waste of CPU time. So, if the
357 * end of the file is before the start of our current
358 * requested range of bytes, we bail out to the uncompressed
359 * cleanup code that can deal with all of this.
361 * It isn't really the fastest way to fix things, but this is a
362 * very uncommon corner.
364 if (actual_end <= start)
365 goto cleanup_and_bail_uncompressed;
367 total_compressed = actual_end - start;
369 /* we want to make sure that amount of ram required to uncompress
370 * an extent is reasonable, so we limit the total size in ram
371 * of a compressed extent to 128k. This is a crucial number
372 * because it also controls how easily we can spread reads across
373 * cpus for decompression.
375 * We also want to make sure the amount of IO required to do
376 * a random read is reasonably small, so we limit the size of
377 * a compressed extent to 128k.
379 total_compressed = min(total_compressed, max_uncompressed);
380 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
381 num_bytes = max(blocksize, num_bytes);
382 total_in = 0;
383 ret = 0;
386 * we do compression for mount -o compress and when the
387 * inode has not been flagged as nocompress. This flag can
388 * change at any time if we discover bad compression ratios.
390 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
391 (btrfs_test_opt(root, COMPRESS) ||
392 (BTRFS_I(inode)->force_compress) ||
393 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
394 WARN_ON(pages);
395 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
396 BUG_ON(!pages);
398 if (BTRFS_I(inode)->force_compress)
399 compress_type = BTRFS_I(inode)->force_compress;
401 ret = btrfs_compress_pages(compress_type,
402 inode->i_mapping, start,
403 total_compressed, pages,
404 nr_pages, &nr_pages_ret,
405 &total_in,
406 &total_compressed,
407 max_compressed);
409 if (!ret) {
410 unsigned long offset = total_compressed &
411 (PAGE_CACHE_SIZE - 1);
412 struct page *page = pages[nr_pages_ret - 1];
413 char *kaddr;
415 /* zero the tail end of the last page, we might be
416 * sending it down to disk
418 if (offset) {
419 kaddr = kmap_atomic(page, KM_USER0);
420 memset(kaddr + offset, 0,
421 PAGE_CACHE_SIZE - offset);
422 kunmap_atomic(kaddr, KM_USER0);
424 will_compress = 1;
427 if (start == 0) {
428 trans = btrfs_join_transaction(root);
429 BUG_ON(IS_ERR(trans));
430 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
432 /* lets try to make an inline extent */
433 if (ret || total_in < (actual_end - start)) {
434 /* we didn't compress the entire range, try
435 * to make an uncompressed inline extent.
437 ret = cow_file_range_inline(trans, root, inode,
438 start, end, 0, 0, NULL);
439 } else {
440 /* try making a compressed inline extent */
441 ret = cow_file_range_inline(trans, root, inode,
442 start, end,
443 total_compressed,
444 compress_type, pages);
446 if (ret == 0) {
448 * inline extent creation worked, we don't need
449 * to create any more async work items. Unlock
450 * and free up our temp pages.
452 extent_clear_unlock_delalloc(inode,
453 &BTRFS_I(inode)->io_tree,
454 start, end, NULL,
455 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
456 EXTENT_CLEAR_DELALLOC |
457 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
459 btrfs_end_transaction(trans, root);
460 goto free_pages_out;
462 btrfs_end_transaction(trans, root);
465 if (will_compress) {
467 * we aren't doing an inline extent round the compressed size
468 * up to a block size boundary so the allocator does sane
469 * things
471 total_compressed = (total_compressed + blocksize - 1) &
472 ~(blocksize - 1);
475 * one last check to make sure the compression is really a
476 * win, compare the page count read with the blocks on disk
478 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
479 ~(PAGE_CACHE_SIZE - 1);
480 if (total_compressed >= total_in) {
481 will_compress = 0;
482 } else {
483 num_bytes = total_in;
486 if (!will_compress && pages) {
488 * the compression code ran but failed to make things smaller,
489 * free any pages it allocated and our page pointer array
491 for (i = 0; i < nr_pages_ret; i++) {
492 WARN_ON(pages[i]->mapping);
493 page_cache_release(pages[i]);
495 kfree(pages);
496 pages = NULL;
497 total_compressed = 0;
498 nr_pages_ret = 0;
500 /* flag the file so we don't compress in the future */
501 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
502 !(BTRFS_I(inode)->force_compress)) {
503 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
506 if (will_compress) {
507 *num_added += 1;
509 /* the async work queues will take care of doing actual
510 * allocation on disk for these compressed pages,
511 * and will submit them to the elevator.
513 add_async_extent(async_cow, start, num_bytes,
514 total_compressed, pages, nr_pages_ret,
515 compress_type);
517 if (start + num_bytes < end) {
518 start += num_bytes;
519 pages = NULL;
520 cond_resched();
521 goto again;
523 } else {
524 cleanup_and_bail_uncompressed:
526 * No compression, but we still need to write the pages in
527 * the file we've been given so far. redirty the locked
528 * page if it corresponds to our extent and set things up
529 * for the async work queue to run cow_file_range to do
530 * the normal delalloc dance
532 if (page_offset(locked_page) >= start &&
533 page_offset(locked_page) <= end) {
534 __set_page_dirty_nobuffers(locked_page);
535 /* unlocked later on in the async handlers */
537 add_async_extent(async_cow, start, end - start + 1,
538 0, NULL, 0, BTRFS_COMPRESS_NONE);
539 *num_added += 1;
542 out:
543 return 0;
545 free_pages_out:
546 for (i = 0; i < nr_pages_ret; i++) {
547 WARN_ON(pages[i]->mapping);
548 page_cache_release(pages[i]);
550 kfree(pages);
552 goto out;
556 * phase two of compressed writeback. This is the ordered portion
557 * of the code, which only gets called in the order the work was
558 * queued. We walk all the async extents created by compress_file_range
559 * and send them down to the disk.
561 static noinline int submit_compressed_extents(struct inode *inode,
562 struct async_cow *async_cow)
564 struct async_extent *async_extent;
565 u64 alloc_hint = 0;
566 struct btrfs_trans_handle *trans;
567 struct btrfs_key ins;
568 struct extent_map *em;
569 struct btrfs_root *root = BTRFS_I(inode)->root;
570 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
571 struct extent_io_tree *io_tree;
572 int ret = 0;
574 if (list_empty(&async_cow->extents))
575 return 0;
578 while (!list_empty(&async_cow->extents)) {
579 async_extent = list_entry(async_cow->extents.next,
580 struct async_extent, list);
581 list_del(&async_extent->list);
583 io_tree = &BTRFS_I(inode)->io_tree;
585 retry:
586 /* did the compression code fall back to uncompressed IO? */
587 if (!async_extent->pages) {
588 int page_started = 0;
589 unsigned long nr_written = 0;
591 lock_extent(io_tree, async_extent->start,
592 async_extent->start +
593 async_extent->ram_size - 1, GFP_NOFS);
595 /* allocate blocks */
596 ret = cow_file_range(inode, async_cow->locked_page,
597 async_extent->start,
598 async_extent->start +
599 async_extent->ram_size - 1,
600 &page_started, &nr_written, 0);
603 * if page_started, cow_file_range inserted an
604 * inline extent and took care of all the unlocking
605 * and IO for us. Otherwise, we need to submit
606 * all those pages down to the drive.
608 if (!page_started && !ret)
609 extent_write_locked_range(io_tree,
610 inode, async_extent->start,
611 async_extent->start +
612 async_extent->ram_size - 1,
613 btrfs_get_extent,
614 WB_SYNC_ALL);
615 kfree(async_extent);
616 cond_resched();
617 continue;
620 lock_extent(io_tree, async_extent->start,
621 async_extent->start + async_extent->ram_size - 1,
622 GFP_NOFS);
624 trans = btrfs_join_transaction(root);
625 BUG_ON(IS_ERR(trans));
626 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
627 ret = btrfs_reserve_extent(trans, root,
628 async_extent->compressed_size,
629 async_extent->compressed_size,
630 0, alloc_hint,
631 (u64)-1, &ins, 1);
632 btrfs_end_transaction(trans, root);
634 if (ret) {
635 int i;
636 for (i = 0; i < async_extent->nr_pages; i++) {
637 WARN_ON(async_extent->pages[i]->mapping);
638 page_cache_release(async_extent->pages[i]);
640 kfree(async_extent->pages);
641 async_extent->nr_pages = 0;
642 async_extent->pages = NULL;
643 unlock_extent(io_tree, async_extent->start,
644 async_extent->start +
645 async_extent->ram_size - 1, GFP_NOFS);
646 goto retry;
650 * here we're doing allocation and writeback of the
651 * compressed pages
653 btrfs_drop_extent_cache(inode, async_extent->start,
654 async_extent->start +
655 async_extent->ram_size - 1, 0);
657 em = alloc_extent_map();
658 BUG_ON(!em);
659 em->start = async_extent->start;
660 em->len = async_extent->ram_size;
661 em->orig_start = em->start;
663 em->block_start = ins.objectid;
664 em->block_len = ins.offset;
665 em->bdev = root->fs_info->fs_devices->latest_bdev;
666 em->compress_type = async_extent->compress_type;
667 set_bit(EXTENT_FLAG_PINNED, &em->flags);
668 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
670 while (1) {
671 write_lock(&em_tree->lock);
672 ret = add_extent_mapping(em_tree, em);
673 write_unlock(&em_tree->lock);
674 if (ret != -EEXIST) {
675 free_extent_map(em);
676 break;
678 btrfs_drop_extent_cache(inode, async_extent->start,
679 async_extent->start +
680 async_extent->ram_size - 1, 0);
683 ret = btrfs_add_ordered_extent_compress(inode,
684 async_extent->start,
685 ins.objectid,
686 async_extent->ram_size,
687 ins.offset,
688 BTRFS_ORDERED_COMPRESSED,
689 async_extent->compress_type);
690 BUG_ON(ret);
693 * clear dirty, set writeback and unlock the pages.
695 extent_clear_unlock_delalloc(inode,
696 &BTRFS_I(inode)->io_tree,
697 async_extent->start,
698 async_extent->start +
699 async_extent->ram_size - 1,
700 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
701 EXTENT_CLEAR_UNLOCK |
702 EXTENT_CLEAR_DELALLOC |
703 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
705 ret = btrfs_submit_compressed_write(inode,
706 async_extent->start,
707 async_extent->ram_size,
708 ins.objectid,
709 ins.offset, async_extent->pages,
710 async_extent->nr_pages);
712 BUG_ON(ret);
713 alloc_hint = ins.objectid + ins.offset;
714 kfree(async_extent);
715 cond_resched();
718 return 0;
721 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
722 u64 num_bytes)
724 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
725 struct extent_map *em;
726 u64 alloc_hint = 0;
728 read_lock(&em_tree->lock);
729 em = search_extent_mapping(em_tree, start, num_bytes);
730 if (em) {
732 * if block start isn't an actual block number then find the
733 * first block in this inode and use that as a hint. If that
734 * block is also bogus then just don't worry about it.
736 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
737 free_extent_map(em);
738 em = search_extent_mapping(em_tree, 0, 0);
739 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
740 alloc_hint = em->block_start;
741 if (em)
742 free_extent_map(em);
743 } else {
744 alloc_hint = em->block_start;
745 free_extent_map(em);
748 read_unlock(&em_tree->lock);
750 return alloc_hint;
754 * when extent_io.c finds a delayed allocation range in the file,
755 * the call backs end up in this code. The basic idea is to
756 * allocate extents on disk for the range, and create ordered data structs
757 * in ram to track those extents.
759 * locked_page is the page that writepage had locked already. We use
760 * it to make sure we don't do extra locks or unlocks.
762 * *page_started is set to one if we unlock locked_page and do everything
763 * required to start IO on it. It may be clean and already done with
764 * IO when we return.
766 static noinline int cow_file_range(struct inode *inode,
767 struct page *locked_page,
768 u64 start, u64 end, int *page_started,
769 unsigned long *nr_written,
770 int unlock)
772 struct btrfs_root *root = BTRFS_I(inode)->root;
773 struct btrfs_trans_handle *trans;
774 u64 alloc_hint = 0;
775 u64 num_bytes;
776 unsigned long ram_size;
777 u64 disk_num_bytes;
778 u64 cur_alloc_size;
779 u64 blocksize = root->sectorsize;
780 struct btrfs_key ins;
781 struct extent_map *em;
782 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
783 int ret = 0;
785 BUG_ON(btrfs_is_free_space_inode(root, inode));
786 trans = btrfs_join_transaction(root);
787 BUG_ON(IS_ERR(trans));
788 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
790 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
791 num_bytes = max(blocksize, num_bytes);
792 disk_num_bytes = num_bytes;
793 ret = 0;
795 /* if this is a small write inside eof, kick off defrag */
796 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
797 btrfs_add_inode_defrag(trans, inode);
799 if (start == 0) {
800 /* lets try to make an inline extent */
801 ret = cow_file_range_inline(trans, root, inode,
802 start, end, 0, 0, NULL);
803 if (ret == 0) {
804 extent_clear_unlock_delalloc(inode,
805 &BTRFS_I(inode)->io_tree,
806 start, end, NULL,
807 EXTENT_CLEAR_UNLOCK_PAGE |
808 EXTENT_CLEAR_UNLOCK |
809 EXTENT_CLEAR_DELALLOC |
810 EXTENT_CLEAR_DIRTY |
811 EXTENT_SET_WRITEBACK |
812 EXTENT_END_WRITEBACK);
814 *nr_written = *nr_written +
815 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
816 *page_started = 1;
817 ret = 0;
818 goto out;
822 BUG_ON(disk_num_bytes >
823 btrfs_super_total_bytes(&root->fs_info->super_copy));
825 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
826 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
828 while (disk_num_bytes > 0) {
829 unsigned long op;
831 cur_alloc_size = disk_num_bytes;
832 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
833 root->sectorsize, 0, alloc_hint,
834 (u64)-1, &ins, 1);
835 BUG_ON(ret);
837 em = alloc_extent_map();
838 BUG_ON(!em);
839 em->start = start;
840 em->orig_start = em->start;
841 ram_size = ins.offset;
842 em->len = ins.offset;
844 em->block_start = ins.objectid;
845 em->block_len = ins.offset;
846 em->bdev = root->fs_info->fs_devices->latest_bdev;
847 set_bit(EXTENT_FLAG_PINNED, &em->flags);
849 while (1) {
850 write_lock(&em_tree->lock);
851 ret = add_extent_mapping(em_tree, em);
852 write_unlock(&em_tree->lock);
853 if (ret != -EEXIST) {
854 free_extent_map(em);
855 break;
857 btrfs_drop_extent_cache(inode, start,
858 start + ram_size - 1, 0);
861 cur_alloc_size = ins.offset;
862 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
863 ram_size, cur_alloc_size, 0);
864 BUG_ON(ret);
866 if (root->root_key.objectid ==
867 BTRFS_DATA_RELOC_TREE_OBJECTID) {
868 ret = btrfs_reloc_clone_csums(inode, start,
869 cur_alloc_size);
870 BUG_ON(ret);
873 if (disk_num_bytes < cur_alloc_size)
874 break;
876 /* we're not doing compressed IO, don't unlock the first
877 * page (which the caller expects to stay locked), don't
878 * clear any dirty bits and don't set any writeback bits
880 * Do set the Private2 bit so we know this page was properly
881 * setup for writepage
883 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
884 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
885 EXTENT_SET_PRIVATE2;
887 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
888 start, start + ram_size - 1,
889 locked_page, op);
890 disk_num_bytes -= cur_alloc_size;
891 num_bytes -= cur_alloc_size;
892 alloc_hint = ins.objectid + ins.offset;
893 start += cur_alloc_size;
895 out:
896 ret = 0;
897 btrfs_end_transaction(trans, root);
899 return ret;
903 * work queue call back to started compression on a file and pages
905 static noinline void async_cow_start(struct btrfs_work *work)
907 struct async_cow *async_cow;
908 int num_added = 0;
909 async_cow = container_of(work, struct async_cow, work);
911 compress_file_range(async_cow->inode, async_cow->locked_page,
912 async_cow->start, async_cow->end, async_cow,
913 &num_added);
914 if (num_added == 0)
915 async_cow->inode = NULL;
919 * work queue call back to submit previously compressed pages
921 static noinline void async_cow_submit(struct btrfs_work *work)
923 struct async_cow *async_cow;
924 struct btrfs_root *root;
925 unsigned long nr_pages;
927 async_cow = container_of(work, struct async_cow, work);
929 root = async_cow->root;
930 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
931 PAGE_CACHE_SHIFT;
933 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
935 if (atomic_read(&root->fs_info->async_delalloc_pages) <
936 5 * 1042 * 1024 &&
937 waitqueue_active(&root->fs_info->async_submit_wait))
938 wake_up(&root->fs_info->async_submit_wait);
940 if (async_cow->inode)
941 submit_compressed_extents(async_cow->inode, async_cow);
944 static noinline void async_cow_free(struct btrfs_work *work)
946 struct async_cow *async_cow;
947 async_cow = container_of(work, struct async_cow, work);
948 kfree(async_cow);
951 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
952 u64 start, u64 end, int *page_started,
953 unsigned long *nr_written)
955 struct async_cow *async_cow;
956 struct btrfs_root *root = BTRFS_I(inode)->root;
957 unsigned long nr_pages;
958 u64 cur_end;
959 int limit = 10 * 1024 * 1042;
961 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
962 1, 0, NULL, GFP_NOFS);
963 while (start < end) {
964 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
965 BUG_ON(!async_cow);
966 async_cow->inode = inode;
967 async_cow->root = root;
968 async_cow->locked_page = locked_page;
969 async_cow->start = start;
971 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
972 cur_end = end;
973 else
974 cur_end = min(end, start + 512 * 1024 - 1);
976 async_cow->end = cur_end;
977 INIT_LIST_HEAD(&async_cow->extents);
979 async_cow->work.func = async_cow_start;
980 async_cow->work.ordered_func = async_cow_submit;
981 async_cow->work.ordered_free = async_cow_free;
982 async_cow->work.flags = 0;
984 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
985 PAGE_CACHE_SHIFT;
986 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
988 btrfs_queue_worker(&root->fs_info->delalloc_workers,
989 &async_cow->work);
991 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
992 wait_event(root->fs_info->async_submit_wait,
993 (atomic_read(&root->fs_info->async_delalloc_pages) <
994 limit));
997 while (atomic_read(&root->fs_info->async_submit_draining) &&
998 atomic_read(&root->fs_info->async_delalloc_pages)) {
999 wait_event(root->fs_info->async_submit_wait,
1000 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1001 0));
1004 *nr_written += nr_pages;
1005 start = cur_end + 1;
1007 *page_started = 1;
1008 return 0;
1011 static noinline int csum_exist_in_range(struct btrfs_root *root,
1012 u64 bytenr, u64 num_bytes)
1014 int ret;
1015 struct btrfs_ordered_sum *sums;
1016 LIST_HEAD(list);
1018 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1019 bytenr + num_bytes - 1, &list, 0);
1020 if (ret == 0 && list_empty(&list))
1021 return 0;
1023 while (!list_empty(&list)) {
1024 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1025 list_del(&sums->list);
1026 kfree(sums);
1028 return 1;
1032 * when nowcow writeback call back. This checks for snapshots or COW copies
1033 * of the extents that exist in the file, and COWs the file as required.
1035 * If no cow copies or snapshots exist, we write directly to the existing
1036 * blocks on disk
1038 static noinline int run_delalloc_nocow(struct inode *inode,
1039 struct page *locked_page,
1040 u64 start, u64 end, int *page_started, int force,
1041 unsigned long *nr_written)
1043 struct btrfs_root *root = BTRFS_I(inode)->root;
1044 struct btrfs_trans_handle *trans;
1045 struct extent_buffer *leaf;
1046 struct btrfs_path *path;
1047 struct btrfs_file_extent_item *fi;
1048 struct btrfs_key found_key;
1049 u64 cow_start;
1050 u64 cur_offset;
1051 u64 extent_end;
1052 u64 extent_offset;
1053 u64 disk_bytenr;
1054 u64 num_bytes;
1055 int extent_type;
1056 int ret;
1057 int type;
1058 int nocow;
1059 int check_prev = 1;
1060 bool nolock;
1061 u64 ino = btrfs_ino(inode);
1063 path = btrfs_alloc_path();
1064 if (!path)
1065 return -ENOMEM;
1067 nolock = btrfs_is_free_space_inode(root, inode);
1069 if (nolock)
1070 trans = btrfs_join_transaction_nolock(root);
1071 else
1072 trans = btrfs_join_transaction(root);
1074 BUG_ON(IS_ERR(trans));
1075 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1077 cow_start = (u64)-1;
1078 cur_offset = start;
1079 while (1) {
1080 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1081 cur_offset, 0);
1082 BUG_ON(ret < 0);
1083 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1084 leaf = path->nodes[0];
1085 btrfs_item_key_to_cpu(leaf, &found_key,
1086 path->slots[0] - 1);
1087 if (found_key.objectid == ino &&
1088 found_key.type == BTRFS_EXTENT_DATA_KEY)
1089 path->slots[0]--;
1091 check_prev = 0;
1092 next_slot:
1093 leaf = path->nodes[0];
1094 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1095 ret = btrfs_next_leaf(root, path);
1096 if (ret < 0)
1097 BUG_ON(1);
1098 if (ret > 0)
1099 break;
1100 leaf = path->nodes[0];
1103 nocow = 0;
1104 disk_bytenr = 0;
1105 num_bytes = 0;
1106 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1108 if (found_key.objectid > ino ||
1109 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1110 found_key.offset > end)
1111 break;
1113 if (found_key.offset > cur_offset) {
1114 extent_end = found_key.offset;
1115 extent_type = 0;
1116 goto out_check;
1119 fi = btrfs_item_ptr(leaf, path->slots[0],
1120 struct btrfs_file_extent_item);
1121 extent_type = btrfs_file_extent_type(leaf, fi);
1123 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1124 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1125 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1126 extent_offset = btrfs_file_extent_offset(leaf, fi);
1127 extent_end = found_key.offset +
1128 btrfs_file_extent_num_bytes(leaf, fi);
1129 if (extent_end <= start) {
1130 path->slots[0]++;
1131 goto next_slot;
1133 if (disk_bytenr == 0)
1134 goto out_check;
1135 if (btrfs_file_extent_compression(leaf, fi) ||
1136 btrfs_file_extent_encryption(leaf, fi) ||
1137 btrfs_file_extent_other_encoding(leaf, fi))
1138 goto out_check;
1139 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1140 goto out_check;
1141 if (btrfs_extent_readonly(root, disk_bytenr))
1142 goto out_check;
1143 if (btrfs_cross_ref_exist(trans, root, ino,
1144 found_key.offset -
1145 extent_offset, disk_bytenr))
1146 goto out_check;
1147 disk_bytenr += extent_offset;
1148 disk_bytenr += cur_offset - found_key.offset;
1149 num_bytes = min(end + 1, extent_end) - cur_offset;
1151 * force cow if csum exists in the range.
1152 * this ensure that csum for a given extent are
1153 * either valid or do not exist.
1155 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1156 goto out_check;
1157 nocow = 1;
1158 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1159 extent_end = found_key.offset +
1160 btrfs_file_extent_inline_len(leaf, fi);
1161 extent_end = ALIGN(extent_end, root->sectorsize);
1162 } else {
1163 BUG_ON(1);
1165 out_check:
1166 if (extent_end <= start) {
1167 path->slots[0]++;
1168 goto next_slot;
1170 if (!nocow) {
1171 if (cow_start == (u64)-1)
1172 cow_start = cur_offset;
1173 cur_offset = extent_end;
1174 if (cur_offset > end)
1175 break;
1176 path->slots[0]++;
1177 goto next_slot;
1180 btrfs_release_path(path);
1181 if (cow_start != (u64)-1) {
1182 ret = cow_file_range(inode, locked_page, cow_start,
1183 found_key.offset - 1, page_started,
1184 nr_written, 1);
1185 BUG_ON(ret);
1186 cow_start = (u64)-1;
1189 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1190 struct extent_map *em;
1191 struct extent_map_tree *em_tree;
1192 em_tree = &BTRFS_I(inode)->extent_tree;
1193 em = alloc_extent_map();
1194 BUG_ON(!em);
1195 em->start = cur_offset;
1196 em->orig_start = em->start;
1197 em->len = num_bytes;
1198 em->block_len = num_bytes;
1199 em->block_start = disk_bytenr;
1200 em->bdev = root->fs_info->fs_devices->latest_bdev;
1201 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1202 while (1) {
1203 write_lock(&em_tree->lock);
1204 ret = add_extent_mapping(em_tree, em);
1205 write_unlock(&em_tree->lock);
1206 if (ret != -EEXIST) {
1207 free_extent_map(em);
1208 break;
1210 btrfs_drop_extent_cache(inode, em->start,
1211 em->start + em->len - 1, 0);
1213 type = BTRFS_ORDERED_PREALLOC;
1214 } else {
1215 type = BTRFS_ORDERED_NOCOW;
1218 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1219 num_bytes, num_bytes, type);
1220 BUG_ON(ret);
1222 if (root->root_key.objectid ==
1223 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1224 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1225 num_bytes);
1226 BUG_ON(ret);
1229 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1230 cur_offset, cur_offset + num_bytes - 1,
1231 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1232 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1233 EXTENT_SET_PRIVATE2);
1234 cur_offset = extent_end;
1235 if (cur_offset > end)
1236 break;
1238 btrfs_release_path(path);
1240 if (cur_offset <= end && cow_start == (u64)-1)
1241 cow_start = cur_offset;
1242 if (cow_start != (u64)-1) {
1243 ret = cow_file_range(inode, locked_page, cow_start, end,
1244 page_started, nr_written, 1);
1245 BUG_ON(ret);
1248 if (nolock) {
1249 ret = btrfs_end_transaction_nolock(trans, root);
1250 BUG_ON(ret);
1251 } else {
1252 ret = btrfs_end_transaction(trans, root);
1253 BUG_ON(ret);
1255 btrfs_free_path(path);
1256 return 0;
1260 * extent_io.c call back to do delayed allocation processing
1262 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1263 u64 start, u64 end, int *page_started,
1264 unsigned long *nr_written)
1266 int ret;
1267 struct btrfs_root *root = BTRFS_I(inode)->root;
1269 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1270 ret = run_delalloc_nocow(inode, locked_page, start, end,
1271 page_started, 1, nr_written);
1272 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1273 ret = run_delalloc_nocow(inode, locked_page, start, end,
1274 page_started, 0, nr_written);
1275 else if (!btrfs_test_opt(root, COMPRESS) &&
1276 !(BTRFS_I(inode)->force_compress) &&
1277 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1278 ret = cow_file_range(inode, locked_page, start, end,
1279 page_started, nr_written, 1);
1280 else
1281 ret = cow_file_range_async(inode, locked_page, start, end,
1282 page_started, nr_written);
1283 return ret;
1286 static void btrfs_split_extent_hook(struct inode *inode,
1287 struct extent_state *orig, u64 split)
1289 /* not delalloc, ignore it */
1290 if (!(orig->state & EXTENT_DELALLOC))
1291 return;
1293 spin_lock(&BTRFS_I(inode)->lock);
1294 BTRFS_I(inode)->outstanding_extents++;
1295 spin_unlock(&BTRFS_I(inode)->lock);
1299 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1300 * extents so we can keep track of new extents that are just merged onto old
1301 * extents, such as when we are doing sequential writes, so we can properly
1302 * account for the metadata space we'll need.
1304 static void btrfs_merge_extent_hook(struct inode *inode,
1305 struct extent_state *new,
1306 struct extent_state *other)
1308 /* not delalloc, ignore it */
1309 if (!(other->state & EXTENT_DELALLOC))
1310 return;
1312 spin_lock(&BTRFS_I(inode)->lock);
1313 BTRFS_I(inode)->outstanding_extents--;
1314 spin_unlock(&BTRFS_I(inode)->lock);
1318 * extent_io.c set_bit_hook, used to track delayed allocation
1319 * bytes in this file, and to maintain the list of inodes that
1320 * have pending delalloc work to be done.
1322 static void btrfs_set_bit_hook(struct inode *inode,
1323 struct extent_state *state, int *bits)
1327 * set_bit and clear bit hooks normally require _irqsave/restore
1328 * but in this case, we are only testing for the DELALLOC
1329 * bit, which is only set or cleared with irqs on
1331 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1332 struct btrfs_root *root = BTRFS_I(inode)->root;
1333 u64 len = state->end + 1 - state->start;
1334 bool do_list = !btrfs_is_free_space_inode(root, inode);
1336 if (*bits & EXTENT_FIRST_DELALLOC) {
1337 *bits &= ~EXTENT_FIRST_DELALLOC;
1338 } else {
1339 spin_lock(&BTRFS_I(inode)->lock);
1340 BTRFS_I(inode)->outstanding_extents++;
1341 spin_unlock(&BTRFS_I(inode)->lock);
1344 spin_lock(&root->fs_info->delalloc_lock);
1345 BTRFS_I(inode)->delalloc_bytes += len;
1346 root->fs_info->delalloc_bytes += len;
1347 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1348 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1349 &root->fs_info->delalloc_inodes);
1351 spin_unlock(&root->fs_info->delalloc_lock);
1356 * extent_io.c clear_bit_hook, see set_bit_hook for why
1358 static void btrfs_clear_bit_hook(struct inode *inode,
1359 struct extent_state *state, int *bits)
1362 * set_bit and clear bit hooks normally require _irqsave/restore
1363 * but in this case, we are only testing for the DELALLOC
1364 * bit, which is only set or cleared with irqs on
1366 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1367 struct btrfs_root *root = BTRFS_I(inode)->root;
1368 u64 len = state->end + 1 - state->start;
1369 bool do_list = !btrfs_is_free_space_inode(root, inode);
1371 if (*bits & EXTENT_FIRST_DELALLOC) {
1372 *bits &= ~EXTENT_FIRST_DELALLOC;
1373 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1374 spin_lock(&BTRFS_I(inode)->lock);
1375 BTRFS_I(inode)->outstanding_extents--;
1376 spin_unlock(&BTRFS_I(inode)->lock);
1379 if (*bits & EXTENT_DO_ACCOUNTING)
1380 btrfs_delalloc_release_metadata(inode, len);
1382 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1383 && do_list)
1384 btrfs_free_reserved_data_space(inode, len);
1386 spin_lock(&root->fs_info->delalloc_lock);
1387 root->fs_info->delalloc_bytes -= len;
1388 BTRFS_I(inode)->delalloc_bytes -= len;
1390 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1391 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1392 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1394 spin_unlock(&root->fs_info->delalloc_lock);
1399 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1400 * we don't create bios that span stripes or chunks
1402 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1403 size_t size, struct bio *bio,
1404 unsigned long bio_flags)
1406 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1407 struct btrfs_mapping_tree *map_tree;
1408 u64 logical = (u64)bio->bi_sector << 9;
1409 u64 length = 0;
1410 u64 map_length;
1411 int ret;
1413 if (bio_flags & EXTENT_BIO_COMPRESSED)
1414 return 0;
1416 length = bio->bi_size;
1417 map_tree = &root->fs_info->mapping_tree;
1418 map_length = length;
1419 ret = btrfs_map_block(map_tree, READ, logical,
1420 &map_length, NULL, 0);
1422 if (map_length < length + size)
1423 return 1;
1424 return ret;
1428 * in order to insert checksums into the metadata in large chunks,
1429 * we wait until bio submission time. All the pages in the bio are
1430 * checksummed and sums are attached onto the ordered extent record.
1432 * At IO completion time the cums attached on the ordered extent record
1433 * are inserted into the btree
1435 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1436 struct bio *bio, int mirror_num,
1437 unsigned long bio_flags,
1438 u64 bio_offset)
1440 struct btrfs_root *root = BTRFS_I(inode)->root;
1441 int ret = 0;
1443 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1444 BUG_ON(ret);
1445 return 0;
1449 * in order to insert checksums into the metadata in large chunks,
1450 * we wait until bio submission time. All the pages in the bio are
1451 * checksummed and sums are attached onto the ordered extent record.
1453 * At IO completion time the cums attached on the ordered extent record
1454 * are inserted into the btree
1456 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1457 int mirror_num, unsigned long bio_flags,
1458 u64 bio_offset)
1460 struct btrfs_root *root = BTRFS_I(inode)->root;
1461 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1465 * extent_io.c submission hook. This does the right thing for csum calculation
1466 * on write, or reading the csums from the tree before a read
1468 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1469 int mirror_num, unsigned long bio_flags,
1470 u64 bio_offset)
1472 struct btrfs_root *root = BTRFS_I(inode)->root;
1473 int ret = 0;
1474 int skip_sum;
1476 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1478 if (btrfs_is_free_space_inode(root, inode))
1479 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1480 else
1481 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1482 BUG_ON(ret);
1484 if (!(rw & REQ_WRITE)) {
1485 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1486 return btrfs_submit_compressed_read(inode, bio,
1487 mirror_num, bio_flags);
1488 } else if (!skip_sum) {
1489 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1490 if (ret)
1491 return ret;
1493 goto mapit;
1494 } else if (!skip_sum) {
1495 /* csum items have already been cloned */
1496 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1497 goto mapit;
1498 /* we're doing a write, do the async checksumming */
1499 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1500 inode, rw, bio, mirror_num,
1501 bio_flags, bio_offset,
1502 __btrfs_submit_bio_start,
1503 __btrfs_submit_bio_done);
1506 mapit:
1507 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1511 * given a list of ordered sums record them in the inode. This happens
1512 * at IO completion time based on sums calculated at bio submission time.
1514 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1515 struct inode *inode, u64 file_offset,
1516 struct list_head *list)
1518 struct btrfs_ordered_sum *sum;
1520 list_for_each_entry(sum, list, list) {
1521 btrfs_csum_file_blocks(trans,
1522 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1524 return 0;
1527 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1528 struct extent_state **cached_state)
1530 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1531 WARN_ON(1);
1532 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1533 cached_state, GFP_NOFS);
1536 /* see btrfs_writepage_start_hook for details on why this is required */
1537 struct btrfs_writepage_fixup {
1538 struct page *page;
1539 struct btrfs_work work;
1542 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1544 struct btrfs_writepage_fixup *fixup;
1545 struct btrfs_ordered_extent *ordered;
1546 struct extent_state *cached_state = NULL;
1547 struct page *page;
1548 struct inode *inode;
1549 u64 page_start;
1550 u64 page_end;
1552 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1553 page = fixup->page;
1554 again:
1555 lock_page(page);
1556 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1557 ClearPageChecked(page);
1558 goto out_page;
1561 inode = page->mapping->host;
1562 page_start = page_offset(page);
1563 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1565 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1566 &cached_state, GFP_NOFS);
1568 /* already ordered? We're done */
1569 if (PagePrivate2(page))
1570 goto out;
1572 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1573 if (ordered) {
1574 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1575 page_end, &cached_state, GFP_NOFS);
1576 unlock_page(page);
1577 btrfs_start_ordered_extent(inode, ordered, 1);
1578 goto again;
1581 BUG();
1582 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1583 ClearPageChecked(page);
1584 out:
1585 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1586 &cached_state, GFP_NOFS);
1587 out_page:
1588 unlock_page(page);
1589 page_cache_release(page);
1590 kfree(fixup);
1594 * There are a few paths in the higher layers of the kernel that directly
1595 * set the page dirty bit without asking the filesystem if it is a
1596 * good idea. This causes problems because we want to make sure COW
1597 * properly happens and the data=ordered rules are followed.
1599 * In our case any range that doesn't have the ORDERED bit set
1600 * hasn't been properly setup for IO. We kick off an async process
1601 * to fix it up. The async helper will wait for ordered extents, set
1602 * the delalloc bit and make it safe to write the page.
1604 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1606 struct inode *inode = page->mapping->host;
1607 struct btrfs_writepage_fixup *fixup;
1608 struct btrfs_root *root = BTRFS_I(inode)->root;
1610 /* this page is properly in the ordered list */
1611 if (TestClearPagePrivate2(page))
1612 return 0;
1614 if (PageChecked(page))
1615 return -EAGAIN;
1617 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1618 if (!fixup)
1619 return -EAGAIN;
1621 SetPageChecked(page);
1622 page_cache_get(page);
1623 fixup->work.func = btrfs_writepage_fixup_worker;
1624 fixup->page = page;
1625 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1626 return -EAGAIN;
1629 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1630 struct inode *inode, u64 file_pos,
1631 u64 disk_bytenr, u64 disk_num_bytes,
1632 u64 num_bytes, u64 ram_bytes,
1633 u8 compression, u8 encryption,
1634 u16 other_encoding, int extent_type)
1636 struct btrfs_root *root = BTRFS_I(inode)->root;
1637 struct btrfs_file_extent_item *fi;
1638 struct btrfs_path *path;
1639 struct extent_buffer *leaf;
1640 struct btrfs_key ins;
1641 u64 hint;
1642 int ret;
1644 path = btrfs_alloc_path();
1645 if (!path)
1646 return -ENOMEM;
1648 path->leave_spinning = 1;
1651 * we may be replacing one extent in the tree with another.
1652 * The new extent is pinned in the extent map, and we don't want
1653 * to drop it from the cache until it is completely in the btree.
1655 * So, tell btrfs_drop_extents to leave this extent in the cache.
1656 * the caller is expected to unpin it and allow it to be merged
1657 * with the others.
1659 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1660 &hint, 0);
1661 BUG_ON(ret);
1663 ins.objectid = btrfs_ino(inode);
1664 ins.offset = file_pos;
1665 ins.type = BTRFS_EXTENT_DATA_KEY;
1666 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1667 BUG_ON(ret);
1668 leaf = path->nodes[0];
1669 fi = btrfs_item_ptr(leaf, path->slots[0],
1670 struct btrfs_file_extent_item);
1671 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1672 btrfs_set_file_extent_type(leaf, fi, extent_type);
1673 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1674 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1675 btrfs_set_file_extent_offset(leaf, fi, 0);
1676 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1677 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1678 btrfs_set_file_extent_compression(leaf, fi, compression);
1679 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1680 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1682 btrfs_unlock_up_safe(path, 1);
1683 btrfs_set_lock_blocking(leaf);
1685 btrfs_mark_buffer_dirty(leaf);
1687 inode_add_bytes(inode, num_bytes);
1689 ins.objectid = disk_bytenr;
1690 ins.offset = disk_num_bytes;
1691 ins.type = BTRFS_EXTENT_ITEM_KEY;
1692 ret = btrfs_alloc_reserved_file_extent(trans, root,
1693 root->root_key.objectid,
1694 btrfs_ino(inode), file_pos, &ins);
1695 BUG_ON(ret);
1696 btrfs_free_path(path);
1698 return 0;
1702 * helper function for btrfs_finish_ordered_io, this
1703 * just reads in some of the csum leaves to prime them into ram
1704 * before we start the transaction. It limits the amount of btree
1705 * reads required while inside the transaction.
1707 /* as ordered data IO finishes, this gets called so we can finish
1708 * an ordered extent if the range of bytes in the file it covers are
1709 * fully written.
1711 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1713 struct btrfs_root *root = BTRFS_I(inode)->root;
1714 struct btrfs_trans_handle *trans = NULL;
1715 struct btrfs_ordered_extent *ordered_extent = NULL;
1716 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1717 struct extent_state *cached_state = NULL;
1718 int compress_type = 0;
1719 int ret;
1720 bool nolock;
1722 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1723 end - start + 1);
1724 if (!ret)
1725 return 0;
1726 BUG_ON(!ordered_extent);
1728 nolock = btrfs_is_free_space_inode(root, inode);
1730 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1731 BUG_ON(!list_empty(&ordered_extent->list));
1732 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1733 if (!ret) {
1734 if (nolock)
1735 trans = btrfs_join_transaction_nolock(root);
1736 else
1737 trans = btrfs_join_transaction(root);
1738 BUG_ON(IS_ERR(trans));
1739 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1740 ret = btrfs_update_inode(trans, root, inode);
1741 BUG_ON(ret);
1743 goto out;
1746 lock_extent_bits(io_tree, ordered_extent->file_offset,
1747 ordered_extent->file_offset + ordered_extent->len - 1,
1748 0, &cached_state, GFP_NOFS);
1750 if (nolock)
1751 trans = btrfs_join_transaction_nolock(root);
1752 else
1753 trans = btrfs_join_transaction(root);
1754 BUG_ON(IS_ERR(trans));
1755 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1757 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1758 compress_type = ordered_extent->compress_type;
1759 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1760 BUG_ON(compress_type);
1761 ret = btrfs_mark_extent_written(trans, inode,
1762 ordered_extent->file_offset,
1763 ordered_extent->file_offset +
1764 ordered_extent->len);
1765 BUG_ON(ret);
1766 } else {
1767 BUG_ON(root == root->fs_info->tree_root);
1768 ret = insert_reserved_file_extent(trans, inode,
1769 ordered_extent->file_offset,
1770 ordered_extent->start,
1771 ordered_extent->disk_len,
1772 ordered_extent->len,
1773 ordered_extent->len,
1774 compress_type, 0, 0,
1775 BTRFS_FILE_EXTENT_REG);
1776 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1777 ordered_extent->file_offset,
1778 ordered_extent->len);
1779 BUG_ON(ret);
1781 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1782 ordered_extent->file_offset +
1783 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1785 add_pending_csums(trans, inode, ordered_extent->file_offset,
1786 &ordered_extent->list);
1788 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1789 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1790 ret = btrfs_update_inode(trans, root, inode);
1791 BUG_ON(ret);
1793 ret = 0;
1794 out:
1795 if (root != root->fs_info->tree_root)
1796 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1797 if (trans) {
1798 if (nolock)
1799 btrfs_end_transaction_nolock(trans, root);
1800 else
1801 btrfs_end_transaction(trans, root);
1804 /* once for us */
1805 btrfs_put_ordered_extent(ordered_extent);
1806 /* once for the tree */
1807 btrfs_put_ordered_extent(ordered_extent);
1809 return 0;
1812 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1813 struct extent_state *state, int uptodate)
1815 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1817 ClearPagePrivate2(page);
1818 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1822 * When IO fails, either with EIO or csum verification fails, we
1823 * try other mirrors that might have a good copy of the data. This
1824 * io_failure_record is used to record state as we go through all the
1825 * mirrors. If another mirror has good data, the page is set up to date
1826 * and things continue. If a good mirror can't be found, the original
1827 * bio end_io callback is called to indicate things have failed.
1829 struct io_failure_record {
1830 struct page *page;
1831 u64 start;
1832 u64 len;
1833 u64 logical;
1834 unsigned long bio_flags;
1835 int last_mirror;
1838 static int btrfs_io_failed_hook(struct bio *failed_bio,
1839 struct page *page, u64 start, u64 end,
1840 struct extent_state *state)
1842 struct io_failure_record *failrec = NULL;
1843 u64 private;
1844 struct extent_map *em;
1845 struct inode *inode = page->mapping->host;
1846 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1847 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1848 struct bio *bio;
1849 int num_copies;
1850 int ret;
1851 int rw;
1852 u64 logical;
1854 ret = get_state_private(failure_tree, start, &private);
1855 if (ret) {
1856 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1857 if (!failrec)
1858 return -ENOMEM;
1859 failrec->start = start;
1860 failrec->len = end - start + 1;
1861 failrec->last_mirror = 0;
1862 failrec->bio_flags = 0;
1864 read_lock(&em_tree->lock);
1865 em = lookup_extent_mapping(em_tree, start, failrec->len);
1866 if (em->start > start || em->start + em->len < start) {
1867 free_extent_map(em);
1868 em = NULL;
1870 read_unlock(&em_tree->lock);
1872 if (IS_ERR_OR_NULL(em)) {
1873 kfree(failrec);
1874 return -EIO;
1876 logical = start - em->start;
1877 logical = em->block_start + logical;
1878 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1879 logical = em->block_start;
1880 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1881 extent_set_compress_type(&failrec->bio_flags,
1882 em->compress_type);
1884 failrec->logical = logical;
1885 free_extent_map(em);
1886 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1887 EXTENT_DIRTY, GFP_NOFS);
1888 set_state_private(failure_tree, start,
1889 (u64)(unsigned long)failrec);
1890 } else {
1891 failrec = (struct io_failure_record *)(unsigned long)private;
1893 num_copies = btrfs_num_copies(
1894 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1895 failrec->logical, failrec->len);
1896 failrec->last_mirror++;
1897 if (!state) {
1898 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1899 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1900 failrec->start,
1901 EXTENT_LOCKED);
1902 if (state && state->start != failrec->start)
1903 state = NULL;
1904 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1906 if (!state || failrec->last_mirror > num_copies) {
1907 set_state_private(failure_tree, failrec->start, 0);
1908 clear_extent_bits(failure_tree, failrec->start,
1909 failrec->start + failrec->len - 1,
1910 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1911 kfree(failrec);
1912 return -EIO;
1914 bio = bio_alloc(GFP_NOFS, 1);
1915 bio->bi_private = state;
1916 bio->bi_end_io = failed_bio->bi_end_io;
1917 bio->bi_sector = failrec->logical >> 9;
1918 bio->bi_bdev = failed_bio->bi_bdev;
1919 bio->bi_size = 0;
1921 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1922 if (failed_bio->bi_rw & REQ_WRITE)
1923 rw = WRITE;
1924 else
1925 rw = READ;
1927 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1928 failrec->last_mirror,
1929 failrec->bio_flags, 0);
1930 return ret;
1934 * each time an IO finishes, we do a fast check in the IO failure tree
1935 * to see if we need to process or clean up an io_failure_record
1937 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1939 u64 private;
1940 u64 private_failure;
1941 struct io_failure_record *failure;
1942 int ret;
1944 private = 0;
1945 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1946 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1947 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1948 start, &private_failure);
1949 if (ret == 0) {
1950 failure = (struct io_failure_record *)(unsigned long)
1951 private_failure;
1952 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1953 failure->start, 0);
1954 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1955 failure->start,
1956 failure->start + failure->len - 1,
1957 EXTENT_DIRTY | EXTENT_LOCKED,
1958 GFP_NOFS);
1959 kfree(failure);
1962 return 0;
1966 * when reads are done, we need to check csums to verify the data is correct
1967 * if there's a match, we allow the bio to finish. If not, we go through
1968 * the io_failure_record routines to find good copies
1970 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1971 struct extent_state *state)
1973 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1974 struct inode *inode = page->mapping->host;
1975 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1976 char *kaddr;
1977 u64 private = ~(u32)0;
1978 int ret;
1979 struct btrfs_root *root = BTRFS_I(inode)->root;
1980 u32 csum = ~(u32)0;
1982 if (PageChecked(page)) {
1983 ClearPageChecked(page);
1984 goto good;
1987 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1988 goto good;
1990 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1991 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1992 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1993 GFP_NOFS);
1994 return 0;
1997 if (state && state->start == start) {
1998 private = state->private;
1999 ret = 0;
2000 } else {
2001 ret = get_state_private(io_tree, start, &private);
2003 kaddr = kmap_atomic(page, KM_USER0);
2004 if (ret)
2005 goto zeroit;
2007 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2008 btrfs_csum_final(csum, (char *)&csum);
2009 if (csum != private)
2010 goto zeroit;
2012 kunmap_atomic(kaddr, KM_USER0);
2013 good:
2014 /* if the io failure tree for this inode is non-empty,
2015 * check to see if we've recovered from a failed IO
2017 btrfs_clean_io_failures(inode, start);
2018 return 0;
2020 zeroit:
2021 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2022 "private %llu\n",
2023 (unsigned long long)btrfs_ino(page->mapping->host),
2024 (unsigned long long)start, csum,
2025 (unsigned long long)private);
2026 memset(kaddr + offset, 1, end - start + 1);
2027 flush_dcache_page(page);
2028 kunmap_atomic(kaddr, KM_USER0);
2029 if (private == 0)
2030 return 0;
2031 return -EIO;
2034 struct delayed_iput {
2035 struct list_head list;
2036 struct inode *inode;
2039 void btrfs_add_delayed_iput(struct inode *inode)
2041 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2042 struct delayed_iput *delayed;
2044 if (atomic_add_unless(&inode->i_count, -1, 1))
2045 return;
2047 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2048 delayed->inode = inode;
2050 spin_lock(&fs_info->delayed_iput_lock);
2051 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2052 spin_unlock(&fs_info->delayed_iput_lock);
2055 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2057 LIST_HEAD(list);
2058 struct btrfs_fs_info *fs_info = root->fs_info;
2059 struct delayed_iput *delayed;
2060 int empty;
2062 spin_lock(&fs_info->delayed_iput_lock);
2063 empty = list_empty(&fs_info->delayed_iputs);
2064 spin_unlock(&fs_info->delayed_iput_lock);
2065 if (empty)
2066 return;
2068 down_read(&root->fs_info->cleanup_work_sem);
2069 spin_lock(&fs_info->delayed_iput_lock);
2070 list_splice_init(&fs_info->delayed_iputs, &list);
2071 spin_unlock(&fs_info->delayed_iput_lock);
2073 while (!list_empty(&list)) {
2074 delayed = list_entry(list.next, struct delayed_iput, list);
2075 list_del(&delayed->list);
2076 iput(delayed->inode);
2077 kfree(delayed);
2079 up_read(&root->fs_info->cleanup_work_sem);
2082 enum btrfs_orphan_cleanup_state {
2083 ORPHAN_CLEANUP_STARTED = 1,
2084 ORPHAN_CLEANUP_DONE = 2,
2088 * This is called in transaction commmit time. If there are no orphan
2089 * files in the subvolume, it removes orphan item and frees block_rsv
2090 * structure.
2092 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2093 struct btrfs_root *root)
2095 int ret;
2097 if (!list_empty(&root->orphan_list) ||
2098 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2099 return;
2101 if (root->orphan_item_inserted &&
2102 btrfs_root_refs(&root->root_item) > 0) {
2103 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2104 root->root_key.objectid);
2105 BUG_ON(ret);
2106 root->orphan_item_inserted = 0;
2109 if (root->orphan_block_rsv) {
2110 WARN_ON(root->orphan_block_rsv->size > 0);
2111 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2112 root->orphan_block_rsv = NULL;
2117 * This creates an orphan entry for the given inode in case something goes
2118 * wrong in the middle of an unlink/truncate.
2120 * NOTE: caller of this function should reserve 5 units of metadata for
2121 * this function.
2123 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2125 struct btrfs_root *root = BTRFS_I(inode)->root;
2126 struct btrfs_block_rsv *block_rsv = NULL;
2127 int reserve = 0;
2128 int insert = 0;
2129 int ret;
2131 if (!root->orphan_block_rsv) {
2132 block_rsv = btrfs_alloc_block_rsv(root);
2133 if (!block_rsv)
2134 return -ENOMEM;
2137 spin_lock(&root->orphan_lock);
2138 if (!root->orphan_block_rsv) {
2139 root->orphan_block_rsv = block_rsv;
2140 } else if (block_rsv) {
2141 btrfs_free_block_rsv(root, block_rsv);
2142 block_rsv = NULL;
2145 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2146 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2147 #if 0
2149 * For proper ENOSPC handling, we should do orphan
2150 * cleanup when mounting. But this introduces backward
2151 * compatibility issue.
2153 if (!xchg(&root->orphan_item_inserted, 1))
2154 insert = 2;
2155 else
2156 insert = 1;
2157 #endif
2158 insert = 1;
2161 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2162 BTRFS_I(inode)->orphan_meta_reserved = 1;
2163 reserve = 1;
2165 spin_unlock(&root->orphan_lock);
2167 /* grab metadata reservation from transaction handle */
2168 if (reserve) {
2169 ret = btrfs_orphan_reserve_metadata(trans, inode);
2170 BUG_ON(ret);
2173 /* insert an orphan item to track this unlinked/truncated file */
2174 if (insert >= 1) {
2175 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2176 BUG_ON(ret);
2179 /* insert an orphan item to track subvolume contains orphan files */
2180 if (insert >= 2) {
2181 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2182 root->root_key.objectid);
2183 BUG_ON(ret);
2185 return 0;
2189 * We have done the truncate/delete so we can go ahead and remove the orphan
2190 * item for this particular inode.
2192 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2194 struct btrfs_root *root = BTRFS_I(inode)->root;
2195 int delete_item = 0;
2196 int release_rsv = 0;
2197 int ret = 0;
2199 spin_lock(&root->orphan_lock);
2200 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2201 list_del_init(&BTRFS_I(inode)->i_orphan);
2202 delete_item = 1;
2205 if (BTRFS_I(inode)->orphan_meta_reserved) {
2206 BTRFS_I(inode)->orphan_meta_reserved = 0;
2207 release_rsv = 1;
2209 spin_unlock(&root->orphan_lock);
2211 if (trans && delete_item) {
2212 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2213 BUG_ON(ret);
2216 if (release_rsv)
2217 btrfs_orphan_release_metadata(inode);
2219 return 0;
2223 * this cleans up any orphans that may be left on the list from the last use
2224 * of this root.
2226 int btrfs_orphan_cleanup(struct btrfs_root *root)
2228 struct btrfs_path *path;
2229 struct extent_buffer *leaf;
2230 struct btrfs_key key, found_key;
2231 struct btrfs_trans_handle *trans;
2232 struct inode *inode;
2233 u64 last_objectid = 0;
2234 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2236 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2237 return 0;
2239 path = btrfs_alloc_path();
2240 if (!path) {
2241 ret = -ENOMEM;
2242 goto out;
2244 path->reada = -1;
2246 key.objectid = BTRFS_ORPHAN_OBJECTID;
2247 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2248 key.offset = (u64)-1;
2250 while (1) {
2251 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2252 if (ret < 0)
2253 goto out;
2256 * if ret == 0 means we found what we were searching for, which
2257 * is weird, but possible, so only screw with path if we didn't
2258 * find the key and see if we have stuff that matches
2260 if (ret > 0) {
2261 ret = 0;
2262 if (path->slots[0] == 0)
2263 break;
2264 path->slots[0]--;
2267 /* pull out the item */
2268 leaf = path->nodes[0];
2269 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2271 /* make sure the item matches what we want */
2272 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2273 break;
2274 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2275 break;
2277 /* release the path since we're done with it */
2278 btrfs_release_path(path);
2281 * this is where we are basically btrfs_lookup, without the
2282 * crossing root thing. we store the inode number in the
2283 * offset of the orphan item.
2286 if (found_key.offset == last_objectid) {
2287 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2288 "stopping orphan cleanup\n");
2289 ret = -EINVAL;
2290 goto out;
2293 last_objectid = found_key.offset;
2295 found_key.objectid = found_key.offset;
2296 found_key.type = BTRFS_INODE_ITEM_KEY;
2297 found_key.offset = 0;
2298 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2299 ret = PTR_RET(inode);
2300 if (ret && ret != -ESTALE)
2301 goto out;
2304 * Inode is already gone but the orphan item is still there,
2305 * kill the orphan item.
2307 if (ret == -ESTALE) {
2308 trans = btrfs_start_transaction(root, 1);
2309 if (IS_ERR(trans)) {
2310 ret = PTR_ERR(trans);
2311 goto out;
2313 ret = btrfs_del_orphan_item(trans, root,
2314 found_key.objectid);
2315 BUG_ON(ret);
2316 btrfs_end_transaction(trans, root);
2317 continue;
2321 * add this inode to the orphan list so btrfs_orphan_del does
2322 * the proper thing when we hit it
2324 spin_lock(&root->orphan_lock);
2325 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2326 spin_unlock(&root->orphan_lock);
2328 /* if we have links, this was a truncate, lets do that */
2329 if (inode->i_nlink) {
2330 if (!S_ISREG(inode->i_mode)) {
2331 WARN_ON(1);
2332 iput(inode);
2333 continue;
2335 nr_truncate++;
2336 ret = btrfs_truncate(inode);
2337 } else {
2338 nr_unlink++;
2341 /* this will do delete_inode and everything for us */
2342 iput(inode);
2343 if (ret)
2344 goto out;
2346 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2348 if (root->orphan_block_rsv)
2349 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2350 (u64)-1);
2352 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2353 trans = btrfs_join_transaction(root);
2354 if (!IS_ERR(trans))
2355 btrfs_end_transaction(trans, root);
2358 if (nr_unlink)
2359 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2360 if (nr_truncate)
2361 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2363 out:
2364 if (ret)
2365 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2366 btrfs_free_path(path);
2367 return ret;
2371 * very simple check to peek ahead in the leaf looking for xattrs. If we
2372 * don't find any xattrs, we know there can't be any acls.
2374 * slot is the slot the inode is in, objectid is the objectid of the inode
2376 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2377 int slot, u64 objectid)
2379 u32 nritems = btrfs_header_nritems(leaf);
2380 struct btrfs_key found_key;
2381 int scanned = 0;
2383 slot++;
2384 while (slot < nritems) {
2385 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2387 /* we found a different objectid, there must not be acls */
2388 if (found_key.objectid != objectid)
2389 return 0;
2391 /* we found an xattr, assume we've got an acl */
2392 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2393 return 1;
2396 * we found a key greater than an xattr key, there can't
2397 * be any acls later on
2399 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2400 return 0;
2402 slot++;
2403 scanned++;
2406 * it goes inode, inode backrefs, xattrs, extents,
2407 * so if there are a ton of hard links to an inode there can
2408 * be a lot of backrefs. Don't waste time searching too hard,
2409 * this is just an optimization
2411 if (scanned >= 8)
2412 break;
2414 /* we hit the end of the leaf before we found an xattr or
2415 * something larger than an xattr. We have to assume the inode
2416 * has acls
2418 return 1;
2422 * read an inode from the btree into the in-memory inode
2424 static void btrfs_read_locked_inode(struct inode *inode)
2426 struct btrfs_path *path;
2427 struct extent_buffer *leaf;
2428 struct btrfs_inode_item *inode_item;
2429 struct btrfs_timespec *tspec;
2430 struct btrfs_root *root = BTRFS_I(inode)->root;
2431 struct btrfs_key location;
2432 int maybe_acls;
2433 u32 rdev;
2434 int ret;
2435 bool filled = false;
2437 ret = btrfs_fill_inode(inode, &rdev);
2438 if (!ret)
2439 filled = true;
2441 path = btrfs_alloc_path();
2442 if (!path)
2443 goto make_bad;
2445 path->leave_spinning = 1;
2446 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2448 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2449 if (ret)
2450 goto make_bad;
2452 leaf = path->nodes[0];
2454 if (filled)
2455 goto cache_acl;
2457 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2458 struct btrfs_inode_item);
2459 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2460 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2461 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2462 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2463 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2465 tspec = btrfs_inode_atime(inode_item);
2466 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2467 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2469 tspec = btrfs_inode_mtime(inode_item);
2470 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2471 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2473 tspec = btrfs_inode_ctime(inode_item);
2474 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2475 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2477 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2478 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2479 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2480 inode->i_generation = BTRFS_I(inode)->generation;
2481 inode->i_rdev = 0;
2482 rdev = btrfs_inode_rdev(leaf, inode_item);
2484 BTRFS_I(inode)->index_cnt = (u64)-1;
2485 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2486 cache_acl:
2488 * try to precache a NULL acl entry for files that don't have
2489 * any xattrs or acls
2491 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2492 btrfs_ino(inode));
2493 if (!maybe_acls)
2494 cache_no_acl(inode);
2496 btrfs_free_path(path);
2498 switch (inode->i_mode & S_IFMT) {
2499 case S_IFREG:
2500 inode->i_mapping->a_ops = &btrfs_aops;
2501 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2502 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2503 inode->i_fop = &btrfs_file_operations;
2504 inode->i_op = &btrfs_file_inode_operations;
2505 break;
2506 case S_IFDIR:
2507 inode->i_fop = &btrfs_dir_file_operations;
2508 if (root == root->fs_info->tree_root)
2509 inode->i_op = &btrfs_dir_ro_inode_operations;
2510 else
2511 inode->i_op = &btrfs_dir_inode_operations;
2512 break;
2513 case S_IFLNK:
2514 inode->i_op = &btrfs_symlink_inode_operations;
2515 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2516 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2517 break;
2518 default:
2519 inode->i_op = &btrfs_special_inode_operations;
2520 init_special_inode(inode, inode->i_mode, rdev);
2521 break;
2524 btrfs_update_iflags(inode);
2525 return;
2527 make_bad:
2528 btrfs_free_path(path);
2529 make_bad_inode(inode);
2533 * given a leaf and an inode, copy the inode fields into the leaf
2535 static void fill_inode_item(struct btrfs_trans_handle *trans,
2536 struct extent_buffer *leaf,
2537 struct btrfs_inode_item *item,
2538 struct inode *inode)
2540 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2541 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2542 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2543 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2544 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2546 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2547 inode->i_atime.tv_sec);
2548 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2549 inode->i_atime.tv_nsec);
2551 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2552 inode->i_mtime.tv_sec);
2553 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2554 inode->i_mtime.tv_nsec);
2556 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2557 inode->i_ctime.tv_sec);
2558 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2559 inode->i_ctime.tv_nsec);
2561 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2562 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2563 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2564 btrfs_set_inode_transid(leaf, item, trans->transid);
2565 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2566 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2567 btrfs_set_inode_block_group(leaf, item, 0);
2571 * copy everything in the in-memory inode into the btree.
2573 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2574 struct btrfs_root *root, struct inode *inode)
2576 struct btrfs_inode_item *inode_item;
2577 struct btrfs_path *path;
2578 struct extent_buffer *leaf;
2579 int ret;
2582 * If the inode is a free space inode, we can deadlock during commit
2583 * if we put it into the delayed code.
2585 * The data relocation inode should also be directly updated
2586 * without delay
2588 if (!btrfs_is_free_space_inode(root, inode)
2589 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2590 ret = btrfs_delayed_update_inode(trans, root, inode);
2591 if (!ret)
2592 btrfs_set_inode_last_trans(trans, inode);
2593 return ret;
2596 path = btrfs_alloc_path();
2597 if (!path)
2598 return -ENOMEM;
2600 path->leave_spinning = 1;
2601 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2603 if (ret) {
2604 if (ret > 0)
2605 ret = -ENOENT;
2606 goto failed;
2609 btrfs_unlock_up_safe(path, 1);
2610 leaf = path->nodes[0];
2611 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2612 struct btrfs_inode_item);
2614 fill_inode_item(trans, leaf, inode_item, inode);
2615 btrfs_mark_buffer_dirty(leaf);
2616 btrfs_set_inode_last_trans(trans, inode);
2617 ret = 0;
2618 failed:
2619 btrfs_free_path(path);
2620 return ret;
2624 * unlink helper that gets used here in inode.c and in the tree logging
2625 * recovery code. It remove a link in a directory with a given name, and
2626 * also drops the back refs in the inode to the directory
2628 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2629 struct btrfs_root *root,
2630 struct inode *dir, struct inode *inode,
2631 const char *name, int name_len)
2633 struct btrfs_path *path;
2634 int ret = 0;
2635 struct extent_buffer *leaf;
2636 struct btrfs_dir_item *di;
2637 struct btrfs_key key;
2638 u64 index;
2639 u64 ino = btrfs_ino(inode);
2640 u64 dir_ino = btrfs_ino(dir);
2642 path = btrfs_alloc_path();
2643 if (!path) {
2644 ret = -ENOMEM;
2645 goto out;
2648 path->leave_spinning = 1;
2649 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2650 name, name_len, -1);
2651 if (IS_ERR(di)) {
2652 ret = PTR_ERR(di);
2653 goto err;
2655 if (!di) {
2656 ret = -ENOENT;
2657 goto err;
2659 leaf = path->nodes[0];
2660 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2661 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2662 if (ret)
2663 goto err;
2664 btrfs_release_path(path);
2666 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2667 dir_ino, &index);
2668 if (ret) {
2669 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2670 "inode %llu parent %llu\n", name_len, name,
2671 (unsigned long long)ino, (unsigned long long)dir_ino);
2672 goto err;
2675 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2676 if (ret)
2677 goto err;
2679 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2680 inode, dir_ino);
2681 BUG_ON(ret != 0 && ret != -ENOENT);
2683 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2684 dir, index);
2685 if (ret == -ENOENT)
2686 ret = 0;
2687 err:
2688 btrfs_free_path(path);
2689 if (ret)
2690 goto out;
2692 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2693 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2694 btrfs_update_inode(trans, root, dir);
2695 out:
2696 return ret;
2699 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2700 struct btrfs_root *root,
2701 struct inode *dir, struct inode *inode,
2702 const char *name, int name_len)
2704 int ret;
2705 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2706 if (!ret) {
2707 btrfs_drop_nlink(inode);
2708 ret = btrfs_update_inode(trans, root, inode);
2710 return ret;
2714 /* helper to check if there is any shared block in the path */
2715 static int check_path_shared(struct btrfs_root *root,
2716 struct btrfs_path *path)
2718 struct extent_buffer *eb;
2719 int level;
2720 u64 refs = 1;
2722 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2723 int ret;
2725 if (!path->nodes[level])
2726 break;
2727 eb = path->nodes[level];
2728 if (!btrfs_block_can_be_shared(root, eb))
2729 continue;
2730 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2731 &refs, NULL);
2732 if (refs > 1)
2733 return 1;
2735 return 0;
2739 * helper to start transaction for unlink and rmdir.
2741 * unlink and rmdir are special in btrfs, they do not always free space.
2742 * so in enospc case, we should make sure they will free space before
2743 * allowing them to use the global metadata reservation.
2745 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2746 struct dentry *dentry)
2748 struct btrfs_trans_handle *trans;
2749 struct btrfs_root *root = BTRFS_I(dir)->root;
2750 struct btrfs_path *path;
2751 struct btrfs_inode_ref *ref;
2752 struct btrfs_dir_item *di;
2753 struct inode *inode = dentry->d_inode;
2754 u64 index;
2755 int check_link = 1;
2756 int err = -ENOSPC;
2757 int ret;
2758 u64 ino = btrfs_ino(inode);
2759 u64 dir_ino = btrfs_ino(dir);
2762 * 1 for the possible orphan item
2763 * 1 for the dir item
2764 * 1 for the dir index
2765 * 1 for the inode ref
2766 * 1 for the inode ref in the tree log
2767 * 2 for the dir entries in the log
2768 * 1 for the inode
2770 trans = btrfs_start_transaction(root, 8);
2771 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2772 return trans;
2774 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2775 return ERR_PTR(-ENOSPC);
2777 /* check if there is someone else holds reference */
2778 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2779 return ERR_PTR(-ENOSPC);
2781 if (atomic_read(&inode->i_count) > 2)
2782 return ERR_PTR(-ENOSPC);
2784 if (xchg(&root->fs_info->enospc_unlink, 1))
2785 return ERR_PTR(-ENOSPC);
2787 path = btrfs_alloc_path();
2788 if (!path) {
2789 root->fs_info->enospc_unlink = 0;
2790 return ERR_PTR(-ENOMEM);
2793 trans = btrfs_start_transaction(root, 0);
2794 if (IS_ERR(trans)) {
2795 btrfs_free_path(path);
2796 root->fs_info->enospc_unlink = 0;
2797 return trans;
2800 path->skip_locking = 1;
2801 path->search_commit_root = 1;
2803 ret = btrfs_lookup_inode(trans, root, path,
2804 &BTRFS_I(dir)->location, 0);
2805 if (ret < 0) {
2806 err = ret;
2807 goto out;
2809 if (ret == 0) {
2810 if (check_path_shared(root, path))
2811 goto out;
2812 } else {
2813 check_link = 0;
2815 btrfs_release_path(path);
2817 ret = btrfs_lookup_inode(trans, root, path,
2818 &BTRFS_I(inode)->location, 0);
2819 if (ret < 0) {
2820 err = ret;
2821 goto out;
2823 if (ret == 0) {
2824 if (check_path_shared(root, path))
2825 goto out;
2826 } else {
2827 check_link = 0;
2829 btrfs_release_path(path);
2831 if (ret == 0 && S_ISREG(inode->i_mode)) {
2832 ret = btrfs_lookup_file_extent(trans, root, path,
2833 ino, (u64)-1, 0);
2834 if (ret < 0) {
2835 err = ret;
2836 goto out;
2838 BUG_ON(ret == 0);
2839 if (check_path_shared(root, path))
2840 goto out;
2841 btrfs_release_path(path);
2844 if (!check_link) {
2845 err = 0;
2846 goto out;
2849 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2850 dentry->d_name.name, dentry->d_name.len, 0);
2851 if (IS_ERR(di)) {
2852 err = PTR_ERR(di);
2853 goto out;
2855 if (di) {
2856 if (check_path_shared(root, path))
2857 goto out;
2858 } else {
2859 err = 0;
2860 goto out;
2862 btrfs_release_path(path);
2864 ref = btrfs_lookup_inode_ref(trans, root, path,
2865 dentry->d_name.name, dentry->d_name.len,
2866 ino, dir_ino, 0);
2867 if (IS_ERR(ref)) {
2868 err = PTR_ERR(ref);
2869 goto out;
2871 BUG_ON(!ref);
2872 if (check_path_shared(root, path))
2873 goto out;
2874 index = btrfs_inode_ref_index(path->nodes[0], ref);
2875 btrfs_release_path(path);
2878 * This is a commit root search, if we can lookup inode item and other
2879 * relative items in the commit root, it means the transaction of
2880 * dir/file creation has been committed, and the dir index item that we
2881 * delay to insert has also been inserted into the commit root. So
2882 * we needn't worry about the delayed insertion of the dir index item
2883 * here.
2885 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
2886 dentry->d_name.name, dentry->d_name.len, 0);
2887 if (IS_ERR(di)) {
2888 err = PTR_ERR(di);
2889 goto out;
2891 BUG_ON(ret == -ENOENT);
2892 if (check_path_shared(root, path))
2893 goto out;
2895 err = 0;
2896 out:
2897 btrfs_free_path(path);
2898 if (err) {
2899 btrfs_end_transaction(trans, root);
2900 root->fs_info->enospc_unlink = 0;
2901 return ERR_PTR(err);
2904 trans->block_rsv = &root->fs_info->global_block_rsv;
2905 return trans;
2908 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2909 struct btrfs_root *root)
2911 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2912 BUG_ON(!root->fs_info->enospc_unlink);
2913 root->fs_info->enospc_unlink = 0;
2915 btrfs_end_transaction_throttle(trans, root);
2918 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2920 struct btrfs_root *root = BTRFS_I(dir)->root;
2921 struct btrfs_trans_handle *trans;
2922 struct inode *inode = dentry->d_inode;
2923 int ret;
2924 unsigned long nr = 0;
2926 trans = __unlink_start_trans(dir, dentry);
2927 if (IS_ERR(trans))
2928 return PTR_ERR(trans);
2930 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2932 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2933 dentry->d_name.name, dentry->d_name.len);
2934 if (ret)
2935 goto out;
2937 if (inode->i_nlink == 0) {
2938 ret = btrfs_orphan_add(trans, inode);
2939 if (ret)
2940 goto out;
2943 out:
2944 nr = trans->blocks_used;
2945 __unlink_end_trans(trans, root);
2946 btrfs_btree_balance_dirty(root, nr);
2947 return ret;
2950 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2951 struct btrfs_root *root,
2952 struct inode *dir, u64 objectid,
2953 const char *name, int name_len)
2955 struct btrfs_path *path;
2956 struct extent_buffer *leaf;
2957 struct btrfs_dir_item *di;
2958 struct btrfs_key key;
2959 u64 index;
2960 int ret;
2961 u64 dir_ino = btrfs_ino(dir);
2963 path = btrfs_alloc_path();
2964 if (!path)
2965 return -ENOMEM;
2967 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2968 name, name_len, -1);
2969 BUG_ON(IS_ERR_OR_NULL(di));
2971 leaf = path->nodes[0];
2972 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2973 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2974 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2975 BUG_ON(ret);
2976 btrfs_release_path(path);
2978 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2979 objectid, root->root_key.objectid,
2980 dir_ino, &index, name, name_len);
2981 if (ret < 0) {
2982 BUG_ON(ret != -ENOENT);
2983 di = btrfs_search_dir_index_item(root, path, dir_ino,
2984 name, name_len);
2985 BUG_ON(IS_ERR_OR_NULL(di));
2987 leaf = path->nodes[0];
2988 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2989 btrfs_release_path(path);
2990 index = key.offset;
2992 btrfs_release_path(path);
2994 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2995 BUG_ON(ret);
2997 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2998 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2999 ret = btrfs_update_inode(trans, root, dir);
3000 BUG_ON(ret);
3002 btrfs_free_path(path);
3003 return 0;
3006 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3008 struct inode *inode = dentry->d_inode;
3009 int err = 0;
3010 struct btrfs_root *root = BTRFS_I(dir)->root;
3011 struct btrfs_trans_handle *trans;
3012 unsigned long nr = 0;
3014 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3015 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3016 return -ENOTEMPTY;
3018 trans = __unlink_start_trans(dir, dentry);
3019 if (IS_ERR(trans))
3020 return PTR_ERR(trans);
3022 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3023 err = btrfs_unlink_subvol(trans, root, dir,
3024 BTRFS_I(inode)->location.objectid,
3025 dentry->d_name.name,
3026 dentry->d_name.len);
3027 goto out;
3030 err = btrfs_orphan_add(trans, inode);
3031 if (err)
3032 goto out;
3034 /* now the directory is empty */
3035 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3036 dentry->d_name.name, dentry->d_name.len);
3037 if (!err)
3038 btrfs_i_size_write(inode, 0);
3039 out:
3040 nr = trans->blocks_used;
3041 __unlink_end_trans(trans, root);
3042 btrfs_btree_balance_dirty(root, nr);
3044 return err;
3048 * this can truncate away extent items, csum items and directory items.
3049 * It starts at a high offset and removes keys until it can't find
3050 * any higher than new_size
3052 * csum items that cross the new i_size are truncated to the new size
3053 * as well.
3055 * min_type is the minimum key type to truncate down to. If set to 0, this
3056 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3058 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3059 struct btrfs_root *root,
3060 struct inode *inode,
3061 u64 new_size, u32 min_type)
3063 struct btrfs_path *path;
3064 struct extent_buffer *leaf;
3065 struct btrfs_file_extent_item *fi;
3066 struct btrfs_key key;
3067 struct btrfs_key found_key;
3068 u64 extent_start = 0;
3069 u64 extent_num_bytes = 0;
3070 u64 extent_offset = 0;
3071 u64 item_end = 0;
3072 u64 mask = root->sectorsize - 1;
3073 u32 found_type = (u8)-1;
3074 int found_extent;
3075 int del_item;
3076 int pending_del_nr = 0;
3077 int pending_del_slot = 0;
3078 int extent_type = -1;
3079 int encoding;
3080 int ret;
3081 int err = 0;
3082 u64 ino = btrfs_ino(inode);
3084 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3086 path = btrfs_alloc_path();
3087 if (!path)
3088 return -ENOMEM;
3089 path->reada = -1;
3091 if (root->ref_cows || root == root->fs_info->tree_root)
3092 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3095 * This function is also used to drop the items in the log tree before
3096 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3097 * it is used to drop the loged items. So we shouldn't kill the delayed
3098 * items.
3100 if (min_type == 0 && root == BTRFS_I(inode)->root)
3101 btrfs_kill_delayed_inode_items(inode);
3103 key.objectid = ino;
3104 key.offset = (u64)-1;
3105 key.type = (u8)-1;
3107 search_again:
3108 path->leave_spinning = 1;
3109 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3110 if (ret < 0) {
3111 err = ret;
3112 goto out;
3115 if (ret > 0) {
3116 /* there are no items in the tree for us to truncate, we're
3117 * done
3119 if (path->slots[0] == 0)
3120 goto out;
3121 path->slots[0]--;
3124 while (1) {
3125 fi = NULL;
3126 leaf = path->nodes[0];
3127 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3128 found_type = btrfs_key_type(&found_key);
3129 encoding = 0;
3131 if (found_key.objectid != ino)
3132 break;
3134 if (found_type < min_type)
3135 break;
3137 item_end = found_key.offset;
3138 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3139 fi = btrfs_item_ptr(leaf, path->slots[0],
3140 struct btrfs_file_extent_item);
3141 extent_type = btrfs_file_extent_type(leaf, fi);
3142 encoding = btrfs_file_extent_compression(leaf, fi);
3143 encoding |= btrfs_file_extent_encryption(leaf, fi);
3144 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3146 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3147 item_end +=
3148 btrfs_file_extent_num_bytes(leaf, fi);
3149 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3150 item_end += btrfs_file_extent_inline_len(leaf,
3151 fi);
3153 item_end--;
3155 if (found_type > min_type) {
3156 del_item = 1;
3157 } else {
3158 if (item_end < new_size)
3159 break;
3160 if (found_key.offset >= new_size)
3161 del_item = 1;
3162 else
3163 del_item = 0;
3165 found_extent = 0;
3166 /* FIXME, shrink the extent if the ref count is only 1 */
3167 if (found_type != BTRFS_EXTENT_DATA_KEY)
3168 goto delete;
3170 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3171 u64 num_dec;
3172 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3173 if (!del_item && !encoding) {
3174 u64 orig_num_bytes =
3175 btrfs_file_extent_num_bytes(leaf, fi);
3176 extent_num_bytes = new_size -
3177 found_key.offset + root->sectorsize - 1;
3178 extent_num_bytes = extent_num_bytes &
3179 ~((u64)root->sectorsize - 1);
3180 btrfs_set_file_extent_num_bytes(leaf, fi,
3181 extent_num_bytes);
3182 num_dec = (orig_num_bytes -
3183 extent_num_bytes);
3184 if (root->ref_cows && extent_start != 0)
3185 inode_sub_bytes(inode, num_dec);
3186 btrfs_mark_buffer_dirty(leaf);
3187 } else {
3188 extent_num_bytes =
3189 btrfs_file_extent_disk_num_bytes(leaf,
3190 fi);
3191 extent_offset = found_key.offset -
3192 btrfs_file_extent_offset(leaf, fi);
3194 /* FIXME blocksize != 4096 */
3195 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3196 if (extent_start != 0) {
3197 found_extent = 1;
3198 if (root->ref_cows)
3199 inode_sub_bytes(inode, num_dec);
3202 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3204 * we can't truncate inline items that have had
3205 * special encodings
3207 if (!del_item &&
3208 btrfs_file_extent_compression(leaf, fi) == 0 &&
3209 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3210 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3211 u32 size = new_size - found_key.offset;
3213 if (root->ref_cows) {
3214 inode_sub_bytes(inode, item_end + 1 -
3215 new_size);
3217 size =
3218 btrfs_file_extent_calc_inline_size(size);
3219 ret = btrfs_truncate_item(trans, root, path,
3220 size, 1);
3221 } else if (root->ref_cows) {
3222 inode_sub_bytes(inode, item_end + 1 -
3223 found_key.offset);
3226 delete:
3227 if (del_item) {
3228 if (!pending_del_nr) {
3229 /* no pending yet, add ourselves */
3230 pending_del_slot = path->slots[0];
3231 pending_del_nr = 1;
3232 } else if (pending_del_nr &&
3233 path->slots[0] + 1 == pending_del_slot) {
3234 /* hop on the pending chunk */
3235 pending_del_nr++;
3236 pending_del_slot = path->slots[0];
3237 } else {
3238 BUG();
3240 } else {
3241 break;
3243 if (found_extent && (root->ref_cows ||
3244 root == root->fs_info->tree_root)) {
3245 btrfs_set_path_blocking(path);
3246 ret = btrfs_free_extent(trans, root, extent_start,
3247 extent_num_bytes, 0,
3248 btrfs_header_owner(leaf),
3249 ino, extent_offset);
3250 BUG_ON(ret);
3253 if (found_type == BTRFS_INODE_ITEM_KEY)
3254 break;
3256 if (path->slots[0] == 0 ||
3257 path->slots[0] != pending_del_slot) {
3258 if (root->ref_cows &&
3259 BTRFS_I(inode)->location.objectid !=
3260 BTRFS_FREE_INO_OBJECTID) {
3261 err = -EAGAIN;
3262 goto out;
3264 if (pending_del_nr) {
3265 ret = btrfs_del_items(trans, root, path,
3266 pending_del_slot,
3267 pending_del_nr);
3268 BUG_ON(ret);
3269 pending_del_nr = 0;
3271 btrfs_release_path(path);
3272 goto search_again;
3273 } else {
3274 path->slots[0]--;
3277 out:
3278 if (pending_del_nr) {
3279 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3280 pending_del_nr);
3281 BUG_ON(ret);
3283 btrfs_free_path(path);
3284 return err;
3288 * taken from block_truncate_page, but does cow as it zeros out
3289 * any bytes left in the last page in the file.
3291 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3293 struct inode *inode = mapping->host;
3294 struct btrfs_root *root = BTRFS_I(inode)->root;
3295 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3296 struct btrfs_ordered_extent *ordered;
3297 struct extent_state *cached_state = NULL;
3298 char *kaddr;
3299 u32 blocksize = root->sectorsize;
3300 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3301 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3302 struct page *page;
3303 gfp_t mask = btrfs_alloc_write_mask(mapping);
3304 int ret = 0;
3305 u64 page_start;
3306 u64 page_end;
3308 if ((offset & (blocksize - 1)) == 0)
3309 goto out;
3310 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3311 if (ret)
3312 goto out;
3314 ret = -ENOMEM;
3315 again:
3316 page = find_or_create_page(mapping, index, mask);
3317 if (!page) {
3318 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3319 goto out;
3322 page_start = page_offset(page);
3323 page_end = page_start + PAGE_CACHE_SIZE - 1;
3325 if (!PageUptodate(page)) {
3326 ret = btrfs_readpage(NULL, page);
3327 lock_page(page);
3328 if (page->mapping != mapping) {
3329 unlock_page(page);
3330 page_cache_release(page);
3331 goto again;
3333 if (!PageUptodate(page)) {
3334 ret = -EIO;
3335 goto out_unlock;
3338 wait_on_page_writeback(page);
3340 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3341 GFP_NOFS);
3342 set_page_extent_mapped(page);
3344 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3345 if (ordered) {
3346 unlock_extent_cached(io_tree, page_start, page_end,
3347 &cached_state, GFP_NOFS);
3348 unlock_page(page);
3349 page_cache_release(page);
3350 btrfs_start_ordered_extent(inode, ordered, 1);
3351 btrfs_put_ordered_extent(ordered);
3352 goto again;
3355 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3356 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3357 0, 0, &cached_state, GFP_NOFS);
3359 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3360 &cached_state);
3361 if (ret) {
3362 unlock_extent_cached(io_tree, page_start, page_end,
3363 &cached_state, GFP_NOFS);
3364 goto out_unlock;
3367 ret = 0;
3368 if (offset != PAGE_CACHE_SIZE) {
3369 kaddr = kmap(page);
3370 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3371 flush_dcache_page(page);
3372 kunmap(page);
3374 ClearPageChecked(page);
3375 set_page_dirty(page);
3376 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3377 GFP_NOFS);
3379 out_unlock:
3380 if (ret)
3381 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3382 unlock_page(page);
3383 page_cache_release(page);
3384 out:
3385 return ret;
3389 * This function puts in dummy file extents for the area we're creating a hole
3390 * for. So if we are truncating this file to a larger size we need to insert
3391 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3392 * the range between oldsize and size
3394 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3396 struct btrfs_trans_handle *trans;
3397 struct btrfs_root *root = BTRFS_I(inode)->root;
3398 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3399 struct extent_map *em = NULL;
3400 struct extent_state *cached_state = NULL;
3401 u64 mask = root->sectorsize - 1;
3402 u64 hole_start = (oldsize + mask) & ~mask;
3403 u64 block_end = (size + mask) & ~mask;
3404 u64 last_byte;
3405 u64 cur_offset;
3406 u64 hole_size;
3407 int err = 0;
3409 if (size <= hole_start)
3410 return 0;
3412 while (1) {
3413 struct btrfs_ordered_extent *ordered;
3414 btrfs_wait_ordered_range(inode, hole_start,
3415 block_end - hole_start);
3416 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3417 &cached_state, GFP_NOFS);
3418 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3419 if (!ordered)
3420 break;
3421 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3422 &cached_state, GFP_NOFS);
3423 btrfs_put_ordered_extent(ordered);
3426 cur_offset = hole_start;
3427 while (1) {
3428 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3429 block_end - cur_offset, 0);
3430 BUG_ON(IS_ERR_OR_NULL(em));
3431 last_byte = min(extent_map_end(em), block_end);
3432 last_byte = (last_byte + mask) & ~mask;
3433 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3434 u64 hint_byte = 0;
3435 hole_size = last_byte - cur_offset;
3437 trans = btrfs_start_transaction(root, 2);
3438 if (IS_ERR(trans)) {
3439 err = PTR_ERR(trans);
3440 break;
3443 err = btrfs_drop_extents(trans, inode, cur_offset,
3444 cur_offset + hole_size,
3445 &hint_byte, 1);
3446 if (err) {
3447 btrfs_end_transaction(trans, root);
3448 break;
3451 err = btrfs_insert_file_extent(trans, root,
3452 btrfs_ino(inode), cur_offset, 0,
3453 0, hole_size, 0, hole_size,
3454 0, 0, 0);
3455 if (err) {
3456 btrfs_end_transaction(trans, root);
3457 break;
3460 btrfs_drop_extent_cache(inode, hole_start,
3461 last_byte - 1, 0);
3463 btrfs_end_transaction(trans, root);
3465 free_extent_map(em);
3466 em = NULL;
3467 cur_offset = last_byte;
3468 if (cur_offset >= block_end)
3469 break;
3472 free_extent_map(em);
3473 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3474 GFP_NOFS);
3475 return err;
3478 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3480 loff_t oldsize = i_size_read(inode);
3481 int ret;
3483 if (newsize == oldsize)
3484 return 0;
3486 if (newsize > oldsize) {
3487 i_size_write(inode, newsize);
3488 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3489 truncate_pagecache(inode, oldsize, newsize);
3490 ret = btrfs_cont_expand(inode, oldsize, newsize);
3491 if (ret) {
3492 btrfs_setsize(inode, oldsize);
3493 return ret;
3496 mark_inode_dirty(inode);
3497 } else {
3500 * We're truncating a file that used to have good data down to
3501 * zero. Make sure it gets into the ordered flush list so that
3502 * any new writes get down to disk quickly.
3504 if (newsize == 0)
3505 BTRFS_I(inode)->ordered_data_close = 1;
3507 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3508 truncate_setsize(inode, newsize);
3509 ret = btrfs_truncate(inode);
3512 return ret;
3515 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3517 struct inode *inode = dentry->d_inode;
3518 struct btrfs_root *root = BTRFS_I(inode)->root;
3519 int err;
3521 if (btrfs_root_readonly(root))
3522 return -EROFS;
3524 err = inode_change_ok(inode, attr);
3525 if (err)
3526 return err;
3528 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3529 err = btrfs_setsize(inode, attr->ia_size);
3530 if (err)
3531 return err;
3534 if (attr->ia_valid) {
3535 setattr_copy(inode, attr);
3536 mark_inode_dirty(inode);
3538 if (attr->ia_valid & ATTR_MODE)
3539 err = btrfs_acl_chmod(inode);
3542 return err;
3545 void btrfs_evict_inode(struct inode *inode)
3547 struct btrfs_trans_handle *trans;
3548 struct btrfs_root *root = BTRFS_I(inode)->root;
3549 struct btrfs_block_rsv *rsv, *global_rsv;
3550 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
3551 unsigned long nr;
3552 int ret;
3554 trace_btrfs_inode_evict(inode);
3556 truncate_inode_pages(&inode->i_data, 0);
3557 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3558 btrfs_is_free_space_inode(root, inode)))
3559 goto no_delete;
3561 if (is_bad_inode(inode)) {
3562 btrfs_orphan_del(NULL, inode);
3563 goto no_delete;
3565 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3566 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3568 if (root->fs_info->log_root_recovering) {
3569 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3570 goto no_delete;
3573 if (inode->i_nlink > 0) {
3574 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3575 goto no_delete;
3578 rsv = btrfs_alloc_block_rsv(root);
3579 if (!rsv) {
3580 btrfs_orphan_del(NULL, inode);
3581 goto no_delete;
3583 rsv->size = min_size;
3584 global_rsv = &root->fs_info->global_block_rsv;
3586 btrfs_i_size_write(inode, 0);
3589 * This is a bit simpler than btrfs_truncate since
3591 * 1) We've already reserved our space for our orphan item in the
3592 * unlink.
3593 * 2) We're going to delete the inode item, so we don't need to update
3594 * it at all.
3596 * So we just need to reserve some slack space in case we add bytes when
3597 * doing the truncate.
3599 while (1) {
3600 ret = btrfs_block_rsv_check(root, rsv, min_size, 0, 1);
3603 * Try and steal from the global reserve since we will
3604 * likely not use this space anyway, we want to try as
3605 * hard as possible to get this to work.
3607 if (ret)
3608 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3610 if (ret) {
3611 printk(KERN_WARNING "Could not get space for a "
3612 "delete, will truncate on mount %d\n", ret);
3613 btrfs_orphan_del(NULL, inode);
3614 btrfs_free_block_rsv(root, rsv);
3615 goto no_delete;
3618 trans = btrfs_start_transaction(root, 0);
3619 if (IS_ERR(trans)) {
3620 btrfs_orphan_del(NULL, inode);
3621 btrfs_free_block_rsv(root, rsv);
3622 goto no_delete;
3625 trans->block_rsv = rsv;
3627 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3628 if (ret != -EAGAIN)
3629 break;
3631 nr = trans->blocks_used;
3632 btrfs_end_transaction(trans, root);
3633 trans = NULL;
3634 btrfs_btree_balance_dirty(root, nr);
3637 btrfs_free_block_rsv(root, rsv);
3639 if (ret == 0) {
3640 trans->block_rsv = root->orphan_block_rsv;
3641 ret = btrfs_orphan_del(trans, inode);
3642 BUG_ON(ret);
3645 trans->block_rsv = &root->fs_info->trans_block_rsv;
3646 if (!(root == root->fs_info->tree_root ||
3647 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3648 btrfs_return_ino(root, btrfs_ino(inode));
3650 nr = trans->blocks_used;
3651 btrfs_end_transaction(trans, root);
3652 btrfs_btree_balance_dirty(root, nr);
3653 no_delete:
3654 end_writeback(inode);
3655 return;
3659 * this returns the key found in the dir entry in the location pointer.
3660 * If no dir entries were found, location->objectid is 0.
3662 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3663 struct btrfs_key *location)
3665 const char *name = dentry->d_name.name;
3666 int namelen = dentry->d_name.len;
3667 struct btrfs_dir_item *di;
3668 struct btrfs_path *path;
3669 struct btrfs_root *root = BTRFS_I(dir)->root;
3670 int ret = 0;
3672 path = btrfs_alloc_path();
3673 if (!path)
3674 return -ENOMEM;
3676 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3677 namelen, 0);
3678 if (IS_ERR(di))
3679 ret = PTR_ERR(di);
3681 if (IS_ERR_OR_NULL(di))
3682 goto out_err;
3684 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3685 out:
3686 btrfs_free_path(path);
3687 return ret;
3688 out_err:
3689 location->objectid = 0;
3690 goto out;
3694 * when we hit a tree root in a directory, the btrfs part of the inode
3695 * needs to be changed to reflect the root directory of the tree root. This
3696 * is kind of like crossing a mount point.
3698 static int fixup_tree_root_location(struct btrfs_root *root,
3699 struct inode *dir,
3700 struct dentry *dentry,
3701 struct btrfs_key *location,
3702 struct btrfs_root **sub_root)
3704 struct btrfs_path *path;
3705 struct btrfs_root *new_root;
3706 struct btrfs_root_ref *ref;
3707 struct extent_buffer *leaf;
3708 int ret;
3709 int err = 0;
3711 path = btrfs_alloc_path();
3712 if (!path) {
3713 err = -ENOMEM;
3714 goto out;
3717 err = -ENOENT;
3718 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3719 BTRFS_I(dir)->root->root_key.objectid,
3720 location->objectid);
3721 if (ret) {
3722 if (ret < 0)
3723 err = ret;
3724 goto out;
3727 leaf = path->nodes[0];
3728 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3729 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3730 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3731 goto out;
3733 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3734 (unsigned long)(ref + 1),
3735 dentry->d_name.len);
3736 if (ret)
3737 goto out;
3739 btrfs_release_path(path);
3741 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3742 if (IS_ERR(new_root)) {
3743 err = PTR_ERR(new_root);
3744 goto out;
3747 if (btrfs_root_refs(&new_root->root_item) == 0) {
3748 err = -ENOENT;
3749 goto out;
3752 *sub_root = new_root;
3753 location->objectid = btrfs_root_dirid(&new_root->root_item);
3754 location->type = BTRFS_INODE_ITEM_KEY;
3755 location->offset = 0;
3756 err = 0;
3757 out:
3758 btrfs_free_path(path);
3759 return err;
3762 static void inode_tree_add(struct inode *inode)
3764 struct btrfs_root *root = BTRFS_I(inode)->root;
3765 struct btrfs_inode *entry;
3766 struct rb_node **p;
3767 struct rb_node *parent;
3768 u64 ino = btrfs_ino(inode);
3769 again:
3770 p = &root->inode_tree.rb_node;
3771 parent = NULL;
3773 if (inode_unhashed(inode))
3774 return;
3776 spin_lock(&root->inode_lock);
3777 while (*p) {
3778 parent = *p;
3779 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3781 if (ino < btrfs_ino(&entry->vfs_inode))
3782 p = &parent->rb_left;
3783 else if (ino > btrfs_ino(&entry->vfs_inode))
3784 p = &parent->rb_right;
3785 else {
3786 WARN_ON(!(entry->vfs_inode.i_state &
3787 (I_WILL_FREE | I_FREEING)));
3788 rb_erase(parent, &root->inode_tree);
3789 RB_CLEAR_NODE(parent);
3790 spin_unlock(&root->inode_lock);
3791 goto again;
3794 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3795 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3796 spin_unlock(&root->inode_lock);
3799 static void inode_tree_del(struct inode *inode)
3801 struct btrfs_root *root = BTRFS_I(inode)->root;
3802 int empty = 0;
3804 spin_lock(&root->inode_lock);
3805 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3806 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3807 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3808 empty = RB_EMPTY_ROOT(&root->inode_tree);
3810 spin_unlock(&root->inode_lock);
3813 * Free space cache has inodes in the tree root, but the tree root has a
3814 * root_refs of 0, so this could end up dropping the tree root as a
3815 * snapshot, so we need the extra !root->fs_info->tree_root check to
3816 * make sure we don't drop it.
3818 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3819 root != root->fs_info->tree_root) {
3820 synchronize_srcu(&root->fs_info->subvol_srcu);
3821 spin_lock(&root->inode_lock);
3822 empty = RB_EMPTY_ROOT(&root->inode_tree);
3823 spin_unlock(&root->inode_lock);
3824 if (empty)
3825 btrfs_add_dead_root(root);
3829 int btrfs_invalidate_inodes(struct btrfs_root *root)
3831 struct rb_node *node;
3832 struct rb_node *prev;
3833 struct btrfs_inode *entry;
3834 struct inode *inode;
3835 u64 objectid = 0;
3837 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3839 spin_lock(&root->inode_lock);
3840 again:
3841 node = root->inode_tree.rb_node;
3842 prev = NULL;
3843 while (node) {
3844 prev = node;
3845 entry = rb_entry(node, struct btrfs_inode, rb_node);
3847 if (objectid < btrfs_ino(&entry->vfs_inode))
3848 node = node->rb_left;
3849 else if (objectid > btrfs_ino(&entry->vfs_inode))
3850 node = node->rb_right;
3851 else
3852 break;
3854 if (!node) {
3855 while (prev) {
3856 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3857 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
3858 node = prev;
3859 break;
3861 prev = rb_next(prev);
3864 while (node) {
3865 entry = rb_entry(node, struct btrfs_inode, rb_node);
3866 objectid = btrfs_ino(&entry->vfs_inode) + 1;
3867 inode = igrab(&entry->vfs_inode);
3868 if (inode) {
3869 spin_unlock(&root->inode_lock);
3870 if (atomic_read(&inode->i_count) > 1)
3871 d_prune_aliases(inode);
3873 * btrfs_drop_inode will have it removed from
3874 * the inode cache when its usage count
3875 * hits zero.
3877 iput(inode);
3878 cond_resched();
3879 spin_lock(&root->inode_lock);
3880 goto again;
3883 if (cond_resched_lock(&root->inode_lock))
3884 goto again;
3886 node = rb_next(node);
3888 spin_unlock(&root->inode_lock);
3889 return 0;
3892 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3894 struct btrfs_iget_args *args = p;
3895 inode->i_ino = args->ino;
3896 BTRFS_I(inode)->root = args->root;
3897 btrfs_set_inode_space_info(args->root, inode);
3898 return 0;
3901 static int btrfs_find_actor(struct inode *inode, void *opaque)
3903 struct btrfs_iget_args *args = opaque;
3904 return args->ino == btrfs_ino(inode) &&
3905 args->root == BTRFS_I(inode)->root;
3908 static struct inode *btrfs_iget_locked(struct super_block *s,
3909 u64 objectid,
3910 struct btrfs_root *root)
3912 struct inode *inode;
3913 struct btrfs_iget_args args;
3914 args.ino = objectid;
3915 args.root = root;
3917 inode = iget5_locked(s, objectid, btrfs_find_actor,
3918 btrfs_init_locked_inode,
3919 (void *)&args);
3920 return inode;
3923 /* Get an inode object given its location and corresponding root.
3924 * Returns in *is_new if the inode was read from disk
3926 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3927 struct btrfs_root *root, int *new)
3929 struct inode *inode;
3931 inode = btrfs_iget_locked(s, location->objectid, root);
3932 if (!inode)
3933 return ERR_PTR(-ENOMEM);
3935 if (inode->i_state & I_NEW) {
3936 BTRFS_I(inode)->root = root;
3937 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3938 btrfs_read_locked_inode(inode);
3939 if (!is_bad_inode(inode)) {
3940 inode_tree_add(inode);
3941 unlock_new_inode(inode);
3942 if (new)
3943 *new = 1;
3944 } else {
3945 unlock_new_inode(inode);
3946 iput(inode);
3947 inode = ERR_PTR(-ESTALE);
3951 return inode;
3954 static struct inode *new_simple_dir(struct super_block *s,
3955 struct btrfs_key *key,
3956 struct btrfs_root *root)
3958 struct inode *inode = new_inode(s);
3960 if (!inode)
3961 return ERR_PTR(-ENOMEM);
3963 BTRFS_I(inode)->root = root;
3964 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3965 BTRFS_I(inode)->dummy_inode = 1;
3967 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3968 inode->i_op = &simple_dir_inode_operations;
3969 inode->i_fop = &simple_dir_operations;
3970 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3971 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3973 return inode;
3976 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3978 struct inode *inode;
3979 struct btrfs_root *root = BTRFS_I(dir)->root;
3980 struct btrfs_root *sub_root = root;
3981 struct btrfs_key location;
3982 int index;
3983 int ret = 0;
3985 if (dentry->d_name.len > BTRFS_NAME_LEN)
3986 return ERR_PTR(-ENAMETOOLONG);
3988 if (unlikely(d_need_lookup(dentry))) {
3989 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
3990 kfree(dentry->d_fsdata);
3991 dentry->d_fsdata = NULL;
3992 /* This thing is hashed, drop it for now */
3993 d_drop(dentry);
3994 } else {
3995 ret = btrfs_inode_by_name(dir, dentry, &location);
3998 if (ret < 0)
3999 return ERR_PTR(ret);
4001 if (location.objectid == 0)
4002 return NULL;
4004 if (location.type == BTRFS_INODE_ITEM_KEY) {
4005 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4006 return inode;
4009 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4011 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4012 ret = fixup_tree_root_location(root, dir, dentry,
4013 &location, &sub_root);
4014 if (ret < 0) {
4015 if (ret != -ENOENT)
4016 inode = ERR_PTR(ret);
4017 else
4018 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4019 } else {
4020 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4022 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4024 if (!IS_ERR(inode) && root != sub_root) {
4025 down_read(&root->fs_info->cleanup_work_sem);
4026 if (!(inode->i_sb->s_flags & MS_RDONLY))
4027 ret = btrfs_orphan_cleanup(sub_root);
4028 up_read(&root->fs_info->cleanup_work_sem);
4029 if (ret)
4030 inode = ERR_PTR(ret);
4033 return inode;
4036 static int btrfs_dentry_delete(const struct dentry *dentry)
4038 struct btrfs_root *root;
4040 if (!dentry->d_inode && !IS_ROOT(dentry))
4041 dentry = dentry->d_parent;
4043 if (dentry->d_inode) {
4044 root = BTRFS_I(dentry->d_inode)->root;
4045 if (btrfs_root_refs(&root->root_item) == 0)
4046 return 1;
4048 return 0;
4051 static void btrfs_dentry_release(struct dentry *dentry)
4053 if (dentry->d_fsdata)
4054 kfree(dentry->d_fsdata);
4057 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4058 struct nameidata *nd)
4060 struct dentry *ret;
4062 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4063 if (unlikely(d_need_lookup(dentry))) {
4064 spin_lock(&dentry->d_lock);
4065 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4066 spin_unlock(&dentry->d_lock);
4068 return ret;
4071 unsigned char btrfs_filetype_table[] = {
4072 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4075 static int btrfs_real_readdir(struct file *filp, void *dirent,
4076 filldir_t filldir)
4078 struct inode *inode = filp->f_dentry->d_inode;
4079 struct btrfs_root *root = BTRFS_I(inode)->root;
4080 struct btrfs_item *item;
4081 struct btrfs_dir_item *di;
4082 struct btrfs_key key;
4083 struct btrfs_key found_key;
4084 struct btrfs_path *path;
4085 struct list_head ins_list;
4086 struct list_head del_list;
4087 struct qstr q;
4088 int ret;
4089 struct extent_buffer *leaf;
4090 int slot;
4091 unsigned char d_type;
4092 int over = 0;
4093 u32 di_cur;
4094 u32 di_total;
4095 u32 di_len;
4096 int key_type = BTRFS_DIR_INDEX_KEY;
4097 char tmp_name[32];
4098 char *name_ptr;
4099 int name_len;
4100 int is_curr = 0; /* filp->f_pos points to the current index? */
4102 /* FIXME, use a real flag for deciding about the key type */
4103 if (root->fs_info->tree_root == root)
4104 key_type = BTRFS_DIR_ITEM_KEY;
4106 /* special case for "." */
4107 if (filp->f_pos == 0) {
4108 over = filldir(dirent, ".", 1,
4109 filp->f_pos, btrfs_ino(inode), DT_DIR);
4110 if (over)
4111 return 0;
4112 filp->f_pos = 1;
4114 /* special case for .., just use the back ref */
4115 if (filp->f_pos == 1) {
4116 u64 pino = parent_ino(filp->f_path.dentry);
4117 over = filldir(dirent, "..", 2,
4118 filp->f_pos, pino, DT_DIR);
4119 if (over)
4120 return 0;
4121 filp->f_pos = 2;
4123 path = btrfs_alloc_path();
4124 if (!path)
4125 return -ENOMEM;
4127 path->reada = 1;
4129 if (key_type == BTRFS_DIR_INDEX_KEY) {
4130 INIT_LIST_HEAD(&ins_list);
4131 INIT_LIST_HEAD(&del_list);
4132 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4135 btrfs_set_key_type(&key, key_type);
4136 key.offset = filp->f_pos;
4137 key.objectid = btrfs_ino(inode);
4139 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4140 if (ret < 0)
4141 goto err;
4143 while (1) {
4144 leaf = path->nodes[0];
4145 slot = path->slots[0];
4146 if (slot >= btrfs_header_nritems(leaf)) {
4147 ret = btrfs_next_leaf(root, path);
4148 if (ret < 0)
4149 goto err;
4150 else if (ret > 0)
4151 break;
4152 continue;
4155 item = btrfs_item_nr(leaf, slot);
4156 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4158 if (found_key.objectid != key.objectid)
4159 break;
4160 if (btrfs_key_type(&found_key) != key_type)
4161 break;
4162 if (found_key.offset < filp->f_pos)
4163 goto next;
4164 if (key_type == BTRFS_DIR_INDEX_KEY &&
4165 btrfs_should_delete_dir_index(&del_list,
4166 found_key.offset))
4167 goto next;
4169 filp->f_pos = found_key.offset;
4170 is_curr = 1;
4172 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4173 di_cur = 0;
4174 di_total = btrfs_item_size(leaf, item);
4176 while (di_cur < di_total) {
4177 struct btrfs_key location;
4178 struct dentry *tmp;
4180 if (verify_dir_item(root, leaf, di))
4181 break;
4183 name_len = btrfs_dir_name_len(leaf, di);
4184 if (name_len <= sizeof(tmp_name)) {
4185 name_ptr = tmp_name;
4186 } else {
4187 name_ptr = kmalloc(name_len, GFP_NOFS);
4188 if (!name_ptr) {
4189 ret = -ENOMEM;
4190 goto err;
4193 read_extent_buffer(leaf, name_ptr,
4194 (unsigned long)(di + 1), name_len);
4196 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4197 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4199 q.name = name_ptr;
4200 q.len = name_len;
4201 q.hash = full_name_hash(q.name, q.len);
4202 tmp = d_lookup(filp->f_dentry, &q);
4203 if (!tmp) {
4204 struct btrfs_key *newkey;
4206 newkey = kzalloc(sizeof(struct btrfs_key),
4207 GFP_NOFS);
4208 if (!newkey)
4209 goto no_dentry;
4210 tmp = d_alloc(filp->f_dentry, &q);
4211 if (!tmp) {
4212 kfree(newkey);
4213 dput(tmp);
4214 goto no_dentry;
4216 memcpy(newkey, &location,
4217 sizeof(struct btrfs_key));
4218 tmp->d_fsdata = newkey;
4219 tmp->d_flags |= DCACHE_NEED_LOOKUP;
4220 d_rehash(tmp);
4221 dput(tmp);
4222 } else {
4223 dput(tmp);
4225 no_dentry:
4226 /* is this a reference to our own snapshot? If so
4227 * skip it
4229 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4230 location.objectid == root->root_key.objectid) {
4231 over = 0;
4232 goto skip;
4234 over = filldir(dirent, name_ptr, name_len,
4235 found_key.offset, location.objectid,
4236 d_type);
4238 skip:
4239 if (name_ptr != tmp_name)
4240 kfree(name_ptr);
4242 if (over)
4243 goto nopos;
4244 di_len = btrfs_dir_name_len(leaf, di) +
4245 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4246 di_cur += di_len;
4247 di = (struct btrfs_dir_item *)((char *)di + di_len);
4249 next:
4250 path->slots[0]++;
4253 if (key_type == BTRFS_DIR_INDEX_KEY) {
4254 if (is_curr)
4255 filp->f_pos++;
4256 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4257 &ins_list);
4258 if (ret)
4259 goto nopos;
4262 /* Reached end of directory/root. Bump pos past the last item. */
4263 if (key_type == BTRFS_DIR_INDEX_KEY)
4265 * 32-bit glibc will use getdents64, but then strtol -
4266 * so the last number we can serve is this.
4268 filp->f_pos = 0x7fffffff;
4269 else
4270 filp->f_pos++;
4271 nopos:
4272 ret = 0;
4273 err:
4274 if (key_type == BTRFS_DIR_INDEX_KEY)
4275 btrfs_put_delayed_items(&ins_list, &del_list);
4276 btrfs_free_path(path);
4277 return ret;
4280 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4282 struct btrfs_root *root = BTRFS_I(inode)->root;
4283 struct btrfs_trans_handle *trans;
4284 int ret = 0;
4285 bool nolock = false;
4287 if (BTRFS_I(inode)->dummy_inode)
4288 return 0;
4290 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
4291 nolock = true;
4293 if (wbc->sync_mode == WB_SYNC_ALL) {
4294 if (nolock)
4295 trans = btrfs_join_transaction_nolock(root);
4296 else
4297 trans = btrfs_join_transaction(root);
4298 if (IS_ERR(trans))
4299 return PTR_ERR(trans);
4300 if (nolock)
4301 ret = btrfs_end_transaction_nolock(trans, root);
4302 else
4303 ret = btrfs_commit_transaction(trans, root);
4305 return ret;
4309 * This is somewhat expensive, updating the tree every time the
4310 * inode changes. But, it is most likely to find the inode in cache.
4311 * FIXME, needs more benchmarking...there are no reasons other than performance
4312 * to keep or drop this code.
4314 void btrfs_dirty_inode(struct inode *inode, int flags)
4316 struct btrfs_root *root = BTRFS_I(inode)->root;
4317 struct btrfs_trans_handle *trans;
4318 int ret;
4320 if (BTRFS_I(inode)->dummy_inode)
4321 return;
4323 trans = btrfs_join_transaction(root);
4324 BUG_ON(IS_ERR(trans));
4326 ret = btrfs_update_inode(trans, root, inode);
4327 if (ret && ret == -ENOSPC) {
4328 /* whoops, lets try again with the full transaction */
4329 btrfs_end_transaction(trans, root);
4330 trans = btrfs_start_transaction(root, 1);
4331 if (IS_ERR(trans)) {
4332 printk_ratelimited(KERN_ERR "btrfs: fail to "
4333 "dirty inode %llu error %ld\n",
4334 (unsigned long long)btrfs_ino(inode),
4335 PTR_ERR(trans));
4336 return;
4339 ret = btrfs_update_inode(trans, root, inode);
4340 if (ret) {
4341 printk_ratelimited(KERN_ERR "btrfs: fail to "
4342 "dirty inode %llu error %d\n",
4343 (unsigned long long)btrfs_ino(inode),
4344 ret);
4347 btrfs_end_transaction(trans, root);
4348 if (BTRFS_I(inode)->delayed_node)
4349 btrfs_balance_delayed_items(root);
4353 * find the highest existing sequence number in a directory
4354 * and then set the in-memory index_cnt variable to reflect
4355 * free sequence numbers
4357 static int btrfs_set_inode_index_count(struct inode *inode)
4359 struct btrfs_root *root = BTRFS_I(inode)->root;
4360 struct btrfs_key key, found_key;
4361 struct btrfs_path *path;
4362 struct extent_buffer *leaf;
4363 int ret;
4365 key.objectid = btrfs_ino(inode);
4366 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4367 key.offset = (u64)-1;
4369 path = btrfs_alloc_path();
4370 if (!path)
4371 return -ENOMEM;
4373 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4374 if (ret < 0)
4375 goto out;
4376 /* FIXME: we should be able to handle this */
4377 if (ret == 0)
4378 goto out;
4379 ret = 0;
4382 * MAGIC NUMBER EXPLANATION:
4383 * since we search a directory based on f_pos we have to start at 2
4384 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4385 * else has to start at 2
4387 if (path->slots[0] == 0) {
4388 BTRFS_I(inode)->index_cnt = 2;
4389 goto out;
4392 path->slots[0]--;
4394 leaf = path->nodes[0];
4395 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4397 if (found_key.objectid != btrfs_ino(inode) ||
4398 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4399 BTRFS_I(inode)->index_cnt = 2;
4400 goto out;
4403 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4404 out:
4405 btrfs_free_path(path);
4406 return ret;
4410 * helper to find a free sequence number in a given directory. This current
4411 * code is very simple, later versions will do smarter things in the btree
4413 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4415 int ret = 0;
4417 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4418 ret = btrfs_inode_delayed_dir_index_count(dir);
4419 if (ret) {
4420 ret = btrfs_set_inode_index_count(dir);
4421 if (ret)
4422 return ret;
4426 *index = BTRFS_I(dir)->index_cnt;
4427 BTRFS_I(dir)->index_cnt++;
4429 return ret;
4432 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4433 struct btrfs_root *root,
4434 struct inode *dir,
4435 const char *name, int name_len,
4436 u64 ref_objectid, u64 objectid, int mode,
4437 u64 *index)
4439 struct inode *inode;
4440 struct btrfs_inode_item *inode_item;
4441 struct btrfs_key *location;
4442 struct btrfs_path *path;
4443 struct btrfs_inode_ref *ref;
4444 struct btrfs_key key[2];
4445 u32 sizes[2];
4446 unsigned long ptr;
4447 int ret;
4448 int owner;
4450 path = btrfs_alloc_path();
4451 if (!path)
4452 return ERR_PTR(-ENOMEM);
4454 inode = new_inode(root->fs_info->sb);
4455 if (!inode) {
4456 btrfs_free_path(path);
4457 return ERR_PTR(-ENOMEM);
4461 * we have to initialize this early, so we can reclaim the inode
4462 * number if we fail afterwards in this function.
4464 inode->i_ino = objectid;
4466 if (dir) {
4467 trace_btrfs_inode_request(dir);
4469 ret = btrfs_set_inode_index(dir, index);
4470 if (ret) {
4471 btrfs_free_path(path);
4472 iput(inode);
4473 return ERR_PTR(ret);
4477 * index_cnt is ignored for everything but a dir,
4478 * btrfs_get_inode_index_count has an explanation for the magic
4479 * number
4481 BTRFS_I(inode)->index_cnt = 2;
4482 BTRFS_I(inode)->root = root;
4483 BTRFS_I(inode)->generation = trans->transid;
4484 inode->i_generation = BTRFS_I(inode)->generation;
4485 btrfs_set_inode_space_info(root, inode);
4487 if (S_ISDIR(mode))
4488 owner = 0;
4489 else
4490 owner = 1;
4492 key[0].objectid = objectid;
4493 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4494 key[0].offset = 0;
4496 key[1].objectid = objectid;
4497 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4498 key[1].offset = ref_objectid;
4500 sizes[0] = sizeof(struct btrfs_inode_item);
4501 sizes[1] = name_len + sizeof(*ref);
4503 path->leave_spinning = 1;
4504 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4505 if (ret != 0)
4506 goto fail;
4508 inode_init_owner(inode, dir, mode);
4509 inode_set_bytes(inode, 0);
4510 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4511 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4512 struct btrfs_inode_item);
4513 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4515 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4516 struct btrfs_inode_ref);
4517 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4518 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4519 ptr = (unsigned long)(ref + 1);
4520 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4522 btrfs_mark_buffer_dirty(path->nodes[0]);
4523 btrfs_free_path(path);
4525 location = &BTRFS_I(inode)->location;
4526 location->objectid = objectid;
4527 location->offset = 0;
4528 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4530 btrfs_inherit_iflags(inode, dir);
4532 if (S_ISREG(mode)) {
4533 if (btrfs_test_opt(root, NODATASUM))
4534 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4535 if (btrfs_test_opt(root, NODATACOW) ||
4536 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4537 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4540 insert_inode_hash(inode);
4541 inode_tree_add(inode);
4543 trace_btrfs_inode_new(inode);
4544 btrfs_set_inode_last_trans(trans, inode);
4546 return inode;
4547 fail:
4548 if (dir)
4549 BTRFS_I(dir)->index_cnt--;
4550 btrfs_free_path(path);
4551 iput(inode);
4552 return ERR_PTR(ret);
4555 static inline u8 btrfs_inode_type(struct inode *inode)
4557 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4561 * utility function to add 'inode' into 'parent_inode' with
4562 * a give name and a given sequence number.
4563 * if 'add_backref' is true, also insert a backref from the
4564 * inode to the parent directory.
4566 int btrfs_add_link(struct btrfs_trans_handle *trans,
4567 struct inode *parent_inode, struct inode *inode,
4568 const char *name, int name_len, int add_backref, u64 index)
4570 int ret = 0;
4571 struct btrfs_key key;
4572 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4573 u64 ino = btrfs_ino(inode);
4574 u64 parent_ino = btrfs_ino(parent_inode);
4576 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4577 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4578 } else {
4579 key.objectid = ino;
4580 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4581 key.offset = 0;
4584 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4585 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4586 key.objectid, root->root_key.objectid,
4587 parent_ino, index, name, name_len);
4588 } else if (add_backref) {
4589 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4590 parent_ino, index);
4593 if (ret == 0) {
4594 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4595 parent_inode, &key,
4596 btrfs_inode_type(inode), index);
4597 BUG_ON(ret);
4599 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4600 name_len * 2);
4601 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4602 ret = btrfs_update_inode(trans, root, parent_inode);
4604 return ret;
4607 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4608 struct inode *dir, struct dentry *dentry,
4609 struct inode *inode, int backref, u64 index)
4611 int err = btrfs_add_link(trans, dir, inode,
4612 dentry->d_name.name, dentry->d_name.len,
4613 backref, index);
4614 if (!err) {
4615 d_instantiate(dentry, inode);
4616 return 0;
4618 if (err > 0)
4619 err = -EEXIST;
4620 return err;
4623 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4624 int mode, dev_t rdev)
4626 struct btrfs_trans_handle *trans;
4627 struct btrfs_root *root = BTRFS_I(dir)->root;
4628 struct inode *inode = NULL;
4629 int err;
4630 int drop_inode = 0;
4631 u64 objectid;
4632 unsigned long nr = 0;
4633 u64 index = 0;
4635 if (!new_valid_dev(rdev))
4636 return -EINVAL;
4639 * 2 for inode item and ref
4640 * 2 for dir items
4641 * 1 for xattr if selinux is on
4643 trans = btrfs_start_transaction(root, 5);
4644 if (IS_ERR(trans))
4645 return PTR_ERR(trans);
4647 err = btrfs_find_free_ino(root, &objectid);
4648 if (err)
4649 goto out_unlock;
4651 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4652 dentry->d_name.len, btrfs_ino(dir), objectid,
4653 mode, &index);
4654 if (IS_ERR(inode)) {
4655 err = PTR_ERR(inode);
4656 goto out_unlock;
4659 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4660 if (err) {
4661 drop_inode = 1;
4662 goto out_unlock;
4665 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4666 if (err)
4667 drop_inode = 1;
4668 else {
4669 inode->i_op = &btrfs_special_inode_operations;
4670 init_special_inode(inode, inode->i_mode, rdev);
4671 btrfs_update_inode(trans, root, inode);
4673 out_unlock:
4674 nr = trans->blocks_used;
4675 btrfs_end_transaction_throttle(trans, root);
4676 btrfs_btree_balance_dirty(root, nr);
4677 if (drop_inode) {
4678 inode_dec_link_count(inode);
4679 iput(inode);
4681 return err;
4684 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4685 int mode, struct nameidata *nd)
4687 struct btrfs_trans_handle *trans;
4688 struct btrfs_root *root = BTRFS_I(dir)->root;
4689 struct inode *inode = NULL;
4690 int drop_inode = 0;
4691 int err;
4692 unsigned long nr = 0;
4693 u64 objectid;
4694 u64 index = 0;
4697 * 2 for inode item and ref
4698 * 2 for dir items
4699 * 1 for xattr if selinux is on
4701 trans = btrfs_start_transaction(root, 5);
4702 if (IS_ERR(trans))
4703 return PTR_ERR(trans);
4705 err = btrfs_find_free_ino(root, &objectid);
4706 if (err)
4707 goto out_unlock;
4709 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4710 dentry->d_name.len, btrfs_ino(dir), objectid,
4711 mode, &index);
4712 if (IS_ERR(inode)) {
4713 err = PTR_ERR(inode);
4714 goto out_unlock;
4717 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4718 if (err) {
4719 drop_inode = 1;
4720 goto out_unlock;
4723 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4724 if (err)
4725 drop_inode = 1;
4726 else {
4727 inode->i_mapping->a_ops = &btrfs_aops;
4728 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4729 inode->i_fop = &btrfs_file_operations;
4730 inode->i_op = &btrfs_file_inode_operations;
4731 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4733 out_unlock:
4734 nr = trans->blocks_used;
4735 btrfs_end_transaction_throttle(trans, root);
4736 if (drop_inode) {
4737 inode_dec_link_count(inode);
4738 iput(inode);
4740 btrfs_btree_balance_dirty(root, nr);
4741 return err;
4744 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4745 struct dentry *dentry)
4747 struct btrfs_trans_handle *trans;
4748 struct btrfs_root *root = BTRFS_I(dir)->root;
4749 struct inode *inode = old_dentry->d_inode;
4750 u64 index;
4751 unsigned long nr = 0;
4752 int err;
4753 int drop_inode = 0;
4755 /* do not allow sys_link's with other subvols of the same device */
4756 if (root->objectid != BTRFS_I(inode)->root->objectid)
4757 return -EXDEV;
4759 if (inode->i_nlink == ~0U)
4760 return -EMLINK;
4762 err = btrfs_set_inode_index(dir, &index);
4763 if (err)
4764 goto fail;
4767 * 2 items for inode and inode ref
4768 * 2 items for dir items
4769 * 1 item for parent inode
4771 trans = btrfs_start_transaction(root, 5);
4772 if (IS_ERR(trans)) {
4773 err = PTR_ERR(trans);
4774 goto fail;
4777 btrfs_inc_nlink(inode);
4778 inode->i_ctime = CURRENT_TIME;
4779 ihold(inode);
4781 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4783 if (err) {
4784 drop_inode = 1;
4785 } else {
4786 struct dentry *parent = dentry->d_parent;
4787 err = btrfs_update_inode(trans, root, inode);
4788 BUG_ON(err);
4789 btrfs_log_new_name(trans, inode, NULL, parent);
4792 nr = trans->blocks_used;
4793 btrfs_end_transaction_throttle(trans, root);
4794 fail:
4795 if (drop_inode) {
4796 inode_dec_link_count(inode);
4797 iput(inode);
4799 btrfs_btree_balance_dirty(root, nr);
4800 return err;
4803 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4805 struct inode *inode = NULL;
4806 struct btrfs_trans_handle *trans;
4807 struct btrfs_root *root = BTRFS_I(dir)->root;
4808 int err = 0;
4809 int drop_on_err = 0;
4810 u64 objectid = 0;
4811 u64 index = 0;
4812 unsigned long nr = 1;
4815 * 2 items for inode and ref
4816 * 2 items for dir items
4817 * 1 for xattr if selinux is on
4819 trans = btrfs_start_transaction(root, 5);
4820 if (IS_ERR(trans))
4821 return PTR_ERR(trans);
4823 err = btrfs_find_free_ino(root, &objectid);
4824 if (err)
4825 goto out_fail;
4827 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4828 dentry->d_name.len, btrfs_ino(dir), objectid,
4829 S_IFDIR | mode, &index);
4830 if (IS_ERR(inode)) {
4831 err = PTR_ERR(inode);
4832 goto out_fail;
4835 drop_on_err = 1;
4837 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4838 if (err)
4839 goto out_fail;
4841 inode->i_op = &btrfs_dir_inode_operations;
4842 inode->i_fop = &btrfs_dir_file_operations;
4844 btrfs_i_size_write(inode, 0);
4845 err = btrfs_update_inode(trans, root, inode);
4846 if (err)
4847 goto out_fail;
4849 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4850 dentry->d_name.len, 0, index);
4851 if (err)
4852 goto out_fail;
4854 d_instantiate(dentry, inode);
4855 drop_on_err = 0;
4857 out_fail:
4858 nr = trans->blocks_used;
4859 btrfs_end_transaction_throttle(trans, root);
4860 if (drop_on_err)
4861 iput(inode);
4862 btrfs_btree_balance_dirty(root, nr);
4863 return err;
4866 /* helper for btfs_get_extent. Given an existing extent in the tree,
4867 * and an extent that you want to insert, deal with overlap and insert
4868 * the new extent into the tree.
4870 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4871 struct extent_map *existing,
4872 struct extent_map *em,
4873 u64 map_start, u64 map_len)
4875 u64 start_diff;
4877 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4878 start_diff = map_start - em->start;
4879 em->start = map_start;
4880 em->len = map_len;
4881 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4882 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4883 em->block_start += start_diff;
4884 em->block_len -= start_diff;
4886 return add_extent_mapping(em_tree, em);
4889 static noinline int uncompress_inline(struct btrfs_path *path,
4890 struct inode *inode, struct page *page,
4891 size_t pg_offset, u64 extent_offset,
4892 struct btrfs_file_extent_item *item)
4894 int ret;
4895 struct extent_buffer *leaf = path->nodes[0];
4896 char *tmp;
4897 size_t max_size;
4898 unsigned long inline_size;
4899 unsigned long ptr;
4900 int compress_type;
4902 WARN_ON(pg_offset != 0);
4903 compress_type = btrfs_file_extent_compression(leaf, item);
4904 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4905 inline_size = btrfs_file_extent_inline_item_len(leaf,
4906 btrfs_item_nr(leaf, path->slots[0]));
4907 tmp = kmalloc(inline_size, GFP_NOFS);
4908 if (!tmp)
4909 return -ENOMEM;
4910 ptr = btrfs_file_extent_inline_start(item);
4912 read_extent_buffer(leaf, tmp, ptr, inline_size);
4914 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4915 ret = btrfs_decompress(compress_type, tmp, page,
4916 extent_offset, inline_size, max_size);
4917 if (ret) {
4918 char *kaddr = kmap_atomic(page, KM_USER0);
4919 unsigned long copy_size = min_t(u64,
4920 PAGE_CACHE_SIZE - pg_offset,
4921 max_size - extent_offset);
4922 memset(kaddr + pg_offset, 0, copy_size);
4923 kunmap_atomic(kaddr, KM_USER0);
4925 kfree(tmp);
4926 return 0;
4930 * a bit scary, this does extent mapping from logical file offset to the disk.
4931 * the ugly parts come from merging extents from the disk with the in-ram
4932 * representation. This gets more complex because of the data=ordered code,
4933 * where the in-ram extents might be locked pending data=ordered completion.
4935 * This also copies inline extents directly into the page.
4938 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4939 size_t pg_offset, u64 start, u64 len,
4940 int create)
4942 int ret;
4943 int err = 0;
4944 u64 bytenr;
4945 u64 extent_start = 0;
4946 u64 extent_end = 0;
4947 u64 objectid = btrfs_ino(inode);
4948 u32 found_type;
4949 struct btrfs_path *path = NULL;
4950 struct btrfs_root *root = BTRFS_I(inode)->root;
4951 struct btrfs_file_extent_item *item;
4952 struct extent_buffer *leaf;
4953 struct btrfs_key found_key;
4954 struct extent_map *em = NULL;
4955 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4956 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4957 struct btrfs_trans_handle *trans = NULL;
4958 int compress_type;
4960 again:
4961 read_lock(&em_tree->lock);
4962 em = lookup_extent_mapping(em_tree, start, len);
4963 if (em)
4964 em->bdev = root->fs_info->fs_devices->latest_bdev;
4965 read_unlock(&em_tree->lock);
4967 if (em) {
4968 if (em->start > start || em->start + em->len <= start)
4969 free_extent_map(em);
4970 else if (em->block_start == EXTENT_MAP_INLINE && page)
4971 free_extent_map(em);
4972 else
4973 goto out;
4975 em = alloc_extent_map();
4976 if (!em) {
4977 err = -ENOMEM;
4978 goto out;
4980 em->bdev = root->fs_info->fs_devices->latest_bdev;
4981 em->start = EXTENT_MAP_HOLE;
4982 em->orig_start = EXTENT_MAP_HOLE;
4983 em->len = (u64)-1;
4984 em->block_len = (u64)-1;
4986 if (!path) {
4987 path = btrfs_alloc_path();
4988 if (!path) {
4989 err = -ENOMEM;
4990 goto out;
4993 * Chances are we'll be called again, so go ahead and do
4994 * readahead
4996 path->reada = 1;
4999 ret = btrfs_lookup_file_extent(trans, root, path,
5000 objectid, start, trans != NULL);
5001 if (ret < 0) {
5002 err = ret;
5003 goto out;
5006 if (ret != 0) {
5007 if (path->slots[0] == 0)
5008 goto not_found;
5009 path->slots[0]--;
5012 leaf = path->nodes[0];
5013 item = btrfs_item_ptr(leaf, path->slots[0],
5014 struct btrfs_file_extent_item);
5015 /* are we inside the extent that was found? */
5016 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5017 found_type = btrfs_key_type(&found_key);
5018 if (found_key.objectid != objectid ||
5019 found_type != BTRFS_EXTENT_DATA_KEY) {
5020 goto not_found;
5023 found_type = btrfs_file_extent_type(leaf, item);
5024 extent_start = found_key.offset;
5025 compress_type = btrfs_file_extent_compression(leaf, item);
5026 if (found_type == BTRFS_FILE_EXTENT_REG ||
5027 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5028 extent_end = extent_start +
5029 btrfs_file_extent_num_bytes(leaf, item);
5030 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5031 size_t size;
5032 size = btrfs_file_extent_inline_len(leaf, item);
5033 extent_end = (extent_start + size + root->sectorsize - 1) &
5034 ~((u64)root->sectorsize - 1);
5037 if (start >= extent_end) {
5038 path->slots[0]++;
5039 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5040 ret = btrfs_next_leaf(root, path);
5041 if (ret < 0) {
5042 err = ret;
5043 goto out;
5045 if (ret > 0)
5046 goto not_found;
5047 leaf = path->nodes[0];
5049 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5050 if (found_key.objectid != objectid ||
5051 found_key.type != BTRFS_EXTENT_DATA_KEY)
5052 goto not_found;
5053 if (start + len <= found_key.offset)
5054 goto not_found;
5055 em->start = start;
5056 em->len = found_key.offset - start;
5057 goto not_found_em;
5060 if (found_type == BTRFS_FILE_EXTENT_REG ||
5061 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5062 em->start = extent_start;
5063 em->len = extent_end - extent_start;
5064 em->orig_start = extent_start -
5065 btrfs_file_extent_offset(leaf, item);
5066 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5067 if (bytenr == 0) {
5068 em->block_start = EXTENT_MAP_HOLE;
5069 goto insert;
5071 if (compress_type != BTRFS_COMPRESS_NONE) {
5072 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5073 em->compress_type = compress_type;
5074 em->block_start = bytenr;
5075 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5076 item);
5077 } else {
5078 bytenr += btrfs_file_extent_offset(leaf, item);
5079 em->block_start = bytenr;
5080 em->block_len = em->len;
5081 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5082 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5084 goto insert;
5085 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5086 unsigned long ptr;
5087 char *map;
5088 size_t size;
5089 size_t extent_offset;
5090 size_t copy_size;
5092 em->block_start = EXTENT_MAP_INLINE;
5093 if (!page || create) {
5094 em->start = extent_start;
5095 em->len = extent_end - extent_start;
5096 goto out;
5099 size = btrfs_file_extent_inline_len(leaf, item);
5100 extent_offset = page_offset(page) + pg_offset - extent_start;
5101 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5102 size - extent_offset);
5103 em->start = extent_start + extent_offset;
5104 em->len = (copy_size + root->sectorsize - 1) &
5105 ~((u64)root->sectorsize - 1);
5106 em->orig_start = EXTENT_MAP_INLINE;
5107 if (compress_type) {
5108 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5109 em->compress_type = compress_type;
5111 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5112 if (create == 0 && !PageUptodate(page)) {
5113 if (btrfs_file_extent_compression(leaf, item) !=
5114 BTRFS_COMPRESS_NONE) {
5115 ret = uncompress_inline(path, inode, page,
5116 pg_offset,
5117 extent_offset, item);
5118 BUG_ON(ret);
5119 } else {
5120 map = kmap(page);
5121 read_extent_buffer(leaf, map + pg_offset, ptr,
5122 copy_size);
5123 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5124 memset(map + pg_offset + copy_size, 0,
5125 PAGE_CACHE_SIZE - pg_offset -
5126 copy_size);
5128 kunmap(page);
5130 flush_dcache_page(page);
5131 } else if (create && PageUptodate(page)) {
5132 WARN_ON(1);
5133 if (!trans) {
5134 kunmap(page);
5135 free_extent_map(em);
5136 em = NULL;
5138 btrfs_release_path(path);
5139 trans = btrfs_join_transaction(root);
5141 if (IS_ERR(trans))
5142 return ERR_CAST(trans);
5143 goto again;
5145 map = kmap(page);
5146 write_extent_buffer(leaf, map + pg_offset, ptr,
5147 copy_size);
5148 kunmap(page);
5149 btrfs_mark_buffer_dirty(leaf);
5151 set_extent_uptodate(io_tree, em->start,
5152 extent_map_end(em) - 1, NULL, GFP_NOFS);
5153 goto insert;
5154 } else {
5155 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5156 WARN_ON(1);
5158 not_found:
5159 em->start = start;
5160 em->len = len;
5161 not_found_em:
5162 em->block_start = EXTENT_MAP_HOLE;
5163 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5164 insert:
5165 btrfs_release_path(path);
5166 if (em->start > start || extent_map_end(em) <= start) {
5167 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5168 "[%llu %llu]\n", (unsigned long long)em->start,
5169 (unsigned long long)em->len,
5170 (unsigned long long)start,
5171 (unsigned long long)len);
5172 err = -EIO;
5173 goto out;
5176 err = 0;
5177 write_lock(&em_tree->lock);
5178 ret = add_extent_mapping(em_tree, em);
5179 /* it is possible that someone inserted the extent into the tree
5180 * while we had the lock dropped. It is also possible that
5181 * an overlapping map exists in the tree
5183 if (ret == -EEXIST) {
5184 struct extent_map *existing;
5186 ret = 0;
5188 existing = lookup_extent_mapping(em_tree, start, len);
5189 if (existing && (existing->start > start ||
5190 existing->start + existing->len <= start)) {
5191 free_extent_map(existing);
5192 existing = NULL;
5194 if (!existing) {
5195 existing = lookup_extent_mapping(em_tree, em->start,
5196 em->len);
5197 if (existing) {
5198 err = merge_extent_mapping(em_tree, existing,
5199 em, start,
5200 root->sectorsize);
5201 free_extent_map(existing);
5202 if (err) {
5203 free_extent_map(em);
5204 em = NULL;
5206 } else {
5207 err = -EIO;
5208 free_extent_map(em);
5209 em = NULL;
5211 } else {
5212 free_extent_map(em);
5213 em = existing;
5214 err = 0;
5217 write_unlock(&em_tree->lock);
5218 out:
5220 trace_btrfs_get_extent(root, em);
5222 if (path)
5223 btrfs_free_path(path);
5224 if (trans) {
5225 ret = btrfs_end_transaction(trans, root);
5226 if (!err)
5227 err = ret;
5229 if (err) {
5230 free_extent_map(em);
5231 return ERR_PTR(err);
5233 return em;
5236 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5237 size_t pg_offset, u64 start, u64 len,
5238 int create)
5240 struct extent_map *em;
5241 struct extent_map *hole_em = NULL;
5242 u64 range_start = start;
5243 u64 end;
5244 u64 found;
5245 u64 found_end;
5246 int err = 0;
5248 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5249 if (IS_ERR(em))
5250 return em;
5251 if (em) {
5253 * if our em maps to a hole, there might
5254 * actually be delalloc bytes behind it
5256 if (em->block_start != EXTENT_MAP_HOLE)
5257 return em;
5258 else
5259 hole_em = em;
5262 /* check to see if we've wrapped (len == -1 or similar) */
5263 end = start + len;
5264 if (end < start)
5265 end = (u64)-1;
5266 else
5267 end -= 1;
5269 em = NULL;
5271 /* ok, we didn't find anything, lets look for delalloc */
5272 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5273 end, len, EXTENT_DELALLOC, 1);
5274 found_end = range_start + found;
5275 if (found_end < range_start)
5276 found_end = (u64)-1;
5279 * we didn't find anything useful, return
5280 * the original results from get_extent()
5282 if (range_start > end || found_end <= start) {
5283 em = hole_em;
5284 hole_em = NULL;
5285 goto out;
5288 /* adjust the range_start to make sure it doesn't
5289 * go backwards from the start they passed in
5291 range_start = max(start,range_start);
5292 found = found_end - range_start;
5294 if (found > 0) {
5295 u64 hole_start = start;
5296 u64 hole_len = len;
5298 em = alloc_extent_map();
5299 if (!em) {
5300 err = -ENOMEM;
5301 goto out;
5304 * when btrfs_get_extent can't find anything it
5305 * returns one huge hole
5307 * make sure what it found really fits our range, and
5308 * adjust to make sure it is based on the start from
5309 * the caller
5311 if (hole_em) {
5312 u64 calc_end = extent_map_end(hole_em);
5314 if (calc_end <= start || (hole_em->start > end)) {
5315 free_extent_map(hole_em);
5316 hole_em = NULL;
5317 } else {
5318 hole_start = max(hole_em->start, start);
5319 hole_len = calc_end - hole_start;
5322 em->bdev = NULL;
5323 if (hole_em && range_start > hole_start) {
5324 /* our hole starts before our delalloc, so we
5325 * have to return just the parts of the hole
5326 * that go until the delalloc starts
5328 em->len = min(hole_len,
5329 range_start - hole_start);
5330 em->start = hole_start;
5331 em->orig_start = hole_start;
5333 * don't adjust block start at all,
5334 * it is fixed at EXTENT_MAP_HOLE
5336 em->block_start = hole_em->block_start;
5337 em->block_len = hole_len;
5338 } else {
5339 em->start = range_start;
5340 em->len = found;
5341 em->orig_start = range_start;
5342 em->block_start = EXTENT_MAP_DELALLOC;
5343 em->block_len = found;
5345 } else if (hole_em) {
5346 return hole_em;
5348 out:
5350 free_extent_map(hole_em);
5351 if (err) {
5352 free_extent_map(em);
5353 return ERR_PTR(err);
5355 return em;
5358 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5359 struct extent_map *em,
5360 u64 start, u64 len)
5362 struct btrfs_root *root = BTRFS_I(inode)->root;
5363 struct btrfs_trans_handle *trans;
5364 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5365 struct btrfs_key ins;
5366 u64 alloc_hint;
5367 int ret;
5368 bool insert = false;
5371 * Ok if the extent map we looked up is a hole and is for the exact
5372 * range we want, there is no reason to allocate a new one, however if
5373 * it is not right then we need to free this one and drop the cache for
5374 * our range.
5376 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5377 em->len != len) {
5378 free_extent_map(em);
5379 em = NULL;
5380 insert = true;
5381 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5384 trans = btrfs_join_transaction(root);
5385 if (IS_ERR(trans))
5386 return ERR_CAST(trans);
5388 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5389 btrfs_add_inode_defrag(trans, inode);
5391 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5393 alloc_hint = get_extent_allocation_hint(inode, start, len);
5394 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5395 alloc_hint, (u64)-1, &ins, 1);
5396 if (ret) {
5397 em = ERR_PTR(ret);
5398 goto out;
5401 if (!em) {
5402 em = alloc_extent_map();
5403 if (!em) {
5404 em = ERR_PTR(-ENOMEM);
5405 goto out;
5409 em->start = start;
5410 em->orig_start = em->start;
5411 em->len = ins.offset;
5413 em->block_start = ins.objectid;
5414 em->block_len = ins.offset;
5415 em->bdev = root->fs_info->fs_devices->latest_bdev;
5418 * We need to do this because if we're using the original em we searched
5419 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5421 em->flags = 0;
5422 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5424 while (insert) {
5425 write_lock(&em_tree->lock);
5426 ret = add_extent_mapping(em_tree, em);
5427 write_unlock(&em_tree->lock);
5428 if (ret != -EEXIST)
5429 break;
5430 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5433 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5434 ins.offset, ins.offset, 0);
5435 if (ret) {
5436 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5437 em = ERR_PTR(ret);
5439 out:
5440 btrfs_end_transaction(trans, root);
5441 return em;
5445 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5446 * block must be cow'd
5448 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5449 struct inode *inode, u64 offset, u64 len)
5451 struct btrfs_path *path;
5452 int ret;
5453 struct extent_buffer *leaf;
5454 struct btrfs_root *root = BTRFS_I(inode)->root;
5455 struct btrfs_file_extent_item *fi;
5456 struct btrfs_key key;
5457 u64 disk_bytenr;
5458 u64 backref_offset;
5459 u64 extent_end;
5460 u64 num_bytes;
5461 int slot;
5462 int found_type;
5464 path = btrfs_alloc_path();
5465 if (!path)
5466 return -ENOMEM;
5468 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5469 offset, 0);
5470 if (ret < 0)
5471 goto out;
5473 slot = path->slots[0];
5474 if (ret == 1) {
5475 if (slot == 0) {
5476 /* can't find the item, must cow */
5477 ret = 0;
5478 goto out;
5480 slot--;
5482 ret = 0;
5483 leaf = path->nodes[0];
5484 btrfs_item_key_to_cpu(leaf, &key, slot);
5485 if (key.objectid != btrfs_ino(inode) ||
5486 key.type != BTRFS_EXTENT_DATA_KEY) {
5487 /* not our file or wrong item type, must cow */
5488 goto out;
5491 if (key.offset > offset) {
5492 /* Wrong offset, must cow */
5493 goto out;
5496 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5497 found_type = btrfs_file_extent_type(leaf, fi);
5498 if (found_type != BTRFS_FILE_EXTENT_REG &&
5499 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5500 /* not a regular extent, must cow */
5501 goto out;
5503 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5504 backref_offset = btrfs_file_extent_offset(leaf, fi);
5506 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5507 if (extent_end < offset + len) {
5508 /* extent doesn't include our full range, must cow */
5509 goto out;
5512 if (btrfs_extent_readonly(root, disk_bytenr))
5513 goto out;
5516 * look for other files referencing this extent, if we
5517 * find any we must cow
5519 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5520 key.offset - backref_offset, disk_bytenr))
5521 goto out;
5524 * adjust disk_bytenr and num_bytes to cover just the bytes
5525 * in this extent we are about to write. If there
5526 * are any csums in that range we have to cow in order
5527 * to keep the csums correct
5529 disk_bytenr += backref_offset;
5530 disk_bytenr += offset - key.offset;
5531 num_bytes = min(offset + len, extent_end) - offset;
5532 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5533 goto out;
5535 * all of the above have passed, it is safe to overwrite this extent
5536 * without cow
5538 ret = 1;
5539 out:
5540 btrfs_free_path(path);
5541 return ret;
5544 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5545 struct buffer_head *bh_result, int create)
5547 struct extent_map *em;
5548 struct btrfs_root *root = BTRFS_I(inode)->root;
5549 u64 start = iblock << inode->i_blkbits;
5550 u64 len = bh_result->b_size;
5551 struct btrfs_trans_handle *trans;
5553 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5554 if (IS_ERR(em))
5555 return PTR_ERR(em);
5558 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5559 * io. INLINE is special, and we could probably kludge it in here, but
5560 * it's still buffered so for safety lets just fall back to the generic
5561 * buffered path.
5563 * For COMPRESSED we _have_ to read the entire extent in so we can
5564 * decompress it, so there will be buffering required no matter what we
5565 * do, so go ahead and fallback to buffered.
5567 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5568 * to buffered IO. Don't blame me, this is the price we pay for using
5569 * the generic code.
5571 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5572 em->block_start == EXTENT_MAP_INLINE) {
5573 free_extent_map(em);
5574 return -ENOTBLK;
5577 /* Just a good old fashioned hole, return */
5578 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5579 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5580 free_extent_map(em);
5581 /* DIO will do one hole at a time, so just unlock a sector */
5582 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5583 start + root->sectorsize - 1, GFP_NOFS);
5584 return 0;
5588 * We don't allocate a new extent in the following cases
5590 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5591 * existing extent.
5592 * 2) The extent is marked as PREALLOC. We're good to go here and can
5593 * just use the extent.
5596 if (!create) {
5597 len = em->len - (start - em->start);
5598 goto map;
5601 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5602 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5603 em->block_start != EXTENT_MAP_HOLE)) {
5604 int type;
5605 int ret;
5606 u64 block_start;
5608 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5609 type = BTRFS_ORDERED_PREALLOC;
5610 else
5611 type = BTRFS_ORDERED_NOCOW;
5612 len = min(len, em->len - (start - em->start));
5613 block_start = em->block_start + (start - em->start);
5616 * we're not going to log anything, but we do need
5617 * to make sure the current transaction stays open
5618 * while we look for nocow cross refs
5620 trans = btrfs_join_transaction(root);
5621 if (IS_ERR(trans))
5622 goto must_cow;
5624 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5625 ret = btrfs_add_ordered_extent_dio(inode, start,
5626 block_start, len, len, type);
5627 btrfs_end_transaction(trans, root);
5628 if (ret) {
5629 free_extent_map(em);
5630 return ret;
5632 goto unlock;
5634 btrfs_end_transaction(trans, root);
5636 must_cow:
5638 * this will cow the extent, reset the len in case we changed
5639 * it above
5641 len = bh_result->b_size;
5642 em = btrfs_new_extent_direct(inode, em, start, len);
5643 if (IS_ERR(em))
5644 return PTR_ERR(em);
5645 len = min(len, em->len - (start - em->start));
5646 unlock:
5647 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5648 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5649 0, NULL, GFP_NOFS);
5650 map:
5651 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5652 inode->i_blkbits;
5653 bh_result->b_size = len;
5654 bh_result->b_bdev = em->bdev;
5655 set_buffer_mapped(bh_result);
5656 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5657 set_buffer_new(bh_result);
5659 free_extent_map(em);
5661 return 0;
5664 struct btrfs_dio_private {
5665 struct inode *inode;
5666 u64 logical_offset;
5667 u64 disk_bytenr;
5668 u64 bytes;
5669 u32 *csums;
5670 void *private;
5672 /* number of bios pending for this dio */
5673 atomic_t pending_bios;
5675 /* IO errors */
5676 int errors;
5678 struct bio *orig_bio;
5681 static void btrfs_endio_direct_read(struct bio *bio, int err)
5683 struct btrfs_dio_private *dip = bio->bi_private;
5684 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5685 struct bio_vec *bvec = bio->bi_io_vec;
5686 struct inode *inode = dip->inode;
5687 struct btrfs_root *root = BTRFS_I(inode)->root;
5688 u64 start;
5689 u32 *private = dip->csums;
5691 start = dip->logical_offset;
5692 do {
5693 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5694 struct page *page = bvec->bv_page;
5695 char *kaddr;
5696 u32 csum = ~(u32)0;
5697 unsigned long flags;
5699 local_irq_save(flags);
5700 kaddr = kmap_atomic(page, KM_IRQ0);
5701 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5702 csum, bvec->bv_len);
5703 btrfs_csum_final(csum, (char *)&csum);
5704 kunmap_atomic(kaddr, KM_IRQ0);
5705 local_irq_restore(flags);
5707 flush_dcache_page(bvec->bv_page);
5708 if (csum != *private) {
5709 printk(KERN_ERR "btrfs csum failed ino %llu off"
5710 " %llu csum %u private %u\n",
5711 (unsigned long long)btrfs_ino(inode),
5712 (unsigned long long)start,
5713 csum, *private);
5714 err = -EIO;
5718 start += bvec->bv_len;
5719 private++;
5720 bvec++;
5721 } while (bvec <= bvec_end);
5723 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5724 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5725 bio->bi_private = dip->private;
5727 kfree(dip->csums);
5728 kfree(dip);
5730 /* If we had a csum failure make sure to clear the uptodate flag */
5731 if (err)
5732 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5733 dio_end_io(bio, err);
5736 static void btrfs_endio_direct_write(struct bio *bio, int err)
5738 struct btrfs_dio_private *dip = bio->bi_private;
5739 struct inode *inode = dip->inode;
5740 struct btrfs_root *root = BTRFS_I(inode)->root;
5741 struct btrfs_trans_handle *trans;
5742 struct btrfs_ordered_extent *ordered = NULL;
5743 struct extent_state *cached_state = NULL;
5744 u64 ordered_offset = dip->logical_offset;
5745 u64 ordered_bytes = dip->bytes;
5746 int ret;
5748 if (err)
5749 goto out_done;
5750 again:
5751 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5752 &ordered_offset,
5753 ordered_bytes);
5754 if (!ret)
5755 goto out_test;
5757 BUG_ON(!ordered);
5759 trans = btrfs_join_transaction(root);
5760 if (IS_ERR(trans)) {
5761 err = -ENOMEM;
5762 goto out;
5764 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5766 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5767 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5768 if (!ret)
5769 ret = btrfs_update_inode(trans, root, inode);
5770 err = ret;
5771 goto out;
5774 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5775 ordered->file_offset + ordered->len - 1, 0,
5776 &cached_state, GFP_NOFS);
5778 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5779 ret = btrfs_mark_extent_written(trans, inode,
5780 ordered->file_offset,
5781 ordered->file_offset +
5782 ordered->len);
5783 if (ret) {
5784 err = ret;
5785 goto out_unlock;
5787 } else {
5788 ret = insert_reserved_file_extent(trans, inode,
5789 ordered->file_offset,
5790 ordered->start,
5791 ordered->disk_len,
5792 ordered->len,
5793 ordered->len,
5794 0, 0, 0,
5795 BTRFS_FILE_EXTENT_REG);
5796 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5797 ordered->file_offset, ordered->len);
5798 if (ret) {
5799 err = ret;
5800 WARN_ON(1);
5801 goto out_unlock;
5805 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5806 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5807 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
5808 btrfs_update_inode(trans, root, inode);
5809 ret = 0;
5810 out_unlock:
5811 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5812 ordered->file_offset + ordered->len - 1,
5813 &cached_state, GFP_NOFS);
5814 out:
5815 btrfs_delalloc_release_metadata(inode, ordered->len);
5816 btrfs_end_transaction(trans, root);
5817 ordered_offset = ordered->file_offset + ordered->len;
5818 btrfs_put_ordered_extent(ordered);
5819 btrfs_put_ordered_extent(ordered);
5821 out_test:
5823 * our bio might span multiple ordered extents. If we haven't
5824 * completed the accounting for the whole dio, go back and try again
5826 if (ordered_offset < dip->logical_offset + dip->bytes) {
5827 ordered_bytes = dip->logical_offset + dip->bytes -
5828 ordered_offset;
5829 goto again;
5831 out_done:
5832 bio->bi_private = dip->private;
5834 kfree(dip->csums);
5835 kfree(dip);
5837 /* If we had an error make sure to clear the uptodate flag */
5838 if (err)
5839 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5840 dio_end_io(bio, err);
5843 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5844 struct bio *bio, int mirror_num,
5845 unsigned long bio_flags, u64 offset)
5847 int ret;
5848 struct btrfs_root *root = BTRFS_I(inode)->root;
5849 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5850 BUG_ON(ret);
5851 return 0;
5854 static void btrfs_end_dio_bio(struct bio *bio, int err)
5856 struct btrfs_dio_private *dip = bio->bi_private;
5858 if (err) {
5859 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
5860 "sector %#Lx len %u err no %d\n",
5861 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
5862 (unsigned long long)bio->bi_sector, bio->bi_size, err);
5863 dip->errors = 1;
5866 * before atomic variable goto zero, we must make sure
5867 * dip->errors is perceived to be set.
5869 smp_mb__before_atomic_dec();
5872 /* if there are more bios still pending for this dio, just exit */
5873 if (!atomic_dec_and_test(&dip->pending_bios))
5874 goto out;
5876 if (dip->errors)
5877 bio_io_error(dip->orig_bio);
5878 else {
5879 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5880 bio_endio(dip->orig_bio, 0);
5882 out:
5883 bio_put(bio);
5886 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5887 u64 first_sector, gfp_t gfp_flags)
5889 int nr_vecs = bio_get_nr_vecs(bdev);
5890 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5893 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5894 int rw, u64 file_offset, int skip_sum,
5895 u32 *csums, int async_submit)
5897 int write = rw & REQ_WRITE;
5898 struct btrfs_root *root = BTRFS_I(inode)->root;
5899 int ret;
5901 bio_get(bio);
5902 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5903 if (ret)
5904 goto err;
5906 if (skip_sum)
5907 goto map;
5909 if (write && async_submit) {
5910 ret = btrfs_wq_submit_bio(root->fs_info,
5911 inode, rw, bio, 0, 0,
5912 file_offset,
5913 __btrfs_submit_bio_start_direct_io,
5914 __btrfs_submit_bio_done);
5915 goto err;
5916 } else if (write) {
5918 * If we aren't doing async submit, calculate the csum of the
5919 * bio now.
5921 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5922 if (ret)
5923 goto err;
5924 } else if (!skip_sum) {
5925 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5926 file_offset, csums);
5927 if (ret)
5928 goto err;
5931 map:
5932 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
5933 err:
5934 bio_put(bio);
5935 return ret;
5938 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5939 int skip_sum)
5941 struct inode *inode = dip->inode;
5942 struct btrfs_root *root = BTRFS_I(inode)->root;
5943 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5944 struct bio *bio;
5945 struct bio *orig_bio = dip->orig_bio;
5946 struct bio_vec *bvec = orig_bio->bi_io_vec;
5947 u64 start_sector = orig_bio->bi_sector;
5948 u64 file_offset = dip->logical_offset;
5949 u64 submit_len = 0;
5950 u64 map_length;
5951 int nr_pages = 0;
5952 u32 *csums = dip->csums;
5953 int ret = 0;
5954 int async_submit = 0;
5955 int write = rw & REQ_WRITE;
5957 map_length = orig_bio->bi_size;
5958 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5959 &map_length, NULL, 0);
5960 if (ret) {
5961 bio_put(orig_bio);
5962 return -EIO;
5965 if (map_length >= orig_bio->bi_size) {
5966 bio = orig_bio;
5967 goto submit;
5970 async_submit = 1;
5971 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5972 if (!bio)
5973 return -ENOMEM;
5974 bio->bi_private = dip;
5975 bio->bi_end_io = btrfs_end_dio_bio;
5976 atomic_inc(&dip->pending_bios);
5978 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5979 if (unlikely(map_length < submit_len + bvec->bv_len ||
5980 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5981 bvec->bv_offset) < bvec->bv_len)) {
5983 * inc the count before we submit the bio so
5984 * we know the end IO handler won't happen before
5985 * we inc the count. Otherwise, the dip might get freed
5986 * before we're done setting it up
5988 atomic_inc(&dip->pending_bios);
5989 ret = __btrfs_submit_dio_bio(bio, inode, rw,
5990 file_offset, skip_sum,
5991 csums, async_submit);
5992 if (ret) {
5993 bio_put(bio);
5994 atomic_dec(&dip->pending_bios);
5995 goto out_err;
5998 /* Write's use the ordered csums */
5999 if (!write && !skip_sum)
6000 csums = csums + nr_pages;
6001 start_sector += submit_len >> 9;
6002 file_offset += submit_len;
6004 submit_len = 0;
6005 nr_pages = 0;
6007 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6008 start_sector, GFP_NOFS);
6009 if (!bio)
6010 goto out_err;
6011 bio->bi_private = dip;
6012 bio->bi_end_io = btrfs_end_dio_bio;
6014 map_length = orig_bio->bi_size;
6015 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6016 &map_length, NULL, 0);
6017 if (ret) {
6018 bio_put(bio);
6019 goto out_err;
6021 } else {
6022 submit_len += bvec->bv_len;
6023 nr_pages ++;
6024 bvec++;
6028 submit:
6029 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6030 csums, async_submit);
6031 if (!ret)
6032 return 0;
6034 bio_put(bio);
6035 out_err:
6036 dip->errors = 1;
6038 * before atomic variable goto zero, we must
6039 * make sure dip->errors is perceived to be set.
6041 smp_mb__before_atomic_dec();
6042 if (atomic_dec_and_test(&dip->pending_bios))
6043 bio_io_error(dip->orig_bio);
6045 /* bio_end_io() will handle error, so we needn't return it */
6046 return 0;
6049 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6050 loff_t file_offset)
6052 struct btrfs_root *root = BTRFS_I(inode)->root;
6053 struct btrfs_dio_private *dip;
6054 struct bio_vec *bvec = bio->bi_io_vec;
6055 int skip_sum;
6056 int write = rw & REQ_WRITE;
6057 int ret = 0;
6059 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6061 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6062 if (!dip) {
6063 ret = -ENOMEM;
6064 goto free_ordered;
6066 dip->csums = NULL;
6068 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6069 if (!write && !skip_sum) {
6070 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6071 if (!dip->csums) {
6072 kfree(dip);
6073 ret = -ENOMEM;
6074 goto free_ordered;
6078 dip->private = bio->bi_private;
6079 dip->inode = inode;
6080 dip->logical_offset = file_offset;
6082 dip->bytes = 0;
6083 do {
6084 dip->bytes += bvec->bv_len;
6085 bvec++;
6086 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6088 dip->disk_bytenr = (u64)bio->bi_sector << 9;
6089 bio->bi_private = dip;
6090 dip->errors = 0;
6091 dip->orig_bio = bio;
6092 atomic_set(&dip->pending_bios, 0);
6094 if (write)
6095 bio->bi_end_io = btrfs_endio_direct_write;
6096 else
6097 bio->bi_end_io = btrfs_endio_direct_read;
6099 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6100 if (!ret)
6101 return;
6102 free_ordered:
6104 * If this is a write, we need to clean up the reserved space and kill
6105 * the ordered extent.
6107 if (write) {
6108 struct btrfs_ordered_extent *ordered;
6109 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6110 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6111 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6112 btrfs_free_reserved_extent(root, ordered->start,
6113 ordered->disk_len);
6114 btrfs_put_ordered_extent(ordered);
6115 btrfs_put_ordered_extent(ordered);
6117 bio_endio(bio, ret);
6120 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6121 const struct iovec *iov, loff_t offset,
6122 unsigned long nr_segs)
6124 int seg;
6125 int i;
6126 size_t size;
6127 unsigned long addr;
6128 unsigned blocksize_mask = root->sectorsize - 1;
6129 ssize_t retval = -EINVAL;
6130 loff_t end = offset;
6132 if (offset & blocksize_mask)
6133 goto out;
6135 /* Check the memory alignment. Blocks cannot straddle pages */
6136 for (seg = 0; seg < nr_segs; seg++) {
6137 addr = (unsigned long)iov[seg].iov_base;
6138 size = iov[seg].iov_len;
6139 end += size;
6140 if ((addr & blocksize_mask) || (size & blocksize_mask))
6141 goto out;
6143 /* If this is a write we don't need to check anymore */
6144 if (rw & WRITE)
6145 continue;
6148 * Check to make sure we don't have duplicate iov_base's in this
6149 * iovec, if so return EINVAL, otherwise we'll get csum errors
6150 * when reading back.
6152 for (i = seg + 1; i < nr_segs; i++) {
6153 if (iov[seg].iov_base == iov[i].iov_base)
6154 goto out;
6157 retval = 0;
6158 out:
6159 return retval;
6161 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6162 const struct iovec *iov, loff_t offset,
6163 unsigned long nr_segs)
6165 struct file *file = iocb->ki_filp;
6166 struct inode *inode = file->f_mapping->host;
6167 struct btrfs_ordered_extent *ordered;
6168 struct extent_state *cached_state = NULL;
6169 u64 lockstart, lockend;
6170 ssize_t ret;
6171 int writing = rw & WRITE;
6172 int write_bits = 0;
6173 size_t count = iov_length(iov, nr_segs);
6175 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6176 offset, nr_segs)) {
6177 return 0;
6180 lockstart = offset;
6181 lockend = offset + count - 1;
6183 if (writing) {
6184 ret = btrfs_delalloc_reserve_space(inode, count);
6185 if (ret)
6186 goto out;
6189 while (1) {
6190 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6191 0, &cached_state, GFP_NOFS);
6193 * We're concerned with the entire range that we're going to be
6194 * doing DIO to, so we need to make sure theres no ordered
6195 * extents in this range.
6197 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6198 lockend - lockstart + 1);
6199 if (!ordered)
6200 break;
6201 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6202 &cached_state, GFP_NOFS);
6203 btrfs_start_ordered_extent(inode, ordered, 1);
6204 btrfs_put_ordered_extent(ordered);
6205 cond_resched();
6209 * we don't use btrfs_set_extent_delalloc because we don't want
6210 * the dirty or uptodate bits
6212 if (writing) {
6213 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6214 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6215 EXTENT_DELALLOC, 0, NULL, &cached_state,
6216 GFP_NOFS);
6217 if (ret) {
6218 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6219 lockend, EXTENT_LOCKED | write_bits,
6220 1, 0, &cached_state, GFP_NOFS);
6221 goto out;
6225 free_extent_state(cached_state);
6226 cached_state = NULL;
6228 ret = __blockdev_direct_IO(rw, iocb, inode,
6229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6230 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6231 btrfs_submit_direct, 0);
6233 if (ret < 0 && ret != -EIOCBQUEUED) {
6234 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6235 offset + iov_length(iov, nr_segs) - 1,
6236 EXTENT_LOCKED | write_bits, 1, 0,
6237 &cached_state, GFP_NOFS);
6238 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6240 * We're falling back to buffered, unlock the section we didn't
6241 * do IO on.
6243 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6244 offset + iov_length(iov, nr_segs) - 1,
6245 EXTENT_LOCKED | write_bits, 1, 0,
6246 &cached_state, GFP_NOFS);
6248 out:
6249 free_extent_state(cached_state);
6250 return ret;
6253 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6254 __u64 start, __u64 len)
6256 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6259 int btrfs_readpage(struct file *file, struct page *page)
6261 struct extent_io_tree *tree;
6262 tree = &BTRFS_I(page->mapping->host)->io_tree;
6263 return extent_read_full_page(tree, page, btrfs_get_extent);
6266 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6268 struct extent_io_tree *tree;
6271 if (current->flags & PF_MEMALLOC) {
6272 redirty_page_for_writepage(wbc, page);
6273 unlock_page(page);
6274 return 0;
6276 tree = &BTRFS_I(page->mapping->host)->io_tree;
6277 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6280 int btrfs_writepages(struct address_space *mapping,
6281 struct writeback_control *wbc)
6283 struct extent_io_tree *tree;
6285 tree = &BTRFS_I(mapping->host)->io_tree;
6286 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6289 static int
6290 btrfs_readpages(struct file *file, struct address_space *mapping,
6291 struct list_head *pages, unsigned nr_pages)
6293 struct extent_io_tree *tree;
6294 tree = &BTRFS_I(mapping->host)->io_tree;
6295 return extent_readpages(tree, mapping, pages, nr_pages,
6296 btrfs_get_extent);
6298 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6300 struct extent_io_tree *tree;
6301 struct extent_map_tree *map;
6302 int ret;
6304 tree = &BTRFS_I(page->mapping->host)->io_tree;
6305 map = &BTRFS_I(page->mapping->host)->extent_tree;
6306 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6307 if (ret == 1) {
6308 ClearPagePrivate(page);
6309 set_page_private(page, 0);
6310 page_cache_release(page);
6312 return ret;
6315 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6317 if (PageWriteback(page) || PageDirty(page))
6318 return 0;
6319 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6322 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6324 struct extent_io_tree *tree;
6325 struct btrfs_ordered_extent *ordered;
6326 struct extent_state *cached_state = NULL;
6327 u64 page_start = page_offset(page);
6328 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6332 * we have the page locked, so new writeback can't start,
6333 * and the dirty bit won't be cleared while we are here.
6335 * Wait for IO on this page so that we can safely clear
6336 * the PagePrivate2 bit and do ordered accounting
6338 wait_on_page_writeback(page);
6340 tree = &BTRFS_I(page->mapping->host)->io_tree;
6341 if (offset) {
6342 btrfs_releasepage(page, GFP_NOFS);
6343 return;
6345 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6346 GFP_NOFS);
6347 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6348 page_offset(page));
6349 if (ordered) {
6351 * IO on this page will never be started, so we need
6352 * to account for any ordered extents now
6354 clear_extent_bit(tree, page_start, page_end,
6355 EXTENT_DIRTY | EXTENT_DELALLOC |
6356 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6357 &cached_state, GFP_NOFS);
6359 * whoever cleared the private bit is responsible
6360 * for the finish_ordered_io
6362 if (TestClearPagePrivate2(page)) {
6363 btrfs_finish_ordered_io(page->mapping->host,
6364 page_start, page_end);
6366 btrfs_put_ordered_extent(ordered);
6367 cached_state = NULL;
6368 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6369 GFP_NOFS);
6371 clear_extent_bit(tree, page_start, page_end,
6372 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6373 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6374 __btrfs_releasepage(page, GFP_NOFS);
6376 ClearPageChecked(page);
6377 if (PagePrivate(page)) {
6378 ClearPagePrivate(page);
6379 set_page_private(page, 0);
6380 page_cache_release(page);
6385 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6386 * called from a page fault handler when a page is first dirtied. Hence we must
6387 * be careful to check for EOF conditions here. We set the page up correctly
6388 * for a written page which means we get ENOSPC checking when writing into
6389 * holes and correct delalloc and unwritten extent mapping on filesystems that
6390 * support these features.
6392 * We are not allowed to take the i_mutex here so we have to play games to
6393 * protect against truncate races as the page could now be beyond EOF. Because
6394 * vmtruncate() writes the inode size before removing pages, once we have the
6395 * page lock we can determine safely if the page is beyond EOF. If it is not
6396 * beyond EOF, then the page is guaranteed safe against truncation until we
6397 * unlock the page.
6399 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6401 struct page *page = vmf->page;
6402 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6403 struct btrfs_root *root = BTRFS_I(inode)->root;
6404 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6405 struct btrfs_ordered_extent *ordered;
6406 struct extent_state *cached_state = NULL;
6407 char *kaddr;
6408 unsigned long zero_start;
6409 loff_t size;
6410 int ret;
6411 u64 page_start;
6412 u64 page_end;
6414 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6415 if (ret) {
6416 if (ret == -ENOMEM)
6417 ret = VM_FAULT_OOM;
6418 else /* -ENOSPC, -EIO, etc */
6419 ret = VM_FAULT_SIGBUS;
6420 goto out;
6423 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6424 again:
6425 lock_page(page);
6426 size = i_size_read(inode);
6427 page_start = page_offset(page);
6428 page_end = page_start + PAGE_CACHE_SIZE - 1;
6430 if ((page->mapping != inode->i_mapping) ||
6431 (page_start >= size)) {
6432 /* page got truncated out from underneath us */
6433 goto out_unlock;
6435 wait_on_page_writeback(page);
6437 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6438 GFP_NOFS);
6439 set_page_extent_mapped(page);
6442 * we can't set the delalloc bits if there are pending ordered
6443 * extents. Drop our locks and wait for them to finish
6445 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6446 if (ordered) {
6447 unlock_extent_cached(io_tree, page_start, page_end,
6448 &cached_state, GFP_NOFS);
6449 unlock_page(page);
6450 btrfs_start_ordered_extent(inode, ordered, 1);
6451 btrfs_put_ordered_extent(ordered);
6452 goto again;
6456 * XXX - page_mkwrite gets called every time the page is dirtied, even
6457 * if it was already dirty, so for space accounting reasons we need to
6458 * clear any delalloc bits for the range we are fixing to save. There
6459 * is probably a better way to do this, but for now keep consistent with
6460 * prepare_pages in the normal write path.
6462 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6463 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6464 0, 0, &cached_state, GFP_NOFS);
6466 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6467 &cached_state);
6468 if (ret) {
6469 unlock_extent_cached(io_tree, page_start, page_end,
6470 &cached_state, GFP_NOFS);
6471 ret = VM_FAULT_SIGBUS;
6472 goto out_unlock;
6474 ret = 0;
6476 /* page is wholly or partially inside EOF */
6477 if (page_start + PAGE_CACHE_SIZE > size)
6478 zero_start = size & ~PAGE_CACHE_MASK;
6479 else
6480 zero_start = PAGE_CACHE_SIZE;
6482 if (zero_start != PAGE_CACHE_SIZE) {
6483 kaddr = kmap(page);
6484 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6485 flush_dcache_page(page);
6486 kunmap(page);
6488 ClearPageChecked(page);
6489 set_page_dirty(page);
6490 SetPageUptodate(page);
6492 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6493 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6495 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6497 out_unlock:
6498 if (!ret)
6499 return VM_FAULT_LOCKED;
6500 unlock_page(page);
6501 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6502 out:
6503 return ret;
6506 static int btrfs_truncate(struct inode *inode)
6508 struct btrfs_root *root = BTRFS_I(inode)->root;
6509 struct btrfs_block_rsv *rsv;
6510 int ret;
6511 int err = 0;
6512 struct btrfs_trans_handle *trans;
6513 unsigned long nr;
6514 u64 mask = root->sectorsize - 1;
6515 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
6517 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6518 if (ret)
6519 return ret;
6521 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6522 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6525 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6526 * 3 things going on here
6528 * 1) We need to reserve space for our orphan item and the space to
6529 * delete our orphan item. Lord knows we don't want to have a dangling
6530 * orphan item because we didn't reserve space to remove it.
6532 * 2) We need to reserve space to update our inode.
6534 * 3) We need to have something to cache all the space that is going to
6535 * be free'd up by the truncate operation, but also have some slack
6536 * space reserved in case it uses space during the truncate (thank you
6537 * very much snapshotting).
6539 * And we need these to all be seperate. The fact is we can use alot of
6540 * space doing the truncate, and we have no earthly idea how much space
6541 * we will use, so we need the truncate reservation to be seperate so it
6542 * doesn't end up using space reserved for updating the inode or
6543 * removing the orphan item. We also need to be able to stop the
6544 * transaction and start a new one, which means we need to be able to
6545 * update the inode several times, and we have no idea of knowing how
6546 * many times that will be, so we can't just reserve 1 item for the
6547 * entirety of the opration, so that has to be done seperately as well.
6548 * Then there is the orphan item, which does indeed need to be held on
6549 * to for the whole operation, and we need nobody to touch this reserved
6550 * space except the orphan code.
6552 * So that leaves us with
6554 * 1) root->orphan_block_rsv - for the orphan deletion.
6555 * 2) rsv - for the truncate reservation, which we will steal from the
6556 * transaction reservation.
6557 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6558 * updating the inode.
6560 rsv = btrfs_alloc_block_rsv(root);
6561 if (!rsv)
6562 return -ENOMEM;
6563 rsv->size = min_size;
6566 * 1 for the truncate slack space
6567 * 1 for the orphan item we're going to add
6568 * 1 for the orphan item deletion
6569 * 1 for updating the inode.
6571 trans = btrfs_start_transaction(root, 4);
6572 if (IS_ERR(trans)) {
6573 err = PTR_ERR(trans);
6574 goto out;
6577 /* Migrate the slack space for the truncate to our reserve */
6578 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6579 min_size);
6580 BUG_ON(ret);
6582 ret = btrfs_orphan_add(trans, inode);
6583 if (ret) {
6584 btrfs_end_transaction(trans, root);
6585 goto out;
6589 * setattr is responsible for setting the ordered_data_close flag,
6590 * but that is only tested during the last file release. That
6591 * could happen well after the next commit, leaving a great big
6592 * window where new writes may get lost if someone chooses to write
6593 * to this file after truncating to zero
6595 * The inode doesn't have any dirty data here, and so if we commit
6596 * this is a noop. If someone immediately starts writing to the inode
6597 * it is very likely we'll catch some of their writes in this
6598 * transaction, and the commit will find this file on the ordered
6599 * data list with good things to send down.
6601 * This is a best effort solution, there is still a window where
6602 * using truncate to replace the contents of the file will
6603 * end up with a zero length file after a crash.
6605 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6606 btrfs_add_ordered_operation(trans, root, inode);
6608 while (1) {
6609 ret = btrfs_block_rsv_check(root, rsv, min_size, 0, 1);
6610 if (ret) {
6612 * This can only happen with the original transaction we
6613 * started above, every other time we shouldn't have a
6614 * transaction started yet.
6616 if (ret == -EAGAIN)
6617 goto end_trans;
6618 err = ret;
6619 break;
6622 if (!trans) {
6623 /* Just need the 1 for updating the inode */
6624 trans = btrfs_start_transaction(root, 1);
6625 if (IS_ERR(trans)) {
6626 err = PTR_ERR(trans);
6627 goto out;
6631 trans->block_rsv = rsv;
6633 ret = btrfs_truncate_inode_items(trans, root, inode,
6634 inode->i_size,
6635 BTRFS_EXTENT_DATA_KEY);
6636 if (ret != -EAGAIN) {
6637 err = ret;
6638 break;
6641 trans->block_rsv = &root->fs_info->trans_block_rsv;
6642 ret = btrfs_update_inode(trans, root, inode);
6643 if (ret) {
6644 err = ret;
6645 break;
6647 end_trans:
6648 nr = trans->blocks_used;
6649 btrfs_end_transaction(trans, root);
6650 trans = NULL;
6651 btrfs_btree_balance_dirty(root, nr);
6654 if (ret == 0 && inode->i_nlink > 0) {
6655 trans->block_rsv = root->orphan_block_rsv;
6656 ret = btrfs_orphan_del(trans, inode);
6657 if (ret)
6658 err = ret;
6659 } else if (ret && inode->i_nlink > 0) {
6661 * Failed to do the truncate, remove us from the in memory
6662 * orphan list.
6664 ret = btrfs_orphan_del(NULL, inode);
6667 trans->block_rsv = &root->fs_info->trans_block_rsv;
6668 ret = btrfs_update_inode(trans, root, inode);
6669 if (ret && !err)
6670 err = ret;
6672 nr = trans->blocks_used;
6673 ret = btrfs_end_transaction_throttle(trans, root);
6674 btrfs_btree_balance_dirty(root, nr);
6676 out:
6677 btrfs_free_block_rsv(root, rsv);
6679 if (ret && !err)
6680 err = ret;
6682 return err;
6686 * create a new subvolume directory/inode (helper for the ioctl).
6688 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6689 struct btrfs_root *new_root, u64 new_dirid)
6691 struct inode *inode;
6692 int err;
6693 u64 index = 0;
6695 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6696 new_dirid, S_IFDIR | 0700, &index);
6697 if (IS_ERR(inode))
6698 return PTR_ERR(inode);
6699 inode->i_op = &btrfs_dir_inode_operations;
6700 inode->i_fop = &btrfs_dir_file_operations;
6702 inode->i_nlink = 1;
6703 btrfs_i_size_write(inode, 0);
6705 err = btrfs_update_inode(trans, new_root, inode);
6706 BUG_ON(err);
6708 iput(inode);
6709 return 0;
6712 struct inode *btrfs_alloc_inode(struct super_block *sb)
6714 struct btrfs_inode *ei;
6715 struct inode *inode;
6717 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6718 if (!ei)
6719 return NULL;
6721 ei->root = NULL;
6722 ei->space_info = NULL;
6723 ei->generation = 0;
6724 ei->sequence = 0;
6725 ei->last_trans = 0;
6726 ei->last_sub_trans = 0;
6727 ei->logged_trans = 0;
6728 ei->delalloc_bytes = 0;
6729 ei->disk_i_size = 0;
6730 ei->flags = 0;
6731 ei->csum_bytes = 0;
6732 ei->index_cnt = (u64)-1;
6733 ei->last_unlink_trans = 0;
6735 spin_lock_init(&ei->lock);
6736 ei->outstanding_extents = 0;
6737 ei->reserved_extents = 0;
6739 ei->ordered_data_close = 0;
6740 ei->orphan_meta_reserved = 0;
6741 ei->dummy_inode = 0;
6742 ei->in_defrag = 0;
6743 ei->force_compress = BTRFS_COMPRESS_NONE;
6745 ei->delayed_node = NULL;
6747 inode = &ei->vfs_inode;
6748 extent_map_tree_init(&ei->extent_tree);
6749 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6750 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6751 mutex_init(&ei->log_mutex);
6752 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6753 INIT_LIST_HEAD(&ei->i_orphan);
6754 INIT_LIST_HEAD(&ei->delalloc_inodes);
6755 INIT_LIST_HEAD(&ei->ordered_operations);
6756 RB_CLEAR_NODE(&ei->rb_node);
6758 return inode;
6761 static void btrfs_i_callback(struct rcu_head *head)
6763 struct inode *inode = container_of(head, struct inode, i_rcu);
6764 INIT_LIST_HEAD(&inode->i_dentry);
6765 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6768 void btrfs_destroy_inode(struct inode *inode)
6770 struct btrfs_ordered_extent *ordered;
6771 struct btrfs_root *root = BTRFS_I(inode)->root;
6773 WARN_ON(!list_empty(&inode->i_dentry));
6774 WARN_ON(inode->i_data.nrpages);
6775 WARN_ON(BTRFS_I(inode)->outstanding_extents);
6776 WARN_ON(BTRFS_I(inode)->reserved_extents);
6777 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
6778 WARN_ON(BTRFS_I(inode)->csum_bytes);
6781 * This can happen where we create an inode, but somebody else also
6782 * created the same inode and we need to destroy the one we already
6783 * created.
6785 if (!root)
6786 goto free;
6789 * Make sure we're properly removed from the ordered operation
6790 * lists.
6792 smp_mb();
6793 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6794 spin_lock(&root->fs_info->ordered_extent_lock);
6795 list_del_init(&BTRFS_I(inode)->ordered_operations);
6796 spin_unlock(&root->fs_info->ordered_extent_lock);
6799 spin_lock(&root->orphan_lock);
6800 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6801 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6802 (unsigned long long)btrfs_ino(inode));
6803 list_del_init(&BTRFS_I(inode)->i_orphan);
6805 spin_unlock(&root->orphan_lock);
6807 while (1) {
6808 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6809 if (!ordered)
6810 break;
6811 else {
6812 printk(KERN_ERR "btrfs found ordered "
6813 "extent %llu %llu on inode cleanup\n",
6814 (unsigned long long)ordered->file_offset,
6815 (unsigned long long)ordered->len);
6816 btrfs_remove_ordered_extent(inode, ordered);
6817 btrfs_put_ordered_extent(ordered);
6818 btrfs_put_ordered_extent(ordered);
6821 inode_tree_del(inode);
6822 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6823 free:
6824 btrfs_remove_delayed_node(inode);
6825 call_rcu(&inode->i_rcu, btrfs_i_callback);
6828 int btrfs_drop_inode(struct inode *inode)
6830 struct btrfs_root *root = BTRFS_I(inode)->root;
6832 if (btrfs_root_refs(&root->root_item) == 0 &&
6833 !btrfs_is_free_space_inode(root, inode))
6834 return 1;
6835 else
6836 return generic_drop_inode(inode);
6839 static void init_once(void *foo)
6841 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6843 inode_init_once(&ei->vfs_inode);
6846 void btrfs_destroy_cachep(void)
6848 if (btrfs_inode_cachep)
6849 kmem_cache_destroy(btrfs_inode_cachep);
6850 if (btrfs_trans_handle_cachep)
6851 kmem_cache_destroy(btrfs_trans_handle_cachep);
6852 if (btrfs_transaction_cachep)
6853 kmem_cache_destroy(btrfs_transaction_cachep);
6854 if (btrfs_path_cachep)
6855 kmem_cache_destroy(btrfs_path_cachep);
6856 if (btrfs_free_space_cachep)
6857 kmem_cache_destroy(btrfs_free_space_cachep);
6860 int btrfs_init_cachep(void)
6862 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6863 sizeof(struct btrfs_inode), 0,
6864 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6865 if (!btrfs_inode_cachep)
6866 goto fail;
6868 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6869 sizeof(struct btrfs_trans_handle), 0,
6870 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6871 if (!btrfs_trans_handle_cachep)
6872 goto fail;
6874 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6875 sizeof(struct btrfs_transaction), 0,
6876 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6877 if (!btrfs_transaction_cachep)
6878 goto fail;
6880 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6881 sizeof(struct btrfs_path), 0,
6882 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6883 if (!btrfs_path_cachep)
6884 goto fail;
6886 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6887 sizeof(struct btrfs_free_space), 0,
6888 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6889 if (!btrfs_free_space_cachep)
6890 goto fail;
6892 return 0;
6893 fail:
6894 btrfs_destroy_cachep();
6895 return -ENOMEM;
6898 static int btrfs_getattr(struct vfsmount *mnt,
6899 struct dentry *dentry, struct kstat *stat)
6901 struct inode *inode = dentry->d_inode;
6902 generic_fillattr(inode, stat);
6903 stat->dev = BTRFS_I(inode)->root->anon_dev;
6904 stat->blksize = PAGE_CACHE_SIZE;
6905 stat->blocks = (inode_get_bytes(inode) +
6906 BTRFS_I(inode)->delalloc_bytes) >> 9;
6907 return 0;
6911 * If a file is moved, it will inherit the cow and compression flags of the new
6912 * directory.
6914 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6916 struct btrfs_inode *b_dir = BTRFS_I(dir);
6917 struct btrfs_inode *b_inode = BTRFS_I(inode);
6919 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6920 b_inode->flags |= BTRFS_INODE_NODATACOW;
6921 else
6922 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6924 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6925 b_inode->flags |= BTRFS_INODE_COMPRESS;
6926 else
6927 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6930 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6931 struct inode *new_dir, struct dentry *new_dentry)
6933 struct btrfs_trans_handle *trans;
6934 struct btrfs_root *root = BTRFS_I(old_dir)->root;
6935 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6936 struct inode *new_inode = new_dentry->d_inode;
6937 struct inode *old_inode = old_dentry->d_inode;
6938 struct timespec ctime = CURRENT_TIME;
6939 u64 index = 0;
6940 u64 root_objectid;
6941 int ret;
6942 u64 old_ino = btrfs_ino(old_inode);
6944 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6945 return -EPERM;
6947 /* we only allow rename subvolume link between subvolumes */
6948 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6949 return -EXDEV;
6951 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6952 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
6953 return -ENOTEMPTY;
6955 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6956 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6957 return -ENOTEMPTY;
6959 * we're using rename to replace one file with another.
6960 * and the replacement file is large. Start IO on it now so
6961 * we don't add too much work to the end of the transaction
6963 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6964 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6965 filemap_flush(old_inode->i_mapping);
6967 /* close the racy window with snapshot create/destroy ioctl */
6968 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
6969 down_read(&root->fs_info->subvol_sem);
6971 * We want to reserve the absolute worst case amount of items. So if
6972 * both inodes are subvols and we need to unlink them then that would
6973 * require 4 item modifications, but if they are both normal inodes it
6974 * would require 5 item modifications, so we'll assume their normal
6975 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6976 * should cover the worst case number of items we'll modify.
6978 trans = btrfs_start_transaction(root, 20);
6979 if (IS_ERR(trans)) {
6980 ret = PTR_ERR(trans);
6981 goto out_notrans;
6984 if (dest != root)
6985 btrfs_record_root_in_trans(trans, dest);
6987 ret = btrfs_set_inode_index(new_dir, &index);
6988 if (ret)
6989 goto out_fail;
6991 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6992 /* force full log commit if subvolume involved. */
6993 root->fs_info->last_trans_log_full_commit = trans->transid;
6994 } else {
6995 ret = btrfs_insert_inode_ref(trans, dest,
6996 new_dentry->d_name.name,
6997 new_dentry->d_name.len,
6998 old_ino,
6999 btrfs_ino(new_dir), index);
7000 if (ret)
7001 goto out_fail;
7003 * this is an ugly little race, but the rename is required
7004 * to make sure that if we crash, the inode is either at the
7005 * old name or the new one. pinning the log transaction lets
7006 * us make sure we don't allow a log commit to come in after
7007 * we unlink the name but before we add the new name back in.
7009 btrfs_pin_log_trans(root);
7012 * make sure the inode gets flushed if it is replacing
7013 * something.
7015 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7016 btrfs_add_ordered_operation(trans, root, old_inode);
7018 old_dir->i_ctime = old_dir->i_mtime = ctime;
7019 new_dir->i_ctime = new_dir->i_mtime = ctime;
7020 old_inode->i_ctime = ctime;
7022 if (old_dentry->d_parent != new_dentry->d_parent)
7023 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7025 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7026 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7027 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7028 old_dentry->d_name.name,
7029 old_dentry->d_name.len);
7030 } else {
7031 ret = __btrfs_unlink_inode(trans, root, old_dir,
7032 old_dentry->d_inode,
7033 old_dentry->d_name.name,
7034 old_dentry->d_name.len);
7035 if (!ret)
7036 ret = btrfs_update_inode(trans, root, old_inode);
7038 BUG_ON(ret);
7040 if (new_inode) {
7041 new_inode->i_ctime = CURRENT_TIME;
7042 if (unlikely(btrfs_ino(new_inode) ==
7043 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7044 root_objectid = BTRFS_I(new_inode)->location.objectid;
7045 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7046 root_objectid,
7047 new_dentry->d_name.name,
7048 new_dentry->d_name.len);
7049 BUG_ON(new_inode->i_nlink == 0);
7050 } else {
7051 ret = btrfs_unlink_inode(trans, dest, new_dir,
7052 new_dentry->d_inode,
7053 new_dentry->d_name.name,
7054 new_dentry->d_name.len);
7056 BUG_ON(ret);
7057 if (new_inode->i_nlink == 0) {
7058 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7059 BUG_ON(ret);
7063 fixup_inode_flags(new_dir, old_inode);
7065 ret = btrfs_add_link(trans, new_dir, old_inode,
7066 new_dentry->d_name.name,
7067 new_dentry->d_name.len, 0, index);
7068 BUG_ON(ret);
7070 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7071 struct dentry *parent = new_dentry->d_parent;
7072 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7073 btrfs_end_log_trans(root);
7075 out_fail:
7076 btrfs_end_transaction_throttle(trans, root);
7077 out_notrans:
7078 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7079 up_read(&root->fs_info->subvol_sem);
7081 return ret;
7085 * some fairly slow code that needs optimization. This walks the list
7086 * of all the inodes with pending delalloc and forces them to disk.
7088 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7090 struct list_head *head = &root->fs_info->delalloc_inodes;
7091 struct btrfs_inode *binode;
7092 struct inode *inode;
7094 if (root->fs_info->sb->s_flags & MS_RDONLY)
7095 return -EROFS;
7097 spin_lock(&root->fs_info->delalloc_lock);
7098 while (!list_empty(head)) {
7099 binode = list_entry(head->next, struct btrfs_inode,
7100 delalloc_inodes);
7101 inode = igrab(&binode->vfs_inode);
7102 if (!inode)
7103 list_del_init(&binode->delalloc_inodes);
7104 spin_unlock(&root->fs_info->delalloc_lock);
7105 if (inode) {
7106 filemap_flush(inode->i_mapping);
7107 if (delay_iput)
7108 btrfs_add_delayed_iput(inode);
7109 else
7110 iput(inode);
7112 cond_resched();
7113 spin_lock(&root->fs_info->delalloc_lock);
7115 spin_unlock(&root->fs_info->delalloc_lock);
7117 /* the filemap_flush will queue IO into the worker threads, but
7118 * we have to make sure the IO is actually started and that
7119 * ordered extents get created before we return
7121 atomic_inc(&root->fs_info->async_submit_draining);
7122 while (atomic_read(&root->fs_info->nr_async_submits) ||
7123 atomic_read(&root->fs_info->async_delalloc_pages)) {
7124 wait_event(root->fs_info->async_submit_wait,
7125 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7126 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7128 atomic_dec(&root->fs_info->async_submit_draining);
7129 return 0;
7132 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7133 const char *symname)
7135 struct btrfs_trans_handle *trans;
7136 struct btrfs_root *root = BTRFS_I(dir)->root;
7137 struct btrfs_path *path;
7138 struct btrfs_key key;
7139 struct inode *inode = NULL;
7140 int err;
7141 int drop_inode = 0;
7142 u64 objectid;
7143 u64 index = 0 ;
7144 int name_len;
7145 int datasize;
7146 unsigned long ptr;
7147 struct btrfs_file_extent_item *ei;
7148 struct extent_buffer *leaf;
7149 unsigned long nr = 0;
7151 name_len = strlen(symname) + 1;
7152 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7153 return -ENAMETOOLONG;
7156 * 2 items for inode item and ref
7157 * 2 items for dir items
7158 * 1 item for xattr if selinux is on
7160 trans = btrfs_start_transaction(root, 5);
7161 if (IS_ERR(trans))
7162 return PTR_ERR(trans);
7164 err = btrfs_find_free_ino(root, &objectid);
7165 if (err)
7166 goto out_unlock;
7168 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7169 dentry->d_name.len, btrfs_ino(dir), objectid,
7170 S_IFLNK|S_IRWXUGO, &index);
7171 if (IS_ERR(inode)) {
7172 err = PTR_ERR(inode);
7173 goto out_unlock;
7176 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7177 if (err) {
7178 drop_inode = 1;
7179 goto out_unlock;
7182 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7183 if (err)
7184 drop_inode = 1;
7185 else {
7186 inode->i_mapping->a_ops = &btrfs_aops;
7187 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7188 inode->i_fop = &btrfs_file_operations;
7189 inode->i_op = &btrfs_file_inode_operations;
7190 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7192 if (drop_inode)
7193 goto out_unlock;
7195 path = btrfs_alloc_path();
7196 if (!path) {
7197 err = -ENOMEM;
7198 drop_inode = 1;
7199 goto out_unlock;
7201 key.objectid = btrfs_ino(inode);
7202 key.offset = 0;
7203 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7204 datasize = btrfs_file_extent_calc_inline_size(name_len);
7205 err = btrfs_insert_empty_item(trans, root, path, &key,
7206 datasize);
7207 if (err) {
7208 drop_inode = 1;
7209 btrfs_free_path(path);
7210 goto out_unlock;
7212 leaf = path->nodes[0];
7213 ei = btrfs_item_ptr(leaf, path->slots[0],
7214 struct btrfs_file_extent_item);
7215 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7216 btrfs_set_file_extent_type(leaf, ei,
7217 BTRFS_FILE_EXTENT_INLINE);
7218 btrfs_set_file_extent_encryption(leaf, ei, 0);
7219 btrfs_set_file_extent_compression(leaf, ei, 0);
7220 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7221 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7223 ptr = btrfs_file_extent_inline_start(ei);
7224 write_extent_buffer(leaf, symname, ptr, name_len);
7225 btrfs_mark_buffer_dirty(leaf);
7226 btrfs_free_path(path);
7228 inode->i_op = &btrfs_symlink_inode_operations;
7229 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7230 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7231 inode_set_bytes(inode, name_len);
7232 btrfs_i_size_write(inode, name_len - 1);
7233 err = btrfs_update_inode(trans, root, inode);
7234 if (err)
7235 drop_inode = 1;
7237 out_unlock:
7238 nr = trans->blocks_used;
7239 btrfs_end_transaction_throttle(trans, root);
7240 if (drop_inode) {
7241 inode_dec_link_count(inode);
7242 iput(inode);
7244 btrfs_btree_balance_dirty(root, nr);
7245 return err;
7248 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7249 u64 start, u64 num_bytes, u64 min_size,
7250 loff_t actual_len, u64 *alloc_hint,
7251 struct btrfs_trans_handle *trans)
7253 struct btrfs_root *root = BTRFS_I(inode)->root;
7254 struct btrfs_key ins;
7255 u64 cur_offset = start;
7256 u64 i_size;
7257 int ret = 0;
7258 bool own_trans = true;
7260 if (trans)
7261 own_trans = false;
7262 while (num_bytes > 0) {
7263 if (own_trans) {
7264 trans = btrfs_start_transaction(root, 3);
7265 if (IS_ERR(trans)) {
7266 ret = PTR_ERR(trans);
7267 break;
7271 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7272 0, *alloc_hint, (u64)-1, &ins, 1);
7273 if (ret) {
7274 if (own_trans)
7275 btrfs_end_transaction(trans, root);
7276 break;
7279 ret = insert_reserved_file_extent(trans, inode,
7280 cur_offset, ins.objectid,
7281 ins.offset, ins.offset,
7282 ins.offset, 0, 0, 0,
7283 BTRFS_FILE_EXTENT_PREALLOC);
7284 BUG_ON(ret);
7285 btrfs_drop_extent_cache(inode, cur_offset,
7286 cur_offset + ins.offset -1, 0);
7288 num_bytes -= ins.offset;
7289 cur_offset += ins.offset;
7290 *alloc_hint = ins.objectid + ins.offset;
7292 inode->i_ctime = CURRENT_TIME;
7293 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7294 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7295 (actual_len > inode->i_size) &&
7296 (cur_offset > inode->i_size)) {
7297 if (cur_offset > actual_len)
7298 i_size = actual_len;
7299 else
7300 i_size = cur_offset;
7301 i_size_write(inode, i_size);
7302 btrfs_ordered_update_i_size(inode, i_size, NULL);
7305 ret = btrfs_update_inode(trans, root, inode);
7306 BUG_ON(ret);
7308 if (own_trans)
7309 btrfs_end_transaction(trans, root);
7311 return ret;
7314 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7315 u64 start, u64 num_bytes, u64 min_size,
7316 loff_t actual_len, u64 *alloc_hint)
7318 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7319 min_size, actual_len, alloc_hint,
7320 NULL);
7323 int btrfs_prealloc_file_range_trans(struct inode *inode,
7324 struct btrfs_trans_handle *trans, int mode,
7325 u64 start, u64 num_bytes, u64 min_size,
7326 loff_t actual_len, u64 *alloc_hint)
7328 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7329 min_size, actual_len, alloc_hint, trans);
7332 static int btrfs_set_page_dirty(struct page *page)
7334 return __set_page_dirty_nobuffers(page);
7337 static int btrfs_permission(struct inode *inode, int mask)
7339 struct btrfs_root *root = BTRFS_I(inode)->root;
7340 umode_t mode = inode->i_mode;
7342 if (mask & MAY_WRITE &&
7343 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7344 if (btrfs_root_readonly(root))
7345 return -EROFS;
7346 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7347 return -EACCES;
7349 return generic_permission(inode, mask);
7352 static const struct inode_operations btrfs_dir_inode_operations = {
7353 .getattr = btrfs_getattr,
7354 .lookup = btrfs_lookup,
7355 .create = btrfs_create,
7356 .unlink = btrfs_unlink,
7357 .link = btrfs_link,
7358 .mkdir = btrfs_mkdir,
7359 .rmdir = btrfs_rmdir,
7360 .rename = btrfs_rename,
7361 .symlink = btrfs_symlink,
7362 .setattr = btrfs_setattr,
7363 .mknod = btrfs_mknod,
7364 .setxattr = btrfs_setxattr,
7365 .getxattr = btrfs_getxattr,
7366 .listxattr = btrfs_listxattr,
7367 .removexattr = btrfs_removexattr,
7368 .permission = btrfs_permission,
7369 .get_acl = btrfs_get_acl,
7371 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7372 .lookup = btrfs_lookup,
7373 .permission = btrfs_permission,
7374 .get_acl = btrfs_get_acl,
7377 static const struct file_operations btrfs_dir_file_operations = {
7378 .llseek = generic_file_llseek,
7379 .read = generic_read_dir,
7380 .readdir = btrfs_real_readdir,
7381 .unlocked_ioctl = btrfs_ioctl,
7382 #ifdef CONFIG_COMPAT
7383 .compat_ioctl = btrfs_ioctl,
7384 #endif
7385 .release = btrfs_release_file,
7386 .fsync = btrfs_sync_file,
7389 static struct extent_io_ops btrfs_extent_io_ops = {
7390 .fill_delalloc = run_delalloc_range,
7391 .submit_bio_hook = btrfs_submit_bio_hook,
7392 .merge_bio_hook = btrfs_merge_bio_hook,
7393 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7394 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7395 .writepage_start_hook = btrfs_writepage_start_hook,
7396 .readpage_io_failed_hook = btrfs_io_failed_hook,
7397 .set_bit_hook = btrfs_set_bit_hook,
7398 .clear_bit_hook = btrfs_clear_bit_hook,
7399 .merge_extent_hook = btrfs_merge_extent_hook,
7400 .split_extent_hook = btrfs_split_extent_hook,
7404 * btrfs doesn't support the bmap operation because swapfiles
7405 * use bmap to make a mapping of extents in the file. They assume
7406 * these extents won't change over the life of the file and they
7407 * use the bmap result to do IO directly to the drive.
7409 * the btrfs bmap call would return logical addresses that aren't
7410 * suitable for IO and they also will change frequently as COW
7411 * operations happen. So, swapfile + btrfs == corruption.
7413 * For now we're avoiding this by dropping bmap.
7415 static const struct address_space_operations btrfs_aops = {
7416 .readpage = btrfs_readpage,
7417 .writepage = btrfs_writepage,
7418 .writepages = btrfs_writepages,
7419 .readpages = btrfs_readpages,
7420 .direct_IO = btrfs_direct_IO,
7421 .invalidatepage = btrfs_invalidatepage,
7422 .releasepage = btrfs_releasepage,
7423 .set_page_dirty = btrfs_set_page_dirty,
7424 .error_remove_page = generic_error_remove_page,
7427 static const struct address_space_operations btrfs_symlink_aops = {
7428 .readpage = btrfs_readpage,
7429 .writepage = btrfs_writepage,
7430 .invalidatepage = btrfs_invalidatepage,
7431 .releasepage = btrfs_releasepage,
7434 static const struct inode_operations btrfs_file_inode_operations = {
7435 .getattr = btrfs_getattr,
7436 .setattr = btrfs_setattr,
7437 .setxattr = btrfs_setxattr,
7438 .getxattr = btrfs_getxattr,
7439 .listxattr = btrfs_listxattr,
7440 .removexattr = btrfs_removexattr,
7441 .permission = btrfs_permission,
7442 .fiemap = btrfs_fiemap,
7443 .get_acl = btrfs_get_acl,
7445 static const struct inode_operations btrfs_special_inode_operations = {
7446 .getattr = btrfs_getattr,
7447 .setattr = btrfs_setattr,
7448 .permission = btrfs_permission,
7449 .setxattr = btrfs_setxattr,
7450 .getxattr = btrfs_getxattr,
7451 .listxattr = btrfs_listxattr,
7452 .removexattr = btrfs_removexattr,
7453 .get_acl = btrfs_get_acl,
7455 static const struct inode_operations btrfs_symlink_inode_operations = {
7456 .readlink = generic_readlink,
7457 .follow_link = page_follow_link_light,
7458 .put_link = page_put_link,
7459 .getattr = btrfs_getattr,
7460 .permission = btrfs_permission,
7461 .setxattr = btrfs_setxattr,
7462 .getxattr = btrfs_getxattr,
7463 .listxattr = btrfs_listxattr,
7464 .removexattr = btrfs_removexattr,
7465 .get_acl = btrfs_get_acl,
7468 const struct dentry_operations btrfs_dentry_operations = {
7469 .d_delete = btrfs_dentry_delete,
7470 .d_release = btrfs_dentry_release,