memcg: keep only one charge cancelling function
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / oom_kill.c
blob3100bc57036b6b97ed256d3c1c9b2366b9fe3f46
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/swap.h>
26 #include <linux/timex.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpuset.h>
29 #include <linux/module.h>
30 #include <linux/notifier.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mempolicy.h>
33 #include <linux/security.h>
34 #include <linux/ptrace.h>
36 int sysctl_panic_on_oom;
37 int sysctl_oom_kill_allocating_task;
38 int sysctl_oom_dump_tasks = 1;
39 static DEFINE_SPINLOCK(zone_scan_lock);
41 #ifdef CONFIG_NUMA
42 /**
43 * has_intersects_mems_allowed() - check task eligiblity for kill
44 * @tsk: task struct of which task to consider
45 * @mask: nodemask passed to page allocator for mempolicy ooms
47 * Task eligibility is determined by whether or not a candidate task, @tsk,
48 * shares the same mempolicy nodes as current if it is bound by such a policy
49 * and whether or not it has the same set of allowed cpuset nodes.
51 static bool has_intersects_mems_allowed(struct task_struct *tsk,
52 const nodemask_t *mask)
54 struct task_struct *start = tsk;
56 do {
57 if (mask) {
59 * If this is a mempolicy constrained oom, tsk's
60 * cpuset is irrelevant. Only return true if its
61 * mempolicy intersects current, otherwise it may be
62 * needlessly killed.
64 if (mempolicy_nodemask_intersects(tsk, mask))
65 return true;
66 } else {
68 * This is not a mempolicy constrained oom, so only
69 * check the mems of tsk's cpuset.
71 if (cpuset_mems_allowed_intersects(current, tsk))
72 return true;
74 } while_each_thread(start, tsk);
76 return false;
78 #else
79 static bool has_intersects_mems_allowed(struct task_struct *tsk,
80 const nodemask_t *mask)
82 return true;
84 #endif /* CONFIG_NUMA */
87 * If this is a system OOM (not a memcg OOM) and the task selected to be
88 * killed is not already running at high (RT) priorities, speed up the
89 * recovery by boosting the dying task to the lowest FIFO priority.
90 * That helps with the recovery and avoids interfering with RT tasks.
92 static void boost_dying_task_prio(struct task_struct *p,
93 struct mem_cgroup *mem)
95 struct sched_param param = { .sched_priority = 1 };
97 if (mem)
98 return;
100 if (!rt_task(p))
101 sched_setscheduler_nocheck(p, SCHED_FIFO, &param);
105 * The process p may have detached its own ->mm while exiting or through
106 * use_mm(), but one or more of its subthreads may still have a valid
107 * pointer. Return p, or any of its subthreads with a valid ->mm, with
108 * task_lock() held.
110 struct task_struct *find_lock_task_mm(struct task_struct *p)
112 struct task_struct *t = p;
114 do {
115 task_lock(t);
116 if (likely(t->mm))
117 return t;
118 task_unlock(t);
119 } while_each_thread(p, t);
121 return NULL;
124 /* return true if the task is not adequate as candidate victim task. */
125 static bool oom_unkillable_task(struct task_struct *p,
126 const struct mem_cgroup *mem, const nodemask_t *nodemask)
128 if (is_global_init(p))
129 return true;
130 if (p->flags & PF_KTHREAD)
131 return true;
133 /* When mem_cgroup_out_of_memory() and p is not member of the group */
134 if (mem && !task_in_mem_cgroup(p, mem))
135 return true;
137 /* p may not have freeable memory in nodemask */
138 if (!has_intersects_mems_allowed(p, nodemask))
139 return true;
141 return false;
145 * oom_badness - heuristic function to determine which candidate task to kill
146 * @p: task struct of which task we should calculate
147 * @totalpages: total present RAM allowed for page allocation
149 * The heuristic for determining which task to kill is made to be as simple and
150 * predictable as possible. The goal is to return the highest value for the
151 * task consuming the most memory to avoid subsequent oom failures.
153 unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *mem,
154 const nodemask_t *nodemask, unsigned long totalpages)
156 int points;
158 if (oom_unkillable_task(p, mem, nodemask))
159 return 0;
161 p = find_lock_task_mm(p);
162 if (!p)
163 return 0;
166 * Shortcut check for a thread sharing p->mm that is OOM_SCORE_ADJ_MIN
167 * so the entire heuristic doesn't need to be executed for something
168 * that cannot be killed.
170 if (atomic_read(&p->mm->oom_disable_count)) {
171 task_unlock(p);
172 return 0;
176 * When the PF_OOM_ORIGIN bit is set, it indicates the task should have
177 * priority for oom killing.
179 if (p->flags & PF_OOM_ORIGIN) {
180 task_unlock(p);
181 return 1000;
185 * The memory controller may have a limit of 0 bytes, so avoid a divide
186 * by zero, if necessary.
188 if (!totalpages)
189 totalpages = 1;
192 * The baseline for the badness score is the proportion of RAM that each
193 * task's rss and swap space use.
195 points = (get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS)) * 1000 /
196 totalpages;
197 task_unlock(p);
200 * Root processes get 3% bonus, just like the __vm_enough_memory()
201 * implementation used by LSMs.
203 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
204 points -= 30;
207 * /proc/pid/oom_score_adj ranges from -1000 to +1000 such that it may
208 * either completely disable oom killing or always prefer a certain
209 * task.
211 points += p->signal->oom_score_adj;
214 * Never return 0 for an eligible task that may be killed since it's
215 * possible that no single user task uses more than 0.1% of memory and
216 * no single admin tasks uses more than 3.0%.
218 if (points <= 0)
219 return 1;
220 return (points < 1000) ? points : 1000;
224 * Determine the type of allocation constraint.
226 #ifdef CONFIG_NUMA
227 static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
228 gfp_t gfp_mask, nodemask_t *nodemask,
229 unsigned long *totalpages)
231 struct zone *zone;
232 struct zoneref *z;
233 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
234 bool cpuset_limited = false;
235 int nid;
237 /* Default to all available memory */
238 *totalpages = totalram_pages + total_swap_pages;
240 if (!zonelist)
241 return CONSTRAINT_NONE;
243 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
244 * to kill current.We have to random task kill in this case.
245 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
247 if (gfp_mask & __GFP_THISNODE)
248 return CONSTRAINT_NONE;
251 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
252 * the page allocator means a mempolicy is in effect. Cpuset policy
253 * is enforced in get_page_from_freelist().
255 if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) {
256 *totalpages = total_swap_pages;
257 for_each_node_mask(nid, *nodemask)
258 *totalpages += node_spanned_pages(nid);
259 return CONSTRAINT_MEMORY_POLICY;
262 /* Check this allocation failure is caused by cpuset's wall function */
263 for_each_zone_zonelist_nodemask(zone, z, zonelist,
264 high_zoneidx, nodemask)
265 if (!cpuset_zone_allowed_softwall(zone, gfp_mask))
266 cpuset_limited = true;
268 if (cpuset_limited) {
269 *totalpages = total_swap_pages;
270 for_each_node_mask(nid, cpuset_current_mems_allowed)
271 *totalpages += node_spanned_pages(nid);
272 return CONSTRAINT_CPUSET;
274 return CONSTRAINT_NONE;
276 #else
277 static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
278 gfp_t gfp_mask, nodemask_t *nodemask,
279 unsigned long *totalpages)
281 *totalpages = totalram_pages + total_swap_pages;
282 return CONSTRAINT_NONE;
284 #endif
287 * Simple selection loop. We chose the process with the highest
288 * number of 'points'. We expect the caller will lock the tasklist.
290 * (not docbooked, we don't want this one cluttering up the manual)
292 static struct task_struct *select_bad_process(unsigned int *ppoints,
293 unsigned long totalpages, struct mem_cgroup *mem,
294 const nodemask_t *nodemask)
296 struct task_struct *g, *p;
297 struct task_struct *chosen = NULL;
298 *ppoints = 0;
300 do_each_thread(g, p) {
301 unsigned int points;
303 if (!p->mm)
304 continue;
305 if (oom_unkillable_task(p, mem, nodemask))
306 continue;
309 * This task already has access to memory reserves and is
310 * being killed. Don't allow any other task access to the
311 * memory reserve.
313 * Note: this may have a chance of deadlock if it gets
314 * blocked waiting for another task which itself is waiting
315 * for memory. Is there a better alternative?
317 if (test_tsk_thread_flag(p, TIF_MEMDIE))
318 return ERR_PTR(-1UL);
320 if (p->flags & PF_EXITING) {
322 * If p is the current task and is in the process of
323 * releasing memory, we allow the "kill" to set
324 * TIF_MEMDIE, which will allow it to gain access to
325 * memory reserves. Otherwise, it may stall forever.
327 * The loop isn't broken here, however, in case other
328 * threads are found to have already been oom killed.
330 if (p == current) {
331 chosen = p;
332 *ppoints = 1000;
333 } else {
335 * If this task is not being ptraced on exit,
336 * then wait for it to finish before killing
337 * some other task unnecessarily.
339 if (!(task_ptrace(p->group_leader) &
340 PT_TRACE_EXIT))
341 return ERR_PTR(-1UL);
345 points = oom_badness(p, mem, nodemask, totalpages);
346 if (points > *ppoints) {
347 chosen = p;
348 *ppoints = points;
350 } while_each_thread(g, p);
352 return chosen;
356 * dump_tasks - dump current memory state of all system tasks
357 * @mem: current's memory controller, if constrained
358 * @nodemask: nodemask passed to page allocator for mempolicy ooms
360 * Dumps the current memory state of all eligible tasks. Tasks not in the same
361 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
362 * are not shown.
363 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
364 * value, oom_score_adj value, and name.
366 * Call with tasklist_lock read-locked.
368 static void dump_tasks(const struct mem_cgroup *mem, const nodemask_t *nodemask)
370 struct task_struct *p;
371 struct task_struct *task;
373 pr_info("[ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name\n");
374 for_each_process(p) {
375 if (oom_unkillable_task(p, mem, nodemask))
376 continue;
378 task = find_lock_task_mm(p);
379 if (!task) {
381 * This is a kthread or all of p's threads have already
382 * detached their mm's. There's no need to report
383 * them; they can't be oom killed anyway.
385 continue;
388 pr_info("[%5d] %5d %5d %8lu %8lu %3u %3d %5d %s\n",
389 task->pid, task_uid(task), task->tgid,
390 task->mm->total_vm, get_mm_rss(task->mm),
391 task_cpu(task), task->signal->oom_adj,
392 task->signal->oom_score_adj, task->comm);
393 task_unlock(task);
397 static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order,
398 struct mem_cgroup *mem, const nodemask_t *nodemask)
400 task_lock(current);
401 pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
402 "oom_adj=%d, oom_score_adj=%d\n",
403 current->comm, gfp_mask, order, current->signal->oom_adj,
404 current->signal->oom_score_adj);
405 cpuset_print_task_mems_allowed(current);
406 task_unlock(current);
407 dump_stack();
408 mem_cgroup_print_oom_info(mem, p);
409 __show_mem(SHOW_MEM_FILTER_NODES);
410 if (sysctl_oom_dump_tasks)
411 dump_tasks(mem, nodemask);
414 #define K(x) ((x) << (PAGE_SHIFT-10))
415 static int oom_kill_task(struct task_struct *p, struct mem_cgroup *mem)
417 struct task_struct *q;
418 struct mm_struct *mm;
420 p = find_lock_task_mm(p);
421 if (!p)
422 return 1;
424 /* mm cannot be safely dereferenced after task_unlock(p) */
425 mm = p->mm;
427 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
428 task_pid_nr(p), p->comm, K(p->mm->total_vm),
429 K(get_mm_counter(p->mm, MM_ANONPAGES)),
430 K(get_mm_counter(p->mm, MM_FILEPAGES)));
431 task_unlock(p);
434 * Kill all processes sharing p->mm in other thread groups, if any.
435 * They don't get access to memory reserves or a higher scheduler
436 * priority, though, to avoid depletion of all memory or task
437 * starvation. This prevents mm->mmap_sem livelock when an oom killed
438 * task cannot exit because it requires the semaphore and its contended
439 * by another thread trying to allocate memory itself. That thread will
440 * now get access to memory reserves since it has a pending fatal
441 * signal.
443 for_each_process(q)
444 if (q->mm == mm && !same_thread_group(q, p)) {
445 task_lock(q); /* Protect ->comm from prctl() */
446 pr_err("Kill process %d (%s) sharing same memory\n",
447 task_pid_nr(q), q->comm);
448 task_unlock(q);
449 force_sig(SIGKILL, q);
452 set_tsk_thread_flag(p, TIF_MEMDIE);
453 force_sig(SIGKILL, p);
456 * We give our sacrificial lamb high priority and access to
457 * all the memory it needs. That way it should be able to
458 * exit() and clear out its resources quickly...
460 boost_dying_task_prio(p, mem);
462 return 0;
464 #undef K
466 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
467 unsigned int points, unsigned long totalpages,
468 struct mem_cgroup *mem, nodemask_t *nodemask,
469 const char *message)
471 struct task_struct *victim = p;
472 struct task_struct *child;
473 struct task_struct *t = p;
474 unsigned int victim_points = 0;
476 if (printk_ratelimit())
477 dump_header(p, gfp_mask, order, mem, nodemask);
480 * If the task is already exiting, don't alarm the sysadmin or kill
481 * its children or threads, just set TIF_MEMDIE so it can die quickly
483 if (p->flags & PF_EXITING) {
484 set_tsk_thread_flag(p, TIF_MEMDIE);
485 boost_dying_task_prio(p, mem);
486 return 0;
489 task_lock(p);
490 pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n",
491 message, task_pid_nr(p), p->comm, points);
492 task_unlock(p);
495 * If any of p's children has a different mm and is eligible for kill,
496 * the one with the highest badness() score is sacrificed for its
497 * parent. This attempts to lose the minimal amount of work done while
498 * still freeing memory.
500 do {
501 list_for_each_entry(child, &t->children, sibling) {
502 unsigned int child_points;
504 if (child->mm == p->mm)
505 continue;
507 * oom_badness() returns 0 if the thread is unkillable
509 child_points = oom_badness(child, mem, nodemask,
510 totalpages);
511 if (child_points > victim_points) {
512 victim = child;
513 victim_points = child_points;
516 } while_each_thread(p, t);
518 return oom_kill_task(victim, mem);
522 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
524 static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask,
525 int order, const nodemask_t *nodemask)
527 if (likely(!sysctl_panic_on_oom))
528 return;
529 if (sysctl_panic_on_oom != 2) {
531 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
532 * does not panic for cpuset, mempolicy, or memcg allocation
533 * failures.
535 if (constraint != CONSTRAINT_NONE)
536 return;
538 read_lock(&tasklist_lock);
539 dump_header(NULL, gfp_mask, order, NULL, nodemask);
540 read_unlock(&tasklist_lock);
541 panic("Out of memory: %s panic_on_oom is enabled\n",
542 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
545 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
546 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
548 unsigned long limit;
549 unsigned int points = 0;
550 struct task_struct *p;
552 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0, NULL);
553 limit = mem_cgroup_get_limit(mem) >> PAGE_SHIFT;
554 read_lock(&tasklist_lock);
555 retry:
556 p = select_bad_process(&points, limit, mem, NULL);
557 if (!p || PTR_ERR(p) == -1UL)
558 goto out;
560 if (oom_kill_process(p, gfp_mask, 0, points, limit, mem, NULL,
561 "Memory cgroup out of memory"))
562 goto retry;
563 out:
564 read_unlock(&tasklist_lock);
566 #endif
568 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
570 int register_oom_notifier(struct notifier_block *nb)
572 return blocking_notifier_chain_register(&oom_notify_list, nb);
574 EXPORT_SYMBOL_GPL(register_oom_notifier);
576 int unregister_oom_notifier(struct notifier_block *nb)
578 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
580 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
583 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
584 * if a parallel OOM killing is already taking place that includes a zone in
585 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
587 int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
589 struct zoneref *z;
590 struct zone *zone;
591 int ret = 1;
593 spin_lock(&zone_scan_lock);
594 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
595 if (zone_is_oom_locked(zone)) {
596 ret = 0;
597 goto out;
601 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
603 * Lock each zone in the zonelist under zone_scan_lock so a
604 * parallel invocation of try_set_zonelist_oom() doesn't succeed
605 * when it shouldn't.
607 zone_set_flag(zone, ZONE_OOM_LOCKED);
610 out:
611 spin_unlock(&zone_scan_lock);
612 return ret;
616 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
617 * allocation attempts with zonelists containing them may now recall the OOM
618 * killer, if necessary.
620 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
622 struct zoneref *z;
623 struct zone *zone;
625 spin_lock(&zone_scan_lock);
626 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
627 zone_clear_flag(zone, ZONE_OOM_LOCKED);
629 spin_unlock(&zone_scan_lock);
633 * Try to acquire the oom killer lock for all system zones. Returns zero if a
634 * parallel oom killing is taking place, otherwise locks all zones and returns
635 * non-zero.
637 static int try_set_system_oom(void)
639 struct zone *zone;
640 int ret = 1;
642 spin_lock(&zone_scan_lock);
643 for_each_populated_zone(zone)
644 if (zone_is_oom_locked(zone)) {
645 ret = 0;
646 goto out;
648 for_each_populated_zone(zone)
649 zone_set_flag(zone, ZONE_OOM_LOCKED);
650 out:
651 spin_unlock(&zone_scan_lock);
652 return ret;
656 * Clears ZONE_OOM_LOCKED for all system zones so that failed allocation
657 * attempts or page faults may now recall the oom killer, if necessary.
659 static void clear_system_oom(void)
661 struct zone *zone;
663 spin_lock(&zone_scan_lock);
664 for_each_populated_zone(zone)
665 zone_clear_flag(zone, ZONE_OOM_LOCKED);
666 spin_unlock(&zone_scan_lock);
670 * out_of_memory - kill the "best" process when we run out of memory
671 * @zonelist: zonelist pointer
672 * @gfp_mask: memory allocation flags
673 * @order: amount of memory being requested as a power of 2
674 * @nodemask: nodemask passed to page allocator
676 * If we run out of memory, we have the choice between either
677 * killing a random task (bad), letting the system crash (worse)
678 * OR try to be smart about which process to kill. Note that we
679 * don't have to be perfect here, we just have to be good.
681 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
682 int order, nodemask_t *nodemask)
684 const nodemask_t *mpol_mask;
685 struct task_struct *p;
686 unsigned long totalpages;
687 unsigned long freed = 0;
688 unsigned int points;
689 enum oom_constraint constraint = CONSTRAINT_NONE;
690 int killed = 0;
692 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
693 if (freed > 0)
694 /* Got some memory back in the last second. */
695 return;
698 * If current has a pending SIGKILL, then automatically select it. The
699 * goal is to allow it to allocate so that it may quickly exit and free
700 * its memory.
702 if (fatal_signal_pending(current)) {
703 set_thread_flag(TIF_MEMDIE);
704 boost_dying_task_prio(current, NULL);
705 return;
709 * Check if there were limitations on the allocation (only relevant for
710 * NUMA) that may require different handling.
712 constraint = constrained_alloc(zonelist, gfp_mask, nodemask,
713 &totalpages);
714 mpol_mask = (constraint == CONSTRAINT_MEMORY_POLICY) ? nodemask : NULL;
715 check_panic_on_oom(constraint, gfp_mask, order, mpol_mask);
717 read_lock(&tasklist_lock);
718 if (sysctl_oom_kill_allocating_task &&
719 !oom_unkillable_task(current, NULL, nodemask) &&
720 current->mm && !atomic_read(&current->mm->oom_disable_count)) {
722 * oom_kill_process() needs tasklist_lock held. If it returns
723 * non-zero, current could not be killed so we must fallback to
724 * the tasklist scan.
726 if (!oom_kill_process(current, gfp_mask, order, 0, totalpages,
727 NULL, nodemask,
728 "Out of memory (oom_kill_allocating_task)"))
729 goto out;
732 retry:
733 p = select_bad_process(&points, totalpages, NULL, mpol_mask);
734 if (PTR_ERR(p) == -1UL)
735 goto out;
737 /* Found nothing?!?! Either we hang forever, or we panic. */
738 if (!p) {
739 dump_header(NULL, gfp_mask, order, NULL, mpol_mask);
740 read_unlock(&tasklist_lock);
741 panic("Out of memory and no killable processes...\n");
744 if (oom_kill_process(p, gfp_mask, order, points, totalpages, NULL,
745 nodemask, "Out of memory"))
746 goto retry;
747 killed = 1;
748 out:
749 read_unlock(&tasklist_lock);
752 * Give "p" a good chance of killing itself before we
753 * retry to allocate memory unless "p" is current
755 if (killed && !test_thread_flag(TIF_MEMDIE))
756 schedule_timeout_uninterruptible(1);
760 * The pagefault handler calls here because it is out of memory, so kill a
761 * memory-hogging task. If a populated zone has ZONE_OOM_LOCKED set, a parallel
762 * oom killing is already in progress so do nothing. If a task is found with
763 * TIF_MEMDIE set, it has been killed so do nothing and allow it to exit.
765 void pagefault_out_of_memory(void)
767 if (try_set_system_oom()) {
768 out_of_memory(NULL, 0, 0, NULL);
769 clear_system_oom();
771 if (!test_thread_flag(TIF_MEMDIE))
772 schedule_timeout_uninterruptible(1);