2 * Freescale MPC85xx, MPC83xx DMA Engine support
4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA controller is also added.
15 * This driver instructs the DMA controller to issue the PCI Read Multiple
16 * command for PCI read operations, instead of using the default PCI Read Line
17 * command. Please be aware that this setting may result in read pre-fetching
20 * This is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_platform.h>
40 static const char msg_ld_oom
[] = "No free memory for link descriptor\n";
42 static void dma_init(struct fsldma_chan
*chan
)
44 /* Reset the channel */
45 DMA_OUT(chan
, &chan
->regs
->mr
, 0, 32);
47 switch (chan
->feature
& FSL_DMA_IP_MASK
) {
49 /* Set the channel to below modes:
50 * EIE - Error interrupt enable
51 * EOSIE - End of segments interrupt enable (basic mode)
52 * EOLNIE - End of links interrupt enable
53 * BWC - Bandwidth sharing among channels
55 DMA_OUT(chan
, &chan
->regs
->mr
, FSL_DMA_MR_BWC
56 | FSL_DMA_MR_EIE
| FSL_DMA_MR_EOLNIE
57 | FSL_DMA_MR_EOSIE
, 32);
60 /* Set the channel to below modes:
61 * EOTIE - End-of-transfer interrupt enable
62 * PRC_RM - PCI read multiple
64 DMA_OUT(chan
, &chan
->regs
->mr
, FSL_DMA_MR_EOTIE
65 | FSL_DMA_MR_PRC_RM
, 32);
70 static void set_sr(struct fsldma_chan
*chan
, u32 val
)
72 DMA_OUT(chan
, &chan
->regs
->sr
, val
, 32);
75 static u32
get_sr(struct fsldma_chan
*chan
)
77 return DMA_IN(chan
, &chan
->regs
->sr
, 32);
80 static void set_desc_cnt(struct fsldma_chan
*chan
,
81 struct fsl_dma_ld_hw
*hw
, u32 count
)
83 hw
->count
= CPU_TO_DMA(chan
, count
, 32);
86 static void set_desc_src(struct fsldma_chan
*chan
,
87 struct fsl_dma_ld_hw
*hw
, dma_addr_t src
)
91 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
)
92 ? ((u64
)FSL_DMA_SATR_SREADTYPE_SNOOP_READ
<< 32) : 0;
93 hw
->src_addr
= CPU_TO_DMA(chan
, snoop_bits
| src
, 64);
96 static void set_desc_dst(struct fsldma_chan
*chan
,
97 struct fsl_dma_ld_hw
*hw
, dma_addr_t dst
)
101 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
)
102 ? ((u64
)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE
<< 32) : 0;
103 hw
->dst_addr
= CPU_TO_DMA(chan
, snoop_bits
| dst
, 64);
106 static void set_desc_next(struct fsldma_chan
*chan
,
107 struct fsl_dma_ld_hw
*hw
, dma_addr_t next
)
111 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_83XX
)
113 hw
->next_ln_addr
= CPU_TO_DMA(chan
, snoop_bits
| next
, 64);
116 static void set_cdar(struct fsldma_chan
*chan
, dma_addr_t addr
)
118 DMA_OUT(chan
, &chan
->regs
->cdar
, addr
| FSL_DMA_SNEN
, 64);
121 static dma_addr_t
get_cdar(struct fsldma_chan
*chan
)
123 return DMA_IN(chan
, &chan
->regs
->cdar
, 64) & ~FSL_DMA_SNEN
;
126 static dma_addr_t
get_ndar(struct fsldma_chan
*chan
)
128 return DMA_IN(chan
, &chan
->regs
->ndar
, 64);
131 static u32
get_bcr(struct fsldma_chan
*chan
)
133 return DMA_IN(chan
, &chan
->regs
->bcr
, 32);
136 static int dma_is_idle(struct fsldma_chan
*chan
)
138 u32 sr
= get_sr(chan
);
139 return (!(sr
& FSL_DMA_SR_CB
)) || (sr
& FSL_DMA_SR_CH
);
142 static void dma_start(struct fsldma_chan
*chan
)
146 mode
= DMA_IN(chan
, &chan
->regs
->mr
, 32);
148 if ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
) {
149 if (chan
->feature
& FSL_DMA_CHAN_PAUSE_EXT
) {
150 DMA_OUT(chan
, &chan
->regs
->bcr
, 0, 32);
151 mode
|= FSL_DMA_MR_EMP_EN
;
153 mode
&= ~FSL_DMA_MR_EMP_EN
;
157 if (chan
->feature
& FSL_DMA_CHAN_START_EXT
)
158 mode
|= FSL_DMA_MR_EMS_EN
;
160 mode
|= FSL_DMA_MR_CS
;
162 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
165 static void dma_halt(struct fsldma_chan
*chan
)
170 mode
= DMA_IN(chan
, &chan
->regs
->mr
, 32);
171 mode
|= FSL_DMA_MR_CA
;
172 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
174 mode
&= ~(FSL_DMA_MR_CS
| FSL_DMA_MR_EMS_EN
| FSL_DMA_MR_CA
);
175 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
177 for (i
= 0; i
< 100; i
++) {
178 if (dma_is_idle(chan
))
184 if (!dma_is_idle(chan
))
185 dev_err(chan
->dev
, "DMA halt timeout!\n");
188 static void set_ld_eol(struct fsldma_chan
*chan
,
189 struct fsl_desc_sw
*desc
)
193 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_83XX
)
196 desc
->hw
.next_ln_addr
= CPU_TO_DMA(chan
,
197 DMA_TO_CPU(chan
, desc
->hw
.next_ln_addr
, 64) | FSL_DMA_EOL
202 * fsl_chan_set_src_loop_size - Set source address hold transfer size
203 * @chan : Freescale DMA channel
204 * @size : Address loop size, 0 for disable loop
206 * The set source address hold transfer size. The source
207 * address hold or loop transfer size is when the DMA transfer
208 * data from source address (SA), if the loop size is 4, the DMA will
209 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
210 * SA + 1 ... and so on.
212 static void fsl_chan_set_src_loop_size(struct fsldma_chan
*chan
, int size
)
216 mode
= DMA_IN(chan
, &chan
->regs
->mr
, 32);
220 mode
&= ~FSL_DMA_MR_SAHE
;
226 mode
|= FSL_DMA_MR_SAHE
| (__ilog2(size
) << 14);
230 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
234 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
235 * @chan : Freescale DMA channel
236 * @size : Address loop size, 0 for disable loop
238 * The set destination address hold transfer size. The destination
239 * address hold or loop transfer size is when the DMA transfer
240 * data to destination address (TA), if the loop size is 4, the DMA will
241 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
242 * TA + 1 ... and so on.
244 static void fsl_chan_set_dst_loop_size(struct fsldma_chan
*chan
, int size
)
248 mode
= DMA_IN(chan
, &chan
->regs
->mr
, 32);
252 mode
&= ~FSL_DMA_MR_DAHE
;
258 mode
|= FSL_DMA_MR_DAHE
| (__ilog2(size
) << 16);
262 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
266 * fsl_chan_set_request_count - Set DMA Request Count for external control
267 * @chan : Freescale DMA channel
268 * @size : Number of bytes to transfer in a single request
270 * The Freescale DMA channel can be controlled by the external signal DREQ#.
271 * The DMA request count is how many bytes are allowed to transfer before
272 * pausing the channel, after which a new assertion of DREQ# resumes channel
275 * A size of 0 disables external pause control. The maximum size is 1024.
277 static void fsl_chan_set_request_count(struct fsldma_chan
*chan
, int size
)
283 mode
= DMA_IN(chan
, &chan
->regs
->mr
, 32);
284 mode
|= (__ilog2(size
) << 24) & 0x0f000000;
286 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
290 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
291 * @chan : Freescale DMA channel
292 * @enable : 0 is disabled, 1 is enabled.
294 * The Freescale DMA channel can be controlled by the external signal DREQ#.
295 * The DMA Request Count feature should be used in addition to this feature
296 * to set the number of bytes to transfer before pausing the channel.
298 static void fsl_chan_toggle_ext_pause(struct fsldma_chan
*chan
, int enable
)
301 chan
->feature
|= FSL_DMA_CHAN_PAUSE_EXT
;
303 chan
->feature
&= ~FSL_DMA_CHAN_PAUSE_EXT
;
307 * fsl_chan_toggle_ext_start - Toggle channel external start status
308 * @chan : Freescale DMA channel
309 * @enable : 0 is disabled, 1 is enabled.
311 * If enable the external start, the channel can be started by an
312 * external DMA start pin. So the dma_start() does not start the
313 * transfer immediately. The DMA channel will wait for the
314 * control pin asserted.
316 static void fsl_chan_toggle_ext_start(struct fsldma_chan
*chan
, int enable
)
319 chan
->feature
|= FSL_DMA_CHAN_START_EXT
;
321 chan
->feature
&= ~FSL_DMA_CHAN_START_EXT
;
324 static void append_ld_queue(struct fsldma_chan
*chan
,
325 struct fsl_desc_sw
*desc
)
327 struct fsl_desc_sw
*tail
= to_fsl_desc(chan
->ld_pending
.prev
);
329 if (list_empty(&chan
->ld_pending
))
333 * Add the hardware descriptor to the chain of hardware descriptors
334 * that already exists in memory.
336 * This will un-set the EOL bit of the existing transaction, and the
337 * last link in this transaction will become the EOL descriptor.
339 set_desc_next(chan
, &tail
->hw
, desc
->async_tx
.phys
);
342 * Add the software descriptor and all children to the list
343 * of pending transactions
346 list_splice_tail_init(&desc
->tx_list
, &chan
->ld_pending
);
349 static dma_cookie_t
fsl_dma_tx_submit(struct dma_async_tx_descriptor
*tx
)
351 struct fsldma_chan
*chan
= to_fsl_chan(tx
->chan
);
352 struct fsl_desc_sw
*desc
= tx_to_fsl_desc(tx
);
353 struct fsl_desc_sw
*child
;
357 spin_lock_irqsave(&chan
->desc_lock
, flags
);
360 * assign cookies to all of the software descriptors
361 * that make up this transaction
363 cookie
= chan
->common
.cookie
;
364 list_for_each_entry(child
, &desc
->tx_list
, node
) {
369 child
->async_tx
.cookie
= cookie
;
372 chan
->common
.cookie
= cookie
;
374 /* put this transaction onto the tail of the pending queue */
375 append_ld_queue(chan
, desc
);
377 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
383 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
384 * @chan : Freescale DMA channel
386 * Return - The descriptor allocated. NULL for failed.
388 static struct fsl_desc_sw
*fsl_dma_alloc_descriptor(
389 struct fsldma_chan
*chan
)
391 struct fsl_desc_sw
*desc
;
394 desc
= dma_pool_alloc(chan
->desc_pool
, GFP_ATOMIC
, &pdesc
);
396 dev_dbg(chan
->dev
, "out of memory for link desc\n");
400 memset(desc
, 0, sizeof(*desc
));
401 INIT_LIST_HEAD(&desc
->tx_list
);
402 dma_async_tx_descriptor_init(&desc
->async_tx
, &chan
->common
);
403 desc
->async_tx
.tx_submit
= fsl_dma_tx_submit
;
404 desc
->async_tx
.phys
= pdesc
;
411 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
412 * @chan : Freescale DMA channel
414 * This function will create a dma pool for descriptor allocation.
416 * Return - The number of descriptors allocated.
418 static int fsl_dma_alloc_chan_resources(struct dma_chan
*dchan
)
420 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
422 /* Has this channel already been allocated? */
427 * We need the descriptor to be aligned to 32bytes
428 * for meeting FSL DMA specification requirement.
430 chan
->desc_pool
= dma_pool_create("fsl_dma_engine_desc_pool",
432 sizeof(struct fsl_desc_sw
),
433 __alignof__(struct fsl_desc_sw
), 0);
434 if (!chan
->desc_pool
) {
435 dev_err(chan
->dev
, "unable to allocate channel %d "
436 "descriptor pool\n", chan
->id
);
440 /* there is at least one descriptor free to be allocated */
445 * fsldma_free_desc_list - Free all descriptors in a queue
446 * @chan: Freescae DMA channel
447 * @list: the list to free
449 * LOCKING: must hold chan->desc_lock
451 static void fsldma_free_desc_list(struct fsldma_chan
*chan
,
452 struct list_head
*list
)
454 struct fsl_desc_sw
*desc
, *_desc
;
456 list_for_each_entry_safe(desc
, _desc
, list
, node
) {
457 list_del(&desc
->node
);
458 dma_pool_free(chan
->desc_pool
, desc
, desc
->async_tx
.phys
);
462 static void fsldma_free_desc_list_reverse(struct fsldma_chan
*chan
,
463 struct list_head
*list
)
465 struct fsl_desc_sw
*desc
, *_desc
;
467 list_for_each_entry_safe_reverse(desc
, _desc
, list
, node
) {
468 list_del(&desc
->node
);
469 dma_pool_free(chan
->desc_pool
, desc
, desc
->async_tx
.phys
);
474 * fsl_dma_free_chan_resources - Free all resources of the channel.
475 * @chan : Freescale DMA channel
477 static void fsl_dma_free_chan_resources(struct dma_chan
*dchan
)
479 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
482 dev_dbg(chan
->dev
, "Free all channel resources.\n");
483 spin_lock_irqsave(&chan
->desc_lock
, flags
);
484 fsldma_free_desc_list(chan
, &chan
->ld_pending
);
485 fsldma_free_desc_list(chan
, &chan
->ld_running
);
486 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
488 dma_pool_destroy(chan
->desc_pool
);
489 chan
->desc_pool
= NULL
;
492 static struct dma_async_tx_descriptor
*
493 fsl_dma_prep_interrupt(struct dma_chan
*dchan
, unsigned long flags
)
495 struct fsldma_chan
*chan
;
496 struct fsl_desc_sw
*new;
501 chan
= to_fsl_chan(dchan
);
503 new = fsl_dma_alloc_descriptor(chan
);
505 dev_err(chan
->dev
, msg_ld_oom
);
509 new->async_tx
.cookie
= -EBUSY
;
510 new->async_tx
.flags
= flags
;
512 /* Insert the link descriptor to the LD ring */
513 list_add_tail(&new->node
, &new->tx_list
);
515 /* Set End-of-link to the last link descriptor of new list*/
516 set_ld_eol(chan
, new);
518 return &new->async_tx
;
521 static struct dma_async_tx_descriptor
*fsl_dma_prep_memcpy(
522 struct dma_chan
*dchan
, dma_addr_t dma_dst
, dma_addr_t dma_src
,
523 size_t len
, unsigned long flags
)
525 struct fsldma_chan
*chan
;
526 struct fsl_desc_sw
*first
= NULL
, *prev
= NULL
, *new;
535 chan
= to_fsl_chan(dchan
);
539 /* Allocate the link descriptor from DMA pool */
540 new = fsl_dma_alloc_descriptor(chan
);
542 dev_err(chan
->dev
, msg_ld_oom
);
545 #ifdef FSL_DMA_LD_DEBUG
546 dev_dbg(chan
->dev
, "new link desc alloc %p\n", new);
549 copy
= min(len
, (size_t)FSL_DMA_BCR_MAX_CNT
);
551 set_desc_cnt(chan
, &new->hw
, copy
);
552 set_desc_src(chan
, &new->hw
, dma_src
);
553 set_desc_dst(chan
, &new->hw
, dma_dst
);
558 set_desc_next(chan
, &prev
->hw
, new->async_tx
.phys
);
560 new->async_tx
.cookie
= 0;
561 async_tx_ack(&new->async_tx
);
568 /* Insert the link descriptor to the LD ring */
569 list_add_tail(&new->node
, &first
->tx_list
);
572 new->async_tx
.flags
= flags
; /* client is in control of this ack */
573 new->async_tx
.cookie
= -EBUSY
;
575 /* Set End-of-link to the last link descriptor of new list*/
576 set_ld_eol(chan
, new);
578 return &first
->async_tx
;
584 fsldma_free_desc_list_reverse(chan
, &first
->tx_list
);
588 static struct dma_async_tx_descriptor
*fsl_dma_prep_sg(struct dma_chan
*dchan
,
589 struct scatterlist
*dst_sg
, unsigned int dst_nents
,
590 struct scatterlist
*src_sg
, unsigned int src_nents
,
593 struct fsl_desc_sw
*first
= NULL
, *prev
= NULL
, *new = NULL
;
594 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
595 size_t dst_avail
, src_avail
;
599 /* basic sanity checks */
600 if (dst_nents
== 0 || src_nents
== 0)
603 if (dst_sg
== NULL
|| src_sg
== NULL
)
607 * TODO: should we check that both scatterlists have the same
608 * TODO: number of bytes in total? Is that really an error?
611 /* get prepared for the loop */
612 dst_avail
= sg_dma_len(dst_sg
);
613 src_avail
= sg_dma_len(src_sg
);
615 /* run until we are out of scatterlist entries */
618 /* create the largest transaction possible */
619 len
= min_t(size_t, src_avail
, dst_avail
);
620 len
= min_t(size_t, len
, FSL_DMA_BCR_MAX_CNT
);
624 dst
= sg_dma_address(dst_sg
) + sg_dma_len(dst_sg
) - dst_avail
;
625 src
= sg_dma_address(src_sg
) + sg_dma_len(src_sg
) - src_avail
;
627 /* allocate and populate the descriptor */
628 new = fsl_dma_alloc_descriptor(chan
);
630 dev_err(chan
->dev
, msg_ld_oom
);
633 #ifdef FSL_DMA_LD_DEBUG
634 dev_dbg(chan
->dev
, "new link desc alloc %p\n", new);
637 set_desc_cnt(chan
, &new->hw
, len
);
638 set_desc_src(chan
, &new->hw
, src
);
639 set_desc_dst(chan
, &new->hw
, dst
);
644 set_desc_next(chan
, &prev
->hw
, new->async_tx
.phys
);
646 new->async_tx
.cookie
= 0;
647 async_tx_ack(&new->async_tx
);
650 /* Insert the link descriptor to the LD ring */
651 list_add_tail(&new->node
, &first
->tx_list
);
653 /* update metadata */
658 /* fetch the next dst scatterlist entry */
659 if (dst_avail
== 0) {
661 /* no more entries: we're done */
665 /* fetch the next entry: if there are no more: done */
666 dst_sg
= sg_next(dst_sg
);
671 dst_avail
= sg_dma_len(dst_sg
);
674 /* fetch the next src scatterlist entry */
675 if (src_avail
== 0) {
677 /* no more entries: we're done */
681 /* fetch the next entry: if there are no more: done */
682 src_sg
= sg_next(src_sg
);
687 src_avail
= sg_dma_len(src_sg
);
691 new->async_tx
.flags
= flags
; /* client is in control of this ack */
692 new->async_tx
.cookie
= -EBUSY
;
694 /* Set End-of-link to the last link descriptor of new list */
695 set_ld_eol(chan
, new);
697 return &first
->async_tx
;
703 fsldma_free_desc_list_reverse(chan
, &first
->tx_list
);
708 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
710 * @sgl: scatterlist to transfer to/from
711 * @sg_len: number of entries in @scatterlist
712 * @direction: DMA direction
713 * @flags: DMAEngine flags
715 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
716 * DMA_SLAVE API, this gets the device-specific information from the
717 * chan->private variable.
719 static struct dma_async_tx_descriptor
*fsl_dma_prep_slave_sg(
720 struct dma_chan
*dchan
, struct scatterlist
*sgl
, unsigned int sg_len
,
721 enum dma_data_direction direction
, unsigned long flags
)
724 * This operation is not supported on the Freescale DMA controller
726 * However, we need to provide the function pointer to allow the
727 * device_control() method to work.
732 static int fsl_dma_device_control(struct dma_chan
*dchan
,
733 enum dma_ctrl_cmd cmd
, unsigned long arg
)
735 struct dma_slave_config
*config
;
736 struct fsldma_chan
*chan
;
743 chan
= to_fsl_chan(dchan
);
746 case DMA_TERMINATE_ALL
:
747 /* Halt the DMA engine */
750 spin_lock_irqsave(&chan
->desc_lock
, flags
);
752 /* Remove and free all of the descriptors in the LD queue */
753 fsldma_free_desc_list(chan
, &chan
->ld_pending
);
754 fsldma_free_desc_list(chan
, &chan
->ld_running
);
756 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
759 case DMA_SLAVE_CONFIG
:
760 config
= (struct dma_slave_config
*)arg
;
762 /* make sure the channel supports setting burst size */
763 if (!chan
->set_request_count
)
766 /* we set the controller burst size depending on direction */
767 if (config
->direction
== DMA_TO_DEVICE
)
768 size
= config
->dst_addr_width
* config
->dst_maxburst
;
770 size
= config
->src_addr_width
* config
->src_maxburst
;
772 chan
->set_request_count(chan
, size
);
775 case FSLDMA_EXTERNAL_START
:
777 /* make sure the channel supports external start */
778 if (!chan
->toggle_ext_start
)
781 chan
->toggle_ext_start(chan
, arg
);
792 * fsl_dma_update_completed_cookie - Update the completed cookie.
793 * @chan : Freescale DMA channel
797 static void fsl_dma_update_completed_cookie(struct fsldma_chan
*chan
)
799 struct fsl_desc_sw
*desc
;
803 spin_lock_irqsave(&chan
->desc_lock
, flags
);
805 if (list_empty(&chan
->ld_running
)) {
806 dev_dbg(chan
->dev
, "no running descriptors\n");
810 /* Get the last descriptor, update the cookie to that */
811 desc
= to_fsl_desc(chan
->ld_running
.prev
);
812 if (dma_is_idle(chan
))
813 cookie
= desc
->async_tx
.cookie
;
815 cookie
= desc
->async_tx
.cookie
- 1;
816 if (unlikely(cookie
< DMA_MIN_COOKIE
))
817 cookie
= DMA_MAX_COOKIE
;
820 chan
->completed_cookie
= cookie
;
823 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
827 * fsldma_desc_status - Check the status of a descriptor
828 * @chan: Freescale DMA channel
829 * @desc: DMA SW descriptor
831 * This function will return the status of the given descriptor
833 static enum dma_status
fsldma_desc_status(struct fsldma_chan
*chan
,
834 struct fsl_desc_sw
*desc
)
836 return dma_async_is_complete(desc
->async_tx
.cookie
,
837 chan
->completed_cookie
,
838 chan
->common
.cookie
);
842 * fsl_chan_ld_cleanup - Clean up link descriptors
843 * @chan : Freescale DMA channel
845 * This function clean up the ld_queue of DMA channel.
847 static void fsl_chan_ld_cleanup(struct fsldma_chan
*chan
)
849 struct fsl_desc_sw
*desc
, *_desc
;
852 spin_lock_irqsave(&chan
->desc_lock
, flags
);
854 dev_dbg(chan
->dev
, "chan completed_cookie = %d\n", chan
->completed_cookie
);
855 list_for_each_entry_safe(desc
, _desc
, &chan
->ld_running
, node
) {
856 dma_async_tx_callback callback
;
857 void *callback_param
;
859 if (fsldma_desc_status(chan
, desc
) == DMA_IN_PROGRESS
)
862 /* Remove from the list of running transactions */
863 list_del(&desc
->node
);
865 /* Run the link descriptor callback function */
866 callback
= desc
->async_tx
.callback
;
867 callback_param
= desc
->async_tx
.callback_param
;
869 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
870 dev_dbg(chan
->dev
, "LD %p callback\n", desc
);
871 callback(callback_param
);
872 spin_lock_irqsave(&chan
->desc_lock
, flags
);
875 /* Run any dependencies, then free the descriptor */
876 dma_run_dependencies(&desc
->async_tx
);
877 dma_pool_free(chan
->desc_pool
, desc
, desc
->async_tx
.phys
);
880 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
884 * fsl_chan_xfer_ld_queue - transfer any pending transactions
885 * @chan : Freescale DMA channel
887 * This will make sure that any pending transactions will be run.
888 * If the DMA controller is idle, it will be started. Otherwise,
889 * the DMA controller's interrupt handler will start any pending
890 * transactions when it becomes idle.
892 static void fsl_chan_xfer_ld_queue(struct fsldma_chan
*chan
)
894 struct fsl_desc_sw
*desc
;
897 spin_lock_irqsave(&chan
->desc_lock
, flags
);
900 * If the list of pending descriptors is empty, then we
901 * don't need to do any work at all
903 if (list_empty(&chan
->ld_pending
)) {
904 dev_dbg(chan
->dev
, "no pending LDs\n");
909 * The DMA controller is not idle, which means the interrupt
910 * handler will start any queued transactions when it runs
911 * at the end of the current transaction
913 if (!dma_is_idle(chan
)) {
914 dev_dbg(chan
->dev
, "DMA controller still busy\n");
920 * make sure the dma_halt() function really un-wedges the
921 * controller as much as possible
926 * If there are some link descriptors which have not been
927 * transferred, we need to start the controller
931 * Move all elements from the queue of pending transactions
932 * onto the list of running transactions
934 desc
= list_first_entry(&chan
->ld_pending
, struct fsl_desc_sw
, node
);
935 list_splice_tail_init(&chan
->ld_pending
, &chan
->ld_running
);
938 * Program the descriptor's address into the DMA controller,
939 * then start the DMA transaction
941 set_cdar(chan
, desc
->async_tx
.phys
);
945 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
949 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
950 * @chan : Freescale DMA channel
952 static void fsl_dma_memcpy_issue_pending(struct dma_chan
*dchan
)
954 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
955 fsl_chan_xfer_ld_queue(chan
);
959 * fsl_tx_status - Determine the DMA status
960 * @chan : Freescale DMA channel
962 static enum dma_status
fsl_tx_status(struct dma_chan
*dchan
,
964 struct dma_tx_state
*txstate
)
966 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
967 dma_cookie_t last_used
;
968 dma_cookie_t last_complete
;
970 fsl_chan_ld_cleanup(chan
);
972 last_used
= dchan
->cookie
;
973 last_complete
= chan
->completed_cookie
;
975 dma_set_tx_state(txstate
, last_complete
, last_used
, 0);
977 return dma_async_is_complete(cookie
, last_complete
, last_used
);
980 /*----------------------------------------------------------------------------*/
981 /* Interrupt Handling */
982 /*----------------------------------------------------------------------------*/
984 static irqreturn_t
fsldma_chan_irq(int irq
, void *data
)
986 struct fsldma_chan
*chan
= data
;
987 int update_cookie
= 0;
991 /* save and clear the status register */
994 dev_dbg(chan
->dev
, "irq: channel %d, stat = 0x%x\n", chan
->id
, stat
);
996 stat
&= ~(FSL_DMA_SR_CB
| FSL_DMA_SR_CH
);
1000 if (stat
& FSL_DMA_SR_TE
)
1001 dev_err(chan
->dev
, "Transfer Error!\n");
1005 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1006 * triger a PE interrupt.
1008 if (stat
& FSL_DMA_SR_PE
) {
1009 dev_dbg(chan
->dev
, "irq: Programming Error INT\n");
1010 if (get_bcr(chan
) == 0) {
1011 /* BCR register is 0, this is a DMA_INTERRUPT async_tx.
1012 * Now, update the completed cookie, and continue the
1013 * next uncompleted transfer.
1018 stat
&= ~FSL_DMA_SR_PE
;
1022 * If the link descriptor segment transfer finishes,
1023 * we will recycle the used descriptor.
1025 if (stat
& FSL_DMA_SR_EOSI
) {
1026 dev_dbg(chan
->dev
, "irq: End-of-segments INT\n");
1027 dev_dbg(chan
->dev
, "irq: clndar 0x%llx, nlndar 0x%llx\n",
1028 (unsigned long long)get_cdar(chan
),
1029 (unsigned long long)get_ndar(chan
));
1030 stat
&= ~FSL_DMA_SR_EOSI
;
1035 * For MPC8349, EOCDI event need to update cookie
1036 * and start the next transfer if it exist.
1038 if (stat
& FSL_DMA_SR_EOCDI
) {
1039 dev_dbg(chan
->dev
, "irq: End-of-Chain link INT\n");
1040 stat
&= ~FSL_DMA_SR_EOCDI
;
1046 * If it current transfer is the end-of-transfer,
1047 * we should clear the Channel Start bit for
1048 * prepare next transfer.
1050 if (stat
& FSL_DMA_SR_EOLNI
) {
1051 dev_dbg(chan
->dev
, "irq: End-of-link INT\n");
1052 stat
&= ~FSL_DMA_SR_EOLNI
;
1057 fsl_dma_update_completed_cookie(chan
);
1059 fsl_chan_xfer_ld_queue(chan
);
1061 dev_dbg(chan
->dev
, "irq: unhandled sr 0x%02x\n", stat
);
1063 dev_dbg(chan
->dev
, "irq: Exit\n");
1064 tasklet_schedule(&chan
->tasklet
);
1068 static void dma_do_tasklet(unsigned long data
)
1070 struct fsldma_chan
*chan
= (struct fsldma_chan
*)data
;
1071 fsl_chan_ld_cleanup(chan
);
1074 static irqreturn_t
fsldma_ctrl_irq(int irq
, void *data
)
1076 struct fsldma_device
*fdev
= data
;
1077 struct fsldma_chan
*chan
;
1078 unsigned int handled
= 0;
1082 gsr
= (fdev
->feature
& FSL_DMA_BIG_ENDIAN
) ? in_be32(fdev
->regs
)
1083 : in_le32(fdev
->regs
);
1085 dev_dbg(fdev
->dev
, "IRQ: gsr 0x%.8x\n", gsr
);
1087 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1088 chan
= fdev
->chan
[i
];
1093 dev_dbg(fdev
->dev
, "IRQ: chan %d\n", chan
->id
);
1094 fsldma_chan_irq(irq
, chan
);
1102 return IRQ_RETVAL(handled
);
1105 static void fsldma_free_irqs(struct fsldma_device
*fdev
)
1107 struct fsldma_chan
*chan
;
1110 if (fdev
->irq
!= NO_IRQ
) {
1111 dev_dbg(fdev
->dev
, "free per-controller IRQ\n");
1112 free_irq(fdev
->irq
, fdev
);
1116 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1117 chan
= fdev
->chan
[i
];
1118 if (chan
&& chan
->irq
!= NO_IRQ
) {
1119 dev_dbg(fdev
->dev
, "free channel %d IRQ\n", chan
->id
);
1120 free_irq(chan
->irq
, chan
);
1125 static int fsldma_request_irqs(struct fsldma_device
*fdev
)
1127 struct fsldma_chan
*chan
;
1131 /* if we have a per-controller IRQ, use that */
1132 if (fdev
->irq
!= NO_IRQ
) {
1133 dev_dbg(fdev
->dev
, "request per-controller IRQ\n");
1134 ret
= request_irq(fdev
->irq
, fsldma_ctrl_irq
, IRQF_SHARED
,
1135 "fsldma-controller", fdev
);
1139 /* no per-controller IRQ, use the per-channel IRQs */
1140 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1141 chan
= fdev
->chan
[i
];
1145 if (chan
->irq
== NO_IRQ
) {
1146 dev_err(fdev
->dev
, "no interrupts property defined for "
1147 "DMA channel %d. Please fix your "
1148 "device tree\n", chan
->id
);
1153 dev_dbg(fdev
->dev
, "request channel %d IRQ\n", chan
->id
);
1154 ret
= request_irq(chan
->irq
, fsldma_chan_irq
, IRQF_SHARED
,
1155 "fsldma-chan", chan
);
1157 dev_err(fdev
->dev
, "unable to request IRQ for DMA "
1158 "channel %d\n", chan
->id
);
1166 for (/* none */; i
>= 0; i
--) {
1167 chan
= fdev
->chan
[i
];
1171 if (chan
->irq
== NO_IRQ
)
1174 free_irq(chan
->irq
, chan
);
1180 /*----------------------------------------------------------------------------*/
1181 /* OpenFirmware Subsystem */
1182 /*----------------------------------------------------------------------------*/
1184 static int __devinit
fsl_dma_chan_probe(struct fsldma_device
*fdev
,
1185 struct device_node
*node
, u32 feature
, const char *compatible
)
1187 struct fsldma_chan
*chan
;
1188 struct resource res
;
1192 chan
= kzalloc(sizeof(*chan
), GFP_KERNEL
);
1194 dev_err(fdev
->dev
, "no free memory for DMA channels!\n");
1199 /* ioremap registers for use */
1200 chan
->regs
= of_iomap(node
, 0);
1202 dev_err(fdev
->dev
, "unable to ioremap registers\n");
1207 err
= of_address_to_resource(node
, 0, &res
);
1209 dev_err(fdev
->dev
, "unable to find 'reg' property\n");
1210 goto out_iounmap_regs
;
1213 chan
->feature
= feature
;
1215 fdev
->feature
= chan
->feature
;
1218 * If the DMA device's feature is different than the feature
1219 * of its channels, report the bug
1221 WARN_ON(fdev
->feature
!= chan
->feature
);
1223 chan
->dev
= fdev
->dev
;
1224 chan
->id
= ((res
.start
- 0x100) & 0xfff) >> 7;
1225 if (chan
->id
>= FSL_DMA_MAX_CHANS_PER_DEVICE
) {
1226 dev_err(fdev
->dev
, "too many channels for device\n");
1228 goto out_iounmap_regs
;
1231 fdev
->chan
[chan
->id
] = chan
;
1232 tasklet_init(&chan
->tasklet
, dma_do_tasklet
, (unsigned long)chan
);
1234 /* Initialize the channel */
1237 /* Clear cdar registers */
1240 switch (chan
->feature
& FSL_DMA_IP_MASK
) {
1241 case FSL_DMA_IP_85XX
:
1242 chan
->toggle_ext_pause
= fsl_chan_toggle_ext_pause
;
1243 case FSL_DMA_IP_83XX
:
1244 chan
->toggle_ext_start
= fsl_chan_toggle_ext_start
;
1245 chan
->set_src_loop_size
= fsl_chan_set_src_loop_size
;
1246 chan
->set_dst_loop_size
= fsl_chan_set_dst_loop_size
;
1247 chan
->set_request_count
= fsl_chan_set_request_count
;
1250 spin_lock_init(&chan
->desc_lock
);
1251 INIT_LIST_HEAD(&chan
->ld_pending
);
1252 INIT_LIST_HEAD(&chan
->ld_running
);
1254 chan
->common
.device
= &fdev
->common
;
1256 /* find the IRQ line, if it exists in the device tree */
1257 chan
->irq
= irq_of_parse_and_map(node
, 0);
1259 /* Add the channel to DMA device channel list */
1260 list_add_tail(&chan
->common
.device_node
, &fdev
->common
.channels
);
1261 fdev
->common
.chancnt
++;
1263 dev_info(fdev
->dev
, "#%d (%s), irq %d\n", chan
->id
, compatible
,
1264 chan
->irq
!= NO_IRQ
? chan
->irq
: fdev
->irq
);
1269 iounmap(chan
->regs
);
1276 static void fsl_dma_chan_remove(struct fsldma_chan
*chan
)
1278 irq_dispose_mapping(chan
->irq
);
1279 list_del(&chan
->common
.device_node
);
1280 iounmap(chan
->regs
);
1284 static int __devinit
fsldma_of_probe(struct platform_device
*op
,
1285 const struct of_device_id
*match
)
1287 struct fsldma_device
*fdev
;
1288 struct device_node
*child
;
1291 fdev
= kzalloc(sizeof(*fdev
), GFP_KERNEL
);
1293 dev_err(&op
->dev
, "No enough memory for 'priv'\n");
1298 fdev
->dev
= &op
->dev
;
1299 INIT_LIST_HEAD(&fdev
->common
.channels
);
1301 /* ioremap the registers for use */
1302 fdev
->regs
= of_iomap(op
->dev
.of_node
, 0);
1304 dev_err(&op
->dev
, "unable to ioremap registers\n");
1309 /* map the channel IRQ if it exists, but don't hookup the handler yet */
1310 fdev
->irq
= irq_of_parse_and_map(op
->dev
.of_node
, 0);
1312 dma_cap_set(DMA_MEMCPY
, fdev
->common
.cap_mask
);
1313 dma_cap_set(DMA_INTERRUPT
, fdev
->common
.cap_mask
);
1314 dma_cap_set(DMA_SG
, fdev
->common
.cap_mask
);
1315 dma_cap_set(DMA_SLAVE
, fdev
->common
.cap_mask
);
1316 fdev
->common
.device_alloc_chan_resources
= fsl_dma_alloc_chan_resources
;
1317 fdev
->common
.device_free_chan_resources
= fsl_dma_free_chan_resources
;
1318 fdev
->common
.device_prep_dma_interrupt
= fsl_dma_prep_interrupt
;
1319 fdev
->common
.device_prep_dma_memcpy
= fsl_dma_prep_memcpy
;
1320 fdev
->common
.device_prep_dma_sg
= fsl_dma_prep_sg
;
1321 fdev
->common
.device_tx_status
= fsl_tx_status
;
1322 fdev
->common
.device_issue_pending
= fsl_dma_memcpy_issue_pending
;
1323 fdev
->common
.device_prep_slave_sg
= fsl_dma_prep_slave_sg
;
1324 fdev
->common
.device_control
= fsl_dma_device_control
;
1325 fdev
->common
.dev
= &op
->dev
;
1327 dma_set_mask(&(op
->dev
), DMA_BIT_MASK(36));
1329 dev_set_drvdata(&op
->dev
, fdev
);
1332 * We cannot use of_platform_bus_probe() because there is no
1333 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1336 for_each_child_of_node(op
->dev
.of_node
, child
) {
1337 if (of_device_is_compatible(child
, "fsl,eloplus-dma-channel")) {
1338 fsl_dma_chan_probe(fdev
, child
,
1339 FSL_DMA_IP_85XX
| FSL_DMA_BIG_ENDIAN
,
1340 "fsl,eloplus-dma-channel");
1343 if (of_device_is_compatible(child
, "fsl,elo-dma-channel")) {
1344 fsl_dma_chan_probe(fdev
, child
,
1345 FSL_DMA_IP_83XX
| FSL_DMA_LITTLE_ENDIAN
,
1346 "fsl,elo-dma-channel");
1351 * Hookup the IRQ handler(s)
1353 * If we have a per-controller interrupt, we prefer that to the
1354 * per-channel interrupts to reduce the number of shared interrupt
1355 * handlers on the same IRQ line
1357 err
= fsldma_request_irqs(fdev
);
1359 dev_err(fdev
->dev
, "unable to request IRQs\n");
1363 dma_async_device_register(&fdev
->common
);
1367 irq_dispose_mapping(fdev
->irq
);
1373 static int fsldma_of_remove(struct platform_device
*op
)
1375 struct fsldma_device
*fdev
;
1378 fdev
= dev_get_drvdata(&op
->dev
);
1379 dma_async_device_unregister(&fdev
->common
);
1381 fsldma_free_irqs(fdev
);
1383 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1385 fsl_dma_chan_remove(fdev
->chan
[i
]);
1388 iounmap(fdev
->regs
);
1389 dev_set_drvdata(&op
->dev
, NULL
);
1395 static const struct of_device_id fsldma_of_ids
[] = {
1396 { .compatible
= "fsl,eloplus-dma", },
1397 { .compatible
= "fsl,elo-dma", },
1401 static struct of_platform_driver fsldma_of_driver
= {
1403 .name
= "fsl-elo-dma",
1404 .owner
= THIS_MODULE
,
1405 .of_match_table
= fsldma_of_ids
,
1407 .probe
= fsldma_of_probe
,
1408 .remove
= fsldma_of_remove
,
1411 /*----------------------------------------------------------------------------*/
1412 /* Module Init / Exit */
1413 /*----------------------------------------------------------------------------*/
1415 static __init
int fsldma_init(void)
1419 pr_info("Freescale Elo / Elo Plus DMA driver\n");
1421 ret
= of_register_platform_driver(&fsldma_of_driver
);
1423 pr_err("fsldma: failed to register platform driver\n");
1428 static void __exit
fsldma_exit(void)
1430 of_unregister_platform_driver(&fsldma_of_driver
);
1433 subsys_initcall(fsldma_init
);
1434 module_exit(fsldma_exit
);
1436 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1437 MODULE_LICENSE("GPL");