exofs: dir_inode and directory operations
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / namei.c
blobd040ce11785d6acb115154da5e83a7500909df13
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <asm/uaccess.h>
37 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existant name.
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
87 * [10-Sep-98 Alan Modra] Another symlink change.
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
110 static int __link_path_walk(const char *name, struct nameidata *nd);
112 /* In order to reduce some races, while at the same time doing additional
113 * checking and hopefully speeding things up, we copy filenames to the
114 * kernel data space before using them..
116 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
117 * PATH_MAX includes the nul terminator --RR.
119 static int do_getname(const char __user *filename, char *page)
121 int retval;
122 unsigned long len = PATH_MAX;
124 if (!segment_eq(get_fs(), KERNEL_DS)) {
125 if ((unsigned long) filename >= TASK_SIZE)
126 return -EFAULT;
127 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
128 len = TASK_SIZE - (unsigned long) filename;
131 retval = strncpy_from_user(page, filename, len);
132 if (retval > 0) {
133 if (retval < len)
134 return 0;
135 return -ENAMETOOLONG;
136 } else if (!retval)
137 retval = -ENOENT;
138 return retval;
141 char * getname(const char __user * filename)
143 char *tmp, *result;
145 result = ERR_PTR(-ENOMEM);
146 tmp = __getname();
147 if (tmp) {
148 int retval = do_getname(filename, tmp);
150 result = tmp;
151 if (retval < 0) {
152 __putname(tmp);
153 result = ERR_PTR(retval);
156 audit_getname(result);
157 return result;
160 #ifdef CONFIG_AUDITSYSCALL
161 void putname(const char *name)
163 if (unlikely(!audit_dummy_context()))
164 audit_putname(name);
165 else
166 __putname(name);
168 EXPORT_SYMBOL(putname);
169 #endif
173 * generic_permission - check for access rights on a Posix-like filesystem
174 * @inode: inode to check access rights for
175 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
176 * @check_acl: optional callback to check for Posix ACLs
178 * Used to check for read/write/execute permissions on a file.
179 * We use "fsuid" for this, letting us set arbitrary permissions
180 * for filesystem access without changing the "normal" uids which
181 * are used for other things..
183 int generic_permission(struct inode *inode, int mask,
184 int (*check_acl)(struct inode *inode, int mask))
186 umode_t mode = inode->i_mode;
188 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
190 if (current_fsuid() == inode->i_uid)
191 mode >>= 6;
192 else {
193 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
194 int error = check_acl(inode, mask);
195 if (error == -EACCES)
196 goto check_capabilities;
197 else if (error != -EAGAIN)
198 return error;
201 if (in_group_p(inode->i_gid))
202 mode >>= 3;
206 * If the DACs are ok we don't need any capability check.
208 if ((mask & ~mode) == 0)
209 return 0;
211 check_capabilities:
213 * Read/write DACs are always overridable.
214 * Executable DACs are overridable if at least one exec bit is set.
216 if (!(mask & MAY_EXEC) || execute_ok(inode))
217 if (capable(CAP_DAC_OVERRIDE))
218 return 0;
221 * Searching includes executable on directories, else just read.
223 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
224 if (capable(CAP_DAC_READ_SEARCH))
225 return 0;
227 return -EACCES;
231 * inode_permission - check for access rights to a given inode
232 * @inode: inode to check permission on
233 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
235 * Used to check for read/write/execute permissions on an inode.
236 * We use "fsuid" for this, letting us set arbitrary permissions
237 * for filesystem access without changing the "normal" uids which
238 * are used for other things.
240 int inode_permission(struct inode *inode, int mask)
242 int retval;
244 if (mask & MAY_WRITE) {
245 umode_t mode = inode->i_mode;
248 * Nobody gets write access to a read-only fs.
250 if (IS_RDONLY(inode) &&
251 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
252 return -EROFS;
255 * Nobody gets write access to an immutable file.
257 if (IS_IMMUTABLE(inode))
258 return -EACCES;
261 if (inode->i_op->permission)
262 retval = inode->i_op->permission(inode, mask);
263 else
264 retval = generic_permission(inode, mask, NULL);
266 if (retval)
267 return retval;
269 retval = devcgroup_inode_permission(inode, mask);
270 if (retval)
271 return retval;
273 return security_inode_permission(inode,
274 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
278 * file_permission - check for additional access rights to a given file
279 * @file: file to check access rights for
280 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
282 * Used to check for read/write/execute permissions on an already opened
283 * file.
285 * Note:
286 * Do not use this function in new code. All access checks should
287 * be done using inode_permission().
289 int file_permission(struct file *file, int mask)
291 return inode_permission(file->f_path.dentry->d_inode, mask);
295 * get_write_access() gets write permission for a file.
296 * put_write_access() releases this write permission.
297 * This is used for regular files.
298 * We cannot support write (and maybe mmap read-write shared) accesses and
299 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
300 * can have the following values:
301 * 0: no writers, no VM_DENYWRITE mappings
302 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
303 * > 0: (i_writecount) users are writing to the file.
305 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
306 * except for the cases where we don't hold i_writecount yet. Then we need to
307 * use {get,deny}_write_access() - these functions check the sign and refuse
308 * to do the change if sign is wrong. Exclusion between them is provided by
309 * the inode->i_lock spinlock.
312 int get_write_access(struct inode * inode)
314 spin_lock(&inode->i_lock);
315 if (atomic_read(&inode->i_writecount) < 0) {
316 spin_unlock(&inode->i_lock);
317 return -ETXTBSY;
319 atomic_inc(&inode->i_writecount);
320 spin_unlock(&inode->i_lock);
322 return 0;
325 int deny_write_access(struct file * file)
327 struct inode *inode = file->f_path.dentry->d_inode;
329 spin_lock(&inode->i_lock);
330 if (atomic_read(&inode->i_writecount) > 0) {
331 spin_unlock(&inode->i_lock);
332 return -ETXTBSY;
334 atomic_dec(&inode->i_writecount);
335 spin_unlock(&inode->i_lock);
337 return 0;
341 * path_get - get a reference to a path
342 * @path: path to get the reference to
344 * Given a path increment the reference count to the dentry and the vfsmount.
346 void path_get(struct path *path)
348 mntget(path->mnt);
349 dget(path->dentry);
351 EXPORT_SYMBOL(path_get);
354 * path_put - put a reference to a path
355 * @path: path to put the reference to
357 * Given a path decrement the reference count to the dentry and the vfsmount.
359 void path_put(struct path *path)
361 dput(path->dentry);
362 mntput(path->mnt);
364 EXPORT_SYMBOL(path_put);
367 * release_open_intent - free up open intent resources
368 * @nd: pointer to nameidata
370 void release_open_intent(struct nameidata *nd)
372 if (nd->intent.open.file->f_path.dentry == NULL)
373 put_filp(nd->intent.open.file);
374 else
375 fput(nd->intent.open.file);
378 static inline struct dentry *
379 do_revalidate(struct dentry *dentry, struct nameidata *nd)
381 int status = dentry->d_op->d_revalidate(dentry, nd);
382 if (unlikely(status <= 0)) {
384 * The dentry failed validation.
385 * If d_revalidate returned 0 attempt to invalidate
386 * the dentry otherwise d_revalidate is asking us
387 * to return a fail status.
389 if (!status) {
390 if (!d_invalidate(dentry)) {
391 dput(dentry);
392 dentry = NULL;
394 } else {
395 dput(dentry);
396 dentry = ERR_PTR(status);
399 return dentry;
403 * Internal lookup() using the new generic dcache.
404 * SMP-safe
406 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
408 struct dentry * dentry = __d_lookup(parent, name);
410 /* lockess __d_lookup may fail due to concurrent d_move()
411 * in some unrelated directory, so try with d_lookup
413 if (!dentry)
414 dentry = d_lookup(parent, name);
416 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
417 dentry = do_revalidate(dentry, nd);
419 return dentry;
423 * Short-cut version of permission(), for calling by
424 * path_walk(), when dcache lock is held. Combines parts
425 * of permission() and generic_permission(), and tests ONLY for
426 * MAY_EXEC permission.
428 * If appropriate, check DAC only. If not appropriate, or
429 * short-cut DAC fails, then call permission() to do more
430 * complete permission check.
432 static int exec_permission_lite(struct inode *inode)
434 umode_t mode = inode->i_mode;
436 if (inode->i_op->permission)
437 return -EAGAIN;
439 if (current_fsuid() == inode->i_uid)
440 mode >>= 6;
441 else if (in_group_p(inode->i_gid))
442 mode >>= 3;
444 if (mode & MAY_EXEC)
445 goto ok;
447 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
448 goto ok;
450 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
451 goto ok;
453 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
454 goto ok;
456 return -EACCES;
458 return security_inode_permission(inode, MAY_EXEC);
462 * This is called when everything else fails, and we actually have
463 * to go to the low-level filesystem to find out what we should do..
465 * We get the directory semaphore, and after getting that we also
466 * make sure that nobody added the entry to the dcache in the meantime..
467 * SMP-safe
469 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
471 struct dentry * result;
472 struct inode *dir = parent->d_inode;
474 mutex_lock(&dir->i_mutex);
476 * First re-do the cached lookup just in case it was created
477 * while we waited for the directory semaphore..
479 * FIXME! This could use version numbering or similar to
480 * avoid unnecessary cache lookups.
482 * The "dcache_lock" is purely to protect the RCU list walker
483 * from concurrent renames at this point (we mustn't get false
484 * negatives from the RCU list walk here, unlike the optimistic
485 * fast walk).
487 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
489 result = d_lookup(parent, name);
490 if (!result) {
491 struct dentry *dentry;
493 /* Don't create child dentry for a dead directory. */
494 result = ERR_PTR(-ENOENT);
495 if (IS_DEADDIR(dir))
496 goto out_unlock;
498 dentry = d_alloc(parent, name);
499 result = ERR_PTR(-ENOMEM);
500 if (dentry) {
501 result = dir->i_op->lookup(dir, dentry, nd);
502 if (result)
503 dput(dentry);
504 else
505 result = dentry;
507 out_unlock:
508 mutex_unlock(&dir->i_mutex);
509 return result;
513 * Uhhuh! Nasty case: the cache was re-populated while
514 * we waited on the semaphore. Need to revalidate.
516 mutex_unlock(&dir->i_mutex);
517 if (result->d_op && result->d_op->d_revalidate) {
518 result = do_revalidate(result, nd);
519 if (!result)
520 result = ERR_PTR(-ENOENT);
522 return result;
526 * Wrapper to retry pathname resolution whenever the underlying
527 * file system returns an ESTALE.
529 * Retry the whole path once, forcing real lookup requests
530 * instead of relying on the dcache.
532 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
534 struct path save = nd->path;
535 int result;
537 /* make sure the stuff we saved doesn't go away */
538 path_get(&save);
540 result = __link_path_walk(name, nd);
541 if (result == -ESTALE) {
542 /* nd->path had been dropped */
543 nd->path = save;
544 path_get(&nd->path);
545 nd->flags |= LOOKUP_REVAL;
546 result = __link_path_walk(name, nd);
549 path_put(&save);
551 return result;
554 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
556 int res = 0;
557 char *name;
558 if (IS_ERR(link))
559 goto fail;
561 if (*link == '/') {
562 struct fs_struct *fs = current->fs;
564 path_put(&nd->path);
566 read_lock(&fs->lock);
567 nd->path = fs->root;
568 path_get(&fs->root);
569 read_unlock(&fs->lock);
572 res = link_path_walk(link, nd);
573 if (nd->depth || res || nd->last_type!=LAST_NORM)
574 return res;
576 * If it is an iterative symlinks resolution in open_namei() we
577 * have to copy the last component. And all that crap because of
578 * bloody create() on broken symlinks. Furrfu...
580 name = __getname();
581 if (unlikely(!name)) {
582 path_put(&nd->path);
583 return -ENOMEM;
585 strcpy(name, nd->last.name);
586 nd->last.name = name;
587 return 0;
588 fail:
589 path_put(&nd->path);
590 return PTR_ERR(link);
593 static void path_put_conditional(struct path *path, struct nameidata *nd)
595 dput(path->dentry);
596 if (path->mnt != nd->path.mnt)
597 mntput(path->mnt);
600 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
602 dput(nd->path.dentry);
603 if (nd->path.mnt != path->mnt)
604 mntput(nd->path.mnt);
605 nd->path.mnt = path->mnt;
606 nd->path.dentry = path->dentry;
609 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
611 int error;
612 void *cookie;
613 struct dentry *dentry = path->dentry;
615 touch_atime(path->mnt, dentry);
616 nd_set_link(nd, NULL);
618 if (path->mnt != nd->path.mnt) {
619 path_to_nameidata(path, nd);
620 dget(dentry);
622 mntget(path->mnt);
623 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
624 error = PTR_ERR(cookie);
625 if (!IS_ERR(cookie)) {
626 char *s = nd_get_link(nd);
627 error = 0;
628 if (s)
629 error = __vfs_follow_link(nd, s);
630 if (dentry->d_inode->i_op->put_link)
631 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
633 path_put(path);
635 return error;
639 * This limits recursive symlink follows to 8, while
640 * limiting consecutive symlinks to 40.
642 * Without that kind of total limit, nasty chains of consecutive
643 * symlinks can cause almost arbitrarily long lookups.
645 static inline int do_follow_link(struct path *path, struct nameidata *nd)
647 int err = -ELOOP;
648 if (current->link_count >= MAX_NESTED_LINKS)
649 goto loop;
650 if (current->total_link_count >= 40)
651 goto loop;
652 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
653 cond_resched();
654 err = security_inode_follow_link(path->dentry, nd);
655 if (err)
656 goto loop;
657 current->link_count++;
658 current->total_link_count++;
659 nd->depth++;
660 err = __do_follow_link(path, nd);
661 current->link_count--;
662 nd->depth--;
663 return err;
664 loop:
665 path_put_conditional(path, nd);
666 path_put(&nd->path);
667 return err;
670 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
672 struct vfsmount *parent;
673 struct dentry *mountpoint;
674 spin_lock(&vfsmount_lock);
675 parent=(*mnt)->mnt_parent;
676 if (parent == *mnt) {
677 spin_unlock(&vfsmount_lock);
678 return 0;
680 mntget(parent);
681 mountpoint=dget((*mnt)->mnt_mountpoint);
682 spin_unlock(&vfsmount_lock);
683 dput(*dentry);
684 *dentry = mountpoint;
685 mntput(*mnt);
686 *mnt = parent;
687 return 1;
690 /* no need for dcache_lock, as serialization is taken care in
691 * namespace.c
693 static int __follow_mount(struct path *path)
695 int res = 0;
696 while (d_mountpoint(path->dentry)) {
697 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
698 if (!mounted)
699 break;
700 dput(path->dentry);
701 if (res)
702 mntput(path->mnt);
703 path->mnt = mounted;
704 path->dentry = dget(mounted->mnt_root);
705 res = 1;
707 return res;
710 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
712 while (d_mountpoint(*dentry)) {
713 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
714 if (!mounted)
715 break;
716 dput(*dentry);
717 mntput(*mnt);
718 *mnt = mounted;
719 *dentry = dget(mounted->mnt_root);
723 /* no need for dcache_lock, as serialization is taken care in
724 * namespace.c
726 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
728 struct vfsmount *mounted;
730 mounted = lookup_mnt(*mnt, *dentry);
731 if (mounted) {
732 dput(*dentry);
733 mntput(*mnt);
734 *mnt = mounted;
735 *dentry = dget(mounted->mnt_root);
736 return 1;
738 return 0;
741 static __always_inline void follow_dotdot(struct nameidata *nd)
743 struct fs_struct *fs = current->fs;
745 while(1) {
746 struct vfsmount *parent;
747 struct dentry *old = nd->path.dentry;
749 read_lock(&fs->lock);
750 if (nd->path.dentry == fs->root.dentry &&
751 nd->path.mnt == fs->root.mnt) {
752 read_unlock(&fs->lock);
753 break;
755 read_unlock(&fs->lock);
756 spin_lock(&dcache_lock);
757 if (nd->path.dentry != nd->path.mnt->mnt_root) {
758 nd->path.dentry = dget(nd->path.dentry->d_parent);
759 spin_unlock(&dcache_lock);
760 dput(old);
761 break;
763 spin_unlock(&dcache_lock);
764 spin_lock(&vfsmount_lock);
765 parent = nd->path.mnt->mnt_parent;
766 if (parent == nd->path.mnt) {
767 spin_unlock(&vfsmount_lock);
768 break;
770 mntget(parent);
771 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
772 spin_unlock(&vfsmount_lock);
773 dput(old);
774 mntput(nd->path.mnt);
775 nd->path.mnt = parent;
777 follow_mount(&nd->path.mnt, &nd->path.dentry);
781 * It's more convoluted than I'd like it to be, but... it's still fairly
782 * small and for now I'd prefer to have fast path as straight as possible.
783 * It _is_ time-critical.
785 static int do_lookup(struct nameidata *nd, struct qstr *name,
786 struct path *path)
788 struct vfsmount *mnt = nd->path.mnt;
789 struct dentry *dentry = __d_lookup(nd->path.dentry, name);
791 if (!dentry)
792 goto need_lookup;
793 if (dentry->d_op && dentry->d_op->d_revalidate)
794 goto need_revalidate;
795 done:
796 path->mnt = mnt;
797 path->dentry = dentry;
798 __follow_mount(path);
799 return 0;
801 need_lookup:
802 dentry = real_lookup(nd->path.dentry, name, nd);
803 if (IS_ERR(dentry))
804 goto fail;
805 goto done;
807 need_revalidate:
808 dentry = do_revalidate(dentry, nd);
809 if (!dentry)
810 goto need_lookup;
811 if (IS_ERR(dentry))
812 goto fail;
813 goto done;
815 fail:
816 return PTR_ERR(dentry);
820 * Name resolution.
821 * This is the basic name resolution function, turning a pathname into
822 * the final dentry. We expect 'base' to be positive and a directory.
824 * Returns 0 and nd will have valid dentry and mnt on success.
825 * Returns error and drops reference to input namei data on failure.
827 static int __link_path_walk(const char *name, struct nameidata *nd)
829 struct path next;
830 struct inode *inode;
831 int err;
832 unsigned int lookup_flags = nd->flags;
834 while (*name=='/')
835 name++;
836 if (!*name)
837 goto return_reval;
839 inode = nd->path.dentry->d_inode;
840 if (nd->depth)
841 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
843 /* At this point we know we have a real path component. */
844 for(;;) {
845 unsigned long hash;
846 struct qstr this;
847 unsigned int c;
849 nd->flags |= LOOKUP_CONTINUE;
850 err = exec_permission_lite(inode);
851 if (err == -EAGAIN)
852 err = inode_permission(nd->path.dentry->d_inode,
853 MAY_EXEC);
854 if (!err)
855 err = ima_path_check(&nd->path, MAY_EXEC);
856 if (err)
857 break;
859 this.name = name;
860 c = *(const unsigned char *)name;
862 hash = init_name_hash();
863 do {
864 name++;
865 hash = partial_name_hash(c, hash);
866 c = *(const unsigned char *)name;
867 } while (c && (c != '/'));
868 this.len = name - (const char *) this.name;
869 this.hash = end_name_hash(hash);
871 /* remove trailing slashes? */
872 if (!c)
873 goto last_component;
874 while (*++name == '/');
875 if (!*name)
876 goto last_with_slashes;
879 * "." and ".." are special - ".." especially so because it has
880 * to be able to know about the current root directory and
881 * parent relationships.
883 if (this.name[0] == '.') switch (this.len) {
884 default:
885 break;
886 case 2:
887 if (this.name[1] != '.')
888 break;
889 follow_dotdot(nd);
890 inode = nd->path.dentry->d_inode;
891 /* fallthrough */
892 case 1:
893 continue;
896 * See if the low-level filesystem might want
897 * to use its own hash..
899 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
900 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
901 &this);
902 if (err < 0)
903 break;
905 /* This does the actual lookups.. */
906 err = do_lookup(nd, &this, &next);
907 if (err)
908 break;
910 err = -ENOENT;
911 inode = next.dentry->d_inode;
912 if (!inode)
913 goto out_dput;
915 if (inode->i_op->follow_link) {
916 err = do_follow_link(&next, nd);
917 if (err)
918 goto return_err;
919 err = -ENOENT;
920 inode = nd->path.dentry->d_inode;
921 if (!inode)
922 break;
923 } else
924 path_to_nameidata(&next, nd);
925 err = -ENOTDIR;
926 if (!inode->i_op->lookup)
927 break;
928 continue;
929 /* here ends the main loop */
931 last_with_slashes:
932 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
933 last_component:
934 /* Clear LOOKUP_CONTINUE iff it was previously unset */
935 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
936 if (lookup_flags & LOOKUP_PARENT)
937 goto lookup_parent;
938 if (this.name[0] == '.') switch (this.len) {
939 default:
940 break;
941 case 2:
942 if (this.name[1] != '.')
943 break;
944 follow_dotdot(nd);
945 inode = nd->path.dentry->d_inode;
946 /* fallthrough */
947 case 1:
948 goto return_reval;
950 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
951 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
952 &this);
953 if (err < 0)
954 break;
956 err = do_lookup(nd, &this, &next);
957 if (err)
958 break;
959 inode = next.dentry->d_inode;
960 if ((lookup_flags & LOOKUP_FOLLOW)
961 && inode && inode->i_op->follow_link) {
962 err = do_follow_link(&next, nd);
963 if (err)
964 goto return_err;
965 inode = nd->path.dentry->d_inode;
966 } else
967 path_to_nameidata(&next, nd);
968 err = -ENOENT;
969 if (!inode)
970 break;
971 if (lookup_flags & LOOKUP_DIRECTORY) {
972 err = -ENOTDIR;
973 if (!inode->i_op->lookup)
974 break;
976 goto return_base;
977 lookup_parent:
978 nd->last = this;
979 nd->last_type = LAST_NORM;
980 if (this.name[0] != '.')
981 goto return_base;
982 if (this.len == 1)
983 nd->last_type = LAST_DOT;
984 else if (this.len == 2 && this.name[1] == '.')
985 nd->last_type = LAST_DOTDOT;
986 else
987 goto return_base;
988 return_reval:
990 * We bypassed the ordinary revalidation routines.
991 * We may need to check the cached dentry for staleness.
993 if (nd->path.dentry && nd->path.dentry->d_sb &&
994 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
995 err = -ESTALE;
996 /* Note: we do not d_invalidate() */
997 if (!nd->path.dentry->d_op->d_revalidate(
998 nd->path.dentry, nd))
999 break;
1001 return_base:
1002 return 0;
1003 out_dput:
1004 path_put_conditional(&next, nd);
1005 break;
1007 path_put(&nd->path);
1008 return_err:
1009 return err;
1012 static int path_walk(const char *name, struct nameidata *nd)
1014 current->total_link_count = 0;
1015 return link_path_walk(name, nd);
1018 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1019 static int do_path_lookup(int dfd, const char *name,
1020 unsigned int flags, struct nameidata *nd)
1022 int retval = 0;
1023 int fput_needed;
1024 struct file *file;
1025 struct fs_struct *fs = current->fs;
1027 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1028 nd->flags = flags;
1029 nd->depth = 0;
1031 if (*name=='/') {
1032 read_lock(&fs->lock);
1033 nd->path = fs->root;
1034 path_get(&fs->root);
1035 read_unlock(&fs->lock);
1036 } else if (dfd == AT_FDCWD) {
1037 read_lock(&fs->lock);
1038 nd->path = fs->pwd;
1039 path_get(&fs->pwd);
1040 read_unlock(&fs->lock);
1041 } else {
1042 struct dentry *dentry;
1044 file = fget_light(dfd, &fput_needed);
1045 retval = -EBADF;
1046 if (!file)
1047 goto out_fail;
1049 dentry = file->f_path.dentry;
1051 retval = -ENOTDIR;
1052 if (!S_ISDIR(dentry->d_inode->i_mode))
1053 goto fput_fail;
1055 retval = file_permission(file, MAY_EXEC);
1056 if (retval)
1057 goto fput_fail;
1059 nd->path = file->f_path;
1060 path_get(&file->f_path);
1062 fput_light(file, fput_needed);
1065 retval = path_walk(name, nd);
1066 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1067 nd->path.dentry->d_inode))
1068 audit_inode(name, nd->path.dentry);
1069 out_fail:
1070 return retval;
1072 fput_fail:
1073 fput_light(file, fput_needed);
1074 goto out_fail;
1077 int path_lookup(const char *name, unsigned int flags,
1078 struct nameidata *nd)
1080 return do_path_lookup(AT_FDCWD, name, flags, nd);
1083 int kern_path(const char *name, unsigned int flags, struct path *path)
1085 struct nameidata nd;
1086 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1087 if (!res)
1088 *path = nd.path;
1089 return res;
1093 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1094 * @dentry: pointer to dentry of the base directory
1095 * @mnt: pointer to vfs mount of the base directory
1096 * @name: pointer to file name
1097 * @flags: lookup flags
1098 * @nd: pointer to nameidata
1100 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1101 const char *name, unsigned int flags,
1102 struct nameidata *nd)
1104 int retval;
1106 /* same as do_path_lookup */
1107 nd->last_type = LAST_ROOT;
1108 nd->flags = flags;
1109 nd->depth = 0;
1111 nd->path.dentry = dentry;
1112 nd->path.mnt = mnt;
1113 path_get(&nd->path);
1115 retval = path_walk(name, nd);
1116 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1117 nd->path.dentry->d_inode))
1118 audit_inode(name, nd->path.dentry);
1120 return retval;
1125 * path_lookup_open - lookup a file path with open intent
1126 * @dfd: the directory to use as base, or AT_FDCWD
1127 * @name: pointer to file name
1128 * @lookup_flags: lookup intent flags
1129 * @nd: pointer to nameidata
1130 * @open_flags: open intent flags
1132 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1133 struct nameidata *nd, int open_flags)
1135 struct file *filp = get_empty_filp();
1136 int err;
1138 if (filp == NULL)
1139 return -ENFILE;
1140 nd->intent.open.file = filp;
1141 nd->intent.open.flags = open_flags;
1142 nd->intent.open.create_mode = 0;
1143 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1144 if (IS_ERR(nd->intent.open.file)) {
1145 if (err == 0) {
1146 err = PTR_ERR(nd->intent.open.file);
1147 path_put(&nd->path);
1149 } else if (err != 0)
1150 release_open_intent(nd);
1151 return err;
1154 static struct dentry *__lookup_hash(struct qstr *name,
1155 struct dentry *base, struct nameidata *nd)
1157 struct dentry *dentry;
1158 struct inode *inode;
1159 int err;
1161 inode = base->d_inode;
1164 * See if the low-level filesystem might want
1165 * to use its own hash..
1167 if (base->d_op && base->d_op->d_hash) {
1168 err = base->d_op->d_hash(base, name);
1169 dentry = ERR_PTR(err);
1170 if (err < 0)
1171 goto out;
1174 dentry = cached_lookup(base, name, nd);
1175 if (!dentry) {
1176 struct dentry *new;
1178 /* Don't create child dentry for a dead directory. */
1179 dentry = ERR_PTR(-ENOENT);
1180 if (IS_DEADDIR(inode))
1181 goto out;
1183 new = d_alloc(base, name);
1184 dentry = ERR_PTR(-ENOMEM);
1185 if (!new)
1186 goto out;
1187 dentry = inode->i_op->lookup(inode, new, nd);
1188 if (!dentry)
1189 dentry = new;
1190 else
1191 dput(new);
1193 out:
1194 return dentry;
1198 * Restricted form of lookup. Doesn't follow links, single-component only,
1199 * needs parent already locked. Doesn't follow mounts.
1200 * SMP-safe.
1202 static struct dentry *lookup_hash(struct nameidata *nd)
1204 int err;
1206 err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1207 if (err)
1208 return ERR_PTR(err);
1209 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1212 static int __lookup_one_len(const char *name, struct qstr *this,
1213 struct dentry *base, int len)
1215 unsigned long hash;
1216 unsigned int c;
1218 this->name = name;
1219 this->len = len;
1220 if (!len)
1221 return -EACCES;
1223 hash = init_name_hash();
1224 while (len--) {
1225 c = *(const unsigned char *)name++;
1226 if (c == '/' || c == '\0')
1227 return -EACCES;
1228 hash = partial_name_hash(c, hash);
1230 this->hash = end_name_hash(hash);
1231 return 0;
1235 * lookup_one_len - filesystem helper to lookup single pathname component
1236 * @name: pathname component to lookup
1237 * @base: base directory to lookup from
1238 * @len: maximum length @len should be interpreted to
1240 * Note that this routine is purely a helper for filesystem usage and should
1241 * not be called by generic code. Also note that by using this function the
1242 * nameidata argument is passed to the filesystem methods and a filesystem
1243 * using this helper needs to be prepared for that.
1245 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1247 int err;
1248 struct qstr this;
1250 err = __lookup_one_len(name, &this, base, len);
1251 if (err)
1252 return ERR_PTR(err);
1254 err = inode_permission(base->d_inode, MAY_EXEC);
1255 if (err)
1256 return ERR_PTR(err);
1257 return __lookup_hash(&this, base, NULL);
1261 * lookup_one_noperm - bad hack for sysfs
1262 * @name: pathname component to lookup
1263 * @base: base directory to lookup from
1265 * This is a variant of lookup_one_len that doesn't perform any permission
1266 * checks. It's a horrible hack to work around the braindead sysfs
1267 * architecture and should not be used anywhere else.
1269 * DON'T USE THIS FUNCTION EVER, thanks.
1271 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1273 int err;
1274 struct qstr this;
1276 err = __lookup_one_len(name, &this, base, strlen(name));
1277 if (err)
1278 return ERR_PTR(err);
1279 return __lookup_hash(&this, base, NULL);
1282 int user_path_at(int dfd, const char __user *name, unsigned flags,
1283 struct path *path)
1285 struct nameidata nd;
1286 char *tmp = getname(name);
1287 int err = PTR_ERR(tmp);
1288 if (!IS_ERR(tmp)) {
1290 BUG_ON(flags & LOOKUP_PARENT);
1292 err = do_path_lookup(dfd, tmp, flags, &nd);
1293 putname(tmp);
1294 if (!err)
1295 *path = nd.path;
1297 return err;
1300 static int user_path_parent(int dfd, const char __user *path,
1301 struct nameidata *nd, char **name)
1303 char *s = getname(path);
1304 int error;
1306 if (IS_ERR(s))
1307 return PTR_ERR(s);
1309 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1310 if (error)
1311 putname(s);
1312 else
1313 *name = s;
1315 return error;
1319 * It's inline, so penalty for filesystems that don't use sticky bit is
1320 * minimal.
1322 static inline int check_sticky(struct inode *dir, struct inode *inode)
1324 uid_t fsuid = current_fsuid();
1326 if (!(dir->i_mode & S_ISVTX))
1327 return 0;
1328 if (inode->i_uid == fsuid)
1329 return 0;
1330 if (dir->i_uid == fsuid)
1331 return 0;
1332 return !capable(CAP_FOWNER);
1336 * Check whether we can remove a link victim from directory dir, check
1337 * whether the type of victim is right.
1338 * 1. We can't do it if dir is read-only (done in permission())
1339 * 2. We should have write and exec permissions on dir
1340 * 3. We can't remove anything from append-only dir
1341 * 4. We can't do anything with immutable dir (done in permission())
1342 * 5. If the sticky bit on dir is set we should either
1343 * a. be owner of dir, or
1344 * b. be owner of victim, or
1345 * c. have CAP_FOWNER capability
1346 * 6. If the victim is append-only or immutable we can't do antyhing with
1347 * links pointing to it.
1348 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1349 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1350 * 9. We can't remove a root or mountpoint.
1351 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1352 * nfs_async_unlink().
1354 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1356 int error;
1358 if (!victim->d_inode)
1359 return -ENOENT;
1361 BUG_ON(victim->d_parent->d_inode != dir);
1362 audit_inode_child(victim->d_name.name, victim, dir);
1364 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1365 if (error)
1366 return error;
1367 if (IS_APPEND(dir))
1368 return -EPERM;
1369 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1370 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1371 return -EPERM;
1372 if (isdir) {
1373 if (!S_ISDIR(victim->d_inode->i_mode))
1374 return -ENOTDIR;
1375 if (IS_ROOT(victim))
1376 return -EBUSY;
1377 } else if (S_ISDIR(victim->d_inode->i_mode))
1378 return -EISDIR;
1379 if (IS_DEADDIR(dir))
1380 return -ENOENT;
1381 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1382 return -EBUSY;
1383 return 0;
1386 /* Check whether we can create an object with dentry child in directory
1387 * dir.
1388 * 1. We can't do it if child already exists (open has special treatment for
1389 * this case, but since we are inlined it's OK)
1390 * 2. We can't do it if dir is read-only (done in permission())
1391 * 3. We should have write and exec permissions on dir
1392 * 4. We can't do it if dir is immutable (done in permission())
1394 static inline int may_create(struct inode *dir, struct dentry *child)
1396 if (child->d_inode)
1397 return -EEXIST;
1398 if (IS_DEADDIR(dir))
1399 return -ENOENT;
1400 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1404 * O_DIRECTORY translates into forcing a directory lookup.
1406 static inline int lookup_flags(unsigned int f)
1408 unsigned long retval = LOOKUP_FOLLOW;
1410 if (f & O_NOFOLLOW)
1411 retval &= ~LOOKUP_FOLLOW;
1413 if (f & O_DIRECTORY)
1414 retval |= LOOKUP_DIRECTORY;
1416 return retval;
1420 * p1 and p2 should be directories on the same fs.
1422 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1424 struct dentry *p;
1426 if (p1 == p2) {
1427 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1428 return NULL;
1431 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1433 p = d_ancestor(p2, p1);
1434 if (p) {
1435 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1436 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1437 return p;
1440 p = d_ancestor(p1, p2);
1441 if (p) {
1442 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1443 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1444 return p;
1447 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1448 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1449 return NULL;
1452 void unlock_rename(struct dentry *p1, struct dentry *p2)
1454 mutex_unlock(&p1->d_inode->i_mutex);
1455 if (p1 != p2) {
1456 mutex_unlock(&p2->d_inode->i_mutex);
1457 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1461 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1462 struct nameidata *nd)
1464 int error = may_create(dir, dentry);
1466 if (error)
1467 return error;
1469 if (!dir->i_op->create)
1470 return -EACCES; /* shouldn't it be ENOSYS? */
1471 mode &= S_IALLUGO;
1472 mode |= S_IFREG;
1473 error = security_inode_create(dir, dentry, mode);
1474 if (error)
1475 return error;
1476 vfs_dq_init(dir);
1477 error = dir->i_op->create(dir, dentry, mode, nd);
1478 if (!error)
1479 fsnotify_create(dir, dentry);
1480 return error;
1483 int may_open(struct path *path, int acc_mode, int flag)
1485 struct dentry *dentry = path->dentry;
1486 struct inode *inode = dentry->d_inode;
1487 int error;
1489 if (!inode)
1490 return -ENOENT;
1492 switch (inode->i_mode & S_IFMT) {
1493 case S_IFLNK:
1494 return -ELOOP;
1495 case S_IFDIR:
1496 if (acc_mode & MAY_WRITE)
1497 return -EISDIR;
1498 break;
1499 case S_IFBLK:
1500 case S_IFCHR:
1501 if (path->mnt->mnt_flags & MNT_NODEV)
1502 return -EACCES;
1503 /*FALLTHRU*/
1504 case S_IFIFO:
1505 case S_IFSOCK:
1506 flag &= ~O_TRUNC;
1507 break;
1510 error = inode_permission(inode, acc_mode);
1511 if (error)
1512 return error;
1514 error = ima_path_check(path,
1515 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC));
1516 if (error)
1517 return error;
1519 * An append-only file must be opened in append mode for writing.
1521 if (IS_APPEND(inode)) {
1522 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1523 return -EPERM;
1524 if (flag & O_TRUNC)
1525 return -EPERM;
1528 /* O_NOATIME can only be set by the owner or superuser */
1529 if (flag & O_NOATIME)
1530 if (!is_owner_or_cap(inode))
1531 return -EPERM;
1534 * Ensure there are no outstanding leases on the file.
1536 error = break_lease(inode, flag);
1537 if (error)
1538 return error;
1540 if (flag & O_TRUNC) {
1541 error = get_write_access(inode);
1542 if (error)
1543 return error;
1546 * Refuse to truncate files with mandatory locks held on them.
1548 error = locks_verify_locked(inode);
1549 if (!error)
1550 error = security_path_truncate(path, 0,
1551 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1552 if (!error) {
1553 vfs_dq_init(inode);
1555 error = do_truncate(dentry, 0,
1556 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1557 NULL);
1559 put_write_access(inode);
1560 if (error)
1561 return error;
1562 } else
1563 if (flag & FMODE_WRITE)
1564 vfs_dq_init(inode);
1566 return 0;
1570 * Be careful about ever adding any more callers of this
1571 * function. Its flags must be in the namei format, not
1572 * what get passed to sys_open().
1574 static int __open_namei_create(struct nameidata *nd, struct path *path,
1575 int flag, int mode)
1577 int error;
1578 struct dentry *dir = nd->path.dentry;
1580 if (!IS_POSIXACL(dir->d_inode))
1581 mode &= ~current->fs->umask;
1582 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1583 if (error)
1584 goto out_unlock;
1585 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1586 out_unlock:
1587 mutex_unlock(&dir->d_inode->i_mutex);
1588 dput(nd->path.dentry);
1589 nd->path.dentry = path->dentry;
1590 if (error)
1591 return error;
1592 /* Don't check for write permission, don't truncate */
1593 return may_open(&nd->path, 0, flag & ~O_TRUNC);
1597 * Note that while the flag value (low two bits) for sys_open means:
1598 * 00 - read-only
1599 * 01 - write-only
1600 * 10 - read-write
1601 * 11 - special
1602 * it is changed into
1603 * 00 - no permissions needed
1604 * 01 - read-permission
1605 * 10 - write-permission
1606 * 11 - read-write
1607 * for the internal routines (ie open_namei()/follow_link() etc)
1608 * This is more logical, and also allows the 00 "no perm needed"
1609 * to be used for symlinks (where the permissions are checked
1610 * later).
1613 static inline int open_to_namei_flags(int flag)
1615 if ((flag+1) & O_ACCMODE)
1616 flag++;
1617 return flag;
1620 static int open_will_write_to_fs(int flag, struct inode *inode)
1623 * We'll never write to the fs underlying
1624 * a device file.
1626 if (special_file(inode->i_mode))
1627 return 0;
1628 return (flag & O_TRUNC);
1632 * Note that the low bits of the passed in "open_flag"
1633 * are not the same as in the local variable "flag". See
1634 * open_to_namei_flags() for more details.
1636 struct file *do_filp_open(int dfd, const char *pathname,
1637 int open_flag, int mode)
1639 struct file *filp;
1640 struct nameidata nd;
1641 int acc_mode, error;
1642 struct path path;
1643 struct dentry *dir;
1644 int count = 0;
1645 int will_write;
1646 int flag = open_to_namei_flags(open_flag);
1648 acc_mode = MAY_OPEN | ACC_MODE(flag);
1650 /* O_TRUNC implies we need access checks for write permissions */
1651 if (flag & O_TRUNC)
1652 acc_mode |= MAY_WRITE;
1654 /* Allow the LSM permission hook to distinguish append
1655 access from general write access. */
1656 if (flag & O_APPEND)
1657 acc_mode |= MAY_APPEND;
1660 * The simplest case - just a plain lookup.
1662 if (!(flag & O_CREAT)) {
1663 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1664 &nd, flag);
1665 if (error)
1666 return ERR_PTR(error);
1667 goto ok;
1671 * Create - we need to know the parent.
1673 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
1674 if (error)
1675 return ERR_PTR(error);
1678 * We have the parent and last component. First of all, check
1679 * that we are not asked to creat(2) an obvious directory - that
1680 * will not do.
1682 error = -EISDIR;
1683 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1684 goto exit_parent;
1686 error = -ENFILE;
1687 filp = get_empty_filp();
1688 if (filp == NULL)
1689 goto exit_parent;
1690 nd.intent.open.file = filp;
1691 nd.intent.open.flags = flag;
1692 nd.intent.open.create_mode = mode;
1693 dir = nd.path.dentry;
1694 nd.flags &= ~LOOKUP_PARENT;
1695 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1696 if (flag & O_EXCL)
1697 nd.flags |= LOOKUP_EXCL;
1698 mutex_lock(&dir->d_inode->i_mutex);
1699 path.dentry = lookup_hash(&nd);
1700 path.mnt = nd.path.mnt;
1702 do_last:
1703 error = PTR_ERR(path.dentry);
1704 if (IS_ERR(path.dentry)) {
1705 mutex_unlock(&dir->d_inode->i_mutex);
1706 goto exit;
1709 if (IS_ERR(nd.intent.open.file)) {
1710 error = PTR_ERR(nd.intent.open.file);
1711 goto exit_mutex_unlock;
1714 /* Negative dentry, just create the file */
1715 if (!path.dentry->d_inode) {
1717 * This write is needed to ensure that a
1718 * ro->rw transition does not occur between
1719 * the time when the file is created and when
1720 * a permanent write count is taken through
1721 * the 'struct file' in nameidata_to_filp().
1723 error = mnt_want_write(nd.path.mnt);
1724 if (error)
1725 goto exit_mutex_unlock;
1726 error = __open_namei_create(&nd, &path, flag, mode);
1727 if (error) {
1728 mnt_drop_write(nd.path.mnt);
1729 goto exit;
1731 filp = nameidata_to_filp(&nd, open_flag);
1732 mnt_drop_write(nd.path.mnt);
1733 return filp;
1737 * It already exists.
1739 mutex_unlock(&dir->d_inode->i_mutex);
1740 audit_inode(pathname, path.dentry);
1742 error = -EEXIST;
1743 if (flag & O_EXCL)
1744 goto exit_dput;
1746 if (__follow_mount(&path)) {
1747 error = -ELOOP;
1748 if (flag & O_NOFOLLOW)
1749 goto exit_dput;
1752 error = -ENOENT;
1753 if (!path.dentry->d_inode)
1754 goto exit_dput;
1755 if (path.dentry->d_inode->i_op->follow_link)
1756 goto do_link;
1758 path_to_nameidata(&path, &nd);
1759 error = -EISDIR;
1760 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1761 goto exit;
1764 * Consider:
1765 * 1. may_open() truncates a file
1766 * 2. a rw->ro mount transition occurs
1767 * 3. nameidata_to_filp() fails due to
1768 * the ro mount.
1769 * That would be inconsistent, and should
1770 * be avoided. Taking this mnt write here
1771 * ensures that (2) can not occur.
1773 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1774 if (will_write) {
1775 error = mnt_want_write(nd.path.mnt);
1776 if (error)
1777 goto exit;
1779 error = may_open(&nd.path, acc_mode, flag);
1780 if (error) {
1781 if (will_write)
1782 mnt_drop_write(nd.path.mnt);
1783 goto exit;
1785 filp = nameidata_to_filp(&nd, open_flag);
1787 * It is now safe to drop the mnt write
1788 * because the filp has had a write taken
1789 * on its behalf.
1791 if (will_write)
1792 mnt_drop_write(nd.path.mnt);
1793 return filp;
1795 exit_mutex_unlock:
1796 mutex_unlock(&dir->d_inode->i_mutex);
1797 exit_dput:
1798 path_put_conditional(&path, &nd);
1799 exit:
1800 if (!IS_ERR(nd.intent.open.file))
1801 release_open_intent(&nd);
1802 exit_parent:
1803 path_put(&nd.path);
1804 return ERR_PTR(error);
1806 do_link:
1807 error = -ELOOP;
1808 if (flag & O_NOFOLLOW)
1809 goto exit_dput;
1811 * This is subtle. Instead of calling do_follow_link() we do the
1812 * thing by hands. The reason is that this way we have zero link_count
1813 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1814 * After that we have the parent and last component, i.e.
1815 * we are in the same situation as after the first path_walk().
1816 * Well, almost - if the last component is normal we get its copy
1817 * stored in nd->last.name and we will have to putname() it when we
1818 * are done. Procfs-like symlinks just set LAST_BIND.
1820 nd.flags |= LOOKUP_PARENT;
1821 error = security_inode_follow_link(path.dentry, &nd);
1822 if (error)
1823 goto exit_dput;
1824 error = __do_follow_link(&path, &nd);
1825 if (error) {
1826 /* Does someone understand code flow here? Or it is only
1827 * me so stupid? Anathema to whoever designed this non-sense
1828 * with "intent.open".
1830 release_open_intent(&nd);
1831 return ERR_PTR(error);
1833 nd.flags &= ~LOOKUP_PARENT;
1834 if (nd.last_type == LAST_BIND)
1835 goto ok;
1836 error = -EISDIR;
1837 if (nd.last_type != LAST_NORM)
1838 goto exit;
1839 if (nd.last.name[nd.last.len]) {
1840 __putname(nd.last.name);
1841 goto exit;
1843 error = -ELOOP;
1844 if (count++==32) {
1845 __putname(nd.last.name);
1846 goto exit;
1848 dir = nd.path.dentry;
1849 mutex_lock(&dir->d_inode->i_mutex);
1850 path.dentry = lookup_hash(&nd);
1851 path.mnt = nd.path.mnt;
1852 __putname(nd.last.name);
1853 goto do_last;
1857 * filp_open - open file and return file pointer
1859 * @filename: path to open
1860 * @flags: open flags as per the open(2) second argument
1861 * @mode: mode for the new file if O_CREAT is set, else ignored
1863 * This is the helper to open a file from kernelspace if you really
1864 * have to. But in generally you should not do this, so please move
1865 * along, nothing to see here..
1867 struct file *filp_open(const char *filename, int flags, int mode)
1869 return do_filp_open(AT_FDCWD, filename, flags, mode);
1871 EXPORT_SYMBOL(filp_open);
1874 * lookup_create - lookup a dentry, creating it if it doesn't exist
1875 * @nd: nameidata info
1876 * @is_dir: directory flag
1878 * Simple function to lookup and return a dentry and create it
1879 * if it doesn't exist. Is SMP-safe.
1881 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1883 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1885 struct dentry *dentry = ERR_PTR(-EEXIST);
1887 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1889 * Yucky last component or no last component at all?
1890 * (foo/., foo/.., /////)
1892 if (nd->last_type != LAST_NORM)
1893 goto fail;
1894 nd->flags &= ~LOOKUP_PARENT;
1895 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1896 nd->intent.open.flags = O_EXCL;
1899 * Do the final lookup.
1901 dentry = lookup_hash(nd);
1902 if (IS_ERR(dentry))
1903 goto fail;
1905 if (dentry->d_inode)
1906 goto eexist;
1908 * Special case - lookup gave negative, but... we had foo/bar/
1909 * From the vfs_mknod() POV we just have a negative dentry -
1910 * all is fine. Let's be bastards - you had / on the end, you've
1911 * been asking for (non-existent) directory. -ENOENT for you.
1913 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1914 dput(dentry);
1915 dentry = ERR_PTR(-ENOENT);
1917 return dentry;
1918 eexist:
1919 dput(dentry);
1920 dentry = ERR_PTR(-EEXIST);
1921 fail:
1922 return dentry;
1924 EXPORT_SYMBOL_GPL(lookup_create);
1926 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1928 int error = may_create(dir, dentry);
1930 if (error)
1931 return error;
1933 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1934 return -EPERM;
1936 if (!dir->i_op->mknod)
1937 return -EPERM;
1939 error = devcgroup_inode_mknod(mode, dev);
1940 if (error)
1941 return error;
1943 error = security_inode_mknod(dir, dentry, mode, dev);
1944 if (error)
1945 return error;
1947 vfs_dq_init(dir);
1948 error = dir->i_op->mknod(dir, dentry, mode, dev);
1949 if (!error)
1950 fsnotify_create(dir, dentry);
1951 return error;
1954 static int may_mknod(mode_t mode)
1956 switch (mode & S_IFMT) {
1957 case S_IFREG:
1958 case S_IFCHR:
1959 case S_IFBLK:
1960 case S_IFIFO:
1961 case S_IFSOCK:
1962 case 0: /* zero mode translates to S_IFREG */
1963 return 0;
1964 case S_IFDIR:
1965 return -EPERM;
1966 default:
1967 return -EINVAL;
1971 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
1972 unsigned, dev)
1974 int error;
1975 char *tmp;
1976 struct dentry *dentry;
1977 struct nameidata nd;
1979 if (S_ISDIR(mode))
1980 return -EPERM;
1982 error = user_path_parent(dfd, filename, &nd, &tmp);
1983 if (error)
1984 return error;
1986 dentry = lookup_create(&nd, 0);
1987 if (IS_ERR(dentry)) {
1988 error = PTR_ERR(dentry);
1989 goto out_unlock;
1991 if (!IS_POSIXACL(nd.path.dentry->d_inode))
1992 mode &= ~current->fs->umask;
1993 error = may_mknod(mode);
1994 if (error)
1995 goto out_dput;
1996 error = mnt_want_write(nd.path.mnt);
1997 if (error)
1998 goto out_dput;
1999 error = security_path_mknod(&nd.path, dentry, mode, dev);
2000 if (error)
2001 goto out_drop_write;
2002 switch (mode & S_IFMT) {
2003 case 0: case S_IFREG:
2004 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2005 break;
2006 case S_IFCHR: case S_IFBLK:
2007 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2008 new_decode_dev(dev));
2009 break;
2010 case S_IFIFO: case S_IFSOCK:
2011 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2012 break;
2014 out_drop_write:
2015 mnt_drop_write(nd.path.mnt);
2016 out_dput:
2017 dput(dentry);
2018 out_unlock:
2019 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2020 path_put(&nd.path);
2021 putname(tmp);
2023 return error;
2026 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2028 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2031 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2033 int error = may_create(dir, dentry);
2035 if (error)
2036 return error;
2038 if (!dir->i_op->mkdir)
2039 return -EPERM;
2041 mode &= (S_IRWXUGO|S_ISVTX);
2042 error = security_inode_mkdir(dir, dentry, mode);
2043 if (error)
2044 return error;
2046 vfs_dq_init(dir);
2047 error = dir->i_op->mkdir(dir, dentry, mode);
2048 if (!error)
2049 fsnotify_mkdir(dir, dentry);
2050 return error;
2053 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2055 int error = 0;
2056 char * tmp;
2057 struct dentry *dentry;
2058 struct nameidata nd;
2060 error = user_path_parent(dfd, pathname, &nd, &tmp);
2061 if (error)
2062 goto out_err;
2064 dentry = lookup_create(&nd, 1);
2065 error = PTR_ERR(dentry);
2066 if (IS_ERR(dentry))
2067 goto out_unlock;
2069 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2070 mode &= ~current->fs->umask;
2071 error = mnt_want_write(nd.path.mnt);
2072 if (error)
2073 goto out_dput;
2074 error = security_path_mkdir(&nd.path, dentry, mode);
2075 if (error)
2076 goto out_drop_write;
2077 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2078 out_drop_write:
2079 mnt_drop_write(nd.path.mnt);
2080 out_dput:
2081 dput(dentry);
2082 out_unlock:
2083 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2084 path_put(&nd.path);
2085 putname(tmp);
2086 out_err:
2087 return error;
2090 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2092 return sys_mkdirat(AT_FDCWD, pathname, mode);
2096 * We try to drop the dentry early: we should have
2097 * a usage count of 2 if we're the only user of this
2098 * dentry, and if that is true (possibly after pruning
2099 * the dcache), then we drop the dentry now.
2101 * A low-level filesystem can, if it choses, legally
2102 * do a
2104 * if (!d_unhashed(dentry))
2105 * return -EBUSY;
2107 * if it cannot handle the case of removing a directory
2108 * that is still in use by something else..
2110 void dentry_unhash(struct dentry *dentry)
2112 dget(dentry);
2113 shrink_dcache_parent(dentry);
2114 spin_lock(&dcache_lock);
2115 spin_lock(&dentry->d_lock);
2116 if (atomic_read(&dentry->d_count) == 2)
2117 __d_drop(dentry);
2118 spin_unlock(&dentry->d_lock);
2119 spin_unlock(&dcache_lock);
2122 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2124 int error = may_delete(dir, dentry, 1);
2126 if (error)
2127 return error;
2129 if (!dir->i_op->rmdir)
2130 return -EPERM;
2132 vfs_dq_init(dir);
2134 mutex_lock(&dentry->d_inode->i_mutex);
2135 dentry_unhash(dentry);
2136 if (d_mountpoint(dentry))
2137 error = -EBUSY;
2138 else {
2139 error = security_inode_rmdir(dir, dentry);
2140 if (!error) {
2141 error = dir->i_op->rmdir(dir, dentry);
2142 if (!error)
2143 dentry->d_inode->i_flags |= S_DEAD;
2146 mutex_unlock(&dentry->d_inode->i_mutex);
2147 if (!error) {
2148 d_delete(dentry);
2150 dput(dentry);
2152 return error;
2155 static long do_rmdir(int dfd, const char __user *pathname)
2157 int error = 0;
2158 char * name;
2159 struct dentry *dentry;
2160 struct nameidata nd;
2162 error = user_path_parent(dfd, pathname, &nd, &name);
2163 if (error)
2164 return error;
2166 switch(nd.last_type) {
2167 case LAST_DOTDOT:
2168 error = -ENOTEMPTY;
2169 goto exit1;
2170 case LAST_DOT:
2171 error = -EINVAL;
2172 goto exit1;
2173 case LAST_ROOT:
2174 error = -EBUSY;
2175 goto exit1;
2178 nd.flags &= ~LOOKUP_PARENT;
2180 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2181 dentry = lookup_hash(&nd);
2182 error = PTR_ERR(dentry);
2183 if (IS_ERR(dentry))
2184 goto exit2;
2185 error = mnt_want_write(nd.path.mnt);
2186 if (error)
2187 goto exit3;
2188 error = security_path_rmdir(&nd.path, dentry);
2189 if (error)
2190 goto exit4;
2191 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2192 exit4:
2193 mnt_drop_write(nd.path.mnt);
2194 exit3:
2195 dput(dentry);
2196 exit2:
2197 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2198 exit1:
2199 path_put(&nd.path);
2200 putname(name);
2201 return error;
2204 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2206 return do_rmdir(AT_FDCWD, pathname);
2209 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2211 int error = may_delete(dir, dentry, 0);
2213 if (error)
2214 return error;
2216 if (!dir->i_op->unlink)
2217 return -EPERM;
2219 vfs_dq_init(dir);
2221 mutex_lock(&dentry->d_inode->i_mutex);
2222 if (d_mountpoint(dentry))
2223 error = -EBUSY;
2224 else {
2225 error = security_inode_unlink(dir, dentry);
2226 if (!error)
2227 error = dir->i_op->unlink(dir, dentry);
2229 mutex_unlock(&dentry->d_inode->i_mutex);
2231 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2232 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2233 fsnotify_link_count(dentry->d_inode);
2234 d_delete(dentry);
2237 return error;
2241 * Make sure that the actual truncation of the file will occur outside its
2242 * directory's i_mutex. Truncate can take a long time if there is a lot of
2243 * writeout happening, and we don't want to prevent access to the directory
2244 * while waiting on the I/O.
2246 static long do_unlinkat(int dfd, const char __user *pathname)
2248 int error;
2249 char *name;
2250 struct dentry *dentry;
2251 struct nameidata nd;
2252 struct inode *inode = NULL;
2254 error = user_path_parent(dfd, pathname, &nd, &name);
2255 if (error)
2256 return error;
2258 error = -EISDIR;
2259 if (nd.last_type != LAST_NORM)
2260 goto exit1;
2262 nd.flags &= ~LOOKUP_PARENT;
2264 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2265 dentry = lookup_hash(&nd);
2266 error = PTR_ERR(dentry);
2267 if (!IS_ERR(dentry)) {
2268 /* Why not before? Because we want correct error value */
2269 if (nd.last.name[nd.last.len])
2270 goto slashes;
2271 inode = dentry->d_inode;
2272 if (inode)
2273 atomic_inc(&inode->i_count);
2274 error = mnt_want_write(nd.path.mnt);
2275 if (error)
2276 goto exit2;
2277 error = security_path_unlink(&nd.path, dentry);
2278 if (error)
2279 goto exit3;
2280 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2281 exit3:
2282 mnt_drop_write(nd.path.mnt);
2283 exit2:
2284 dput(dentry);
2286 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2287 if (inode)
2288 iput(inode); /* truncate the inode here */
2289 exit1:
2290 path_put(&nd.path);
2291 putname(name);
2292 return error;
2294 slashes:
2295 error = !dentry->d_inode ? -ENOENT :
2296 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2297 goto exit2;
2300 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2302 if ((flag & ~AT_REMOVEDIR) != 0)
2303 return -EINVAL;
2305 if (flag & AT_REMOVEDIR)
2306 return do_rmdir(dfd, pathname);
2308 return do_unlinkat(dfd, pathname);
2311 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2313 return do_unlinkat(AT_FDCWD, pathname);
2316 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2318 int error = may_create(dir, dentry);
2320 if (error)
2321 return error;
2323 if (!dir->i_op->symlink)
2324 return -EPERM;
2326 error = security_inode_symlink(dir, dentry, oldname);
2327 if (error)
2328 return error;
2330 vfs_dq_init(dir);
2331 error = dir->i_op->symlink(dir, dentry, oldname);
2332 if (!error)
2333 fsnotify_create(dir, dentry);
2334 return error;
2337 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2338 int, newdfd, const char __user *, newname)
2340 int error;
2341 char *from;
2342 char *to;
2343 struct dentry *dentry;
2344 struct nameidata nd;
2346 from = getname(oldname);
2347 if (IS_ERR(from))
2348 return PTR_ERR(from);
2350 error = user_path_parent(newdfd, newname, &nd, &to);
2351 if (error)
2352 goto out_putname;
2354 dentry = lookup_create(&nd, 0);
2355 error = PTR_ERR(dentry);
2356 if (IS_ERR(dentry))
2357 goto out_unlock;
2359 error = mnt_want_write(nd.path.mnt);
2360 if (error)
2361 goto out_dput;
2362 error = security_path_symlink(&nd.path, dentry, from);
2363 if (error)
2364 goto out_drop_write;
2365 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2366 out_drop_write:
2367 mnt_drop_write(nd.path.mnt);
2368 out_dput:
2369 dput(dentry);
2370 out_unlock:
2371 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2372 path_put(&nd.path);
2373 putname(to);
2374 out_putname:
2375 putname(from);
2376 return error;
2379 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2381 return sys_symlinkat(oldname, AT_FDCWD, newname);
2384 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2386 struct inode *inode = old_dentry->d_inode;
2387 int error;
2389 if (!inode)
2390 return -ENOENT;
2392 error = may_create(dir, new_dentry);
2393 if (error)
2394 return error;
2396 if (dir->i_sb != inode->i_sb)
2397 return -EXDEV;
2400 * A link to an append-only or immutable file cannot be created.
2402 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2403 return -EPERM;
2404 if (!dir->i_op->link)
2405 return -EPERM;
2406 if (S_ISDIR(inode->i_mode))
2407 return -EPERM;
2409 error = security_inode_link(old_dentry, dir, new_dentry);
2410 if (error)
2411 return error;
2413 mutex_lock(&inode->i_mutex);
2414 vfs_dq_init(dir);
2415 error = dir->i_op->link(old_dentry, dir, new_dentry);
2416 mutex_unlock(&inode->i_mutex);
2417 if (!error)
2418 fsnotify_link(dir, inode, new_dentry);
2419 return error;
2423 * Hardlinks are often used in delicate situations. We avoid
2424 * security-related surprises by not following symlinks on the
2425 * newname. --KAB
2427 * We don't follow them on the oldname either to be compatible
2428 * with linux 2.0, and to avoid hard-linking to directories
2429 * and other special files. --ADM
2431 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2432 int, newdfd, const char __user *, newname, int, flags)
2434 struct dentry *new_dentry;
2435 struct nameidata nd;
2436 struct path old_path;
2437 int error;
2438 char *to;
2440 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2441 return -EINVAL;
2443 error = user_path_at(olddfd, oldname,
2444 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2445 &old_path);
2446 if (error)
2447 return error;
2449 error = user_path_parent(newdfd, newname, &nd, &to);
2450 if (error)
2451 goto out;
2452 error = -EXDEV;
2453 if (old_path.mnt != nd.path.mnt)
2454 goto out_release;
2455 new_dentry = lookup_create(&nd, 0);
2456 error = PTR_ERR(new_dentry);
2457 if (IS_ERR(new_dentry))
2458 goto out_unlock;
2459 error = mnt_want_write(nd.path.mnt);
2460 if (error)
2461 goto out_dput;
2462 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2463 if (error)
2464 goto out_drop_write;
2465 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2466 out_drop_write:
2467 mnt_drop_write(nd.path.mnt);
2468 out_dput:
2469 dput(new_dentry);
2470 out_unlock:
2471 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2472 out_release:
2473 path_put(&nd.path);
2474 putname(to);
2475 out:
2476 path_put(&old_path);
2478 return error;
2481 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2483 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2487 * The worst of all namespace operations - renaming directory. "Perverted"
2488 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2489 * Problems:
2490 * a) we can get into loop creation. Check is done in is_subdir().
2491 * b) race potential - two innocent renames can create a loop together.
2492 * That's where 4.4 screws up. Current fix: serialization on
2493 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2494 * story.
2495 * c) we have to lock _three_ objects - parents and victim (if it exists).
2496 * And that - after we got ->i_mutex on parents (until then we don't know
2497 * whether the target exists). Solution: try to be smart with locking
2498 * order for inodes. We rely on the fact that tree topology may change
2499 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2500 * move will be locked. Thus we can rank directories by the tree
2501 * (ancestors first) and rank all non-directories after them.
2502 * That works since everybody except rename does "lock parent, lookup,
2503 * lock child" and rename is under ->s_vfs_rename_mutex.
2504 * HOWEVER, it relies on the assumption that any object with ->lookup()
2505 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2506 * we'd better make sure that there's no link(2) for them.
2507 * d) some filesystems don't support opened-but-unlinked directories,
2508 * either because of layout or because they are not ready to deal with
2509 * all cases correctly. The latter will be fixed (taking this sort of
2510 * stuff into VFS), but the former is not going away. Solution: the same
2511 * trick as in rmdir().
2512 * e) conversion from fhandle to dentry may come in the wrong moment - when
2513 * we are removing the target. Solution: we will have to grab ->i_mutex
2514 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2515 * ->i_mutex on parents, which works but leads to some truely excessive
2516 * locking].
2518 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2519 struct inode *new_dir, struct dentry *new_dentry)
2521 int error = 0;
2522 struct inode *target;
2525 * If we are going to change the parent - check write permissions,
2526 * we'll need to flip '..'.
2528 if (new_dir != old_dir) {
2529 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2530 if (error)
2531 return error;
2534 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2535 if (error)
2536 return error;
2538 target = new_dentry->d_inode;
2539 if (target) {
2540 mutex_lock(&target->i_mutex);
2541 dentry_unhash(new_dentry);
2543 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2544 error = -EBUSY;
2545 else
2546 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2547 if (target) {
2548 if (!error)
2549 target->i_flags |= S_DEAD;
2550 mutex_unlock(&target->i_mutex);
2551 if (d_unhashed(new_dentry))
2552 d_rehash(new_dentry);
2553 dput(new_dentry);
2555 if (!error)
2556 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2557 d_move(old_dentry,new_dentry);
2558 return error;
2561 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2562 struct inode *new_dir, struct dentry *new_dentry)
2564 struct inode *target;
2565 int error;
2567 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2568 if (error)
2569 return error;
2571 dget(new_dentry);
2572 target = new_dentry->d_inode;
2573 if (target)
2574 mutex_lock(&target->i_mutex);
2575 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2576 error = -EBUSY;
2577 else
2578 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2579 if (!error) {
2580 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2581 d_move(old_dentry, new_dentry);
2583 if (target)
2584 mutex_unlock(&target->i_mutex);
2585 dput(new_dentry);
2586 return error;
2589 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2590 struct inode *new_dir, struct dentry *new_dentry)
2592 int error;
2593 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2594 const char *old_name;
2596 if (old_dentry->d_inode == new_dentry->d_inode)
2597 return 0;
2599 error = may_delete(old_dir, old_dentry, is_dir);
2600 if (error)
2601 return error;
2603 if (!new_dentry->d_inode)
2604 error = may_create(new_dir, new_dentry);
2605 else
2606 error = may_delete(new_dir, new_dentry, is_dir);
2607 if (error)
2608 return error;
2610 if (!old_dir->i_op->rename)
2611 return -EPERM;
2613 vfs_dq_init(old_dir);
2614 vfs_dq_init(new_dir);
2616 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2618 if (is_dir)
2619 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2620 else
2621 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2622 if (!error) {
2623 const char *new_name = old_dentry->d_name.name;
2624 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2625 new_dentry->d_inode, old_dentry);
2627 fsnotify_oldname_free(old_name);
2629 return error;
2632 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2633 int, newdfd, const char __user *, newname)
2635 struct dentry *old_dir, *new_dir;
2636 struct dentry *old_dentry, *new_dentry;
2637 struct dentry *trap;
2638 struct nameidata oldnd, newnd;
2639 char *from;
2640 char *to;
2641 int error;
2643 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2644 if (error)
2645 goto exit;
2647 error = user_path_parent(newdfd, newname, &newnd, &to);
2648 if (error)
2649 goto exit1;
2651 error = -EXDEV;
2652 if (oldnd.path.mnt != newnd.path.mnt)
2653 goto exit2;
2655 old_dir = oldnd.path.dentry;
2656 error = -EBUSY;
2657 if (oldnd.last_type != LAST_NORM)
2658 goto exit2;
2660 new_dir = newnd.path.dentry;
2661 if (newnd.last_type != LAST_NORM)
2662 goto exit2;
2664 oldnd.flags &= ~LOOKUP_PARENT;
2665 newnd.flags &= ~LOOKUP_PARENT;
2666 newnd.flags |= LOOKUP_RENAME_TARGET;
2668 trap = lock_rename(new_dir, old_dir);
2670 old_dentry = lookup_hash(&oldnd);
2671 error = PTR_ERR(old_dentry);
2672 if (IS_ERR(old_dentry))
2673 goto exit3;
2674 /* source must exist */
2675 error = -ENOENT;
2676 if (!old_dentry->d_inode)
2677 goto exit4;
2678 /* unless the source is a directory trailing slashes give -ENOTDIR */
2679 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2680 error = -ENOTDIR;
2681 if (oldnd.last.name[oldnd.last.len])
2682 goto exit4;
2683 if (newnd.last.name[newnd.last.len])
2684 goto exit4;
2686 /* source should not be ancestor of target */
2687 error = -EINVAL;
2688 if (old_dentry == trap)
2689 goto exit4;
2690 new_dentry = lookup_hash(&newnd);
2691 error = PTR_ERR(new_dentry);
2692 if (IS_ERR(new_dentry))
2693 goto exit4;
2694 /* target should not be an ancestor of source */
2695 error = -ENOTEMPTY;
2696 if (new_dentry == trap)
2697 goto exit5;
2699 error = mnt_want_write(oldnd.path.mnt);
2700 if (error)
2701 goto exit5;
2702 error = security_path_rename(&oldnd.path, old_dentry,
2703 &newnd.path, new_dentry);
2704 if (error)
2705 goto exit6;
2706 error = vfs_rename(old_dir->d_inode, old_dentry,
2707 new_dir->d_inode, new_dentry);
2708 exit6:
2709 mnt_drop_write(oldnd.path.mnt);
2710 exit5:
2711 dput(new_dentry);
2712 exit4:
2713 dput(old_dentry);
2714 exit3:
2715 unlock_rename(new_dir, old_dir);
2716 exit2:
2717 path_put(&newnd.path);
2718 putname(to);
2719 exit1:
2720 path_put(&oldnd.path);
2721 putname(from);
2722 exit:
2723 return error;
2726 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2728 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2731 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2733 int len;
2735 len = PTR_ERR(link);
2736 if (IS_ERR(link))
2737 goto out;
2739 len = strlen(link);
2740 if (len > (unsigned) buflen)
2741 len = buflen;
2742 if (copy_to_user(buffer, link, len))
2743 len = -EFAULT;
2744 out:
2745 return len;
2749 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2750 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2751 * using) it for any given inode is up to filesystem.
2753 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2755 struct nameidata nd;
2756 void *cookie;
2757 int res;
2759 nd.depth = 0;
2760 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2761 if (IS_ERR(cookie))
2762 return PTR_ERR(cookie);
2764 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2765 if (dentry->d_inode->i_op->put_link)
2766 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2767 return res;
2770 int vfs_follow_link(struct nameidata *nd, const char *link)
2772 return __vfs_follow_link(nd, link);
2775 /* get the link contents into pagecache */
2776 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2778 char *kaddr;
2779 struct page *page;
2780 struct address_space *mapping = dentry->d_inode->i_mapping;
2781 page = read_mapping_page(mapping, 0, NULL);
2782 if (IS_ERR(page))
2783 return (char*)page;
2784 *ppage = page;
2785 kaddr = kmap(page);
2786 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2787 return kaddr;
2790 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2792 struct page *page = NULL;
2793 char *s = page_getlink(dentry, &page);
2794 int res = vfs_readlink(dentry,buffer,buflen,s);
2795 if (page) {
2796 kunmap(page);
2797 page_cache_release(page);
2799 return res;
2802 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2804 struct page *page = NULL;
2805 nd_set_link(nd, page_getlink(dentry, &page));
2806 return page;
2809 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2811 struct page *page = cookie;
2813 if (page) {
2814 kunmap(page);
2815 page_cache_release(page);
2820 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2822 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2824 struct address_space *mapping = inode->i_mapping;
2825 struct page *page;
2826 void *fsdata;
2827 int err;
2828 char *kaddr;
2829 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2830 if (nofs)
2831 flags |= AOP_FLAG_NOFS;
2833 retry:
2834 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2835 flags, &page, &fsdata);
2836 if (err)
2837 goto fail;
2839 kaddr = kmap_atomic(page, KM_USER0);
2840 memcpy(kaddr, symname, len-1);
2841 kunmap_atomic(kaddr, KM_USER0);
2843 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2844 page, fsdata);
2845 if (err < 0)
2846 goto fail;
2847 if (err < len-1)
2848 goto retry;
2850 mark_inode_dirty(inode);
2851 return 0;
2852 fail:
2853 return err;
2856 int page_symlink(struct inode *inode, const char *symname, int len)
2858 return __page_symlink(inode, symname, len,
2859 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2862 const struct inode_operations page_symlink_inode_operations = {
2863 .readlink = generic_readlink,
2864 .follow_link = page_follow_link_light,
2865 .put_link = page_put_link,
2868 EXPORT_SYMBOL(user_path_at);
2869 EXPORT_SYMBOL(follow_down);
2870 EXPORT_SYMBOL(follow_up);
2871 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2872 EXPORT_SYMBOL(getname);
2873 EXPORT_SYMBOL(lock_rename);
2874 EXPORT_SYMBOL(lookup_one_len);
2875 EXPORT_SYMBOL(page_follow_link_light);
2876 EXPORT_SYMBOL(page_put_link);
2877 EXPORT_SYMBOL(page_readlink);
2878 EXPORT_SYMBOL(__page_symlink);
2879 EXPORT_SYMBOL(page_symlink);
2880 EXPORT_SYMBOL(page_symlink_inode_operations);
2881 EXPORT_SYMBOL(path_lookup);
2882 EXPORT_SYMBOL(kern_path);
2883 EXPORT_SYMBOL(vfs_path_lookup);
2884 EXPORT_SYMBOL(inode_permission);
2885 EXPORT_SYMBOL(file_permission);
2886 EXPORT_SYMBOL(unlock_rename);
2887 EXPORT_SYMBOL(vfs_create);
2888 EXPORT_SYMBOL(vfs_follow_link);
2889 EXPORT_SYMBOL(vfs_link);
2890 EXPORT_SYMBOL(vfs_mkdir);
2891 EXPORT_SYMBOL(vfs_mknod);
2892 EXPORT_SYMBOL(generic_permission);
2893 EXPORT_SYMBOL(vfs_readlink);
2894 EXPORT_SYMBOL(vfs_rename);
2895 EXPORT_SYMBOL(vfs_rmdir);
2896 EXPORT_SYMBOL(vfs_symlink);
2897 EXPORT_SYMBOL(vfs_unlink);
2898 EXPORT_SYMBOL(dentry_unhash);
2899 EXPORT_SYMBOL(generic_readlink);
2901 /* to be mentioned only in INIT_TASK */
2902 struct fs_struct init_fs = {
2903 .count = ATOMIC_INIT(1),
2904 .lock = __RW_LOCK_UNLOCKED(init_fs.lock),
2905 .umask = 0022,