1 #ifndef _LINUX_MMU_NOTIFIER_H
2 #define _LINUX_MMU_NOTIFIER_H
4 #include <linux/list.h>
5 #include <linux/spinlock.h>
6 #include <linux/mm_types.h>
9 struct mmu_notifier_ops
;
11 #ifdef CONFIG_MMU_NOTIFIER
14 * The mmu notifier_mm structure is allocated and installed in
15 * mm->mmu_notifier_mm inside the mm_take_all_locks() protected
16 * critical section and it's released only when mm_count reaches zero
19 struct mmu_notifier_mm
{
20 /* all mmu notifiers registerd in this mm are queued in this list */
21 struct hlist_head list
;
22 /* to serialize the list modifications and hlist_unhashed */
26 struct mmu_notifier_ops
{
28 * Called either by mmu_notifier_unregister or when the mm is
29 * being destroyed by exit_mmap, always before all pages are
30 * freed. This can run concurrently with other mmu notifier
31 * methods (the ones invoked outside the mm context) and it
32 * should tear down all secondary mmu mappings and freeze the
33 * secondary mmu. If this method isn't implemented you've to
34 * be sure that nothing could possibly write to the pages
35 * through the secondary mmu by the time the last thread with
36 * tsk->mm == mm exits.
38 * As side note: the pages freed after ->release returns could
39 * be immediately reallocated by the gart at an alias physical
40 * address with a different cache model, so if ->release isn't
41 * implemented because all _software_ driven memory accesses
42 * through the secondary mmu are terminated by the time the
43 * last thread of this mm quits, you've also to be sure that
44 * speculative _hardware_ operations can't allocate dirty
45 * cachelines in the cpu that could not be snooped and made
46 * coherent with the other read and write operations happening
47 * through the gart alias address, so leading to memory
50 void (*release
)(struct mmu_notifier
*mn
,
51 struct mm_struct
*mm
);
54 * clear_flush_young is called after the VM is
55 * test-and-clearing the young/accessed bitflag in the
56 * pte. This way the VM will provide proper aging to the
57 * accesses to the page through the secondary MMUs and not
58 * only to the ones through the Linux pte.
60 int (*clear_flush_young
)(struct mmu_notifier
*mn
,
62 unsigned long address
);
65 * Before this is invoked any secondary MMU is still ok to
66 * read/write to the page previously pointed to by the Linux
67 * pte because the page hasn't been freed yet and it won't be
68 * freed until this returns. If required set_page_dirty has to
69 * be called internally to this method.
71 void (*invalidate_page
)(struct mmu_notifier
*mn
,
73 unsigned long address
);
76 * invalidate_range_start() and invalidate_range_end() must be
77 * paired and are called only when the mmap_sem and/or the
78 * locks protecting the reverse maps are held. The subsystem
79 * must guarantee that no additional references are taken to
80 * the pages in the range established between the call to
81 * invalidate_range_start() and the matching call to
82 * invalidate_range_end().
84 * Invalidation of multiple concurrent ranges may be
85 * optionally permitted by the driver. Either way the
86 * establishment of sptes is forbidden in the range passed to
87 * invalidate_range_begin/end for the whole duration of the
88 * invalidate_range_begin/end critical section.
90 * invalidate_range_start() is called when all pages in the
91 * range are still mapped and have at least a refcount of one.
93 * invalidate_range_end() is called when all pages in the
94 * range have been unmapped and the pages have been freed by
97 * The VM will remove the page table entries and potentially
98 * the page between invalidate_range_start() and
99 * invalidate_range_end(). If the page must not be freed
100 * because of pending I/O or other circumstances then the
101 * invalidate_range_start() callback (or the initial mapping
102 * by the driver) must make sure that the refcount is kept
105 * If the driver increases the refcount when the pages are
106 * initially mapped into an address space then either
107 * invalidate_range_start() or invalidate_range_end() may
108 * decrease the refcount. If the refcount is decreased on
109 * invalidate_range_start() then the VM can free pages as page
110 * table entries are removed. If the refcount is only
111 * droppped on invalidate_range_end() then the driver itself
112 * will drop the last refcount but it must take care to flush
113 * any secondary tlb before doing the final free on the
114 * page. Pages will no longer be referenced by the linux
115 * address space but may still be referenced by sptes until
116 * the last refcount is dropped.
118 void (*invalidate_range_start
)(struct mmu_notifier
*mn
,
119 struct mm_struct
*mm
,
120 unsigned long start
, unsigned long end
);
121 void (*invalidate_range_end
)(struct mmu_notifier
*mn
,
122 struct mm_struct
*mm
,
123 unsigned long start
, unsigned long end
);
127 * The notifier chains are protected by mmap_sem and/or the reverse map
128 * semaphores. Notifier chains are only changed when all reverse maps and
129 * the mmap_sem locks are taken.
131 * Therefore notifier chains can only be traversed when either
133 * 1. mmap_sem is held.
134 * 2. One of the reverse map locks is held (i_mmap_lock or anon_vma->lock).
135 * 3. No other concurrent thread can access the list (release)
137 struct mmu_notifier
{
138 struct hlist_node hlist
;
139 const struct mmu_notifier_ops
*ops
;
142 static inline int mm_has_notifiers(struct mm_struct
*mm
)
144 return unlikely(mm
->mmu_notifier_mm
);
147 extern int mmu_notifier_register(struct mmu_notifier
*mn
,
148 struct mm_struct
*mm
);
149 extern int __mmu_notifier_register(struct mmu_notifier
*mn
,
150 struct mm_struct
*mm
);
151 extern void mmu_notifier_unregister(struct mmu_notifier
*mn
,
152 struct mm_struct
*mm
);
153 extern void __mmu_notifier_mm_destroy(struct mm_struct
*mm
);
154 extern void __mmu_notifier_release(struct mm_struct
*mm
);
155 extern int __mmu_notifier_clear_flush_young(struct mm_struct
*mm
,
156 unsigned long address
);
157 extern void __mmu_notifier_invalidate_page(struct mm_struct
*mm
,
158 unsigned long address
);
159 extern void __mmu_notifier_invalidate_range_start(struct mm_struct
*mm
,
160 unsigned long start
, unsigned long end
);
161 extern void __mmu_notifier_invalidate_range_end(struct mm_struct
*mm
,
162 unsigned long start
, unsigned long end
);
164 static inline void mmu_notifier_release(struct mm_struct
*mm
)
166 if (mm_has_notifiers(mm
))
167 __mmu_notifier_release(mm
);
170 static inline int mmu_notifier_clear_flush_young(struct mm_struct
*mm
,
171 unsigned long address
)
173 if (mm_has_notifiers(mm
))
174 return __mmu_notifier_clear_flush_young(mm
, address
);
178 static inline void mmu_notifier_invalidate_page(struct mm_struct
*mm
,
179 unsigned long address
)
181 if (mm_has_notifiers(mm
))
182 __mmu_notifier_invalidate_page(mm
, address
);
185 static inline void mmu_notifier_invalidate_range_start(struct mm_struct
*mm
,
186 unsigned long start
, unsigned long end
)
188 if (mm_has_notifiers(mm
))
189 __mmu_notifier_invalidate_range_start(mm
, start
, end
);
192 static inline void mmu_notifier_invalidate_range_end(struct mm_struct
*mm
,
193 unsigned long start
, unsigned long end
)
195 if (mm_has_notifiers(mm
))
196 __mmu_notifier_invalidate_range_end(mm
, start
, end
);
199 static inline void mmu_notifier_mm_init(struct mm_struct
*mm
)
201 mm
->mmu_notifier_mm
= NULL
;
204 static inline void mmu_notifier_mm_destroy(struct mm_struct
*mm
)
206 if (mm_has_notifiers(mm
))
207 __mmu_notifier_mm_destroy(mm
);
211 * These two macros will sometime replace ptep_clear_flush.
212 * ptep_clear_flush is impleemnted as macro itself, so this also is
213 * implemented as a macro until ptep_clear_flush will converted to an
214 * inline function, to diminish the risk of compilation failure. The
215 * invalidate_page method over time can be moved outside the PT lock
216 * and these two macros can be later removed.
218 #define ptep_clear_flush_notify(__vma, __address, __ptep) \
221 struct vm_area_struct *___vma = __vma; \
222 unsigned long ___address = __address; \
223 __pte = ptep_clear_flush(___vma, ___address, __ptep); \
224 mmu_notifier_invalidate_page(___vma->vm_mm, ___address); \
228 #define ptep_clear_flush_young_notify(__vma, __address, __ptep) \
231 struct vm_area_struct *___vma = __vma; \
232 unsigned long ___address = __address; \
233 __young = ptep_clear_flush_young(___vma, ___address, __ptep); \
234 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
239 #else /* CONFIG_MMU_NOTIFIER */
241 static inline void mmu_notifier_release(struct mm_struct
*mm
)
245 static inline int mmu_notifier_clear_flush_young(struct mm_struct
*mm
,
246 unsigned long address
)
251 static inline void mmu_notifier_invalidate_page(struct mm_struct
*mm
,
252 unsigned long address
)
256 static inline void mmu_notifier_invalidate_range_start(struct mm_struct
*mm
,
257 unsigned long start
, unsigned long end
)
261 static inline void mmu_notifier_invalidate_range_end(struct mm_struct
*mm
,
262 unsigned long start
, unsigned long end
)
266 static inline void mmu_notifier_mm_init(struct mm_struct
*mm
)
270 static inline void mmu_notifier_mm_destroy(struct mm_struct
*mm
)
274 #define ptep_clear_flush_young_notify ptep_clear_flush_young
275 #define ptep_clear_flush_notify ptep_clear_flush
277 #endif /* CONFIG_MMU_NOTIFIER */
279 #endif /* _LINUX_MMU_NOTIFIER_H */