2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/ethtool.h>
35 #include <linux/pci.h>
36 #include <linux/if_vlan.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/debugfs.h>
42 #include <linux/sched.h>
43 #include <linux/seq_file.h>
44 #include <linux/mii.h>
45 #include <linux/slab.h>
46 #include <linux/dmi.h>
51 #define DRV_NAME "skge"
52 #define DRV_VERSION "1.13"
54 #define DEFAULT_TX_RING_SIZE 128
55 #define DEFAULT_RX_RING_SIZE 512
56 #define MAX_TX_RING_SIZE 1024
57 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
58 #define MAX_RX_RING_SIZE 4096
59 #define RX_COPY_THRESHOLD 128
60 #define RX_BUF_SIZE 1536
61 #define PHY_RETRIES 1000
62 #define ETH_JUMBO_MTU 9000
63 #define TX_WATCHDOG (5 * HZ)
64 #define NAPI_WEIGHT 64
68 #define SKGE_EEPROM_MAGIC 0x9933aabb
71 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
72 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
73 MODULE_LICENSE("GPL");
74 MODULE_VERSION(DRV_VERSION
);
76 static const u32 default_msg
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
77 NETIF_MSG_LINK
| NETIF_MSG_IFUP
|
80 static int debug
= -1; /* defaults above */
81 module_param(debug
, int, 0);
82 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
84 static DEFINE_PCI_DEVICE_TABLE(skge_id_table
) = {
85 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940
) },
86 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940B
) },
87 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_GE
) },
88 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_YU
) },
89 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, PCI_DEVICE_ID_DLINK_DGE510T
) },
90 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4b01) }, /* DGE-530T */
91 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x4320) },
92 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5005) }, /* Belkin */
93 { PCI_DEVICE(PCI_VENDOR_ID_CNET
, PCI_DEVICE_ID_CNET_GIGACARD
) },
94 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS
, PCI_DEVICE_ID_LINKSYS_EG1064
) },
95 { PCI_VENDOR_ID_LINKSYS
, 0x1032, PCI_ANY_ID
, 0x0015 },
98 MODULE_DEVICE_TABLE(pci
, skge_id_table
);
100 static int skge_up(struct net_device
*dev
);
101 static int skge_down(struct net_device
*dev
);
102 static void skge_phy_reset(struct skge_port
*skge
);
103 static void skge_tx_clean(struct net_device
*dev
);
104 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
105 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
106 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
);
107 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
);
108 static void yukon_init(struct skge_hw
*hw
, int port
);
109 static void genesis_mac_init(struct skge_hw
*hw
, int port
);
110 static void genesis_link_up(struct skge_port
*skge
);
111 static void skge_set_multicast(struct net_device
*dev
);
113 /* Avoid conditionals by using array */
114 static const int txqaddr
[] = { Q_XA1
, Q_XA2
};
115 static const int rxqaddr
[] = { Q_R1
, Q_R2
};
116 static const u32 rxirqmask
[] = { IS_R1_F
, IS_R2_F
};
117 static const u32 txirqmask
[] = { IS_XA1_F
, IS_XA2_F
};
118 static const u32 napimask
[] = { IS_R1_F
|IS_XA1_F
, IS_R2_F
|IS_XA2_F
};
119 static const u32 portmask
[] = { IS_PORT_1
, IS_PORT_2
};
121 static int skge_get_regs_len(struct net_device
*dev
)
127 * Returns copy of whole control register region
128 * Note: skip RAM address register because accessing it will
131 static void skge_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
134 const struct skge_port
*skge
= netdev_priv(dev
);
135 const void __iomem
*io
= skge
->hw
->regs
;
138 memset(p
, 0, regs
->len
);
139 memcpy_fromio(p
, io
, B3_RAM_ADDR
);
141 memcpy_fromio(p
+ B3_RI_WTO_R1
, io
+ B3_RI_WTO_R1
,
142 regs
->len
- B3_RI_WTO_R1
);
145 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
146 static u32
wol_supported(const struct skge_hw
*hw
)
148 if (hw
->chip_id
== CHIP_ID_GENESIS
)
151 if (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
154 return WAKE_MAGIC
| WAKE_PHY
;
157 static void skge_wol_init(struct skge_port
*skge
)
159 struct skge_hw
*hw
= skge
->hw
;
160 int port
= skge
->port
;
163 skge_write16(hw
, B0_CTST
, CS_RST_CLR
);
164 skge_write16(hw
, SK_REG(port
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
167 skge_write8(hw
, B0_POWER_CTRL
,
168 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_ON
| PC_VCC_OFF
);
170 /* WA code for COMA mode -- clear PHY reset */
171 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
172 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
173 u32 reg
= skge_read32(hw
, B2_GP_IO
);
176 skge_write32(hw
, B2_GP_IO
, reg
);
179 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
181 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
182 GPC_ANEG_1
| GPC_RST_SET
);
184 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
186 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
187 GPC_ANEG_1
| GPC_RST_CLR
);
189 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_CLR
);
191 /* Force to 10/100 skge_reset will re-enable on resume */
192 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
,
193 (PHY_AN_100FULL
| PHY_AN_100HALF
|
194 PHY_AN_10FULL
| PHY_AN_10HALF
| PHY_AN_CSMA
));
196 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, 0);
197 gm_phy_write(hw
, port
, PHY_MARV_CTRL
,
198 PHY_CT_RESET
| PHY_CT_SPS_LSB
| PHY_CT_ANE
|
199 PHY_CT_RE_CFG
| PHY_CT_DUP_MD
);
202 /* Set GMAC to no flow control and auto update for speed/duplex */
203 gma_write16(hw
, port
, GM_GP_CTRL
,
204 GM_GPCR_FC_TX_DIS
|GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
|
205 GM_GPCR_DUP_FULL
|GM_GPCR_FC_RX_DIS
|GM_GPCR_AU_FCT_DIS
);
207 /* Set WOL address */
208 memcpy_toio(hw
->regs
+ WOL_REGS(port
, WOL_MAC_ADDR
),
209 skge
->netdev
->dev_addr
, ETH_ALEN
);
211 /* Turn on appropriate WOL control bits */
212 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), WOL_CTL_CLEAR_RESULT
);
214 if (skge
->wol
& WAKE_PHY
)
215 ctrl
|= WOL_CTL_ENA_PME_ON_LINK_CHG
|WOL_CTL_ENA_LINK_CHG_UNIT
;
217 ctrl
|= WOL_CTL_DIS_PME_ON_LINK_CHG
|WOL_CTL_DIS_LINK_CHG_UNIT
;
219 if (skge
->wol
& WAKE_MAGIC
)
220 ctrl
|= WOL_CTL_ENA_PME_ON_MAGIC_PKT
|WOL_CTL_ENA_MAGIC_PKT_UNIT
;
222 ctrl
|= WOL_CTL_DIS_PME_ON_MAGIC_PKT
|WOL_CTL_DIS_MAGIC_PKT_UNIT
;
224 ctrl
|= WOL_CTL_DIS_PME_ON_PATTERN
|WOL_CTL_DIS_PATTERN_UNIT
;
225 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), ctrl
);
228 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
231 static void skge_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
233 struct skge_port
*skge
= netdev_priv(dev
);
235 wol
->supported
= wol_supported(skge
->hw
);
236 wol
->wolopts
= skge
->wol
;
239 static int skge_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
241 struct skge_port
*skge
= netdev_priv(dev
);
242 struct skge_hw
*hw
= skge
->hw
;
244 if ((wol
->wolopts
& ~wol_supported(hw
)) ||
245 !device_can_wakeup(&hw
->pdev
->dev
))
248 skge
->wol
= wol
->wolopts
;
250 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
255 /* Determine supported/advertised modes based on hardware.
256 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
258 static u32
skge_supported_modes(const struct skge_hw
*hw
)
263 supported
= (SUPPORTED_10baseT_Half
|
264 SUPPORTED_10baseT_Full
|
265 SUPPORTED_100baseT_Half
|
266 SUPPORTED_100baseT_Full
|
267 SUPPORTED_1000baseT_Half
|
268 SUPPORTED_1000baseT_Full
|
272 if (hw
->chip_id
== CHIP_ID_GENESIS
)
273 supported
&= ~(SUPPORTED_10baseT_Half
|
274 SUPPORTED_10baseT_Full
|
275 SUPPORTED_100baseT_Half
|
276 SUPPORTED_100baseT_Full
);
278 else if (hw
->chip_id
== CHIP_ID_YUKON
)
279 supported
&= ~SUPPORTED_1000baseT_Half
;
281 supported
= (SUPPORTED_1000baseT_Full
|
282 SUPPORTED_1000baseT_Half
|
289 static int skge_get_settings(struct net_device
*dev
,
290 struct ethtool_cmd
*ecmd
)
292 struct skge_port
*skge
= netdev_priv(dev
);
293 struct skge_hw
*hw
= skge
->hw
;
295 ecmd
->transceiver
= XCVR_INTERNAL
;
296 ecmd
->supported
= skge_supported_modes(hw
);
299 ecmd
->port
= PORT_TP
;
300 ecmd
->phy_address
= hw
->phy_addr
;
302 ecmd
->port
= PORT_FIBRE
;
304 ecmd
->advertising
= skge
->advertising
;
305 ecmd
->autoneg
= skge
->autoneg
;
306 ethtool_cmd_speed_set(ecmd
, skge
->speed
);
307 ecmd
->duplex
= skge
->duplex
;
311 static int skge_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
313 struct skge_port
*skge
= netdev_priv(dev
);
314 const struct skge_hw
*hw
= skge
->hw
;
315 u32 supported
= skge_supported_modes(hw
);
318 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
319 ecmd
->advertising
= supported
;
324 u32 speed
= ethtool_cmd_speed(ecmd
);
328 if (ecmd
->duplex
== DUPLEX_FULL
)
329 setting
= SUPPORTED_1000baseT_Full
;
330 else if (ecmd
->duplex
== DUPLEX_HALF
)
331 setting
= SUPPORTED_1000baseT_Half
;
336 if (ecmd
->duplex
== DUPLEX_FULL
)
337 setting
= SUPPORTED_100baseT_Full
;
338 else if (ecmd
->duplex
== DUPLEX_HALF
)
339 setting
= SUPPORTED_100baseT_Half
;
345 if (ecmd
->duplex
== DUPLEX_FULL
)
346 setting
= SUPPORTED_10baseT_Full
;
347 else if (ecmd
->duplex
== DUPLEX_HALF
)
348 setting
= SUPPORTED_10baseT_Half
;
356 if ((setting
& supported
) == 0)
360 skge
->duplex
= ecmd
->duplex
;
363 skge
->autoneg
= ecmd
->autoneg
;
364 skge
->advertising
= ecmd
->advertising
;
366 if (netif_running(dev
)) {
378 static void skge_get_drvinfo(struct net_device
*dev
,
379 struct ethtool_drvinfo
*info
)
381 struct skge_port
*skge
= netdev_priv(dev
);
383 strcpy(info
->driver
, DRV_NAME
);
384 strcpy(info
->version
, DRV_VERSION
);
385 strcpy(info
->fw_version
, "N/A");
386 strcpy(info
->bus_info
, pci_name(skge
->hw
->pdev
));
389 static const struct skge_stat
{
390 char name
[ETH_GSTRING_LEN
];
394 { "tx_bytes", XM_TXO_OK_HI
, GM_TXO_OK_HI
},
395 { "rx_bytes", XM_RXO_OK_HI
, GM_RXO_OK_HI
},
397 { "tx_broadcast", XM_TXF_BC_OK
, GM_TXF_BC_OK
},
398 { "rx_broadcast", XM_RXF_BC_OK
, GM_RXF_BC_OK
},
399 { "tx_multicast", XM_TXF_MC_OK
, GM_TXF_MC_OK
},
400 { "rx_multicast", XM_RXF_MC_OK
, GM_RXF_MC_OK
},
401 { "tx_unicast", XM_TXF_UC_OK
, GM_TXF_UC_OK
},
402 { "rx_unicast", XM_RXF_UC_OK
, GM_RXF_UC_OK
},
403 { "tx_mac_pause", XM_TXF_MPAUSE
, GM_TXF_MPAUSE
},
404 { "rx_mac_pause", XM_RXF_MPAUSE
, GM_RXF_MPAUSE
},
406 { "collisions", XM_TXF_SNG_COL
, GM_TXF_SNG_COL
},
407 { "multi_collisions", XM_TXF_MUL_COL
, GM_TXF_MUL_COL
},
408 { "aborted", XM_TXF_ABO_COL
, GM_TXF_ABO_COL
},
409 { "late_collision", XM_TXF_LAT_COL
, GM_TXF_LAT_COL
},
410 { "fifo_underrun", XM_TXE_FIFO_UR
, GM_TXE_FIFO_UR
},
411 { "fifo_overflow", XM_RXE_FIFO_OV
, GM_RXE_FIFO_OV
},
413 { "rx_toolong", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
414 { "rx_jabber", XM_RXF_JAB_PKT
, GM_RXF_JAB_PKT
},
415 { "rx_runt", XM_RXE_RUNT
, GM_RXE_FRAG
},
416 { "rx_too_long", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
417 { "rx_fcs_error", XM_RXF_FCS_ERR
, GM_RXF_FCS_ERR
},
420 static int skge_get_sset_count(struct net_device
*dev
, int sset
)
424 return ARRAY_SIZE(skge_stats
);
430 static void skge_get_ethtool_stats(struct net_device
*dev
,
431 struct ethtool_stats
*stats
, u64
*data
)
433 struct skge_port
*skge
= netdev_priv(dev
);
435 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
436 genesis_get_stats(skge
, data
);
438 yukon_get_stats(skge
, data
);
441 /* Use hardware MIB variables for critical path statistics and
442 * transmit feedback not reported at interrupt.
443 * Other errors are accounted for in interrupt handler.
445 static struct net_device_stats
*skge_get_stats(struct net_device
*dev
)
447 struct skge_port
*skge
= netdev_priv(dev
);
448 u64 data
[ARRAY_SIZE(skge_stats
)];
450 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
451 genesis_get_stats(skge
, data
);
453 yukon_get_stats(skge
, data
);
455 dev
->stats
.tx_bytes
= data
[0];
456 dev
->stats
.rx_bytes
= data
[1];
457 dev
->stats
.tx_packets
= data
[2] + data
[4] + data
[6];
458 dev
->stats
.rx_packets
= data
[3] + data
[5] + data
[7];
459 dev
->stats
.multicast
= data
[3] + data
[5];
460 dev
->stats
.collisions
= data
[10];
461 dev
->stats
.tx_aborted_errors
= data
[12];
466 static void skge_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
472 for (i
= 0; i
< ARRAY_SIZE(skge_stats
); i
++)
473 memcpy(data
+ i
* ETH_GSTRING_LEN
,
474 skge_stats
[i
].name
, ETH_GSTRING_LEN
);
479 static void skge_get_ring_param(struct net_device
*dev
,
480 struct ethtool_ringparam
*p
)
482 struct skge_port
*skge
= netdev_priv(dev
);
484 p
->rx_max_pending
= MAX_RX_RING_SIZE
;
485 p
->tx_max_pending
= MAX_TX_RING_SIZE
;
486 p
->rx_mini_max_pending
= 0;
487 p
->rx_jumbo_max_pending
= 0;
489 p
->rx_pending
= skge
->rx_ring
.count
;
490 p
->tx_pending
= skge
->tx_ring
.count
;
491 p
->rx_mini_pending
= 0;
492 p
->rx_jumbo_pending
= 0;
495 static int skge_set_ring_param(struct net_device
*dev
,
496 struct ethtool_ringparam
*p
)
498 struct skge_port
*skge
= netdev_priv(dev
);
501 if (p
->rx_pending
== 0 || p
->rx_pending
> MAX_RX_RING_SIZE
||
502 p
->tx_pending
< TX_LOW_WATER
|| p
->tx_pending
> MAX_TX_RING_SIZE
)
505 skge
->rx_ring
.count
= p
->rx_pending
;
506 skge
->tx_ring
.count
= p
->tx_pending
;
508 if (netif_running(dev
)) {
518 static u32
skge_get_msglevel(struct net_device
*netdev
)
520 struct skge_port
*skge
= netdev_priv(netdev
);
521 return skge
->msg_enable
;
524 static void skge_set_msglevel(struct net_device
*netdev
, u32 value
)
526 struct skge_port
*skge
= netdev_priv(netdev
);
527 skge
->msg_enable
= value
;
530 static int skge_nway_reset(struct net_device
*dev
)
532 struct skge_port
*skge
= netdev_priv(dev
);
534 if (skge
->autoneg
!= AUTONEG_ENABLE
|| !netif_running(dev
))
537 skge_phy_reset(skge
);
541 static void skge_get_pauseparam(struct net_device
*dev
,
542 struct ethtool_pauseparam
*ecmd
)
544 struct skge_port
*skge
= netdev_priv(dev
);
546 ecmd
->rx_pause
= ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
) ||
547 (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
));
548 ecmd
->tx_pause
= (ecmd
->rx_pause
||
549 (skge
->flow_control
== FLOW_MODE_LOC_SEND
));
551 ecmd
->autoneg
= ecmd
->rx_pause
|| ecmd
->tx_pause
;
554 static int skge_set_pauseparam(struct net_device
*dev
,
555 struct ethtool_pauseparam
*ecmd
)
557 struct skge_port
*skge
= netdev_priv(dev
);
558 struct ethtool_pauseparam old
;
561 skge_get_pauseparam(dev
, &old
);
563 if (ecmd
->autoneg
!= old
.autoneg
)
564 skge
->flow_control
= ecmd
->autoneg
? FLOW_MODE_NONE
: FLOW_MODE_SYMMETRIC
;
566 if (ecmd
->rx_pause
&& ecmd
->tx_pause
)
567 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
568 else if (ecmd
->rx_pause
&& !ecmd
->tx_pause
)
569 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
570 else if (!ecmd
->rx_pause
&& ecmd
->tx_pause
)
571 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
573 skge
->flow_control
= FLOW_MODE_NONE
;
576 if (netif_running(dev
)) {
588 /* Chip internal frequency for clock calculations */
589 static inline u32
hwkhz(const struct skge_hw
*hw
)
591 return (hw
->chip_id
== CHIP_ID_GENESIS
) ? 53125 : 78125;
594 /* Chip HZ to microseconds */
595 static inline u32
skge_clk2usec(const struct skge_hw
*hw
, u32 ticks
)
597 return (ticks
* 1000) / hwkhz(hw
);
600 /* Microseconds to chip HZ */
601 static inline u32
skge_usecs2clk(const struct skge_hw
*hw
, u32 usec
)
603 return hwkhz(hw
) * usec
/ 1000;
606 static int skge_get_coalesce(struct net_device
*dev
,
607 struct ethtool_coalesce
*ecmd
)
609 struct skge_port
*skge
= netdev_priv(dev
);
610 struct skge_hw
*hw
= skge
->hw
;
611 int port
= skge
->port
;
613 ecmd
->rx_coalesce_usecs
= 0;
614 ecmd
->tx_coalesce_usecs
= 0;
616 if (skge_read32(hw
, B2_IRQM_CTRL
) & TIM_START
) {
617 u32 delay
= skge_clk2usec(hw
, skge_read32(hw
, B2_IRQM_INI
));
618 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
620 if (msk
& rxirqmask
[port
])
621 ecmd
->rx_coalesce_usecs
= delay
;
622 if (msk
& txirqmask
[port
])
623 ecmd
->tx_coalesce_usecs
= delay
;
629 /* Note: interrupt timer is per board, but can turn on/off per port */
630 static int skge_set_coalesce(struct net_device
*dev
,
631 struct ethtool_coalesce
*ecmd
)
633 struct skge_port
*skge
= netdev_priv(dev
);
634 struct skge_hw
*hw
= skge
->hw
;
635 int port
= skge
->port
;
636 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
639 if (ecmd
->rx_coalesce_usecs
== 0)
640 msk
&= ~rxirqmask
[port
];
641 else if (ecmd
->rx_coalesce_usecs
< 25 ||
642 ecmd
->rx_coalesce_usecs
> 33333)
645 msk
|= rxirqmask
[port
];
646 delay
= ecmd
->rx_coalesce_usecs
;
649 if (ecmd
->tx_coalesce_usecs
== 0)
650 msk
&= ~txirqmask
[port
];
651 else if (ecmd
->tx_coalesce_usecs
< 25 ||
652 ecmd
->tx_coalesce_usecs
> 33333)
655 msk
|= txirqmask
[port
];
656 delay
= min(delay
, ecmd
->rx_coalesce_usecs
);
659 skge_write32(hw
, B2_IRQM_MSK
, msk
);
661 skge_write32(hw
, B2_IRQM_CTRL
, TIM_STOP
);
663 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, delay
));
664 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
669 enum led_mode
{ LED_MODE_OFF
, LED_MODE_ON
, LED_MODE_TST
};
670 static void skge_led(struct skge_port
*skge
, enum led_mode mode
)
672 struct skge_hw
*hw
= skge
->hw
;
673 int port
= skge
->port
;
675 spin_lock_bh(&hw
->phy_lock
);
676 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
679 if (hw
->phy_type
== SK_PHY_BCOM
)
680 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_OFF
);
682 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 0);
683 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_T_OFF
);
685 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_OFF
);
686 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 0);
687 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_T_OFF
);
691 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_ON
);
692 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_LINKSYNC_ON
);
694 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
695 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
700 skge_write8(hw
, SK_REG(port
, RX_LED_TST
), LED_T_ON
);
701 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 100);
702 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
704 if (hw
->phy_type
== SK_PHY_BCOM
)
705 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_ON
);
707 skge_write8(hw
, SK_REG(port
, TX_LED_TST
), LED_T_ON
);
708 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 100);
709 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
716 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
717 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
718 PHY_M_LED_MO_DUP(MO_LED_OFF
) |
719 PHY_M_LED_MO_10(MO_LED_OFF
) |
720 PHY_M_LED_MO_100(MO_LED_OFF
) |
721 PHY_M_LED_MO_1000(MO_LED_OFF
) |
722 PHY_M_LED_MO_RX(MO_LED_OFF
));
725 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
,
726 PHY_M_LED_PULS_DUR(PULS_170MS
) |
727 PHY_M_LED_BLINK_RT(BLINK_84MS
) |
731 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
732 PHY_M_LED_MO_RX(MO_LED_OFF
) |
733 (skge
->speed
== SPEED_100
?
734 PHY_M_LED_MO_100(MO_LED_ON
) : 0));
737 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
738 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
739 PHY_M_LED_MO_DUP(MO_LED_ON
) |
740 PHY_M_LED_MO_10(MO_LED_ON
) |
741 PHY_M_LED_MO_100(MO_LED_ON
) |
742 PHY_M_LED_MO_1000(MO_LED_ON
) |
743 PHY_M_LED_MO_RX(MO_LED_ON
));
746 spin_unlock_bh(&hw
->phy_lock
);
749 /* blink LED's for finding board */
750 static int skge_set_phys_id(struct net_device
*dev
,
751 enum ethtool_phys_id_state state
)
753 struct skge_port
*skge
= netdev_priv(dev
);
756 case ETHTOOL_ID_ACTIVE
:
757 return 2; /* cycle on/off twice per second */
760 skge_led(skge
, LED_MODE_TST
);
764 skge_led(skge
, LED_MODE_OFF
);
767 case ETHTOOL_ID_INACTIVE
:
768 /* back to regular LED state */
769 skge_led(skge
, netif_running(dev
) ? LED_MODE_ON
: LED_MODE_OFF
);
775 static int skge_get_eeprom_len(struct net_device
*dev
)
777 struct skge_port
*skge
= netdev_priv(dev
);
780 pci_read_config_dword(skge
->hw
->pdev
, PCI_DEV_REG2
, ®2
);
781 return 1 << (((reg2
& PCI_VPD_ROM_SZ
) >> 14) + 8);
784 static u32
skge_vpd_read(struct pci_dev
*pdev
, int cap
, u16 offset
)
788 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
, offset
);
791 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
792 } while (!(offset
& PCI_VPD_ADDR_F
));
794 pci_read_config_dword(pdev
, cap
+ PCI_VPD_DATA
, &val
);
798 static void skge_vpd_write(struct pci_dev
*pdev
, int cap
, u16 offset
, u32 val
)
800 pci_write_config_dword(pdev
, cap
+ PCI_VPD_DATA
, val
);
801 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
,
802 offset
| PCI_VPD_ADDR_F
);
805 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
806 } while (offset
& PCI_VPD_ADDR_F
);
809 static int skge_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
812 struct skge_port
*skge
= netdev_priv(dev
);
813 struct pci_dev
*pdev
= skge
->hw
->pdev
;
814 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
815 int length
= eeprom
->len
;
816 u16 offset
= eeprom
->offset
;
821 eeprom
->magic
= SKGE_EEPROM_MAGIC
;
824 u32 val
= skge_vpd_read(pdev
, cap
, offset
);
825 int n
= min_t(int, length
, sizeof(val
));
827 memcpy(data
, &val
, n
);
835 static int skge_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
838 struct skge_port
*skge
= netdev_priv(dev
);
839 struct pci_dev
*pdev
= skge
->hw
->pdev
;
840 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
841 int length
= eeprom
->len
;
842 u16 offset
= eeprom
->offset
;
847 if (eeprom
->magic
!= SKGE_EEPROM_MAGIC
)
852 int n
= min_t(int, length
, sizeof(val
));
855 val
= skge_vpd_read(pdev
, cap
, offset
);
856 memcpy(&val
, data
, n
);
858 skge_vpd_write(pdev
, cap
, offset
, val
);
867 static const struct ethtool_ops skge_ethtool_ops
= {
868 .get_settings
= skge_get_settings
,
869 .set_settings
= skge_set_settings
,
870 .get_drvinfo
= skge_get_drvinfo
,
871 .get_regs_len
= skge_get_regs_len
,
872 .get_regs
= skge_get_regs
,
873 .get_wol
= skge_get_wol
,
874 .set_wol
= skge_set_wol
,
875 .get_msglevel
= skge_get_msglevel
,
876 .set_msglevel
= skge_set_msglevel
,
877 .nway_reset
= skge_nway_reset
,
878 .get_link
= ethtool_op_get_link
,
879 .get_eeprom_len
= skge_get_eeprom_len
,
880 .get_eeprom
= skge_get_eeprom
,
881 .set_eeprom
= skge_set_eeprom
,
882 .get_ringparam
= skge_get_ring_param
,
883 .set_ringparam
= skge_set_ring_param
,
884 .get_pauseparam
= skge_get_pauseparam
,
885 .set_pauseparam
= skge_set_pauseparam
,
886 .get_coalesce
= skge_get_coalesce
,
887 .set_coalesce
= skge_set_coalesce
,
888 .get_strings
= skge_get_strings
,
889 .set_phys_id
= skge_set_phys_id
,
890 .get_sset_count
= skge_get_sset_count
,
891 .get_ethtool_stats
= skge_get_ethtool_stats
,
895 * Allocate ring elements and chain them together
896 * One-to-one association of board descriptors with ring elements
898 static int skge_ring_alloc(struct skge_ring
*ring
, void *vaddr
, u32 base
)
900 struct skge_tx_desc
*d
;
901 struct skge_element
*e
;
904 ring
->start
= kcalloc(ring
->count
, sizeof(*e
), GFP_KERNEL
);
908 for (i
= 0, e
= ring
->start
, d
= vaddr
; i
< ring
->count
; i
++, e
++, d
++) {
910 if (i
== ring
->count
- 1) {
911 e
->next
= ring
->start
;
912 d
->next_offset
= base
;
915 d
->next_offset
= base
+ (i
+1) * sizeof(*d
);
918 ring
->to_use
= ring
->to_clean
= ring
->start
;
923 /* Allocate and setup a new buffer for receiving */
924 static void skge_rx_setup(struct skge_port
*skge
, struct skge_element
*e
,
925 struct sk_buff
*skb
, unsigned int bufsize
)
927 struct skge_rx_desc
*rd
= e
->desc
;
930 map
= pci_map_single(skge
->hw
->pdev
, skb
->data
, bufsize
,
934 rd
->dma_hi
= map
>> 32;
936 rd
->csum1_start
= ETH_HLEN
;
937 rd
->csum2_start
= ETH_HLEN
;
943 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| bufsize
;
944 dma_unmap_addr_set(e
, mapaddr
, map
);
945 dma_unmap_len_set(e
, maplen
, bufsize
);
948 /* Resume receiving using existing skb,
949 * Note: DMA address is not changed by chip.
950 * MTU not changed while receiver active.
952 static inline void skge_rx_reuse(struct skge_element
*e
, unsigned int size
)
954 struct skge_rx_desc
*rd
= e
->desc
;
957 rd
->csum2_start
= ETH_HLEN
;
961 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| size
;
965 /* Free all buffers in receive ring, assumes receiver stopped */
966 static void skge_rx_clean(struct skge_port
*skge
)
968 struct skge_hw
*hw
= skge
->hw
;
969 struct skge_ring
*ring
= &skge
->rx_ring
;
970 struct skge_element
*e
;
974 struct skge_rx_desc
*rd
= e
->desc
;
977 pci_unmap_single(hw
->pdev
,
978 dma_unmap_addr(e
, mapaddr
),
979 dma_unmap_len(e
, maplen
),
981 dev_kfree_skb(e
->skb
);
984 } while ((e
= e
->next
) != ring
->start
);
988 /* Allocate buffers for receive ring
989 * For receive: to_clean is next received frame.
991 static int skge_rx_fill(struct net_device
*dev
)
993 struct skge_port
*skge
= netdev_priv(dev
);
994 struct skge_ring
*ring
= &skge
->rx_ring
;
995 struct skge_element
*e
;
1001 skb
= __netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
,
1006 skb_reserve(skb
, NET_IP_ALIGN
);
1007 skge_rx_setup(skge
, e
, skb
, skge
->rx_buf_size
);
1008 } while ((e
= e
->next
) != ring
->start
);
1010 ring
->to_clean
= ring
->start
;
1014 static const char *skge_pause(enum pause_status status
)
1017 case FLOW_STAT_NONE
:
1019 case FLOW_STAT_REM_SEND
:
1021 case FLOW_STAT_LOC_SEND
:
1023 case FLOW_STAT_SYMMETRIC
: /* Both station may send PAUSE */
1026 return "indeterminated";
1031 static void skge_link_up(struct skge_port
*skge
)
1033 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
),
1034 LED_BLK_OFF
|LED_SYNC_OFF
|LED_ON
);
1036 netif_carrier_on(skge
->netdev
);
1037 netif_wake_queue(skge
->netdev
);
1039 netif_info(skge
, link
, skge
->netdev
,
1040 "Link is up at %d Mbps, %s duplex, flow control %s\n",
1042 skge
->duplex
== DUPLEX_FULL
? "full" : "half",
1043 skge_pause(skge
->flow_status
));
1046 static void skge_link_down(struct skge_port
*skge
)
1048 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
1049 netif_carrier_off(skge
->netdev
);
1050 netif_stop_queue(skge
->netdev
);
1052 netif_info(skge
, link
, skge
->netdev
, "Link is down\n");
1056 static void xm_link_down(struct skge_hw
*hw
, int port
)
1058 struct net_device
*dev
= hw
->dev
[port
];
1059 struct skge_port
*skge
= netdev_priv(dev
);
1061 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1063 if (netif_carrier_ok(dev
))
1064 skge_link_down(skge
);
1067 static int __xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1071 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1072 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1074 if (hw
->phy_type
== SK_PHY_XMAC
)
1077 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1078 if (xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_RDY
)
1085 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1090 static u16
xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1093 if (__xm_phy_read(hw
, port
, reg
, &v
))
1094 pr_warning("%s: phy read timed out\n", hw
->dev
[port
]->name
);
1098 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1102 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1103 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1104 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1111 xm_write16(hw
, port
, XM_PHY_DATA
, val
);
1112 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1113 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1120 static void genesis_init(struct skge_hw
*hw
)
1122 /* set blink source counter */
1123 skge_write32(hw
, B2_BSC_INI
, (SK_BLK_DUR
* SK_FACT_53
) / 100);
1124 skge_write8(hw
, B2_BSC_CTRL
, BSC_START
);
1126 /* configure mac arbiter */
1127 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1129 /* configure mac arbiter timeout values */
1130 skge_write8(hw
, B3_MA_TOINI_RX1
, SK_MAC_TO_53
);
1131 skge_write8(hw
, B3_MA_TOINI_RX2
, SK_MAC_TO_53
);
1132 skge_write8(hw
, B3_MA_TOINI_TX1
, SK_MAC_TO_53
);
1133 skge_write8(hw
, B3_MA_TOINI_TX2
, SK_MAC_TO_53
);
1135 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1136 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1137 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1138 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1140 /* configure packet arbiter timeout */
1141 skge_write16(hw
, B3_PA_CTRL
, PA_RST_CLR
);
1142 skge_write16(hw
, B3_PA_TOINI_RX1
, SK_PKT_TO_MAX
);
1143 skge_write16(hw
, B3_PA_TOINI_TX1
, SK_PKT_TO_MAX
);
1144 skge_write16(hw
, B3_PA_TOINI_RX2
, SK_PKT_TO_MAX
);
1145 skge_write16(hw
, B3_PA_TOINI_TX2
, SK_PKT_TO_MAX
);
1148 static void genesis_reset(struct skge_hw
*hw
, int port
)
1150 static const u8 zero
[8] = { 0 };
1153 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
1155 /* reset the statistics module */
1156 xm_write32(hw
, port
, XM_GP_PORT
, XM_GP_RES_STAT
);
1157 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1158 xm_write32(hw
, port
, XM_MODE
, 0); /* clear Mode Reg */
1159 xm_write16(hw
, port
, XM_TX_CMD
, 0); /* reset TX CMD Reg */
1160 xm_write16(hw
, port
, XM_RX_CMD
, 0); /* reset RX CMD Reg */
1162 /* disable Broadcom PHY IRQ */
1163 if (hw
->phy_type
== SK_PHY_BCOM
)
1164 xm_write16(hw
, port
, PHY_BCOM_INT_MASK
, 0xffff);
1166 xm_outhash(hw
, port
, XM_HSM
, zero
);
1168 /* Flush TX and RX fifo */
1169 reg
= xm_read32(hw
, port
, XM_MODE
);
1170 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FTF
);
1171 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FRF
);
1175 /* Convert mode to MII values */
1176 static const u16 phy_pause_map
[] = {
1177 [FLOW_MODE_NONE
] = 0,
1178 [FLOW_MODE_LOC_SEND
] = PHY_AN_PAUSE_ASYM
,
1179 [FLOW_MODE_SYMMETRIC
] = PHY_AN_PAUSE_CAP
,
1180 [FLOW_MODE_SYM_OR_REM
] = PHY_AN_PAUSE_CAP
| PHY_AN_PAUSE_ASYM
,
1183 /* special defines for FIBER (88E1011S only) */
1184 static const u16 fiber_pause_map
[] = {
1185 [FLOW_MODE_NONE
] = PHY_X_P_NO_PAUSE
,
1186 [FLOW_MODE_LOC_SEND
] = PHY_X_P_ASYM_MD
,
1187 [FLOW_MODE_SYMMETRIC
] = PHY_X_P_SYM_MD
,
1188 [FLOW_MODE_SYM_OR_REM
] = PHY_X_P_BOTH_MD
,
1192 /* Check status of Broadcom phy link */
1193 static void bcom_check_link(struct skge_hw
*hw
, int port
)
1195 struct net_device
*dev
= hw
->dev
[port
];
1196 struct skge_port
*skge
= netdev_priv(dev
);
1199 /* read twice because of latch */
1200 xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1201 status
= xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1203 if ((status
& PHY_ST_LSYNC
) == 0) {
1204 xm_link_down(hw
, port
);
1208 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1211 if (!(status
& PHY_ST_AN_OVER
))
1214 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1215 if (lpa
& PHY_B_AN_RF
) {
1216 netdev_notice(dev
, "remote fault\n");
1220 aux
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_STAT
);
1222 /* Check Duplex mismatch */
1223 switch (aux
& PHY_B_AS_AN_RES_MSK
) {
1224 case PHY_B_RES_1000FD
:
1225 skge
->duplex
= DUPLEX_FULL
;
1227 case PHY_B_RES_1000HD
:
1228 skge
->duplex
= DUPLEX_HALF
;
1231 netdev_notice(dev
, "duplex mismatch\n");
1235 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1236 switch (aux
& PHY_B_AS_PAUSE_MSK
) {
1237 case PHY_B_AS_PAUSE_MSK
:
1238 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1241 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1244 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1247 skge
->flow_status
= FLOW_STAT_NONE
;
1249 skge
->speed
= SPEED_1000
;
1252 if (!netif_carrier_ok(dev
))
1253 genesis_link_up(skge
);
1256 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1257 * Phy on for 100 or 10Mbit operation
1259 static void bcom_phy_init(struct skge_port
*skge
)
1261 struct skge_hw
*hw
= skge
->hw
;
1262 int port
= skge
->port
;
1264 u16 id1
, r
, ext
, ctl
;
1266 /* magic workaround patterns for Broadcom */
1267 static const struct {
1271 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1272 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1273 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1274 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1276 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1277 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1280 /* read Id from external PHY (all have the same address) */
1281 id1
= xm_phy_read(hw
, port
, PHY_XMAC_ID1
);
1283 /* Optimize MDIO transfer by suppressing preamble. */
1284 r
= xm_read16(hw
, port
, XM_MMU_CMD
);
1286 xm_write16(hw
, port
, XM_MMU_CMD
, r
);
1289 case PHY_BCOM_ID1_C0
:
1291 * Workaround BCOM Errata for the C0 type.
1292 * Write magic patterns to reserved registers.
1294 for (i
= 0; i
< ARRAY_SIZE(C0hack
); i
++)
1295 xm_phy_write(hw
, port
,
1296 C0hack
[i
].reg
, C0hack
[i
].val
);
1299 case PHY_BCOM_ID1_A1
:
1301 * Workaround BCOM Errata for the A1 type.
1302 * Write magic patterns to reserved registers.
1304 for (i
= 0; i
< ARRAY_SIZE(A1hack
); i
++)
1305 xm_phy_write(hw
, port
,
1306 A1hack
[i
].reg
, A1hack
[i
].val
);
1311 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1312 * Disable Power Management after reset.
1314 r
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
);
1315 r
|= PHY_B_AC_DIS_PM
;
1316 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
, r
);
1319 xm_read16(hw
, port
, XM_ISRC
);
1321 ext
= PHY_B_PEC_EN_LTR
; /* enable tx led */
1322 ctl
= PHY_CT_SP1000
; /* always 1000mbit */
1324 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1326 * Workaround BCOM Errata #1 for the C5 type.
1327 * 1000Base-T Link Acquisition Failure in Slave Mode
1328 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1330 u16 adv
= PHY_B_1000C_RD
;
1331 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1332 adv
|= PHY_B_1000C_AHD
;
1333 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1334 adv
|= PHY_B_1000C_AFD
;
1335 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, adv
);
1337 ctl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1339 if (skge
->duplex
== DUPLEX_FULL
)
1340 ctl
|= PHY_CT_DUP_MD
;
1341 /* Force to slave */
1342 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, PHY_B_1000C_MSE
);
1345 /* Set autonegotiation pause parameters */
1346 xm_phy_write(hw
, port
, PHY_BCOM_AUNE_ADV
,
1347 phy_pause_map
[skge
->flow_control
] | PHY_AN_CSMA
);
1349 /* Handle Jumbo frames */
1350 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
) {
1351 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1352 PHY_B_AC_TX_TST
| PHY_B_AC_LONG_PACK
);
1354 ext
|= PHY_B_PEC_HIGH_LA
;
1358 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, ext
);
1359 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
, ctl
);
1361 /* Use link status change interrupt */
1362 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1365 static void xm_phy_init(struct skge_port
*skge
)
1367 struct skge_hw
*hw
= skge
->hw
;
1368 int port
= skge
->port
;
1371 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1372 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1373 ctrl
|= PHY_X_AN_HD
;
1374 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1375 ctrl
|= PHY_X_AN_FD
;
1377 ctrl
|= fiber_pause_map
[skge
->flow_control
];
1379 xm_phy_write(hw
, port
, PHY_XMAC_AUNE_ADV
, ctrl
);
1381 /* Restart Auto-negotiation */
1382 ctrl
= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1384 /* Set DuplexMode in Config register */
1385 if (skge
->duplex
== DUPLEX_FULL
)
1386 ctrl
|= PHY_CT_DUP_MD
;
1388 * Do NOT enable Auto-negotiation here. This would hold
1389 * the link down because no IDLEs are transmitted
1393 xm_phy_write(hw
, port
, PHY_XMAC_CTRL
, ctrl
);
1395 /* Poll PHY for status changes */
1396 mod_timer(&skge
->link_timer
, jiffies
+ LINK_HZ
);
1399 static int xm_check_link(struct net_device
*dev
)
1401 struct skge_port
*skge
= netdev_priv(dev
);
1402 struct skge_hw
*hw
= skge
->hw
;
1403 int port
= skge
->port
;
1406 /* read twice because of latch */
1407 xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1408 status
= xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1410 if ((status
& PHY_ST_LSYNC
) == 0) {
1411 xm_link_down(hw
, port
);
1415 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1418 if (!(status
& PHY_ST_AN_OVER
))
1421 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1422 if (lpa
& PHY_B_AN_RF
) {
1423 netdev_notice(dev
, "remote fault\n");
1427 res
= xm_phy_read(hw
, port
, PHY_XMAC_RES_ABI
);
1429 /* Check Duplex mismatch */
1430 switch (res
& (PHY_X_RS_HD
| PHY_X_RS_FD
)) {
1432 skge
->duplex
= DUPLEX_FULL
;
1435 skge
->duplex
= DUPLEX_HALF
;
1438 netdev_notice(dev
, "duplex mismatch\n");
1442 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1443 if ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
||
1444 skge
->flow_control
== FLOW_MODE_SYM_OR_REM
) &&
1445 (lpa
& PHY_X_P_SYM_MD
))
1446 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1447 else if (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
&&
1448 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_ASYM_MD
)
1449 /* Enable PAUSE receive, disable PAUSE transmit */
1450 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1451 else if (skge
->flow_control
== FLOW_MODE_LOC_SEND
&&
1452 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_BOTH_MD
)
1453 /* Disable PAUSE receive, enable PAUSE transmit */
1454 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1456 skge
->flow_status
= FLOW_STAT_NONE
;
1458 skge
->speed
= SPEED_1000
;
1461 if (!netif_carrier_ok(dev
))
1462 genesis_link_up(skge
);
1466 /* Poll to check for link coming up.
1468 * Since internal PHY is wired to a level triggered pin, can't
1469 * get an interrupt when carrier is detected, need to poll for
1472 static void xm_link_timer(unsigned long arg
)
1474 struct skge_port
*skge
= (struct skge_port
*) arg
;
1475 struct net_device
*dev
= skge
->netdev
;
1476 struct skge_hw
*hw
= skge
->hw
;
1477 int port
= skge
->port
;
1479 unsigned long flags
;
1481 if (!netif_running(dev
))
1484 spin_lock_irqsave(&hw
->phy_lock
, flags
);
1487 * Verify that the link by checking GPIO register three times.
1488 * This pin has the signal from the link_sync pin connected to it.
1490 for (i
= 0; i
< 3; i
++) {
1491 if (xm_read16(hw
, port
, XM_GP_PORT
) & XM_GP_INP_ASS
)
1495 /* Re-enable interrupt to detect link down */
1496 if (xm_check_link(dev
)) {
1497 u16 msk
= xm_read16(hw
, port
, XM_IMSK
);
1498 msk
&= ~XM_IS_INP_ASS
;
1499 xm_write16(hw
, port
, XM_IMSK
, msk
);
1500 xm_read16(hw
, port
, XM_ISRC
);
1503 mod_timer(&skge
->link_timer
,
1504 round_jiffies(jiffies
+ LINK_HZ
));
1506 spin_unlock_irqrestore(&hw
->phy_lock
, flags
);
1509 static void genesis_mac_init(struct skge_hw
*hw
, int port
)
1511 struct net_device
*dev
= hw
->dev
[port
];
1512 struct skge_port
*skge
= netdev_priv(dev
);
1513 int jumbo
= hw
->dev
[port
]->mtu
> ETH_DATA_LEN
;
1516 static const u8 zero
[6] = { 0 };
1518 for (i
= 0; i
< 10; i
++) {
1519 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
1521 if (skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
)
1526 netdev_warn(dev
, "genesis reset failed\n");
1529 /* Unreset the XMAC. */
1530 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1533 * Perform additional initialization for external PHYs,
1534 * namely for the 1000baseTX cards that use the XMAC's
1537 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1538 /* Take external Phy out of reset */
1539 r
= skge_read32(hw
, B2_GP_IO
);
1541 r
|= GP_DIR_0
|GP_IO_0
;
1543 r
|= GP_DIR_2
|GP_IO_2
;
1545 skge_write32(hw
, B2_GP_IO
, r
);
1547 /* Enable GMII interface */
1548 xm_write16(hw
, port
, XM_HW_CFG
, XM_HW_GMII_MD
);
1552 switch (hw
->phy_type
) {
1557 bcom_phy_init(skge
);
1558 bcom_check_link(hw
, port
);
1561 /* Set Station Address */
1562 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
1564 /* We don't use match addresses so clear */
1565 for (i
= 1; i
< 16; i
++)
1566 xm_outaddr(hw
, port
, XM_EXM(i
), zero
);
1568 /* Clear MIB counters */
1569 xm_write16(hw
, port
, XM_STAT_CMD
,
1570 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1571 /* Clear two times according to Errata #3 */
1572 xm_write16(hw
, port
, XM_STAT_CMD
,
1573 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1575 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1576 xm_write16(hw
, port
, XM_RX_HI_WM
, 1450);
1578 /* We don't need the FCS appended to the packet. */
1579 r
= XM_RX_LENERR_OK
| XM_RX_STRIP_FCS
;
1581 r
|= XM_RX_BIG_PK_OK
;
1583 if (skge
->duplex
== DUPLEX_HALF
) {
1585 * If in manual half duplex mode the other side might be in
1586 * full duplex mode, so ignore if a carrier extension is not seen
1587 * on frames received
1589 r
|= XM_RX_DIS_CEXT
;
1591 xm_write16(hw
, port
, XM_RX_CMD
, r
);
1593 /* We want short frames padded to 60 bytes. */
1594 xm_write16(hw
, port
, XM_TX_CMD
, XM_TX_AUTO_PAD
);
1596 /* Increase threshold for jumbo frames on dual port */
1597 if (hw
->ports
> 1 && jumbo
)
1598 xm_write16(hw
, port
, XM_TX_THR
, 1020);
1600 xm_write16(hw
, port
, XM_TX_THR
, 512);
1603 * Enable the reception of all error frames. This is is
1604 * a necessary evil due to the design of the XMAC. The
1605 * XMAC's receive FIFO is only 8K in size, however jumbo
1606 * frames can be up to 9000 bytes in length. When bad
1607 * frame filtering is enabled, the XMAC's RX FIFO operates
1608 * in 'store and forward' mode. For this to work, the
1609 * entire frame has to fit into the FIFO, but that means
1610 * that jumbo frames larger than 8192 bytes will be
1611 * truncated. Disabling all bad frame filtering causes
1612 * the RX FIFO to operate in streaming mode, in which
1613 * case the XMAC will start transferring frames out of the
1614 * RX FIFO as soon as the FIFO threshold is reached.
1616 xm_write32(hw
, port
, XM_MODE
, XM_DEF_MODE
);
1620 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1621 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1622 * and 'Octets Rx OK Hi Cnt Ov'.
1624 xm_write32(hw
, port
, XM_RX_EV_MSK
, XMR_DEF_MSK
);
1627 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1628 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1629 * and 'Octets Tx OK Hi Cnt Ov'.
1631 xm_write32(hw
, port
, XM_TX_EV_MSK
, XMT_DEF_MSK
);
1633 /* Configure MAC arbiter */
1634 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1636 /* configure timeout values */
1637 skge_write8(hw
, B3_MA_TOINI_RX1
, 72);
1638 skge_write8(hw
, B3_MA_TOINI_RX2
, 72);
1639 skge_write8(hw
, B3_MA_TOINI_TX1
, 72);
1640 skge_write8(hw
, B3_MA_TOINI_TX2
, 72);
1642 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1643 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1644 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1645 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1647 /* Configure Rx MAC FIFO */
1648 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_CLR
);
1649 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_TIM_PAT
);
1650 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1652 /* Configure Tx MAC FIFO */
1653 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_CLR
);
1654 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_TX_CTRL_DEF
);
1655 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1658 /* Enable frame flushing if jumbo frames used */
1659 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_FLUSH
);
1661 /* enable timeout timers if normal frames */
1662 skge_write16(hw
, B3_PA_CTRL
,
1663 (port
== 0) ? PA_ENA_TO_TX1
: PA_ENA_TO_TX2
);
1667 static void genesis_stop(struct skge_port
*skge
)
1669 struct skge_hw
*hw
= skge
->hw
;
1670 int port
= skge
->port
;
1671 unsigned retries
= 1000;
1674 /* Disable Tx and Rx */
1675 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1676 cmd
&= ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1677 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1679 genesis_reset(hw
, port
);
1681 /* Clear Tx packet arbiter timeout IRQ */
1682 skge_write16(hw
, B3_PA_CTRL
,
1683 port
== 0 ? PA_CLR_TO_TX1
: PA_CLR_TO_TX2
);
1686 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1688 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_SET_MAC_RST
);
1689 if (!(skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
))
1691 } while (--retries
> 0);
1693 /* For external PHYs there must be special handling */
1694 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1695 u32 reg
= skge_read32(hw
, B2_GP_IO
);
1703 skge_write32(hw
, B2_GP_IO
, reg
);
1704 skge_read32(hw
, B2_GP_IO
);
1707 xm_write16(hw
, port
, XM_MMU_CMD
,
1708 xm_read16(hw
, port
, XM_MMU_CMD
)
1709 & ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
));
1711 xm_read16(hw
, port
, XM_MMU_CMD
);
1715 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
)
1717 struct skge_hw
*hw
= skge
->hw
;
1718 int port
= skge
->port
;
1720 unsigned long timeout
= jiffies
+ HZ
;
1722 xm_write16(hw
, port
,
1723 XM_STAT_CMD
, XM_SC_SNP_TXC
| XM_SC_SNP_RXC
);
1725 /* wait for update to complete */
1726 while (xm_read16(hw
, port
, XM_STAT_CMD
)
1727 & (XM_SC_SNP_TXC
| XM_SC_SNP_RXC
)) {
1728 if (time_after(jiffies
, timeout
))
1733 /* special case for 64 bit octet counter */
1734 data
[0] = (u64
) xm_read32(hw
, port
, XM_TXO_OK_HI
) << 32
1735 | xm_read32(hw
, port
, XM_TXO_OK_LO
);
1736 data
[1] = (u64
) xm_read32(hw
, port
, XM_RXO_OK_HI
) << 32
1737 | xm_read32(hw
, port
, XM_RXO_OK_LO
);
1739 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1740 data
[i
] = xm_read32(hw
, port
, skge_stats
[i
].xmac_offset
);
1743 static void genesis_mac_intr(struct skge_hw
*hw
, int port
)
1745 struct net_device
*dev
= hw
->dev
[port
];
1746 struct skge_port
*skge
= netdev_priv(dev
);
1747 u16 status
= xm_read16(hw
, port
, XM_ISRC
);
1749 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
1750 "mac interrupt status 0x%x\n", status
);
1752 if (hw
->phy_type
== SK_PHY_XMAC
&& (status
& XM_IS_INP_ASS
)) {
1753 xm_link_down(hw
, port
);
1754 mod_timer(&skge
->link_timer
, jiffies
+ 1);
1757 if (status
& XM_IS_TXF_UR
) {
1758 xm_write32(hw
, port
, XM_MODE
, XM_MD_FTF
);
1759 ++dev
->stats
.tx_fifo_errors
;
1763 static void genesis_link_up(struct skge_port
*skge
)
1765 struct skge_hw
*hw
= skge
->hw
;
1766 int port
= skge
->port
;
1770 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1773 * enabling pause frame reception is required for 1000BT
1774 * because the XMAC is not reset if the link is going down
1776 if (skge
->flow_status
== FLOW_STAT_NONE
||
1777 skge
->flow_status
== FLOW_STAT_LOC_SEND
)
1778 /* Disable Pause Frame Reception */
1779 cmd
|= XM_MMU_IGN_PF
;
1781 /* Enable Pause Frame Reception */
1782 cmd
&= ~XM_MMU_IGN_PF
;
1784 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1786 mode
= xm_read32(hw
, port
, XM_MODE
);
1787 if (skge
->flow_status
== FLOW_STAT_SYMMETRIC
||
1788 skge
->flow_status
== FLOW_STAT_LOC_SEND
) {
1790 * Configure Pause Frame Generation
1791 * Use internal and external Pause Frame Generation.
1792 * Sending pause frames is edge triggered.
1793 * Send a Pause frame with the maximum pause time if
1794 * internal oder external FIFO full condition occurs.
1795 * Send a zero pause time frame to re-start transmission.
1797 /* XM_PAUSE_DA = '010000C28001' (default) */
1798 /* XM_MAC_PTIME = 0xffff (maximum) */
1799 /* remember this value is defined in big endian (!) */
1800 xm_write16(hw
, port
, XM_MAC_PTIME
, 0xffff);
1802 mode
|= XM_PAUSE_MODE
;
1803 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_PAUSE
);
1806 * disable pause frame generation is required for 1000BT
1807 * because the XMAC is not reset if the link is going down
1809 /* Disable Pause Mode in Mode Register */
1810 mode
&= ~XM_PAUSE_MODE
;
1812 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_DIS_PAUSE
);
1815 xm_write32(hw
, port
, XM_MODE
, mode
);
1817 /* Turn on detection of Tx underrun */
1818 msk
= xm_read16(hw
, port
, XM_IMSK
);
1819 msk
&= ~XM_IS_TXF_UR
;
1820 xm_write16(hw
, port
, XM_IMSK
, msk
);
1822 xm_read16(hw
, port
, XM_ISRC
);
1824 /* get MMU Command Reg. */
1825 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1826 if (hw
->phy_type
!= SK_PHY_XMAC
&& skge
->duplex
== DUPLEX_FULL
)
1827 cmd
|= XM_MMU_GMII_FD
;
1830 * Workaround BCOM Errata (#10523) for all BCom Phys
1831 * Enable Power Management after link up
1833 if (hw
->phy_type
== SK_PHY_BCOM
) {
1834 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1835 xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
)
1836 & ~PHY_B_AC_DIS_PM
);
1837 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1841 xm_write16(hw
, port
, XM_MMU_CMD
,
1842 cmd
| XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1847 static inline void bcom_phy_intr(struct skge_port
*skge
)
1849 struct skge_hw
*hw
= skge
->hw
;
1850 int port
= skge
->port
;
1853 isrc
= xm_phy_read(hw
, port
, PHY_BCOM_INT_STAT
);
1854 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
1855 "phy interrupt status 0x%x\n", isrc
);
1857 if (isrc
& PHY_B_IS_PSE
)
1858 pr_err("%s: uncorrectable pair swap error\n",
1859 hw
->dev
[port
]->name
);
1861 /* Workaround BCom Errata:
1862 * enable and disable loopback mode if "NO HCD" occurs.
1864 if (isrc
& PHY_B_IS_NO_HDCL
) {
1865 u16 ctrl
= xm_phy_read(hw
, port
, PHY_BCOM_CTRL
);
1866 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1867 ctrl
| PHY_CT_LOOP
);
1868 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1869 ctrl
& ~PHY_CT_LOOP
);
1872 if (isrc
& (PHY_B_IS_AN_PR
| PHY_B_IS_LST_CHANGE
))
1873 bcom_check_link(hw
, port
);
1877 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1881 gma_write16(hw
, port
, GM_SMI_DATA
, val
);
1882 gma_write16(hw
, port
, GM_SMI_CTRL
,
1883 GM_SMI_CT_PHY_AD(hw
->phy_addr
) | GM_SMI_CT_REG_AD(reg
));
1884 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1887 if (!(gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_BUSY
))
1891 pr_warning("%s: phy write timeout\n", hw
->dev
[port
]->name
);
1895 static int __gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1899 gma_write16(hw
, port
, GM_SMI_CTRL
,
1900 GM_SMI_CT_PHY_AD(hw
->phy_addr
)
1901 | GM_SMI_CT_REG_AD(reg
) | GM_SMI_CT_OP_RD
);
1903 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1905 if (gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_RD_VAL
)
1911 *val
= gma_read16(hw
, port
, GM_SMI_DATA
);
1915 static u16
gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1918 if (__gm_phy_read(hw
, port
, reg
, &v
))
1919 pr_warning("%s: phy read timeout\n", hw
->dev
[port
]->name
);
1923 /* Marvell Phy Initialization */
1924 static void yukon_init(struct skge_hw
*hw
, int port
)
1926 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1927 u16 ctrl
, ct1000
, adv
;
1929 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1930 u16 ectrl
= gm_phy_read(hw
, port
, PHY_MARV_EXT_CTRL
);
1932 ectrl
&= ~(PHY_M_EC_M_DSC_MSK
| PHY_M_EC_S_DSC_MSK
|
1933 PHY_M_EC_MAC_S_MSK
);
1934 ectrl
|= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ
);
1936 ectrl
|= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1938 gm_phy_write(hw
, port
, PHY_MARV_EXT_CTRL
, ectrl
);
1941 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1942 if (skge
->autoneg
== AUTONEG_DISABLE
)
1943 ctrl
&= ~PHY_CT_ANE
;
1945 ctrl
|= PHY_CT_RESET
;
1946 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1952 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1954 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1955 ct1000
|= PHY_M_1000C_AFD
;
1956 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1957 ct1000
|= PHY_M_1000C_AHD
;
1958 if (skge
->advertising
& ADVERTISED_100baseT_Full
)
1959 adv
|= PHY_M_AN_100_FD
;
1960 if (skge
->advertising
& ADVERTISED_100baseT_Half
)
1961 adv
|= PHY_M_AN_100_HD
;
1962 if (skge
->advertising
& ADVERTISED_10baseT_Full
)
1963 adv
|= PHY_M_AN_10_FD
;
1964 if (skge
->advertising
& ADVERTISED_10baseT_Half
)
1965 adv
|= PHY_M_AN_10_HD
;
1967 /* Set Flow-control capabilities */
1968 adv
|= phy_pause_map
[skge
->flow_control
];
1970 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1971 adv
|= PHY_M_AN_1000X_AFD
;
1972 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1973 adv
|= PHY_M_AN_1000X_AHD
;
1975 adv
|= fiber_pause_map
[skge
->flow_control
];
1978 /* Restart Auto-negotiation */
1979 ctrl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1981 /* forced speed/duplex settings */
1982 ct1000
= PHY_M_1000C_MSE
;
1984 if (skge
->duplex
== DUPLEX_FULL
)
1985 ctrl
|= PHY_CT_DUP_MD
;
1987 switch (skge
->speed
) {
1989 ctrl
|= PHY_CT_SP1000
;
1992 ctrl
|= PHY_CT_SP100
;
1996 ctrl
|= PHY_CT_RESET
;
1999 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, ct1000
);
2001 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, adv
);
2002 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2004 /* Enable phy interrupt on autonegotiation complete (or link up) */
2005 if (skge
->autoneg
== AUTONEG_ENABLE
)
2006 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_AN_MSK
);
2008 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2011 static void yukon_reset(struct skge_hw
*hw
, int port
)
2013 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);/* disable PHY IRQs */
2014 gma_write16(hw
, port
, GM_MC_ADDR_H1
, 0); /* clear MC hash */
2015 gma_write16(hw
, port
, GM_MC_ADDR_H2
, 0);
2016 gma_write16(hw
, port
, GM_MC_ADDR_H3
, 0);
2017 gma_write16(hw
, port
, GM_MC_ADDR_H4
, 0);
2019 gma_write16(hw
, port
, GM_RX_CTRL
,
2020 gma_read16(hw
, port
, GM_RX_CTRL
)
2021 | GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2024 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2025 static int is_yukon_lite_a0(struct skge_hw
*hw
)
2030 if (hw
->chip_id
!= CHIP_ID_YUKON
)
2033 reg
= skge_read32(hw
, B2_FAR
);
2034 skge_write8(hw
, B2_FAR
+ 3, 0xff);
2035 ret
= (skge_read8(hw
, B2_FAR
+ 3) != 0);
2036 skge_write32(hw
, B2_FAR
, reg
);
2040 static void yukon_mac_init(struct skge_hw
*hw
, int port
)
2042 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
2045 const u8
*addr
= hw
->dev
[port
]->dev_addr
;
2047 /* WA code for COMA mode -- set PHY reset */
2048 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2049 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2050 reg
= skge_read32(hw
, B2_GP_IO
);
2051 reg
|= GP_DIR_9
| GP_IO_9
;
2052 skge_write32(hw
, B2_GP_IO
, reg
);
2056 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2057 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2059 /* WA code for COMA mode -- clear PHY reset */
2060 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2061 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2062 reg
= skge_read32(hw
, B2_GP_IO
);
2065 skge_write32(hw
, B2_GP_IO
, reg
);
2068 /* Set hardware config mode */
2069 reg
= GPC_INT_POL_HI
| GPC_DIS_FC
| GPC_DIS_SLEEP
|
2070 GPC_ENA_XC
| GPC_ANEG_ADV_ALL_M
| GPC_ENA_PAUSE
;
2071 reg
|= hw
->copper
? GPC_HWCFG_GMII_COP
: GPC_HWCFG_GMII_FIB
;
2073 /* Clear GMC reset */
2074 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_SET
);
2075 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_CLR
);
2076 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
| GMC_RST_CLR
);
2078 if (skge
->autoneg
== AUTONEG_DISABLE
) {
2079 reg
= GM_GPCR_AU_ALL_DIS
;
2080 gma_write16(hw
, port
, GM_GP_CTRL
,
2081 gma_read16(hw
, port
, GM_GP_CTRL
) | reg
);
2083 switch (skge
->speed
) {
2085 reg
&= ~GM_GPCR_SPEED_100
;
2086 reg
|= GM_GPCR_SPEED_1000
;
2089 reg
&= ~GM_GPCR_SPEED_1000
;
2090 reg
|= GM_GPCR_SPEED_100
;
2093 reg
&= ~(GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
);
2097 if (skge
->duplex
== DUPLEX_FULL
)
2098 reg
|= GM_GPCR_DUP_FULL
;
2100 reg
= GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
| GM_GPCR_DUP_FULL
;
2102 switch (skge
->flow_control
) {
2103 case FLOW_MODE_NONE
:
2104 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2105 reg
|= GM_GPCR_FC_TX_DIS
| GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2107 case FLOW_MODE_LOC_SEND
:
2108 /* disable Rx flow-control */
2109 reg
|= GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2111 case FLOW_MODE_SYMMETRIC
:
2112 case FLOW_MODE_SYM_OR_REM
:
2113 /* enable Tx & Rx flow-control */
2117 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2118 skge_read16(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2120 yukon_init(hw
, port
);
2123 reg
= gma_read16(hw
, port
, GM_PHY_ADDR
);
2124 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
| GM_PAR_MIB_CLR
);
2126 for (i
= 0; i
< GM_MIB_CNT_SIZE
; i
++)
2127 gma_read16(hw
, port
, GM_MIB_CNT_BASE
+ 8*i
);
2128 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
);
2130 /* transmit control */
2131 gma_write16(hw
, port
, GM_TX_CTRL
, TX_COL_THR(TX_COL_DEF
));
2133 /* receive control reg: unicast + multicast + no FCS */
2134 gma_write16(hw
, port
, GM_RX_CTRL
,
2135 GM_RXCR_UCF_ENA
| GM_RXCR_CRC_DIS
| GM_RXCR_MCF_ENA
);
2137 /* transmit flow control */
2138 gma_write16(hw
, port
, GM_TX_FLOW_CTRL
, 0xffff);
2140 /* transmit parameter */
2141 gma_write16(hw
, port
, GM_TX_PARAM
,
2142 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF
) |
2143 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF
) |
2144 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF
));
2146 /* configure the Serial Mode Register */
2147 reg
= DATA_BLIND_VAL(DATA_BLIND_DEF
)
2149 | IPG_DATA_VAL(IPG_DATA_DEF
);
2151 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
)
2152 reg
|= GM_SMOD_JUMBO_ENA
;
2154 gma_write16(hw
, port
, GM_SERIAL_MODE
, reg
);
2156 /* physical address: used for pause frames */
2157 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, addr
);
2158 /* virtual address for data */
2159 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, addr
);
2161 /* enable interrupt mask for counter overflows */
2162 gma_write16(hw
, port
, GM_TX_IRQ_MSK
, 0);
2163 gma_write16(hw
, port
, GM_RX_IRQ_MSK
, 0);
2164 gma_write16(hw
, port
, GM_TR_IRQ_MSK
, 0);
2166 /* Initialize Mac Fifo */
2168 /* Configure Rx MAC FIFO */
2169 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_MSK
), RX_FF_FL_DEF_MSK
);
2170 reg
= GMF_OPER_ON
| GMF_RX_F_FL_ON
;
2172 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2173 if (is_yukon_lite_a0(hw
))
2174 reg
&= ~GMF_RX_F_FL_ON
;
2176 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_CLR
);
2177 skge_write16(hw
, SK_REG(port
, RX_GMF_CTRL_T
), reg
);
2179 * because Pause Packet Truncation in GMAC is not working
2180 * we have to increase the Flush Threshold to 64 bytes
2181 * in order to flush pause packets in Rx FIFO on Yukon-1
2183 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_THR
), RX_GMF_FL_THR_DEF
+1);
2185 /* Configure Tx MAC FIFO */
2186 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_CLR
);
2187 skge_write16(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_OPER_ON
);
2190 /* Go into power down mode */
2191 static void yukon_suspend(struct skge_hw
*hw
, int port
)
2195 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_PHY_CTRL
);
2196 ctrl
|= PHY_M_PC_POL_R_DIS
;
2197 gm_phy_write(hw
, port
, PHY_MARV_PHY_CTRL
, ctrl
);
2199 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2200 ctrl
|= PHY_CT_RESET
;
2201 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2203 /* switch IEEE compatible power down mode on */
2204 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2205 ctrl
|= PHY_CT_PDOWN
;
2206 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2209 static void yukon_stop(struct skge_port
*skge
)
2211 struct skge_hw
*hw
= skge
->hw
;
2212 int port
= skge
->port
;
2214 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
2215 yukon_reset(hw
, port
);
2217 gma_write16(hw
, port
, GM_GP_CTRL
,
2218 gma_read16(hw
, port
, GM_GP_CTRL
)
2219 & ~(GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
));
2220 gma_read16(hw
, port
, GM_GP_CTRL
);
2222 yukon_suspend(hw
, port
);
2224 /* set GPHY Control reset */
2225 skge_write8(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2226 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2229 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
)
2231 struct skge_hw
*hw
= skge
->hw
;
2232 int port
= skge
->port
;
2235 data
[0] = (u64
) gma_read32(hw
, port
, GM_TXO_OK_HI
) << 32
2236 | gma_read32(hw
, port
, GM_TXO_OK_LO
);
2237 data
[1] = (u64
) gma_read32(hw
, port
, GM_RXO_OK_HI
) << 32
2238 | gma_read32(hw
, port
, GM_RXO_OK_LO
);
2240 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
2241 data
[i
] = gma_read32(hw
, port
,
2242 skge_stats
[i
].gma_offset
);
2245 static void yukon_mac_intr(struct skge_hw
*hw
, int port
)
2247 struct net_device
*dev
= hw
->dev
[port
];
2248 struct skge_port
*skge
= netdev_priv(dev
);
2249 u8 status
= skge_read8(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2251 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
2252 "mac interrupt status 0x%x\n", status
);
2254 if (status
& GM_IS_RX_FF_OR
) {
2255 ++dev
->stats
.rx_fifo_errors
;
2256 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_CLI_RX_FO
);
2259 if (status
& GM_IS_TX_FF_UR
) {
2260 ++dev
->stats
.tx_fifo_errors
;
2261 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_CLI_TX_FU
);
2266 static u16
yukon_speed(const struct skge_hw
*hw
, u16 aux
)
2268 switch (aux
& PHY_M_PS_SPEED_MSK
) {
2269 case PHY_M_PS_SPEED_1000
:
2271 case PHY_M_PS_SPEED_100
:
2278 static void yukon_link_up(struct skge_port
*skge
)
2280 struct skge_hw
*hw
= skge
->hw
;
2281 int port
= skge
->port
;
2284 /* Enable Transmit FIFO Underrun */
2285 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), GMAC_DEF_MSK
);
2287 reg
= gma_read16(hw
, port
, GM_GP_CTRL
);
2288 if (skge
->duplex
== DUPLEX_FULL
|| skge
->autoneg
== AUTONEG_ENABLE
)
2289 reg
|= GM_GPCR_DUP_FULL
;
2292 reg
|= GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
;
2293 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2295 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2299 static void yukon_link_down(struct skge_port
*skge
)
2301 struct skge_hw
*hw
= skge
->hw
;
2302 int port
= skge
->port
;
2305 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
2306 ctrl
&= ~(GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
);
2307 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
2309 if (skge
->flow_status
== FLOW_STAT_REM_SEND
) {
2310 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_AUNE_ADV
);
2311 ctrl
|= PHY_M_AN_ASP
;
2312 /* restore Asymmetric Pause bit */
2313 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, ctrl
);
2316 skge_link_down(skge
);
2318 yukon_init(hw
, port
);
2321 static void yukon_phy_intr(struct skge_port
*skge
)
2323 struct skge_hw
*hw
= skge
->hw
;
2324 int port
= skge
->port
;
2325 const char *reason
= NULL
;
2326 u16 istatus
, phystat
;
2328 istatus
= gm_phy_read(hw
, port
, PHY_MARV_INT_STAT
);
2329 phystat
= gm_phy_read(hw
, port
, PHY_MARV_PHY_STAT
);
2331 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
2332 "phy interrupt status 0x%x 0x%x\n", istatus
, phystat
);
2334 if (istatus
& PHY_M_IS_AN_COMPL
) {
2335 if (gm_phy_read(hw
, port
, PHY_MARV_AUNE_LP
)
2337 reason
= "remote fault";
2341 if (gm_phy_read(hw
, port
, PHY_MARV_1000T_STAT
) & PHY_B_1000S_MSF
) {
2342 reason
= "master/slave fault";
2346 if (!(phystat
& PHY_M_PS_SPDUP_RES
)) {
2347 reason
= "speed/duplex";
2351 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
)
2352 ? DUPLEX_FULL
: DUPLEX_HALF
;
2353 skge
->speed
= yukon_speed(hw
, phystat
);
2355 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2356 switch (phystat
& PHY_M_PS_PAUSE_MSK
) {
2357 case PHY_M_PS_PAUSE_MSK
:
2358 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
2360 case PHY_M_PS_RX_P_EN
:
2361 skge
->flow_status
= FLOW_STAT_REM_SEND
;
2363 case PHY_M_PS_TX_P_EN
:
2364 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
2367 skge
->flow_status
= FLOW_STAT_NONE
;
2370 if (skge
->flow_status
== FLOW_STAT_NONE
||
2371 (skge
->speed
< SPEED_1000
&& skge
->duplex
== DUPLEX_HALF
))
2372 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2374 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
);
2375 yukon_link_up(skge
);
2379 if (istatus
& PHY_M_IS_LSP_CHANGE
)
2380 skge
->speed
= yukon_speed(hw
, phystat
);
2382 if (istatus
& PHY_M_IS_DUP_CHANGE
)
2383 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
) ? DUPLEX_FULL
: DUPLEX_HALF
;
2384 if (istatus
& PHY_M_IS_LST_CHANGE
) {
2385 if (phystat
& PHY_M_PS_LINK_UP
)
2386 yukon_link_up(skge
);
2388 yukon_link_down(skge
);
2392 pr_err("%s: autonegotiation failed (%s)\n", skge
->netdev
->name
, reason
);
2394 /* XXX restart autonegotiation? */
2397 static void skge_phy_reset(struct skge_port
*skge
)
2399 struct skge_hw
*hw
= skge
->hw
;
2400 int port
= skge
->port
;
2401 struct net_device
*dev
= hw
->dev
[port
];
2403 netif_stop_queue(skge
->netdev
);
2404 netif_carrier_off(skge
->netdev
);
2406 spin_lock_bh(&hw
->phy_lock
);
2407 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2408 genesis_reset(hw
, port
);
2409 genesis_mac_init(hw
, port
);
2411 yukon_reset(hw
, port
);
2412 yukon_init(hw
, port
);
2414 spin_unlock_bh(&hw
->phy_lock
);
2416 skge_set_multicast(dev
);
2419 /* Basic MII support */
2420 static int skge_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2422 struct mii_ioctl_data
*data
= if_mii(ifr
);
2423 struct skge_port
*skge
= netdev_priv(dev
);
2424 struct skge_hw
*hw
= skge
->hw
;
2425 int err
= -EOPNOTSUPP
;
2427 if (!netif_running(dev
))
2428 return -ENODEV
; /* Phy still in reset */
2432 data
->phy_id
= hw
->phy_addr
;
2437 spin_lock_bh(&hw
->phy_lock
);
2438 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2439 err
= __xm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2441 err
= __gm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2442 spin_unlock_bh(&hw
->phy_lock
);
2443 data
->val_out
= val
;
2448 spin_lock_bh(&hw
->phy_lock
);
2449 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2450 err
= xm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2453 err
= gm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2455 spin_unlock_bh(&hw
->phy_lock
);
2461 static void skge_ramset(struct skge_hw
*hw
, u16 q
, u32 start
, size_t len
)
2467 end
= start
+ len
- 1;
2469 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_RST_CLR
);
2470 skge_write32(hw
, RB_ADDR(q
, RB_START
), start
);
2471 skge_write32(hw
, RB_ADDR(q
, RB_WP
), start
);
2472 skge_write32(hw
, RB_ADDR(q
, RB_RP
), start
);
2473 skge_write32(hw
, RB_ADDR(q
, RB_END
), end
);
2475 if (q
== Q_R1
|| q
== Q_R2
) {
2476 /* Set thresholds on receive queue's */
2477 skge_write32(hw
, RB_ADDR(q
, RB_RX_UTPP
),
2479 skge_write32(hw
, RB_ADDR(q
, RB_RX_LTPP
),
2482 /* Enable store & forward on Tx queue's because
2483 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2485 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_STFWD
);
2488 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_OP_MD
);
2491 /* Setup Bus Memory Interface */
2492 static void skge_qset(struct skge_port
*skge
, u16 q
,
2493 const struct skge_element
*e
)
2495 struct skge_hw
*hw
= skge
->hw
;
2496 u32 watermark
= 0x600;
2497 u64 base
= skge
->dma
+ (e
->desc
- skge
->mem
);
2499 /* optimization to reduce window on 32bit/33mhz */
2500 if ((skge_read16(hw
, B0_CTST
) & (CS_BUS_CLOCK
| CS_BUS_SLOT_SZ
)) == 0)
2503 skge_write32(hw
, Q_ADDR(q
, Q_CSR
), CSR_CLR_RESET
);
2504 skge_write32(hw
, Q_ADDR(q
, Q_F
), watermark
);
2505 skge_write32(hw
, Q_ADDR(q
, Q_DA_H
), (u32
)(base
>> 32));
2506 skge_write32(hw
, Q_ADDR(q
, Q_DA_L
), (u32
)base
);
2509 static int skge_up(struct net_device
*dev
)
2511 struct skge_port
*skge
= netdev_priv(dev
);
2512 struct skge_hw
*hw
= skge
->hw
;
2513 int port
= skge
->port
;
2514 u32 chunk
, ram_addr
;
2515 size_t rx_size
, tx_size
;
2518 if (!is_valid_ether_addr(dev
->dev_addr
))
2521 netif_info(skge
, ifup
, skge
->netdev
, "enabling interface\n");
2523 if (dev
->mtu
> RX_BUF_SIZE
)
2524 skge
->rx_buf_size
= dev
->mtu
+ ETH_HLEN
;
2526 skge
->rx_buf_size
= RX_BUF_SIZE
;
2529 rx_size
= skge
->rx_ring
.count
* sizeof(struct skge_rx_desc
);
2530 tx_size
= skge
->tx_ring
.count
* sizeof(struct skge_tx_desc
);
2531 skge
->mem_size
= tx_size
+ rx_size
;
2532 skge
->mem
= pci_alloc_consistent(hw
->pdev
, skge
->mem_size
, &skge
->dma
);
2536 BUG_ON(skge
->dma
& 7);
2538 if ((u64
)skge
->dma
>> 32 != ((u64
) skge
->dma
+ skge
->mem_size
) >> 32) {
2539 dev_err(&hw
->pdev
->dev
, "pci_alloc_consistent region crosses 4G boundary\n");
2544 memset(skge
->mem
, 0, skge
->mem_size
);
2546 err
= skge_ring_alloc(&skge
->rx_ring
, skge
->mem
, skge
->dma
);
2550 err
= skge_rx_fill(dev
);
2554 err
= skge_ring_alloc(&skge
->tx_ring
, skge
->mem
+ rx_size
,
2555 skge
->dma
+ rx_size
);
2559 /* Initialize MAC */
2560 spin_lock_bh(&hw
->phy_lock
);
2561 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2562 genesis_mac_init(hw
, port
);
2564 yukon_mac_init(hw
, port
);
2565 spin_unlock_bh(&hw
->phy_lock
);
2567 /* Configure RAMbuffers - equally between ports and tx/rx */
2568 chunk
= (hw
->ram_size
- hw
->ram_offset
) / (hw
->ports
* 2);
2569 ram_addr
= hw
->ram_offset
+ 2 * chunk
* port
;
2571 skge_ramset(hw
, rxqaddr
[port
], ram_addr
, chunk
);
2572 skge_qset(skge
, rxqaddr
[port
], skge
->rx_ring
.to_clean
);
2574 BUG_ON(skge
->tx_ring
.to_use
!= skge
->tx_ring
.to_clean
);
2575 skge_ramset(hw
, txqaddr
[port
], ram_addr
+chunk
, chunk
);
2576 skge_qset(skge
, txqaddr
[port
], skge
->tx_ring
.to_use
);
2578 /* Start receiver BMU */
2580 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_START
| CSR_IRQ_CL_F
);
2581 skge_led(skge
, LED_MODE_ON
);
2583 spin_lock_irq(&hw
->hw_lock
);
2584 hw
->intr_mask
|= portmask
[port
];
2585 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2586 spin_unlock_irq(&hw
->hw_lock
);
2588 napi_enable(&skge
->napi
);
2592 skge_rx_clean(skge
);
2593 kfree(skge
->rx_ring
.start
);
2595 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2602 static void skge_rx_stop(struct skge_hw
*hw
, int port
)
2604 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_STOP
);
2605 skge_write32(hw
, RB_ADDR(port
? Q_R2
: Q_R1
, RB_CTRL
),
2606 RB_RST_SET
|RB_DIS_OP_MD
);
2607 skge_write32(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2610 static int skge_down(struct net_device
*dev
)
2612 struct skge_port
*skge
= netdev_priv(dev
);
2613 struct skge_hw
*hw
= skge
->hw
;
2614 int port
= skge
->port
;
2616 if (skge
->mem
== NULL
)
2619 netif_info(skge
, ifdown
, skge
->netdev
, "disabling interface\n");
2621 netif_tx_disable(dev
);
2623 if (hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
)
2624 del_timer_sync(&skge
->link_timer
);
2626 napi_disable(&skge
->napi
);
2627 netif_carrier_off(dev
);
2629 spin_lock_irq(&hw
->hw_lock
);
2630 hw
->intr_mask
&= ~portmask
[port
];
2631 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2632 spin_unlock_irq(&hw
->hw_lock
);
2634 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
2635 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2640 /* Stop transmitter */
2641 skge_write8(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_STOP
);
2642 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
),
2643 RB_RST_SET
|RB_DIS_OP_MD
);
2646 /* Disable Force Sync bit and Enable Alloc bit */
2647 skge_write8(hw
, SK_REG(port
, TXA_CTRL
),
2648 TXA_DIS_FSYNC
| TXA_DIS_ALLOC
| TXA_STOP_RC
);
2650 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2651 skge_write32(hw
, SK_REG(port
, TXA_ITI_INI
), 0L);
2652 skge_write32(hw
, SK_REG(port
, TXA_LIM_INI
), 0L);
2654 /* Reset PCI FIFO */
2655 skge_write32(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2656 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
), RB_RST_SET
);
2658 /* Reset the RAM Buffer async Tx queue */
2659 skge_write8(hw
, RB_ADDR(port
== 0 ? Q_XA1
: Q_XA2
, RB_CTRL
), RB_RST_SET
);
2661 skge_rx_stop(hw
, port
);
2663 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2664 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_SET
);
2665 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_SET
);
2667 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
2668 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_SET
);
2671 skge_led(skge
, LED_MODE_OFF
);
2673 netif_tx_lock_bh(dev
);
2675 netif_tx_unlock_bh(dev
);
2677 skge_rx_clean(skge
);
2679 kfree(skge
->rx_ring
.start
);
2680 kfree(skge
->tx_ring
.start
);
2681 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2686 static inline int skge_avail(const struct skge_ring
*ring
)
2689 return ((ring
->to_clean
> ring
->to_use
) ? 0 : ring
->count
)
2690 + (ring
->to_clean
- ring
->to_use
) - 1;
2693 static netdev_tx_t
skge_xmit_frame(struct sk_buff
*skb
,
2694 struct net_device
*dev
)
2696 struct skge_port
*skge
= netdev_priv(dev
);
2697 struct skge_hw
*hw
= skge
->hw
;
2698 struct skge_element
*e
;
2699 struct skge_tx_desc
*td
;
2704 if (skb_padto(skb
, ETH_ZLEN
))
2705 return NETDEV_TX_OK
;
2707 if (unlikely(skge_avail(&skge
->tx_ring
) < skb_shinfo(skb
)->nr_frags
+ 1))
2708 return NETDEV_TX_BUSY
;
2710 e
= skge
->tx_ring
.to_use
;
2712 BUG_ON(td
->control
& BMU_OWN
);
2714 len
= skb_headlen(skb
);
2715 map
= pci_map_single(hw
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
2716 dma_unmap_addr_set(e
, mapaddr
, map
);
2717 dma_unmap_len_set(e
, maplen
, len
);
2720 td
->dma_hi
= map
>> 32;
2722 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2723 const int offset
= skb_checksum_start_offset(skb
);
2725 /* This seems backwards, but it is what the sk98lin
2726 * does. Looks like hardware is wrong?
2728 if (ipip_hdr(skb
)->protocol
== IPPROTO_UDP
&&
2729 hw
->chip_rev
== 0 && hw
->chip_id
== CHIP_ID_YUKON
)
2730 control
= BMU_TCP_CHECK
;
2732 control
= BMU_UDP_CHECK
;
2735 td
->csum_start
= offset
;
2736 td
->csum_write
= offset
+ skb
->csum_offset
;
2738 control
= BMU_CHECK
;
2740 if (!skb_shinfo(skb
)->nr_frags
) /* single buffer i.e. no fragments */
2741 control
|= BMU_EOF
| BMU_IRQ_EOF
;
2743 struct skge_tx_desc
*tf
= td
;
2745 control
|= BMU_STFWD
;
2746 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2747 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2749 map
= pci_map_page(hw
->pdev
, frag
->page
, frag
->page_offset
,
2750 frag
->size
, PCI_DMA_TODEVICE
);
2755 BUG_ON(tf
->control
& BMU_OWN
);
2758 tf
->dma_hi
= (u64
) map
>> 32;
2759 dma_unmap_addr_set(e
, mapaddr
, map
);
2760 dma_unmap_len_set(e
, maplen
, frag
->size
);
2762 tf
->control
= BMU_OWN
| BMU_SW
| control
| frag
->size
;
2764 tf
->control
|= BMU_EOF
| BMU_IRQ_EOF
;
2766 /* Make sure all the descriptors written */
2768 td
->control
= BMU_OWN
| BMU_SW
| BMU_STF
| control
| len
;
2771 skge_write8(hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_START
);
2773 netif_printk(skge
, tx_queued
, KERN_DEBUG
, skge
->netdev
,
2774 "tx queued, slot %td, len %d\n",
2775 e
- skge
->tx_ring
.start
, skb
->len
);
2777 skge
->tx_ring
.to_use
= e
->next
;
2780 if (skge_avail(&skge
->tx_ring
) <= TX_LOW_WATER
) {
2781 netdev_dbg(dev
, "transmit queue full\n");
2782 netif_stop_queue(dev
);
2785 return NETDEV_TX_OK
;
2789 /* Free resources associated with this reing element */
2790 static void skge_tx_free(struct skge_port
*skge
, struct skge_element
*e
,
2793 struct pci_dev
*pdev
= skge
->hw
->pdev
;
2795 /* skb header vs. fragment */
2796 if (control
& BMU_STF
)
2797 pci_unmap_single(pdev
, dma_unmap_addr(e
, mapaddr
),
2798 dma_unmap_len(e
, maplen
),
2801 pci_unmap_page(pdev
, dma_unmap_addr(e
, mapaddr
),
2802 dma_unmap_len(e
, maplen
),
2805 if (control
& BMU_EOF
) {
2806 netif_printk(skge
, tx_done
, KERN_DEBUG
, skge
->netdev
,
2807 "tx done slot %td\n", e
- skge
->tx_ring
.start
);
2809 dev_kfree_skb(e
->skb
);
2813 /* Free all buffers in transmit ring */
2814 static void skge_tx_clean(struct net_device
*dev
)
2816 struct skge_port
*skge
= netdev_priv(dev
);
2817 struct skge_element
*e
;
2819 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
2820 struct skge_tx_desc
*td
= e
->desc
;
2821 skge_tx_free(skge
, e
, td
->control
);
2825 skge
->tx_ring
.to_clean
= e
;
2828 static void skge_tx_timeout(struct net_device
*dev
)
2830 struct skge_port
*skge
= netdev_priv(dev
);
2832 netif_printk(skge
, timer
, KERN_DEBUG
, skge
->netdev
, "tx timeout\n");
2834 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_STOP
);
2836 netif_wake_queue(dev
);
2839 static int skge_change_mtu(struct net_device
*dev
, int new_mtu
)
2843 if (new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_JUMBO_MTU
)
2846 if (!netif_running(dev
)) {
2862 static const u8 pause_mc_addr
[ETH_ALEN
] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2864 static void genesis_add_filter(u8 filter
[8], const u8
*addr
)
2868 crc
= ether_crc_le(ETH_ALEN
, addr
);
2870 filter
[bit
/8] |= 1 << (bit
%8);
2873 static void genesis_set_multicast(struct net_device
*dev
)
2875 struct skge_port
*skge
= netdev_priv(dev
);
2876 struct skge_hw
*hw
= skge
->hw
;
2877 int port
= skge
->port
;
2878 struct netdev_hw_addr
*ha
;
2882 mode
= xm_read32(hw
, port
, XM_MODE
);
2883 mode
|= XM_MD_ENA_HASH
;
2884 if (dev
->flags
& IFF_PROMISC
)
2885 mode
|= XM_MD_ENA_PROM
;
2887 mode
&= ~XM_MD_ENA_PROM
;
2889 if (dev
->flags
& IFF_ALLMULTI
)
2890 memset(filter
, 0xff, sizeof(filter
));
2892 memset(filter
, 0, sizeof(filter
));
2894 if (skge
->flow_status
== FLOW_STAT_REM_SEND
||
2895 skge
->flow_status
== FLOW_STAT_SYMMETRIC
)
2896 genesis_add_filter(filter
, pause_mc_addr
);
2898 netdev_for_each_mc_addr(ha
, dev
)
2899 genesis_add_filter(filter
, ha
->addr
);
2902 xm_write32(hw
, port
, XM_MODE
, mode
);
2903 xm_outhash(hw
, port
, XM_HSM
, filter
);
2906 static void yukon_add_filter(u8 filter
[8], const u8
*addr
)
2908 u32 bit
= ether_crc(ETH_ALEN
, addr
) & 0x3f;
2909 filter
[bit
/8] |= 1 << (bit
%8);
2912 static void yukon_set_multicast(struct net_device
*dev
)
2914 struct skge_port
*skge
= netdev_priv(dev
);
2915 struct skge_hw
*hw
= skge
->hw
;
2916 int port
= skge
->port
;
2917 struct netdev_hw_addr
*ha
;
2918 int rx_pause
= (skge
->flow_status
== FLOW_STAT_REM_SEND
||
2919 skge
->flow_status
== FLOW_STAT_SYMMETRIC
);
2923 memset(filter
, 0, sizeof(filter
));
2925 reg
= gma_read16(hw
, port
, GM_RX_CTRL
);
2926 reg
|= GM_RXCR_UCF_ENA
;
2928 if (dev
->flags
& IFF_PROMISC
) /* promiscuous */
2929 reg
&= ~(GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2930 else if (dev
->flags
& IFF_ALLMULTI
) /* all multicast */
2931 memset(filter
, 0xff, sizeof(filter
));
2932 else if (netdev_mc_empty(dev
) && !rx_pause
)/* no multicast */
2933 reg
&= ~GM_RXCR_MCF_ENA
;
2935 reg
|= GM_RXCR_MCF_ENA
;
2938 yukon_add_filter(filter
, pause_mc_addr
);
2940 netdev_for_each_mc_addr(ha
, dev
)
2941 yukon_add_filter(filter
, ha
->addr
);
2945 gma_write16(hw
, port
, GM_MC_ADDR_H1
,
2946 (u16
)filter
[0] | ((u16
)filter
[1] << 8));
2947 gma_write16(hw
, port
, GM_MC_ADDR_H2
,
2948 (u16
)filter
[2] | ((u16
)filter
[3] << 8));
2949 gma_write16(hw
, port
, GM_MC_ADDR_H3
,
2950 (u16
)filter
[4] | ((u16
)filter
[5] << 8));
2951 gma_write16(hw
, port
, GM_MC_ADDR_H4
,
2952 (u16
)filter
[6] | ((u16
)filter
[7] << 8));
2954 gma_write16(hw
, port
, GM_RX_CTRL
, reg
);
2957 static inline u16
phy_length(const struct skge_hw
*hw
, u32 status
)
2959 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2960 return status
>> XMR_FS_LEN_SHIFT
;
2962 return status
>> GMR_FS_LEN_SHIFT
;
2965 static inline int bad_phy_status(const struct skge_hw
*hw
, u32 status
)
2967 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2968 return (status
& (XMR_FS_ERR
| XMR_FS_2L_VLAN
)) != 0;
2970 return (status
& GMR_FS_ANY_ERR
) ||
2971 (status
& GMR_FS_RX_OK
) == 0;
2974 static void skge_set_multicast(struct net_device
*dev
)
2976 struct skge_port
*skge
= netdev_priv(dev
);
2977 struct skge_hw
*hw
= skge
->hw
;
2979 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2980 genesis_set_multicast(dev
);
2982 yukon_set_multicast(dev
);
2987 /* Get receive buffer from descriptor.
2988 * Handles copy of small buffers and reallocation failures
2990 static struct sk_buff
*skge_rx_get(struct net_device
*dev
,
2991 struct skge_element
*e
,
2992 u32 control
, u32 status
, u16 csum
)
2994 struct skge_port
*skge
= netdev_priv(dev
);
2995 struct sk_buff
*skb
;
2996 u16 len
= control
& BMU_BBC
;
2998 netif_printk(skge
, rx_status
, KERN_DEBUG
, skge
->netdev
,
2999 "rx slot %td status 0x%x len %d\n",
3000 e
- skge
->rx_ring
.start
, status
, len
);
3002 if (len
> skge
->rx_buf_size
)
3005 if ((control
& (BMU_EOF
|BMU_STF
)) != (BMU_STF
|BMU_EOF
))
3008 if (bad_phy_status(skge
->hw
, status
))
3011 if (phy_length(skge
->hw
, status
) != len
)
3014 if (len
< RX_COPY_THRESHOLD
) {
3015 skb
= netdev_alloc_skb_ip_align(dev
, len
);
3019 pci_dma_sync_single_for_cpu(skge
->hw
->pdev
,
3020 dma_unmap_addr(e
, mapaddr
),
3021 len
, PCI_DMA_FROMDEVICE
);
3022 skb_copy_from_linear_data(e
->skb
, skb
->data
, len
);
3023 pci_dma_sync_single_for_device(skge
->hw
->pdev
,
3024 dma_unmap_addr(e
, mapaddr
),
3025 len
, PCI_DMA_FROMDEVICE
);
3026 skge_rx_reuse(e
, skge
->rx_buf_size
);
3028 struct sk_buff
*nskb
;
3030 nskb
= netdev_alloc_skb_ip_align(dev
, skge
->rx_buf_size
);
3034 pci_unmap_single(skge
->hw
->pdev
,
3035 dma_unmap_addr(e
, mapaddr
),
3036 dma_unmap_len(e
, maplen
),
3037 PCI_DMA_FROMDEVICE
);
3039 prefetch(skb
->data
);
3040 skge_rx_setup(skge
, e
, nskb
, skge
->rx_buf_size
);
3045 if (dev
->features
& NETIF_F_RXCSUM
) {
3047 skb
->ip_summed
= CHECKSUM_COMPLETE
;
3050 skb
->protocol
= eth_type_trans(skb
, dev
);
3055 netif_printk(skge
, rx_err
, KERN_DEBUG
, skge
->netdev
,
3056 "rx err, slot %td control 0x%x status 0x%x\n",
3057 e
- skge
->rx_ring
.start
, control
, status
);
3059 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
) {
3060 if (status
& (XMR_FS_RUNT
|XMR_FS_LNG_ERR
))
3061 dev
->stats
.rx_length_errors
++;
3062 if (status
& XMR_FS_FRA_ERR
)
3063 dev
->stats
.rx_frame_errors
++;
3064 if (status
& XMR_FS_FCS_ERR
)
3065 dev
->stats
.rx_crc_errors
++;
3067 if (status
& (GMR_FS_LONG_ERR
|GMR_FS_UN_SIZE
))
3068 dev
->stats
.rx_length_errors
++;
3069 if (status
& GMR_FS_FRAGMENT
)
3070 dev
->stats
.rx_frame_errors
++;
3071 if (status
& GMR_FS_CRC_ERR
)
3072 dev
->stats
.rx_crc_errors
++;
3076 skge_rx_reuse(e
, skge
->rx_buf_size
);
3080 /* Free all buffers in Tx ring which are no longer owned by device */
3081 static void skge_tx_done(struct net_device
*dev
)
3083 struct skge_port
*skge
= netdev_priv(dev
);
3084 struct skge_ring
*ring
= &skge
->tx_ring
;
3085 struct skge_element
*e
;
3087 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3089 for (e
= ring
->to_clean
; e
!= ring
->to_use
; e
= e
->next
) {
3090 u32 control
= ((const struct skge_tx_desc
*) e
->desc
)->control
;
3092 if (control
& BMU_OWN
)
3095 skge_tx_free(skge
, e
, control
);
3097 skge
->tx_ring
.to_clean
= e
;
3099 /* Can run lockless until we need to synchronize to restart queue. */
3102 if (unlikely(netif_queue_stopped(dev
) &&
3103 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3105 if (unlikely(netif_queue_stopped(dev
) &&
3106 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3107 netif_wake_queue(dev
);
3110 netif_tx_unlock(dev
);
3114 static int skge_poll(struct napi_struct
*napi
, int to_do
)
3116 struct skge_port
*skge
= container_of(napi
, struct skge_port
, napi
);
3117 struct net_device
*dev
= skge
->netdev
;
3118 struct skge_hw
*hw
= skge
->hw
;
3119 struct skge_ring
*ring
= &skge
->rx_ring
;
3120 struct skge_element
*e
;
3125 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3127 for (e
= ring
->to_clean
; prefetch(e
->next
), work_done
< to_do
; e
= e
->next
) {
3128 struct skge_rx_desc
*rd
= e
->desc
;
3129 struct sk_buff
*skb
;
3133 control
= rd
->control
;
3134 if (control
& BMU_OWN
)
3137 skb
= skge_rx_get(dev
, e
, control
, rd
->status
, rd
->csum2
);
3139 napi_gro_receive(napi
, skb
);
3145 /* restart receiver */
3147 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_START
);
3149 if (work_done
< to_do
) {
3150 unsigned long flags
;
3152 napi_gro_flush(napi
);
3153 spin_lock_irqsave(&hw
->hw_lock
, flags
);
3154 __napi_complete(napi
);
3155 hw
->intr_mask
|= napimask
[skge
->port
];
3156 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3157 skge_read32(hw
, B0_IMSK
);
3158 spin_unlock_irqrestore(&hw
->hw_lock
, flags
);
3164 /* Parity errors seem to happen when Genesis is connected to a switch
3165 * with no other ports present. Heartbeat error??
3167 static void skge_mac_parity(struct skge_hw
*hw
, int port
)
3169 struct net_device
*dev
= hw
->dev
[port
];
3171 ++dev
->stats
.tx_heartbeat_errors
;
3173 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3174 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
3177 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3178 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
),
3179 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
3180 ? GMF_CLI_TX_FC
: GMF_CLI_TX_PE
);
3183 static void skge_mac_intr(struct skge_hw
*hw
, int port
)
3185 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3186 genesis_mac_intr(hw
, port
);
3188 yukon_mac_intr(hw
, port
);
3191 /* Handle device specific framing and timeout interrupts */
3192 static void skge_error_irq(struct skge_hw
*hw
)
3194 struct pci_dev
*pdev
= hw
->pdev
;
3195 u32 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3197 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3198 /* clear xmac errors */
3199 if (hwstatus
& (IS_NO_STAT_M1
|IS_NO_TIST_M1
))
3200 skge_write16(hw
, RX_MFF_CTRL1
, MFF_CLR_INSTAT
);
3201 if (hwstatus
& (IS_NO_STAT_M2
|IS_NO_TIST_M2
))
3202 skge_write16(hw
, RX_MFF_CTRL2
, MFF_CLR_INSTAT
);
3204 /* Timestamp (unused) overflow */
3205 if (hwstatus
& IS_IRQ_TIST_OV
)
3206 skge_write8(hw
, GMAC_TI_ST_CTRL
, GMT_ST_CLR_IRQ
);
3209 if (hwstatus
& IS_RAM_RD_PAR
) {
3210 dev_err(&pdev
->dev
, "Ram read data parity error\n");
3211 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_RD_PERR
);
3214 if (hwstatus
& IS_RAM_WR_PAR
) {
3215 dev_err(&pdev
->dev
, "Ram write data parity error\n");
3216 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_WR_PERR
);
3219 if (hwstatus
& IS_M1_PAR_ERR
)
3220 skge_mac_parity(hw
, 0);
3222 if (hwstatus
& IS_M2_PAR_ERR
)
3223 skge_mac_parity(hw
, 1);
3225 if (hwstatus
& IS_R1_PAR_ERR
) {
3226 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3228 skge_write32(hw
, B0_R1_CSR
, CSR_IRQ_CL_P
);
3231 if (hwstatus
& IS_R2_PAR_ERR
) {
3232 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3234 skge_write32(hw
, B0_R2_CSR
, CSR_IRQ_CL_P
);
3237 if (hwstatus
& (IS_IRQ_MST_ERR
|IS_IRQ_STAT
)) {
3238 u16 pci_status
, pci_cmd
;
3240 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
3241 pci_read_config_word(pdev
, PCI_STATUS
, &pci_status
);
3243 dev_err(&pdev
->dev
, "PCI error cmd=%#x status=%#x\n",
3244 pci_cmd
, pci_status
);
3246 /* Write the error bits back to clear them. */
3247 pci_status
&= PCI_STATUS_ERROR_BITS
;
3248 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3249 pci_write_config_word(pdev
, PCI_COMMAND
,
3250 pci_cmd
| PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
3251 pci_write_config_word(pdev
, PCI_STATUS
, pci_status
);
3252 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3254 /* if error still set then just ignore it */
3255 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3256 if (hwstatus
& IS_IRQ_STAT
) {
3257 dev_warn(&hw
->pdev
->dev
, "unable to clear error (so ignoring them)\n");
3258 hw
->intr_mask
&= ~IS_HW_ERR
;
3264 * Interrupt from PHY are handled in tasklet (softirq)
3265 * because accessing phy registers requires spin wait which might
3266 * cause excess interrupt latency.
3268 static void skge_extirq(unsigned long arg
)
3270 struct skge_hw
*hw
= (struct skge_hw
*) arg
;
3273 for (port
= 0; port
< hw
->ports
; port
++) {
3274 struct net_device
*dev
= hw
->dev
[port
];
3276 if (netif_running(dev
)) {
3277 struct skge_port
*skge
= netdev_priv(dev
);
3279 spin_lock(&hw
->phy_lock
);
3280 if (hw
->chip_id
!= CHIP_ID_GENESIS
)
3281 yukon_phy_intr(skge
);
3282 else if (hw
->phy_type
== SK_PHY_BCOM
)
3283 bcom_phy_intr(skge
);
3284 spin_unlock(&hw
->phy_lock
);
3288 spin_lock_irq(&hw
->hw_lock
);
3289 hw
->intr_mask
|= IS_EXT_REG
;
3290 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3291 skge_read32(hw
, B0_IMSK
);
3292 spin_unlock_irq(&hw
->hw_lock
);
3295 static irqreturn_t
skge_intr(int irq
, void *dev_id
)
3297 struct skge_hw
*hw
= dev_id
;
3301 spin_lock(&hw
->hw_lock
);
3302 /* Reading this register masks IRQ */
3303 status
= skge_read32(hw
, B0_SP_ISRC
);
3304 if (status
== 0 || status
== ~0)
3308 status
&= hw
->intr_mask
;
3309 if (status
& IS_EXT_REG
) {
3310 hw
->intr_mask
&= ~IS_EXT_REG
;
3311 tasklet_schedule(&hw
->phy_task
);
3314 if (status
& (IS_XA1_F
|IS_R1_F
)) {
3315 struct skge_port
*skge
= netdev_priv(hw
->dev
[0]);
3316 hw
->intr_mask
&= ~(IS_XA1_F
|IS_R1_F
);
3317 napi_schedule(&skge
->napi
);
3320 if (status
& IS_PA_TO_TX1
)
3321 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX1
);
3323 if (status
& IS_PA_TO_RX1
) {
3324 ++hw
->dev
[0]->stats
.rx_over_errors
;
3325 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX1
);
3329 if (status
& IS_MAC1
)
3330 skge_mac_intr(hw
, 0);
3333 struct skge_port
*skge
= netdev_priv(hw
->dev
[1]);
3335 if (status
& (IS_XA2_F
|IS_R2_F
)) {
3336 hw
->intr_mask
&= ~(IS_XA2_F
|IS_R2_F
);
3337 napi_schedule(&skge
->napi
);
3340 if (status
& IS_PA_TO_RX2
) {
3341 ++hw
->dev
[1]->stats
.rx_over_errors
;
3342 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX2
);
3345 if (status
& IS_PA_TO_TX2
)
3346 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX2
);
3348 if (status
& IS_MAC2
)
3349 skge_mac_intr(hw
, 1);
3352 if (status
& IS_HW_ERR
)
3355 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3356 skge_read32(hw
, B0_IMSK
);
3358 spin_unlock(&hw
->hw_lock
);
3360 return IRQ_RETVAL(handled
);
3363 #ifdef CONFIG_NET_POLL_CONTROLLER
3364 static void skge_netpoll(struct net_device
*dev
)
3366 struct skge_port
*skge
= netdev_priv(dev
);
3368 disable_irq(dev
->irq
);
3369 skge_intr(dev
->irq
, skge
->hw
);
3370 enable_irq(dev
->irq
);
3374 static int skge_set_mac_address(struct net_device
*dev
, void *p
)
3376 struct skge_port
*skge
= netdev_priv(dev
);
3377 struct skge_hw
*hw
= skge
->hw
;
3378 unsigned port
= skge
->port
;
3379 const struct sockaddr
*addr
= p
;
3382 if (!is_valid_ether_addr(addr
->sa_data
))
3383 return -EADDRNOTAVAIL
;
3385 memcpy(dev
->dev_addr
, addr
->sa_data
, ETH_ALEN
);
3387 if (!netif_running(dev
)) {
3388 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3389 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3392 spin_lock_bh(&hw
->phy_lock
);
3393 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
3394 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
& ~GM_GPCR_RX_ENA
);
3396 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3397 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3399 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3400 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
3402 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, dev
->dev_addr
);
3403 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, dev
->dev_addr
);
3406 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
3407 spin_unlock_bh(&hw
->phy_lock
);
3413 static const struct {
3417 { CHIP_ID_GENESIS
, "Genesis" },
3418 { CHIP_ID_YUKON
, "Yukon" },
3419 { CHIP_ID_YUKON_LITE
, "Yukon-Lite"},
3420 { CHIP_ID_YUKON_LP
, "Yukon-LP"},
3423 static const char *skge_board_name(const struct skge_hw
*hw
)
3426 static char buf
[16];
3428 for (i
= 0; i
< ARRAY_SIZE(skge_chips
); i
++)
3429 if (skge_chips
[i
].id
== hw
->chip_id
)
3430 return skge_chips
[i
].name
;
3432 snprintf(buf
, sizeof buf
, "chipid 0x%x", hw
->chip_id
);
3438 * Setup the board data structure, but don't bring up
3441 static int skge_reset(struct skge_hw
*hw
)
3444 u16 ctst
, pci_status
;
3445 u8 t8
, mac_cfg
, pmd_type
;
3448 ctst
= skge_read16(hw
, B0_CTST
);
3451 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3452 skge_write8(hw
, B0_CTST
, CS_RST_CLR
);
3454 /* clear PCI errors, if any */
3455 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3456 skge_write8(hw
, B2_TST_CTRL2
, 0);
3458 pci_read_config_word(hw
->pdev
, PCI_STATUS
, &pci_status
);
3459 pci_write_config_word(hw
->pdev
, PCI_STATUS
,
3460 pci_status
| PCI_STATUS_ERROR_BITS
);
3461 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3462 skge_write8(hw
, B0_CTST
, CS_MRST_CLR
);
3464 /* restore CLK_RUN bits (for Yukon-Lite) */
3465 skge_write16(hw
, B0_CTST
,
3466 ctst
& (CS_CLK_RUN_HOT
|CS_CLK_RUN_RST
|CS_CLK_RUN_ENA
));
3468 hw
->chip_id
= skge_read8(hw
, B2_CHIP_ID
);
3469 hw
->phy_type
= skge_read8(hw
, B2_E_1
) & 0xf;
3470 pmd_type
= skge_read8(hw
, B2_PMD_TYP
);
3471 hw
->copper
= (pmd_type
== 'T' || pmd_type
== '1');
3473 switch (hw
->chip_id
) {
3474 case CHIP_ID_GENESIS
:
3475 switch (hw
->phy_type
) {
3477 hw
->phy_addr
= PHY_ADDR_XMAC
;
3480 hw
->phy_addr
= PHY_ADDR_BCOM
;
3483 dev_err(&hw
->pdev
->dev
, "unsupported phy type 0x%x\n",
3490 case CHIP_ID_YUKON_LITE
:
3491 case CHIP_ID_YUKON_LP
:
3492 if (hw
->phy_type
< SK_PHY_MARV_COPPER
&& pmd_type
!= 'S')
3495 hw
->phy_addr
= PHY_ADDR_MARV
;
3499 dev_err(&hw
->pdev
->dev
, "unsupported chip type 0x%x\n",
3504 mac_cfg
= skge_read8(hw
, B2_MAC_CFG
);
3505 hw
->ports
= (mac_cfg
& CFG_SNG_MAC
) ? 1 : 2;
3506 hw
->chip_rev
= (mac_cfg
& CFG_CHIP_R_MSK
) >> 4;
3508 /* read the adapters RAM size */
3509 t8
= skge_read8(hw
, B2_E_0
);
3510 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3512 /* special case: 4 x 64k x 36, offset = 0x80000 */
3513 hw
->ram_size
= 0x100000;
3514 hw
->ram_offset
= 0x80000;
3516 hw
->ram_size
= t8
* 512;
3518 hw
->ram_size
= 0x20000;
3520 hw
->ram_size
= t8
* 4096;
3522 hw
->intr_mask
= IS_HW_ERR
;
3524 /* Use PHY IRQ for all but fiber based Genesis board */
3525 if (!(hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
))
3526 hw
->intr_mask
|= IS_EXT_REG
;
3528 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3531 /* switch power to VCC (WA for VAUX problem) */
3532 skge_write8(hw
, B0_POWER_CTRL
,
3533 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_OFF
| PC_VCC_ON
);
3535 /* avoid boards with stuck Hardware error bits */
3536 if ((skge_read32(hw
, B0_ISRC
) & IS_HW_ERR
) &&
3537 (skge_read32(hw
, B0_HWE_ISRC
) & IS_IRQ_SENSOR
)) {
3538 dev_warn(&hw
->pdev
->dev
, "stuck hardware sensor bit\n");
3539 hw
->intr_mask
&= ~IS_HW_ERR
;
3542 /* Clear PHY COMA */
3543 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3544 pci_read_config_dword(hw
->pdev
, PCI_DEV_REG1
, ®
);
3545 reg
&= ~PCI_PHY_COMA
;
3546 pci_write_config_dword(hw
->pdev
, PCI_DEV_REG1
, reg
);
3547 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3550 for (i
= 0; i
< hw
->ports
; i
++) {
3551 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_SET
);
3552 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
3556 /* turn off hardware timer (unused) */
3557 skge_write8(hw
, B2_TI_CTRL
, TIM_STOP
);
3558 skge_write8(hw
, B2_TI_CTRL
, TIM_CLR_IRQ
);
3559 skge_write8(hw
, B0_LED
, LED_STAT_ON
);
3561 /* enable the Tx Arbiters */
3562 for (i
= 0; i
< hw
->ports
; i
++)
3563 skge_write8(hw
, SK_REG(i
, TXA_CTRL
), TXA_ENA_ARB
);
3565 /* Initialize ram interface */
3566 skge_write16(hw
, B3_RI_CTRL
, RI_RST_CLR
);
3568 skge_write8(hw
, B3_RI_WTO_R1
, SK_RI_TO_53
);
3569 skge_write8(hw
, B3_RI_WTO_XA1
, SK_RI_TO_53
);
3570 skge_write8(hw
, B3_RI_WTO_XS1
, SK_RI_TO_53
);
3571 skge_write8(hw
, B3_RI_RTO_R1
, SK_RI_TO_53
);
3572 skge_write8(hw
, B3_RI_RTO_XA1
, SK_RI_TO_53
);
3573 skge_write8(hw
, B3_RI_RTO_XS1
, SK_RI_TO_53
);
3574 skge_write8(hw
, B3_RI_WTO_R2
, SK_RI_TO_53
);
3575 skge_write8(hw
, B3_RI_WTO_XA2
, SK_RI_TO_53
);
3576 skge_write8(hw
, B3_RI_WTO_XS2
, SK_RI_TO_53
);
3577 skge_write8(hw
, B3_RI_RTO_R2
, SK_RI_TO_53
);
3578 skge_write8(hw
, B3_RI_RTO_XA2
, SK_RI_TO_53
);
3579 skge_write8(hw
, B3_RI_RTO_XS2
, SK_RI_TO_53
);
3581 skge_write32(hw
, B0_HWE_IMSK
, IS_ERR_MSK
);
3583 /* Set interrupt moderation for Transmit only
3584 * Receive interrupts avoided by NAPI
3586 skge_write32(hw
, B2_IRQM_MSK
, IS_XA1_F
|IS_XA2_F
);
3587 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, 100));
3588 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
3590 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3592 for (i
= 0; i
< hw
->ports
; i
++) {
3593 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3594 genesis_reset(hw
, i
);
3603 #ifdef CONFIG_SKGE_DEBUG
3605 static struct dentry
*skge_debug
;
3607 static int skge_debug_show(struct seq_file
*seq
, void *v
)
3609 struct net_device
*dev
= seq
->private;
3610 const struct skge_port
*skge
= netdev_priv(dev
);
3611 const struct skge_hw
*hw
= skge
->hw
;
3612 const struct skge_element
*e
;
3614 if (!netif_running(dev
))
3617 seq_printf(seq
, "IRQ src=%x mask=%x\n", skge_read32(hw
, B0_ISRC
),
3618 skge_read32(hw
, B0_IMSK
));
3620 seq_printf(seq
, "Tx Ring: (%d)\n", skge_avail(&skge
->tx_ring
));
3621 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
3622 const struct skge_tx_desc
*t
= e
->desc
;
3623 seq_printf(seq
, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3624 t
->control
, t
->dma_hi
, t
->dma_lo
, t
->status
,
3625 t
->csum_offs
, t
->csum_write
, t
->csum_start
);
3628 seq_printf(seq
, "\nRx Ring:\n");
3629 for (e
= skge
->rx_ring
.to_clean
; ; e
= e
->next
) {
3630 const struct skge_rx_desc
*r
= e
->desc
;
3632 if (r
->control
& BMU_OWN
)
3635 seq_printf(seq
, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3636 r
->control
, r
->dma_hi
, r
->dma_lo
, r
->status
,
3637 r
->timestamp
, r
->csum1
, r
->csum1_start
);
3643 static int skge_debug_open(struct inode
*inode
, struct file
*file
)
3645 return single_open(file
, skge_debug_show
, inode
->i_private
);
3648 static const struct file_operations skge_debug_fops
= {
3649 .owner
= THIS_MODULE
,
3650 .open
= skge_debug_open
,
3652 .llseek
= seq_lseek
,
3653 .release
= single_release
,
3657 * Use network device events to create/remove/rename
3658 * debugfs file entries
3660 static int skge_device_event(struct notifier_block
*unused
,
3661 unsigned long event
, void *ptr
)
3663 struct net_device
*dev
= ptr
;
3664 struct skge_port
*skge
;
3667 if (dev
->netdev_ops
->ndo_open
!= &skge_up
|| !skge_debug
)
3670 skge
= netdev_priv(dev
);
3672 case NETDEV_CHANGENAME
:
3673 if (skge
->debugfs
) {
3674 d
= debugfs_rename(skge_debug
, skge
->debugfs
,
3675 skge_debug
, dev
->name
);
3679 netdev_info(dev
, "rename failed\n");
3680 debugfs_remove(skge
->debugfs
);
3685 case NETDEV_GOING_DOWN
:
3686 if (skge
->debugfs
) {
3687 debugfs_remove(skge
->debugfs
);
3688 skge
->debugfs
= NULL
;
3693 d
= debugfs_create_file(dev
->name
, S_IRUGO
,
3696 if (!d
|| IS_ERR(d
))
3697 netdev_info(dev
, "debugfs create failed\n");
3707 static struct notifier_block skge_notifier
= {
3708 .notifier_call
= skge_device_event
,
3712 static __init
void skge_debug_init(void)
3716 ent
= debugfs_create_dir("skge", NULL
);
3717 if (!ent
|| IS_ERR(ent
)) {
3718 pr_info("debugfs create directory failed\n");
3723 register_netdevice_notifier(&skge_notifier
);
3726 static __exit
void skge_debug_cleanup(void)
3729 unregister_netdevice_notifier(&skge_notifier
);
3730 debugfs_remove(skge_debug
);
3736 #define skge_debug_init()
3737 #define skge_debug_cleanup()
3740 static const struct net_device_ops skge_netdev_ops
= {
3741 .ndo_open
= skge_up
,
3742 .ndo_stop
= skge_down
,
3743 .ndo_start_xmit
= skge_xmit_frame
,
3744 .ndo_do_ioctl
= skge_ioctl
,
3745 .ndo_get_stats
= skge_get_stats
,
3746 .ndo_tx_timeout
= skge_tx_timeout
,
3747 .ndo_change_mtu
= skge_change_mtu
,
3748 .ndo_validate_addr
= eth_validate_addr
,
3749 .ndo_set_multicast_list
= skge_set_multicast
,
3750 .ndo_set_mac_address
= skge_set_mac_address
,
3751 #ifdef CONFIG_NET_POLL_CONTROLLER
3752 .ndo_poll_controller
= skge_netpoll
,
3757 /* Initialize network device */
3758 static struct net_device
*skge_devinit(struct skge_hw
*hw
, int port
,
3761 struct skge_port
*skge
;
3762 struct net_device
*dev
= alloc_etherdev(sizeof(*skge
));
3765 dev_err(&hw
->pdev
->dev
, "etherdev alloc failed\n");
3769 SET_NETDEV_DEV(dev
, &hw
->pdev
->dev
);
3770 dev
->netdev_ops
= &skge_netdev_ops
;
3771 dev
->ethtool_ops
= &skge_ethtool_ops
;
3772 dev
->watchdog_timeo
= TX_WATCHDOG
;
3773 dev
->irq
= hw
->pdev
->irq
;
3776 dev
->features
|= NETIF_F_HIGHDMA
;
3778 skge
= netdev_priv(dev
);
3779 netif_napi_add(dev
, &skge
->napi
, skge_poll
, NAPI_WEIGHT
);
3782 skge
->msg_enable
= netif_msg_init(debug
, default_msg
);
3784 skge
->tx_ring
.count
= DEFAULT_TX_RING_SIZE
;
3785 skge
->rx_ring
.count
= DEFAULT_RX_RING_SIZE
;
3787 /* Auto speed and flow control */
3788 skge
->autoneg
= AUTONEG_ENABLE
;
3789 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
3792 skge
->advertising
= skge_supported_modes(hw
);
3794 if (device_can_wakeup(&hw
->pdev
->dev
)) {
3795 skge
->wol
= wol_supported(hw
) & WAKE_MAGIC
;
3796 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
3799 hw
->dev
[port
] = dev
;
3803 /* Only used for Genesis XMAC */
3804 setup_timer(&skge
->link_timer
, xm_link_timer
, (unsigned long) skge
);
3806 if (hw
->chip_id
!= CHIP_ID_GENESIS
) {
3807 dev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
3809 dev
->features
|= dev
->hw_features
;
3812 /* read the mac address */
3813 memcpy_fromio(dev
->dev_addr
, hw
->regs
+ B2_MAC_1
+ port
*8, ETH_ALEN
);
3814 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
3819 static void __devinit
skge_show_addr(struct net_device
*dev
)
3821 const struct skge_port
*skge
= netdev_priv(dev
);
3823 netif_info(skge
, probe
, skge
->netdev
, "addr %pM\n", dev
->dev_addr
);
3826 static int only_32bit_dma
;
3828 static int __devinit
skge_probe(struct pci_dev
*pdev
,
3829 const struct pci_device_id
*ent
)
3831 struct net_device
*dev
, *dev1
;
3833 int err
, using_dac
= 0;
3835 err
= pci_enable_device(pdev
);
3837 dev_err(&pdev
->dev
, "cannot enable PCI device\n");
3841 err
= pci_request_regions(pdev
, DRV_NAME
);
3843 dev_err(&pdev
->dev
, "cannot obtain PCI resources\n");
3844 goto err_out_disable_pdev
;
3847 pci_set_master(pdev
);
3849 if (!only_32bit_dma
&& !pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
3851 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
3852 } else if (!(err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))) {
3854 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
3858 dev_err(&pdev
->dev
, "no usable DMA configuration\n");
3859 goto err_out_free_regions
;
3863 /* byte swap descriptors in hardware */
3867 pci_read_config_dword(pdev
, PCI_DEV_REG2
, ®
);
3868 reg
|= PCI_REV_DESC
;
3869 pci_write_config_dword(pdev
, PCI_DEV_REG2
, reg
);
3874 /* space for skge@pci:0000:04:00.0 */
3875 hw
= kzalloc(sizeof(*hw
) + strlen(DRV_NAME
"@pci:")
3876 + strlen(pci_name(pdev
)) + 1, GFP_KERNEL
);
3878 dev_err(&pdev
->dev
, "cannot allocate hardware struct\n");
3879 goto err_out_free_regions
;
3881 sprintf(hw
->irq_name
, DRV_NAME
"@pci:%s", pci_name(pdev
));
3884 spin_lock_init(&hw
->hw_lock
);
3885 spin_lock_init(&hw
->phy_lock
);
3886 tasklet_init(&hw
->phy_task
, skge_extirq
, (unsigned long) hw
);
3888 hw
->regs
= ioremap_nocache(pci_resource_start(pdev
, 0), 0x4000);
3890 dev_err(&pdev
->dev
, "cannot map device registers\n");
3891 goto err_out_free_hw
;
3894 err
= skge_reset(hw
);
3896 goto err_out_iounmap
;
3898 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3900 (unsigned long long)pci_resource_start(pdev
, 0), pdev
->irq
,
3901 skge_board_name(hw
), hw
->chip_rev
);
3903 dev
= skge_devinit(hw
, 0, using_dac
);
3905 goto err_out_led_off
;
3907 /* Some motherboards are broken and has zero in ROM. */
3908 if (!is_valid_ether_addr(dev
->dev_addr
))
3909 dev_warn(&pdev
->dev
, "bad (zero?) ethernet address in rom\n");
3911 err
= register_netdev(dev
);
3913 dev_err(&pdev
->dev
, "cannot register net device\n");
3914 goto err_out_free_netdev
;
3917 err
= request_irq(pdev
->irq
, skge_intr
, IRQF_SHARED
, hw
->irq_name
, hw
);
3919 dev_err(&pdev
->dev
, "%s: cannot assign irq %d\n",
3920 dev
->name
, pdev
->irq
);
3921 goto err_out_unregister
;
3923 skge_show_addr(dev
);
3925 if (hw
->ports
> 1) {
3926 dev1
= skge_devinit(hw
, 1, using_dac
);
3927 if (dev1
&& register_netdev(dev1
) == 0)
3928 skge_show_addr(dev1
);
3930 /* Failure to register second port need not be fatal */
3931 dev_warn(&pdev
->dev
, "register of second port failed\n");
3938 pci_set_drvdata(pdev
, hw
);
3943 unregister_netdev(dev
);
3944 err_out_free_netdev
:
3947 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
3952 err_out_free_regions
:
3953 pci_release_regions(pdev
);
3954 err_out_disable_pdev
:
3955 pci_disable_device(pdev
);
3956 pci_set_drvdata(pdev
, NULL
);
3961 static void __devexit
skge_remove(struct pci_dev
*pdev
)
3963 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3964 struct net_device
*dev0
, *dev1
;
3971 unregister_netdev(dev1
);
3973 unregister_netdev(dev0
);
3975 tasklet_disable(&hw
->phy_task
);
3977 spin_lock_irq(&hw
->hw_lock
);
3979 skge_write32(hw
, B0_IMSK
, 0);
3980 skge_read32(hw
, B0_IMSK
);
3981 spin_unlock_irq(&hw
->hw_lock
);
3983 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
3984 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3986 free_irq(pdev
->irq
, hw
);
3987 pci_release_regions(pdev
);
3988 pci_disable_device(pdev
);
3995 pci_set_drvdata(pdev
, NULL
);
3999 static int skge_suspend(struct device
*dev
)
4001 struct pci_dev
*pdev
= to_pci_dev(dev
);
4002 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4008 for (i
= 0; i
< hw
->ports
; i
++) {
4009 struct net_device
*dev
= hw
->dev
[i
];
4010 struct skge_port
*skge
= netdev_priv(dev
);
4012 if (netif_running(dev
))
4016 skge_wol_init(skge
);
4019 skge_write32(hw
, B0_IMSK
, 0);
4024 static int skge_resume(struct device
*dev
)
4026 struct pci_dev
*pdev
= to_pci_dev(dev
);
4027 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4033 err
= skge_reset(hw
);
4037 for (i
= 0; i
< hw
->ports
; i
++) {
4038 struct net_device
*dev
= hw
->dev
[i
];
4040 if (netif_running(dev
)) {
4044 netdev_err(dev
, "could not up: %d\n", err
);
4054 static SIMPLE_DEV_PM_OPS(skge_pm_ops
, skge_suspend
, skge_resume
);
4055 #define SKGE_PM_OPS (&skge_pm_ops)
4059 #define SKGE_PM_OPS NULL
4062 static void skge_shutdown(struct pci_dev
*pdev
)
4064 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4070 for (i
= 0; i
< hw
->ports
; i
++) {
4071 struct net_device
*dev
= hw
->dev
[i
];
4072 struct skge_port
*skge
= netdev_priv(dev
);
4075 skge_wol_init(skge
);
4078 pci_wake_from_d3(pdev
, device_may_wakeup(&pdev
->dev
));
4079 pci_set_power_state(pdev
, PCI_D3hot
);
4082 static struct pci_driver skge_driver
= {
4084 .id_table
= skge_id_table
,
4085 .probe
= skge_probe
,
4086 .remove
= __devexit_p(skge_remove
),
4087 .shutdown
= skge_shutdown
,
4088 .driver
.pm
= SKGE_PM_OPS
,
4091 static struct dmi_system_id skge_32bit_dma_boards
[] = {
4093 .ident
= "Gigabyte nForce boards",
4095 DMI_MATCH(DMI_BOARD_VENDOR
, "Gigabyte Technology Co"),
4096 DMI_MATCH(DMI_BOARD_NAME
, "nForce"),
4102 static int __init
skge_init_module(void)
4104 if (dmi_check_system(skge_32bit_dma_boards
))
4107 return pci_register_driver(&skge_driver
);
4110 static void __exit
skge_cleanup_module(void)
4112 pci_unregister_driver(&skge_driver
);
4113 skge_debug_cleanup();
4116 module_init(skge_init_module
);
4117 module_exit(skge_cleanup_module
);