1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
11 * Nicholas A. Bellinger <nab@kernel.org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 ******************************************************************************/
29 #include <linux/version.h>
30 #include <linux/net.h>
31 #include <linux/delay.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/slab.h>
35 #include <linux/blkdev.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp_lock.h>
38 #include <linux/kthread.h>
40 #include <linux/cdrom.h>
41 #include <asm/unaligned.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/libsas.h> /* For TASK_ATTR_* */
48 #include <target/target_core_base.h>
49 #include <target/target_core_device.h>
50 #include <target/target_core_tmr.h>
51 #include <target/target_core_tpg.h>
52 #include <target/target_core_transport.h>
53 #include <target/target_core_fabric_ops.h>
54 #include <target/target_core_configfs.h>
56 #include "target_core_alua.h"
57 #include "target_core_hba.h"
58 #include "target_core_pr.h"
59 #include "target_core_scdb.h"
60 #include "target_core_ua.h"
62 /* #define DEBUG_CDB_HANDLER */
63 #ifdef DEBUG_CDB_HANDLER
64 #define DEBUG_CDB_H(x...) printk(KERN_INFO x)
66 #define DEBUG_CDB_H(x...)
69 /* #define DEBUG_CMD_MAP */
71 #define DEBUG_CMD_M(x...) printk(KERN_INFO x)
73 #define DEBUG_CMD_M(x...)
76 /* #define DEBUG_MEM_ALLOC */
77 #ifdef DEBUG_MEM_ALLOC
78 #define DEBUG_MEM(x...) printk(KERN_INFO x)
80 #define DEBUG_MEM(x...)
83 /* #define DEBUG_MEM2_ALLOC */
84 #ifdef DEBUG_MEM2_ALLOC
85 #define DEBUG_MEM2(x...) printk(KERN_INFO x)
87 #define DEBUG_MEM2(x...)
90 /* #define DEBUG_SG_CALC */
92 #define DEBUG_SC(x...) printk(KERN_INFO x)
94 #define DEBUG_SC(x...)
97 /* #define DEBUG_SE_OBJ */
99 #define DEBUG_SO(x...) printk(KERN_INFO x)
101 #define DEBUG_SO(x...)
104 /* #define DEBUG_CMD_VOL */
106 #define DEBUG_VOL(x...) printk(KERN_INFO x)
108 #define DEBUG_VOL(x...)
111 /* #define DEBUG_CMD_STOP */
112 #ifdef DEBUG_CMD_STOP
113 #define DEBUG_CS(x...) printk(KERN_INFO x)
115 #define DEBUG_CS(x...)
118 /* #define DEBUG_PASSTHROUGH */
119 #ifdef DEBUG_PASSTHROUGH
120 #define DEBUG_PT(x...) printk(KERN_INFO x)
122 #define DEBUG_PT(x...)
125 /* #define DEBUG_TASK_STOP */
126 #ifdef DEBUG_TASK_STOP
127 #define DEBUG_TS(x...) printk(KERN_INFO x)
129 #define DEBUG_TS(x...)
132 /* #define DEBUG_TRANSPORT_STOP */
133 #ifdef DEBUG_TRANSPORT_STOP
134 #define DEBUG_TRANSPORT_S(x...) printk(KERN_INFO x)
136 #define DEBUG_TRANSPORT_S(x...)
139 /* #define DEBUG_TASK_FAILURE */
140 #ifdef DEBUG_TASK_FAILURE
141 #define DEBUG_TF(x...) printk(KERN_INFO x)
143 #define DEBUG_TF(x...)
146 /* #define DEBUG_DEV_OFFLINE */
147 #ifdef DEBUG_DEV_OFFLINE
148 #define DEBUG_DO(x...) printk(KERN_INFO x)
150 #define DEBUG_DO(x...)
153 /* #define DEBUG_TASK_STATE */
154 #ifdef DEBUG_TASK_STATE
155 #define DEBUG_TSTATE(x...) printk(KERN_INFO x)
157 #define DEBUG_TSTATE(x...)
160 /* #define DEBUG_STATUS_THR */
161 #ifdef DEBUG_STATUS_THR
162 #define DEBUG_ST(x...) printk(KERN_INFO x)
164 #define DEBUG_ST(x...)
167 /* #define DEBUG_TASK_TIMEOUT */
168 #ifdef DEBUG_TASK_TIMEOUT
169 #define DEBUG_TT(x...) printk(KERN_INFO x)
171 #define DEBUG_TT(x...)
174 /* #define DEBUG_GENERIC_REQUEST_FAILURE */
175 #ifdef DEBUG_GENERIC_REQUEST_FAILURE
176 #define DEBUG_GRF(x...) printk(KERN_INFO x)
178 #define DEBUG_GRF(x...)
181 /* #define DEBUG_SAM_TASK_ATTRS */
182 #ifdef DEBUG_SAM_TASK_ATTRS
183 #define DEBUG_STA(x...) printk(KERN_INFO x)
185 #define DEBUG_STA(x...)
188 struct se_global
*se_global
;
190 static struct kmem_cache
*se_cmd_cache
;
191 static struct kmem_cache
*se_sess_cache
;
192 struct kmem_cache
*se_tmr_req_cache
;
193 struct kmem_cache
*se_ua_cache
;
194 struct kmem_cache
*se_mem_cache
;
195 struct kmem_cache
*t10_pr_reg_cache
;
196 struct kmem_cache
*t10_alua_lu_gp_cache
;
197 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
198 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
199 struct kmem_cache
*t10_alua_tg_pt_gp_mem_cache
;
201 /* Used for transport_dev_get_map_*() */
202 typedef int (*map_func_t
)(struct se_task
*, u32
);
204 static int transport_generic_write_pending(struct se_cmd
*);
205 static int transport_processing_thread(void *);
206 static int __transport_execute_tasks(struct se_device
*dev
);
207 static void transport_complete_task_attr(struct se_cmd
*cmd
);
208 static void transport_direct_request_timeout(struct se_cmd
*cmd
);
209 static void transport_free_dev_tasks(struct se_cmd
*cmd
);
210 static u32
transport_generic_get_cdb_count(struct se_cmd
*cmd
,
211 unsigned long long starting_lba
, u32 sectors
,
212 enum dma_data_direction data_direction
,
213 struct list_head
*mem_list
, int set_counts
);
214 static int transport_generic_get_mem(struct se_cmd
*cmd
, u32 length
,
216 static int transport_generic_remove(struct se_cmd
*cmd
,
217 int release_to_pool
, int session_reinstatement
);
218 static int transport_get_sectors(struct se_cmd
*cmd
);
219 static struct list_head
*transport_init_se_mem_list(void);
220 static int transport_map_sg_to_mem(struct se_cmd
*cmd
,
221 struct list_head
*se_mem_list
, void *in_mem
,
223 static void transport_memcpy_se_mem_read_contig(struct se_cmd
*cmd
,
224 unsigned char *dst
, struct list_head
*se_mem_list
);
225 static void transport_release_fe_cmd(struct se_cmd
*cmd
);
226 static void transport_remove_cmd_from_queue(struct se_cmd
*cmd
,
227 struct se_queue_obj
*qobj
);
228 static int transport_set_sense_codes(struct se_cmd
*cmd
, u8 asc
, u8 ascq
);
229 static void transport_stop_all_task_timers(struct se_cmd
*cmd
);
231 int transport_emulate_control_cdb(struct se_task
*task
);
233 int init_se_global(void)
235 struct se_global
*global
;
237 global
= kzalloc(sizeof(struct se_global
), GFP_KERNEL
);
239 printk(KERN_ERR
"Unable to allocate memory for struct se_global\n");
243 INIT_LIST_HEAD(&global
->g_lu_gps_list
);
244 INIT_LIST_HEAD(&global
->g_se_tpg_list
);
245 INIT_LIST_HEAD(&global
->g_hba_list
);
246 INIT_LIST_HEAD(&global
->g_se_dev_list
);
247 spin_lock_init(&global
->g_device_lock
);
248 spin_lock_init(&global
->hba_lock
);
249 spin_lock_init(&global
->se_tpg_lock
);
250 spin_lock_init(&global
->lu_gps_lock
);
251 spin_lock_init(&global
->plugin_class_lock
);
253 se_cmd_cache
= kmem_cache_create("se_cmd_cache",
254 sizeof(struct se_cmd
), __alignof__(struct se_cmd
), 0, NULL
);
255 if (!(se_cmd_cache
)) {
256 printk(KERN_ERR
"kmem_cache_create for struct se_cmd failed\n");
259 se_tmr_req_cache
= kmem_cache_create("se_tmr_cache",
260 sizeof(struct se_tmr_req
), __alignof__(struct se_tmr_req
),
262 if (!(se_tmr_req_cache
)) {
263 printk(KERN_ERR
"kmem_cache_create() for struct se_tmr_req"
267 se_sess_cache
= kmem_cache_create("se_sess_cache",
268 sizeof(struct se_session
), __alignof__(struct se_session
),
270 if (!(se_sess_cache
)) {
271 printk(KERN_ERR
"kmem_cache_create() for struct se_session"
275 se_ua_cache
= kmem_cache_create("se_ua_cache",
276 sizeof(struct se_ua
), __alignof__(struct se_ua
),
278 if (!(se_ua_cache
)) {
279 printk(KERN_ERR
"kmem_cache_create() for struct se_ua failed\n");
282 se_mem_cache
= kmem_cache_create("se_mem_cache",
283 sizeof(struct se_mem
), __alignof__(struct se_mem
), 0, NULL
);
284 if (!(se_mem_cache
)) {
285 printk(KERN_ERR
"kmem_cache_create() for struct se_mem failed\n");
288 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
289 sizeof(struct t10_pr_registration
),
290 __alignof__(struct t10_pr_registration
), 0, NULL
);
291 if (!(t10_pr_reg_cache
)) {
292 printk(KERN_ERR
"kmem_cache_create() for struct t10_pr_registration"
296 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
297 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
299 if (!(t10_alua_lu_gp_cache
)) {
300 printk(KERN_ERR
"kmem_cache_create() for t10_alua_lu_gp_cache"
304 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
305 sizeof(struct t10_alua_lu_gp_member
),
306 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
307 if (!(t10_alua_lu_gp_mem_cache
)) {
308 printk(KERN_ERR
"kmem_cache_create() for t10_alua_lu_gp_mem_"
312 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
313 sizeof(struct t10_alua_tg_pt_gp
),
314 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
315 if (!(t10_alua_tg_pt_gp_cache
)) {
316 printk(KERN_ERR
"kmem_cache_create() for t10_alua_tg_pt_gp_"
320 t10_alua_tg_pt_gp_mem_cache
= kmem_cache_create(
321 "t10_alua_tg_pt_gp_mem_cache",
322 sizeof(struct t10_alua_tg_pt_gp_member
),
323 __alignof__(struct t10_alua_tg_pt_gp_member
),
325 if (!(t10_alua_tg_pt_gp_mem_cache
)) {
326 printk(KERN_ERR
"kmem_cache_create() for t10_alua_tg_pt_gp_"
336 kmem_cache_destroy(se_cmd_cache
);
337 if (se_tmr_req_cache
)
338 kmem_cache_destroy(se_tmr_req_cache
);
340 kmem_cache_destroy(se_sess_cache
);
342 kmem_cache_destroy(se_ua_cache
);
344 kmem_cache_destroy(se_mem_cache
);
345 if (t10_pr_reg_cache
)
346 kmem_cache_destroy(t10_pr_reg_cache
);
347 if (t10_alua_lu_gp_cache
)
348 kmem_cache_destroy(t10_alua_lu_gp_cache
);
349 if (t10_alua_lu_gp_mem_cache
)
350 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
351 if (t10_alua_tg_pt_gp_cache
)
352 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
353 if (t10_alua_tg_pt_gp_mem_cache
)
354 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
359 void release_se_global(void)
361 struct se_global
*global
;
367 kmem_cache_destroy(se_cmd_cache
);
368 kmem_cache_destroy(se_tmr_req_cache
);
369 kmem_cache_destroy(se_sess_cache
);
370 kmem_cache_destroy(se_ua_cache
);
371 kmem_cache_destroy(se_mem_cache
);
372 kmem_cache_destroy(t10_pr_reg_cache
);
373 kmem_cache_destroy(t10_alua_lu_gp_cache
);
374 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
375 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
376 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
382 void transport_init_queue_obj(struct se_queue_obj
*qobj
)
384 atomic_set(&qobj
->queue_cnt
, 0);
385 INIT_LIST_HEAD(&qobj
->qobj_list
);
386 init_waitqueue_head(&qobj
->thread_wq
);
387 spin_lock_init(&qobj
->cmd_queue_lock
);
389 EXPORT_SYMBOL(transport_init_queue_obj
);
391 static int transport_subsystem_reqmods(void)
395 ret
= request_module("target_core_iblock");
397 printk(KERN_ERR
"Unable to load target_core_iblock\n");
399 ret
= request_module("target_core_file");
401 printk(KERN_ERR
"Unable to load target_core_file\n");
403 ret
= request_module("target_core_pscsi");
405 printk(KERN_ERR
"Unable to load target_core_pscsi\n");
407 ret
= request_module("target_core_stgt");
409 printk(KERN_ERR
"Unable to load target_core_stgt\n");
414 int transport_subsystem_check_init(void)
416 if (se_global
->g_sub_api_initialized
)
419 * Request the loading of known TCM subsystem plugins..
421 if (transport_subsystem_reqmods() < 0)
424 se_global
->g_sub_api_initialized
= 1;
428 struct se_session
*transport_init_session(void)
430 struct se_session
*se_sess
;
432 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
434 printk(KERN_ERR
"Unable to allocate struct se_session from"
436 return ERR_PTR(-ENOMEM
);
438 INIT_LIST_HEAD(&se_sess
->sess_list
);
439 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
440 atomic_set(&se_sess
->mib_ref_count
, 0);
444 EXPORT_SYMBOL(transport_init_session
);
447 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
449 void __transport_register_session(
450 struct se_portal_group
*se_tpg
,
451 struct se_node_acl
*se_nacl
,
452 struct se_session
*se_sess
,
453 void *fabric_sess_ptr
)
455 unsigned char buf
[PR_REG_ISID_LEN
];
457 se_sess
->se_tpg
= se_tpg
;
458 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
460 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
462 * Only set for struct se_session's that will actually be moving I/O.
463 * eg: *NOT* discovery sessions.
467 * If the fabric module supports an ISID based TransportID,
468 * save this value in binary from the fabric I_T Nexus now.
470 if (TPG_TFO(se_tpg
)->sess_get_initiator_sid
!= NULL
) {
471 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
472 TPG_TFO(se_tpg
)->sess_get_initiator_sid(se_sess
,
473 &buf
[0], PR_REG_ISID_LEN
);
474 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
476 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
478 * The se_nacl->nacl_sess pointer will be set to the
479 * last active I_T Nexus for each struct se_node_acl.
481 se_nacl
->nacl_sess
= se_sess
;
483 list_add_tail(&se_sess
->sess_acl_list
,
484 &se_nacl
->acl_sess_list
);
485 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
487 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
489 printk(KERN_INFO
"TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
490 TPG_TFO(se_tpg
)->get_fabric_name(), se_sess
->fabric_sess_ptr
);
492 EXPORT_SYMBOL(__transport_register_session
);
494 void transport_register_session(
495 struct se_portal_group
*se_tpg
,
496 struct se_node_acl
*se_nacl
,
497 struct se_session
*se_sess
,
498 void *fabric_sess_ptr
)
500 spin_lock_bh(&se_tpg
->session_lock
);
501 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
502 spin_unlock_bh(&se_tpg
->session_lock
);
504 EXPORT_SYMBOL(transport_register_session
);
506 void transport_deregister_session_configfs(struct se_session
*se_sess
)
508 struct se_node_acl
*se_nacl
;
511 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
513 se_nacl
= se_sess
->se_node_acl
;
515 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
516 list_del(&se_sess
->sess_acl_list
);
518 * If the session list is empty, then clear the pointer.
519 * Otherwise, set the struct se_session pointer from the tail
520 * element of the per struct se_node_acl active session list.
522 if (list_empty(&se_nacl
->acl_sess_list
))
523 se_nacl
->nacl_sess
= NULL
;
525 se_nacl
->nacl_sess
= container_of(
526 se_nacl
->acl_sess_list
.prev
,
527 struct se_session
, sess_acl_list
);
529 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
532 EXPORT_SYMBOL(transport_deregister_session_configfs
);
534 void transport_free_session(struct se_session
*se_sess
)
536 kmem_cache_free(se_sess_cache
, se_sess
);
538 EXPORT_SYMBOL(transport_free_session
);
540 void transport_deregister_session(struct se_session
*se_sess
)
542 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
543 struct se_node_acl
*se_nacl
;
546 transport_free_session(se_sess
);
550 * Wait for possible reference in drivers/target/target_core_mib.c:
551 * scsi_att_intr_port_seq_show()
553 while (atomic_read(&se_sess
->mib_ref_count
) != 0)
556 spin_lock_bh(&se_tpg
->session_lock
);
557 list_del(&se_sess
->sess_list
);
558 se_sess
->se_tpg
= NULL
;
559 se_sess
->fabric_sess_ptr
= NULL
;
560 spin_unlock_bh(&se_tpg
->session_lock
);
563 * Determine if we need to do extra work for this initiator node's
564 * struct se_node_acl if it had been previously dynamically generated.
566 se_nacl
= se_sess
->se_node_acl
;
568 spin_lock_bh(&se_tpg
->acl_node_lock
);
569 if (se_nacl
->dynamic_node_acl
) {
570 if (!(TPG_TFO(se_tpg
)->tpg_check_demo_mode_cache(
572 list_del(&se_nacl
->acl_list
);
573 se_tpg
->num_node_acls
--;
574 spin_unlock_bh(&se_tpg
->acl_node_lock
);
576 core_tpg_wait_for_nacl_pr_ref(se_nacl
);
577 core_tpg_wait_for_mib_ref(se_nacl
);
578 core_free_device_list_for_node(se_nacl
, se_tpg
);
579 TPG_TFO(se_tpg
)->tpg_release_fabric_acl(se_tpg
,
581 spin_lock_bh(&se_tpg
->acl_node_lock
);
584 spin_unlock_bh(&se_tpg
->acl_node_lock
);
587 transport_free_session(se_sess
);
589 printk(KERN_INFO
"TARGET_CORE[%s]: Deregistered fabric_sess\n",
590 TPG_TFO(se_tpg
)->get_fabric_name());
592 EXPORT_SYMBOL(transport_deregister_session
);
595 * Called with T_TASK(cmd)->t_state_lock held.
597 static void transport_all_task_dev_remove_state(struct se_cmd
*cmd
)
599 struct se_device
*dev
;
600 struct se_task
*task
;
606 list_for_each_entry(task
, &T_TASK(cmd
)->t_task_list
, t_list
) {
611 if (atomic_read(&task
->task_active
))
614 if (!(atomic_read(&task
->task_state_active
)))
617 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
618 list_del(&task
->t_state_list
);
619 DEBUG_TSTATE("Removed ITT: 0x%08x dev: %p task[%p]\n",
620 CMD_TFO(cmd
)->tfo_get_task_tag(cmd
), dev
, task
);
621 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
623 atomic_set(&task
->task_state_active
, 0);
624 atomic_dec(&T_TASK(cmd
)->t_task_cdbs_ex_left
);
628 /* transport_cmd_check_stop():
630 * 'transport_off = 1' determines if t_transport_active should be cleared.
631 * 'transport_off = 2' determines if task_dev_state should be removed.
633 * A non-zero u8 t_state sets cmd->t_state.
634 * Returns 1 when command is stopped, else 0.
636 static int transport_cmd_check_stop(
643 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
645 * Determine if IOCTL context caller in requesting the stopping of this
646 * command for LUN shutdown purposes.
648 if (atomic_read(&T_TASK(cmd
)->transport_lun_stop
)) {
649 DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->transport_lun_stop)"
650 " == TRUE for ITT: 0x%08x\n", __func__
, __LINE__
,
651 CMD_TFO(cmd
)->get_task_tag(cmd
));
653 cmd
->deferred_t_state
= cmd
->t_state
;
654 cmd
->t_state
= TRANSPORT_DEFERRED_CMD
;
655 atomic_set(&T_TASK(cmd
)->t_transport_active
, 0);
656 if (transport_off
== 2)
657 transport_all_task_dev_remove_state(cmd
);
658 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
660 complete(&T_TASK(cmd
)->transport_lun_stop_comp
);
664 * Determine if frontend context caller is requesting the stopping of
665 * this command for frontend excpections.
667 if (atomic_read(&T_TASK(cmd
)->t_transport_stop
)) {
668 DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->t_transport_stop) =="
669 " TRUE for ITT: 0x%08x\n", __func__
, __LINE__
,
670 CMD_TFO(cmd
)->get_task_tag(cmd
));
672 cmd
->deferred_t_state
= cmd
->t_state
;
673 cmd
->t_state
= TRANSPORT_DEFERRED_CMD
;
674 if (transport_off
== 2)
675 transport_all_task_dev_remove_state(cmd
);
678 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
681 if (transport_off
== 2)
683 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
685 complete(&T_TASK(cmd
)->t_transport_stop_comp
);
689 atomic_set(&T_TASK(cmd
)->t_transport_active
, 0);
690 if (transport_off
== 2) {
691 transport_all_task_dev_remove_state(cmd
);
693 * Clear struct se_cmd->se_lun before the transport_off == 2
694 * handoff to fabric module.
698 * Some fabric modules like tcm_loop can release
699 * their internally allocated I/O refrence now and
702 if (CMD_TFO(cmd
)->check_stop_free
!= NULL
) {
703 spin_unlock_irqrestore(
704 &T_TASK(cmd
)->t_state_lock
, flags
);
706 CMD_TFO(cmd
)->check_stop_free(cmd
);
710 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
714 cmd
->t_state
= t_state
;
715 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
720 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
722 return transport_cmd_check_stop(cmd
, 2, 0);
725 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
727 struct se_lun
*lun
= SE_LUN(cmd
);
733 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
734 if (!(atomic_read(&T_TASK(cmd
)->transport_dev_active
))) {
735 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
738 atomic_set(&T_TASK(cmd
)->transport_dev_active
, 0);
739 transport_all_task_dev_remove_state(cmd
);
740 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
742 transport_free_dev_tasks(cmd
);
745 spin_lock_irqsave(&lun
->lun_cmd_lock
, flags
);
746 if (atomic_read(&T_TASK(cmd
)->transport_lun_active
)) {
747 list_del(&cmd
->se_lun_list
);
748 atomic_set(&T_TASK(cmd
)->transport_lun_active
, 0);
750 printk(KERN_INFO
"Removed ITT: 0x%08x from LUN LIST[%d]\n"
751 CMD_TFO(cmd
)->get_task_tag(cmd
), lun
->unpacked_lun
);
754 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, flags
);
757 void transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
759 transport_remove_cmd_from_queue(cmd
, SE_DEV(cmd
)->dev_queue_obj
);
760 transport_lun_remove_cmd(cmd
);
762 if (transport_cmd_check_stop_to_fabric(cmd
))
765 transport_generic_remove(cmd
, 0, 0);
768 void transport_cmd_finish_abort_tmr(struct se_cmd
*cmd
)
770 transport_remove_cmd_from_queue(cmd
, SE_DEV(cmd
)->dev_queue_obj
);
772 if (transport_cmd_check_stop_to_fabric(cmd
))
775 transport_generic_remove(cmd
, 0, 0);
778 static int transport_add_cmd_to_queue(
782 struct se_device
*dev
= cmd
->se_dev
;
783 struct se_queue_obj
*qobj
= dev
->dev_queue_obj
;
784 struct se_queue_req
*qr
;
787 qr
= kzalloc(sizeof(struct se_queue_req
), GFP_ATOMIC
);
789 printk(KERN_ERR
"Unable to allocate memory for"
790 " struct se_queue_req\n");
793 INIT_LIST_HEAD(&qr
->qr_list
);
795 qr
->cmd
= (void *)cmd
;
799 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
800 cmd
->t_state
= t_state
;
801 atomic_set(&T_TASK(cmd
)->t_transport_active
, 1);
802 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
805 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
806 list_add_tail(&qr
->qr_list
, &qobj
->qobj_list
);
807 atomic_inc(&T_TASK(cmd
)->t_transport_queue_active
);
808 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
810 atomic_inc(&qobj
->queue_cnt
);
811 wake_up_interruptible(&qobj
->thread_wq
);
816 * Called with struct se_queue_obj->cmd_queue_lock held.
818 static struct se_queue_req
*
819 __transport_get_qr_from_queue(struct se_queue_obj
*qobj
)
822 struct se_queue_req
*qr
= NULL
;
824 if (list_empty(&qobj
->qobj_list
))
827 list_for_each_entry(qr
, &qobj
->qobj_list
, qr_list
)
831 cmd
= (struct se_cmd
*)qr
->cmd
;
832 atomic_dec(&T_TASK(cmd
)->t_transport_queue_active
);
834 list_del(&qr
->qr_list
);
835 atomic_dec(&qobj
->queue_cnt
);
840 static struct se_queue_req
*
841 transport_get_qr_from_queue(struct se_queue_obj
*qobj
)
844 struct se_queue_req
*qr
;
847 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
848 if (list_empty(&qobj
->qobj_list
)) {
849 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
853 list_for_each_entry(qr
, &qobj
->qobj_list
, qr_list
)
857 cmd
= (struct se_cmd
*)qr
->cmd
;
858 atomic_dec(&T_TASK(cmd
)->t_transport_queue_active
);
860 list_del(&qr
->qr_list
);
861 atomic_dec(&qobj
->queue_cnt
);
862 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
867 static void transport_remove_cmd_from_queue(struct se_cmd
*cmd
,
868 struct se_queue_obj
*qobj
)
870 struct se_cmd
*q_cmd
;
871 struct se_queue_req
*qr
= NULL
, *qr_p
= NULL
;
874 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
875 if (!(atomic_read(&T_TASK(cmd
)->t_transport_queue_active
))) {
876 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
880 list_for_each_entry_safe(qr
, qr_p
, &qobj
->qobj_list
, qr_list
) {
881 q_cmd
= (struct se_cmd
*)qr
->cmd
;
885 atomic_dec(&T_TASK(q_cmd
)->t_transport_queue_active
);
886 atomic_dec(&qobj
->queue_cnt
);
887 list_del(&qr
->qr_list
);
890 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
892 if (atomic_read(&T_TASK(cmd
)->t_transport_queue_active
)) {
893 printk(KERN_ERR
"ITT: 0x%08x t_transport_queue_active: %d\n",
894 CMD_TFO(cmd
)->get_task_tag(cmd
),
895 atomic_read(&T_TASK(cmd
)->t_transport_queue_active
));
900 * Completion function used by TCM subsystem plugins (such as FILEIO)
901 * for queueing up response from struct se_subsystem_api->do_task()
903 void transport_complete_sync_cache(struct se_cmd
*cmd
, int good
)
905 struct se_task
*task
= list_entry(T_TASK(cmd
)->t_task_list
.next
,
906 struct se_task
, t_list
);
909 cmd
->scsi_status
= SAM_STAT_GOOD
;
910 task
->task_scsi_status
= GOOD
;
912 task
->task_scsi_status
= SAM_STAT_CHECK_CONDITION
;
913 task
->task_error_status
= PYX_TRANSPORT_ILLEGAL_REQUEST
;
914 TASK_CMD(task
)->transport_error_status
=
915 PYX_TRANSPORT_ILLEGAL_REQUEST
;
918 transport_complete_task(task
, good
);
920 EXPORT_SYMBOL(transport_complete_sync_cache
);
922 /* transport_complete_task():
924 * Called from interrupt and non interrupt context depending
925 * on the transport plugin.
927 void transport_complete_task(struct se_task
*task
, int success
)
929 struct se_cmd
*cmd
= TASK_CMD(task
);
930 struct se_device
*dev
= task
->se_dev
;
934 printk(KERN_INFO
"task: %p CDB: 0x%02x obj_ptr: %p\n", task
,
935 T_TASK(cmd
)->t_task_cdb
[0], dev
);
938 spin_lock_irqsave(&SE_HBA(dev
)->hba_queue_lock
, flags
);
939 atomic_inc(&dev
->depth_left
);
940 atomic_inc(&SE_HBA(dev
)->left_queue_depth
);
941 spin_unlock_irqrestore(&SE_HBA(dev
)->hba_queue_lock
, flags
);
944 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
945 atomic_set(&task
->task_active
, 0);
948 * See if any sense data exists, if so set the TASK_SENSE flag.
949 * Also check for any other post completion work that needs to be
950 * done by the plugins.
952 if (dev
&& dev
->transport
->transport_complete
) {
953 if (dev
->transport
->transport_complete(task
) != 0) {
954 cmd
->se_cmd_flags
|= SCF_TRANSPORT_TASK_SENSE
;
955 task
->task_sense
= 1;
961 * See if we are waiting for outstanding struct se_task
962 * to complete for an exception condition
964 if (atomic_read(&task
->task_stop
)) {
966 * Decrement T_TASK(cmd)->t_se_count if this task had
967 * previously thrown its timeout exception handler.
969 if (atomic_read(&task
->task_timeout
)) {
970 atomic_dec(&T_TASK(cmd
)->t_se_count
);
971 atomic_set(&task
->task_timeout
, 0);
973 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
975 complete(&task
->task_stop_comp
);
979 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
980 * left counter to determine when the struct se_cmd is ready to be queued to
981 * the processing thread.
983 if (atomic_read(&task
->task_timeout
)) {
984 if (!(atomic_dec_and_test(
985 &T_TASK(cmd
)->t_task_cdbs_timeout_left
))) {
986 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
990 t_state
= TRANSPORT_COMPLETE_TIMEOUT
;
991 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
993 transport_add_cmd_to_queue(cmd
, t_state
);
996 atomic_dec(&T_TASK(cmd
)->t_task_cdbs_timeout_left
);
999 * Decrement the outstanding t_task_cdbs_left count. The last
1000 * struct se_task from struct se_cmd will complete itself into the
1001 * device queue depending upon int success.
1003 if (!(atomic_dec_and_test(&T_TASK(cmd
)->t_task_cdbs_left
))) {
1005 T_TASK(cmd
)->t_tasks_failed
= 1;
1007 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
1011 if (!success
|| T_TASK(cmd
)->t_tasks_failed
) {
1012 t_state
= TRANSPORT_COMPLETE_FAILURE
;
1013 if (!task
->task_error_status
) {
1014 task
->task_error_status
=
1015 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE
;
1016 cmd
->transport_error_status
=
1017 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE
;
1020 atomic_set(&T_TASK(cmd
)->t_transport_complete
, 1);
1021 t_state
= TRANSPORT_COMPLETE_OK
;
1023 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
1025 transport_add_cmd_to_queue(cmd
, t_state
);
1027 EXPORT_SYMBOL(transport_complete_task
);
1030 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
1031 * struct se_task list are ready to be added to the active execution list
1034 * Called with se_dev_t->execute_task_lock called.
1036 static inline int transport_add_task_check_sam_attr(
1037 struct se_task
*task
,
1038 struct se_task
*task_prev
,
1039 struct se_device
*dev
)
1042 * No SAM Task attribute emulation enabled, add to tail of
1045 if (dev
->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
) {
1046 list_add_tail(&task
->t_execute_list
, &dev
->execute_task_list
);
1050 * HEAD_OF_QUEUE attribute for received CDB, which means
1051 * the first task that is associated with a struct se_cmd goes to
1052 * head of the struct se_device->execute_task_list, and task_prev
1053 * after that for each subsequent task
1055 if (task
->task_se_cmd
->sam_task_attr
== TASK_ATTR_HOQ
) {
1056 list_add(&task
->t_execute_list
,
1057 (task_prev
!= NULL
) ?
1058 &task_prev
->t_execute_list
:
1059 &dev
->execute_task_list
);
1061 DEBUG_STA("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
1062 " in execution queue\n",
1063 T_TASK(task
->task_se_cmd
)->t_task_cdb
[0]);
1067 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
1068 * transitioned from Dermant -> Active state, and are added to the end
1069 * of the struct se_device->execute_task_list
1071 list_add_tail(&task
->t_execute_list
, &dev
->execute_task_list
);
1075 /* __transport_add_task_to_execute_queue():
1077 * Called with se_dev_t->execute_task_lock called.
1079 static void __transport_add_task_to_execute_queue(
1080 struct se_task
*task
,
1081 struct se_task
*task_prev
,
1082 struct se_device
*dev
)
1086 head_of_queue
= transport_add_task_check_sam_attr(task
, task_prev
, dev
);
1087 atomic_inc(&dev
->execute_tasks
);
1089 if (atomic_read(&task
->task_state_active
))
1092 * Determine if this task needs to go to HEAD_OF_QUEUE for the
1093 * state list as well. Running with SAM Task Attribute emulation
1094 * will always return head_of_queue == 0 here
1097 list_add(&task
->t_state_list
, (task_prev
) ?
1098 &task_prev
->t_state_list
:
1099 &dev
->state_task_list
);
1101 list_add_tail(&task
->t_state_list
, &dev
->state_task_list
);
1103 atomic_set(&task
->task_state_active
, 1);
1105 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1106 CMD_TFO(task
->task_se_cmd
)->get_task_tag(task
->task_se_cmd
),
1110 static void transport_add_tasks_to_state_queue(struct se_cmd
*cmd
)
1112 struct se_device
*dev
;
1113 struct se_task
*task
;
1114 unsigned long flags
;
1116 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
1117 list_for_each_entry(task
, &T_TASK(cmd
)->t_task_list
, t_list
) {
1120 if (atomic_read(&task
->task_state_active
))
1123 spin_lock(&dev
->execute_task_lock
);
1124 list_add_tail(&task
->t_state_list
, &dev
->state_task_list
);
1125 atomic_set(&task
->task_state_active
, 1);
1127 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1128 CMD_TFO(task
->task_se_cmd
)->get_task_tag(
1129 task
->task_se_cmd
), task
, dev
);
1131 spin_unlock(&dev
->execute_task_lock
);
1133 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
1136 static void transport_add_tasks_from_cmd(struct se_cmd
*cmd
)
1138 struct se_device
*dev
= SE_DEV(cmd
);
1139 struct se_task
*task
, *task_prev
= NULL
;
1140 unsigned long flags
;
1142 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
1143 list_for_each_entry(task
, &T_TASK(cmd
)->t_task_list
, t_list
) {
1144 if (atomic_read(&task
->task_execute_queue
))
1147 * __transport_add_task_to_execute_queue() handles the
1148 * SAM Task Attribute emulation if enabled
1150 __transport_add_task_to_execute_queue(task
, task_prev
, dev
);
1151 atomic_set(&task
->task_execute_queue
, 1);
1154 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
1159 /* transport_get_task_from_execute_queue():
1161 * Called with dev->execute_task_lock held.
1163 static struct se_task
*
1164 transport_get_task_from_execute_queue(struct se_device
*dev
)
1166 struct se_task
*task
;
1168 if (list_empty(&dev
->execute_task_list
))
1171 list_for_each_entry(task
, &dev
->execute_task_list
, t_execute_list
)
1174 list_del(&task
->t_execute_list
);
1175 atomic_dec(&dev
->execute_tasks
);
1180 /* transport_remove_task_from_execute_queue():
1184 static void transport_remove_task_from_execute_queue(
1185 struct se_task
*task
,
1186 struct se_device
*dev
)
1188 unsigned long flags
;
1190 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
1191 list_del(&task
->t_execute_list
);
1192 atomic_dec(&dev
->execute_tasks
);
1193 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
1196 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
1198 switch (cmd
->data_direction
) {
1201 case DMA_FROM_DEVICE
:
1205 case DMA_BIDIRECTIONAL
:
1214 void transport_dump_dev_state(
1215 struct se_device
*dev
,
1219 *bl
+= sprintf(b
+ *bl
, "Status: ");
1220 switch (dev
->dev_status
) {
1221 case TRANSPORT_DEVICE_ACTIVATED
:
1222 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
1224 case TRANSPORT_DEVICE_DEACTIVATED
:
1225 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
1227 case TRANSPORT_DEVICE_SHUTDOWN
:
1228 *bl
+= sprintf(b
+ *bl
, "SHUTDOWN");
1230 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED
:
1231 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED
:
1232 *bl
+= sprintf(b
+ *bl
, "OFFLINE");
1235 *bl
+= sprintf(b
+ *bl
, "UNKNOWN=%d", dev
->dev_status
);
1239 *bl
+= sprintf(b
+ *bl
, " Execute/Left/Max Queue Depth: %d/%d/%d",
1240 atomic_read(&dev
->execute_tasks
), atomic_read(&dev
->depth_left
),
1242 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u MaxSectors: %u\n",
1243 DEV_ATTRIB(dev
)->block_size
, DEV_ATTRIB(dev
)->max_sectors
);
1244 *bl
+= sprintf(b
+ *bl
, " ");
1247 /* transport_release_all_cmds():
1251 static void transport_release_all_cmds(struct se_device
*dev
)
1253 struct se_cmd
*cmd
= NULL
;
1254 struct se_queue_req
*qr
= NULL
, *qr_p
= NULL
;
1255 int bug_out
= 0, t_state
;
1256 unsigned long flags
;
1258 spin_lock_irqsave(&dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
1259 list_for_each_entry_safe(qr
, qr_p
, &dev
->dev_queue_obj
->qobj_list
,
1262 cmd
= (struct se_cmd
*)qr
->cmd
;
1263 t_state
= qr
->state
;
1264 list_del(&qr
->qr_list
);
1266 spin_unlock_irqrestore(&dev
->dev_queue_obj
->cmd_queue_lock
,
1269 printk(KERN_ERR
"Releasing ITT: 0x%08x, i_state: %u,"
1270 " t_state: %u directly\n",
1271 CMD_TFO(cmd
)->get_task_tag(cmd
),
1272 CMD_TFO(cmd
)->get_cmd_state(cmd
), t_state
);
1274 transport_release_fe_cmd(cmd
);
1277 spin_lock_irqsave(&dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
1279 spin_unlock_irqrestore(&dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
1286 void transport_dump_vpd_proto_id(
1287 struct t10_vpd
*vpd
,
1288 unsigned char *p_buf
,
1291 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1294 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1295 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
1297 switch (vpd
->protocol_identifier
) {
1299 sprintf(buf
+len
, "Fibre Channel\n");
1302 sprintf(buf
+len
, "Parallel SCSI\n");
1305 sprintf(buf
+len
, "SSA\n");
1308 sprintf(buf
+len
, "IEEE 1394\n");
1311 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
1315 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
1318 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
1321 sprintf(buf
+len
, "Automation/Drive Interface Transport"
1325 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
1328 sprintf(buf
+len
, "Unknown 0x%02x\n",
1329 vpd
->protocol_identifier
);
1334 strncpy(p_buf
, buf
, p_buf_len
);
1336 printk(KERN_INFO
"%s", buf
);
1340 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
1343 * Check if the Protocol Identifier Valid (PIV) bit is set..
1345 * from spc3r23.pdf section 7.5.1
1347 if (page_83
[1] & 0x80) {
1348 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
1349 vpd
->protocol_identifier_set
= 1;
1350 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
1353 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
1355 int transport_dump_vpd_assoc(
1356 struct t10_vpd
*vpd
,
1357 unsigned char *p_buf
,
1360 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1363 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1364 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
1366 switch (vpd
->association
) {
1368 sprintf(buf
+len
, "addressed logical unit\n");
1371 sprintf(buf
+len
, "target port\n");
1374 sprintf(buf
+len
, "SCSI target device\n");
1377 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
1383 strncpy(p_buf
, buf
, p_buf_len
);
1390 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
1393 * The VPD identification association..
1395 * from spc3r23.pdf Section 7.6.3.1 Table 297
1397 vpd
->association
= (page_83
[1] & 0x30);
1398 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
1400 EXPORT_SYMBOL(transport_set_vpd_assoc
);
1402 int transport_dump_vpd_ident_type(
1403 struct t10_vpd
*vpd
,
1404 unsigned char *p_buf
,
1407 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1410 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1411 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
1413 switch (vpd
->device_identifier_type
) {
1415 sprintf(buf
+len
, "Vendor specific\n");
1418 sprintf(buf
+len
, "T10 Vendor ID based\n");
1421 sprintf(buf
+len
, "EUI-64 based\n");
1424 sprintf(buf
+len
, "NAA\n");
1427 sprintf(buf
+len
, "Relative target port identifier\n");
1430 sprintf(buf
+len
, "SCSI name string\n");
1433 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
1434 vpd
->device_identifier_type
);
1440 strncpy(p_buf
, buf
, p_buf_len
);
1447 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1450 * The VPD identifier type..
1452 * from spc3r23.pdf Section 7.6.3.1 Table 298
1454 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1455 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1457 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1459 int transport_dump_vpd_ident(
1460 struct t10_vpd
*vpd
,
1461 unsigned char *p_buf
,
1464 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1467 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1469 switch (vpd
->device_identifier_code_set
) {
1470 case 0x01: /* Binary */
1471 sprintf(buf
, "T10 VPD Binary Device Identifier: %s\n",
1472 &vpd
->device_identifier
[0]);
1474 case 0x02: /* ASCII */
1475 sprintf(buf
, "T10 VPD ASCII Device Identifier: %s\n",
1476 &vpd
->device_identifier
[0]);
1478 case 0x03: /* UTF-8 */
1479 sprintf(buf
, "T10 VPD UTF-8 Device Identifier: %s\n",
1480 &vpd
->device_identifier
[0]);
1483 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1484 " 0x%02x", vpd
->device_identifier_code_set
);
1490 strncpy(p_buf
, buf
, p_buf_len
);
1498 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1500 static const char hex_str
[] = "0123456789abcdef";
1501 int j
= 0, i
= 4; /* offset to start of the identifer */
1504 * The VPD Code Set (encoding)
1506 * from spc3r23.pdf Section 7.6.3.1 Table 296
1508 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1509 switch (vpd
->device_identifier_code_set
) {
1510 case 0x01: /* Binary */
1511 vpd
->device_identifier
[j
++] =
1512 hex_str
[vpd
->device_identifier_type
];
1513 while (i
< (4 + page_83
[3])) {
1514 vpd
->device_identifier
[j
++] =
1515 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1516 vpd
->device_identifier
[j
++] =
1517 hex_str
[page_83
[i
] & 0x0f];
1521 case 0x02: /* ASCII */
1522 case 0x03: /* UTF-8 */
1523 while (i
< (4 + page_83
[3]))
1524 vpd
->device_identifier
[j
++] = page_83
[i
++];
1530 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1532 EXPORT_SYMBOL(transport_set_vpd_ident
);
1534 static void core_setup_task_attr_emulation(struct se_device
*dev
)
1537 * If this device is from Target_Core_Mod/pSCSI, disable the
1538 * SAM Task Attribute emulation.
1540 * This is currently not available in upsream Linux/SCSI Target
1541 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1543 if (TRANSPORT(dev
)->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
) {
1544 dev
->dev_task_attr_type
= SAM_TASK_ATTR_PASSTHROUGH
;
1548 dev
->dev_task_attr_type
= SAM_TASK_ATTR_EMULATED
;
1549 DEBUG_STA("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1550 " device\n", TRANSPORT(dev
)->name
,
1551 TRANSPORT(dev
)->get_device_rev(dev
));
1554 static void scsi_dump_inquiry(struct se_device
*dev
)
1556 struct t10_wwn
*wwn
= DEV_T10_WWN(dev
);
1559 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1561 printk(" Vendor: ");
1562 for (i
= 0; i
< 8; i
++)
1563 if (wwn
->vendor
[i
] >= 0x20)
1564 printk("%c", wwn
->vendor
[i
]);
1569 for (i
= 0; i
< 16; i
++)
1570 if (wwn
->model
[i
] >= 0x20)
1571 printk("%c", wwn
->model
[i
]);
1575 printk(" Revision: ");
1576 for (i
= 0; i
< 4; i
++)
1577 if (wwn
->revision
[i
] >= 0x20)
1578 printk("%c", wwn
->revision
[i
]);
1584 device_type
= TRANSPORT(dev
)->get_device_type(dev
);
1585 printk(" Type: %s ", scsi_device_type(device_type
));
1586 printk(" ANSI SCSI revision: %02x\n",
1587 TRANSPORT(dev
)->get_device_rev(dev
));
1590 struct se_device
*transport_add_device_to_core_hba(
1592 struct se_subsystem_api
*transport
,
1593 struct se_subsystem_dev
*se_dev
,
1595 void *transport_dev
,
1596 struct se_dev_limits
*dev_limits
,
1597 const char *inquiry_prod
,
1598 const char *inquiry_rev
)
1600 int ret
= 0, force_pt
;
1601 struct se_device
*dev
;
1603 dev
= kzalloc(sizeof(struct se_device
), GFP_KERNEL
);
1605 printk(KERN_ERR
"Unable to allocate memory for se_dev_t\n");
1608 dev
->dev_queue_obj
= kzalloc(sizeof(struct se_queue_obj
), GFP_KERNEL
);
1609 if (!(dev
->dev_queue_obj
)) {
1610 printk(KERN_ERR
"Unable to allocate memory for"
1611 " dev->dev_queue_obj\n");
1615 transport_init_queue_obj(dev
->dev_queue_obj
);
1617 dev
->dev_status_queue_obj
= kzalloc(sizeof(struct se_queue_obj
),
1619 if (!(dev
->dev_status_queue_obj
)) {
1620 printk(KERN_ERR
"Unable to allocate memory for"
1621 " dev->dev_status_queue_obj\n");
1622 kfree(dev
->dev_queue_obj
);
1626 transport_init_queue_obj(dev
->dev_status_queue_obj
);
1628 dev
->dev_flags
= device_flags
;
1629 dev
->dev_status
|= TRANSPORT_DEVICE_DEACTIVATED
;
1630 dev
->dev_ptr
= (void *) transport_dev
;
1632 dev
->se_sub_dev
= se_dev
;
1633 dev
->transport
= transport
;
1634 atomic_set(&dev
->active_cmds
, 0);
1635 INIT_LIST_HEAD(&dev
->dev_list
);
1636 INIT_LIST_HEAD(&dev
->dev_sep_list
);
1637 INIT_LIST_HEAD(&dev
->dev_tmr_list
);
1638 INIT_LIST_HEAD(&dev
->execute_task_list
);
1639 INIT_LIST_HEAD(&dev
->delayed_cmd_list
);
1640 INIT_LIST_HEAD(&dev
->ordered_cmd_list
);
1641 INIT_LIST_HEAD(&dev
->state_task_list
);
1642 spin_lock_init(&dev
->execute_task_lock
);
1643 spin_lock_init(&dev
->delayed_cmd_lock
);
1644 spin_lock_init(&dev
->ordered_cmd_lock
);
1645 spin_lock_init(&dev
->state_task_lock
);
1646 spin_lock_init(&dev
->dev_alua_lock
);
1647 spin_lock_init(&dev
->dev_reservation_lock
);
1648 spin_lock_init(&dev
->dev_status_lock
);
1649 spin_lock_init(&dev
->dev_status_thr_lock
);
1650 spin_lock_init(&dev
->se_port_lock
);
1651 spin_lock_init(&dev
->se_tmr_lock
);
1653 dev
->queue_depth
= dev_limits
->queue_depth
;
1654 atomic_set(&dev
->depth_left
, dev
->queue_depth
);
1655 atomic_set(&dev
->dev_ordered_id
, 0);
1657 se_dev_set_default_attribs(dev
, dev_limits
);
1659 dev
->dev_index
= scsi_get_new_index(SCSI_DEVICE_INDEX
);
1660 dev
->creation_time
= get_jiffies_64();
1661 spin_lock_init(&dev
->stats_lock
);
1663 spin_lock(&hba
->device_lock
);
1664 list_add_tail(&dev
->dev_list
, &hba
->hba_dev_list
);
1666 spin_unlock(&hba
->device_lock
);
1668 * Setup the SAM Task Attribute emulation for struct se_device
1670 core_setup_task_attr_emulation(dev
);
1672 * Force PR and ALUA passthrough emulation with internal object use.
1674 force_pt
= (hba
->hba_flags
& HBA_FLAGS_INTERNAL_USE
);
1676 * Setup the Reservations infrastructure for struct se_device
1678 core_setup_reservations(dev
, force_pt
);
1680 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1682 if (core_setup_alua(dev
, force_pt
) < 0)
1686 * Startup the struct se_device processing thread
1688 dev
->process_thread
= kthread_run(transport_processing_thread
, dev
,
1689 "LIO_%s", TRANSPORT(dev
)->name
);
1690 if (IS_ERR(dev
->process_thread
)) {
1691 printk(KERN_ERR
"Unable to create kthread: LIO_%s\n",
1692 TRANSPORT(dev
)->name
);
1697 * Preload the initial INQUIRY const values if we are doing
1698 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1699 * passthrough because this is being provided by the backend LLD.
1700 * This is required so that transport_get_inquiry() copies these
1701 * originals once back into DEV_T10_WWN(dev) for the virtual device
1704 if (TRANSPORT(dev
)->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
) {
1705 if (!(inquiry_prod
) || !(inquiry_prod
)) {
1706 printk(KERN_ERR
"All non TCM/pSCSI plugins require"
1707 " INQUIRY consts\n");
1711 strncpy(&DEV_T10_WWN(dev
)->vendor
[0], "LIO-ORG", 8);
1712 strncpy(&DEV_T10_WWN(dev
)->model
[0], inquiry_prod
, 16);
1713 strncpy(&DEV_T10_WWN(dev
)->revision
[0], inquiry_rev
, 4);
1715 scsi_dump_inquiry(dev
);
1720 kthread_stop(dev
->process_thread
);
1722 spin_lock(&hba
->device_lock
);
1723 list_del(&dev
->dev_list
);
1725 spin_unlock(&hba
->device_lock
);
1727 se_release_vpd_for_dev(dev
);
1729 kfree(dev
->dev_status_queue_obj
);
1730 kfree(dev
->dev_queue_obj
);
1735 EXPORT_SYMBOL(transport_add_device_to_core_hba
);
1737 /* transport_generic_prepare_cdb():
1739 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1740 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1741 * The point of this is since we are mapping iSCSI LUNs to
1742 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1743 * devices and HBAs for a loop.
1745 static inline void transport_generic_prepare_cdb(
1749 case READ_10
: /* SBC - RDProtect */
1750 case READ_12
: /* SBC - RDProtect */
1751 case READ_16
: /* SBC - RDProtect */
1752 case SEND_DIAGNOSTIC
: /* SPC - SELF-TEST Code */
1753 case VERIFY
: /* SBC - VRProtect */
1754 case VERIFY_16
: /* SBC - VRProtect */
1755 case WRITE_VERIFY
: /* SBC - VRProtect */
1756 case WRITE_VERIFY_12
: /* SBC - VRProtect */
1759 cdb
[1] &= 0x1f; /* clear logical unit number */
1764 static struct se_task
*
1765 transport_generic_get_task(struct se_cmd
*cmd
,
1766 enum dma_data_direction data_direction
)
1768 struct se_task
*task
;
1769 struct se_device
*dev
= SE_DEV(cmd
);
1770 unsigned long flags
;
1772 task
= dev
->transport
->alloc_task(cmd
);
1774 printk(KERN_ERR
"Unable to allocate struct se_task\n");
1778 INIT_LIST_HEAD(&task
->t_list
);
1779 INIT_LIST_HEAD(&task
->t_execute_list
);
1780 INIT_LIST_HEAD(&task
->t_state_list
);
1781 init_completion(&task
->task_stop_comp
);
1782 task
->task_no
= T_TASK(cmd
)->t_tasks_no
++;
1783 task
->task_se_cmd
= cmd
;
1785 task
->task_data_direction
= data_direction
;
1787 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
1788 list_add_tail(&task
->t_list
, &T_TASK(cmd
)->t_task_list
);
1789 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
1794 static int transport_generic_cmd_sequencer(struct se_cmd
*, unsigned char *);
1796 void transport_device_setup_cmd(struct se_cmd
*cmd
)
1798 cmd
->se_dev
= SE_LUN(cmd
)->lun_se_dev
;
1800 EXPORT_SYMBOL(transport_device_setup_cmd
);
1803 * Used by fabric modules containing a local struct se_cmd within their
1804 * fabric dependent per I/O descriptor.
1806 void transport_init_se_cmd(
1808 struct target_core_fabric_ops
*tfo
,
1809 struct se_session
*se_sess
,
1813 unsigned char *sense_buffer
)
1815 INIT_LIST_HEAD(&cmd
->se_lun_list
);
1816 INIT_LIST_HEAD(&cmd
->se_delayed_list
);
1817 INIT_LIST_HEAD(&cmd
->se_ordered_list
);
1819 * Setup t_task pointer to t_task_backstore
1821 cmd
->t_task
= &cmd
->t_task_backstore
;
1823 INIT_LIST_HEAD(&T_TASK(cmd
)->t_task_list
);
1824 init_completion(&T_TASK(cmd
)->transport_lun_fe_stop_comp
);
1825 init_completion(&T_TASK(cmd
)->transport_lun_stop_comp
);
1826 init_completion(&T_TASK(cmd
)->t_transport_stop_comp
);
1827 spin_lock_init(&T_TASK(cmd
)->t_state_lock
);
1828 atomic_set(&T_TASK(cmd
)->transport_dev_active
, 1);
1831 cmd
->se_sess
= se_sess
;
1832 cmd
->data_length
= data_length
;
1833 cmd
->data_direction
= data_direction
;
1834 cmd
->sam_task_attr
= task_attr
;
1835 cmd
->sense_buffer
= sense_buffer
;
1837 EXPORT_SYMBOL(transport_init_se_cmd
);
1839 static int transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1842 * Check if SAM Task Attribute emulation is enabled for this
1843 * struct se_device storage object
1845 if (SE_DEV(cmd
)->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
)
1848 if (cmd
->sam_task_attr
== TASK_ATTR_ACA
) {
1849 DEBUG_STA("SAM Task Attribute ACA"
1850 " emulation is not supported\n");
1854 * Used to determine when ORDERED commands should go from
1855 * Dormant to Active status.
1857 cmd
->se_ordered_id
= atomic_inc_return(&SE_DEV(cmd
)->dev_ordered_id
);
1858 smp_mb__after_atomic_inc();
1859 DEBUG_STA("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1860 cmd
->se_ordered_id
, cmd
->sam_task_attr
,
1861 TRANSPORT(cmd
->se_dev
)->name
);
1865 void transport_free_se_cmd(
1866 struct se_cmd
*se_cmd
)
1868 if (se_cmd
->se_tmr_req
)
1869 core_tmr_release_req(se_cmd
->se_tmr_req
);
1871 * Check and free any extended CDB buffer that was allocated
1873 if (T_TASK(se_cmd
)->t_task_cdb
!= T_TASK(se_cmd
)->__t_task_cdb
)
1874 kfree(T_TASK(se_cmd
)->t_task_cdb
);
1876 EXPORT_SYMBOL(transport_free_se_cmd
);
1878 static void transport_generic_wait_for_tasks(struct se_cmd
*, int, int);
1880 /* transport_generic_allocate_tasks():
1882 * Called from fabric RX Thread.
1884 int transport_generic_allocate_tasks(
1890 transport_generic_prepare_cdb(cdb
);
1893 * This is needed for early exceptions.
1895 cmd
->transport_wait_for_tasks
= &transport_generic_wait_for_tasks
;
1897 transport_device_setup_cmd(cmd
);
1899 * Ensure that the received CDB is less than the max (252 + 8) bytes
1900 * for VARIABLE_LENGTH_CMD
1902 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1903 printk(KERN_ERR
"Received SCSI CDB with command_size: %d that"
1904 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1905 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1909 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1910 * allocate the additional extended CDB buffer now.. Otherwise
1911 * setup the pointer from __t_task_cdb to t_task_cdb.
1913 if (scsi_command_size(cdb
) > sizeof(T_TASK(cmd
)->__t_task_cdb
)) {
1914 T_TASK(cmd
)->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1916 if (!(T_TASK(cmd
)->t_task_cdb
)) {
1917 printk(KERN_ERR
"Unable to allocate T_TASK(cmd)->t_task_cdb"
1918 " %u > sizeof(T_TASK(cmd)->__t_task_cdb): %lu ops\n",
1919 scsi_command_size(cdb
),
1920 (unsigned long)sizeof(T_TASK(cmd
)->__t_task_cdb
));
1924 T_TASK(cmd
)->t_task_cdb
= &T_TASK(cmd
)->__t_task_cdb
[0];
1926 * Copy the original CDB into T_TASK(cmd).
1928 memcpy(T_TASK(cmd
)->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1930 * Setup the received CDB based on SCSI defined opcodes and
1931 * perform unit attention, persistent reservations and ALUA
1932 * checks for virtual device backends. The T_TASK(cmd)->t_task_cdb
1933 * pointer is expected to be setup before we reach this point.
1935 ret
= transport_generic_cmd_sequencer(cmd
, cdb
);
1939 * Check for SAM Task Attribute Emulation
1941 if (transport_check_alloc_task_attr(cmd
) < 0) {
1942 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
1943 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
1946 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
1947 if (cmd
->se_lun
->lun_sep
)
1948 cmd
->se_lun
->lun_sep
->sep_stats
.cmd_pdus
++;
1949 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
1952 EXPORT_SYMBOL(transport_generic_allocate_tasks
);
1955 * Used by fabric module frontends not defining a TFO->new_cmd_map()
1956 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
1958 int transport_generic_handle_cdb(
1963 printk(KERN_ERR
"SE_LUN(cmd) is NULL\n");
1967 transport_add_cmd_to_queue(cmd
, TRANSPORT_NEW_CMD
);
1970 EXPORT_SYMBOL(transport_generic_handle_cdb
);
1973 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1974 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1975 * complete setup in TCM process context w/ TFO->new_cmd_map().
1977 int transport_generic_handle_cdb_map(
1982 printk(KERN_ERR
"SE_LUN(cmd) is NULL\n");
1986 transport_add_cmd_to_queue(cmd
, TRANSPORT_NEW_CMD_MAP
);
1989 EXPORT_SYMBOL(transport_generic_handle_cdb_map
);
1991 /* transport_generic_handle_data():
1995 int transport_generic_handle_data(
1999 * For the software fabric case, then we assume the nexus is being
2000 * failed/shutdown when signals are pending from the kthread context
2001 * caller, so we return a failure. For the HW target mode case running
2002 * in interrupt code, the signal_pending() check is skipped.
2004 if (!in_interrupt() && signal_pending(current
))
2007 * If the received CDB has aleady been ABORTED by the generic
2008 * target engine, we now call transport_check_aborted_status()
2009 * to queue any delated TASK_ABORTED status for the received CDB to the
2010 * fabric module as we are expecting no futher incoming DATA OUT
2011 * sequences at this point.
2013 if (transport_check_aborted_status(cmd
, 1) != 0)
2016 transport_add_cmd_to_queue(cmd
, TRANSPORT_PROCESS_WRITE
);
2019 EXPORT_SYMBOL(transport_generic_handle_data
);
2021 /* transport_generic_handle_tmr():
2025 int transport_generic_handle_tmr(
2029 * This is needed for early exceptions.
2031 cmd
->transport_wait_for_tasks
= &transport_generic_wait_for_tasks
;
2032 transport_device_setup_cmd(cmd
);
2034 transport_add_cmd_to_queue(cmd
, TRANSPORT_PROCESS_TMR
);
2037 EXPORT_SYMBOL(transport_generic_handle_tmr
);
2039 static int transport_stop_tasks_for_cmd(struct se_cmd
*cmd
)
2041 struct se_task
*task
, *task_tmp
;
2042 unsigned long flags
;
2045 DEBUG_TS("ITT[0x%08x] - Stopping tasks\n",
2046 CMD_TFO(cmd
)->get_task_tag(cmd
));
2049 * No tasks remain in the execution queue
2051 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2052 list_for_each_entry_safe(task
, task_tmp
,
2053 &T_TASK(cmd
)->t_task_list
, t_list
) {
2054 DEBUG_TS("task_no[%d] - Processing task %p\n",
2055 task
->task_no
, task
);
2057 * If the struct se_task has not been sent and is not active,
2058 * remove the struct se_task from the execution queue.
2060 if (!atomic_read(&task
->task_sent
) &&
2061 !atomic_read(&task
->task_active
)) {
2062 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
2064 transport_remove_task_from_execute_queue(task
,
2067 DEBUG_TS("task_no[%d] - Removed from execute queue\n",
2069 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2074 * If the struct se_task is active, sleep until it is returned
2077 if (atomic_read(&task
->task_active
)) {
2078 atomic_set(&task
->task_stop
, 1);
2079 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
2082 DEBUG_TS("task_no[%d] - Waiting to complete\n",
2084 wait_for_completion(&task
->task_stop_comp
);
2085 DEBUG_TS("task_no[%d] - Stopped successfully\n",
2088 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2089 atomic_dec(&T_TASK(cmd
)->t_task_cdbs_left
);
2091 atomic_set(&task
->task_active
, 0);
2092 atomic_set(&task
->task_stop
, 0);
2094 DEBUG_TS("task_no[%d] - Did nothing\n", task
->task_no
);
2098 __transport_stop_task_timer(task
, &flags
);
2100 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2105 static void transport_failure_reset_queue_depth(struct se_device
*dev
)
2107 unsigned long flags
;
2109 spin_lock_irqsave(&SE_HBA(dev
)->hba_queue_lock
, flags
);;
2110 atomic_inc(&dev
->depth_left
);
2111 atomic_inc(&SE_HBA(dev
)->left_queue_depth
);
2112 spin_unlock_irqrestore(&SE_HBA(dev
)->hba_queue_lock
, flags
);
2116 * Handle SAM-esque emulation for generic transport request failures.
2118 static void transport_generic_request_failure(
2120 struct se_device
*dev
,
2124 DEBUG_GRF("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
2125 " CDB: 0x%02x\n", cmd
, CMD_TFO(cmd
)->get_task_tag(cmd
),
2126 T_TASK(cmd
)->t_task_cdb
[0]);
2127 DEBUG_GRF("-----[ i_state: %d t_state/def_t_state:"
2128 " %d/%d transport_error_status: %d\n",
2129 CMD_TFO(cmd
)->get_cmd_state(cmd
),
2130 cmd
->t_state
, cmd
->deferred_t_state
,
2131 cmd
->transport_error_status
);
2132 DEBUG_GRF("-----[ t_task_cdbs: %d t_task_cdbs_left: %d"
2133 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
2134 " t_transport_active: %d t_transport_stop: %d"
2135 " t_transport_sent: %d\n", T_TASK(cmd
)->t_task_cdbs
,
2136 atomic_read(&T_TASK(cmd
)->t_task_cdbs_left
),
2137 atomic_read(&T_TASK(cmd
)->t_task_cdbs_sent
),
2138 atomic_read(&T_TASK(cmd
)->t_task_cdbs_ex_left
),
2139 atomic_read(&T_TASK(cmd
)->t_transport_active
),
2140 atomic_read(&T_TASK(cmd
)->t_transport_stop
),
2141 atomic_read(&T_TASK(cmd
)->t_transport_sent
));
2143 transport_stop_all_task_timers(cmd
);
2146 transport_failure_reset_queue_depth(dev
);
2148 * For SAM Task Attribute emulation for failed struct se_cmd
2150 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
2151 transport_complete_task_attr(cmd
);
2154 transport_direct_request_timeout(cmd
);
2155 cmd
->transport_error_status
= PYX_TRANSPORT_LU_COMM_FAILURE
;
2158 switch (cmd
->transport_error_status
) {
2159 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE
:
2160 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
2162 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS
:
2163 cmd
->scsi_sense_reason
= TCM_SECTOR_COUNT_TOO_MANY
;
2165 case PYX_TRANSPORT_INVALID_CDB_FIELD
:
2166 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
2168 case PYX_TRANSPORT_INVALID_PARAMETER_LIST
:
2169 cmd
->scsi_sense_reason
= TCM_INVALID_PARAMETER_LIST
;
2171 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES
:
2173 transport_new_cmd_failure(cmd
);
2175 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
2176 * we force this session to fall back to session
2179 CMD_TFO(cmd
)->fall_back_to_erl0(cmd
->se_sess
);
2180 CMD_TFO(cmd
)->stop_session(cmd
->se_sess
, 0, 0);
2183 case PYX_TRANSPORT_LU_COMM_FAILURE
:
2184 case PYX_TRANSPORT_ILLEGAL_REQUEST
:
2185 cmd
->scsi_sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2187 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE
:
2188 cmd
->scsi_sense_reason
= TCM_UNKNOWN_MODE_PAGE
;
2190 case PYX_TRANSPORT_WRITE_PROTECTED
:
2191 cmd
->scsi_sense_reason
= TCM_WRITE_PROTECTED
;
2193 case PYX_TRANSPORT_RESERVATION_CONFLICT
:
2195 * No SENSE Data payload for this case, set SCSI Status
2196 * and queue the response to $FABRIC_MOD.
2198 * Uses linux/include/scsi/scsi.h SAM status codes defs
2200 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
2202 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2203 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2206 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2209 DEV_ATTRIB(cmd
->se_dev
)->emulate_ua_intlck_ctrl
== 2)
2210 core_scsi3_ua_allocate(SE_SESS(cmd
)->se_node_acl
,
2211 cmd
->orig_fe_lun
, 0x2C,
2212 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
2214 CMD_TFO(cmd
)->queue_status(cmd
);
2216 case PYX_TRANSPORT_USE_SENSE_REASON
:
2218 * struct se_cmd->scsi_sense_reason already set
2222 printk(KERN_ERR
"Unknown transport error for CDB 0x%02x: %d\n",
2223 T_TASK(cmd
)->t_task_cdb
[0],
2224 cmd
->transport_error_status
);
2225 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
2230 transport_new_cmd_failure(cmd
);
2232 transport_send_check_condition_and_sense(cmd
,
2233 cmd
->scsi_sense_reason
, 0);
2235 transport_lun_remove_cmd(cmd
);
2236 if (!(transport_cmd_check_stop_to_fabric(cmd
)))
2240 static void transport_direct_request_timeout(struct se_cmd
*cmd
)
2242 unsigned long flags
;
2244 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2245 if (!(atomic_read(&T_TASK(cmd
)->t_transport_timeout
))) {
2246 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2249 if (atomic_read(&T_TASK(cmd
)->t_task_cdbs_timeout_left
)) {
2250 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2254 atomic_sub(atomic_read(&T_TASK(cmd
)->t_transport_timeout
),
2255 &T_TASK(cmd
)->t_se_count
);
2256 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2259 static void transport_generic_request_timeout(struct se_cmd
*cmd
)
2261 unsigned long flags
;
2264 * Reset T_TASK(cmd)->t_se_count to allow transport_generic_remove()
2265 * to allow last call to free memory resources.
2267 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2268 if (atomic_read(&T_TASK(cmd
)->t_transport_timeout
) > 1) {
2269 int tmp
= (atomic_read(&T_TASK(cmd
)->t_transport_timeout
) - 1);
2271 atomic_sub(tmp
, &T_TASK(cmd
)->t_se_count
);
2273 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2275 transport_generic_remove(cmd
, 0, 0);
2279 transport_generic_allocate_buf(struct se_cmd
*cmd
, u32 data_length
)
2283 buf
= kzalloc(data_length
, GFP_KERNEL
);
2285 printk(KERN_ERR
"Unable to allocate memory for buffer\n");
2289 T_TASK(cmd
)->t_tasks_se_num
= 0;
2290 T_TASK(cmd
)->t_task_buf
= buf
;
2295 static inline u32
transport_lba_21(unsigned char *cdb
)
2297 return ((cdb
[1] & 0x1f) << 16) | (cdb
[2] << 8) | cdb
[3];
2300 static inline u32
transport_lba_32(unsigned char *cdb
)
2302 return (cdb
[2] << 24) | (cdb
[3] << 16) | (cdb
[4] << 8) | cdb
[5];
2305 static inline unsigned long long transport_lba_64(unsigned char *cdb
)
2307 unsigned int __v1
, __v2
;
2309 __v1
= (cdb
[2] << 24) | (cdb
[3] << 16) | (cdb
[4] << 8) | cdb
[5];
2310 __v2
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
2312 return ((unsigned long long)__v2
) | (unsigned long long)__v1
<< 32;
2316 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2318 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb
)
2320 unsigned int __v1
, __v2
;
2322 __v1
= (cdb
[12] << 24) | (cdb
[13] << 16) | (cdb
[14] << 8) | cdb
[15];
2323 __v2
= (cdb
[16] << 24) | (cdb
[17] << 16) | (cdb
[18] << 8) | cdb
[19];
2325 return ((unsigned long long)__v2
) | (unsigned long long)__v1
<< 32;
2328 static void transport_set_supported_SAM_opcode(struct se_cmd
*se_cmd
)
2330 unsigned long flags
;
2332 spin_lock_irqsave(&T_TASK(se_cmd
)->t_state_lock
, flags
);
2333 se_cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
2334 spin_unlock_irqrestore(&T_TASK(se_cmd
)->t_state_lock
, flags
);
2338 * Called from interrupt context.
2340 static void transport_task_timeout_handler(unsigned long data
)
2342 struct se_task
*task
= (struct se_task
*)data
;
2343 struct se_cmd
*cmd
= TASK_CMD(task
);
2344 unsigned long flags
;
2346 DEBUG_TT("transport task timeout fired! task: %p cmd: %p\n", task
, cmd
);
2348 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2349 if (task
->task_flags
& TF_STOP
) {
2350 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2353 task
->task_flags
&= ~TF_RUNNING
;
2356 * Determine if transport_complete_task() has already been called.
2358 if (!(atomic_read(&task
->task_active
))) {
2359 DEBUG_TT("transport task: %p cmd: %p timeout task_active"
2360 " == 0\n", task
, cmd
);
2361 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2365 atomic_inc(&T_TASK(cmd
)->t_se_count
);
2366 atomic_inc(&T_TASK(cmd
)->t_transport_timeout
);
2367 T_TASK(cmd
)->t_tasks_failed
= 1;
2369 atomic_set(&task
->task_timeout
, 1);
2370 task
->task_error_status
= PYX_TRANSPORT_TASK_TIMEOUT
;
2371 task
->task_scsi_status
= 1;
2373 if (atomic_read(&task
->task_stop
)) {
2374 DEBUG_TT("transport task: %p cmd: %p timeout task_stop"
2375 " == 1\n", task
, cmd
);
2376 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2377 complete(&task
->task_stop_comp
);
2381 if (!(atomic_dec_and_test(&T_TASK(cmd
)->t_task_cdbs_left
))) {
2382 DEBUG_TT("transport task: %p cmd: %p timeout non zero"
2383 " t_task_cdbs_left\n", task
, cmd
);
2384 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2387 DEBUG_TT("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2390 cmd
->t_state
= TRANSPORT_COMPLETE_FAILURE
;
2391 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2393 transport_add_cmd_to_queue(cmd
, TRANSPORT_COMPLETE_FAILURE
);
2397 * Called with T_TASK(cmd)->t_state_lock held.
2399 static void transport_start_task_timer(struct se_task
*task
)
2401 struct se_device
*dev
= task
->se_dev
;
2404 if (task
->task_flags
& TF_RUNNING
)
2407 * If the task_timeout is disabled, exit now.
2409 timeout
= DEV_ATTRIB(dev
)->task_timeout
;
2413 init_timer(&task
->task_timer
);
2414 task
->task_timer
.expires
= (get_jiffies_64() + timeout
* HZ
);
2415 task
->task_timer
.data
= (unsigned long) task
;
2416 task
->task_timer
.function
= transport_task_timeout_handler
;
2418 task
->task_flags
|= TF_RUNNING
;
2419 add_timer(&task
->task_timer
);
2421 printk(KERN_INFO
"Starting task timer for cmd: %p task: %p seconds:"
2422 " %d\n", task
->task_se_cmd
, task
, timeout
);
2427 * Called with spin_lock_irq(&T_TASK(cmd)->t_state_lock) held.
2429 void __transport_stop_task_timer(struct se_task
*task
, unsigned long *flags
)
2431 struct se_cmd
*cmd
= TASK_CMD(task
);
2433 if (!(task
->task_flags
& TF_RUNNING
))
2436 task
->task_flags
|= TF_STOP
;
2437 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, *flags
);
2439 del_timer_sync(&task
->task_timer
);
2441 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, *flags
);
2442 task
->task_flags
&= ~TF_RUNNING
;
2443 task
->task_flags
&= ~TF_STOP
;
2446 static void transport_stop_all_task_timers(struct se_cmd
*cmd
)
2448 struct se_task
*task
= NULL
, *task_tmp
;
2449 unsigned long flags
;
2451 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2452 list_for_each_entry_safe(task
, task_tmp
,
2453 &T_TASK(cmd
)->t_task_list
, t_list
)
2454 __transport_stop_task_timer(task
, &flags
);
2455 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2458 static inline int transport_tcq_window_closed(struct se_device
*dev
)
2460 if (dev
->dev_tcq_window_closed
++ <
2461 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD
) {
2462 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT
);
2464 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG
);
2466 wake_up_interruptible(&dev
->dev_queue_obj
->thread_wq
);
2471 * Called from Fabric Module context from transport_execute_tasks()
2473 * The return of this function determins if the tasks from struct se_cmd
2474 * get added to the execution queue in transport_execute_tasks(),
2475 * or are added to the delayed or ordered lists here.
2477 static inline int transport_execute_task_attr(struct se_cmd
*cmd
)
2479 if (SE_DEV(cmd
)->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
)
2482 * Check for the existance of HEAD_OF_QUEUE, and if true return 1
2483 * to allow the passed struct se_cmd list of tasks to the front of the list.
2485 if (cmd
->sam_task_attr
== TASK_ATTR_HOQ
) {
2486 atomic_inc(&SE_DEV(cmd
)->dev_hoq_count
);
2487 smp_mb__after_atomic_inc();
2488 DEBUG_STA("Added HEAD_OF_QUEUE for CDB:"
2489 " 0x%02x, se_ordered_id: %u\n",
2490 T_TASK(cmd
)->t_task_cdb
[0],
2491 cmd
->se_ordered_id
);
2493 } else if (cmd
->sam_task_attr
== TASK_ATTR_ORDERED
) {
2494 spin_lock(&SE_DEV(cmd
)->ordered_cmd_lock
);
2495 list_add_tail(&cmd
->se_ordered_list
,
2496 &SE_DEV(cmd
)->ordered_cmd_list
);
2497 spin_unlock(&SE_DEV(cmd
)->ordered_cmd_lock
);
2499 atomic_inc(&SE_DEV(cmd
)->dev_ordered_sync
);
2500 smp_mb__after_atomic_inc();
2502 DEBUG_STA("Added ORDERED for CDB: 0x%02x to ordered"
2503 " list, se_ordered_id: %u\n",
2504 T_TASK(cmd
)->t_task_cdb
[0],
2505 cmd
->se_ordered_id
);
2507 * Add ORDERED command to tail of execution queue if
2508 * no other older commands exist that need to be
2511 if (!(atomic_read(&SE_DEV(cmd
)->simple_cmds
)))
2515 * For SIMPLE and UNTAGGED Task Attribute commands
2517 atomic_inc(&SE_DEV(cmd
)->simple_cmds
);
2518 smp_mb__after_atomic_inc();
2521 * Otherwise if one or more outstanding ORDERED task attribute exist,
2522 * add the dormant task(s) built for the passed struct se_cmd to the
2523 * execution queue and become in Active state for this struct se_device.
2525 if (atomic_read(&SE_DEV(cmd
)->dev_ordered_sync
) != 0) {
2527 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2528 * will be drained upon competion of HEAD_OF_QUEUE task.
2530 spin_lock(&SE_DEV(cmd
)->delayed_cmd_lock
);
2531 cmd
->se_cmd_flags
|= SCF_DELAYED_CMD_FROM_SAM_ATTR
;
2532 list_add_tail(&cmd
->se_delayed_list
,
2533 &SE_DEV(cmd
)->delayed_cmd_list
);
2534 spin_unlock(&SE_DEV(cmd
)->delayed_cmd_lock
);
2536 DEBUG_STA("Added CDB: 0x%02x Task Attr: 0x%02x to"
2537 " delayed CMD list, se_ordered_id: %u\n",
2538 T_TASK(cmd
)->t_task_cdb
[0], cmd
->sam_task_attr
,
2539 cmd
->se_ordered_id
);
2541 * Return zero to let transport_execute_tasks() know
2542 * not to add the delayed tasks to the execution list.
2547 * Otherwise, no ORDERED task attributes exist..
2553 * Called from fabric module context in transport_generic_new_cmd() and
2554 * transport_generic_process_write()
2556 static int transport_execute_tasks(struct se_cmd
*cmd
)
2560 if (!(cmd
->se_cmd_flags
& SCF_SE_DISABLE_ONLINE_CHECK
)) {
2561 if (se_dev_check_online(cmd
->se_orig_obj_ptr
) != 0) {
2562 cmd
->transport_error_status
=
2563 PYX_TRANSPORT_LU_COMM_FAILURE
;
2564 transport_generic_request_failure(cmd
, NULL
, 0, 1);
2569 * Call transport_cmd_check_stop() to see if a fabric exception
2570 * has occured that prevents execution.
2572 if (!(transport_cmd_check_stop(cmd
, 0, TRANSPORT_PROCESSING
))) {
2574 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2575 * attribute for the tasks of the received struct se_cmd CDB
2577 add_tasks
= transport_execute_task_attr(cmd
);
2581 * This calls transport_add_tasks_from_cmd() to handle
2582 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2583 * (if enabled) in __transport_add_task_to_execute_queue() and
2584 * transport_add_task_check_sam_attr().
2586 transport_add_tasks_from_cmd(cmd
);
2589 * Kick the execution queue for the cmd associated struct se_device
2593 __transport_execute_tasks(SE_DEV(cmd
));
2598 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2599 * from struct se_device->execute_task_list and
2601 * Called from transport_processing_thread()
2603 static int __transport_execute_tasks(struct se_device
*dev
)
2606 struct se_cmd
*cmd
= NULL
;
2607 struct se_task
*task
;
2608 unsigned long flags
;
2611 * Check if there is enough room in the device and HBA queue to send
2612 * struct se_transport_task's to the selected transport.
2615 spin_lock_irqsave(&SE_HBA(dev
)->hba_queue_lock
, flags
);
2616 if (!(atomic_read(&dev
->depth_left
)) ||
2617 !(atomic_read(&SE_HBA(dev
)->left_queue_depth
))) {
2618 spin_unlock_irqrestore(&SE_HBA(dev
)->hba_queue_lock
, flags
);
2619 return transport_tcq_window_closed(dev
);
2621 dev
->dev_tcq_window_closed
= 0;
2623 spin_lock(&dev
->execute_task_lock
);
2624 task
= transport_get_task_from_execute_queue(dev
);
2625 spin_unlock(&dev
->execute_task_lock
);
2628 spin_unlock_irqrestore(&SE_HBA(dev
)->hba_queue_lock
, flags
);
2632 atomic_dec(&dev
->depth_left
);
2633 atomic_dec(&SE_HBA(dev
)->left_queue_depth
);
2634 spin_unlock_irqrestore(&SE_HBA(dev
)->hba_queue_lock
, flags
);
2636 cmd
= TASK_CMD(task
);
2638 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2639 atomic_set(&task
->task_active
, 1);
2640 atomic_set(&task
->task_sent
, 1);
2641 atomic_inc(&T_TASK(cmd
)->t_task_cdbs_sent
);
2643 if (atomic_read(&T_TASK(cmd
)->t_task_cdbs_sent
) ==
2644 T_TASK(cmd
)->t_task_cdbs
)
2645 atomic_set(&cmd
->transport_sent
, 1);
2647 transport_start_task_timer(task
);
2648 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2650 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2651 * to grab REPORT_LUNS CDBs before they hit the
2652 * struct se_subsystem_api->do_task() caller below.
2654 if (cmd
->transport_emulate_cdb
) {
2655 error
= cmd
->transport_emulate_cdb(cmd
);
2657 cmd
->transport_error_status
= error
;
2658 atomic_set(&task
->task_active
, 0);
2659 atomic_set(&cmd
->transport_sent
, 0);
2660 transport_stop_tasks_for_cmd(cmd
);
2661 transport_generic_request_failure(cmd
, dev
, 0, 1);
2665 * Handle the successful completion for transport_emulate_cdb()
2666 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2667 * Otherwise the caller is expected to complete the task with
2670 if (!(cmd
->se_cmd_flags
& SCF_EMULATE_CDB_ASYNC
)) {
2671 cmd
->scsi_status
= SAM_STAT_GOOD
;
2672 task
->task_scsi_status
= GOOD
;
2673 transport_complete_task(task
, 1);
2677 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2678 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2679 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2680 * LUN emulation code.
2682 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2683 * call ->do_task() directly and let the underlying TCM subsystem plugin
2684 * code handle the CDB emulation.
2686 if ((TRANSPORT(dev
)->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
) &&
2687 (!(TASK_CMD(task
)->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
)))
2688 error
= transport_emulate_control_cdb(task
);
2690 error
= TRANSPORT(dev
)->do_task(task
);
2693 cmd
->transport_error_status
= error
;
2694 atomic_set(&task
->task_active
, 0);
2695 atomic_set(&cmd
->transport_sent
, 0);
2696 transport_stop_tasks_for_cmd(cmd
);
2697 transport_generic_request_failure(cmd
, dev
, 0, 1);
2706 void transport_new_cmd_failure(struct se_cmd
*se_cmd
)
2708 unsigned long flags
;
2710 * Any unsolicited data will get dumped for failed command inside of
2713 spin_lock_irqsave(&T_TASK(se_cmd
)->t_state_lock
, flags
);
2714 se_cmd
->se_cmd_flags
|= SCF_SE_CMD_FAILED
;
2715 se_cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2716 spin_unlock_irqrestore(&T_TASK(se_cmd
)->t_state_lock
, flags
);
2718 CMD_TFO(se_cmd
)->new_cmd_failure(se_cmd
);
2721 static void transport_nop_wait_for_tasks(struct se_cmd
*, int, int);
2723 static inline u32
transport_get_sectors_6(
2728 struct se_device
*dev
= SE_LUN(cmd
)->lun_se_dev
;
2731 * Assume TYPE_DISK for non struct se_device objects.
2732 * Use 8-bit sector value.
2738 * Use 24-bit allocation length for TYPE_TAPE.
2740 if (TRANSPORT(dev
)->get_device_type(dev
) == TYPE_TAPE
)
2741 return (u32
)(cdb
[2] << 16) + (cdb
[3] << 8) + cdb
[4];
2744 * Everything else assume TYPE_DISK Sector CDB location.
2745 * Use 8-bit sector value.
2751 static inline u32
transport_get_sectors_10(
2756 struct se_device
*dev
= SE_LUN(cmd
)->lun_se_dev
;
2759 * Assume TYPE_DISK for non struct se_device objects.
2760 * Use 16-bit sector value.
2766 * XXX_10 is not defined in SSC, throw an exception
2768 if (TRANSPORT(dev
)->get_device_type(dev
) == TYPE_TAPE
) {
2774 * Everything else assume TYPE_DISK Sector CDB location.
2775 * Use 16-bit sector value.
2778 return (u32
)(cdb
[7] << 8) + cdb
[8];
2781 static inline u32
transport_get_sectors_12(
2786 struct se_device
*dev
= SE_LUN(cmd
)->lun_se_dev
;
2789 * Assume TYPE_DISK for non struct se_device objects.
2790 * Use 32-bit sector value.
2796 * XXX_12 is not defined in SSC, throw an exception
2798 if (TRANSPORT(dev
)->get_device_type(dev
) == TYPE_TAPE
) {
2804 * Everything else assume TYPE_DISK Sector CDB location.
2805 * Use 32-bit sector value.
2808 return (u32
)(cdb
[6] << 24) + (cdb
[7] << 16) + (cdb
[8] << 8) + cdb
[9];
2811 static inline u32
transport_get_sectors_16(
2816 struct se_device
*dev
= SE_LUN(cmd
)->lun_se_dev
;
2819 * Assume TYPE_DISK for non struct se_device objects.
2820 * Use 32-bit sector value.
2826 * Use 24-bit allocation length for TYPE_TAPE.
2828 if (TRANSPORT(dev
)->get_device_type(dev
) == TYPE_TAPE
)
2829 return (u32
)(cdb
[12] << 16) + (cdb
[13] << 8) + cdb
[14];
2832 return (u32
)(cdb
[10] << 24) + (cdb
[11] << 16) +
2833 (cdb
[12] << 8) + cdb
[13];
2837 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2839 static inline u32
transport_get_sectors_32(
2845 * Assume TYPE_DISK for non struct se_device objects.
2846 * Use 32-bit sector value.
2848 return (u32
)(cdb
[28] << 24) + (cdb
[29] << 16) +
2849 (cdb
[30] << 8) + cdb
[31];
2853 static inline u32
transport_get_size(
2858 struct se_device
*dev
= SE_DEV(cmd
);
2860 if (TRANSPORT(dev
)->get_device_type(dev
) == TYPE_TAPE
) {
2861 if (cdb
[1] & 1) { /* sectors */
2862 return DEV_ATTRIB(dev
)->block_size
* sectors
;
2867 printk(KERN_INFO
"Returning block_size: %u, sectors: %u == %u for"
2868 " %s object\n", DEV_ATTRIB(dev
)->block_size
, sectors
,
2869 DEV_ATTRIB(dev
)->block_size
* sectors
,
2870 TRANSPORT(dev
)->name
);
2872 return DEV_ATTRIB(dev
)->block_size
* sectors
;
2875 unsigned char transport_asciihex_to_binaryhex(unsigned char val
[2])
2877 unsigned char result
= 0;
2881 if ((val
[0] >= 'a') && (val
[0] <= 'f'))
2882 result
= ((val
[0] - 'a' + 10) & 0xf) << 4;
2884 if ((val
[0] >= 'A') && (val
[0] <= 'F'))
2885 result
= ((val
[0] - 'A' + 10) & 0xf) << 4;
2887 result
= ((val
[0] - '0') & 0xf) << 4;
2891 if ((val
[1] >= 'a') && (val
[1] <= 'f'))
2892 result
|= ((val
[1] - 'a' + 10) & 0xf);
2894 if ((val
[1] >= 'A') && (val
[1] <= 'F'))
2895 result
|= ((val
[1] - 'A' + 10) & 0xf);
2897 result
|= ((val
[1] - '0') & 0xf);
2901 EXPORT_SYMBOL(transport_asciihex_to_binaryhex
);
2903 static void transport_xor_callback(struct se_cmd
*cmd
)
2905 unsigned char *buf
, *addr
;
2906 struct se_mem
*se_mem
;
2907 unsigned int offset
;
2910 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2912 * 1) read the specified logical block(s);
2913 * 2) transfer logical blocks from the data-out buffer;
2914 * 3) XOR the logical blocks transferred from the data-out buffer with
2915 * the logical blocks read, storing the resulting XOR data in a buffer;
2916 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2917 * blocks transferred from the data-out buffer; and
2918 * 5) transfer the resulting XOR data to the data-in buffer.
2920 buf
= kmalloc(cmd
->data_length
, GFP_KERNEL
);
2922 printk(KERN_ERR
"Unable to allocate xor_callback buf\n");
2926 * Copy the scatterlist WRITE buffer located at T_TASK(cmd)->t_mem_list
2927 * into the locally allocated *buf
2929 transport_memcpy_se_mem_read_contig(cmd
, buf
, T_TASK(cmd
)->t_mem_list
);
2931 * Now perform the XOR against the BIDI read memory located at
2932 * T_TASK(cmd)->t_mem_bidi_list
2936 list_for_each_entry(se_mem
, T_TASK(cmd
)->t_mem_bidi_list
, se_list
) {
2937 addr
= (unsigned char *)kmap_atomic(se_mem
->se_page
, KM_USER0
);
2941 for (i
= 0; i
< se_mem
->se_len
; i
++)
2942 *(addr
+ se_mem
->se_off
+ i
) ^= *(buf
+ offset
+ i
);
2944 offset
+= se_mem
->se_len
;
2945 kunmap_atomic(addr
, KM_USER0
);
2952 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2954 static int transport_get_sense_data(struct se_cmd
*cmd
)
2956 unsigned char *buffer
= cmd
->sense_buffer
, *sense_buffer
= NULL
;
2957 struct se_device
*dev
;
2958 struct se_task
*task
= NULL
, *task_tmp
;
2959 unsigned long flags
;
2963 printk(KERN_ERR
"SE_LUN(cmd) is NULL\n");
2966 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2967 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
2968 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2972 list_for_each_entry_safe(task
, task_tmp
,
2973 &T_TASK(cmd
)->t_task_list
, t_list
) {
2975 if (!task
->task_sense
)
2982 if (!TRANSPORT(dev
)->get_sense_buffer
) {
2983 printk(KERN_ERR
"TRANSPORT(dev)->get_sense_buffer"
2988 sense_buffer
= TRANSPORT(dev
)->get_sense_buffer(task
);
2989 if (!(sense_buffer
)) {
2990 printk(KERN_ERR
"ITT[0x%08x]_TASK[%d]: Unable to locate"
2991 " sense buffer for task with sense\n",
2992 CMD_TFO(cmd
)->get_task_tag(cmd
), task
->task_no
);
2995 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2997 offset
= CMD_TFO(cmd
)->set_fabric_sense_len(cmd
,
2998 TRANSPORT_SENSE_BUFFER
);
3000 memcpy((void *)&buffer
[offset
], (void *)sense_buffer
,
3001 TRANSPORT_SENSE_BUFFER
);
3002 cmd
->scsi_status
= task
->task_scsi_status
;
3003 /* Automatically padded */
3004 cmd
->scsi_sense_length
=
3005 (TRANSPORT_SENSE_BUFFER
+ offset
);
3007 printk(KERN_INFO
"HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
3009 dev
->se_hba
->hba_id
, TRANSPORT(dev
)->name
,
3013 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
3018 static int transport_allocate_resources(struct se_cmd
*cmd
)
3020 u32 length
= cmd
->data_length
;
3022 if ((cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
) ||
3023 (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
))
3024 return transport_generic_get_mem(cmd
, length
, PAGE_SIZE
);
3025 else if (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_NONSG_IO_CDB
)
3026 return transport_generic_allocate_buf(cmd
, length
);
3032 transport_handle_reservation_conflict(struct se_cmd
*cmd
)
3034 cmd
->transport_wait_for_tasks
= &transport_nop_wait_for_tasks
;
3035 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3036 cmd
->se_cmd_flags
|= SCF_SCSI_RESERVATION_CONFLICT
;
3037 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
3039 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
3040 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
3043 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
3046 DEV_ATTRIB(cmd
->se_dev
)->emulate_ua_intlck_ctrl
== 2)
3047 core_scsi3_ua_allocate(SE_SESS(cmd
)->se_node_acl
,
3048 cmd
->orig_fe_lun
, 0x2C,
3049 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
3053 /* transport_generic_cmd_sequencer():
3055 * Generic Command Sequencer that should work for most DAS transport
3058 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
3061 * FIXME: Need to support other SCSI OPCODES where as well.
3063 static int transport_generic_cmd_sequencer(
3067 struct se_device
*dev
= SE_DEV(cmd
);
3068 struct se_subsystem_dev
*su_dev
= dev
->se_sub_dev
;
3069 int ret
= 0, sector_ret
= 0, passthrough
;
3070 u32 sectors
= 0, size
= 0, pr_reg_type
= 0;
3074 * Check for an existing UNIT ATTENTION condition
3076 if (core_scsi3_ua_check(cmd
, cdb
) < 0) {
3077 cmd
->transport_wait_for_tasks
=
3078 &transport_nop_wait_for_tasks
;
3079 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3080 cmd
->scsi_sense_reason
= TCM_CHECK_CONDITION_UNIT_ATTENTION
;
3084 * Check status of Asymmetric Logical Unit Assignment port
3086 ret
= T10_ALUA(su_dev
)->alua_state_check(cmd
, cdb
, &alua_ascq
);
3088 cmd
->transport_wait_for_tasks
= &transport_nop_wait_for_tasks
;
3090 * Set SCSI additional sense code (ASC) to 'LUN Not Accessable';
3091 * The ALUA additional sense code qualifier (ASCQ) is determined
3092 * by the ALUA primary or secondary access state..
3096 printk(KERN_INFO
"[%s]: ALUA TG Port not available,"
3097 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
3098 CMD_TFO(cmd
)->get_fabric_name(), alua_ascq
);
3100 transport_set_sense_codes(cmd
, 0x04, alua_ascq
);
3101 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3102 cmd
->scsi_sense_reason
= TCM_CHECK_CONDITION_NOT_READY
;
3105 goto out_invalid_cdb_field
;
3108 * Check status for SPC-3 Persistent Reservations
3110 if (T10_PR_OPS(su_dev
)->t10_reservation_check(cmd
, &pr_reg_type
) != 0) {
3111 if (T10_PR_OPS(su_dev
)->t10_seq_non_holder(
3112 cmd
, cdb
, pr_reg_type
) != 0)
3113 return transport_handle_reservation_conflict(cmd
);
3115 * This means the CDB is allowed for the SCSI Initiator port
3116 * when said port is *NOT* holding the legacy SPC-2 or
3117 * SPC-3 Persistent Reservation.
3123 sectors
= transport_get_sectors_6(cdb
, cmd
, §or_ret
);
3125 goto out_unsupported_cdb
;
3126 size
= transport_get_size(sectors
, cdb
, cmd
);
3127 cmd
->transport_split_cdb
= &split_cdb_XX_6
;
3128 T_TASK(cmd
)->t_task_lba
= transport_lba_21(cdb
);
3129 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3132 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3134 goto out_unsupported_cdb
;
3135 size
= transport_get_size(sectors
, cdb
, cmd
);
3136 cmd
->transport_split_cdb
= &split_cdb_XX_10
;
3137 T_TASK(cmd
)->t_task_lba
= transport_lba_32(cdb
);
3138 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3141 sectors
= transport_get_sectors_12(cdb
, cmd
, §or_ret
);
3143 goto out_unsupported_cdb
;
3144 size
= transport_get_size(sectors
, cdb
, cmd
);
3145 cmd
->transport_split_cdb
= &split_cdb_XX_12
;
3146 T_TASK(cmd
)->t_task_lba
= transport_lba_32(cdb
);
3147 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3150 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3152 goto out_unsupported_cdb
;
3153 size
= transport_get_size(sectors
, cdb
, cmd
);
3154 cmd
->transport_split_cdb
= &split_cdb_XX_16
;
3155 T_TASK(cmd
)->t_task_lba
= transport_lba_64(cdb
);
3156 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3159 sectors
= transport_get_sectors_6(cdb
, cmd
, §or_ret
);
3161 goto out_unsupported_cdb
;
3162 size
= transport_get_size(sectors
, cdb
, cmd
);
3163 cmd
->transport_split_cdb
= &split_cdb_XX_6
;
3164 T_TASK(cmd
)->t_task_lba
= transport_lba_21(cdb
);
3165 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3168 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3170 goto out_unsupported_cdb
;
3171 size
= transport_get_size(sectors
, cdb
, cmd
);
3172 cmd
->transport_split_cdb
= &split_cdb_XX_10
;
3173 T_TASK(cmd
)->t_task_lba
= transport_lba_32(cdb
);
3174 T_TASK(cmd
)->t_tasks_fua
= (cdb
[1] & 0x8);
3175 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3178 sectors
= transport_get_sectors_12(cdb
, cmd
, §or_ret
);
3180 goto out_unsupported_cdb
;
3181 size
= transport_get_size(sectors
, cdb
, cmd
);
3182 cmd
->transport_split_cdb
= &split_cdb_XX_12
;
3183 T_TASK(cmd
)->t_task_lba
= transport_lba_32(cdb
);
3184 T_TASK(cmd
)->t_tasks_fua
= (cdb
[1] & 0x8);
3185 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3188 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3190 goto out_unsupported_cdb
;
3191 size
= transport_get_size(sectors
, cdb
, cmd
);
3192 cmd
->transport_split_cdb
= &split_cdb_XX_16
;
3193 T_TASK(cmd
)->t_task_lba
= transport_lba_64(cdb
);
3194 T_TASK(cmd
)->t_tasks_fua
= (cdb
[1] & 0x8);
3195 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3197 case XDWRITEREAD_10
:
3198 if ((cmd
->data_direction
!= DMA_TO_DEVICE
) ||
3199 !(T_TASK(cmd
)->t_tasks_bidi
))
3200 goto out_invalid_cdb_field
;
3201 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3203 goto out_unsupported_cdb
;
3204 size
= transport_get_size(sectors
, cdb
, cmd
);
3205 cmd
->transport_split_cdb
= &split_cdb_XX_10
;
3206 T_TASK(cmd
)->t_task_lba
= transport_lba_32(cdb
);
3207 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3208 passthrough
= (TRANSPORT(dev
)->transport_type
==
3209 TRANSPORT_PLUGIN_PHBA_PDEV
);
3211 * Skip the remaining assignments for TCM/PSCSI passthrough
3216 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
3218 cmd
->transport_complete_callback
= &transport_xor_callback
;
3219 T_TASK(cmd
)->t_tasks_fua
= (cdb
[1] & 0x8);
3221 case VARIABLE_LENGTH_CMD
:
3222 service_action
= get_unaligned_be16(&cdb
[8]);
3224 * Determine if this is TCM/PSCSI device and we should disable
3225 * internal emulation for this CDB.
3227 passthrough
= (TRANSPORT(dev
)->transport_type
==
3228 TRANSPORT_PLUGIN_PHBA_PDEV
);
3230 switch (service_action
) {
3231 case XDWRITEREAD_32
:
3232 sectors
= transport_get_sectors_32(cdb
, cmd
, §or_ret
);
3234 goto out_unsupported_cdb
;
3235 size
= transport_get_size(sectors
, cdb
, cmd
);
3237 * Use WRITE_32 and READ_32 opcodes for the emulated
3238 * XDWRITE_READ_32 logic.
3240 cmd
->transport_split_cdb
= &split_cdb_XX_32
;
3241 T_TASK(cmd
)->t_task_lba
= transport_lba_64_ext(cdb
);
3242 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3245 * Skip the remaining assignments for TCM/PSCSI passthrough
3251 * Setup BIDI XOR callback to be run during
3252 * transport_generic_complete_ok()
3254 cmd
->transport_complete_callback
= &transport_xor_callback
;
3255 T_TASK(cmd
)->t_tasks_fua
= (cdb
[10] & 0x8);
3258 sectors
= transport_get_sectors_32(cdb
, cmd
, §or_ret
);
3260 goto out_unsupported_cdb
;
3261 size
= transport_get_size(sectors
, cdb
, cmd
);
3262 T_TASK(cmd
)->t_task_lba
= get_unaligned_be64(&cdb
[12]);
3263 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3266 * Skip the remaining assignments for TCM/PSCSI passthrough
3271 if ((cdb
[10] & 0x04) || (cdb
[10] & 0x02)) {
3272 printk(KERN_ERR
"WRITE_SAME PBDATA and LBDATA"
3273 " bits not supported for Block Discard"
3275 goto out_invalid_cdb_field
;
3278 * Currently for the emulated case we only accept
3279 * tpws with the UNMAP=1 bit set.
3281 if (!(cdb
[10] & 0x08)) {
3282 printk(KERN_ERR
"WRITE_SAME w/o UNMAP bit not"
3283 " supported for Block Discard Emulation\n");
3284 goto out_invalid_cdb_field
;
3288 printk(KERN_ERR
"VARIABLE_LENGTH_CMD service action"
3289 " 0x%04x not supported\n", service_action
);
3290 goto out_unsupported_cdb
;
3294 if (TRANSPORT(dev
)->get_device_type(dev
) != TYPE_ROM
) {
3295 /* MAINTENANCE_IN from SCC-2 */
3297 * Check for emulated MI_REPORT_TARGET_PGS.
3299 if (cdb
[1] == MI_REPORT_TARGET_PGS
) {
3300 cmd
->transport_emulate_cdb
=
3301 (T10_ALUA(su_dev
)->alua_type
==
3302 SPC3_ALUA_EMULATED
) ?
3303 &core_emulate_report_target_port_groups
:
3306 size
= (cdb
[6] << 24) | (cdb
[7] << 16) |
3307 (cdb
[8] << 8) | cdb
[9];
3309 /* GPCMD_SEND_KEY from multi media commands */
3310 size
= (cdb
[8] << 8) + cdb
[9];
3312 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3316 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3318 case MODE_SELECT_10
:
3319 size
= (cdb
[7] << 8) + cdb
[8];
3320 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3324 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3327 case GPCMD_READ_BUFFER_CAPACITY
:
3328 case GPCMD_SEND_OPC
:
3331 size
= (cdb
[7] << 8) + cdb
[8];
3332 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3334 case READ_BLOCK_LIMITS
:
3335 size
= READ_BLOCK_LEN
;
3336 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3338 case GPCMD_GET_CONFIGURATION
:
3339 case GPCMD_READ_FORMAT_CAPACITIES
:
3340 case GPCMD_READ_DISC_INFO
:
3341 case GPCMD_READ_TRACK_RZONE_INFO
:
3342 size
= (cdb
[7] << 8) + cdb
[8];
3343 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3345 case PERSISTENT_RESERVE_IN
:
3346 case PERSISTENT_RESERVE_OUT
:
3347 cmd
->transport_emulate_cdb
=
3348 (T10_RES(su_dev
)->res_type
==
3349 SPC3_PERSISTENT_RESERVATIONS
) ?
3350 &core_scsi3_emulate_pr
: NULL
;
3351 size
= (cdb
[7] << 8) + cdb
[8];
3352 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3354 case GPCMD_MECHANISM_STATUS
:
3355 case GPCMD_READ_DVD_STRUCTURE
:
3356 size
= (cdb
[8] << 8) + cdb
[9];
3357 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3360 size
= READ_POSITION_LEN
;
3361 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3364 if (TRANSPORT(dev
)->get_device_type(dev
) != TYPE_ROM
) {
3365 /* MAINTENANCE_OUT from SCC-2
3367 * Check for emulated MO_SET_TARGET_PGS.
3369 if (cdb
[1] == MO_SET_TARGET_PGS
) {
3370 cmd
->transport_emulate_cdb
=
3371 (T10_ALUA(su_dev
)->alua_type
==
3372 SPC3_ALUA_EMULATED
) ?
3373 &core_emulate_set_target_port_groups
:
3377 size
= (cdb
[6] << 24) | (cdb
[7] << 16) |
3378 (cdb
[8] << 8) | cdb
[9];
3380 /* GPCMD_REPORT_KEY from multi media commands */
3381 size
= (cdb
[8] << 8) + cdb
[9];
3383 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3386 size
= (cdb
[3] << 8) + cdb
[4];
3388 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3389 * See spc4r17 section 5.3
3391 if (SE_DEV(cmd
)->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3392 cmd
->sam_task_attr
= TASK_ATTR_HOQ
;
3393 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3396 size
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
3397 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3400 size
= READ_CAP_LEN
;
3401 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3403 case READ_MEDIA_SERIAL_NUMBER
:
3404 case SECURITY_PROTOCOL_IN
:
3405 case SECURITY_PROTOCOL_OUT
:
3406 size
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
3407 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3409 case SERVICE_ACTION_IN
:
3410 case ACCESS_CONTROL_IN
:
3411 case ACCESS_CONTROL_OUT
:
3413 case READ_ATTRIBUTE
:
3414 case RECEIVE_COPY_RESULTS
:
3415 case WRITE_ATTRIBUTE
:
3416 size
= (cdb
[10] << 24) | (cdb
[11] << 16) |
3417 (cdb
[12] << 8) | cdb
[13];
3418 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3420 case RECEIVE_DIAGNOSTIC
:
3421 case SEND_DIAGNOSTIC
:
3422 size
= (cdb
[3] << 8) | cdb
[4];
3423 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3425 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3428 sectors
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
3429 size
= (2336 * sectors
);
3430 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3435 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3439 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3441 case READ_ELEMENT_STATUS
:
3442 size
= 65536 * cdb
[7] + 256 * cdb
[8] + cdb
[9];
3443 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3446 size
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
3447 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3452 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3453 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3455 if (cdb
[0] == RESERVE_10
)
3456 size
= (cdb
[7] << 8) | cdb
[8];
3458 size
= cmd
->data_length
;
3461 * Setup the legacy emulated handler for SPC-2 and
3462 * >= SPC-3 compatible reservation handling (CRH=1)
3463 * Otherwise, we assume the underlying SCSI logic is
3464 * is running in SPC_PASSTHROUGH, and wants reservations
3465 * emulation disabled.
3467 cmd
->transport_emulate_cdb
=
3468 (T10_RES(su_dev
)->res_type
!=
3470 &core_scsi2_emulate_crh
: NULL
;
3471 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3476 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3477 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3479 if (cdb
[0] == RELEASE_10
)
3480 size
= (cdb
[7] << 8) | cdb
[8];
3482 size
= cmd
->data_length
;
3484 cmd
->transport_emulate_cdb
=
3485 (T10_RES(su_dev
)->res_type
!=
3487 &core_scsi2_emulate_crh
: NULL
;
3488 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3490 case SYNCHRONIZE_CACHE
:
3491 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3493 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3495 if (cdb
[0] == SYNCHRONIZE_CACHE
) {
3496 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3497 T_TASK(cmd
)->t_task_lba
= transport_lba_32(cdb
);
3499 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3500 T_TASK(cmd
)->t_task_lba
= transport_lba_64(cdb
);
3503 goto out_unsupported_cdb
;
3505 size
= transport_get_size(sectors
, cdb
, cmd
);
3506 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3509 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3511 if (TRANSPORT(dev
)->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
)
3514 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3515 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3517 cmd
->se_cmd_flags
|= SCF_EMULATE_CDB_ASYNC
;
3519 * Check to ensure that LBA + Range does not exceed past end of
3522 if (transport_get_sectors(cmd
) < 0)
3523 goto out_invalid_cdb_field
;
3526 size
= get_unaligned_be16(&cdb
[7]);
3527 passthrough
= (TRANSPORT(dev
)->transport_type
==
3528 TRANSPORT_PLUGIN_PHBA_PDEV
);
3530 * Determine if the received UNMAP used to for direct passthrough
3531 * into Linux/SCSI with struct request via TCM/pSCSI or we are
3532 * signaling the use of internal transport_generic_unmap() emulation
3533 * for UNMAP -> Linux/BLOCK disbard with TCM/IBLOCK and TCM/FILEIO
3534 * subsystem plugin backstores.
3537 cmd
->se_cmd_flags
|= SCF_EMULATE_SYNC_UNMAP
;
3539 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3542 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3544 goto out_unsupported_cdb
;
3545 size
= transport_get_size(sectors
, cdb
, cmd
);
3546 T_TASK(cmd
)->t_task_lba
= get_unaligned_be16(&cdb
[2]);
3547 passthrough
= (TRANSPORT(dev
)->transport_type
==
3548 TRANSPORT_PLUGIN_PHBA_PDEV
);
3550 * Determine if the received WRITE_SAME_16 is used to for direct
3551 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
3552 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
3553 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK and
3554 * TCM/FILEIO subsystem plugin backstores.
3556 if (!(passthrough
)) {
3557 if ((cdb
[1] & 0x04) || (cdb
[1] & 0x02)) {
3558 printk(KERN_ERR
"WRITE_SAME PBDATA and LBDATA"
3559 " bits not supported for Block Discard"
3561 goto out_invalid_cdb_field
;
3564 * Currently for the emulated case we only accept
3565 * tpws with the UNMAP=1 bit set.
3567 if (!(cdb
[1] & 0x08)) {
3568 printk(KERN_ERR
"WRITE_SAME w/o UNMAP bit not "
3569 " supported for Block Discard Emulation\n");
3570 goto out_invalid_cdb_field
;
3573 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3575 case ALLOW_MEDIUM_REMOVAL
:
3576 case GPCMD_CLOSE_TRACK
:
3578 case INITIALIZE_ELEMENT_STATUS
:
3579 case GPCMD_LOAD_UNLOAD
:
3582 case GPCMD_SET_SPEED
:
3585 case TEST_UNIT_READY
:
3587 case WRITE_FILEMARKS
:
3589 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3592 cmd
->transport_emulate_cdb
=
3593 &transport_core_report_lun_response
;
3594 size
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
3596 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3597 * See spc4r17 section 5.3
3599 if (SE_DEV(cmd
)->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3600 cmd
->sam_task_attr
= TASK_ATTR_HOQ
;
3601 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3604 printk(KERN_WARNING
"TARGET_CORE[%s]: Unsupported SCSI Opcode"
3605 " 0x%02x, sending CHECK_CONDITION.\n",
3606 CMD_TFO(cmd
)->get_fabric_name(), cdb
[0]);
3607 cmd
->transport_wait_for_tasks
= &transport_nop_wait_for_tasks
;
3608 goto out_unsupported_cdb
;
3611 if (size
!= cmd
->data_length
) {
3612 printk(KERN_WARNING
"TARGET_CORE[%s]: Expected Transfer Length:"
3613 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3614 " 0x%02x\n", CMD_TFO(cmd
)->get_fabric_name(),
3615 cmd
->data_length
, size
, cdb
[0]);
3617 cmd
->cmd_spdtl
= size
;
3619 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3620 printk(KERN_ERR
"Rejecting underflow/overflow"
3622 goto out_invalid_cdb_field
;
3625 * Reject READ_* or WRITE_* with overflow/underflow for
3626 * type SCF_SCSI_DATA_SG_IO_CDB.
3628 if (!(ret
) && (DEV_ATTRIB(dev
)->block_size
!= 512)) {
3629 printk(KERN_ERR
"Failing OVERFLOW/UNDERFLOW for LBA op"
3630 " CDB on non 512-byte sector setup subsystem"
3631 " plugin: %s\n", TRANSPORT(dev
)->name
);
3632 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3633 goto out_invalid_cdb_field
;
3636 if (size
> cmd
->data_length
) {
3637 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
3638 cmd
->residual_count
= (size
- cmd
->data_length
);
3640 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
3641 cmd
->residual_count
= (cmd
->data_length
- size
);
3643 cmd
->data_length
= size
;
3646 transport_set_supported_SAM_opcode(cmd
);
3649 out_unsupported_cdb
:
3650 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3651 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
3653 out_invalid_cdb_field
:
3654 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3655 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
3659 static inline void transport_release_tasks(struct se_cmd
*);
3662 * This function will copy a contiguous *src buffer into a destination
3663 * struct scatterlist array.
3665 static void transport_memcpy_write_contig(
3667 struct scatterlist
*sg_d
,
3670 u32 i
= 0, length
= 0, total_length
= cmd
->data_length
;
3673 while (total_length
) {
3674 length
= sg_d
[i
].length
;
3676 if (length
> total_length
)
3677 length
= total_length
;
3679 dst
= sg_virt(&sg_d
[i
]);
3681 memcpy(dst
, src
, length
);
3683 if (!(total_length
-= length
))
3692 * This function will copy a struct scatterlist array *sg_s into a destination
3693 * contiguous *dst buffer.
3695 static void transport_memcpy_read_contig(
3698 struct scatterlist
*sg_s
)
3700 u32 i
= 0, length
= 0, total_length
= cmd
->data_length
;
3703 while (total_length
) {
3704 length
= sg_s
[i
].length
;
3706 if (length
> total_length
)
3707 length
= total_length
;
3709 src
= sg_virt(&sg_s
[i
]);
3711 memcpy(dst
, src
, length
);
3713 if (!(total_length
-= length
))
3721 static void transport_memcpy_se_mem_read_contig(
3724 struct list_head
*se_mem_list
)
3726 struct se_mem
*se_mem
;
3728 u32 length
= 0, total_length
= cmd
->data_length
;
3730 list_for_each_entry(se_mem
, se_mem_list
, se_list
) {
3731 length
= se_mem
->se_len
;
3733 if (length
> total_length
)
3734 length
= total_length
;
3736 src
= page_address(se_mem
->se_page
) + se_mem
->se_off
;
3738 memcpy(dst
, src
, length
);
3740 if (!(total_length
-= length
))
3748 * Called from transport_generic_complete_ok() and
3749 * transport_generic_request_failure() to determine which dormant/delayed
3750 * and ordered cmds need to have their tasks added to the execution queue.
3752 static void transport_complete_task_attr(struct se_cmd
*cmd
)
3754 struct se_device
*dev
= SE_DEV(cmd
);
3755 struct se_cmd
*cmd_p
, *cmd_tmp
;
3756 int new_active_tasks
= 0;
3758 if (cmd
->sam_task_attr
== TASK_ATTR_SIMPLE
) {
3759 atomic_dec(&dev
->simple_cmds
);
3760 smp_mb__after_atomic_dec();
3761 dev
->dev_cur_ordered_id
++;
3762 DEBUG_STA("Incremented dev->dev_cur_ordered_id: %u for"
3763 " SIMPLE: %u\n", dev
->dev_cur_ordered_id
,
3764 cmd
->se_ordered_id
);
3765 } else if (cmd
->sam_task_attr
== TASK_ATTR_HOQ
) {
3766 atomic_dec(&dev
->dev_hoq_count
);
3767 smp_mb__after_atomic_dec();
3768 dev
->dev_cur_ordered_id
++;
3769 DEBUG_STA("Incremented dev_cur_ordered_id: %u for"
3770 " HEAD_OF_QUEUE: %u\n", dev
->dev_cur_ordered_id
,
3771 cmd
->se_ordered_id
);
3772 } else if (cmd
->sam_task_attr
== TASK_ATTR_ORDERED
) {
3773 spin_lock(&dev
->ordered_cmd_lock
);
3774 list_del(&cmd
->se_ordered_list
);
3775 atomic_dec(&dev
->dev_ordered_sync
);
3776 smp_mb__after_atomic_dec();
3777 spin_unlock(&dev
->ordered_cmd_lock
);
3779 dev
->dev_cur_ordered_id
++;
3780 DEBUG_STA("Incremented dev_cur_ordered_id: %u for ORDERED:"
3781 " %u\n", dev
->dev_cur_ordered_id
, cmd
->se_ordered_id
);
3784 * Process all commands up to the last received
3785 * ORDERED task attribute which requires another blocking
3788 spin_lock(&dev
->delayed_cmd_lock
);
3789 list_for_each_entry_safe(cmd_p
, cmd_tmp
,
3790 &dev
->delayed_cmd_list
, se_delayed_list
) {
3792 list_del(&cmd_p
->se_delayed_list
);
3793 spin_unlock(&dev
->delayed_cmd_lock
);
3795 DEBUG_STA("Calling add_tasks() for"
3796 " cmd_p: 0x%02x Task Attr: 0x%02x"
3797 " Dormant -> Active, se_ordered_id: %u\n",
3798 T_TASK(cmd_p
)->t_task_cdb
[0],
3799 cmd_p
->sam_task_attr
, cmd_p
->se_ordered_id
);
3801 transport_add_tasks_from_cmd(cmd_p
);
3804 spin_lock(&dev
->delayed_cmd_lock
);
3805 if (cmd_p
->sam_task_attr
== TASK_ATTR_ORDERED
)
3808 spin_unlock(&dev
->delayed_cmd_lock
);
3810 * If new tasks have become active, wake up the transport thread
3811 * to do the processing of the Active tasks.
3813 if (new_active_tasks
!= 0)
3814 wake_up_interruptible(&dev
->dev_queue_obj
->thread_wq
);
3817 static void transport_generic_complete_ok(struct se_cmd
*cmd
)
3821 * Check if we need to move delayed/dormant tasks from cmds on the
3822 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3825 if (SE_DEV(cmd
)->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3826 transport_complete_task_attr(cmd
);
3828 * Check if we need to retrieve a sense buffer from
3829 * the struct se_cmd in question.
3831 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
3832 if (transport_get_sense_data(cmd
) < 0)
3833 reason
= TCM_NON_EXISTENT_LUN
;
3836 * Only set when an struct se_task->task_scsi_status returned
3837 * a non GOOD status.
3839 if (cmd
->scsi_status
) {
3840 transport_send_check_condition_and_sense(
3842 transport_lun_remove_cmd(cmd
);
3843 transport_cmd_check_stop_to_fabric(cmd
);
3848 * Check for a callback, used by amoungst other things
3849 * XDWRITE_READ_10 emulation.
3851 if (cmd
->transport_complete_callback
)
3852 cmd
->transport_complete_callback(cmd
);
3854 switch (cmd
->data_direction
) {
3855 case DMA_FROM_DEVICE
:
3856 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3857 if (SE_LUN(cmd
)->lun_sep
) {
3858 SE_LUN(cmd
)->lun_sep
->sep_stats
.tx_data_octets
+=
3861 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3863 * If enabled by TCM fabirc module pre-registered SGL
3864 * memory, perform the memcpy() from the TCM internal
3865 * contigious buffer back to the original SGL.
3867 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_CONTIG_TO_SG
)
3868 transport_memcpy_write_contig(cmd
,
3869 T_TASK(cmd
)->t_task_pt_sgl
,
3870 T_TASK(cmd
)->t_task_buf
);
3872 CMD_TFO(cmd
)->queue_data_in(cmd
);
3875 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3876 if (SE_LUN(cmd
)->lun_sep
) {
3877 SE_LUN(cmd
)->lun_sep
->sep_stats
.rx_data_octets
+=
3880 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3882 * Check if we need to send READ payload for BIDI-COMMAND
3884 if (T_TASK(cmd
)->t_mem_bidi_list
!= NULL
) {
3885 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3886 if (SE_LUN(cmd
)->lun_sep
) {
3887 SE_LUN(cmd
)->lun_sep
->sep_stats
.tx_data_octets
+=
3890 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3891 CMD_TFO(cmd
)->queue_data_in(cmd
);
3894 /* Fall through for DMA_TO_DEVICE */
3896 CMD_TFO(cmd
)->queue_status(cmd
);
3902 transport_lun_remove_cmd(cmd
);
3903 transport_cmd_check_stop_to_fabric(cmd
);
3906 static void transport_free_dev_tasks(struct se_cmd
*cmd
)
3908 struct se_task
*task
, *task_tmp
;
3909 unsigned long flags
;
3911 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
3912 list_for_each_entry_safe(task
, task_tmp
,
3913 &T_TASK(cmd
)->t_task_list
, t_list
) {
3914 if (atomic_read(&task
->task_active
))
3917 kfree(task
->task_sg_bidi
);
3918 kfree(task
->task_sg
);
3920 list_del(&task
->t_list
);
3922 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
3924 TRANSPORT(task
->se_dev
)->free_task(task
);
3926 printk(KERN_ERR
"task[%u] - task->se_dev is NULL\n",
3928 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
3930 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
3933 static inline void transport_free_pages(struct se_cmd
*cmd
)
3935 struct se_mem
*se_mem
, *se_mem_tmp
;
3938 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
)
3940 if (cmd
->se_dev
->transport
->do_se_mem_map
)
3943 if (T_TASK(cmd
)->t_task_buf
) {
3944 kfree(T_TASK(cmd
)->t_task_buf
);
3945 T_TASK(cmd
)->t_task_buf
= NULL
;
3950 * Caller will handle releasing of struct se_mem.
3952 if (cmd
->se_cmd_flags
& SCF_CMD_PASSTHROUGH_NOALLOC
)
3955 if (!(T_TASK(cmd
)->t_tasks_se_num
))
3958 list_for_each_entry_safe(se_mem
, se_mem_tmp
,
3959 T_TASK(cmd
)->t_mem_list
, se_list
) {
3961 * We only release call __free_page(struct se_mem->se_page) when
3962 * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
3965 __free_page(se_mem
->se_page
);
3967 list_del(&se_mem
->se_list
);
3968 kmem_cache_free(se_mem_cache
, se_mem
);
3971 if (T_TASK(cmd
)->t_mem_bidi_list
&& T_TASK(cmd
)->t_tasks_se_bidi_num
) {
3972 list_for_each_entry_safe(se_mem
, se_mem_tmp
,
3973 T_TASK(cmd
)->t_mem_bidi_list
, se_list
) {
3975 * We only release call __free_page(struct se_mem->se_page) when
3976 * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
3979 __free_page(se_mem
->se_page
);
3981 list_del(&se_mem
->se_list
);
3982 kmem_cache_free(se_mem_cache
, se_mem
);
3986 kfree(T_TASK(cmd
)->t_mem_bidi_list
);
3987 T_TASK(cmd
)->t_mem_bidi_list
= NULL
;
3988 kfree(T_TASK(cmd
)->t_mem_list
);
3989 T_TASK(cmd
)->t_mem_list
= NULL
;
3990 T_TASK(cmd
)->t_tasks_se_num
= 0;
3993 static inline void transport_release_tasks(struct se_cmd
*cmd
)
3995 transport_free_dev_tasks(cmd
);
3998 static inline int transport_dec_and_check(struct se_cmd
*cmd
)
4000 unsigned long flags
;
4002 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
4003 if (atomic_read(&T_TASK(cmd
)->t_fe_count
)) {
4004 if (!(atomic_dec_and_test(&T_TASK(cmd
)->t_fe_count
))) {
4005 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
4011 if (atomic_read(&T_TASK(cmd
)->t_se_count
)) {
4012 if (!(atomic_dec_and_test(&T_TASK(cmd
)->t_se_count
))) {
4013 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
4018 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
4023 static void transport_release_fe_cmd(struct se_cmd
*cmd
)
4025 unsigned long flags
;
4027 if (transport_dec_and_check(cmd
))
4030 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
4031 if (!(atomic_read(&T_TASK(cmd
)->transport_dev_active
))) {
4032 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
4035 atomic_set(&T_TASK(cmd
)->transport_dev_active
, 0);
4036 transport_all_task_dev_remove_state(cmd
);
4037 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
4039 transport_release_tasks(cmd
);
4041 transport_free_pages(cmd
);
4042 transport_free_se_cmd(cmd
);
4043 CMD_TFO(cmd
)->release_cmd_direct(cmd
);
4046 static int transport_generic_remove(
4048 int release_to_pool
,
4049 int session_reinstatement
)
4051 unsigned long flags
;
4056 if (transport_dec_and_check(cmd
)) {
4057 if (session_reinstatement
) {
4058 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
4059 transport_all_task_dev_remove_state(cmd
);
4060 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
4066 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
4067 if (!(atomic_read(&T_TASK(cmd
)->transport_dev_active
))) {
4068 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
4071 atomic_set(&T_TASK(cmd
)->transport_dev_active
, 0);
4072 transport_all_task_dev_remove_state(cmd
);
4073 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
4075 transport_release_tasks(cmd
);
4077 transport_free_pages(cmd
);
4080 if (release_to_pool
) {
4081 transport_release_cmd_to_pool(cmd
);
4083 transport_free_se_cmd(cmd
);
4084 CMD_TFO(cmd
)->release_cmd_direct(cmd
);
4091 * transport_generic_map_mem_to_cmd - Perform SGL -> struct se_mem map
4092 * @cmd: Associated se_cmd descriptor
4093 * @mem: SGL style memory for TCM WRITE / READ
4094 * @sg_mem_num: Number of SGL elements
4095 * @mem_bidi_in: SGL style memory for TCM BIDI READ
4096 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
4098 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
4101 int transport_generic_map_mem_to_cmd(
4103 struct scatterlist
*mem
,
4105 struct scatterlist
*mem_bidi_in
,
4106 u32 sg_mem_bidi_num
)
4108 u32 se_mem_cnt_out
= 0;
4111 if (!(mem
) || !(sg_mem_num
))
4114 * Passed *mem will contain a list_head containing preformatted
4115 * struct se_mem elements...
4117 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM
)) {
4118 if ((mem_bidi_in
) || (sg_mem_bidi_num
)) {
4119 printk(KERN_ERR
"SCF_CMD_PASSTHROUGH_NOALLOC not supported"
4120 " with BIDI-COMMAND\n");
4124 T_TASK(cmd
)->t_mem_list
= (struct list_head
*)mem
;
4125 T_TASK(cmd
)->t_tasks_se_num
= sg_mem_num
;
4126 cmd
->se_cmd_flags
|= SCF_CMD_PASSTHROUGH_NOALLOC
;
4130 * Otherwise, assume the caller is passing a struct scatterlist
4131 * array from include/linux/scatterlist.h
4133 if ((cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
) ||
4134 (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
)) {
4136 * For CDB using TCM struct se_mem linked list scatterlist memory
4137 * processed into a TCM struct se_subsystem_dev, we do the mapping
4138 * from the passed physical memory to struct se_mem->se_page here.
4140 T_TASK(cmd
)->t_mem_list
= transport_init_se_mem_list();
4141 if (!(T_TASK(cmd
)->t_mem_list
))
4144 ret
= transport_map_sg_to_mem(cmd
,
4145 T_TASK(cmd
)->t_mem_list
, mem
, &se_mem_cnt_out
);
4149 T_TASK(cmd
)->t_tasks_se_num
= se_mem_cnt_out
;
4151 * Setup BIDI READ list of struct se_mem elements
4153 if ((mem_bidi_in
) && (sg_mem_bidi_num
)) {
4154 T_TASK(cmd
)->t_mem_bidi_list
= transport_init_se_mem_list();
4155 if (!(T_TASK(cmd
)->t_mem_bidi_list
)) {
4156 kfree(T_TASK(cmd
)->t_mem_list
);
4161 ret
= transport_map_sg_to_mem(cmd
,
4162 T_TASK(cmd
)->t_mem_bidi_list
, mem_bidi_in
,
4165 kfree(T_TASK(cmd
)->t_mem_list
);
4169 T_TASK(cmd
)->t_tasks_se_bidi_num
= se_mem_cnt_out
;
4171 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
4173 } else if (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_NONSG_IO_CDB
) {
4174 if (mem_bidi_in
|| sg_mem_bidi_num
) {
4175 printk(KERN_ERR
"BIDI-Commands not supported using "
4176 "SCF_SCSI_CONTROL_NONSG_IO_CDB\n");
4180 * For incoming CDBs using a contiguous buffer internall with TCM,
4181 * save the passed struct scatterlist memory. After TCM storage object
4182 * processing has completed for this struct se_cmd, TCM core will call
4183 * transport_memcpy_[write,read]_contig() as necessary from
4184 * transport_generic_complete_ok() and transport_write_pending() in order
4185 * to copy the TCM buffer to/from the original passed *mem in SGL ->
4186 * struct scatterlist format.
4188 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_CONTIG_TO_SG
;
4189 T_TASK(cmd
)->t_task_pt_sgl
= mem
;
4194 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd
);
4197 static inline long long transport_dev_end_lba(struct se_device
*dev
)
4199 return dev
->transport
->get_blocks(dev
) + 1;
4202 static int transport_get_sectors(struct se_cmd
*cmd
)
4204 struct se_device
*dev
= SE_DEV(cmd
);
4206 T_TASK(cmd
)->t_tasks_sectors
=
4207 (cmd
->data_length
/ DEV_ATTRIB(dev
)->block_size
);
4208 if (!(T_TASK(cmd
)->t_tasks_sectors
))
4209 T_TASK(cmd
)->t_tasks_sectors
= 1;
4211 if (TRANSPORT(dev
)->get_device_type(dev
) != TYPE_DISK
)
4214 if ((T_TASK(cmd
)->t_task_lba
+ T_TASK(cmd
)->t_tasks_sectors
) >
4215 transport_dev_end_lba(dev
)) {
4216 printk(KERN_ERR
"LBA: %llu Sectors: %u exceeds"
4217 " transport_dev_end_lba(): %llu\n",
4218 T_TASK(cmd
)->t_task_lba
, T_TASK(cmd
)->t_tasks_sectors
,
4219 transport_dev_end_lba(dev
));
4220 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
4221 cmd
->scsi_sense_reason
= TCM_SECTOR_COUNT_TOO_MANY
;
4222 return PYX_TRANSPORT_REQ_TOO_MANY_SECTORS
;
4228 static int transport_new_cmd_obj(struct se_cmd
*cmd
)
4230 struct se_device
*dev
= SE_DEV(cmd
);
4231 u32 task_cdbs
= 0, rc
;
4233 if (!(cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
)) {
4235 T_TASK(cmd
)->t_task_cdbs
++;
4240 * Setup any BIDI READ tasks and memory from
4241 * T_TASK(cmd)->t_mem_bidi_list so the READ struct se_tasks
4242 * are queued first for the non pSCSI passthrough case.
4244 if ((T_TASK(cmd
)->t_mem_bidi_list
!= NULL
) &&
4245 (TRANSPORT(dev
)->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
)) {
4246 rc
= transport_generic_get_cdb_count(cmd
,
4247 T_TASK(cmd
)->t_task_lba
,
4248 T_TASK(cmd
)->t_tasks_sectors
,
4249 DMA_FROM_DEVICE
, T_TASK(cmd
)->t_mem_bidi_list
,
4252 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
4253 cmd
->scsi_sense_reason
=
4254 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
4255 return PYX_TRANSPORT_LU_COMM_FAILURE
;
4260 * Setup the tasks and memory from T_TASK(cmd)->t_mem_list
4261 * Note for BIDI transfers this will contain the WRITE payload
4263 task_cdbs
= transport_generic_get_cdb_count(cmd
,
4264 T_TASK(cmd
)->t_task_lba
,
4265 T_TASK(cmd
)->t_tasks_sectors
,
4266 cmd
->data_direction
, T_TASK(cmd
)->t_mem_list
,
4269 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
4270 cmd
->scsi_sense_reason
=
4271 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
4272 return PYX_TRANSPORT_LU_COMM_FAILURE
;
4274 T_TASK(cmd
)->t_task_cdbs
+= task_cdbs
;
4277 printk(KERN_INFO
"data_length: %u, LBA: %llu t_tasks_sectors:"
4278 " %u, t_task_cdbs: %u\n", obj_ptr
, cmd
->data_length
,
4279 T_TASK(cmd
)->t_task_lba
, T_TASK(cmd
)->t_tasks_sectors
,
4280 T_TASK(cmd
)->t_task_cdbs
);
4284 atomic_set(&T_TASK(cmd
)->t_task_cdbs_left
, task_cdbs
);
4285 atomic_set(&T_TASK(cmd
)->t_task_cdbs_ex_left
, task_cdbs
);
4286 atomic_set(&T_TASK(cmd
)->t_task_cdbs_timeout_left
, task_cdbs
);
4290 static struct list_head
*transport_init_se_mem_list(void)
4292 struct list_head
*se_mem_list
;
4294 se_mem_list
= kzalloc(sizeof(struct list_head
), GFP_KERNEL
);
4295 if (!(se_mem_list
)) {
4296 printk(KERN_ERR
"Unable to allocate memory for se_mem_list\n");
4299 INIT_LIST_HEAD(se_mem_list
);
4305 transport_generic_get_mem(struct se_cmd
*cmd
, u32 length
, u32 dma_size
)
4308 struct se_mem
*se_mem
;
4310 T_TASK(cmd
)->t_mem_list
= transport_init_se_mem_list();
4311 if (!(T_TASK(cmd
)->t_mem_list
))
4315 * If the device uses memory mapping this is enough.
4317 if (cmd
->se_dev
->transport
->do_se_mem_map
)
4321 * Setup BIDI-COMMAND READ list of struct se_mem elements
4323 if (T_TASK(cmd
)->t_tasks_bidi
) {
4324 T_TASK(cmd
)->t_mem_bidi_list
= transport_init_se_mem_list();
4325 if (!(T_TASK(cmd
)->t_mem_bidi_list
)) {
4326 kfree(T_TASK(cmd
)->t_mem_list
);
4332 se_mem
= kmem_cache_zalloc(se_mem_cache
, GFP_KERNEL
);
4334 printk(KERN_ERR
"Unable to allocate struct se_mem\n");
4337 INIT_LIST_HEAD(&se_mem
->se_list
);
4338 se_mem
->se_len
= (length
> dma_size
) ? dma_size
: length
;
4340 /* #warning FIXME Allocate contigous pages for struct se_mem elements */
4341 se_mem
->se_page
= (struct page
*) alloc_pages(GFP_KERNEL
, 0);
4342 if (!(se_mem
->se_page
)) {
4343 printk(KERN_ERR
"alloc_pages() failed\n");
4347 buf
= kmap_atomic(se_mem
->se_page
, KM_IRQ0
);
4349 printk(KERN_ERR
"kmap_atomic() failed\n");
4352 memset(buf
, 0, se_mem
->se_len
);
4353 kunmap_atomic(buf
, KM_IRQ0
);
4355 list_add_tail(&se_mem
->se_list
, T_TASK(cmd
)->t_mem_list
);
4356 T_TASK(cmd
)->t_tasks_se_num
++;
4358 DEBUG_MEM("Allocated struct se_mem page(%p) Length(%u)"
4359 " Offset(%u)\n", se_mem
->se_page
, se_mem
->se_len
,
4362 length
-= se_mem
->se_len
;
4365 DEBUG_MEM("Allocated total struct se_mem elements(%u)\n",
4366 T_TASK(cmd
)->t_tasks_se_num
);
4373 extern u32
transport_calc_sg_num(
4374 struct se_task
*task
,
4375 struct se_mem
*in_se_mem
,
4378 struct se_cmd
*se_cmd
= task
->task_se_cmd
;
4379 struct se_device
*se_dev
= SE_DEV(se_cmd
);
4380 struct se_mem
*se_mem
= in_se_mem
;
4381 struct target_core_fabric_ops
*tfo
= CMD_TFO(se_cmd
);
4382 u32 sg_length
, task_size
= task
->task_size
, task_sg_num_padded
;
4384 while (task_size
!= 0) {
4385 DEBUG_SC("se_mem->se_page(%p) se_mem->se_len(%u)"
4386 " se_mem->se_off(%u) task_offset(%u)\n",
4387 se_mem
->se_page
, se_mem
->se_len
,
4388 se_mem
->se_off
, task_offset
);
4390 if (task_offset
== 0) {
4391 if (task_size
>= se_mem
->se_len
) {
4392 sg_length
= se_mem
->se_len
;
4394 if (!(list_is_last(&se_mem
->se_list
,
4395 T_TASK(se_cmd
)->t_mem_list
)))
4396 se_mem
= list_entry(se_mem
->se_list
.next
,
4397 struct se_mem
, se_list
);
4399 sg_length
= task_size
;
4400 task_size
-= sg_length
;
4404 DEBUG_SC("sg_length(%u) task_size(%u)\n",
4405 sg_length
, task_size
);
4407 if ((se_mem
->se_len
- task_offset
) > task_size
) {
4408 sg_length
= task_size
;
4409 task_size
-= sg_length
;
4412 sg_length
= (se_mem
->se_len
- task_offset
);
4414 if (!(list_is_last(&se_mem
->se_list
,
4415 T_TASK(se_cmd
)->t_mem_list
)))
4416 se_mem
= list_entry(se_mem
->se_list
.next
,
4417 struct se_mem
, se_list
);
4420 DEBUG_SC("sg_length(%u) task_size(%u)\n",
4421 sg_length
, task_size
);
4425 task_size
-= sg_length
;
4427 DEBUG_SC("task[%u] - Reducing task_size to(%u)\n",
4428 task
->task_no
, task_size
);
4430 task
->task_sg_num
++;
4433 * Check if the fabric module driver is requesting that all
4434 * struct se_task->task_sg[] be chained together.. If so,
4435 * then allocate an extra padding SG entry for linking and
4436 * marking the end of the chained SGL.
4438 if (tfo
->task_sg_chaining
) {
4439 task_sg_num_padded
= (task
->task_sg_num
+ 1);
4440 task
->task_padded_sg
= 1;
4442 task_sg_num_padded
= task
->task_sg_num
;
4444 task
->task_sg
= kzalloc(task_sg_num_padded
*
4445 sizeof(struct scatterlist
), GFP_KERNEL
);
4446 if (!(task
->task_sg
)) {
4447 printk(KERN_ERR
"Unable to allocate memory for"
4448 " task->task_sg\n");
4451 sg_init_table(&task
->task_sg
[0], task_sg_num_padded
);
4453 * Setup task->task_sg_bidi for SCSI READ payload for
4454 * TCM/pSCSI passthrough if present for BIDI-COMMAND
4456 if ((T_TASK(se_cmd
)->t_mem_bidi_list
!= NULL
) &&
4457 (TRANSPORT(se_dev
)->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
)) {
4458 task
->task_sg_bidi
= kzalloc(task_sg_num_padded
*
4459 sizeof(struct scatterlist
), GFP_KERNEL
);
4460 if (!(task
->task_sg_bidi
)) {
4461 printk(KERN_ERR
"Unable to allocate memory for"
4462 " task->task_sg_bidi\n");
4465 sg_init_table(&task
->task_sg_bidi
[0], task_sg_num_padded
);
4468 * For the chaining case, setup the proper end of SGL for the
4469 * initial submission struct task into struct se_subsystem_api.
4470 * This will be cleared later by transport_do_task_sg_chain()
4472 if (task
->task_padded_sg
) {
4473 sg_mark_end(&task
->task_sg
[task
->task_sg_num
- 1]);
4475 * Added the 'if' check before marking end of bi-directional
4476 * scatterlist (which gets created only in case of request
4479 if (task
->task_sg_bidi
)
4480 sg_mark_end(&task
->task_sg_bidi
[task
->task_sg_num
- 1]);
4483 DEBUG_SC("Successfully allocated task->task_sg_num(%u),"
4484 " task_sg_num_padded(%u)\n", task
->task_sg_num
,
4485 task_sg_num_padded
);
4487 return task
->task_sg_num
;
4490 static inline int transport_set_tasks_sectors_disk(
4491 struct se_task
*task
,
4492 struct se_device
*dev
,
4493 unsigned long long lba
,
4495 int *max_sectors_set
)
4497 if ((lba
+ sectors
) > transport_dev_end_lba(dev
)) {
4498 task
->task_sectors
= ((transport_dev_end_lba(dev
) - lba
) + 1);
4500 if (task
->task_sectors
> DEV_ATTRIB(dev
)->max_sectors
) {
4501 task
->task_sectors
= DEV_ATTRIB(dev
)->max_sectors
;
4502 *max_sectors_set
= 1;
4505 if (sectors
> DEV_ATTRIB(dev
)->max_sectors
) {
4506 task
->task_sectors
= DEV_ATTRIB(dev
)->max_sectors
;
4507 *max_sectors_set
= 1;
4509 task
->task_sectors
= sectors
;
4515 static inline int transport_set_tasks_sectors_non_disk(
4516 struct se_task
*task
,
4517 struct se_device
*dev
,
4518 unsigned long long lba
,
4520 int *max_sectors_set
)
4522 if (sectors
> DEV_ATTRIB(dev
)->max_sectors
) {
4523 task
->task_sectors
= DEV_ATTRIB(dev
)->max_sectors
;
4524 *max_sectors_set
= 1;
4526 task
->task_sectors
= sectors
;
4531 static inline int transport_set_tasks_sectors(
4532 struct se_task
*task
,
4533 struct se_device
*dev
,
4534 unsigned long long lba
,
4536 int *max_sectors_set
)
4538 return (TRANSPORT(dev
)->get_device_type(dev
) == TYPE_DISK
) ?
4539 transport_set_tasks_sectors_disk(task
, dev
, lba
, sectors
,
4541 transport_set_tasks_sectors_non_disk(task
, dev
, lba
, sectors
,
4545 static int transport_map_sg_to_mem(
4547 struct list_head
*se_mem_list
,
4551 struct se_mem
*se_mem
;
4552 struct scatterlist
*sg
;
4553 u32 sg_count
= 1, cmd_size
= cmd
->data_length
;
4556 printk(KERN_ERR
"No source scatterlist\n");
4559 sg
= (struct scatterlist
*)in_mem
;
4562 se_mem
= kmem_cache_zalloc(se_mem_cache
, GFP_KERNEL
);
4564 printk(KERN_ERR
"Unable to allocate struct se_mem\n");
4567 INIT_LIST_HEAD(&se_mem
->se_list
);
4568 DEBUG_MEM("sg_to_mem: Starting loop with cmd_size: %u"
4569 " sg_page: %p offset: %d length: %d\n", cmd_size
,
4570 sg_page(sg
), sg
->offset
, sg
->length
);
4572 se_mem
->se_page
= sg_page(sg
);
4573 se_mem
->se_off
= sg
->offset
;
4575 if (cmd_size
> sg
->length
) {
4576 se_mem
->se_len
= sg
->length
;
4580 se_mem
->se_len
= cmd_size
;
4582 cmd_size
-= se_mem
->se_len
;
4584 DEBUG_MEM("sg_to_mem: *se_mem_cnt: %u cmd_size: %u\n",
4585 *se_mem_cnt
, cmd_size
);
4586 DEBUG_MEM("sg_to_mem: Final se_page: %p se_off: %d se_len: %d\n",
4587 se_mem
->se_page
, se_mem
->se_off
, se_mem
->se_len
);
4589 list_add_tail(&se_mem
->se_list
, se_mem_list
);
4593 DEBUG_MEM("task[0] - Mapped(%u) struct scatterlist segments to(%u)"
4594 " struct se_mem\n", sg_count
, *se_mem_cnt
);
4596 if (sg_count
!= *se_mem_cnt
)
4602 /* transport_map_mem_to_sg():
4606 int transport_map_mem_to_sg(
4607 struct se_task
*task
,
4608 struct list_head
*se_mem_list
,
4610 struct se_mem
*in_se_mem
,
4611 struct se_mem
**out_se_mem
,
4615 struct se_cmd
*se_cmd
= task
->task_se_cmd
;
4616 struct se_mem
*se_mem
= in_se_mem
;
4617 struct scatterlist
*sg
= (struct scatterlist
*)in_mem
;
4618 u32 task_size
= task
->task_size
, sg_no
= 0;
4621 printk(KERN_ERR
"Unable to locate valid struct"
4622 " scatterlist pointer\n");
4626 while (task_size
!= 0) {
4628 * Setup the contigious array of scatterlists for
4629 * this struct se_task.
4631 sg_assign_page(sg
, se_mem
->se_page
);
4633 if (*task_offset
== 0) {
4634 sg
->offset
= se_mem
->se_off
;
4636 if (task_size
>= se_mem
->se_len
) {
4637 sg
->length
= se_mem
->se_len
;
4639 if (!(list_is_last(&se_mem
->se_list
,
4640 T_TASK(se_cmd
)->t_mem_list
))) {
4641 se_mem
= list_entry(se_mem
->se_list
.next
,
4642 struct se_mem
, se_list
);
4646 sg
->length
= task_size
;
4648 * Determine if we need to calculate an offset
4649 * into the struct se_mem on the next go around..
4651 task_size
-= sg
->length
;
4653 *task_offset
= sg
->length
;
4659 sg
->offset
= (*task_offset
+ se_mem
->se_off
);
4661 if ((se_mem
->se_len
- *task_offset
) > task_size
) {
4662 sg
->length
= task_size
;
4664 * Determine if we need to calculate an offset
4665 * into the struct se_mem on the next go around..
4667 task_size
-= sg
->length
;
4669 *task_offset
+= sg
->length
;
4673 sg
->length
= (se_mem
->se_len
- *task_offset
);
4675 if (!(list_is_last(&se_mem
->se_list
,
4676 T_TASK(se_cmd
)->t_mem_list
))) {
4677 se_mem
= list_entry(se_mem
->se_list
.next
,
4678 struct se_mem
, se_list
);
4685 task_size
-= sg
->length
;
4687 DEBUG_MEM("task[%u] mem_to_sg - sg[%u](%p)(%u)(%u) - Reducing"
4688 " task_size to(%u), task_offset: %u\n", task
->task_no
, sg_no
,
4689 sg_page(sg
), sg
->length
, sg
->offset
, task_size
, *task_offset
);
4697 if (task_size
> se_cmd
->data_length
)
4700 *out_se_mem
= se_mem
;
4702 DEBUG_MEM("task[%u] - Mapped(%u) struct se_mem segments to total(%u)"
4703 " SGs\n", task
->task_no
, *se_mem_cnt
, sg_no
);
4709 * This function can be used by HW target mode drivers to create a linked
4710 * scatterlist from all contiguously allocated struct se_task->task_sg[].
4711 * This is intended to be called during the completion path by TCM Core
4712 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
4714 void transport_do_task_sg_chain(struct se_cmd
*cmd
)
4716 struct scatterlist
*sg_head
= NULL
, *sg_link
= NULL
, *sg_first
= NULL
;
4717 struct scatterlist
*sg_head_cur
= NULL
, *sg_link_cur
= NULL
;
4718 struct scatterlist
*sg
, *sg_end
= NULL
, *sg_end_cur
= NULL
;
4719 struct se_task
*task
;
4720 struct target_core_fabric_ops
*tfo
= CMD_TFO(cmd
);
4721 u32 task_sg_num
= 0, sg_count
= 0;
4724 if (tfo
->task_sg_chaining
== 0) {
4725 printk(KERN_ERR
"task_sg_chaining is diabled for fabric module:"
4726 " %s\n", tfo
->get_fabric_name());
4731 * Walk the struct se_task list and setup scatterlist chains
4732 * for each contiguosly allocated struct se_task->task_sg[].
4734 list_for_each_entry(task
, &T_TASK(cmd
)->t_task_list
, t_list
) {
4735 if (!(task
->task_sg
) || !(task
->task_padded_sg
))
4738 if (sg_head
&& sg_link
) {
4739 sg_head_cur
= &task
->task_sg
[0];
4740 sg_link_cur
= &task
->task_sg
[task
->task_sg_num
];
4742 * Either add chain or mark end of scatterlist
4744 if (!(list_is_last(&task
->t_list
,
4745 &T_TASK(cmd
)->t_task_list
))) {
4747 * Clear existing SGL termination bit set in
4748 * transport_calc_sg_num(), see sg_mark_end()
4750 sg_end_cur
= &task
->task_sg
[task
->task_sg_num
- 1];
4751 sg_end_cur
->page_link
&= ~0x02;
4753 sg_chain(sg_head
, task_sg_num
, sg_head_cur
);
4754 sg_count
+= (task
->task_sg_num
+ 1);
4756 sg_count
+= task
->task_sg_num
;
4758 sg_head
= sg_head_cur
;
4759 sg_link
= sg_link_cur
;
4760 task_sg_num
= task
->task_sg_num
;
4763 sg_head
= sg_first
= &task
->task_sg
[0];
4764 sg_link
= &task
->task_sg
[task
->task_sg_num
];
4765 task_sg_num
= task
->task_sg_num
;
4767 * Check for single task..
4769 if (!(list_is_last(&task
->t_list
, &T_TASK(cmd
)->t_task_list
))) {
4771 * Clear existing SGL termination bit set in
4772 * transport_calc_sg_num(), see sg_mark_end()
4774 sg_end
= &task
->task_sg
[task
->task_sg_num
- 1];
4775 sg_end
->page_link
&= ~0x02;
4776 sg_count
+= (task
->task_sg_num
+ 1);
4778 sg_count
+= task
->task_sg_num
;
4781 * Setup the starting pointer and total t_tasks_sg_linked_no including
4782 * padding SGs for linking and to mark the end.
4784 T_TASK(cmd
)->t_tasks_sg_chained
= sg_first
;
4785 T_TASK(cmd
)->t_tasks_sg_chained_no
= sg_count
;
4787 DEBUG_CMD_M("Setup T_TASK(cmd)->t_tasks_sg_chained: %p and"
4788 " t_tasks_sg_chained_no: %u\n", T_TASK(cmd
)->t_tasks_sg_chained
,
4789 T_TASK(cmd
)->t_tasks_sg_chained_no
);
4791 for_each_sg(T_TASK(cmd
)->t_tasks_sg_chained
, sg
,
4792 T_TASK(cmd
)->t_tasks_sg_chained_no
, i
) {
4794 DEBUG_CMD_M("SG: %p page: %p length: %d offset: %d\n",
4795 sg
, sg_page(sg
), sg
->length
, sg
->offset
);
4796 if (sg_is_chain(sg
))
4797 DEBUG_CMD_M("SG: %p sg_is_chain=1\n", sg
);
4799 DEBUG_CMD_M("SG: %p sg_is_last=1\n", sg
);
4803 EXPORT_SYMBOL(transport_do_task_sg_chain
);
4805 static int transport_do_se_mem_map(
4806 struct se_device
*dev
,
4807 struct se_task
*task
,
4808 struct list_head
*se_mem_list
,
4810 struct se_mem
*in_se_mem
,
4811 struct se_mem
**out_se_mem
,
4813 u32
*task_offset_in
)
4815 u32 task_offset
= *task_offset_in
;
4818 * se_subsystem_api_t->do_se_mem_map is used when internal allocation
4819 * has been done by the transport plugin.
4821 if (TRANSPORT(dev
)->do_se_mem_map
) {
4822 ret
= TRANSPORT(dev
)->do_se_mem_map(task
, se_mem_list
,
4823 in_mem
, in_se_mem
, out_se_mem
, se_mem_cnt
,
4826 T_TASK(task
->task_se_cmd
)->t_tasks_se_num
+= *se_mem_cnt
;
4831 BUG_ON(list_empty(se_mem_list
));
4833 * This is the normal path for all normal non BIDI and BIDI-COMMAND
4834 * WRITE payloads.. If we need to do BIDI READ passthrough for
4835 * TCM/pSCSI the first call to transport_do_se_mem_map ->
4836 * transport_calc_sg_num() -> transport_map_mem_to_sg() will do the
4837 * allocation for task->task_sg_bidi, and the subsequent call to
4838 * transport_do_se_mem_map() from transport_generic_get_cdb_count()
4840 if (!(task
->task_sg_bidi
)) {
4842 * Assume default that transport plugin speaks preallocated
4845 if (!(transport_calc_sg_num(task
, in_se_mem
, task_offset
)))
4848 * struct se_task->task_sg now contains the struct scatterlist array.
4850 return transport_map_mem_to_sg(task
, se_mem_list
, task
->task_sg
,
4851 in_se_mem
, out_se_mem
, se_mem_cnt
,
4855 * Handle the se_mem_list -> struct task->task_sg_bidi
4856 * memory map for the extra BIDI READ payload
4858 return transport_map_mem_to_sg(task
, se_mem_list
, task
->task_sg_bidi
,
4859 in_se_mem
, out_se_mem
, se_mem_cnt
,
4863 static u32
transport_generic_get_cdb_count(
4865 unsigned long long lba
,
4867 enum dma_data_direction data_direction
,
4868 struct list_head
*mem_list
,
4871 unsigned char *cdb
= NULL
;
4872 struct se_task
*task
;
4873 struct se_mem
*se_mem
= NULL
, *se_mem_lout
= NULL
;
4874 struct se_mem
*se_mem_bidi
= NULL
, *se_mem_bidi_lout
= NULL
;
4875 struct se_device
*dev
= SE_DEV(cmd
);
4876 int max_sectors_set
= 0, ret
;
4877 u32 task_offset_in
= 0, se_mem_cnt
= 0, se_mem_bidi_cnt
= 0, task_cdbs
= 0;
4880 printk(KERN_ERR
"mem_list is NULL in transport_generic_get"
4885 * While using RAMDISK_DR backstores is the only case where
4886 * mem_list will ever be empty at this point.
4888 if (!(list_empty(mem_list
)))
4889 se_mem
= list_entry(mem_list
->next
, struct se_mem
, se_list
);
4891 * Check for extra se_mem_bidi mapping for BIDI-COMMANDs to
4892 * struct se_task->task_sg_bidi for TCM/pSCSI passthrough operation
4894 if ((T_TASK(cmd
)->t_mem_bidi_list
!= NULL
) &&
4895 !(list_empty(T_TASK(cmd
)->t_mem_bidi_list
)) &&
4896 (TRANSPORT(dev
)->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
))
4897 se_mem_bidi
= list_entry(T_TASK(cmd
)->t_mem_bidi_list
->next
,
4898 struct se_mem
, se_list
);
4901 DEBUG_VOL("ITT[0x%08x] LBA(%llu) SectorsLeft(%u) EOBJ(%llu)\n",
4902 CMD_TFO(cmd
)->get_task_tag(cmd
), lba
, sectors
,
4903 transport_dev_end_lba(dev
));
4905 task
= transport_generic_get_task(cmd
, data_direction
);
4909 transport_set_tasks_sectors(task
, dev
, lba
, sectors
,
4912 task
->task_lba
= lba
;
4913 lba
+= task
->task_sectors
;
4914 sectors
-= task
->task_sectors
;
4915 task
->task_size
= (task
->task_sectors
*
4916 DEV_ATTRIB(dev
)->block_size
);
4918 cdb
= TRANSPORT(dev
)->get_cdb(task
);
4920 memcpy(cdb
, T_TASK(cmd
)->t_task_cdb
,
4921 scsi_command_size(T_TASK(cmd
)->t_task_cdb
));
4922 cmd
->transport_split_cdb(task
->task_lba
,
4923 &task
->task_sectors
, cdb
);
4927 * Perform the SE OBJ plugin and/or Transport plugin specific
4928 * mapping for T_TASK(cmd)->t_mem_list. And setup the
4929 * task->task_sg and if necessary task->task_sg_bidi
4931 ret
= transport_do_se_mem_map(dev
, task
, mem_list
,
4932 NULL
, se_mem
, &se_mem_lout
, &se_mem_cnt
,
4937 se_mem
= se_mem_lout
;
4939 * Setup the T_TASK(cmd)->t_mem_bidi_list -> task->task_sg_bidi
4940 * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI
4942 * Note that the first call to transport_do_se_mem_map() above will
4943 * allocate struct se_task->task_sg_bidi in transport_do_se_mem_map()
4944 * -> transport_calc_sg_num(), and the second here will do the
4945 * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI.
4947 if (task
->task_sg_bidi
!= NULL
) {
4948 ret
= transport_do_se_mem_map(dev
, task
,
4949 T_TASK(cmd
)->t_mem_bidi_list
, NULL
,
4950 se_mem_bidi
, &se_mem_bidi_lout
, &se_mem_bidi_cnt
,
4955 se_mem_bidi
= se_mem_bidi_lout
;
4959 DEBUG_VOL("Incremented task_cdbs(%u) task->task_sg_num(%u)\n",
4960 task_cdbs
, task
->task_sg_num
);
4962 if (max_sectors_set
) {
4963 max_sectors_set
= 0;
4972 atomic_inc(&T_TASK(cmd
)->t_fe_count
);
4973 atomic_inc(&T_TASK(cmd
)->t_se_count
);
4976 DEBUG_VOL("ITT[0x%08x] total %s cdbs(%u)\n",
4977 CMD_TFO(cmd
)->get_task_tag(cmd
), (data_direction
== DMA_TO_DEVICE
)
4978 ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE", task_cdbs
);
4986 transport_map_control_cmd_to_task(struct se_cmd
*cmd
)
4988 struct se_device
*dev
= SE_DEV(cmd
);
4990 struct se_task
*task
;
4993 task
= transport_generic_get_task(cmd
, cmd
->data_direction
);
4995 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES
;
4997 cdb
= TRANSPORT(dev
)->get_cdb(task
);
4999 memcpy(cdb
, cmd
->t_task
->t_task_cdb
,
5000 scsi_command_size(cmd
->t_task
->t_task_cdb
));
5002 task
->task_size
= cmd
->data_length
;
5004 (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
) ? 1 : 0;
5006 atomic_inc(&cmd
->t_task
->t_fe_count
);
5007 atomic_inc(&cmd
->t_task
->t_se_count
);
5009 if (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
) {
5010 struct se_mem
*se_mem
= NULL
, *se_mem_lout
= NULL
;
5011 u32 se_mem_cnt
= 0, task_offset
= 0;
5013 if (!list_empty(T_TASK(cmd
)->t_mem_list
))
5014 se_mem
= list_entry(T_TASK(cmd
)->t_mem_list
->next
,
5015 struct se_mem
, se_list
);
5017 ret
= transport_do_se_mem_map(dev
, task
,
5018 cmd
->t_task
->t_mem_list
, NULL
, se_mem
,
5019 &se_mem_lout
, &se_mem_cnt
, &task_offset
);
5021 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES
;
5023 if (dev
->transport
->map_task_SG
)
5024 return dev
->transport
->map_task_SG(task
);
5026 } else if (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_NONSG_IO_CDB
) {
5027 if (dev
->transport
->map_task_non_SG
)
5028 return dev
->transport
->map_task_non_SG(task
);
5030 } else if (cmd
->se_cmd_flags
& SCF_SCSI_NON_DATA_CDB
) {
5031 if (dev
->transport
->cdb_none
)
5032 return dev
->transport
->cdb_none(task
);
5036 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES
;
5040 /* transport_generic_new_cmd(): Called from transport_processing_thread()
5042 * Allocate storage transport resources from a set of values predefined
5043 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
5044 * Any non zero return here is treated as an "out of resource' op here.
5047 * Generate struct se_task(s) and/or their payloads for this CDB.
5049 static int transport_generic_new_cmd(struct se_cmd
*cmd
)
5051 struct se_portal_group
*se_tpg
;
5052 struct se_task
*task
;
5053 struct se_device
*dev
= SE_DEV(cmd
);
5057 * Determine is the TCM fabric module has already allocated physical
5058 * memory, and is directly calling transport_generic_map_mem_to_cmd()
5059 * to setup beforehand the linked list of physical memory at
5060 * T_TASK(cmd)->t_mem_list of struct se_mem->se_page
5062 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
)) {
5063 ret
= transport_allocate_resources(cmd
);
5068 ret
= transport_get_sectors(cmd
);
5072 ret
= transport_new_cmd_obj(cmd
);
5077 * Determine if the calling TCM fabric module is talking to
5078 * Linux/NET via kernel sockets and needs to allocate a
5079 * struct iovec array to complete the struct se_cmd
5081 se_tpg
= SE_LUN(cmd
)->lun_sep
->sep_tpg
;
5082 if (TPG_TFO(se_tpg
)->alloc_cmd_iovecs
!= NULL
) {
5083 ret
= TPG_TFO(se_tpg
)->alloc_cmd_iovecs(cmd
);
5085 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES
;
5088 if (cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
) {
5089 list_for_each_entry(task
, &T_TASK(cmd
)->t_task_list
, t_list
) {
5090 if (atomic_read(&task
->task_sent
))
5092 if (!dev
->transport
->map_task_SG
)
5095 ret
= dev
->transport
->map_task_SG(task
);
5100 ret
= transport_map_control_cmd_to_task(cmd
);
5106 * For WRITEs, let the iSCSI Target RX Thread know its buffer is ready..
5107 * This WRITE struct se_cmd (and all of its associated struct se_task's)
5108 * will be added to the struct se_device execution queue after its WRITE
5109 * data has arrived. (ie: It gets handled by the transport processing
5110 * thread a second time)
5112 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
5113 transport_add_tasks_to_state_queue(cmd
);
5114 return transport_generic_write_pending(cmd
);
5117 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
5118 * to the execution queue.
5120 transport_execute_tasks(cmd
);
5124 /* transport_generic_process_write():
5128 void transport_generic_process_write(struct se_cmd
*cmd
)
5132 * Copy SCSI Presented DTL sector(s) from received buffers allocated to
5135 if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
5136 if (!T_TASK(cmd
)->t_tasks_se_num
) {
5137 unsigned char *dst
, *buf
=
5138 (unsigned char *)T_TASK(cmd
)->t_task_buf
;
5140 dst
= kzalloc(cmd
->cmd_spdtl
), GFP_KERNEL
);
5142 printk(KERN_ERR
"Unable to allocate memory for"
5143 " WRITE underflow\n");
5144 transport_generic_request_failure(cmd
, NULL
,
5145 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS
, 1);
5148 memcpy(dst
, buf
, cmd
->cmd_spdtl
);
5150 kfree(T_TASK(cmd
)->t_task_buf
);
5151 T_TASK(cmd
)->t_task_buf
= dst
;
5153 struct scatterlist
*sg
=
5154 (struct scatterlist
*sg
)T_TASK(cmd
)->t_task_buf
;
5155 struct scatterlist
*orig_sg
;
5157 orig_sg
= kzalloc(sizeof(struct scatterlist
) *
5158 T_TASK(cmd
)->t_tasks_se_num
,
5161 printk(KERN_ERR
"Unable to allocate memory"
5162 " for WRITE underflow\n");
5163 transport_generic_request_failure(cmd
, NULL
,
5164 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS
, 1);
5168 memcpy(orig_sg
, T_TASK(cmd
)->t_task_buf
,
5169 sizeof(struct scatterlist
) *
5170 T_TASK(cmd
)->t_tasks_se_num
);
5172 cmd
->data_length
= cmd
->cmd_spdtl
;
5174 * FIXME, clear out original struct se_task and state
5177 if (transport_generic_new_cmd(cmd
) < 0) {
5178 transport_generic_request_failure(cmd
, NULL
,
5179 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS
, 1);
5184 transport_memcpy_write_sg(cmd
, orig_sg
);
5188 transport_execute_tasks(cmd
);
5190 EXPORT_SYMBOL(transport_generic_process_write
);
5192 /* transport_generic_write_pending():
5196 static int transport_generic_write_pending(struct se_cmd
*cmd
)
5198 unsigned long flags
;
5201 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5202 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
5203 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5205 * For the TCM control CDBs using a contiguous buffer, do the memcpy
5206 * from the passed Linux/SCSI struct scatterlist located at
5207 * T_TASK(se_cmd)->t_task_pt_buf to the contiguous buffer at
5208 * T_TASK(se_cmd)->t_task_buf.
5210 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_CONTIG_TO_SG
)
5211 transport_memcpy_read_contig(cmd
,
5212 T_TASK(cmd
)->t_task_buf
,
5213 T_TASK(cmd
)->t_task_pt_sgl
);
5215 * Clear the se_cmd for WRITE_PENDING status in order to set
5216 * T_TASK(cmd)->t_transport_active=0 so that transport_generic_handle_data
5217 * can be called from HW target mode interrupt code. This is safe
5218 * to be called with transport_off=1 before the CMD_TFO(cmd)->write_pending
5219 * because the se_cmd->se_lun pointer is not being cleared.
5221 transport_cmd_check_stop(cmd
, 1, 0);
5224 * Call the fabric write_pending function here to let the
5225 * frontend know that WRITE buffers are ready.
5227 ret
= CMD_TFO(cmd
)->write_pending(cmd
);
5231 return PYX_TRANSPORT_WRITE_PENDING
;
5234 /* transport_release_cmd_to_pool():
5238 void transport_release_cmd_to_pool(struct se_cmd
*cmd
)
5240 BUG_ON(!T_TASK(cmd
));
5241 BUG_ON(!CMD_TFO(cmd
));
5243 transport_free_se_cmd(cmd
);
5244 CMD_TFO(cmd
)->release_cmd_to_pool(cmd
);
5246 EXPORT_SYMBOL(transport_release_cmd_to_pool
);
5248 /* transport_generic_free_cmd():
5250 * Called from processing frontend to release storage engine resources
5252 void transport_generic_free_cmd(
5255 int release_to_pool
,
5256 int session_reinstatement
)
5258 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) || !T_TASK(cmd
))
5259 transport_release_cmd_to_pool(cmd
);
5261 core_dec_lacl_count(cmd
->se_sess
->se_node_acl
, cmd
);
5265 printk(KERN_INFO
"cmd: %p ITT: 0x%08x contains"
5266 " SE_LUN(cmd)\n", cmd
,
5267 CMD_TFO(cmd
)->get_task_tag(cmd
));
5269 transport_lun_remove_cmd(cmd
);
5272 if (wait_for_tasks
&& cmd
->transport_wait_for_tasks
)
5273 cmd
->transport_wait_for_tasks(cmd
, 0, 0);
5275 transport_generic_remove(cmd
, release_to_pool
,
5276 session_reinstatement
);
5279 EXPORT_SYMBOL(transport_generic_free_cmd
);
5281 static void transport_nop_wait_for_tasks(
5284 int session_reinstatement
)
5289 /* transport_lun_wait_for_tasks():
5291 * Called from ConfigFS context to stop the passed struct se_cmd to allow
5292 * an struct se_lun to be successfully shutdown.
5294 static int transport_lun_wait_for_tasks(struct se_cmd
*cmd
, struct se_lun
*lun
)
5296 unsigned long flags
;
5299 * If the frontend has already requested this struct se_cmd to
5300 * be stopped, we can safely ignore this struct se_cmd.
5302 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5303 if (atomic_read(&T_TASK(cmd
)->t_transport_stop
)) {
5304 atomic_set(&T_TASK(cmd
)->transport_lun_stop
, 0);
5305 DEBUG_TRANSPORT_S("ConfigFS ITT[0x%08x] - t_transport_stop =="
5306 " TRUE, skipping\n", CMD_TFO(cmd
)->get_task_tag(cmd
));
5307 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5308 transport_cmd_check_stop(cmd
, 1, 0);
5311 atomic_set(&T_TASK(cmd
)->transport_lun_fe_stop
, 1);
5312 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5314 wake_up_interruptible(&SE_DEV(cmd
)->dev_queue_obj
->thread_wq
);
5316 ret
= transport_stop_tasks_for_cmd(cmd
);
5318 DEBUG_TRANSPORT_S("ConfigFS: cmd: %p t_task_cdbs: %d stop tasks ret:"
5319 " %d\n", cmd
, T_TASK(cmd
)->t_task_cdbs
, ret
);
5321 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
5322 CMD_TFO(cmd
)->get_task_tag(cmd
));
5323 wait_for_completion(&T_TASK(cmd
)->transport_lun_stop_comp
);
5324 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
5325 CMD_TFO(cmd
)->get_task_tag(cmd
));
5327 transport_remove_cmd_from_queue(cmd
, SE_DEV(cmd
)->dev_queue_obj
);
5332 /* #define DEBUG_CLEAR_LUN */
5333 #ifdef DEBUG_CLEAR_LUN
5334 #define DEBUG_CLEAR_L(x...) printk(KERN_INFO x)
5336 #define DEBUG_CLEAR_L(x...)
5339 static void __transport_clear_lun_from_sessions(struct se_lun
*lun
)
5341 struct se_cmd
*cmd
= NULL
;
5342 unsigned long lun_flags
, cmd_flags
;
5344 * Do exception processing and return CHECK_CONDITION status to the
5347 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
5348 while (!list_empty_careful(&lun
->lun_cmd_list
)) {
5349 cmd
= list_entry(lun
->lun_cmd_list
.next
,
5350 struct se_cmd
, se_lun_list
);
5351 list_del(&cmd
->se_lun_list
);
5353 if (!(T_TASK(cmd
))) {
5354 printk(KERN_ERR
"ITT: 0x%08x, T_TASK(cmd) = NULL"
5355 "[i,t]_state: %u/%u\n",
5356 CMD_TFO(cmd
)->get_task_tag(cmd
),
5357 CMD_TFO(cmd
)->get_cmd_state(cmd
), cmd
->t_state
);
5360 atomic_set(&T_TASK(cmd
)->transport_lun_active
, 0);
5362 * This will notify iscsi_target_transport.c:
5363 * transport_cmd_check_stop() that a LUN shutdown is in
5364 * progress for the iscsi_cmd_t.
5366 spin_lock(&T_TASK(cmd
)->t_state_lock
);
5367 DEBUG_CLEAR_L("SE_LUN[%d] - Setting T_TASK(cmd)->transport"
5368 "_lun_stop for ITT: 0x%08x\n",
5369 SE_LUN(cmd
)->unpacked_lun
,
5370 CMD_TFO(cmd
)->get_task_tag(cmd
));
5371 atomic_set(&T_TASK(cmd
)->transport_lun_stop
, 1);
5372 spin_unlock(&T_TASK(cmd
)->t_state_lock
);
5374 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, lun_flags
);
5376 if (!(SE_LUN(cmd
))) {
5377 printk(KERN_ERR
"ITT: 0x%08x, [i,t]_state: %u/%u\n",
5378 CMD_TFO(cmd
)->get_task_tag(cmd
),
5379 CMD_TFO(cmd
)->get_cmd_state(cmd
), cmd
->t_state
);
5383 * If the Storage engine still owns the iscsi_cmd_t, determine
5384 * and/or stop its context.
5386 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x before transport"
5387 "_lun_wait_for_tasks()\n", SE_LUN(cmd
)->unpacked_lun
,
5388 CMD_TFO(cmd
)->get_task_tag(cmd
));
5390 if (transport_lun_wait_for_tasks(cmd
, SE_LUN(cmd
)) < 0) {
5391 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
5395 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
5396 "_wait_for_tasks(): SUCCESS\n",
5397 SE_LUN(cmd
)->unpacked_lun
,
5398 CMD_TFO(cmd
)->get_task_tag(cmd
));
5400 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, cmd_flags
);
5401 if (!(atomic_read(&T_TASK(cmd
)->transport_dev_active
))) {
5402 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, cmd_flags
);
5405 atomic_set(&T_TASK(cmd
)->transport_dev_active
, 0);
5406 transport_all_task_dev_remove_state(cmd
);
5407 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, cmd_flags
);
5409 transport_free_dev_tasks(cmd
);
5411 * The Storage engine stopped this struct se_cmd before it was
5412 * send to the fabric frontend for delivery back to the
5413 * Initiator Node. Return this SCSI CDB back with an
5414 * CHECK_CONDITION status.
5417 transport_send_check_condition_and_sense(cmd
,
5418 TCM_NON_EXISTENT_LUN
, 0);
5420 * If the fabric frontend is waiting for this iscsi_cmd_t to
5421 * be released, notify the waiting thread now that LU has
5422 * finished accessing it.
5424 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, cmd_flags
);
5425 if (atomic_read(&T_TASK(cmd
)->transport_lun_fe_stop
)) {
5426 DEBUG_CLEAR_L("SE_LUN[%d] - Detected FE stop for"
5427 " struct se_cmd: %p ITT: 0x%08x\n",
5429 cmd
, CMD_TFO(cmd
)->get_task_tag(cmd
));
5431 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
5433 transport_cmd_check_stop(cmd
, 1, 0);
5434 complete(&T_TASK(cmd
)->transport_lun_fe_stop_comp
);
5435 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
5438 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
5439 lun
->unpacked_lun
, CMD_TFO(cmd
)->get_task_tag(cmd
));
5441 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, cmd_flags
);
5442 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
5444 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, lun_flags
);
5447 static int transport_clear_lun_thread(void *p
)
5449 struct se_lun
*lun
= (struct se_lun
*)p
;
5451 __transport_clear_lun_from_sessions(lun
);
5452 complete(&lun
->lun_shutdown_comp
);
5457 int transport_clear_lun_from_sessions(struct se_lun
*lun
)
5459 struct task_struct
*kt
;
5461 kt
= kthread_run(transport_clear_lun_thread
, (void *)lun
,
5462 "tcm_cl_%u", lun
->unpacked_lun
);
5464 printk(KERN_ERR
"Unable to start clear_lun thread\n");
5467 wait_for_completion(&lun
->lun_shutdown_comp
);
5472 /* transport_generic_wait_for_tasks():
5474 * Called from frontend or passthrough context to wait for storage engine
5475 * to pause and/or release frontend generated struct se_cmd.
5477 static void transport_generic_wait_for_tasks(
5480 int session_reinstatement
)
5482 unsigned long flags
;
5484 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) && !(cmd
->se_tmr_req
))
5487 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5489 * If we are already stopped due to an external event (ie: LUN shutdown)
5490 * sleep until the connection can have the passed struct se_cmd back.
5491 * The T_TASK(cmd)->transport_lun_stopped_sem will be upped by
5492 * transport_clear_lun_from_sessions() once the ConfigFS context caller
5493 * has completed its operation on the struct se_cmd.
5495 if (atomic_read(&T_TASK(cmd
)->transport_lun_stop
)) {
5497 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping"
5498 " wait_for_completion(&T_TASK(cmd)transport_lun_fe"
5499 "_stop_comp); for ITT: 0x%08x\n",
5500 CMD_TFO(cmd
)->get_task_tag(cmd
));
5502 * There is a special case for WRITES where a FE exception +
5503 * LUN shutdown means ConfigFS context is still sleeping on
5504 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
5505 * We go ahead and up transport_lun_stop_comp just to be sure
5508 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5509 complete(&T_TASK(cmd
)->transport_lun_stop_comp
);
5510 wait_for_completion(&T_TASK(cmd
)->transport_lun_fe_stop_comp
);
5511 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5513 transport_all_task_dev_remove_state(cmd
);
5515 * At this point, the frontend who was the originator of this
5516 * struct se_cmd, now owns the structure and can be released through
5517 * normal means below.
5519 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped"
5520 " wait_for_completion(&T_TASK(cmd)transport_lun_fe_"
5521 "stop_comp); for ITT: 0x%08x\n",
5522 CMD_TFO(cmd
)->get_task_tag(cmd
));
5524 atomic_set(&T_TASK(cmd
)->transport_lun_stop
, 0);
5526 if (!atomic_read(&T_TASK(cmd
)->t_transport_active
))
5529 atomic_set(&T_TASK(cmd
)->t_transport_stop
, 1);
5531 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping %p ITT: 0x%08x"
5532 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
5533 " = TRUE\n", cmd
, CMD_TFO(cmd
)->get_task_tag(cmd
),
5534 CMD_TFO(cmd
)->get_cmd_state(cmd
), cmd
->t_state
,
5535 cmd
->deferred_t_state
);
5537 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5539 wake_up_interruptible(&SE_DEV(cmd
)->dev_queue_obj
->thread_wq
);
5541 wait_for_completion(&T_TASK(cmd
)->t_transport_stop_comp
);
5543 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5544 atomic_set(&T_TASK(cmd
)->t_transport_active
, 0);
5545 atomic_set(&T_TASK(cmd
)->t_transport_stop
, 0);
5547 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped wait_for_compltion("
5548 "&T_TASK(cmd)->t_transport_stop_comp) for ITT: 0x%08x\n",
5549 CMD_TFO(cmd
)->get_task_tag(cmd
));
5551 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5555 transport_generic_free_cmd(cmd
, 0, 0, session_reinstatement
);
5558 static int transport_get_sense_codes(
5563 *asc
= cmd
->scsi_asc
;
5564 *ascq
= cmd
->scsi_ascq
;
5569 static int transport_set_sense_codes(
5574 cmd
->scsi_asc
= asc
;
5575 cmd
->scsi_ascq
= ascq
;
5580 int transport_send_check_condition_and_sense(
5585 unsigned char *buffer
= cmd
->sense_buffer
;
5586 unsigned long flags
;
5588 u8 asc
= 0, ascq
= 0;
5590 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5591 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
5592 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5595 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
5596 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5598 if (!reason
&& from_transport
)
5601 if (!from_transport
)
5602 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
5604 * Data Segment and SenseLength of the fabric response PDU.
5606 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
5607 * from include/scsi/scsi_cmnd.h
5609 offset
= CMD_TFO(cmd
)->set_fabric_sense_len(cmd
,
5610 TRANSPORT_SENSE_BUFFER
);
5612 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
5613 * SENSE KEY values from include/scsi/scsi.h
5616 case TCM_NON_EXISTENT_LUN
:
5617 case TCM_UNSUPPORTED_SCSI_OPCODE
:
5618 case TCM_SECTOR_COUNT_TOO_MANY
:
5620 buffer
[offset
] = 0x70;
5621 /* ILLEGAL REQUEST */
5622 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
5623 /* INVALID COMMAND OPERATION CODE */
5624 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x20;
5626 case TCM_UNKNOWN_MODE_PAGE
:
5628 buffer
[offset
] = 0x70;
5629 /* ILLEGAL REQUEST */
5630 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
5631 /* INVALID FIELD IN CDB */
5632 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x24;
5634 case TCM_CHECK_CONDITION_ABORT_CMD
:
5636 buffer
[offset
] = 0x70;
5637 /* ABORTED COMMAND */
5638 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5639 /* BUS DEVICE RESET FUNCTION OCCURRED */
5640 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x29;
5641 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x03;
5643 case TCM_INCORRECT_AMOUNT_OF_DATA
:
5645 buffer
[offset
] = 0x70;
5646 /* ABORTED COMMAND */
5647 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5649 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x0c;
5650 /* NOT ENOUGH UNSOLICITED DATA */
5651 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x0d;
5653 case TCM_INVALID_CDB_FIELD
:
5655 buffer
[offset
] = 0x70;
5656 /* ABORTED COMMAND */
5657 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5658 /* INVALID FIELD IN CDB */
5659 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x24;
5661 case TCM_INVALID_PARAMETER_LIST
:
5663 buffer
[offset
] = 0x70;
5664 /* ABORTED COMMAND */
5665 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5666 /* INVALID FIELD IN PARAMETER LIST */
5667 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x26;
5669 case TCM_UNEXPECTED_UNSOLICITED_DATA
:
5671 buffer
[offset
] = 0x70;
5672 /* ABORTED COMMAND */
5673 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5675 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x0c;
5676 /* UNEXPECTED_UNSOLICITED_DATA */
5677 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x0c;
5679 case TCM_SERVICE_CRC_ERROR
:
5681 buffer
[offset
] = 0x70;
5682 /* ABORTED COMMAND */
5683 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5684 /* PROTOCOL SERVICE CRC ERROR */
5685 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x47;
5687 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x05;
5689 case TCM_SNACK_REJECTED
:
5691 buffer
[offset
] = 0x70;
5692 /* ABORTED COMMAND */
5693 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5695 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x11;
5696 /* FAILED RETRANSMISSION REQUEST */
5697 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x13;
5699 case TCM_WRITE_PROTECTED
:
5701 buffer
[offset
] = 0x70;
5703 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = DATA_PROTECT
;
5704 /* WRITE PROTECTED */
5705 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x27;
5707 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
5709 buffer
[offset
] = 0x70;
5710 /* UNIT ATTENTION */
5711 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = UNIT_ATTENTION
;
5712 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
5713 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = asc
;
5714 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = ascq
;
5716 case TCM_CHECK_CONDITION_NOT_READY
:
5718 buffer
[offset
] = 0x70;
5720 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = NOT_READY
;
5721 transport_get_sense_codes(cmd
, &asc
, &ascq
);
5722 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = asc
;
5723 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = ascq
;
5725 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
5728 buffer
[offset
] = 0x70;
5729 /* ILLEGAL REQUEST */
5730 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
5731 /* LOGICAL UNIT COMMUNICATION FAILURE */
5732 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x80;
5736 * This code uses linux/include/scsi/scsi.h SAM status codes!
5738 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
5740 * Automatically padded, this value is encoded in the fabric's
5741 * data_length response PDU containing the SCSI defined sense data.
5743 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
+ offset
;
5746 CMD_TFO(cmd
)->queue_status(cmd
);
5749 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
5751 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
5755 if (atomic_read(&T_TASK(cmd
)->t_transport_aborted
) != 0) {
5756 if (!(send_status
) ||
5757 (cmd
->se_cmd_flags
& SCF_SENT_DELAYED_TAS
))
5760 printk(KERN_INFO
"Sending delayed SAM_STAT_TASK_ABORTED"
5761 " status for CDB: 0x%02x ITT: 0x%08x\n",
5762 T_TASK(cmd
)->t_task_cdb
[0],
5763 CMD_TFO(cmd
)->get_task_tag(cmd
));
5765 cmd
->se_cmd_flags
|= SCF_SENT_DELAYED_TAS
;
5766 CMD_TFO(cmd
)->queue_status(cmd
);
5771 EXPORT_SYMBOL(transport_check_aborted_status
);
5773 void transport_send_task_abort(struct se_cmd
*cmd
)
5776 * If there are still expected incoming fabric WRITEs, we wait
5777 * until until they have completed before sending a TASK_ABORTED
5778 * response. This response with TASK_ABORTED status will be
5779 * queued back to fabric module by transport_check_aborted_status().
5781 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
5782 if (CMD_TFO(cmd
)->write_pending_status(cmd
) != 0) {
5783 atomic_inc(&T_TASK(cmd
)->t_transport_aborted
);
5784 smp_mb__after_atomic_inc();
5785 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
5786 transport_new_cmd_failure(cmd
);
5790 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
5792 printk(KERN_INFO
"Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
5793 " ITT: 0x%08x\n", T_TASK(cmd
)->t_task_cdb
[0],
5794 CMD_TFO(cmd
)->get_task_tag(cmd
));
5796 CMD_TFO(cmd
)->queue_status(cmd
);
5799 /* transport_generic_do_tmr():
5803 int transport_generic_do_tmr(struct se_cmd
*cmd
)
5805 struct se_cmd
*ref_cmd
;
5806 struct se_device
*dev
= SE_DEV(cmd
);
5807 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
5810 switch (tmr
->function
) {
5812 ref_cmd
= tmr
->ref_cmd
;
5813 tmr
->response
= TMR_FUNCTION_REJECTED
;
5815 case ABORT_TASK_SET
:
5817 case CLEAR_TASK_SET
:
5818 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
5821 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
5822 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
5823 TMR_FUNCTION_REJECTED
;
5826 case TARGET_WARM_RESET
:
5827 transport_generic_host_reset(dev
->se_hba
);
5828 tmr
->response
= TMR_FUNCTION_REJECTED
;
5830 case TARGET_COLD_RESET
:
5831 transport_generic_host_reset(dev
->se_hba
);
5832 transport_generic_cold_reset(dev
->se_hba
);
5833 tmr
->response
= TMR_FUNCTION_REJECTED
;
5837 printk(KERN_ERR
"Uknown TMR function: 0x%02x.\n",
5839 tmr
->response
= TMR_FUNCTION_REJECTED
;
5843 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
5844 CMD_TFO(cmd
)->queue_tm_rsp(cmd
);
5846 transport_cmd_check_stop(cmd
, 2, 0);
5851 * Called with spin_lock_irq(&dev->execute_task_lock); held
5854 static struct se_task
*
5855 transport_get_task_from_state_list(struct se_device
*dev
)
5857 struct se_task
*task
;
5859 if (list_empty(&dev
->state_task_list
))
5862 list_for_each_entry(task
, &dev
->state_task_list
, t_state_list
)
5865 list_del(&task
->t_state_list
);
5866 atomic_set(&task
->task_state_active
, 0);
5871 static void transport_processing_shutdown(struct se_device
*dev
)
5874 struct se_queue_req
*qr
;
5875 struct se_task
*task
;
5877 unsigned long flags
;
5879 * Empty the struct se_device's struct se_task state list.
5881 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
5882 while ((task
= transport_get_task_from_state_list(dev
))) {
5883 if (!(TASK_CMD(task
))) {
5884 printk(KERN_ERR
"TASK_CMD(task) is NULL!\n");
5887 cmd
= TASK_CMD(task
);
5890 printk(KERN_ERR
"T_TASK(cmd) is NULL for task: %p cmd:"
5891 " %p ITT: 0x%08x\n", task
, cmd
,
5892 CMD_TFO(cmd
)->get_task_tag(cmd
));
5895 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
5897 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5899 DEBUG_DO("PT: cmd: %p task: %p ITT/CmdSN: 0x%08x/0x%08x,"
5900 " i_state/def_i_state: %d/%d, t_state/def_t_state:"
5901 " %d/%d cdb: 0x%02x\n", cmd
, task
,
5902 CMD_TFO(cmd
)->get_task_tag(cmd
), cmd
->cmd_sn
,
5903 CMD_TFO(cmd
)->get_cmd_state(cmd
), cmd
->deferred_i_state
,
5904 cmd
->t_state
, cmd
->deferred_t_state
,
5905 T_TASK(cmd
)->t_task_cdb
[0]);
5906 DEBUG_DO("PT: ITT[0x%08x] - t_task_cdbs: %d t_task_cdbs_left:"
5907 " %d t_task_cdbs_sent: %d -- t_transport_active: %d"
5908 " t_transport_stop: %d t_transport_sent: %d\n",
5909 CMD_TFO(cmd
)->get_task_tag(cmd
),
5910 T_TASK(cmd
)->t_task_cdbs
,
5911 atomic_read(&T_TASK(cmd
)->t_task_cdbs_left
),
5912 atomic_read(&T_TASK(cmd
)->t_task_cdbs_sent
),
5913 atomic_read(&T_TASK(cmd
)->t_transport_active
),
5914 atomic_read(&T_TASK(cmd
)->t_transport_stop
),
5915 atomic_read(&T_TASK(cmd
)->t_transport_sent
));
5917 if (atomic_read(&task
->task_active
)) {
5918 atomic_set(&task
->task_stop
, 1);
5919 spin_unlock_irqrestore(
5920 &T_TASK(cmd
)->t_state_lock
, flags
);
5922 DEBUG_DO("Waiting for task: %p to shutdown for dev:"
5923 " %p\n", task
, dev
);
5924 wait_for_completion(&task
->task_stop_comp
);
5925 DEBUG_DO("Completed task: %p shutdown for dev: %p\n",
5928 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5929 atomic_dec(&T_TASK(cmd
)->t_task_cdbs_left
);
5931 atomic_set(&task
->task_active
, 0);
5932 atomic_set(&task
->task_stop
, 0);
5934 __transport_stop_task_timer(task
, &flags
);
5936 if (!(atomic_dec_and_test(&T_TASK(cmd
)->t_task_cdbs_ex_left
))) {
5937 spin_unlock_irqrestore(
5938 &T_TASK(cmd
)->t_state_lock
, flags
);
5940 DEBUG_DO("Skipping task: %p, dev: %p for"
5941 " t_task_cdbs_ex_left: %d\n", task
, dev
,
5942 atomic_read(&T_TASK(cmd
)->t_task_cdbs_ex_left
));
5944 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
5948 if (atomic_read(&T_TASK(cmd
)->t_transport_active
)) {
5949 DEBUG_DO("got t_transport_active = 1 for task: %p, dev:"
5950 " %p\n", task
, dev
);
5952 if (atomic_read(&T_TASK(cmd
)->t_fe_count
)) {
5953 spin_unlock_irqrestore(
5954 &T_TASK(cmd
)->t_state_lock
, flags
);
5955 transport_send_check_condition_and_sense(
5956 cmd
, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
,
5958 transport_remove_cmd_from_queue(cmd
,
5959 SE_DEV(cmd
)->dev_queue_obj
);
5961 transport_lun_remove_cmd(cmd
);
5962 transport_cmd_check_stop(cmd
, 1, 0);
5964 spin_unlock_irqrestore(
5965 &T_TASK(cmd
)->t_state_lock
, flags
);
5967 transport_remove_cmd_from_queue(cmd
,
5968 SE_DEV(cmd
)->dev_queue_obj
);
5970 transport_lun_remove_cmd(cmd
);
5972 if (transport_cmd_check_stop(cmd
, 1, 0))
5973 transport_generic_remove(cmd
, 0, 0);
5976 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
5979 DEBUG_DO("Got t_transport_active = 0 for task: %p, dev: %p\n",
5982 if (atomic_read(&T_TASK(cmd
)->t_fe_count
)) {
5983 spin_unlock_irqrestore(
5984 &T_TASK(cmd
)->t_state_lock
, flags
);
5985 transport_send_check_condition_and_sense(cmd
,
5986 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
, 0);
5987 transport_remove_cmd_from_queue(cmd
,
5988 SE_DEV(cmd
)->dev_queue_obj
);
5990 transport_lun_remove_cmd(cmd
);
5991 transport_cmd_check_stop(cmd
, 1, 0);
5993 spin_unlock_irqrestore(
5994 &T_TASK(cmd
)->t_state_lock
, flags
);
5996 transport_remove_cmd_from_queue(cmd
,
5997 SE_DEV(cmd
)->dev_queue_obj
);
5998 transport_lun_remove_cmd(cmd
);
6000 if (transport_cmd_check_stop(cmd
, 1, 0))
6001 transport_generic_remove(cmd
, 0, 0);
6004 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
6006 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
6008 * Empty the struct se_device's struct se_cmd list.
6010 spin_lock_irqsave(&dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
6011 while ((qr
= __transport_get_qr_from_queue(dev
->dev_queue_obj
))) {
6012 spin_unlock_irqrestore(
6013 &dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
6014 cmd
= (struct se_cmd
*)qr
->cmd
;
6018 DEBUG_DO("From Device Queue: cmd: %p t_state: %d\n",
6021 if (atomic_read(&T_TASK(cmd
)->t_fe_count
)) {
6022 transport_send_check_condition_and_sense(cmd
,
6023 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
, 0);
6025 transport_lun_remove_cmd(cmd
);
6026 transport_cmd_check_stop(cmd
, 1, 0);
6028 transport_lun_remove_cmd(cmd
);
6029 if (transport_cmd_check_stop(cmd
, 1, 0))
6030 transport_generic_remove(cmd
, 0, 0);
6032 spin_lock_irqsave(&dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
6034 spin_unlock_irqrestore(&dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
6037 /* transport_processing_thread():
6041 static int transport_processing_thread(void *param
)
6045 struct se_device
*dev
= (struct se_device
*) param
;
6046 struct se_queue_req
*qr
;
6048 set_user_nice(current
, -20);
6050 while (!kthread_should_stop()) {
6051 ret
= wait_event_interruptible(dev
->dev_queue_obj
->thread_wq
,
6052 atomic_read(&dev
->dev_queue_obj
->queue_cnt
) ||
6053 kthread_should_stop());
6057 spin_lock_irq(&dev
->dev_status_lock
);
6058 if (dev
->dev_status
& TRANSPORT_DEVICE_SHUTDOWN
) {
6059 spin_unlock_irq(&dev
->dev_status_lock
);
6060 transport_processing_shutdown(dev
);
6063 spin_unlock_irq(&dev
->dev_status_lock
);
6066 __transport_execute_tasks(dev
);
6068 qr
= transport_get_qr_from_queue(dev
->dev_queue_obj
);
6072 cmd
= (struct se_cmd
*)qr
->cmd
;
6073 t_state
= qr
->state
;
6077 case TRANSPORT_NEW_CMD_MAP
:
6078 if (!(CMD_TFO(cmd
)->new_cmd_map
)) {
6079 printk(KERN_ERR
"CMD_TFO(cmd)->new_cmd_map is"
6080 " NULL for TRANSPORT_NEW_CMD_MAP\n");
6083 ret
= CMD_TFO(cmd
)->new_cmd_map(cmd
);
6085 cmd
->transport_error_status
= ret
;
6086 transport_generic_request_failure(cmd
, NULL
,
6087 0, (cmd
->data_direction
!=
6092 case TRANSPORT_NEW_CMD
:
6093 ret
= transport_generic_new_cmd(cmd
);
6095 cmd
->transport_error_status
= ret
;
6096 transport_generic_request_failure(cmd
, NULL
,
6097 0, (cmd
->data_direction
!=
6101 case TRANSPORT_PROCESS_WRITE
:
6102 transport_generic_process_write(cmd
);
6104 case TRANSPORT_COMPLETE_OK
:
6105 transport_stop_all_task_timers(cmd
);
6106 transport_generic_complete_ok(cmd
);
6108 case TRANSPORT_REMOVE
:
6109 transport_generic_remove(cmd
, 1, 0);
6111 case TRANSPORT_PROCESS_TMR
:
6112 transport_generic_do_tmr(cmd
);
6114 case TRANSPORT_COMPLETE_FAILURE
:
6115 transport_generic_request_failure(cmd
, NULL
, 1, 1);
6117 case TRANSPORT_COMPLETE_TIMEOUT
:
6118 transport_stop_all_task_timers(cmd
);
6119 transport_generic_request_timeout(cmd
);
6122 printk(KERN_ERR
"Unknown t_state: %d deferred_t_state:"
6123 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
6124 " %u\n", t_state
, cmd
->deferred_t_state
,
6125 CMD_TFO(cmd
)->get_task_tag(cmd
),
6126 CMD_TFO(cmd
)->get_cmd_state(cmd
),
6127 SE_LUN(cmd
)->unpacked_lun
);
6135 transport_release_all_cmds(dev
);
6136 dev
->process_thread
= NULL
;