[IPV4]: fib_trie root-node expansion
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / signal.c
blob619b027e92b53ce02706a04f6e4524a6cc1135a8
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/posix-timers.h>
26 #include <linux/signal.h>
27 #include <linux/audit.h>
28 #include <asm/param.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/siginfo.h>
34 * SLAB caches for signal bits.
37 static kmem_cache_t *sigqueue_cachep;
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
85 * | SIGURG | ignore |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
113 #ifdef SIGEMT
114 #define M_SIGEMT M(SIGEMT)
115 #else
116 #define M_SIGEMT 0
117 #endif
119 #if SIGRTMIN > BITS_PER_LONG
120 #define M(sig) (1ULL << ((sig)-1))
121 #else
122 #define M(sig) (1UL << ((sig)-1))
123 #endif
124 #define T(sig, mask) (M(sig) & (mask))
126 #define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
129 #define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
132 #define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
137 #define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
140 #define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142 #define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144 #define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146 #define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
149 #define sig_user_defined(t, signr) \
150 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
151 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
153 #define sig_fatal(t, signr) \
154 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
157 static int sig_ignored(struct task_struct *t, int sig)
159 void __user * handler;
162 * Tracers always want to know about signals..
164 if (t->ptrace & PT_PTRACED)
165 return 0;
168 * Blocked signals are never ignored, since the
169 * signal handler may change by the time it is
170 * unblocked.
172 if (sigismember(&t->blocked, sig))
173 return 0;
175 /* Is it explicitly or implicitly ignored? */
176 handler = t->sighand->action[sig-1].sa.sa_handler;
177 return handler == SIG_IGN ||
178 (handler == SIG_DFL && sig_kernel_ignore(sig));
182 * Re-calculate pending state from the set of locally pending
183 * signals, globally pending signals, and blocked signals.
185 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
187 unsigned long ready;
188 long i;
190 switch (_NSIG_WORDS) {
191 default:
192 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193 ready |= signal->sig[i] &~ blocked->sig[i];
194 break;
196 case 4: ready = signal->sig[3] &~ blocked->sig[3];
197 ready |= signal->sig[2] &~ blocked->sig[2];
198 ready |= signal->sig[1] &~ blocked->sig[1];
199 ready |= signal->sig[0] &~ blocked->sig[0];
200 break;
202 case 2: ready = signal->sig[1] &~ blocked->sig[1];
203 ready |= signal->sig[0] &~ blocked->sig[0];
204 break;
206 case 1: ready = signal->sig[0] &~ blocked->sig[0];
208 return ready != 0;
211 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
213 fastcall void recalc_sigpending_tsk(struct task_struct *t)
215 if (t->signal->group_stop_count > 0 ||
216 (freezing(t)) ||
217 PENDING(&t->pending, &t->blocked) ||
218 PENDING(&t->signal->shared_pending, &t->blocked))
219 set_tsk_thread_flag(t, TIF_SIGPENDING);
220 else
221 clear_tsk_thread_flag(t, TIF_SIGPENDING);
224 void recalc_sigpending(void)
226 recalc_sigpending_tsk(current);
229 /* Given the mask, find the first available signal that should be serviced. */
231 static int
232 next_signal(struct sigpending *pending, sigset_t *mask)
234 unsigned long i, *s, *m, x;
235 int sig = 0;
237 s = pending->signal.sig;
238 m = mask->sig;
239 switch (_NSIG_WORDS) {
240 default:
241 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
242 if ((x = *s &~ *m) != 0) {
243 sig = ffz(~x) + i*_NSIG_BPW + 1;
244 break;
246 break;
248 case 2: if ((x = s[0] &~ m[0]) != 0)
249 sig = 1;
250 else if ((x = s[1] &~ m[1]) != 0)
251 sig = _NSIG_BPW + 1;
252 else
253 break;
254 sig += ffz(~x);
255 break;
257 case 1: if ((x = *s &~ *m) != 0)
258 sig = ffz(~x) + 1;
259 break;
262 return sig;
265 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, unsigned int __nocast flags,
266 int override_rlimit)
268 struct sigqueue *q = NULL;
270 atomic_inc(&t->user->sigpending);
271 if (override_rlimit ||
272 atomic_read(&t->user->sigpending) <=
273 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
274 q = kmem_cache_alloc(sigqueue_cachep, flags);
275 if (unlikely(q == NULL)) {
276 atomic_dec(&t->user->sigpending);
277 } else {
278 INIT_LIST_HEAD(&q->list);
279 q->flags = 0;
280 q->lock = NULL;
281 q->user = get_uid(t->user);
283 return(q);
286 static inline void __sigqueue_free(struct sigqueue *q)
288 if (q->flags & SIGQUEUE_PREALLOC)
289 return;
290 atomic_dec(&q->user->sigpending);
291 free_uid(q->user);
292 kmem_cache_free(sigqueue_cachep, q);
295 static void flush_sigqueue(struct sigpending *queue)
297 struct sigqueue *q;
299 sigemptyset(&queue->signal);
300 while (!list_empty(&queue->list)) {
301 q = list_entry(queue->list.next, struct sigqueue , list);
302 list_del_init(&q->list);
303 __sigqueue_free(q);
308 * Flush all pending signals for a task.
311 void
312 flush_signals(struct task_struct *t)
314 unsigned long flags;
316 spin_lock_irqsave(&t->sighand->siglock, flags);
317 clear_tsk_thread_flag(t,TIF_SIGPENDING);
318 flush_sigqueue(&t->pending);
319 flush_sigqueue(&t->signal->shared_pending);
320 spin_unlock_irqrestore(&t->sighand->siglock, flags);
324 * This function expects the tasklist_lock write-locked.
326 void __exit_sighand(struct task_struct *tsk)
328 struct sighand_struct * sighand = tsk->sighand;
330 /* Ok, we're done with the signal handlers */
331 tsk->sighand = NULL;
332 if (atomic_dec_and_test(&sighand->count))
333 kmem_cache_free(sighand_cachep, sighand);
336 void exit_sighand(struct task_struct *tsk)
338 write_lock_irq(&tasklist_lock);
339 __exit_sighand(tsk);
340 write_unlock_irq(&tasklist_lock);
344 * This function expects the tasklist_lock write-locked.
346 void __exit_signal(struct task_struct *tsk)
348 struct signal_struct * sig = tsk->signal;
349 struct sighand_struct * sighand = tsk->sighand;
351 if (!sig)
352 BUG();
353 if (!atomic_read(&sig->count))
354 BUG();
355 spin_lock(&sighand->siglock);
356 posix_cpu_timers_exit(tsk);
357 if (atomic_dec_and_test(&sig->count)) {
358 posix_cpu_timers_exit_group(tsk);
359 if (tsk == sig->curr_target)
360 sig->curr_target = next_thread(tsk);
361 tsk->signal = NULL;
362 spin_unlock(&sighand->siglock);
363 flush_sigqueue(&sig->shared_pending);
364 } else {
366 * If there is any task waiting for the group exit
367 * then notify it:
369 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
370 wake_up_process(sig->group_exit_task);
371 sig->group_exit_task = NULL;
373 if (tsk == sig->curr_target)
374 sig->curr_target = next_thread(tsk);
375 tsk->signal = NULL;
377 * Accumulate here the counters for all threads but the
378 * group leader as they die, so they can be added into
379 * the process-wide totals when those are taken.
380 * The group leader stays around as a zombie as long
381 * as there are other threads. When it gets reaped,
382 * the exit.c code will add its counts into these totals.
383 * We won't ever get here for the group leader, since it
384 * will have been the last reference on the signal_struct.
386 sig->utime = cputime_add(sig->utime, tsk->utime);
387 sig->stime = cputime_add(sig->stime, tsk->stime);
388 sig->min_flt += tsk->min_flt;
389 sig->maj_flt += tsk->maj_flt;
390 sig->nvcsw += tsk->nvcsw;
391 sig->nivcsw += tsk->nivcsw;
392 sig->sched_time += tsk->sched_time;
393 spin_unlock(&sighand->siglock);
394 sig = NULL; /* Marker for below. */
396 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
397 flush_sigqueue(&tsk->pending);
398 if (sig) {
400 * We are cleaning up the signal_struct here. We delayed
401 * calling exit_itimers until after flush_sigqueue, just in
402 * case our thread-local pending queue contained a queued
403 * timer signal that would have been cleared in
404 * exit_itimers. When that called sigqueue_free, it would
405 * attempt to re-take the tasklist_lock and deadlock. This
406 * can never happen if we ensure that all queues the
407 * timer's signal might be queued on have been flushed
408 * first. The shared_pending queue, and our own pending
409 * queue are the only queues the timer could be on, since
410 * there are no other threads left in the group and timer
411 * signals are constrained to threads inside the group.
413 exit_itimers(sig);
414 exit_thread_group_keys(sig);
415 kmem_cache_free(signal_cachep, sig);
419 void exit_signal(struct task_struct *tsk)
421 write_lock_irq(&tasklist_lock);
422 __exit_signal(tsk);
423 write_unlock_irq(&tasklist_lock);
427 * Flush all handlers for a task.
430 void
431 flush_signal_handlers(struct task_struct *t, int force_default)
433 int i;
434 struct k_sigaction *ka = &t->sighand->action[0];
435 for (i = _NSIG ; i != 0 ; i--) {
436 if (force_default || ka->sa.sa_handler != SIG_IGN)
437 ka->sa.sa_handler = SIG_DFL;
438 ka->sa.sa_flags = 0;
439 sigemptyset(&ka->sa.sa_mask);
440 ka++;
445 /* Notify the system that a driver wants to block all signals for this
446 * process, and wants to be notified if any signals at all were to be
447 * sent/acted upon. If the notifier routine returns non-zero, then the
448 * signal will be acted upon after all. If the notifier routine returns 0,
449 * then then signal will be blocked. Only one block per process is
450 * allowed. priv is a pointer to private data that the notifier routine
451 * can use to determine if the signal should be blocked or not. */
453 void
454 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
456 unsigned long flags;
458 spin_lock_irqsave(&current->sighand->siglock, flags);
459 current->notifier_mask = mask;
460 current->notifier_data = priv;
461 current->notifier = notifier;
462 spin_unlock_irqrestore(&current->sighand->siglock, flags);
465 /* Notify the system that blocking has ended. */
467 void
468 unblock_all_signals(void)
470 unsigned long flags;
472 spin_lock_irqsave(&current->sighand->siglock, flags);
473 current->notifier = NULL;
474 current->notifier_data = NULL;
475 recalc_sigpending();
476 spin_unlock_irqrestore(&current->sighand->siglock, flags);
479 static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
481 struct sigqueue *q, *first = NULL;
482 int still_pending = 0;
484 if (unlikely(!sigismember(&list->signal, sig)))
485 return 0;
488 * Collect the siginfo appropriate to this signal. Check if
489 * there is another siginfo for the same signal.
491 list_for_each_entry(q, &list->list, list) {
492 if (q->info.si_signo == sig) {
493 if (first) {
494 still_pending = 1;
495 break;
497 first = q;
500 if (first) {
501 list_del_init(&first->list);
502 copy_siginfo(info, &first->info);
503 __sigqueue_free(first);
504 if (!still_pending)
505 sigdelset(&list->signal, sig);
506 } else {
508 /* Ok, it wasn't in the queue. This must be
509 a fast-pathed signal or we must have been
510 out of queue space. So zero out the info.
512 sigdelset(&list->signal, sig);
513 info->si_signo = sig;
514 info->si_errno = 0;
515 info->si_code = 0;
516 info->si_pid = 0;
517 info->si_uid = 0;
519 return 1;
522 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
523 siginfo_t *info)
525 int sig = 0;
527 /* SIGKILL must have priority, otherwise it is quite easy
528 * to create an unkillable process, sending sig < SIGKILL
529 * to self */
530 if (unlikely(sigismember(&pending->signal, SIGKILL))) {
531 if (!sigismember(mask, SIGKILL))
532 sig = SIGKILL;
535 if (likely(!sig))
536 sig = next_signal(pending, mask);
537 if (sig) {
538 if (current->notifier) {
539 if (sigismember(current->notifier_mask, sig)) {
540 if (!(current->notifier)(current->notifier_data)) {
541 clear_thread_flag(TIF_SIGPENDING);
542 return 0;
547 if (!collect_signal(sig, pending, info))
548 sig = 0;
551 recalc_sigpending();
553 return sig;
557 * Dequeue a signal and return the element to the caller, which is
558 * expected to free it.
560 * All callers have to hold the siglock.
562 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
564 int signr = __dequeue_signal(&tsk->pending, mask, info);
565 if (!signr)
566 signr = __dequeue_signal(&tsk->signal->shared_pending,
567 mask, info);
568 if (signr && unlikely(sig_kernel_stop(signr))) {
570 * Set a marker that we have dequeued a stop signal. Our
571 * caller might release the siglock and then the pending
572 * stop signal it is about to process is no longer in the
573 * pending bitmasks, but must still be cleared by a SIGCONT
574 * (and overruled by a SIGKILL). So those cases clear this
575 * shared flag after we've set it. Note that this flag may
576 * remain set after the signal we return is ignored or
577 * handled. That doesn't matter because its only purpose
578 * is to alert stop-signal processing code when another
579 * processor has come along and cleared the flag.
581 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
583 if ( signr &&
584 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
585 info->si_sys_private){
587 * Release the siglock to ensure proper locking order
588 * of timer locks outside of siglocks. Note, we leave
589 * irqs disabled here, since the posix-timers code is
590 * about to disable them again anyway.
592 spin_unlock(&tsk->sighand->siglock);
593 do_schedule_next_timer(info);
594 spin_lock(&tsk->sighand->siglock);
596 return signr;
600 * Tell a process that it has a new active signal..
602 * NOTE! we rely on the previous spin_lock to
603 * lock interrupts for us! We can only be called with
604 * "siglock" held, and the local interrupt must
605 * have been disabled when that got acquired!
607 * No need to set need_resched since signal event passing
608 * goes through ->blocked
610 void signal_wake_up(struct task_struct *t, int resume)
612 unsigned int mask;
614 set_tsk_thread_flag(t, TIF_SIGPENDING);
617 * For SIGKILL, we want to wake it up in the stopped/traced case.
618 * We don't check t->state here because there is a race with it
619 * executing another processor and just now entering stopped state.
620 * By using wake_up_state, we ensure the process will wake up and
621 * handle its death signal.
623 mask = TASK_INTERRUPTIBLE;
624 if (resume)
625 mask |= TASK_STOPPED | TASK_TRACED;
626 if (!wake_up_state(t, mask))
627 kick_process(t);
631 * Remove signals in mask from the pending set and queue.
632 * Returns 1 if any signals were found.
634 * All callers must be holding the siglock.
636 static int rm_from_queue(unsigned long mask, struct sigpending *s)
638 struct sigqueue *q, *n;
640 if (!sigtestsetmask(&s->signal, mask))
641 return 0;
643 sigdelsetmask(&s->signal, mask);
644 list_for_each_entry_safe(q, n, &s->list, list) {
645 if (q->info.si_signo < SIGRTMIN &&
646 (mask & sigmask(q->info.si_signo))) {
647 list_del_init(&q->list);
648 __sigqueue_free(q);
651 return 1;
655 * Bad permissions for sending the signal
657 static int check_kill_permission(int sig, struct siginfo *info,
658 struct task_struct *t)
660 int error = -EINVAL;
661 if (!valid_signal(sig))
662 return error;
663 error = -EPERM;
664 if ((!info || ((unsigned long)info != 1 &&
665 (unsigned long)info != 2 && SI_FROMUSER(info)))
666 && ((sig != SIGCONT) ||
667 (current->signal->session != t->signal->session))
668 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
669 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
670 && !capable(CAP_KILL))
671 return error;
673 error = security_task_kill(t, info, sig);
674 if (!error)
675 audit_signal_info(sig, t); /* Let audit system see the signal */
676 return error;
679 /* forward decl */
680 static void do_notify_parent_cldstop(struct task_struct *tsk,
681 int to_self,
682 int why);
685 * Handle magic process-wide effects of stop/continue signals.
686 * Unlike the signal actions, these happen immediately at signal-generation
687 * time regardless of blocking, ignoring, or handling. This does the
688 * actual continuing for SIGCONT, but not the actual stopping for stop
689 * signals. The process stop is done as a signal action for SIG_DFL.
691 static void handle_stop_signal(int sig, struct task_struct *p)
693 struct task_struct *t;
695 if (p->signal->flags & SIGNAL_GROUP_EXIT)
697 * The process is in the middle of dying already.
699 return;
701 if (sig_kernel_stop(sig)) {
703 * This is a stop signal. Remove SIGCONT from all queues.
705 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
706 t = p;
707 do {
708 rm_from_queue(sigmask(SIGCONT), &t->pending);
709 t = next_thread(t);
710 } while (t != p);
711 } else if (sig == SIGCONT) {
713 * Remove all stop signals from all queues,
714 * and wake all threads.
716 if (unlikely(p->signal->group_stop_count > 0)) {
718 * There was a group stop in progress. We'll
719 * pretend it finished before we got here. We are
720 * obliged to report it to the parent: if the
721 * SIGSTOP happened "after" this SIGCONT, then it
722 * would have cleared this pending SIGCONT. If it
723 * happened "before" this SIGCONT, then the parent
724 * got the SIGCHLD about the stop finishing before
725 * the continue happened. We do the notification
726 * now, and it's as if the stop had finished and
727 * the SIGCHLD was pending on entry to this kill.
729 p->signal->group_stop_count = 0;
730 p->signal->flags = SIGNAL_STOP_CONTINUED;
731 spin_unlock(&p->sighand->siglock);
732 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
733 spin_lock(&p->sighand->siglock);
735 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
736 t = p;
737 do {
738 unsigned int state;
739 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
742 * If there is a handler for SIGCONT, we must make
743 * sure that no thread returns to user mode before
744 * we post the signal, in case it was the only
745 * thread eligible to run the signal handler--then
746 * it must not do anything between resuming and
747 * running the handler. With the TIF_SIGPENDING
748 * flag set, the thread will pause and acquire the
749 * siglock that we hold now and until we've queued
750 * the pending signal.
752 * Wake up the stopped thread _after_ setting
753 * TIF_SIGPENDING
755 state = TASK_STOPPED;
756 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
757 set_tsk_thread_flag(t, TIF_SIGPENDING);
758 state |= TASK_INTERRUPTIBLE;
760 wake_up_state(t, state);
762 t = next_thread(t);
763 } while (t != p);
765 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
767 * We were in fact stopped, and are now continued.
768 * Notify the parent with CLD_CONTINUED.
770 p->signal->flags = SIGNAL_STOP_CONTINUED;
771 p->signal->group_exit_code = 0;
772 spin_unlock(&p->sighand->siglock);
773 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
774 spin_lock(&p->sighand->siglock);
775 } else {
777 * We are not stopped, but there could be a stop
778 * signal in the middle of being processed after
779 * being removed from the queue. Clear that too.
781 p->signal->flags = 0;
783 } else if (sig == SIGKILL) {
785 * Make sure that any pending stop signal already dequeued
786 * is undone by the wakeup for SIGKILL.
788 p->signal->flags = 0;
792 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
793 struct sigpending *signals)
795 struct sigqueue * q = NULL;
796 int ret = 0;
799 * fast-pathed signals for kernel-internal things like SIGSTOP
800 * or SIGKILL.
802 if ((unsigned long)info == 2)
803 goto out_set;
805 /* Real-time signals must be queued if sent by sigqueue, or
806 some other real-time mechanism. It is implementation
807 defined whether kill() does so. We attempt to do so, on
808 the principle of least surprise, but since kill is not
809 allowed to fail with EAGAIN when low on memory we just
810 make sure at least one signal gets delivered and don't
811 pass on the info struct. */
813 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
814 ((unsigned long) info < 2 ||
815 info->si_code >= 0)));
816 if (q) {
817 list_add_tail(&q->list, &signals->list);
818 switch ((unsigned long) info) {
819 case 0:
820 q->info.si_signo = sig;
821 q->info.si_errno = 0;
822 q->info.si_code = SI_USER;
823 q->info.si_pid = current->pid;
824 q->info.si_uid = current->uid;
825 break;
826 case 1:
827 q->info.si_signo = sig;
828 q->info.si_errno = 0;
829 q->info.si_code = SI_KERNEL;
830 q->info.si_pid = 0;
831 q->info.si_uid = 0;
832 break;
833 default:
834 copy_siginfo(&q->info, info);
835 break;
837 } else {
838 if (sig >= SIGRTMIN && info && (unsigned long)info != 1
839 && info->si_code != SI_USER)
841 * Queue overflow, abort. We may abort if the signal was rt
842 * and sent by user using something other than kill().
844 return -EAGAIN;
845 if (((unsigned long)info > 1) && (info->si_code == SI_TIMER))
847 * Set up a return to indicate that we dropped
848 * the signal.
850 ret = info->si_sys_private;
853 out_set:
854 sigaddset(&signals->signal, sig);
855 return ret;
858 #define LEGACY_QUEUE(sigptr, sig) \
859 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
862 static int
863 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
865 int ret = 0;
867 if (!irqs_disabled())
868 BUG();
869 assert_spin_locked(&t->sighand->siglock);
871 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
873 * Set up a return to indicate that we dropped the signal.
875 ret = info->si_sys_private;
877 /* Short-circuit ignored signals. */
878 if (sig_ignored(t, sig))
879 goto out;
881 /* Support queueing exactly one non-rt signal, so that we
882 can get more detailed information about the cause of
883 the signal. */
884 if (LEGACY_QUEUE(&t->pending, sig))
885 goto out;
887 ret = send_signal(sig, info, t, &t->pending);
888 if (!ret && !sigismember(&t->blocked, sig))
889 signal_wake_up(t, sig == SIGKILL);
890 out:
891 return ret;
895 * Force a signal that the process can't ignore: if necessary
896 * we unblock the signal and change any SIG_IGN to SIG_DFL.
900 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
902 unsigned long int flags;
903 int ret;
905 spin_lock_irqsave(&t->sighand->siglock, flags);
906 if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
907 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
908 sigdelset(&t->blocked, sig);
909 recalc_sigpending_tsk(t);
911 ret = specific_send_sig_info(sig, info, t);
912 spin_unlock_irqrestore(&t->sighand->siglock, flags);
914 return ret;
917 void
918 force_sig_specific(int sig, struct task_struct *t)
920 unsigned long int flags;
922 spin_lock_irqsave(&t->sighand->siglock, flags);
923 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN)
924 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
925 sigdelset(&t->blocked, sig);
926 recalc_sigpending_tsk(t);
927 specific_send_sig_info(sig, (void *)2, t);
928 spin_unlock_irqrestore(&t->sighand->siglock, flags);
932 * Test if P wants to take SIG. After we've checked all threads with this,
933 * it's equivalent to finding no threads not blocking SIG. Any threads not
934 * blocking SIG were ruled out because they are not running and already
935 * have pending signals. Such threads will dequeue from the shared queue
936 * as soon as they're available, so putting the signal on the shared queue
937 * will be equivalent to sending it to one such thread.
939 static inline int wants_signal(int sig, struct task_struct *p)
941 if (sigismember(&p->blocked, sig))
942 return 0;
943 if (p->flags & PF_EXITING)
944 return 0;
945 if (sig == SIGKILL)
946 return 1;
947 if (p->state & (TASK_STOPPED | TASK_TRACED))
948 return 0;
949 return task_curr(p) || !signal_pending(p);
952 static void
953 __group_complete_signal(int sig, struct task_struct *p)
955 struct task_struct *t;
958 * Now find a thread we can wake up to take the signal off the queue.
960 * If the main thread wants the signal, it gets first crack.
961 * Probably the least surprising to the average bear.
963 if (wants_signal(sig, p))
964 t = p;
965 else if (thread_group_empty(p))
967 * There is just one thread and it does not need to be woken.
968 * It will dequeue unblocked signals before it runs again.
970 return;
971 else {
973 * Otherwise try to find a suitable thread.
975 t = p->signal->curr_target;
976 if (t == NULL)
977 /* restart balancing at this thread */
978 t = p->signal->curr_target = p;
979 BUG_ON(t->tgid != p->tgid);
981 while (!wants_signal(sig, t)) {
982 t = next_thread(t);
983 if (t == p->signal->curr_target)
985 * No thread needs to be woken.
986 * Any eligible threads will see
987 * the signal in the queue soon.
989 return;
991 p->signal->curr_target = t;
995 * Found a killable thread. If the signal will be fatal,
996 * then start taking the whole group down immediately.
998 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
999 !sigismember(&t->real_blocked, sig) &&
1000 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
1002 * This signal will be fatal to the whole group.
1004 if (!sig_kernel_coredump(sig)) {
1006 * Start a group exit and wake everybody up.
1007 * This way we don't have other threads
1008 * running and doing things after a slower
1009 * thread has the fatal signal pending.
1011 p->signal->flags = SIGNAL_GROUP_EXIT;
1012 p->signal->group_exit_code = sig;
1013 p->signal->group_stop_count = 0;
1014 t = p;
1015 do {
1016 sigaddset(&t->pending.signal, SIGKILL);
1017 signal_wake_up(t, 1);
1018 t = next_thread(t);
1019 } while (t != p);
1020 return;
1024 * There will be a core dump. We make all threads other
1025 * than the chosen one go into a group stop so that nothing
1026 * happens until it gets scheduled, takes the signal off
1027 * the shared queue, and does the core dump. This is a
1028 * little more complicated than strictly necessary, but it
1029 * keeps the signal state that winds up in the core dump
1030 * unchanged from the death state, e.g. which thread had
1031 * the core-dump signal unblocked.
1033 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1034 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1035 p->signal->group_stop_count = 0;
1036 p->signal->group_exit_task = t;
1037 t = p;
1038 do {
1039 p->signal->group_stop_count++;
1040 signal_wake_up(t, 0);
1041 t = next_thread(t);
1042 } while (t != p);
1043 wake_up_process(p->signal->group_exit_task);
1044 return;
1048 * The signal is already in the shared-pending queue.
1049 * Tell the chosen thread to wake up and dequeue it.
1051 signal_wake_up(t, sig == SIGKILL);
1052 return;
1056 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1058 int ret = 0;
1060 assert_spin_locked(&p->sighand->siglock);
1061 handle_stop_signal(sig, p);
1063 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
1065 * Set up a return to indicate that we dropped the signal.
1067 ret = info->si_sys_private;
1069 /* Short-circuit ignored signals. */
1070 if (sig_ignored(p, sig))
1071 return ret;
1073 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1074 /* This is a non-RT signal and we already have one queued. */
1075 return ret;
1078 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1079 * We always use the shared queue for process-wide signals,
1080 * to avoid several races.
1082 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1083 if (unlikely(ret))
1084 return ret;
1086 __group_complete_signal(sig, p);
1087 return 0;
1091 * Nuke all other threads in the group.
1093 void zap_other_threads(struct task_struct *p)
1095 struct task_struct *t;
1097 p->signal->flags = SIGNAL_GROUP_EXIT;
1098 p->signal->group_stop_count = 0;
1100 if (thread_group_empty(p))
1101 return;
1103 for (t = next_thread(p); t != p; t = next_thread(t)) {
1105 * Don't bother with already dead threads
1107 if (t->exit_state)
1108 continue;
1111 * We don't want to notify the parent, since we are
1112 * killed as part of a thread group due to another
1113 * thread doing an execve() or similar. So set the
1114 * exit signal to -1 to allow immediate reaping of
1115 * the process. But don't detach the thread group
1116 * leader.
1118 if (t != p->group_leader)
1119 t->exit_signal = -1;
1121 sigaddset(&t->pending.signal, SIGKILL);
1122 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1123 signal_wake_up(t, 1);
1128 * Must be called with the tasklist_lock held for reading!
1130 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1132 unsigned long flags;
1133 int ret;
1135 ret = check_kill_permission(sig, info, p);
1136 if (!ret && sig && p->sighand) {
1137 spin_lock_irqsave(&p->sighand->siglock, flags);
1138 ret = __group_send_sig_info(sig, info, p);
1139 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1142 return ret;
1146 * kill_pg_info() sends a signal to a process group: this is what the tty
1147 * control characters do (^C, ^Z etc)
1150 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1152 struct task_struct *p = NULL;
1153 int retval, success;
1155 if (pgrp <= 0)
1156 return -EINVAL;
1158 success = 0;
1159 retval = -ESRCH;
1160 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1161 int err = group_send_sig_info(sig, info, p);
1162 success |= !err;
1163 retval = err;
1164 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1165 return success ? 0 : retval;
1169 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1171 int retval;
1173 read_lock(&tasklist_lock);
1174 retval = __kill_pg_info(sig, info, pgrp);
1175 read_unlock(&tasklist_lock);
1177 return retval;
1181 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1183 int error;
1184 struct task_struct *p;
1186 read_lock(&tasklist_lock);
1187 p = find_task_by_pid(pid);
1188 error = -ESRCH;
1189 if (p)
1190 error = group_send_sig_info(sig, info, p);
1191 read_unlock(&tasklist_lock);
1192 return error;
1197 * kill_something_info() interprets pid in interesting ways just like kill(2).
1199 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1200 * is probably wrong. Should make it like BSD or SYSV.
1203 static int kill_something_info(int sig, struct siginfo *info, int pid)
1205 if (!pid) {
1206 return kill_pg_info(sig, info, process_group(current));
1207 } else if (pid == -1) {
1208 int retval = 0, count = 0;
1209 struct task_struct * p;
1211 read_lock(&tasklist_lock);
1212 for_each_process(p) {
1213 if (p->pid > 1 && p->tgid != current->tgid) {
1214 int err = group_send_sig_info(sig, info, p);
1215 ++count;
1216 if (err != -EPERM)
1217 retval = err;
1220 read_unlock(&tasklist_lock);
1221 return count ? retval : -ESRCH;
1222 } else if (pid < 0) {
1223 return kill_pg_info(sig, info, -pid);
1224 } else {
1225 return kill_proc_info(sig, info, pid);
1230 * These are for backward compatibility with the rest of the kernel source.
1234 * These two are the most common entry points. They send a signal
1235 * just to the specific thread.
1238 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1240 int ret;
1241 unsigned long flags;
1244 * Make sure legacy kernel users don't send in bad values
1245 * (normal paths check this in check_kill_permission).
1247 if (!valid_signal(sig))
1248 return -EINVAL;
1251 * We need the tasklist lock even for the specific
1252 * thread case (when we don't need to follow the group
1253 * lists) in order to avoid races with "p->sighand"
1254 * going away or changing from under us.
1256 read_lock(&tasklist_lock);
1257 spin_lock_irqsave(&p->sighand->siglock, flags);
1258 ret = specific_send_sig_info(sig, info, p);
1259 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1260 read_unlock(&tasklist_lock);
1261 return ret;
1265 send_sig(int sig, struct task_struct *p, int priv)
1267 return send_sig_info(sig, (void*)(long)(priv != 0), p);
1271 * This is the entry point for "process-wide" signals.
1272 * They will go to an appropriate thread in the thread group.
1275 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1277 int ret;
1278 read_lock(&tasklist_lock);
1279 ret = group_send_sig_info(sig, info, p);
1280 read_unlock(&tasklist_lock);
1281 return ret;
1284 void
1285 force_sig(int sig, struct task_struct *p)
1287 force_sig_info(sig, (void*)1L, p);
1291 * When things go south during signal handling, we
1292 * will force a SIGSEGV. And if the signal that caused
1293 * the problem was already a SIGSEGV, we'll want to
1294 * make sure we don't even try to deliver the signal..
1297 force_sigsegv(int sig, struct task_struct *p)
1299 if (sig == SIGSEGV) {
1300 unsigned long flags;
1301 spin_lock_irqsave(&p->sighand->siglock, flags);
1302 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1303 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1305 force_sig(SIGSEGV, p);
1306 return 0;
1310 kill_pg(pid_t pgrp, int sig, int priv)
1312 return kill_pg_info(sig, (void *)(long)(priv != 0), pgrp);
1316 kill_proc(pid_t pid, int sig, int priv)
1318 return kill_proc_info(sig, (void *)(long)(priv != 0), pid);
1322 * These functions support sending signals using preallocated sigqueue
1323 * structures. This is needed "because realtime applications cannot
1324 * afford to lose notifications of asynchronous events, like timer
1325 * expirations or I/O completions". In the case of Posix Timers
1326 * we allocate the sigqueue structure from the timer_create. If this
1327 * allocation fails we are able to report the failure to the application
1328 * with an EAGAIN error.
1331 struct sigqueue *sigqueue_alloc(void)
1333 struct sigqueue *q;
1335 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1336 q->flags |= SIGQUEUE_PREALLOC;
1337 return(q);
1340 void sigqueue_free(struct sigqueue *q)
1342 unsigned long flags;
1343 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1345 * If the signal is still pending remove it from the
1346 * pending queue.
1348 if (unlikely(!list_empty(&q->list))) {
1349 read_lock(&tasklist_lock);
1350 spin_lock_irqsave(q->lock, flags);
1351 if (!list_empty(&q->list))
1352 list_del_init(&q->list);
1353 spin_unlock_irqrestore(q->lock, flags);
1354 read_unlock(&tasklist_lock);
1356 q->flags &= ~SIGQUEUE_PREALLOC;
1357 __sigqueue_free(q);
1361 send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1363 unsigned long flags;
1364 int ret = 0;
1366 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1367 read_lock(&tasklist_lock);
1369 if (unlikely(p->flags & PF_EXITING)) {
1370 ret = -1;
1371 goto out_err;
1374 spin_lock_irqsave(&p->sighand->siglock, flags);
1376 if (unlikely(!list_empty(&q->list))) {
1378 * If an SI_TIMER entry is already queue just increment
1379 * the overrun count.
1381 if (q->info.si_code != SI_TIMER)
1382 BUG();
1383 q->info.si_overrun++;
1384 goto out;
1386 /* Short-circuit ignored signals. */
1387 if (sig_ignored(p, sig)) {
1388 ret = 1;
1389 goto out;
1392 q->lock = &p->sighand->siglock;
1393 list_add_tail(&q->list, &p->pending.list);
1394 sigaddset(&p->pending.signal, sig);
1395 if (!sigismember(&p->blocked, sig))
1396 signal_wake_up(p, sig == SIGKILL);
1398 out:
1399 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1400 out_err:
1401 read_unlock(&tasklist_lock);
1403 return ret;
1407 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1409 unsigned long flags;
1410 int ret = 0;
1412 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1413 read_lock(&tasklist_lock);
1414 spin_lock_irqsave(&p->sighand->siglock, flags);
1415 handle_stop_signal(sig, p);
1417 /* Short-circuit ignored signals. */
1418 if (sig_ignored(p, sig)) {
1419 ret = 1;
1420 goto out;
1423 if (unlikely(!list_empty(&q->list))) {
1425 * If an SI_TIMER entry is already queue just increment
1426 * the overrun count. Other uses should not try to
1427 * send the signal multiple times.
1429 if (q->info.si_code != SI_TIMER)
1430 BUG();
1431 q->info.si_overrun++;
1432 goto out;
1436 * Put this signal on the shared-pending queue.
1437 * We always use the shared queue for process-wide signals,
1438 * to avoid several races.
1440 q->lock = &p->sighand->siglock;
1441 list_add_tail(&q->list, &p->signal->shared_pending.list);
1442 sigaddset(&p->signal->shared_pending.signal, sig);
1444 __group_complete_signal(sig, p);
1445 out:
1446 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1447 read_unlock(&tasklist_lock);
1448 return(ret);
1452 * Wake up any threads in the parent blocked in wait* syscalls.
1454 static inline void __wake_up_parent(struct task_struct *p,
1455 struct task_struct *parent)
1457 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1461 * Let a parent know about the death of a child.
1462 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1465 void do_notify_parent(struct task_struct *tsk, int sig)
1467 struct siginfo info;
1468 unsigned long flags;
1469 struct sighand_struct *psig;
1471 BUG_ON(sig == -1);
1473 /* do_notify_parent_cldstop should have been called instead. */
1474 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1476 BUG_ON(!tsk->ptrace &&
1477 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1479 info.si_signo = sig;
1480 info.si_errno = 0;
1481 info.si_pid = tsk->pid;
1482 info.si_uid = tsk->uid;
1484 /* FIXME: find out whether or not this is supposed to be c*time. */
1485 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1486 tsk->signal->utime));
1487 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1488 tsk->signal->stime));
1490 info.si_status = tsk->exit_code & 0x7f;
1491 if (tsk->exit_code & 0x80)
1492 info.si_code = CLD_DUMPED;
1493 else if (tsk->exit_code & 0x7f)
1494 info.si_code = CLD_KILLED;
1495 else {
1496 info.si_code = CLD_EXITED;
1497 info.si_status = tsk->exit_code >> 8;
1500 psig = tsk->parent->sighand;
1501 spin_lock_irqsave(&psig->siglock, flags);
1502 if (sig == SIGCHLD &&
1503 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1504 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1506 * We are exiting and our parent doesn't care. POSIX.1
1507 * defines special semantics for setting SIGCHLD to SIG_IGN
1508 * or setting the SA_NOCLDWAIT flag: we should be reaped
1509 * automatically and not left for our parent's wait4 call.
1510 * Rather than having the parent do it as a magic kind of
1511 * signal handler, we just set this to tell do_exit that we
1512 * can be cleaned up without becoming a zombie. Note that
1513 * we still call __wake_up_parent in this case, because a
1514 * blocked sys_wait4 might now return -ECHILD.
1516 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1517 * is implementation-defined: we do (if you don't want
1518 * it, just use SIG_IGN instead).
1520 tsk->exit_signal = -1;
1521 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1522 sig = 0;
1524 if (valid_signal(sig) && sig > 0)
1525 __group_send_sig_info(sig, &info, tsk->parent);
1526 __wake_up_parent(tsk, tsk->parent);
1527 spin_unlock_irqrestore(&psig->siglock, flags);
1530 static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1532 struct siginfo info;
1533 unsigned long flags;
1534 struct task_struct *parent;
1535 struct sighand_struct *sighand;
1537 if (to_self)
1538 parent = tsk->parent;
1539 else {
1540 tsk = tsk->group_leader;
1541 parent = tsk->real_parent;
1544 info.si_signo = SIGCHLD;
1545 info.si_errno = 0;
1546 info.si_pid = tsk->pid;
1547 info.si_uid = tsk->uid;
1549 /* FIXME: find out whether or not this is supposed to be c*time. */
1550 info.si_utime = cputime_to_jiffies(tsk->utime);
1551 info.si_stime = cputime_to_jiffies(tsk->stime);
1553 info.si_code = why;
1554 switch (why) {
1555 case CLD_CONTINUED:
1556 info.si_status = SIGCONT;
1557 break;
1558 case CLD_STOPPED:
1559 info.si_status = tsk->signal->group_exit_code & 0x7f;
1560 break;
1561 case CLD_TRAPPED:
1562 info.si_status = tsk->exit_code & 0x7f;
1563 break;
1564 default:
1565 BUG();
1568 sighand = parent->sighand;
1569 spin_lock_irqsave(&sighand->siglock, flags);
1570 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1571 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1572 __group_send_sig_info(SIGCHLD, &info, parent);
1574 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1576 __wake_up_parent(tsk, parent);
1577 spin_unlock_irqrestore(&sighand->siglock, flags);
1581 * This must be called with current->sighand->siglock held.
1583 * This should be the path for all ptrace stops.
1584 * We always set current->last_siginfo while stopped here.
1585 * That makes it a way to test a stopped process for
1586 * being ptrace-stopped vs being job-control-stopped.
1588 * If we actually decide not to stop at all because the tracer is gone,
1589 * we leave nostop_code in current->exit_code.
1591 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1594 * If there is a group stop in progress,
1595 * we must participate in the bookkeeping.
1597 if (current->signal->group_stop_count > 0)
1598 --current->signal->group_stop_count;
1600 current->last_siginfo = info;
1601 current->exit_code = exit_code;
1603 /* Let the debugger run. */
1604 set_current_state(TASK_TRACED);
1605 spin_unlock_irq(&current->sighand->siglock);
1606 read_lock(&tasklist_lock);
1607 if (likely(current->ptrace & PT_PTRACED) &&
1608 likely(current->parent != current->real_parent ||
1609 !(current->ptrace & PT_ATTACHED)) &&
1610 (likely(current->parent->signal != current->signal) ||
1611 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1612 do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1613 read_unlock(&tasklist_lock);
1614 schedule();
1615 } else {
1617 * By the time we got the lock, our tracer went away.
1618 * Don't stop here.
1620 read_unlock(&tasklist_lock);
1621 set_current_state(TASK_RUNNING);
1622 current->exit_code = nostop_code;
1626 * We are back. Now reacquire the siglock before touching
1627 * last_siginfo, so that we are sure to have synchronized with
1628 * any signal-sending on another CPU that wants to examine it.
1630 spin_lock_irq(&current->sighand->siglock);
1631 current->last_siginfo = NULL;
1634 * Queued signals ignored us while we were stopped for tracing.
1635 * So check for any that we should take before resuming user mode.
1637 recalc_sigpending();
1640 void ptrace_notify(int exit_code)
1642 siginfo_t info;
1644 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1646 memset(&info, 0, sizeof info);
1647 info.si_signo = SIGTRAP;
1648 info.si_code = exit_code;
1649 info.si_pid = current->pid;
1650 info.si_uid = current->uid;
1652 /* Let the debugger run. */
1653 spin_lock_irq(&current->sighand->siglock);
1654 ptrace_stop(exit_code, 0, &info);
1655 spin_unlock_irq(&current->sighand->siglock);
1658 static void
1659 finish_stop(int stop_count)
1661 int to_self;
1664 * If there are no other threads in the group, or if there is
1665 * a group stop in progress and we are the last to stop,
1666 * report to the parent. When ptraced, every thread reports itself.
1668 if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1669 to_self = 1;
1670 else if (stop_count == 0)
1671 to_self = 0;
1672 else
1673 goto out;
1675 read_lock(&tasklist_lock);
1676 do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1677 read_unlock(&tasklist_lock);
1679 out:
1680 schedule();
1682 * Now we don't run again until continued.
1684 current->exit_code = 0;
1688 * This performs the stopping for SIGSTOP and other stop signals.
1689 * We have to stop all threads in the thread group.
1690 * Returns nonzero if we've actually stopped and released the siglock.
1691 * Returns zero if we didn't stop and still hold the siglock.
1693 static int
1694 do_signal_stop(int signr)
1696 struct signal_struct *sig = current->signal;
1697 struct sighand_struct *sighand = current->sighand;
1698 int stop_count = -1;
1700 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1701 return 0;
1703 if (sig->group_stop_count > 0) {
1705 * There is a group stop in progress. We don't need to
1706 * start another one.
1708 signr = sig->group_exit_code;
1709 stop_count = --sig->group_stop_count;
1710 current->exit_code = signr;
1711 set_current_state(TASK_STOPPED);
1712 if (stop_count == 0)
1713 sig->flags = SIGNAL_STOP_STOPPED;
1714 spin_unlock_irq(&sighand->siglock);
1716 else if (thread_group_empty(current)) {
1718 * Lock must be held through transition to stopped state.
1720 current->exit_code = current->signal->group_exit_code = signr;
1721 set_current_state(TASK_STOPPED);
1722 sig->flags = SIGNAL_STOP_STOPPED;
1723 spin_unlock_irq(&sighand->siglock);
1725 else {
1727 * There is no group stop already in progress.
1728 * We must initiate one now, but that requires
1729 * dropping siglock to get both the tasklist lock
1730 * and siglock again in the proper order. Note that
1731 * this allows an intervening SIGCONT to be posted.
1732 * We need to check for that and bail out if necessary.
1734 struct task_struct *t;
1736 spin_unlock_irq(&sighand->siglock);
1738 /* signals can be posted during this window */
1740 read_lock(&tasklist_lock);
1741 spin_lock_irq(&sighand->siglock);
1743 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1745 * Another stop or continue happened while we
1746 * didn't have the lock. We can just swallow this
1747 * signal now. If we raced with a SIGCONT, that
1748 * should have just cleared it now. If we raced
1749 * with another processor delivering a stop signal,
1750 * then the SIGCONT that wakes us up should clear it.
1752 read_unlock(&tasklist_lock);
1753 return 0;
1756 if (sig->group_stop_count == 0) {
1757 sig->group_exit_code = signr;
1758 stop_count = 0;
1759 for (t = next_thread(current); t != current;
1760 t = next_thread(t))
1762 * Setting state to TASK_STOPPED for a group
1763 * stop is always done with the siglock held,
1764 * so this check has no races.
1766 if (!t->exit_state &&
1767 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1768 stop_count++;
1769 signal_wake_up(t, 0);
1771 sig->group_stop_count = stop_count;
1773 else {
1774 /* A race with another thread while unlocked. */
1775 signr = sig->group_exit_code;
1776 stop_count = --sig->group_stop_count;
1779 current->exit_code = signr;
1780 set_current_state(TASK_STOPPED);
1781 if (stop_count == 0)
1782 sig->flags = SIGNAL_STOP_STOPPED;
1784 spin_unlock_irq(&sighand->siglock);
1785 read_unlock(&tasklist_lock);
1788 finish_stop(stop_count);
1789 return 1;
1793 * Do appropriate magic when group_stop_count > 0.
1794 * We return nonzero if we stopped, after releasing the siglock.
1795 * We return zero if we still hold the siglock and should look
1796 * for another signal without checking group_stop_count again.
1798 static inline int handle_group_stop(void)
1800 int stop_count;
1802 if (current->signal->group_exit_task == current) {
1804 * Group stop is so we can do a core dump,
1805 * We are the initiating thread, so get on with it.
1807 current->signal->group_exit_task = NULL;
1808 return 0;
1811 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1813 * Group stop is so another thread can do a core dump,
1814 * or else we are racing against a death signal.
1815 * Just punt the stop so we can get the next signal.
1817 return 0;
1820 * There is a group stop in progress. We stop
1821 * without any associated signal being in our queue.
1823 stop_count = --current->signal->group_stop_count;
1824 if (stop_count == 0)
1825 current->signal->flags = SIGNAL_STOP_STOPPED;
1826 current->exit_code = current->signal->group_exit_code;
1827 set_current_state(TASK_STOPPED);
1828 spin_unlock_irq(&current->sighand->siglock);
1829 finish_stop(stop_count);
1830 return 1;
1833 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1834 struct pt_regs *regs, void *cookie)
1836 sigset_t *mask = &current->blocked;
1837 int signr = 0;
1839 relock:
1840 spin_lock_irq(&current->sighand->siglock);
1841 for (;;) {
1842 struct k_sigaction *ka;
1844 if (unlikely(current->signal->group_stop_count > 0) &&
1845 handle_group_stop())
1846 goto relock;
1848 signr = dequeue_signal(current, mask, info);
1850 if (!signr)
1851 break; /* will return 0 */
1853 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1854 ptrace_signal_deliver(regs, cookie);
1856 /* Let the debugger run. */
1857 ptrace_stop(signr, signr, info);
1859 /* We're back. Did the debugger cancel the sig? */
1860 signr = current->exit_code;
1861 if (signr == 0)
1862 continue;
1864 current->exit_code = 0;
1866 /* Update the siginfo structure if the signal has
1867 changed. If the debugger wanted something
1868 specific in the siginfo structure then it should
1869 have updated *info via PTRACE_SETSIGINFO. */
1870 if (signr != info->si_signo) {
1871 info->si_signo = signr;
1872 info->si_errno = 0;
1873 info->si_code = SI_USER;
1874 info->si_pid = current->parent->pid;
1875 info->si_uid = current->parent->uid;
1878 /* If the (new) signal is now blocked, requeue it. */
1879 if (sigismember(&current->blocked, signr)) {
1880 specific_send_sig_info(signr, info, current);
1881 continue;
1885 ka = &current->sighand->action[signr-1];
1886 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1887 continue;
1888 if (ka->sa.sa_handler != SIG_DFL) {
1889 /* Run the handler. */
1890 *return_ka = *ka;
1892 if (ka->sa.sa_flags & SA_ONESHOT)
1893 ka->sa.sa_handler = SIG_DFL;
1895 break; /* will return non-zero "signr" value */
1899 * Now we are doing the default action for this signal.
1901 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1902 continue;
1904 /* Init gets no signals it doesn't want. */
1905 if (current->pid == 1)
1906 continue;
1908 if (sig_kernel_stop(signr)) {
1910 * The default action is to stop all threads in
1911 * the thread group. The job control signals
1912 * do nothing in an orphaned pgrp, but SIGSTOP
1913 * always works. Note that siglock needs to be
1914 * dropped during the call to is_orphaned_pgrp()
1915 * because of lock ordering with tasklist_lock.
1916 * This allows an intervening SIGCONT to be posted.
1917 * We need to check for that and bail out if necessary.
1919 if (signr != SIGSTOP) {
1920 spin_unlock_irq(&current->sighand->siglock);
1922 /* signals can be posted during this window */
1924 if (is_orphaned_pgrp(process_group(current)))
1925 goto relock;
1927 spin_lock_irq(&current->sighand->siglock);
1930 if (likely(do_signal_stop(signr))) {
1931 /* It released the siglock. */
1932 goto relock;
1936 * We didn't actually stop, due to a race
1937 * with SIGCONT or something like that.
1939 continue;
1942 spin_unlock_irq(&current->sighand->siglock);
1945 * Anything else is fatal, maybe with a core dump.
1947 current->flags |= PF_SIGNALED;
1948 if (sig_kernel_coredump(signr)) {
1950 * If it was able to dump core, this kills all
1951 * other threads in the group and synchronizes with
1952 * their demise. If we lost the race with another
1953 * thread getting here, it set group_exit_code
1954 * first and our do_group_exit call below will use
1955 * that value and ignore the one we pass it.
1957 do_coredump((long)signr, signr, regs);
1961 * Death signals, no core dump.
1963 do_group_exit(signr);
1964 /* NOTREACHED */
1966 spin_unlock_irq(&current->sighand->siglock);
1967 return signr;
1970 EXPORT_SYMBOL(recalc_sigpending);
1971 EXPORT_SYMBOL_GPL(dequeue_signal);
1972 EXPORT_SYMBOL(flush_signals);
1973 EXPORT_SYMBOL(force_sig);
1974 EXPORT_SYMBOL(kill_pg);
1975 EXPORT_SYMBOL(kill_proc);
1976 EXPORT_SYMBOL(ptrace_notify);
1977 EXPORT_SYMBOL(send_sig);
1978 EXPORT_SYMBOL(send_sig_info);
1979 EXPORT_SYMBOL(sigprocmask);
1980 EXPORT_SYMBOL(block_all_signals);
1981 EXPORT_SYMBOL(unblock_all_signals);
1985 * System call entry points.
1988 asmlinkage long sys_restart_syscall(void)
1990 struct restart_block *restart = &current_thread_info()->restart_block;
1991 return restart->fn(restart);
1994 long do_no_restart_syscall(struct restart_block *param)
1996 return -EINTR;
2000 * We don't need to get the kernel lock - this is all local to this
2001 * particular thread.. (and that's good, because this is _heavily_
2002 * used by various programs)
2006 * This is also useful for kernel threads that want to temporarily
2007 * (or permanently) block certain signals.
2009 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2010 * interface happily blocks "unblockable" signals like SIGKILL
2011 * and friends.
2013 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2015 int error;
2016 sigset_t old_block;
2018 spin_lock_irq(&current->sighand->siglock);
2019 old_block = current->blocked;
2020 error = 0;
2021 switch (how) {
2022 case SIG_BLOCK:
2023 sigorsets(&current->blocked, &current->blocked, set);
2024 break;
2025 case SIG_UNBLOCK:
2026 signandsets(&current->blocked, &current->blocked, set);
2027 break;
2028 case SIG_SETMASK:
2029 current->blocked = *set;
2030 break;
2031 default:
2032 error = -EINVAL;
2034 recalc_sigpending();
2035 spin_unlock_irq(&current->sighand->siglock);
2036 if (oldset)
2037 *oldset = old_block;
2038 return error;
2041 asmlinkage long
2042 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2044 int error = -EINVAL;
2045 sigset_t old_set, new_set;
2047 /* XXX: Don't preclude handling different sized sigset_t's. */
2048 if (sigsetsize != sizeof(sigset_t))
2049 goto out;
2051 if (set) {
2052 error = -EFAULT;
2053 if (copy_from_user(&new_set, set, sizeof(*set)))
2054 goto out;
2055 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2057 error = sigprocmask(how, &new_set, &old_set);
2058 if (error)
2059 goto out;
2060 if (oset)
2061 goto set_old;
2062 } else if (oset) {
2063 spin_lock_irq(&current->sighand->siglock);
2064 old_set = current->blocked;
2065 spin_unlock_irq(&current->sighand->siglock);
2067 set_old:
2068 error = -EFAULT;
2069 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2070 goto out;
2072 error = 0;
2073 out:
2074 return error;
2077 long do_sigpending(void __user *set, unsigned long sigsetsize)
2079 long error = -EINVAL;
2080 sigset_t pending;
2082 if (sigsetsize > sizeof(sigset_t))
2083 goto out;
2085 spin_lock_irq(&current->sighand->siglock);
2086 sigorsets(&pending, &current->pending.signal,
2087 &current->signal->shared_pending.signal);
2088 spin_unlock_irq(&current->sighand->siglock);
2090 /* Outside the lock because only this thread touches it. */
2091 sigandsets(&pending, &current->blocked, &pending);
2093 error = -EFAULT;
2094 if (!copy_to_user(set, &pending, sigsetsize))
2095 error = 0;
2097 out:
2098 return error;
2101 asmlinkage long
2102 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2104 return do_sigpending(set, sigsetsize);
2107 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2109 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2111 int err;
2113 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2114 return -EFAULT;
2115 if (from->si_code < 0)
2116 return __copy_to_user(to, from, sizeof(siginfo_t))
2117 ? -EFAULT : 0;
2119 * If you change siginfo_t structure, please be sure
2120 * this code is fixed accordingly.
2121 * It should never copy any pad contained in the structure
2122 * to avoid security leaks, but must copy the generic
2123 * 3 ints plus the relevant union member.
2125 err = __put_user(from->si_signo, &to->si_signo);
2126 err |= __put_user(from->si_errno, &to->si_errno);
2127 err |= __put_user((short)from->si_code, &to->si_code);
2128 switch (from->si_code & __SI_MASK) {
2129 case __SI_KILL:
2130 err |= __put_user(from->si_pid, &to->si_pid);
2131 err |= __put_user(from->si_uid, &to->si_uid);
2132 break;
2133 case __SI_TIMER:
2134 err |= __put_user(from->si_tid, &to->si_tid);
2135 err |= __put_user(from->si_overrun, &to->si_overrun);
2136 err |= __put_user(from->si_ptr, &to->si_ptr);
2137 break;
2138 case __SI_POLL:
2139 err |= __put_user(from->si_band, &to->si_band);
2140 err |= __put_user(from->si_fd, &to->si_fd);
2141 break;
2142 case __SI_FAULT:
2143 err |= __put_user(from->si_addr, &to->si_addr);
2144 #ifdef __ARCH_SI_TRAPNO
2145 err |= __put_user(from->si_trapno, &to->si_trapno);
2146 #endif
2147 break;
2148 case __SI_CHLD:
2149 err |= __put_user(from->si_pid, &to->si_pid);
2150 err |= __put_user(from->si_uid, &to->si_uid);
2151 err |= __put_user(from->si_status, &to->si_status);
2152 err |= __put_user(from->si_utime, &to->si_utime);
2153 err |= __put_user(from->si_stime, &to->si_stime);
2154 break;
2155 case __SI_RT: /* This is not generated by the kernel as of now. */
2156 case __SI_MESGQ: /* But this is */
2157 err |= __put_user(from->si_pid, &to->si_pid);
2158 err |= __put_user(from->si_uid, &to->si_uid);
2159 err |= __put_user(from->si_ptr, &to->si_ptr);
2160 break;
2161 default: /* this is just in case for now ... */
2162 err |= __put_user(from->si_pid, &to->si_pid);
2163 err |= __put_user(from->si_uid, &to->si_uid);
2164 break;
2166 return err;
2169 #endif
2171 asmlinkage long
2172 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2173 siginfo_t __user *uinfo,
2174 const struct timespec __user *uts,
2175 size_t sigsetsize)
2177 int ret, sig;
2178 sigset_t these;
2179 struct timespec ts;
2180 siginfo_t info;
2181 long timeout = 0;
2183 /* XXX: Don't preclude handling different sized sigset_t's. */
2184 if (sigsetsize != sizeof(sigset_t))
2185 return -EINVAL;
2187 if (copy_from_user(&these, uthese, sizeof(these)))
2188 return -EFAULT;
2191 * Invert the set of allowed signals to get those we
2192 * want to block.
2194 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2195 signotset(&these);
2197 if (uts) {
2198 if (copy_from_user(&ts, uts, sizeof(ts)))
2199 return -EFAULT;
2200 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2201 || ts.tv_sec < 0)
2202 return -EINVAL;
2205 spin_lock_irq(&current->sighand->siglock);
2206 sig = dequeue_signal(current, &these, &info);
2207 if (!sig) {
2208 timeout = MAX_SCHEDULE_TIMEOUT;
2209 if (uts)
2210 timeout = (timespec_to_jiffies(&ts)
2211 + (ts.tv_sec || ts.tv_nsec));
2213 if (timeout) {
2214 /* None ready -- temporarily unblock those we're
2215 * interested while we are sleeping in so that we'll
2216 * be awakened when they arrive. */
2217 current->real_blocked = current->blocked;
2218 sigandsets(&current->blocked, &current->blocked, &these);
2219 recalc_sigpending();
2220 spin_unlock_irq(&current->sighand->siglock);
2222 timeout = schedule_timeout_interruptible(timeout);
2224 try_to_freeze();
2225 spin_lock_irq(&current->sighand->siglock);
2226 sig = dequeue_signal(current, &these, &info);
2227 current->blocked = current->real_blocked;
2228 siginitset(&current->real_blocked, 0);
2229 recalc_sigpending();
2232 spin_unlock_irq(&current->sighand->siglock);
2234 if (sig) {
2235 ret = sig;
2236 if (uinfo) {
2237 if (copy_siginfo_to_user(uinfo, &info))
2238 ret = -EFAULT;
2240 } else {
2241 ret = -EAGAIN;
2242 if (timeout)
2243 ret = -EINTR;
2246 return ret;
2249 asmlinkage long
2250 sys_kill(int pid, int sig)
2252 struct siginfo info;
2254 info.si_signo = sig;
2255 info.si_errno = 0;
2256 info.si_code = SI_USER;
2257 info.si_pid = current->tgid;
2258 info.si_uid = current->uid;
2260 return kill_something_info(sig, &info, pid);
2264 * sys_tgkill - send signal to one specific thread
2265 * @tgid: the thread group ID of the thread
2266 * @pid: the PID of the thread
2267 * @sig: signal to be sent
2269 * This syscall also checks the tgid and returns -ESRCH even if the PID
2270 * exists but it's not belonging to the target process anymore. This
2271 * method solves the problem of threads exiting and PIDs getting reused.
2273 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2275 struct siginfo info;
2276 int error;
2277 struct task_struct *p;
2279 /* This is only valid for single tasks */
2280 if (pid <= 0 || tgid <= 0)
2281 return -EINVAL;
2283 info.si_signo = sig;
2284 info.si_errno = 0;
2285 info.si_code = SI_TKILL;
2286 info.si_pid = current->tgid;
2287 info.si_uid = current->uid;
2289 read_lock(&tasklist_lock);
2290 p = find_task_by_pid(pid);
2291 error = -ESRCH;
2292 if (p && (p->tgid == tgid)) {
2293 error = check_kill_permission(sig, &info, p);
2295 * The null signal is a permissions and process existence
2296 * probe. No signal is actually delivered.
2298 if (!error && sig && p->sighand) {
2299 spin_lock_irq(&p->sighand->siglock);
2300 handle_stop_signal(sig, p);
2301 error = specific_send_sig_info(sig, &info, p);
2302 spin_unlock_irq(&p->sighand->siglock);
2305 read_unlock(&tasklist_lock);
2306 return error;
2310 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2312 asmlinkage long
2313 sys_tkill(int pid, int sig)
2315 struct siginfo info;
2316 int error;
2317 struct task_struct *p;
2319 /* This is only valid for single tasks */
2320 if (pid <= 0)
2321 return -EINVAL;
2323 info.si_signo = sig;
2324 info.si_errno = 0;
2325 info.si_code = SI_TKILL;
2326 info.si_pid = current->tgid;
2327 info.si_uid = current->uid;
2329 read_lock(&tasklist_lock);
2330 p = find_task_by_pid(pid);
2331 error = -ESRCH;
2332 if (p) {
2333 error = check_kill_permission(sig, &info, p);
2335 * The null signal is a permissions and process existence
2336 * probe. No signal is actually delivered.
2338 if (!error && sig && p->sighand) {
2339 spin_lock_irq(&p->sighand->siglock);
2340 handle_stop_signal(sig, p);
2341 error = specific_send_sig_info(sig, &info, p);
2342 spin_unlock_irq(&p->sighand->siglock);
2345 read_unlock(&tasklist_lock);
2346 return error;
2349 asmlinkage long
2350 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2352 siginfo_t info;
2354 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2355 return -EFAULT;
2357 /* Not even root can pretend to send signals from the kernel.
2358 Nor can they impersonate a kill(), which adds source info. */
2359 if (info.si_code >= 0)
2360 return -EPERM;
2361 info.si_signo = sig;
2363 /* POSIX.1b doesn't mention process groups. */
2364 return kill_proc_info(sig, &info, pid);
2368 do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2370 struct k_sigaction *k;
2372 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2373 return -EINVAL;
2375 k = &current->sighand->action[sig-1];
2377 spin_lock_irq(&current->sighand->siglock);
2378 if (signal_pending(current)) {
2380 * If there might be a fatal signal pending on multiple
2381 * threads, make sure we take it before changing the action.
2383 spin_unlock_irq(&current->sighand->siglock);
2384 return -ERESTARTNOINTR;
2387 if (oact)
2388 *oact = *k;
2390 if (act) {
2392 * POSIX 3.3.1.3:
2393 * "Setting a signal action to SIG_IGN for a signal that is
2394 * pending shall cause the pending signal to be discarded,
2395 * whether or not it is blocked."
2397 * "Setting a signal action to SIG_DFL for a signal that is
2398 * pending and whose default action is to ignore the signal
2399 * (for example, SIGCHLD), shall cause the pending signal to
2400 * be discarded, whether or not it is blocked"
2402 if (act->sa.sa_handler == SIG_IGN ||
2403 (act->sa.sa_handler == SIG_DFL &&
2404 sig_kernel_ignore(sig))) {
2406 * This is a fairly rare case, so we only take the
2407 * tasklist_lock once we're sure we'll need it.
2408 * Now we must do this little unlock and relock
2409 * dance to maintain the lock hierarchy.
2411 struct task_struct *t = current;
2412 spin_unlock_irq(&t->sighand->siglock);
2413 read_lock(&tasklist_lock);
2414 spin_lock_irq(&t->sighand->siglock);
2415 *k = *act;
2416 sigdelsetmask(&k->sa.sa_mask,
2417 sigmask(SIGKILL) | sigmask(SIGSTOP));
2418 rm_from_queue(sigmask(sig), &t->signal->shared_pending);
2419 do {
2420 rm_from_queue(sigmask(sig), &t->pending);
2421 recalc_sigpending_tsk(t);
2422 t = next_thread(t);
2423 } while (t != current);
2424 spin_unlock_irq(&current->sighand->siglock);
2425 read_unlock(&tasklist_lock);
2426 return 0;
2429 *k = *act;
2430 sigdelsetmask(&k->sa.sa_mask,
2431 sigmask(SIGKILL) | sigmask(SIGSTOP));
2434 spin_unlock_irq(&current->sighand->siglock);
2435 return 0;
2438 int
2439 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2441 stack_t oss;
2442 int error;
2444 if (uoss) {
2445 oss.ss_sp = (void __user *) current->sas_ss_sp;
2446 oss.ss_size = current->sas_ss_size;
2447 oss.ss_flags = sas_ss_flags(sp);
2450 if (uss) {
2451 void __user *ss_sp;
2452 size_t ss_size;
2453 int ss_flags;
2455 error = -EFAULT;
2456 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2457 || __get_user(ss_sp, &uss->ss_sp)
2458 || __get_user(ss_flags, &uss->ss_flags)
2459 || __get_user(ss_size, &uss->ss_size))
2460 goto out;
2462 error = -EPERM;
2463 if (on_sig_stack(sp))
2464 goto out;
2466 error = -EINVAL;
2469 * Note - this code used to test ss_flags incorrectly
2470 * old code may have been written using ss_flags==0
2471 * to mean ss_flags==SS_ONSTACK (as this was the only
2472 * way that worked) - this fix preserves that older
2473 * mechanism
2475 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2476 goto out;
2478 if (ss_flags == SS_DISABLE) {
2479 ss_size = 0;
2480 ss_sp = NULL;
2481 } else {
2482 error = -ENOMEM;
2483 if (ss_size < MINSIGSTKSZ)
2484 goto out;
2487 current->sas_ss_sp = (unsigned long) ss_sp;
2488 current->sas_ss_size = ss_size;
2491 if (uoss) {
2492 error = -EFAULT;
2493 if (copy_to_user(uoss, &oss, sizeof(oss)))
2494 goto out;
2497 error = 0;
2498 out:
2499 return error;
2502 #ifdef __ARCH_WANT_SYS_SIGPENDING
2504 asmlinkage long
2505 sys_sigpending(old_sigset_t __user *set)
2507 return do_sigpending(set, sizeof(*set));
2510 #endif
2512 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2513 /* Some platforms have their own version with special arguments others
2514 support only sys_rt_sigprocmask. */
2516 asmlinkage long
2517 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2519 int error;
2520 old_sigset_t old_set, new_set;
2522 if (set) {
2523 error = -EFAULT;
2524 if (copy_from_user(&new_set, set, sizeof(*set)))
2525 goto out;
2526 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2528 spin_lock_irq(&current->sighand->siglock);
2529 old_set = current->blocked.sig[0];
2531 error = 0;
2532 switch (how) {
2533 default:
2534 error = -EINVAL;
2535 break;
2536 case SIG_BLOCK:
2537 sigaddsetmask(&current->blocked, new_set);
2538 break;
2539 case SIG_UNBLOCK:
2540 sigdelsetmask(&current->blocked, new_set);
2541 break;
2542 case SIG_SETMASK:
2543 current->blocked.sig[0] = new_set;
2544 break;
2547 recalc_sigpending();
2548 spin_unlock_irq(&current->sighand->siglock);
2549 if (error)
2550 goto out;
2551 if (oset)
2552 goto set_old;
2553 } else if (oset) {
2554 old_set = current->blocked.sig[0];
2555 set_old:
2556 error = -EFAULT;
2557 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2558 goto out;
2560 error = 0;
2561 out:
2562 return error;
2564 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2566 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2567 asmlinkage long
2568 sys_rt_sigaction(int sig,
2569 const struct sigaction __user *act,
2570 struct sigaction __user *oact,
2571 size_t sigsetsize)
2573 struct k_sigaction new_sa, old_sa;
2574 int ret = -EINVAL;
2576 /* XXX: Don't preclude handling different sized sigset_t's. */
2577 if (sigsetsize != sizeof(sigset_t))
2578 goto out;
2580 if (act) {
2581 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2582 return -EFAULT;
2585 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2587 if (!ret && oact) {
2588 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2589 return -EFAULT;
2591 out:
2592 return ret;
2594 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2596 #ifdef __ARCH_WANT_SYS_SGETMASK
2599 * For backwards compatibility. Functionality superseded by sigprocmask.
2601 asmlinkage long
2602 sys_sgetmask(void)
2604 /* SMP safe */
2605 return current->blocked.sig[0];
2608 asmlinkage long
2609 sys_ssetmask(int newmask)
2611 int old;
2613 spin_lock_irq(&current->sighand->siglock);
2614 old = current->blocked.sig[0];
2616 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2617 sigmask(SIGSTOP)));
2618 recalc_sigpending();
2619 spin_unlock_irq(&current->sighand->siglock);
2621 return old;
2623 #endif /* __ARCH_WANT_SGETMASK */
2625 #ifdef __ARCH_WANT_SYS_SIGNAL
2627 * For backwards compatibility. Functionality superseded by sigaction.
2629 asmlinkage unsigned long
2630 sys_signal(int sig, __sighandler_t handler)
2632 struct k_sigaction new_sa, old_sa;
2633 int ret;
2635 new_sa.sa.sa_handler = handler;
2636 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2638 ret = do_sigaction(sig, &new_sa, &old_sa);
2640 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2642 #endif /* __ARCH_WANT_SYS_SIGNAL */
2644 #ifdef __ARCH_WANT_SYS_PAUSE
2646 asmlinkage long
2647 sys_pause(void)
2649 current->state = TASK_INTERRUPTIBLE;
2650 schedule();
2651 return -ERESTARTNOHAND;
2654 #endif
2656 void __init signals_init(void)
2658 sigqueue_cachep =
2659 kmem_cache_create("sigqueue",
2660 sizeof(struct sigqueue),
2661 __alignof__(struct sigqueue),
2662 SLAB_PANIC, NULL, NULL);