Merge branch 'tty-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / socket.c
blob088fb3fd45e00f3fa5d55e3e374c8751e60d225b
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
135 static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144 #endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
155 * The protocol list. Each protocol is registered in here.
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
162 * Statistics counters of the socket lists
165 static DEFINE_PER_CPU(int, sockets_in_use);
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
212 static int move_addr_to_user(struct sockaddr *kaddr, int klen,
213 void __user *uaddr, int __user *ulen)
215 int err;
216 int len;
218 err = get_user(len, ulen);
219 if (err)
220 return err;
221 if (len > klen)
222 len = klen;
223 if (len < 0 || len > sizeof(struct sockaddr_storage))
224 return -EINVAL;
225 if (len) {
226 if (audit_sockaddr(klen, kaddr))
227 return -ENOMEM;
228 if (copy_to_user(uaddr, kaddr, len))
229 return -EFAULT;
232 * "fromlen shall refer to the value before truncation.."
233 * 1003.1g
235 return __put_user(klen, ulen);
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
240 static struct inode *sock_alloc_inode(struct super_block *sb)
242 struct socket_alloc *ei;
244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 if (!ei)
246 return NULL;
247 ei->socket.wq = kmalloc(sizeof(struct socket_wq), GFP_KERNEL);
248 if (!ei->socket.wq) {
249 kmem_cache_free(sock_inode_cachep, ei);
250 return NULL;
252 init_waitqueue_head(&ei->socket.wq->wait);
253 ei->socket.wq->fasync_list = NULL;
255 ei->socket.state = SS_UNCONNECTED;
256 ei->socket.flags = 0;
257 ei->socket.ops = NULL;
258 ei->socket.sk = NULL;
259 ei->socket.file = NULL;
261 return &ei->vfs_inode;
265 static void wq_free_rcu(struct rcu_head *head)
267 struct socket_wq *wq = container_of(head, struct socket_wq, rcu);
269 kfree(wq);
272 static void sock_destroy_inode(struct inode *inode)
274 struct socket_alloc *ei;
276 ei = container_of(inode, struct socket_alloc, vfs_inode);
277 call_rcu(&ei->socket.wq->rcu, wq_free_rcu);
278 kmem_cache_free(sock_inode_cachep, ei);
281 static void init_once(void *foo)
283 struct socket_alloc *ei = (struct socket_alloc *)foo;
285 inode_init_once(&ei->vfs_inode);
288 static int init_inodecache(void)
290 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
291 sizeof(struct socket_alloc),
293 (SLAB_HWCACHE_ALIGN |
294 SLAB_RECLAIM_ACCOUNT |
295 SLAB_MEM_SPREAD),
296 init_once);
297 if (sock_inode_cachep == NULL)
298 return -ENOMEM;
299 return 0;
302 static const struct super_operations sockfs_ops = {
303 .alloc_inode = sock_alloc_inode,
304 .destroy_inode = sock_destroy_inode,
305 .statfs = simple_statfs,
308 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
309 int flags, const char *dev_name, void *data)
311 return mount_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC);
314 static struct vfsmount *sock_mnt __read_mostly;
316 static struct file_system_type sock_fs_type = {
317 .name = "sockfs",
318 .mount = sockfs_mount,
319 .kill_sb = kill_anon_super,
323 * sockfs_dname() is called from d_path().
325 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
327 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
328 dentry->d_inode->i_ino);
331 static const struct dentry_operations sockfs_dentry_operations = {
332 .d_dname = sockfs_dname,
336 * Obtains the first available file descriptor and sets it up for use.
338 * These functions create file structures and maps them to fd space
339 * of the current process. On success it returns file descriptor
340 * and file struct implicitly stored in sock->file.
341 * Note that another thread may close file descriptor before we return
342 * from this function. We use the fact that now we do not refer
343 * to socket after mapping. If one day we will need it, this
344 * function will increment ref. count on file by 1.
346 * In any case returned fd MAY BE not valid!
347 * This race condition is unavoidable
348 * with shared fd spaces, we cannot solve it inside kernel,
349 * but we take care of internal coherence yet.
352 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
354 struct qstr name = { .name = "" };
355 struct path path;
356 struct file *file;
357 int fd;
359 fd = get_unused_fd_flags(flags);
360 if (unlikely(fd < 0))
361 return fd;
363 path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
364 if (unlikely(!path.dentry)) {
365 put_unused_fd(fd);
366 return -ENOMEM;
368 path.mnt = mntget(sock_mnt);
370 path.dentry->d_op = &sockfs_dentry_operations;
371 d_instantiate(path.dentry, SOCK_INODE(sock));
372 SOCK_INODE(sock)->i_fop = &socket_file_ops;
374 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
375 &socket_file_ops);
376 if (unlikely(!file)) {
377 /* drop dentry, keep inode */
378 ihold(path.dentry->d_inode);
379 path_put(&path);
380 put_unused_fd(fd);
381 return -ENFILE;
384 sock->file = file;
385 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
386 file->f_pos = 0;
387 file->private_data = sock;
389 *f = file;
390 return fd;
393 int sock_map_fd(struct socket *sock, int flags)
395 struct file *newfile;
396 int fd = sock_alloc_file(sock, &newfile, flags);
398 if (likely(fd >= 0))
399 fd_install(fd, newfile);
401 return fd;
403 EXPORT_SYMBOL(sock_map_fd);
405 static struct socket *sock_from_file(struct file *file, int *err)
407 if (file->f_op == &socket_file_ops)
408 return file->private_data; /* set in sock_map_fd */
410 *err = -ENOTSOCK;
411 return NULL;
415 * sockfd_lookup - Go from a file number to its socket slot
416 * @fd: file handle
417 * @err: pointer to an error code return
419 * The file handle passed in is locked and the socket it is bound
420 * too is returned. If an error occurs the err pointer is overwritten
421 * with a negative errno code and NULL is returned. The function checks
422 * for both invalid handles and passing a handle which is not a socket.
424 * On a success the socket object pointer is returned.
427 struct socket *sockfd_lookup(int fd, int *err)
429 struct file *file;
430 struct socket *sock;
432 file = fget(fd);
433 if (!file) {
434 *err = -EBADF;
435 return NULL;
438 sock = sock_from_file(file, err);
439 if (!sock)
440 fput(file);
441 return sock;
443 EXPORT_SYMBOL(sockfd_lookup);
445 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
447 struct file *file;
448 struct socket *sock;
450 *err = -EBADF;
451 file = fget_light(fd, fput_needed);
452 if (file) {
453 sock = sock_from_file(file, err);
454 if (sock)
455 return sock;
456 fput_light(file, *fput_needed);
458 return NULL;
462 * sock_alloc - allocate a socket
464 * Allocate a new inode and socket object. The two are bound together
465 * and initialised. The socket is then returned. If we are out of inodes
466 * NULL is returned.
469 static struct socket *sock_alloc(void)
471 struct inode *inode;
472 struct socket *sock;
474 inode = new_inode(sock_mnt->mnt_sb);
475 if (!inode)
476 return NULL;
478 sock = SOCKET_I(inode);
480 kmemcheck_annotate_bitfield(sock, type);
481 inode->i_ino = get_next_ino();
482 inode->i_mode = S_IFSOCK | S_IRWXUGO;
483 inode->i_uid = current_fsuid();
484 inode->i_gid = current_fsgid();
486 percpu_add(sockets_in_use, 1);
487 return sock;
491 * In theory you can't get an open on this inode, but /proc provides
492 * a back door. Remember to keep it shut otherwise you'll let the
493 * creepy crawlies in.
496 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
498 return -ENXIO;
501 const struct file_operations bad_sock_fops = {
502 .owner = THIS_MODULE,
503 .open = sock_no_open,
504 .llseek = noop_llseek,
508 * sock_release - close a socket
509 * @sock: socket to close
511 * The socket is released from the protocol stack if it has a release
512 * callback, and the inode is then released if the socket is bound to
513 * an inode not a file.
516 void sock_release(struct socket *sock)
518 if (sock->ops) {
519 struct module *owner = sock->ops->owner;
521 sock->ops->release(sock);
522 sock->ops = NULL;
523 module_put(owner);
526 if (sock->wq->fasync_list)
527 printk(KERN_ERR "sock_release: fasync list not empty!\n");
529 percpu_sub(sockets_in_use, 1);
530 if (!sock->file) {
531 iput(SOCK_INODE(sock));
532 return;
534 sock->file = NULL;
536 EXPORT_SYMBOL(sock_release);
538 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
540 *tx_flags = 0;
541 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
542 *tx_flags |= SKBTX_HW_TSTAMP;
543 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
544 *tx_flags |= SKBTX_SW_TSTAMP;
545 return 0;
547 EXPORT_SYMBOL(sock_tx_timestamp);
549 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
550 struct msghdr *msg, size_t size)
552 struct sock_iocb *si = kiocb_to_siocb(iocb);
553 int err;
555 sock_update_classid(sock->sk);
557 si->sock = sock;
558 si->scm = NULL;
559 si->msg = msg;
560 si->size = size;
562 err = security_socket_sendmsg(sock, msg, size);
563 if (err)
564 return err;
566 return sock->ops->sendmsg(iocb, sock, msg, size);
569 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
571 struct kiocb iocb;
572 struct sock_iocb siocb;
573 int ret;
575 init_sync_kiocb(&iocb, NULL);
576 iocb.private = &siocb;
577 ret = __sock_sendmsg(&iocb, sock, msg, size);
578 if (-EIOCBQUEUED == ret)
579 ret = wait_on_sync_kiocb(&iocb);
580 return ret;
582 EXPORT_SYMBOL(sock_sendmsg);
584 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
585 struct kvec *vec, size_t num, size_t size)
587 mm_segment_t oldfs = get_fs();
588 int result;
590 set_fs(KERNEL_DS);
592 * the following is safe, since for compiler definitions of kvec and
593 * iovec are identical, yielding the same in-core layout and alignment
595 msg->msg_iov = (struct iovec *)vec;
596 msg->msg_iovlen = num;
597 result = sock_sendmsg(sock, msg, size);
598 set_fs(oldfs);
599 return result;
601 EXPORT_SYMBOL(kernel_sendmsg);
603 static int ktime2ts(ktime_t kt, struct timespec *ts)
605 if (kt.tv64) {
606 *ts = ktime_to_timespec(kt);
607 return 1;
608 } else {
609 return 0;
614 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
616 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
617 struct sk_buff *skb)
619 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
620 struct timespec ts[3];
621 int empty = 1;
622 struct skb_shared_hwtstamps *shhwtstamps =
623 skb_hwtstamps(skb);
625 /* Race occurred between timestamp enabling and packet
626 receiving. Fill in the current time for now. */
627 if (need_software_tstamp && skb->tstamp.tv64 == 0)
628 __net_timestamp(skb);
630 if (need_software_tstamp) {
631 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
632 struct timeval tv;
633 skb_get_timestamp(skb, &tv);
634 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
635 sizeof(tv), &tv);
636 } else {
637 skb_get_timestampns(skb, &ts[0]);
638 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
639 sizeof(ts[0]), &ts[0]);
644 memset(ts, 0, sizeof(ts));
645 if (skb->tstamp.tv64 &&
646 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
647 skb_get_timestampns(skb, ts + 0);
648 empty = 0;
650 if (shhwtstamps) {
651 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
652 ktime2ts(shhwtstamps->syststamp, ts + 1))
653 empty = 0;
654 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
655 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
656 empty = 0;
658 if (!empty)
659 put_cmsg(msg, SOL_SOCKET,
660 SCM_TIMESTAMPING, sizeof(ts), &ts);
662 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
664 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
665 struct sk_buff *skb)
667 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
668 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
669 sizeof(__u32), &skb->dropcount);
672 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
673 struct sk_buff *skb)
675 sock_recv_timestamp(msg, sk, skb);
676 sock_recv_drops(msg, sk, skb);
678 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
680 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
681 struct msghdr *msg, size_t size, int flags)
683 struct sock_iocb *si = kiocb_to_siocb(iocb);
685 sock_update_classid(sock->sk);
687 si->sock = sock;
688 si->scm = NULL;
689 si->msg = msg;
690 si->size = size;
691 si->flags = flags;
693 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
696 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
697 struct msghdr *msg, size_t size, int flags)
699 int err = security_socket_recvmsg(sock, msg, size, flags);
701 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
704 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
705 size_t size, int flags)
707 struct kiocb iocb;
708 struct sock_iocb siocb;
709 int ret;
711 init_sync_kiocb(&iocb, NULL);
712 iocb.private = &siocb;
713 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
714 if (-EIOCBQUEUED == ret)
715 ret = wait_on_sync_kiocb(&iocb);
716 return ret;
718 EXPORT_SYMBOL(sock_recvmsg);
720 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
721 size_t size, int flags)
723 struct kiocb iocb;
724 struct sock_iocb siocb;
725 int ret;
727 init_sync_kiocb(&iocb, NULL);
728 iocb.private = &siocb;
729 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
730 if (-EIOCBQUEUED == ret)
731 ret = wait_on_sync_kiocb(&iocb);
732 return ret;
736 * kernel_recvmsg - Receive a message from a socket (kernel space)
737 * @sock: The socket to receive the message from
738 * @msg: Received message
739 * @vec: Input s/g array for message data
740 * @num: Size of input s/g array
741 * @size: Number of bytes to read
742 * @flags: Message flags (MSG_DONTWAIT, etc...)
744 * On return the msg structure contains the scatter/gather array passed in the
745 * vec argument. The array is modified so that it consists of the unfilled
746 * portion of the original array.
748 * The returned value is the total number of bytes received, or an error.
750 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
751 struct kvec *vec, size_t num, size_t size, int flags)
753 mm_segment_t oldfs = get_fs();
754 int result;
756 set_fs(KERNEL_DS);
758 * the following is safe, since for compiler definitions of kvec and
759 * iovec are identical, yielding the same in-core layout and alignment
761 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
762 result = sock_recvmsg(sock, msg, size, flags);
763 set_fs(oldfs);
764 return result;
766 EXPORT_SYMBOL(kernel_recvmsg);
768 static void sock_aio_dtor(struct kiocb *iocb)
770 kfree(iocb->private);
773 static ssize_t sock_sendpage(struct file *file, struct page *page,
774 int offset, size_t size, loff_t *ppos, int more)
776 struct socket *sock;
777 int flags;
779 sock = file->private_data;
781 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
782 if (more)
783 flags |= MSG_MORE;
785 return kernel_sendpage(sock, page, offset, size, flags);
788 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
789 struct pipe_inode_info *pipe, size_t len,
790 unsigned int flags)
792 struct socket *sock = file->private_data;
794 if (unlikely(!sock->ops->splice_read))
795 return -EINVAL;
797 sock_update_classid(sock->sk);
799 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
802 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
803 struct sock_iocb *siocb)
805 if (!is_sync_kiocb(iocb)) {
806 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
807 if (!siocb)
808 return NULL;
809 iocb->ki_dtor = sock_aio_dtor;
812 siocb->kiocb = iocb;
813 iocb->private = siocb;
814 return siocb;
817 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
818 struct file *file, const struct iovec *iov,
819 unsigned long nr_segs)
821 struct socket *sock = file->private_data;
822 size_t size = 0;
823 int i;
825 for (i = 0; i < nr_segs; i++)
826 size += iov[i].iov_len;
828 msg->msg_name = NULL;
829 msg->msg_namelen = 0;
830 msg->msg_control = NULL;
831 msg->msg_controllen = 0;
832 msg->msg_iov = (struct iovec *)iov;
833 msg->msg_iovlen = nr_segs;
834 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
836 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
839 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
840 unsigned long nr_segs, loff_t pos)
842 struct sock_iocb siocb, *x;
844 if (pos != 0)
845 return -ESPIPE;
847 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
848 return 0;
851 x = alloc_sock_iocb(iocb, &siocb);
852 if (!x)
853 return -ENOMEM;
854 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
857 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
858 struct file *file, const struct iovec *iov,
859 unsigned long nr_segs)
861 struct socket *sock = file->private_data;
862 size_t size = 0;
863 int i;
865 for (i = 0; i < nr_segs; i++)
866 size += iov[i].iov_len;
868 msg->msg_name = NULL;
869 msg->msg_namelen = 0;
870 msg->msg_control = NULL;
871 msg->msg_controllen = 0;
872 msg->msg_iov = (struct iovec *)iov;
873 msg->msg_iovlen = nr_segs;
874 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
875 if (sock->type == SOCK_SEQPACKET)
876 msg->msg_flags |= MSG_EOR;
878 return __sock_sendmsg(iocb, sock, msg, size);
881 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
882 unsigned long nr_segs, loff_t pos)
884 struct sock_iocb siocb, *x;
886 if (pos != 0)
887 return -ESPIPE;
889 x = alloc_sock_iocb(iocb, &siocb);
890 if (!x)
891 return -ENOMEM;
893 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
897 * Atomic setting of ioctl hooks to avoid race
898 * with module unload.
901 static DEFINE_MUTEX(br_ioctl_mutex);
902 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
904 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
906 mutex_lock(&br_ioctl_mutex);
907 br_ioctl_hook = hook;
908 mutex_unlock(&br_ioctl_mutex);
910 EXPORT_SYMBOL(brioctl_set);
912 static DEFINE_MUTEX(vlan_ioctl_mutex);
913 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
915 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
917 mutex_lock(&vlan_ioctl_mutex);
918 vlan_ioctl_hook = hook;
919 mutex_unlock(&vlan_ioctl_mutex);
921 EXPORT_SYMBOL(vlan_ioctl_set);
923 static DEFINE_MUTEX(dlci_ioctl_mutex);
924 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
926 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
928 mutex_lock(&dlci_ioctl_mutex);
929 dlci_ioctl_hook = hook;
930 mutex_unlock(&dlci_ioctl_mutex);
932 EXPORT_SYMBOL(dlci_ioctl_set);
934 static long sock_do_ioctl(struct net *net, struct socket *sock,
935 unsigned int cmd, unsigned long arg)
937 int err;
938 void __user *argp = (void __user *)arg;
940 err = sock->ops->ioctl(sock, cmd, arg);
943 * If this ioctl is unknown try to hand it down
944 * to the NIC driver.
946 if (err == -ENOIOCTLCMD)
947 err = dev_ioctl(net, cmd, argp);
949 return err;
953 * With an ioctl, arg may well be a user mode pointer, but we don't know
954 * what to do with it - that's up to the protocol still.
957 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
959 struct socket *sock;
960 struct sock *sk;
961 void __user *argp = (void __user *)arg;
962 int pid, err;
963 struct net *net;
965 sock = file->private_data;
966 sk = sock->sk;
967 net = sock_net(sk);
968 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
969 err = dev_ioctl(net, cmd, argp);
970 } else
971 #ifdef CONFIG_WEXT_CORE
972 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
973 err = dev_ioctl(net, cmd, argp);
974 } else
975 #endif
976 switch (cmd) {
977 case FIOSETOWN:
978 case SIOCSPGRP:
979 err = -EFAULT;
980 if (get_user(pid, (int __user *)argp))
981 break;
982 err = f_setown(sock->file, pid, 1);
983 break;
984 case FIOGETOWN:
985 case SIOCGPGRP:
986 err = put_user(f_getown(sock->file),
987 (int __user *)argp);
988 break;
989 case SIOCGIFBR:
990 case SIOCSIFBR:
991 case SIOCBRADDBR:
992 case SIOCBRDELBR:
993 err = -ENOPKG;
994 if (!br_ioctl_hook)
995 request_module("bridge");
997 mutex_lock(&br_ioctl_mutex);
998 if (br_ioctl_hook)
999 err = br_ioctl_hook(net, cmd, argp);
1000 mutex_unlock(&br_ioctl_mutex);
1001 break;
1002 case SIOCGIFVLAN:
1003 case SIOCSIFVLAN:
1004 err = -ENOPKG;
1005 if (!vlan_ioctl_hook)
1006 request_module("8021q");
1008 mutex_lock(&vlan_ioctl_mutex);
1009 if (vlan_ioctl_hook)
1010 err = vlan_ioctl_hook(net, argp);
1011 mutex_unlock(&vlan_ioctl_mutex);
1012 break;
1013 case SIOCADDDLCI:
1014 case SIOCDELDLCI:
1015 err = -ENOPKG;
1016 if (!dlci_ioctl_hook)
1017 request_module("dlci");
1019 mutex_lock(&dlci_ioctl_mutex);
1020 if (dlci_ioctl_hook)
1021 err = dlci_ioctl_hook(cmd, argp);
1022 mutex_unlock(&dlci_ioctl_mutex);
1023 break;
1024 default:
1025 err = sock_do_ioctl(net, sock, cmd, arg);
1026 break;
1028 return err;
1031 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1033 int err;
1034 struct socket *sock = NULL;
1036 err = security_socket_create(family, type, protocol, 1);
1037 if (err)
1038 goto out;
1040 sock = sock_alloc();
1041 if (!sock) {
1042 err = -ENOMEM;
1043 goto out;
1046 sock->type = type;
1047 err = security_socket_post_create(sock, family, type, protocol, 1);
1048 if (err)
1049 goto out_release;
1051 out:
1052 *res = sock;
1053 return err;
1054 out_release:
1055 sock_release(sock);
1056 sock = NULL;
1057 goto out;
1059 EXPORT_SYMBOL(sock_create_lite);
1061 /* No kernel lock held - perfect */
1062 static unsigned int sock_poll(struct file *file, poll_table *wait)
1064 struct socket *sock;
1067 * We can't return errors to poll, so it's either yes or no.
1069 sock = file->private_data;
1070 return sock->ops->poll(file, sock, wait);
1073 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1075 struct socket *sock = file->private_data;
1077 return sock->ops->mmap(file, sock, vma);
1080 static int sock_close(struct inode *inode, struct file *filp)
1083 * It was possible the inode is NULL we were
1084 * closing an unfinished socket.
1087 if (!inode) {
1088 printk(KERN_DEBUG "sock_close: NULL inode\n");
1089 return 0;
1091 sock_release(SOCKET_I(inode));
1092 return 0;
1096 * Update the socket async list
1098 * Fasync_list locking strategy.
1100 * 1. fasync_list is modified only under process context socket lock
1101 * i.e. under semaphore.
1102 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1103 * or under socket lock
1106 static int sock_fasync(int fd, struct file *filp, int on)
1108 struct socket *sock = filp->private_data;
1109 struct sock *sk = sock->sk;
1111 if (sk == NULL)
1112 return -EINVAL;
1114 lock_sock(sk);
1116 fasync_helper(fd, filp, on, &sock->wq->fasync_list);
1118 if (!sock->wq->fasync_list)
1119 sock_reset_flag(sk, SOCK_FASYNC);
1120 else
1121 sock_set_flag(sk, SOCK_FASYNC);
1123 release_sock(sk);
1124 return 0;
1127 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1129 int sock_wake_async(struct socket *sock, int how, int band)
1131 struct socket_wq *wq;
1133 if (!sock)
1134 return -1;
1135 rcu_read_lock();
1136 wq = rcu_dereference(sock->wq);
1137 if (!wq || !wq->fasync_list) {
1138 rcu_read_unlock();
1139 return -1;
1141 switch (how) {
1142 case SOCK_WAKE_WAITD:
1143 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1144 break;
1145 goto call_kill;
1146 case SOCK_WAKE_SPACE:
1147 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1148 break;
1149 /* fall through */
1150 case SOCK_WAKE_IO:
1151 call_kill:
1152 kill_fasync(&wq->fasync_list, SIGIO, band);
1153 break;
1154 case SOCK_WAKE_URG:
1155 kill_fasync(&wq->fasync_list, SIGURG, band);
1157 rcu_read_unlock();
1158 return 0;
1160 EXPORT_SYMBOL(sock_wake_async);
1162 int __sock_create(struct net *net, int family, int type, int protocol,
1163 struct socket **res, int kern)
1165 int err;
1166 struct socket *sock;
1167 const struct net_proto_family *pf;
1170 * Check protocol is in range
1172 if (family < 0 || family >= NPROTO)
1173 return -EAFNOSUPPORT;
1174 if (type < 0 || type >= SOCK_MAX)
1175 return -EINVAL;
1177 /* Compatibility.
1179 This uglymoron is moved from INET layer to here to avoid
1180 deadlock in module load.
1182 if (family == PF_INET && type == SOCK_PACKET) {
1183 static int warned;
1184 if (!warned) {
1185 warned = 1;
1186 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1187 current->comm);
1189 family = PF_PACKET;
1192 err = security_socket_create(family, type, protocol, kern);
1193 if (err)
1194 return err;
1197 * Allocate the socket and allow the family to set things up. if
1198 * the protocol is 0, the family is instructed to select an appropriate
1199 * default.
1201 sock = sock_alloc();
1202 if (!sock) {
1203 if (net_ratelimit())
1204 printk(KERN_WARNING "socket: no more sockets\n");
1205 return -ENFILE; /* Not exactly a match, but its the
1206 closest posix thing */
1209 sock->type = type;
1211 #ifdef CONFIG_MODULES
1212 /* Attempt to load a protocol module if the find failed.
1214 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1215 * requested real, full-featured networking support upon configuration.
1216 * Otherwise module support will break!
1218 if (net_families[family] == NULL)
1219 request_module("net-pf-%d", family);
1220 #endif
1222 rcu_read_lock();
1223 pf = rcu_dereference(net_families[family]);
1224 err = -EAFNOSUPPORT;
1225 if (!pf)
1226 goto out_release;
1229 * We will call the ->create function, that possibly is in a loadable
1230 * module, so we have to bump that loadable module refcnt first.
1232 if (!try_module_get(pf->owner))
1233 goto out_release;
1235 /* Now protected by module ref count */
1236 rcu_read_unlock();
1238 err = pf->create(net, sock, protocol, kern);
1239 if (err < 0)
1240 goto out_module_put;
1243 * Now to bump the refcnt of the [loadable] module that owns this
1244 * socket at sock_release time we decrement its refcnt.
1246 if (!try_module_get(sock->ops->owner))
1247 goto out_module_busy;
1250 * Now that we're done with the ->create function, the [loadable]
1251 * module can have its refcnt decremented
1253 module_put(pf->owner);
1254 err = security_socket_post_create(sock, family, type, protocol, kern);
1255 if (err)
1256 goto out_sock_release;
1257 *res = sock;
1259 return 0;
1261 out_module_busy:
1262 err = -EAFNOSUPPORT;
1263 out_module_put:
1264 sock->ops = NULL;
1265 module_put(pf->owner);
1266 out_sock_release:
1267 sock_release(sock);
1268 return err;
1270 out_release:
1271 rcu_read_unlock();
1272 goto out_sock_release;
1274 EXPORT_SYMBOL(__sock_create);
1276 int sock_create(int family, int type, int protocol, struct socket **res)
1278 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1280 EXPORT_SYMBOL(sock_create);
1282 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1284 return __sock_create(&init_net, family, type, protocol, res, 1);
1286 EXPORT_SYMBOL(sock_create_kern);
1288 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1290 int retval;
1291 struct socket *sock;
1292 int flags;
1294 /* Check the SOCK_* constants for consistency. */
1295 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1296 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1297 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1298 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1300 flags = type & ~SOCK_TYPE_MASK;
1301 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1302 return -EINVAL;
1303 type &= SOCK_TYPE_MASK;
1305 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1306 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1308 retval = sock_create(family, type, protocol, &sock);
1309 if (retval < 0)
1310 goto out;
1312 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1313 if (retval < 0)
1314 goto out_release;
1316 out:
1317 /* It may be already another descriptor 8) Not kernel problem. */
1318 return retval;
1320 out_release:
1321 sock_release(sock);
1322 return retval;
1326 * Create a pair of connected sockets.
1329 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1330 int __user *, usockvec)
1332 struct socket *sock1, *sock2;
1333 int fd1, fd2, err;
1334 struct file *newfile1, *newfile2;
1335 int flags;
1337 flags = type & ~SOCK_TYPE_MASK;
1338 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1339 return -EINVAL;
1340 type &= SOCK_TYPE_MASK;
1342 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1343 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1346 * Obtain the first socket and check if the underlying protocol
1347 * supports the socketpair call.
1350 err = sock_create(family, type, protocol, &sock1);
1351 if (err < 0)
1352 goto out;
1354 err = sock_create(family, type, protocol, &sock2);
1355 if (err < 0)
1356 goto out_release_1;
1358 err = sock1->ops->socketpair(sock1, sock2);
1359 if (err < 0)
1360 goto out_release_both;
1362 fd1 = sock_alloc_file(sock1, &newfile1, flags);
1363 if (unlikely(fd1 < 0)) {
1364 err = fd1;
1365 goto out_release_both;
1368 fd2 = sock_alloc_file(sock2, &newfile2, flags);
1369 if (unlikely(fd2 < 0)) {
1370 err = fd2;
1371 fput(newfile1);
1372 put_unused_fd(fd1);
1373 sock_release(sock2);
1374 goto out;
1377 audit_fd_pair(fd1, fd2);
1378 fd_install(fd1, newfile1);
1379 fd_install(fd2, newfile2);
1380 /* fd1 and fd2 may be already another descriptors.
1381 * Not kernel problem.
1384 err = put_user(fd1, &usockvec[0]);
1385 if (!err)
1386 err = put_user(fd2, &usockvec[1]);
1387 if (!err)
1388 return 0;
1390 sys_close(fd2);
1391 sys_close(fd1);
1392 return err;
1394 out_release_both:
1395 sock_release(sock2);
1396 out_release_1:
1397 sock_release(sock1);
1398 out:
1399 return err;
1403 * Bind a name to a socket. Nothing much to do here since it's
1404 * the protocol's responsibility to handle the local address.
1406 * We move the socket address to kernel space before we call
1407 * the protocol layer (having also checked the address is ok).
1410 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1412 struct socket *sock;
1413 struct sockaddr_storage address;
1414 int err, fput_needed;
1416 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1417 if (sock) {
1418 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1419 if (err >= 0) {
1420 err = security_socket_bind(sock,
1421 (struct sockaddr *)&address,
1422 addrlen);
1423 if (!err)
1424 err = sock->ops->bind(sock,
1425 (struct sockaddr *)
1426 &address, addrlen);
1428 fput_light(sock->file, fput_needed);
1430 return err;
1434 * Perform a listen. Basically, we allow the protocol to do anything
1435 * necessary for a listen, and if that works, we mark the socket as
1436 * ready for listening.
1439 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1441 struct socket *sock;
1442 int err, fput_needed;
1443 int somaxconn;
1445 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1446 if (sock) {
1447 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1448 if ((unsigned)backlog > somaxconn)
1449 backlog = somaxconn;
1451 err = security_socket_listen(sock, backlog);
1452 if (!err)
1453 err = sock->ops->listen(sock, backlog);
1455 fput_light(sock->file, fput_needed);
1457 return err;
1461 * For accept, we attempt to create a new socket, set up the link
1462 * with the client, wake up the client, then return the new
1463 * connected fd. We collect the address of the connector in kernel
1464 * space and move it to user at the very end. This is unclean because
1465 * we open the socket then return an error.
1467 * 1003.1g adds the ability to recvmsg() to query connection pending
1468 * status to recvmsg. We need to add that support in a way thats
1469 * clean when we restucture accept also.
1472 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1473 int __user *, upeer_addrlen, int, flags)
1475 struct socket *sock, *newsock;
1476 struct file *newfile;
1477 int err, len, newfd, fput_needed;
1478 struct sockaddr_storage address;
1480 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1481 return -EINVAL;
1483 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1484 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1486 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1487 if (!sock)
1488 goto out;
1490 err = -ENFILE;
1491 newsock = sock_alloc();
1492 if (!newsock)
1493 goto out_put;
1495 newsock->type = sock->type;
1496 newsock->ops = sock->ops;
1499 * We don't need try_module_get here, as the listening socket (sock)
1500 * has the protocol module (sock->ops->owner) held.
1502 __module_get(newsock->ops->owner);
1504 newfd = sock_alloc_file(newsock, &newfile, flags);
1505 if (unlikely(newfd < 0)) {
1506 err = newfd;
1507 sock_release(newsock);
1508 goto out_put;
1511 err = security_socket_accept(sock, newsock);
1512 if (err)
1513 goto out_fd;
1515 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1516 if (err < 0)
1517 goto out_fd;
1519 if (upeer_sockaddr) {
1520 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1521 &len, 2) < 0) {
1522 err = -ECONNABORTED;
1523 goto out_fd;
1525 err = move_addr_to_user((struct sockaddr *)&address,
1526 len, upeer_sockaddr, upeer_addrlen);
1527 if (err < 0)
1528 goto out_fd;
1531 /* File flags are not inherited via accept() unlike another OSes. */
1533 fd_install(newfd, newfile);
1534 err = newfd;
1536 out_put:
1537 fput_light(sock->file, fput_needed);
1538 out:
1539 return err;
1540 out_fd:
1541 fput(newfile);
1542 put_unused_fd(newfd);
1543 goto out_put;
1546 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1547 int __user *, upeer_addrlen)
1549 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1553 * Attempt to connect to a socket with the server address. The address
1554 * is in user space so we verify it is OK and move it to kernel space.
1556 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1557 * break bindings
1559 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1560 * other SEQPACKET protocols that take time to connect() as it doesn't
1561 * include the -EINPROGRESS status for such sockets.
1564 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1565 int, addrlen)
1567 struct socket *sock;
1568 struct sockaddr_storage address;
1569 int err, fput_needed;
1571 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1572 if (!sock)
1573 goto out;
1574 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1575 if (err < 0)
1576 goto out_put;
1578 err =
1579 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1580 if (err)
1581 goto out_put;
1583 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1584 sock->file->f_flags);
1585 out_put:
1586 fput_light(sock->file, fput_needed);
1587 out:
1588 return err;
1592 * Get the local address ('name') of a socket object. Move the obtained
1593 * name to user space.
1596 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1597 int __user *, usockaddr_len)
1599 struct socket *sock;
1600 struct sockaddr_storage address;
1601 int len, err, fput_needed;
1603 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1604 if (!sock)
1605 goto out;
1607 err = security_socket_getsockname(sock);
1608 if (err)
1609 goto out_put;
1611 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1612 if (err)
1613 goto out_put;
1614 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1616 out_put:
1617 fput_light(sock->file, fput_needed);
1618 out:
1619 return err;
1623 * Get the remote address ('name') of a socket object. Move the obtained
1624 * name to user space.
1627 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1628 int __user *, usockaddr_len)
1630 struct socket *sock;
1631 struct sockaddr_storage address;
1632 int len, err, fput_needed;
1634 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1635 if (sock != NULL) {
1636 err = security_socket_getpeername(sock);
1637 if (err) {
1638 fput_light(sock->file, fput_needed);
1639 return err;
1642 err =
1643 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1645 if (!err)
1646 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1647 usockaddr_len);
1648 fput_light(sock->file, fput_needed);
1650 return err;
1654 * Send a datagram to a given address. We move the address into kernel
1655 * space and check the user space data area is readable before invoking
1656 * the protocol.
1659 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1660 unsigned, flags, struct sockaddr __user *, addr,
1661 int, addr_len)
1663 struct socket *sock;
1664 struct sockaddr_storage address;
1665 int err;
1666 struct msghdr msg;
1667 struct iovec iov;
1668 int fput_needed;
1670 if (len > INT_MAX)
1671 len = INT_MAX;
1672 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1673 if (!sock)
1674 goto out;
1676 iov.iov_base = buff;
1677 iov.iov_len = len;
1678 msg.msg_name = NULL;
1679 msg.msg_iov = &iov;
1680 msg.msg_iovlen = 1;
1681 msg.msg_control = NULL;
1682 msg.msg_controllen = 0;
1683 msg.msg_namelen = 0;
1684 if (addr) {
1685 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1686 if (err < 0)
1687 goto out_put;
1688 msg.msg_name = (struct sockaddr *)&address;
1689 msg.msg_namelen = addr_len;
1691 if (sock->file->f_flags & O_NONBLOCK)
1692 flags |= MSG_DONTWAIT;
1693 msg.msg_flags = flags;
1694 err = sock_sendmsg(sock, &msg, len);
1696 out_put:
1697 fput_light(sock->file, fput_needed);
1698 out:
1699 return err;
1703 * Send a datagram down a socket.
1706 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1707 unsigned, flags)
1709 return sys_sendto(fd, buff, len, flags, NULL, 0);
1713 * Receive a frame from the socket and optionally record the address of the
1714 * sender. We verify the buffers are writable and if needed move the
1715 * sender address from kernel to user space.
1718 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1719 unsigned, flags, struct sockaddr __user *, addr,
1720 int __user *, addr_len)
1722 struct socket *sock;
1723 struct iovec iov;
1724 struct msghdr msg;
1725 struct sockaddr_storage address;
1726 int err, err2;
1727 int fput_needed;
1729 if (size > INT_MAX)
1730 size = INT_MAX;
1731 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1732 if (!sock)
1733 goto out;
1735 msg.msg_control = NULL;
1736 msg.msg_controllen = 0;
1737 msg.msg_iovlen = 1;
1738 msg.msg_iov = &iov;
1739 iov.iov_len = size;
1740 iov.iov_base = ubuf;
1741 msg.msg_name = (struct sockaddr *)&address;
1742 msg.msg_namelen = sizeof(address);
1743 if (sock->file->f_flags & O_NONBLOCK)
1744 flags |= MSG_DONTWAIT;
1745 err = sock_recvmsg(sock, &msg, size, flags);
1747 if (err >= 0 && addr != NULL) {
1748 err2 = move_addr_to_user((struct sockaddr *)&address,
1749 msg.msg_namelen, addr, addr_len);
1750 if (err2 < 0)
1751 err = err2;
1754 fput_light(sock->file, fput_needed);
1755 out:
1756 return err;
1760 * Receive a datagram from a socket.
1763 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1764 unsigned flags)
1766 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1770 * Set a socket option. Because we don't know the option lengths we have
1771 * to pass the user mode parameter for the protocols to sort out.
1774 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1775 char __user *, optval, int, optlen)
1777 int err, fput_needed;
1778 struct socket *sock;
1780 if (optlen < 0)
1781 return -EINVAL;
1783 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1784 if (sock != NULL) {
1785 err = security_socket_setsockopt(sock, level, optname);
1786 if (err)
1787 goto out_put;
1789 if (level == SOL_SOCKET)
1790 err =
1791 sock_setsockopt(sock, level, optname, optval,
1792 optlen);
1793 else
1794 err =
1795 sock->ops->setsockopt(sock, level, optname, optval,
1796 optlen);
1797 out_put:
1798 fput_light(sock->file, fput_needed);
1800 return err;
1804 * Get a socket option. Because we don't know the option lengths we have
1805 * to pass a user mode parameter for the protocols to sort out.
1808 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1809 char __user *, optval, int __user *, optlen)
1811 int err, fput_needed;
1812 struct socket *sock;
1814 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1815 if (sock != NULL) {
1816 err = security_socket_getsockopt(sock, level, optname);
1817 if (err)
1818 goto out_put;
1820 if (level == SOL_SOCKET)
1821 err =
1822 sock_getsockopt(sock, level, optname, optval,
1823 optlen);
1824 else
1825 err =
1826 sock->ops->getsockopt(sock, level, optname, optval,
1827 optlen);
1828 out_put:
1829 fput_light(sock->file, fput_needed);
1831 return err;
1835 * Shutdown a socket.
1838 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1840 int err, fput_needed;
1841 struct socket *sock;
1843 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1844 if (sock != NULL) {
1845 err = security_socket_shutdown(sock, how);
1846 if (!err)
1847 err = sock->ops->shutdown(sock, how);
1848 fput_light(sock->file, fput_needed);
1850 return err;
1853 /* A couple of helpful macros for getting the address of the 32/64 bit
1854 * fields which are the same type (int / unsigned) on our platforms.
1856 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1857 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1858 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1861 * BSD sendmsg interface
1864 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1866 struct compat_msghdr __user *msg_compat =
1867 (struct compat_msghdr __user *)msg;
1868 struct socket *sock;
1869 struct sockaddr_storage address;
1870 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1871 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1872 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1873 /* 20 is size of ipv6_pktinfo */
1874 unsigned char *ctl_buf = ctl;
1875 struct msghdr msg_sys;
1876 int err, ctl_len, iov_size, total_len;
1877 int fput_needed;
1879 err = -EFAULT;
1880 if (MSG_CMSG_COMPAT & flags) {
1881 if (get_compat_msghdr(&msg_sys, msg_compat))
1882 return -EFAULT;
1883 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1884 return -EFAULT;
1886 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1887 if (!sock)
1888 goto out;
1890 /* do not move before msg_sys is valid */
1891 err = -EMSGSIZE;
1892 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1893 goto out_put;
1895 /* Check whether to allocate the iovec area */
1896 err = -ENOMEM;
1897 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1898 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1899 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1900 if (!iov)
1901 goto out_put;
1904 /* This will also move the address data into kernel space */
1905 if (MSG_CMSG_COMPAT & flags) {
1906 err = verify_compat_iovec(&msg_sys, iov,
1907 (struct sockaddr *)&address,
1908 VERIFY_READ);
1909 } else
1910 err = verify_iovec(&msg_sys, iov,
1911 (struct sockaddr *)&address,
1912 VERIFY_READ);
1913 if (err < 0)
1914 goto out_freeiov;
1915 total_len = err;
1917 err = -ENOBUFS;
1919 if (msg_sys.msg_controllen > INT_MAX)
1920 goto out_freeiov;
1921 ctl_len = msg_sys.msg_controllen;
1922 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1923 err =
1924 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1925 sizeof(ctl));
1926 if (err)
1927 goto out_freeiov;
1928 ctl_buf = msg_sys.msg_control;
1929 ctl_len = msg_sys.msg_controllen;
1930 } else if (ctl_len) {
1931 if (ctl_len > sizeof(ctl)) {
1932 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1933 if (ctl_buf == NULL)
1934 goto out_freeiov;
1936 err = -EFAULT;
1938 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1939 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1940 * checking falls down on this.
1942 if (copy_from_user(ctl_buf,
1943 (void __user __force *)msg_sys.msg_control,
1944 ctl_len))
1945 goto out_freectl;
1946 msg_sys.msg_control = ctl_buf;
1948 msg_sys.msg_flags = flags;
1950 if (sock->file->f_flags & O_NONBLOCK)
1951 msg_sys.msg_flags |= MSG_DONTWAIT;
1952 err = sock_sendmsg(sock, &msg_sys, total_len);
1954 out_freectl:
1955 if (ctl_buf != ctl)
1956 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1957 out_freeiov:
1958 if (iov != iovstack)
1959 sock_kfree_s(sock->sk, iov, iov_size);
1960 out_put:
1961 fput_light(sock->file, fput_needed);
1962 out:
1963 return err;
1966 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1967 struct msghdr *msg_sys, unsigned flags, int nosec)
1969 struct compat_msghdr __user *msg_compat =
1970 (struct compat_msghdr __user *)msg;
1971 struct iovec iovstack[UIO_FASTIOV];
1972 struct iovec *iov = iovstack;
1973 unsigned long cmsg_ptr;
1974 int err, iov_size, total_len, len;
1976 /* kernel mode address */
1977 struct sockaddr_storage addr;
1979 /* user mode address pointers */
1980 struct sockaddr __user *uaddr;
1981 int __user *uaddr_len;
1983 if (MSG_CMSG_COMPAT & flags) {
1984 if (get_compat_msghdr(msg_sys, msg_compat))
1985 return -EFAULT;
1986 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1987 return -EFAULT;
1989 err = -EMSGSIZE;
1990 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1991 goto out;
1993 /* Check whether to allocate the iovec area */
1994 err = -ENOMEM;
1995 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1996 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1997 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1998 if (!iov)
1999 goto out;
2003 * Save the user-mode address (verify_iovec will change the
2004 * kernel msghdr to use the kernel address space)
2007 uaddr = (__force void __user *)msg_sys->msg_name;
2008 uaddr_len = COMPAT_NAMELEN(msg);
2009 if (MSG_CMSG_COMPAT & flags) {
2010 err = verify_compat_iovec(msg_sys, iov,
2011 (struct sockaddr *)&addr,
2012 VERIFY_WRITE);
2013 } else
2014 err = verify_iovec(msg_sys, iov,
2015 (struct sockaddr *)&addr,
2016 VERIFY_WRITE);
2017 if (err < 0)
2018 goto out_freeiov;
2019 total_len = err;
2021 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2022 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2024 if (sock->file->f_flags & O_NONBLOCK)
2025 flags |= MSG_DONTWAIT;
2026 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2027 total_len, flags);
2028 if (err < 0)
2029 goto out_freeiov;
2030 len = err;
2032 if (uaddr != NULL) {
2033 err = move_addr_to_user((struct sockaddr *)&addr,
2034 msg_sys->msg_namelen, uaddr,
2035 uaddr_len);
2036 if (err < 0)
2037 goto out_freeiov;
2039 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2040 COMPAT_FLAGS(msg));
2041 if (err)
2042 goto out_freeiov;
2043 if (MSG_CMSG_COMPAT & flags)
2044 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2045 &msg_compat->msg_controllen);
2046 else
2047 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2048 &msg->msg_controllen);
2049 if (err)
2050 goto out_freeiov;
2051 err = len;
2053 out_freeiov:
2054 if (iov != iovstack)
2055 sock_kfree_s(sock->sk, iov, iov_size);
2056 out:
2057 return err;
2061 * BSD recvmsg interface
2064 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2065 unsigned int, flags)
2067 int fput_needed, err;
2068 struct msghdr msg_sys;
2069 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2071 if (!sock)
2072 goto out;
2074 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2076 fput_light(sock->file, fput_needed);
2077 out:
2078 return err;
2082 * Linux recvmmsg interface
2085 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2086 unsigned int flags, struct timespec *timeout)
2088 int fput_needed, err, datagrams;
2089 struct socket *sock;
2090 struct mmsghdr __user *entry;
2091 struct compat_mmsghdr __user *compat_entry;
2092 struct msghdr msg_sys;
2093 struct timespec end_time;
2095 if (timeout &&
2096 poll_select_set_timeout(&end_time, timeout->tv_sec,
2097 timeout->tv_nsec))
2098 return -EINVAL;
2100 datagrams = 0;
2102 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2103 if (!sock)
2104 return err;
2106 err = sock_error(sock->sk);
2107 if (err)
2108 goto out_put;
2110 entry = mmsg;
2111 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2113 while (datagrams < vlen) {
2115 * No need to ask LSM for more than the first datagram.
2117 if (MSG_CMSG_COMPAT & flags) {
2118 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2119 &msg_sys, flags, datagrams);
2120 if (err < 0)
2121 break;
2122 err = __put_user(err, &compat_entry->msg_len);
2123 ++compat_entry;
2124 } else {
2125 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2126 &msg_sys, flags, datagrams);
2127 if (err < 0)
2128 break;
2129 err = put_user(err, &entry->msg_len);
2130 ++entry;
2133 if (err)
2134 break;
2135 ++datagrams;
2137 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2138 if (flags & MSG_WAITFORONE)
2139 flags |= MSG_DONTWAIT;
2141 if (timeout) {
2142 ktime_get_ts(timeout);
2143 *timeout = timespec_sub(end_time, *timeout);
2144 if (timeout->tv_sec < 0) {
2145 timeout->tv_sec = timeout->tv_nsec = 0;
2146 break;
2149 /* Timeout, return less than vlen datagrams */
2150 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2151 break;
2154 /* Out of band data, return right away */
2155 if (msg_sys.msg_flags & MSG_OOB)
2156 break;
2159 out_put:
2160 fput_light(sock->file, fput_needed);
2162 if (err == 0)
2163 return datagrams;
2165 if (datagrams != 0) {
2167 * We may return less entries than requested (vlen) if the
2168 * sock is non block and there aren't enough datagrams...
2170 if (err != -EAGAIN) {
2172 * ... or if recvmsg returns an error after we
2173 * received some datagrams, where we record the
2174 * error to return on the next call or if the
2175 * app asks about it using getsockopt(SO_ERROR).
2177 sock->sk->sk_err = -err;
2180 return datagrams;
2183 return err;
2186 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2187 unsigned int, vlen, unsigned int, flags,
2188 struct timespec __user *, timeout)
2190 int datagrams;
2191 struct timespec timeout_sys;
2193 if (!timeout)
2194 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2196 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2197 return -EFAULT;
2199 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2201 if (datagrams > 0 &&
2202 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2203 datagrams = -EFAULT;
2205 return datagrams;
2208 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2209 /* Argument list sizes for sys_socketcall */
2210 #define AL(x) ((x) * sizeof(unsigned long))
2211 static const unsigned char nargs[20] = {
2212 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2213 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2214 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2215 AL(4), AL(5)
2218 #undef AL
2221 * System call vectors.
2223 * Argument checking cleaned up. Saved 20% in size.
2224 * This function doesn't need to set the kernel lock because
2225 * it is set by the callees.
2228 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2230 unsigned long a[6];
2231 unsigned long a0, a1;
2232 int err;
2233 unsigned int len;
2235 if (call < 1 || call > SYS_RECVMMSG)
2236 return -EINVAL;
2238 len = nargs[call];
2239 if (len > sizeof(a))
2240 return -EINVAL;
2242 /* copy_from_user should be SMP safe. */
2243 if (copy_from_user(a, args, len))
2244 return -EFAULT;
2246 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2248 a0 = a[0];
2249 a1 = a[1];
2251 switch (call) {
2252 case SYS_SOCKET:
2253 err = sys_socket(a0, a1, a[2]);
2254 break;
2255 case SYS_BIND:
2256 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2257 break;
2258 case SYS_CONNECT:
2259 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2260 break;
2261 case SYS_LISTEN:
2262 err = sys_listen(a0, a1);
2263 break;
2264 case SYS_ACCEPT:
2265 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2266 (int __user *)a[2], 0);
2267 break;
2268 case SYS_GETSOCKNAME:
2269 err =
2270 sys_getsockname(a0, (struct sockaddr __user *)a1,
2271 (int __user *)a[2]);
2272 break;
2273 case SYS_GETPEERNAME:
2274 err =
2275 sys_getpeername(a0, (struct sockaddr __user *)a1,
2276 (int __user *)a[2]);
2277 break;
2278 case SYS_SOCKETPAIR:
2279 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2280 break;
2281 case SYS_SEND:
2282 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2283 break;
2284 case SYS_SENDTO:
2285 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2286 (struct sockaddr __user *)a[4], a[5]);
2287 break;
2288 case SYS_RECV:
2289 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2290 break;
2291 case SYS_RECVFROM:
2292 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2293 (struct sockaddr __user *)a[4],
2294 (int __user *)a[5]);
2295 break;
2296 case SYS_SHUTDOWN:
2297 err = sys_shutdown(a0, a1);
2298 break;
2299 case SYS_SETSOCKOPT:
2300 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2301 break;
2302 case SYS_GETSOCKOPT:
2303 err =
2304 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2305 (int __user *)a[4]);
2306 break;
2307 case SYS_SENDMSG:
2308 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2309 break;
2310 case SYS_RECVMSG:
2311 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2312 break;
2313 case SYS_RECVMMSG:
2314 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2315 (struct timespec __user *)a[4]);
2316 break;
2317 case SYS_ACCEPT4:
2318 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2319 (int __user *)a[2], a[3]);
2320 break;
2321 default:
2322 err = -EINVAL;
2323 break;
2325 return err;
2328 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2331 * sock_register - add a socket protocol handler
2332 * @ops: description of protocol
2334 * This function is called by a protocol handler that wants to
2335 * advertise its address family, and have it linked into the
2336 * socket interface. The value ops->family coresponds to the
2337 * socket system call protocol family.
2339 int sock_register(const struct net_proto_family *ops)
2341 int err;
2343 if (ops->family >= NPROTO) {
2344 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2345 NPROTO);
2346 return -ENOBUFS;
2349 spin_lock(&net_family_lock);
2350 if (net_families[ops->family])
2351 err = -EEXIST;
2352 else {
2353 net_families[ops->family] = ops;
2354 err = 0;
2356 spin_unlock(&net_family_lock);
2358 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2359 return err;
2361 EXPORT_SYMBOL(sock_register);
2364 * sock_unregister - remove a protocol handler
2365 * @family: protocol family to remove
2367 * This function is called by a protocol handler that wants to
2368 * remove its address family, and have it unlinked from the
2369 * new socket creation.
2371 * If protocol handler is a module, then it can use module reference
2372 * counts to protect against new references. If protocol handler is not
2373 * a module then it needs to provide its own protection in
2374 * the ops->create routine.
2376 void sock_unregister(int family)
2378 BUG_ON(family < 0 || family >= NPROTO);
2380 spin_lock(&net_family_lock);
2381 net_families[family] = NULL;
2382 spin_unlock(&net_family_lock);
2384 synchronize_rcu();
2386 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2388 EXPORT_SYMBOL(sock_unregister);
2390 static int __init sock_init(void)
2393 * Initialize sock SLAB cache.
2396 sk_init();
2399 * Initialize skbuff SLAB cache
2401 skb_init();
2404 * Initialize the protocols module.
2407 init_inodecache();
2408 register_filesystem(&sock_fs_type);
2409 sock_mnt = kern_mount(&sock_fs_type);
2411 /* The real protocol initialization is performed in later initcalls.
2414 #ifdef CONFIG_NETFILTER
2415 netfilter_init();
2416 #endif
2418 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2419 skb_timestamping_init();
2420 #endif
2422 return 0;
2425 core_initcall(sock_init); /* early initcall */
2427 #ifdef CONFIG_PROC_FS
2428 void socket_seq_show(struct seq_file *seq)
2430 int cpu;
2431 int counter = 0;
2433 for_each_possible_cpu(cpu)
2434 counter += per_cpu(sockets_in_use, cpu);
2436 /* It can be negative, by the way. 8) */
2437 if (counter < 0)
2438 counter = 0;
2440 seq_printf(seq, "sockets: used %d\n", counter);
2442 #endif /* CONFIG_PROC_FS */
2444 #ifdef CONFIG_COMPAT
2445 static int do_siocgstamp(struct net *net, struct socket *sock,
2446 unsigned int cmd, struct compat_timeval __user *up)
2448 mm_segment_t old_fs = get_fs();
2449 struct timeval ktv;
2450 int err;
2452 set_fs(KERNEL_DS);
2453 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2454 set_fs(old_fs);
2455 if (!err) {
2456 err = put_user(ktv.tv_sec, &up->tv_sec);
2457 err |= __put_user(ktv.tv_usec, &up->tv_usec);
2459 return err;
2462 static int do_siocgstampns(struct net *net, struct socket *sock,
2463 unsigned int cmd, struct compat_timespec __user *up)
2465 mm_segment_t old_fs = get_fs();
2466 struct timespec kts;
2467 int err;
2469 set_fs(KERNEL_DS);
2470 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2471 set_fs(old_fs);
2472 if (!err) {
2473 err = put_user(kts.tv_sec, &up->tv_sec);
2474 err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2476 return err;
2479 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2481 struct ifreq __user *uifr;
2482 int err;
2484 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2485 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2486 return -EFAULT;
2488 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2489 if (err)
2490 return err;
2492 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2493 return -EFAULT;
2495 return 0;
2498 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2500 struct compat_ifconf ifc32;
2501 struct ifconf ifc;
2502 struct ifconf __user *uifc;
2503 struct compat_ifreq __user *ifr32;
2504 struct ifreq __user *ifr;
2505 unsigned int i, j;
2506 int err;
2508 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2509 return -EFAULT;
2511 if (ifc32.ifcbuf == 0) {
2512 ifc32.ifc_len = 0;
2513 ifc.ifc_len = 0;
2514 ifc.ifc_req = NULL;
2515 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2516 } else {
2517 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2518 sizeof(struct ifreq);
2519 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2520 ifc.ifc_len = len;
2521 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2522 ifr32 = compat_ptr(ifc32.ifcbuf);
2523 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2524 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2525 return -EFAULT;
2526 ifr++;
2527 ifr32++;
2530 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2531 return -EFAULT;
2533 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2534 if (err)
2535 return err;
2537 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2538 return -EFAULT;
2540 ifr = ifc.ifc_req;
2541 ifr32 = compat_ptr(ifc32.ifcbuf);
2542 for (i = 0, j = 0;
2543 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2544 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2545 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2546 return -EFAULT;
2547 ifr32++;
2548 ifr++;
2551 if (ifc32.ifcbuf == 0) {
2552 /* Translate from 64-bit structure multiple to
2553 * a 32-bit one.
2555 i = ifc.ifc_len;
2556 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2557 ifc32.ifc_len = i;
2558 } else {
2559 ifc32.ifc_len = i;
2561 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2562 return -EFAULT;
2564 return 0;
2567 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2569 struct ifreq __user *ifr;
2570 u32 data;
2571 void __user *datap;
2573 ifr = compat_alloc_user_space(sizeof(*ifr));
2575 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2576 return -EFAULT;
2578 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2579 return -EFAULT;
2581 datap = compat_ptr(data);
2582 if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2583 return -EFAULT;
2585 return dev_ioctl(net, SIOCETHTOOL, ifr);
2588 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2590 void __user *uptr;
2591 compat_uptr_t uptr32;
2592 struct ifreq __user *uifr;
2594 uifr = compat_alloc_user_space(sizeof(*uifr));
2595 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2596 return -EFAULT;
2598 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2599 return -EFAULT;
2601 uptr = compat_ptr(uptr32);
2603 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2604 return -EFAULT;
2606 return dev_ioctl(net, SIOCWANDEV, uifr);
2609 static int bond_ioctl(struct net *net, unsigned int cmd,
2610 struct compat_ifreq __user *ifr32)
2612 struct ifreq kifr;
2613 struct ifreq __user *uifr;
2614 mm_segment_t old_fs;
2615 int err;
2616 u32 data;
2617 void __user *datap;
2619 switch (cmd) {
2620 case SIOCBONDENSLAVE:
2621 case SIOCBONDRELEASE:
2622 case SIOCBONDSETHWADDR:
2623 case SIOCBONDCHANGEACTIVE:
2624 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2625 return -EFAULT;
2627 old_fs = get_fs();
2628 set_fs(KERNEL_DS);
2629 err = dev_ioctl(net, cmd, &kifr);
2630 set_fs(old_fs);
2632 return err;
2633 case SIOCBONDSLAVEINFOQUERY:
2634 case SIOCBONDINFOQUERY:
2635 uifr = compat_alloc_user_space(sizeof(*uifr));
2636 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2637 return -EFAULT;
2639 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2640 return -EFAULT;
2642 datap = compat_ptr(data);
2643 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2644 return -EFAULT;
2646 return dev_ioctl(net, cmd, uifr);
2647 default:
2648 return -EINVAL;
2652 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2653 struct compat_ifreq __user *u_ifreq32)
2655 struct ifreq __user *u_ifreq64;
2656 char tmp_buf[IFNAMSIZ];
2657 void __user *data64;
2658 u32 data32;
2660 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2661 IFNAMSIZ))
2662 return -EFAULT;
2663 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2664 return -EFAULT;
2665 data64 = compat_ptr(data32);
2667 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2669 /* Don't check these user accesses, just let that get trapped
2670 * in the ioctl handler instead.
2672 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2673 IFNAMSIZ))
2674 return -EFAULT;
2675 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2676 return -EFAULT;
2678 return dev_ioctl(net, cmd, u_ifreq64);
2681 static int dev_ifsioc(struct net *net, struct socket *sock,
2682 unsigned int cmd, struct compat_ifreq __user *uifr32)
2684 struct ifreq __user *uifr;
2685 int err;
2687 uifr = compat_alloc_user_space(sizeof(*uifr));
2688 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2689 return -EFAULT;
2691 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2693 if (!err) {
2694 switch (cmd) {
2695 case SIOCGIFFLAGS:
2696 case SIOCGIFMETRIC:
2697 case SIOCGIFMTU:
2698 case SIOCGIFMEM:
2699 case SIOCGIFHWADDR:
2700 case SIOCGIFINDEX:
2701 case SIOCGIFADDR:
2702 case SIOCGIFBRDADDR:
2703 case SIOCGIFDSTADDR:
2704 case SIOCGIFNETMASK:
2705 case SIOCGIFPFLAGS:
2706 case SIOCGIFTXQLEN:
2707 case SIOCGMIIPHY:
2708 case SIOCGMIIREG:
2709 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2710 err = -EFAULT;
2711 break;
2714 return err;
2717 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2718 struct compat_ifreq __user *uifr32)
2720 struct ifreq ifr;
2721 struct compat_ifmap __user *uifmap32;
2722 mm_segment_t old_fs;
2723 int err;
2725 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2726 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2727 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2728 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2729 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2730 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2731 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2732 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2733 if (err)
2734 return -EFAULT;
2736 old_fs = get_fs();
2737 set_fs(KERNEL_DS);
2738 err = dev_ioctl(net, cmd, (void __user *)&ifr);
2739 set_fs(old_fs);
2741 if (cmd == SIOCGIFMAP && !err) {
2742 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2743 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2744 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2745 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2746 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2747 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2748 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2749 if (err)
2750 err = -EFAULT;
2752 return err;
2755 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2757 void __user *uptr;
2758 compat_uptr_t uptr32;
2759 struct ifreq __user *uifr;
2761 uifr = compat_alloc_user_space(sizeof(*uifr));
2762 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2763 return -EFAULT;
2765 if (get_user(uptr32, &uifr32->ifr_data))
2766 return -EFAULT;
2768 uptr = compat_ptr(uptr32);
2770 if (put_user(uptr, &uifr->ifr_data))
2771 return -EFAULT;
2773 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2776 struct rtentry32 {
2777 u32 rt_pad1;
2778 struct sockaddr rt_dst; /* target address */
2779 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2780 struct sockaddr rt_genmask; /* target network mask (IP) */
2781 unsigned short rt_flags;
2782 short rt_pad2;
2783 u32 rt_pad3;
2784 unsigned char rt_tos;
2785 unsigned char rt_class;
2786 short rt_pad4;
2787 short rt_metric; /* +1 for binary compatibility! */
2788 /* char * */ u32 rt_dev; /* forcing the device at add */
2789 u32 rt_mtu; /* per route MTU/Window */
2790 u32 rt_window; /* Window clamping */
2791 unsigned short rt_irtt; /* Initial RTT */
2794 struct in6_rtmsg32 {
2795 struct in6_addr rtmsg_dst;
2796 struct in6_addr rtmsg_src;
2797 struct in6_addr rtmsg_gateway;
2798 u32 rtmsg_type;
2799 u16 rtmsg_dst_len;
2800 u16 rtmsg_src_len;
2801 u32 rtmsg_metric;
2802 u32 rtmsg_info;
2803 u32 rtmsg_flags;
2804 s32 rtmsg_ifindex;
2807 static int routing_ioctl(struct net *net, struct socket *sock,
2808 unsigned int cmd, void __user *argp)
2810 int ret;
2811 void *r = NULL;
2812 struct in6_rtmsg r6;
2813 struct rtentry r4;
2814 char devname[16];
2815 u32 rtdev;
2816 mm_segment_t old_fs = get_fs();
2818 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2819 struct in6_rtmsg32 __user *ur6 = argp;
2820 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2821 3 * sizeof(struct in6_addr));
2822 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2823 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2824 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2825 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2826 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2827 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2828 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2830 r = (void *) &r6;
2831 } else { /* ipv4 */
2832 struct rtentry32 __user *ur4 = argp;
2833 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
2834 3 * sizeof(struct sockaddr));
2835 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
2836 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
2837 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
2838 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
2839 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
2840 ret |= __get_user(rtdev, &(ur4->rt_dev));
2841 if (rtdev) {
2842 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
2843 r4.rt_dev = devname; devname[15] = 0;
2844 } else
2845 r4.rt_dev = NULL;
2847 r = (void *) &r4;
2850 if (ret) {
2851 ret = -EFAULT;
2852 goto out;
2855 set_fs(KERNEL_DS);
2856 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2857 set_fs(old_fs);
2859 out:
2860 return ret;
2863 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2864 * for some operations; this forces use of the newer bridge-utils that
2865 * use compatiable ioctls
2867 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2869 compat_ulong_t tmp;
2871 if (get_user(tmp, argp))
2872 return -EFAULT;
2873 if (tmp == BRCTL_GET_VERSION)
2874 return BRCTL_VERSION + 1;
2875 return -EINVAL;
2878 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2879 unsigned int cmd, unsigned long arg)
2881 void __user *argp = compat_ptr(arg);
2882 struct sock *sk = sock->sk;
2883 struct net *net = sock_net(sk);
2885 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2886 return siocdevprivate_ioctl(net, cmd, argp);
2888 switch (cmd) {
2889 case SIOCSIFBR:
2890 case SIOCGIFBR:
2891 return old_bridge_ioctl(argp);
2892 case SIOCGIFNAME:
2893 return dev_ifname32(net, argp);
2894 case SIOCGIFCONF:
2895 return dev_ifconf(net, argp);
2896 case SIOCETHTOOL:
2897 return ethtool_ioctl(net, argp);
2898 case SIOCWANDEV:
2899 return compat_siocwandev(net, argp);
2900 case SIOCGIFMAP:
2901 case SIOCSIFMAP:
2902 return compat_sioc_ifmap(net, cmd, argp);
2903 case SIOCBONDENSLAVE:
2904 case SIOCBONDRELEASE:
2905 case SIOCBONDSETHWADDR:
2906 case SIOCBONDSLAVEINFOQUERY:
2907 case SIOCBONDINFOQUERY:
2908 case SIOCBONDCHANGEACTIVE:
2909 return bond_ioctl(net, cmd, argp);
2910 case SIOCADDRT:
2911 case SIOCDELRT:
2912 return routing_ioctl(net, sock, cmd, argp);
2913 case SIOCGSTAMP:
2914 return do_siocgstamp(net, sock, cmd, argp);
2915 case SIOCGSTAMPNS:
2916 return do_siocgstampns(net, sock, cmd, argp);
2917 case SIOCSHWTSTAMP:
2918 return compat_siocshwtstamp(net, argp);
2920 case FIOSETOWN:
2921 case SIOCSPGRP:
2922 case FIOGETOWN:
2923 case SIOCGPGRP:
2924 case SIOCBRADDBR:
2925 case SIOCBRDELBR:
2926 case SIOCGIFVLAN:
2927 case SIOCSIFVLAN:
2928 case SIOCADDDLCI:
2929 case SIOCDELDLCI:
2930 return sock_ioctl(file, cmd, arg);
2932 case SIOCGIFFLAGS:
2933 case SIOCSIFFLAGS:
2934 case SIOCGIFMETRIC:
2935 case SIOCSIFMETRIC:
2936 case SIOCGIFMTU:
2937 case SIOCSIFMTU:
2938 case SIOCGIFMEM:
2939 case SIOCSIFMEM:
2940 case SIOCGIFHWADDR:
2941 case SIOCSIFHWADDR:
2942 case SIOCADDMULTI:
2943 case SIOCDELMULTI:
2944 case SIOCGIFINDEX:
2945 case SIOCGIFADDR:
2946 case SIOCSIFADDR:
2947 case SIOCSIFHWBROADCAST:
2948 case SIOCDIFADDR:
2949 case SIOCGIFBRDADDR:
2950 case SIOCSIFBRDADDR:
2951 case SIOCGIFDSTADDR:
2952 case SIOCSIFDSTADDR:
2953 case SIOCGIFNETMASK:
2954 case SIOCSIFNETMASK:
2955 case SIOCSIFPFLAGS:
2956 case SIOCGIFPFLAGS:
2957 case SIOCGIFTXQLEN:
2958 case SIOCSIFTXQLEN:
2959 case SIOCBRADDIF:
2960 case SIOCBRDELIF:
2961 case SIOCSIFNAME:
2962 case SIOCGMIIPHY:
2963 case SIOCGMIIREG:
2964 case SIOCSMIIREG:
2965 return dev_ifsioc(net, sock, cmd, argp);
2967 case SIOCSARP:
2968 case SIOCGARP:
2969 case SIOCDARP:
2970 case SIOCATMARK:
2971 return sock_do_ioctl(net, sock, cmd, arg);
2974 /* Prevent warning from compat_sys_ioctl, these always
2975 * result in -EINVAL in the native case anyway. */
2976 switch (cmd) {
2977 case SIOCRTMSG:
2978 case SIOCGIFCOUNT:
2979 case SIOCSRARP:
2980 case SIOCGRARP:
2981 case SIOCDRARP:
2982 case SIOCSIFLINK:
2983 case SIOCGIFSLAVE:
2984 case SIOCSIFSLAVE:
2985 return -EINVAL;
2988 return -ENOIOCTLCMD;
2991 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2992 unsigned long arg)
2994 struct socket *sock = file->private_data;
2995 int ret = -ENOIOCTLCMD;
2996 struct sock *sk;
2997 struct net *net;
2999 sk = sock->sk;
3000 net = sock_net(sk);
3002 if (sock->ops->compat_ioctl)
3003 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3005 if (ret == -ENOIOCTLCMD &&
3006 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3007 ret = compat_wext_handle_ioctl(net, cmd, arg);
3009 if (ret == -ENOIOCTLCMD)
3010 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3012 return ret;
3014 #endif
3016 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3018 return sock->ops->bind(sock, addr, addrlen);
3020 EXPORT_SYMBOL(kernel_bind);
3022 int kernel_listen(struct socket *sock, int backlog)
3024 return sock->ops->listen(sock, backlog);
3026 EXPORT_SYMBOL(kernel_listen);
3028 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3030 struct sock *sk = sock->sk;
3031 int err;
3033 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3034 newsock);
3035 if (err < 0)
3036 goto done;
3038 err = sock->ops->accept(sock, *newsock, flags);
3039 if (err < 0) {
3040 sock_release(*newsock);
3041 *newsock = NULL;
3042 goto done;
3045 (*newsock)->ops = sock->ops;
3046 __module_get((*newsock)->ops->owner);
3048 done:
3049 return err;
3051 EXPORT_SYMBOL(kernel_accept);
3053 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3054 int flags)
3056 return sock->ops->connect(sock, addr, addrlen, flags);
3058 EXPORT_SYMBOL(kernel_connect);
3060 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3061 int *addrlen)
3063 return sock->ops->getname(sock, addr, addrlen, 0);
3065 EXPORT_SYMBOL(kernel_getsockname);
3067 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3068 int *addrlen)
3070 return sock->ops->getname(sock, addr, addrlen, 1);
3072 EXPORT_SYMBOL(kernel_getpeername);
3074 int kernel_getsockopt(struct socket *sock, int level, int optname,
3075 char *optval, int *optlen)
3077 mm_segment_t oldfs = get_fs();
3078 char __user *uoptval;
3079 int __user *uoptlen;
3080 int err;
3082 uoptval = (char __user __force *) optval;
3083 uoptlen = (int __user __force *) optlen;
3085 set_fs(KERNEL_DS);
3086 if (level == SOL_SOCKET)
3087 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3088 else
3089 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3090 uoptlen);
3091 set_fs(oldfs);
3092 return err;
3094 EXPORT_SYMBOL(kernel_getsockopt);
3096 int kernel_setsockopt(struct socket *sock, int level, int optname,
3097 char *optval, unsigned int optlen)
3099 mm_segment_t oldfs = get_fs();
3100 char __user *uoptval;
3101 int err;
3103 uoptval = (char __user __force *) optval;
3105 set_fs(KERNEL_DS);
3106 if (level == SOL_SOCKET)
3107 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3108 else
3109 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3110 optlen);
3111 set_fs(oldfs);
3112 return err;
3114 EXPORT_SYMBOL(kernel_setsockopt);
3116 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3117 size_t size, int flags)
3119 sock_update_classid(sock->sk);
3121 if (sock->ops->sendpage)
3122 return sock->ops->sendpage(sock, page, offset, size, flags);
3124 return sock_no_sendpage(sock, page, offset, size, flags);
3126 EXPORT_SYMBOL(kernel_sendpage);
3128 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3130 mm_segment_t oldfs = get_fs();
3131 int err;
3133 set_fs(KERNEL_DS);
3134 err = sock->ops->ioctl(sock, cmd, arg);
3135 set_fs(oldfs);
3137 return err;
3139 EXPORT_SYMBOL(kernel_sock_ioctl);
3141 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3143 return sock->ops->shutdown(sock, how);
3145 EXPORT_SYMBOL(kernel_sock_shutdown);