2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
10 * Alan Cox : Fixed the worst of the load
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/config.h>
42 #include <linux/module.h>
43 #include <linux/types.h>
44 #include <linux/kernel.h>
45 #include <linux/sched.h>
47 #include <linux/interrupt.h>
49 #include <linux/inet.h>
50 #include <linux/slab.h>
51 #include <linux/netdevice.h>
52 #ifdef CONFIG_NET_CLS_ACT
53 #include <net/pkt_sched.h>
55 #include <linux/string.h>
56 #include <linux/skbuff.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/highmem.h>
62 #include <net/protocol.h>
65 #include <net/checksum.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
71 static kmem_cache_t
*skbuff_head_cache __read_mostly
;
72 static kmem_cache_t
*skbuff_fclone_cache __read_mostly
;
75 * Keep out-of-line to prevent kernel bloat.
76 * __builtin_return_address is not used because it is not always
81 * skb_over_panic - private function
86 * Out of line support code for skb_put(). Not user callable.
88 void skb_over_panic(struct sk_buff
*skb
, int sz
, void *here
)
90 printk(KERN_EMERG
"skb_over_panic: text:%p len:%d put:%d head:%p "
91 "data:%p tail:%p end:%p dev:%s\n",
92 here
, skb
->len
, sz
, skb
->head
, skb
->data
, skb
->tail
, skb
->end
,
93 skb
->dev
? skb
->dev
->name
: "<NULL>");
98 * skb_under_panic - private function
103 * Out of line support code for skb_push(). Not user callable.
106 void skb_under_panic(struct sk_buff
*skb
, int sz
, void *here
)
108 printk(KERN_EMERG
"skb_under_panic: text:%p len:%d put:%d head:%p "
109 "data:%p tail:%p end:%p dev:%s\n",
110 here
, skb
->len
, sz
, skb
->head
, skb
->data
, skb
->tail
, skb
->end
,
111 skb
->dev
? skb
->dev
->name
: "<NULL>");
115 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
116 * 'private' fields and also do memory statistics to find all the
122 * __alloc_skb - allocate a network buffer
123 * @size: size to allocate
124 * @gfp_mask: allocation mask
126 * Allocate a new &sk_buff. The returned buffer has no headroom and a
127 * tail room of size bytes. The object has a reference count of one.
128 * The return is the buffer. On a failure the return is %NULL.
130 * Buffers may only be allocated from interrupts using a @gfp_mask of
133 struct sk_buff
*__alloc_skb(unsigned int size
, unsigned int __nocast gfp_mask
,
141 skb
= kmem_cache_alloc(skbuff_fclone_cache
,
142 gfp_mask
& ~__GFP_DMA
);
144 skb
= kmem_cache_alloc(skbuff_head_cache
,
145 gfp_mask
& ~__GFP_DMA
);
150 /* Get the DATA. Size must match skb_add_mtu(). */
151 size
= SKB_DATA_ALIGN(size
);
152 data
= kmalloc(size
+ sizeof(struct skb_shared_info
), gfp_mask
);
156 memset(skb
, 0, offsetof(struct sk_buff
, truesize
));
157 skb
->truesize
= size
+ sizeof(struct sk_buff
);
158 atomic_set(&skb
->users
, 1);
162 skb
->end
= data
+ size
;
164 struct sk_buff
*child
= skb
+ 1;
165 atomic_t
*fclone_ref
= (atomic_t
*) (child
+ 1);
167 skb
->fclone
= SKB_FCLONE_ORIG
;
168 atomic_set(fclone_ref
, 1);
170 child
->fclone
= SKB_FCLONE_UNAVAILABLE
;
172 atomic_set(&(skb_shinfo(skb
)->dataref
), 1);
173 skb_shinfo(skb
)->nr_frags
= 0;
174 skb_shinfo(skb
)->tso_size
= 0;
175 skb_shinfo(skb
)->tso_segs
= 0;
176 skb_shinfo(skb
)->frag_list
= NULL
;
180 kmem_cache_free(skbuff_head_cache
, skb
);
186 * alloc_skb_from_cache - allocate a network buffer
187 * @cp: kmem_cache from which to allocate the data area
188 * (object size must be big enough for @size bytes + skb overheads)
189 * @size: size to allocate
190 * @gfp_mask: allocation mask
192 * Allocate a new &sk_buff. The returned buffer has no headroom and
193 * tail room of size bytes. The object has a reference count of one.
194 * The return is the buffer. On a failure the return is %NULL.
196 * Buffers may only be allocated from interrupts using a @gfp_mask of
199 struct sk_buff
*alloc_skb_from_cache(kmem_cache_t
*cp
,
201 unsigned int __nocast gfp_mask
)
207 skb
= kmem_cache_alloc(skbuff_head_cache
,
208 gfp_mask
& ~__GFP_DMA
);
213 size
= SKB_DATA_ALIGN(size
);
214 data
= kmem_cache_alloc(cp
, gfp_mask
);
218 memset(skb
, 0, offsetof(struct sk_buff
, truesize
));
219 skb
->truesize
= size
+ sizeof(struct sk_buff
);
220 atomic_set(&skb
->users
, 1);
224 skb
->end
= data
+ size
;
226 atomic_set(&(skb_shinfo(skb
)->dataref
), 1);
227 skb_shinfo(skb
)->nr_frags
= 0;
228 skb_shinfo(skb
)->tso_size
= 0;
229 skb_shinfo(skb
)->tso_segs
= 0;
230 skb_shinfo(skb
)->frag_list
= NULL
;
234 kmem_cache_free(skbuff_head_cache
, skb
);
240 static void skb_drop_fraglist(struct sk_buff
*skb
)
242 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
244 skb_shinfo(skb
)->frag_list
= NULL
;
247 struct sk_buff
*this = list
;
253 static void skb_clone_fraglist(struct sk_buff
*skb
)
255 struct sk_buff
*list
;
257 for (list
= skb_shinfo(skb
)->frag_list
; list
; list
= list
->next
)
261 void skb_release_data(struct sk_buff
*skb
)
264 !atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
265 &skb_shinfo(skb
)->dataref
)) {
266 if (skb_shinfo(skb
)->nr_frags
) {
268 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
269 put_page(skb_shinfo(skb
)->frags
[i
].page
);
272 if (skb_shinfo(skb
)->frag_list
)
273 skb_drop_fraglist(skb
);
280 * Free an skbuff by memory without cleaning the state.
282 void kfree_skbmem(struct sk_buff
*skb
)
284 struct sk_buff
*other
;
285 atomic_t
*fclone_ref
;
287 skb_release_data(skb
);
288 switch (skb
->fclone
) {
289 case SKB_FCLONE_UNAVAILABLE
:
290 kmem_cache_free(skbuff_head_cache
, skb
);
293 case SKB_FCLONE_ORIG
:
294 fclone_ref
= (atomic_t
*) (skb
+ 2);
295 if (atomic_dec_and_test(fclone_ref
))
296 kmem_cache_free(skbuff_fclone_cache
, skb
);
299 case SKB_FCLONE_CLONE
:
300 fclone_ref
= (atomic_t
*) (skb
+ 1);
303 /* The clone portion is available for
304 * fast-cloning again.
306 skb
->fclone
= SKB_FCLONE_UNAVAILABLE
;
308 if (atomic_dec_and_test(fclone_ref
))
309 kmem_cache_free(skbuff_fclone_cache
, other
);
315 * __kfree_skb - private function
318 * Free an sk_buff. Release anything attached to the buffer.
319 * Clean the state. This is an internal helper function. Users should
320 * always call kfree_skb
323 void __kfree_skb(struct sk_buff
*skb
)
325 dst_release(skb
->dst
);
327 secpath_put(skb
->sp
);
329 if (skb
->destructor
) {
331 skb
->destructor(skb
);
333 #ifdef CONFIG_NETFILTER
334 nf_conntrack_put(skb
->nfct
);
335 #ifdef CONFIG_BRIDGE_NETFILTER
336 nf_bridge_put(skb
->nf_bridge
);
339 /* XXX: IS this still necessary? - JHS */
340 #ifdef CONFIG_NET_SCHED
342 #ifdef CONFIG_NET_CLS_ACT
351 * skb_clone - duplicate an sk_buff
352 * @skb: buffer to clone
353 * @gfp_mask: allocation priority
355 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
356 * copies share the same packet data but not structure. The new
357 * buffer has a reference count of 1. If the allocation fails the
358 * function returns %NULL otherwise the new buffer is returned.
360 * If this function is called from an interrupt gfp_mask() must be
364 struct sk_buff
*skb_clone(struct sk_buff
*skb
, unsigned int __nocast gfp_mask
)
369 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
370 n
->fclone
== SKB_FCLONE_UNAVAILABLE
) {
371 atomic_t
*fclone_ref
= (atomic_t
*) (n
+ 1);
372 n
->fclone
= SKB_FCLONE_CLONE
;
373 atomic_inc(fclone_ref
);
375 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
378 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
381 #define C(x) n->x = skb->x
383 n
->next
= n
->prev
= NULL
;
394 secpath_get(skb
->sp
);
396 memcpy(n
->cb
, skb
->cb
, sizeof(skb
->cb
));
407 n
->destructor
= NULL
;
408 #ifdef CONFIG_NETFILTER
411 nf_conntrack_get(skb
->nfct
);
413 #ifdef CONFIG_BRIDGE_NETFILTER
415 nf_bridge_get(skb
->nf_bridge
);
417 #endif /*CONFIG_NETFILTER*/
418 #ifdef CONFIG_NET_SCHED
420 #ifdef CONFIG_NET_CLS_ACT
421 n
->tc_verd
= SET_TC_VERD(skb
->tc_verd
,0);
422 n
->tc_verd
= CLR_TC_OK2MUNGE(n
->tc_verd
);
423 n
->tc_verd
= CLR_TC_MUNGED(n
->tc_verd
);
429 atomic_set(&n
->users
, 1);
435 atomic_inc(&(skb_shinfo(skb
)->dataref
));
441 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
444 * Shift between the two data areas in bytes
446 unsigned long offset
= new->data
- old
->data
;
450 new->priority
= old
->priority
;
451 new->protocol
= old
->protocol
;
452 new->dst
= dst_clone(old
->dst
);
454 new->sp
= secpath_get(old
->sp
);
456 new->h
.raw
= old
->h
.raw
+ offset
;
457 new->nh
.raw
= old
->nh
.raw
+ offset
;
458 new->mac
.raw
= old
->mac
.raw
+ offset
;
459 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
460 new->local_df
= old
->local_df
;
461 new->fclone
= SKB_FCLONE_UNAVAILABLE
;
462 new->pkt_type
= old
->pkt_type
;
463 new->tstamp
= old
->tstamp
;
464 new->destructor
= NULL
;
465 #ifdef CONFIG_NETFILTER
466 new->nfmark
= old
->nfmark
;
467 new->nfct
= old
->nfct
;
468 nf_conntrack_get(old
->nfct
);
469 new->nfctinfo
= old
->nfctinfo
;
470 #ifdef CONFIG_BRIDGE_NETFILTER
471 new->nf_bridge
= old
->nf_bridge
;
472 nf_bridge_get(old
->nf_bridge
);
475 #ifdef CONFIG_NET_SCHED
476 #ifdef CONFIG_NET_CLS_ACT
477 new->tc_verd
= old
->tc_verd
;
479 new->tc_index
= old
->tc_index
;
481 atomic_set(&new->users
, 1);
482 skb_shinfo(new)->tso_size
= skb_shinfo(old
)->tso_size
;
483 skb_shinfo(new)->tso_segs
= skb_shinfo(old
)->tso_segs
;
487 * skb_copy - create private copy of an sk_buff
488 * @skb: buffer to copy
489 * @gfp_mask: allocation priority
491 * Make a copy of both an &sk_buff and its data. This is used when the
492 * caller wishes to modify the data and needs a private copy of the
493 * data to alter. Returns %NULL on failure or the pointer to the buffer
494 * on success. The returned buffer has a reference count of 1.
496 * As by-product this function converts non-linear &sk_buff to linear
497 * one, so that &sk_buff becomes completely private and caller is allowed
498 * to modify all the data of returned buffer. This means that this
499 * function is not recommended for use in circumstances when only
500 * header is going to be modified. Use pskb_copy() instead.
503 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, unsigned int __nocast gfp_mask
)
505 int headerlen
= skb
->data
- skb
->head
;
507 * Allocate the copy buffer
509 struct sk_buff
*n
= alloc_skb(skb
->end
- skb
->head
+ skb
->data_len
,
514 /* Set the data pointer */
515 skb_reserve(n
, headerlen
);
516 /* Set the tail pointer and length */
517 skb_put(n
, skb
->len
);
519 n
->ip_summed
= skb
->ip_summed
;
521 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
524 copy_skb_header(n
, skb
);
530 * pskb_copy - create copy of an sk_buff with private head.
531 * @skb: buffer to copy
532 * @gfp_mask: allocation priority
534 * Make a copy of both an &sk_buff and part of its data, located
535 * in header. Fragmented data remain shared. This is used when
536 * the caller wishes to modify only header of &sk_buff and needs
537 * private copy of the header to alter. Returns %NULL on failure
538 * or the pointer to the buffer on success.
539 * The returned buffer has a reference count of 1.
542 struct sk_buff
*pskb_copy(struct sk_buff
*skb
, unsigned int __nocast gfp_mask
)
545 * Allocate the copy buffer
547 struct sk_buff
*n
= alloc_skb(skb
->end
- skb
->head
, gfp_mask
);
552 /* Set the data pointer */
553 skb_reserve(n
, skb
->data
- skb
->head
);
554 /* Set the tail pointer and length */
555 skb_put(n
, skb_headlen(skb
));
557 memcpy(n
->data
, skb
->data
, n
->len
);
559 n
->ip_summed
= skb
->ip_summed
;
561 n
->data_len
= skb
->data_len
;
564 if (skb_shinfo(skb
)->nr_frags
) {
567 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
568 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
569 get_page(skb_shinfo(n
)->frags
[i
].page
);
571 skb_shinfo(n
)->nr_frags
= i
;
574 if (skb_shinfo(skb
)->frag_list
) {
575 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
576 skb_clone_fraglist(n
);
579 copy_skb_header(n
, skb
);
585 * pskb_expand_head - reallocate header of &sk_buff
586 * @skb: buffer to reallocate
587 * @nhead: room to add at head
588 * @ntail: room to add at tail
589 * @gfp_mask: allocation priority
591 * Expands (or creates identical copy, if &nhead and &ntail are zero)
592 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
593 * reference count of 1. Returns zero in the case of success or error,
594 * if expansion failed. In the last case, &sk_buff is not changed.
596 * All the pointers pointing into skb header may change and must be
597 * reloaded after call to this function.
600 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
601 unsigned int __nocast gfp_mask
)
605 int size
= nhead
+ (skb
->end
- skb
->head
) + ntail
;
611 size
= SKB_DATA_ALIGN(size
);
613 data
= kmalloc(size
+ sizeof(struct skb_shared_info
), gfp_mask
);
617 /* Copy only real data... and, alas, header. This should be
618 * optimized for the cases when header is void. */
619 memcpy(data
+ nhead
, skb
->head
, skb
->tail
- skb
->head
);
620 memcpy(data
+ size
, skb
->end
, sizeof(struct skb_shared_info
));
622 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
623 get_page(skb_shinfo(skb
)->frags
[i
].page
);
625 if (skb_shinfo(skb
)->frag_list
)
626 skb_clone_fraglist(skb
);
628 skb_release_data(skb
);
630 off
= (data
+ nhead
) - skb
->head
;
633 skb
->end
= data
+ size
;
641 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
648 /* Make private copy of skb with writable head and some headroom */
650 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
652 struct sk_buff
*skb2
;
653 int delta
= headroom
- skb_headroom(skb
);
656 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
658 skb2
= skb_clone(skb
, GFP_ATOMIC
);
659 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
670 * skb_copy_expand - copy and expand sk_buff
671 * @skb: buffer to copy
672 * @newheadroom: new free bytes at head
673 * @newtailroom: new free bytes at tail
674 * @gfp_mask: allocation priority
676 * Make a copy of both an &sk_buff and its data and while doing so
677 * allocate additional space.
679 * This is used when the caller wishes to modify the data and needs a
680 * private copy of the data to alter as well as more space for new fields.
681 * Returns %NULL on failure or the pointer to the buffer
682 * on success. The returned buffer has a reference count of 1.
684 * You must pass %GFP_ATOMIC as the allocation priority if this function
685 * is called from an interrupt.
687 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
688 * only by netfilter in the cases when checksum is recalculated? --ANK
690 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
691 int newheadroom
, int newtailroom
,
692 unsigned int __nocast gfp_mask
)
695 * Allocate the copy buffer
697 struct sk_buff
*n
= alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
699 int head_copy_len
, head_copy_off
;
704 skb_reserve(n
, newheadroom
);
706 /* Set the tail pointer and length */
707 skb_put(n
, skb
->len
);
709 head_copy_len
= skb_headroom(skb
);
711 if (newheadroom
<= head_copy_len
)
712 head_copy_len
= newheadroom
;
714 head_copy_off
= newheadroom
- head_copy_len
;
716 /* Copy the linear header and data. */
717 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
718 skb
->len
+ head_copy_len
))
721 copy_skb_header(n
, skb
);
727 * skb_pad - zero pad the tail of an skb
728 * @skb: buffer to pad
731 * Ensure that a buffer is followed by a padding area that is zero
732 * filled. Used by network drivers which may DMA or transfer data
733 * beyond the buffer end onto the wire.
735 * May return NULL in out of memory cases.
738 struct sk_buff
*skb_pad(struct sk_buff
*skb
, int pad
)
740 struct sk_buff
*nskb
;
742 /* If the skbuff is non linear tailroom is always zero.. */
743 if (skb_tailroom(skb
) >= pad
) {
744 memset(skb
->data
+skb
->len
, 0, pad
);
748 nskb
= skb_copy_expand(skb
, skb_headroom(skb
), skb_tailroom(skb
) + pad
, GFP_ATOMIC
);
751 memset(nskb
->data
+nskb
->len
, 0, pad
);
755 /* Trims skb to length len. It can change skb pointers, if "realloc" is 1.
756 * If realloc==0 and trimming is impossible without change of data,
760 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
, int realloc
)
762 int offset
= skb_headlen(skb
);
763 int nfrags
= skb_shinfo(skb
)->nr_frags
;
766 for (i
= 0; i
< nfrags
; i
++) {
767 int end
= offset
+ skb_shinfo(skb
)->frags
[i
].size
;
769 if (skb_cloned(skb
)) {
772 if (pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))
776 put_page(skb_shinfo(skb
)->frags
[i
].page
);
777 skb_shinfo(skb
)->nr_frags
--;
779 skb_shinfo(skb
)->frags
[i
].size
= len
- offset
;
786 skb
->data_len
-= skb
->len
- len
;
789 if (len
<= skb_headlen(skb
)) {
792 skb
->tail
= skb
->data
+ len
;
793 if (skb_shinfo(skb
)->frag_list
&& !skb_cloned(skb
))
794 skb_drop_fraglist(skb
);
796 skb
->data_len
-= skb
->len
- len
;
805 * __pskb_pull_tail - advance tail of skb header
806 * @skb: buffer to reallocate
807 * @delta: number of bytes to advance tail
809 * The function makes a sense only on a fragmented &sk_buff,
810 * it expands header moving its tail forward and copying necessary
811 * data from fragmented part.
813 * &sk_buff MUST have reference count of 1.
815 * Returns %NULL (and &sk_buff does not change) if pull failed
816 * or value of new tail of skb in the case of success.
818 * All the pointers pointing into skb header may change and must be
819 * reloaded after call to this function.
822 /* Moves tail of skb head forward, copying data from fragmented part,
823 * when it is necessary.
824 * 1. It may fail due to malloc failure.
825 * 2. It may change skb pointers.
827 * It is pretty complicated. Luckily, it is called only in exceptional cases.
829 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
831 /* If skb has not enough free space at tail, get new one
832 * plus 128 bytes for future expansions. If we have enough
833 * room at tail, reallocate without expansion only if skb is cloned.
835 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
837 if (eat
> 0 || skb_cloned(skb
)) {
838 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
843 if (skb_copy_bits(skb
, skb_headlen(skb
), skb
->tail
, delta
))
846 /* Optimization: no fragments, no reasons to preestimate
847 * size of pulled pages. Superb.
849 if (!skb_shinfo(skb
)->frag_list
)
852 /* Estimate size of pulled pages. */
854 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
855 if (skb_shinfo(skb
)->frags
[i
].size
>= eat
)
857 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
860 /* If we need update frag list, we are in troubles.
861 * Certainly, it possible to add an offset to skb data,
862 * but taking into account that pulling is expected to
863 * be very rare operation, it is worth to fight against
864 * further bloating skb head and crucify ourselves here instead.
865 * Pure masohism, indeed. 8)8)
868 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
869 struct sk_buff
*clone
= NULL
;
870 struct sk_buff
*insp
= NULL
;
876 if (list
->len
<= eat
) {
877 /* Eaten as whole. */
882 /* Eaten partially. */
884 if (skb_shared(list
)) {
885 /* Sucks! We need to fork list. :-( */
886 clone
= skb_clone(list
, GFP_ATOMIC
);
892 /* This may be pulled without
896 if (!pskb_pull(list
, eat
)) {
905 /* Free pulled out fragments. */
906 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
907 skb_shinfo(skb
)->frag_list
= list
->next
;
910 /* And insert new clone at head. */
913 skb_shinfo(skb
)->frag_list
= clone
;
916 /* Success! Now we may commit changes to skb data. */
921 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
922 if (skb_shinfo(skb
)->frags
[i
].size
<= eat
) {
923 put_page(skb_shinfo(skb
)->frags
[i
].page
);
924 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
926 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
928 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
929 skb_shinfo(skb
)->frags
[k
].size
-= eat
;
935 skb_shinfo(skb
)->nr_frags
= k
;
938 skb
->data_len
-= delta
;
943 /* Copy some data bits from skb to kernel buffer. */
945 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
948 int start
= skb_headlen(skb
);
950 if (offset
> (int)skb
->len
- len
)
954 if ((copy
= start
- offset
) > 0) {
957 memcpy(to
, skb
->data
+ offset
, copy
);
958 if ((len
-= copy
) == 0)
964 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
967 BUG_TRAP(start
<= offset
+ len
);
969 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
970 if ((copy
= end
- offset
) > 0) {
976 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
978 vaddr
+ skb_shinfo(skb
)->frags
[i
].page_offset
+
979 offset
- start
, copy
);
980 kunmap_skb_frag(vaddr
);
982 if ((len
-= copy
) == 0)
990 if (skb_shinfo(skb
)->frag_list
) {
991 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
993 for (; list
; list
= list
->next
) {
996 BUG_TRAP(start
<= offset
+ len
);
998 end
= start
+ list
->len
;
999 if ((copy
= end
- offset
) > 0) {
1002 if (skb_copy_bits(list
, offset
- start
,
1005 if ((len
-= copy
) == 0)
1021 * skb_store_bits - store bits from kernel buffer to skb
1022 * @skb: destination buffer
1023 * @offset: offset in destination
1024 * @from: source buffer
1025 * @len: number of bytes to copy
1027 * Copy the specified number of bytes from the source buffer to the
1028 * destination skb. This function handles all the messy bits of
1029 * traversing fragment lists and such.
1032 int skb_store_bits(const struct sk_buff
*skb
, int offset
, void *from
, int len
)
1035 int start
= skb_headlen(skb
);
1037 if (offset
> (int)skb
->len
- len
)
1040 if ((copy
= start
- offset
) > 0) {
1043 memcpy(skb
->data
+ offset
, from
, copy
);
1044 if ((len
-= copy
) == 0)
1050 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1051 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1054 BUG_TRAP(start
<= offset
+ len
);
1056 end
= start
+ frag
->size
;
1057 if ((copy
= end
- offset
) > 0) {
1063 vaddr
= kmap_skb_frag(frag
);
1064 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
1066 kunmap_skb_frag(vaddr
);
1068 if ((len
-= copy
) == 0)
1076 if (skb_shinfo(skb
)->frag_list
) {
1077 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1079 for (; list
; list
= list
->next
) {
1082 BUG_TRAP(start
<= offset
+ len
);
1084 end
= start
+ list
->len
;
1085 if ((copy
= end
- offset
) > 0) {
1088 if (skb_store_bits(list
, offset
- start
,
1091 if ((len
-= copy
) == 0)
1106 EXPORT_SYMBOL(skb_store_bits
);
1108 /* Checksum skb data. */
1110 unsigned int skb_checksum(const struct sk_buff
*skb
, int offset
,
1111 int len
, unsigned int csum
)
1113 int start
= skb_headlen(skb
);
1114 int i
, copy
= start
- offset
;
1117 /* Checksum header. */
1121 csum
= csum_partial(skb
->data
+ offset
, copy
, csum
);
1122 if ((len
-= copy
) == 0)
1128 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1131 BUG_TRAP(start
<= offset
+ len
);
1133 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1134 if ((copy
= end
- offset
) > 0) {
1137 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1141 vaddr
= kmap_skb_frag(frag
);
1142 csum2
= csum_partial(vaddr
+ frag
->page_offset
+
1143 offset
- start
, copy
, 0);
1144 kunmap_skb_frag(vaddr
);
1145 csum
= csum_block_add(csum
, csum2
, pos
);
1154 if (skb_shinfo(skb
)->frag_list
) {
1155 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1157 for (; list
; list
= list
->next
) {
1160 BUG_TRAP(start
<= offset
+ len
);
1162 end
= start
+ list
->len
;
1163 if ((copy
= end
- offset
) > 0) {
1167 csum2
= skb_checksum(list
, offset
- start
,
1169 csum
= csum_block_add(csum
, csum2
, pos
);
1170 if ((len
-= copy
) == 0)
1184 /* Both of above in one bottle. */
1186 unsigned int skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
1187 u8
*to
, int len
, unsigned int csum
)
1189 int start
= skb_headlen(skb
);
1190 int i
, copy
= start
- offset
;
1197 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
1199 if ((len
-= copy
) == 0)
1206 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1209 BUG_TRAP(start
<= offset
+ len
);
1211 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1212 if ((copy
= end
- offset
) > 0) {
1215 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1219 vaddr
= kmap_skb_frag(frag
);
1220 csum2
= csum_partial_copy_nocheck(vaddr
+
1224 kunmap_skb_frag(vaddr
);
1225 csum
= csum_block_add(csum
, csum2
, pos
);
1235 if (skb_shinfo(skb
)->frag_list
) {
1236 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1238 for (; list
; list
= list
->next
) {
1242 BUG_TRAP(start
<= offset
+ len
);
1244 end
= start
+ list
->len
;
1245 if ((copy
= end
- offset
) > 0) {
1248 csum2
= skb_copy_and_csum_bits(list
,
1251 csum
= csum_block_add(csum
, csum2
, pos
);
1252 if ((len
-= copy
) == 0)
1266 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
1271 if (skb
->ip_summed
== CHECKSUM_HW
)
1272 csstart
= skb
->h
.raw
- skb
->data
;
1274 csstart
= skb_headlen(skb
);
1276 if (csstart
> skb_headlen(skb
))
1279 memcpy(to
, skb
->data
, csstart
);
1282 if (csstart
!= skb
->len
)
1283 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
1284 skb
->len
- csstart
, 0);
1286 if (skb
->ip_summed
== CHECKSUM_HW
) {
1287 long csstuff
= csstart
+ skb
->csum
;
1289 *((unsigned short *)(to
+ csstuff
)) = csum_fold(csum
);
1294 * skb_dequeue - remove from the head of the queue
1295 * @list: list to dequeue from
1297 * Remove the head of the list. The list lock is taken so the function
1298 * may be used safely with other locking list functions. The head item is
1299 * returned or %NULL if the list is empty.
1302 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
1304 unsigned long flags
;
1305 struct sk_buff
*result
;
1307 spin_lock_irqsave(&list
->lock
, flags
);
1308 result
= __skb_dequeue(list
);
1309 spin_unlock_irqrestore(&list
->lock
, flags
);
1314 * skb_dequeue_tail - remove from the tail of the queue
1315 * @list: list to dequeue from
1317 * Remove the tail of the list. The list lock is taken so the function
1318 * may be used safely with other locking list functions. The tail item is
1319 * returned or %NULL if the list is empty.
1321 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
1323 unsigned long flags
;
1324 struct sk_buff
*result
;
1326 spin_lock_irqsave(&list
->lock
, flags
);
1327 result
= __skb_dequeue_tail(list
);
1328 spin_unlock_irqrestore(&list
->lock
, flags
);
1333 * skb_queue_purge - empty a list
1334 * @list: list to empty
1336 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1337 * the list and one reference dropped. This function takes the list
1338 * lock and is atomic with respect to other list locking functions.
1340 void skb_queue_purge(struct sk_buff_head
*list
)
1342 struct sk_buff
*skb
;
1343 while ((skb
= skb_dequeue(list
)) != NULL
)
1348 * skb_queue_head - queue a buffer at the list head
1349 * @list: list to use
1350 * @newsk: buffer to queue
1352 * Queue a buffer at the start of the list. This function takes the
1353 * list lock and can be used safely with other locking &sk_buff functions
1356 * A buffer cannot be placed on two lists at the same time.
1358 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1360 unsigned long flags
;
1362 spin_lock_irqsave(&list
->lock
, flags
);
1363 __skb_queue_head(list
, newsk
);
1364 spin_unlock_irqrestore(&list
->lock
, flags
);
1368 * skb_queue_tail - queue a buffer at the list tail
1369 * @list: list to use
1370 * @newsk: buffer to queue
1372 * Queue a buffer at the tail of the list. This function takes the
1373 * list lock and can be used safely with other locking &sk_buff functions
1376 * A buffer cannot be placed on two lists at the same time.
1378 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1380 unsigned long flags
;
1382 spin_lock_irqsave(&list
->lock
, flags
);
1383 __skb_queue_tail(list
, newsk
);
1384 spin_unlock_irqrestore(&list
->lock
, flags
);
1388 * skb_unlink - remove a buffer from a list
1389 * @skb: buffer to remove
1390 * @list: list to use
1392 * Remove a packet from a list. The list locks are taken and this
1393 * function is atomic with respect to other list locked calls
1395 * You must know what list the SKB is on.
1397 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
1399 unsigned long flags
;
1401 spin_lock_irqsave(&list
->lock
, flags
);
1402 __skb_unlink(skb
, list
);
1403 spin_unlock_irqrestore(&list
->lock
, flags
);
1407 * skb_append - append a buffer
1408 * @old: buffer to insert after
1409 * @newsk: buffer to insert
1410 * @list: list to use
1412 * Place a packet after a given packet in a list. The list locks are taken
1413 * and this function is atomic with respect to other list locked calls.
1414 * A buffer cannot be placed on two lists at the same time.
1416 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
1418 unsigned long flags
;
1420 spin_lock_irqsave(&list
->lock
, flags
);
1421 __skb_append(old
, newsk
, list
);
1422 spin_unlock_irqrestore(&list
->lock
, flags
);
1427 * skb_insert - insert a buffer
1428 * @old: buffer to insert before
1429 * @newsk: buffer to insert
1430 * @list: list to use
1432 * Place a packet before a given packet in a list. The list locks are
1433 * taken and this function is atomic with respect to other list locked
1436 * A buffer cannot be placed on two lists at the same time.
1438 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
1440 unsigned long flags
;
1442 spin_lock_irqsave(&list
->lock
, flags
);
1443 __skb_insert(newsk
, old
->prev
, old
, list
);
1444 spin_unlock_irqrestore(&list
->lock
, flags
);
1449 * Tune the memory allocator for a new MTU size.
1451 void skb_add_mtu(int mtu
)
1453 /* Must match allocation in alloc_skb */
1454 mtu
= SKB_DATA_ALIGN(mtu
) + sizeof(struct skb_shared_info
);
1456 kmem_add_cache_size(mtu
);
1460 static inline void skb_split_inside_header(struct sk_buff
*skb
,
1461 struct sk_buff
* skb1
,
1462 const u32 len
, const int pos
)
1466 memcpy(skb_put(skb1
, pos
- len
), skb
->data
+ len
, pos
- len
);
1468 /* And move data appendix as is. */
1469 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
1470 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
1472 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
1473 skb_shinfo(skb
)->nr_frags
= 0;
1474 skb1
->data_len
= skb
->data_len
;
1475 skb1
->len
+= skb1
->data_len
;
1478 skb
->tail
= skb
->data
+ len
;
1481 static inline void skb_split_no_header(struct sk_buff
*skb
,
1482 struct sk_buff
* skb1
,
1483 const u32 len
, int pos
)
1486 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
1488 skb_shinfo(skb
)->nr_frags
= 0;
1489 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
1491 skb
->data_len
= len
- pos
;
1493 for (i
= 0; i
< nfrags
; i
++) {
1494 int size
= skb_shinfo(skb
)->frags
[i
].size
;
1496 if (pos
+ size
> len
) {
1497 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1501 * We have two variants in this case:
1502 * 1. Move all the frag to the second
1503 * part, if it is possible. F.e.
1504 * this approach is mandatory for TUX,
1505 * where splitting is expensive.
1506 * 2. Split is accurately. We make this.
1508 get_page(skb_shinfo(skb
)->frags
[i
].page
);
1509 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
1510 skb_shinfo(skb1
)->frags
[0].size
-= len
- pos
;
1511 skb_shinfo(skb
)->frags
[i
].size
= len
- pos
;
1512 skb_shinfo(skb
)->nr_frags
++;
1516 skb_shinfo(skb
)->nr_frags
++;
1519 skb_shinfo(skb1
)->nr_frags
= k
;
1523 * skb_split - Split fragmented skb to two parts at length len.
1524 * @skb: the buffer to split
1525 * @skb1: the buffer to receive the second part
1526 * @len: new length for skb
1528 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
1530 int pos
= skb_headlen(skb
);
1532 if (len
< pos
) /* Split line is inside header. */
1533 skb_split_inside_header(skb
, skb1
, len
, pos
);
1534 else /* Second chunk has no header, nothing to copy. */
1535 skb_split_no_header(skb
, skb1
, len
, pos
);
1539 * skb_prepare_seq_read - Prepare a sequential read of skb data
1540 * @skb: the buffer to read
1541 * @from: lower offset of data to be read
1542 * @to: upper offset of data to be read
1543 * @st: state variable
1545 * Initializes the specified state variable. Must be called before
1546 * invoking skb_seq_read() for the first time.
1548 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
1549 unsigned int to
, struct skb_seq_state
*st
)
1551 st
->lower_offset
= from
;
1552 st
->upper_offset
= to
;
1553 st
->root_skb
= st
->cur_skb
= skb
;
1554 st
->frag_idx
= st
->stepped_offset
= 0;
1555 st
->frag_data
= NULL
;
1559 * skb_seq_read - Sequentially read skb data
1560 * @consumed: number of bytes consumed by the caller so far
1561 * @data: destination pointer for data to be returned
1562 * @st: state variable
1564 * Reads a block of skb data at &consumed relative to the
1565 * lower offset specified to skb_prepare_seq_read(). Assigns
1566 * the head of the data block to &data and returns the length
1567 * of the block or 0 if the end of the skb data or the upper
1568 * offset has been reached.
1570 * The caller is not required to consume all of the data
1571 * returned, i.e. &consumed is typically set to the number
1572 * of bytes already consumed and the next call to
1573 * skb_seq_read() will return the remaining part of the block.
1575 * Note: The size of each block of data returned can be arbitary,
1576 * this limitation is the cost for zerocopy seqeuental
1577 * reads of potentially non linear data.
1579 * Note: Fragment lists within fragments are not implemented
1580 * at the moment, state->root_skb could be replaced with
1581 * a stack for this purpose.
1583 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
1584 struct skb_seq_state
*st
)
1586 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
1589 if (unlikely(abs_offset
>= st
->upper_offset
))
1593 block_limit
= skb_headlen(st
->cur_skb
);
1595 if (abs_offset
< block_limit
) {
1596 *data
= st
->cur_skb
->data
+ abs_offset
;
1597 return block_limit
- abs_offset
;
1600 if (st
->frag_idx
== 0 && !st
->frag_data
)
1601 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
1603 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
1604 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
1605 block_limit
= frag
->size
+ st
->stepped_offset
;
1607 if (abs_offset
< block_limit
) {
1609 st
->frag_data
= kmap_skb_frag(frag
);
1611 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
1612 (abs_offset
- st
->stepped_offset
);
1614 return block_limit
- abs_offset
;
1617 if (st
->frag_data
) {
1618 kunmap_skb_frag(st
->frag_data
);
1619 st
->frag_data
= NULL
;
1623 st
->stepped_offset
+= frag
->size
;
1626 if (st
->cur_skb
->next
) {
1627 st
->cur_skb
= st
->cur_skb
->next
;
1630 } else if (st
->root_skb
== st
->cur_skb
&&
1631 skb_shinfo(st
->root_skb
)->frag_list
) {
1632 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
1640 * skb_abort_seq_read - Abort a sequential read of skb data
1641 * @st: state variable
1643 * Must be called if skb_seq_read() was not called until it
1646 void skb_abort_seq_read(struct skb_seq_state
*st
)
1649 kunmap_skb_frag(st
->frag_data
);
1652 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
1654 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
1655 struct ts_config
*conf
,
1656 struct ts_state
*state
)
1658 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
1661 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
1663 skb_abort_seq_read(TS_SKB_CB(state
));
1667 * skb_find_text - Find a text pattern in skb data
1668 * @skb: the buffer to look in
1669 * @from: search offset
1671 * @config: textsearch configuration
1672 * @state: uninitialized textsearch state variable
1674 * Finds a pattern in the skb data according to the specified
1675 * textsearch configuration. Use textsearch_next() to retrieve
1676 * subsequent occurrences of the pattern. Returns the offset
1677 * to the first occurrence or UINT_MAX if no match was found.
1679 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
1680 unsigned int to
, struct ts_config
*config
,
1681 struct ts_state
*state
)
1683 config
->get_next_block
= skb_ts_get_next_block
;
1684 config
->finish
= skb_ts_finish
;
1686 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(state
));
1688 return textsearch_find(config
, state
);
1691 void __init
skb_init(void)
1693 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
1694 sizeof(struct sk_buff
),
1698 if (!skbuff_head_cache
)
1699 panic("cannot create skbuff cache");
1701 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
1702 (2*sizeof(struct sk_buff
)) +
1707 if (!skbuff_fclone_cache
)
1708 panic("cannot create skbuff cache");
1711 EXPORT_SYMBOL(___pskb_trim
);
1712 EXPORT_SYMBOL(__kfree_skb
);
1713 EXPORT_SYMBOL(__pskb_pull_tail
);
1714 EXPORT_SYMBOL(__alloc_skb
);
1715 EXPORT_SYMBOL(pskb_copy
);
1716 EXPORT_SYMBOL(pskb_expand_head
);
1717 EXPORT_SYMBOL(skb_checksum
);
1718 EXPORT_SYMBOL(skb_clone
);
1719 EXPORT_SYMBOL(skb_clone_fraglist
);
1720 EXPORT_SYMBOL(skb_copy
);
1721 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
1722 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
1723 EXPORT_SYMBOL(skb_copy_bits
);
1724 EXPORT_SYMBOL(skb_copy_expand
);
1725 EXPORT_SYMBOL(skb_over_panic
);
1726 EXPORT_SYMBOL(skb_pad
);
1727 EXPORT_SYMBOL(skb_realloc_headroom
);
1728 EXPORT_SYMBOL(skb_under_panic
);
1729 EXPORT_SYMBOL(skb_dequeue
);
1730 EXPORT_SYMBOL(skb_dequeue_tail
);
1731 EXPORT_SYMBOL(skb_insert
);
1732 EXPORT_SYMBOL(skb_queue_purge
);
1733 EXPORT_SYMBOL(skb_queue_head
);
1734 EXPORT_SYMBOL(skb_queue_tail
);
1735 EXPORT_SYMBOL(skb_unlink
);
1736 EXPORT_SYMBOL(skb_append
);
1737 EXPORT_SYMBOL(skb_split
);
1738 EXPORT_SYMBOL(skb_prepare_seq_read
);
1739 EXPORT_SYMBOL(skb_seq_read
);
1740 EXPORT_SYMBOL(skb_abort_seq_read
);
1741 EXPORT_SYMBOL(skb_find_text
);