2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
34 #include "transaction.h"
35 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "async-thread.h"
41 #include "free-space-cache.h"
43 static struct extent_io_ops btree_extent_io_ops
;
44 static void end_workqueue_fn(struct btrfs_work
*work
);
45 static void free_fs_root(struct btrfs_root
*root
);
48 * end_io_wq structs are used to do processing in task context when an IO is
49 * complete. This is used during reads to verify checksums, and it is used
50 * by writes to insert metadata for new file extents after IO is complete.
56 struct btrfs_fs_info
*info
;
59 struct list_head list
;
60 struct btrfs_work work
;
64 * async submit bios are used to offload expensive checksumming
65 * onto the worker threads. They checksum file and metadata bios
66 * just before they are sent down the IO stack.
68 struct async_submit_bio
{
71 struct list_head list
;
72 extent_submit_bio_hook_t
*submit_bio_start
;
73 extent_submit_bio_hook_t
*submit_bio_done
;
76 unsigned long bio_flags
;
77 struct btrfs_work work
;
80 /* These are used to set the lockdep class on the extent buffer locks.
81 * The class is set by the readpage_end_io_hook after the buffer has
82 * passed csum validation but before the pages are unlocked.
84 * The lockdep class is also set by btrfs_init_new_buffer on freshly
87 * The class is based on the level in the tree block, which allows lockdep
88 * to know that lower nodes nest inside the locks of higher nodes.
90 * We also add a check to make sure the highest level of the tree is
91 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
92 * code needs update as well.
94 #ifdef CONFIG_DEBUG_LOCK_ALLOC
95 # if BTRFS_MAX_LEVEL != 8
98 static struct lock_class_key btrfs_eb_class
[BTRFS_MAX_LEVEL
+ 1];
99 static const char *btrfs_eb_name
[BTRFS_MAX_LEVEL
+ 1] = {
109 /* highest possible level */
115 * extents on the btree inode are pretty simple, there's one extent
116 * that covers the entire device
118 static struct extent_map
*btree_get_extent(struct inode
*inode
,
119 struct page
*page
, size_t page_offset
, u64 start
, u64 len
,
122 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
123 struct extent_map
*em
;
126 read_lock(&em_tree
->lock
);
127 em
= lookup_extent_mapping(em_tree
, start
, len
);
130 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
131 read_unlock(&em_tree
->lock
);
134 read_unlock(&em_tree
->lock
);
136 em
= alloc_extent_map(GFP_NOFS
);
138 em
= ERR_PTR(-ENOMEM
);
143 em
->block_len
= (u64
)-1;
145 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
147 write_lock(&em_tree
->lock
);
148 ret
= add_extent_mapping(em_tree
, em
);
149 if (ret
== -EEXIST
) {
150 u64 failed_start
= em
->start
;
151 u64 failed_len
= em
->len
;
154 em
= lookup_extent_mapping(em_tree
, start
, len
);
158 em
= lookup_extent_mapping(em_tree
, failed_start
,
166 write_unlock(&em_tree
->lock
);
174 u32
btrfs_csum_data(struct btrfs_root
*root
, char *data
, u32 seed
, size_t len
)
176 return crc32c(seed
, data
, len
);
179 void btrfs_csum_final(u32 crc
, char *result
)
181 *(__le32
*)result
= ~cpu_to_le32(crc
);
185 * compute the csum for a btree block, and either verify it or write it
186 * into the csum field of the block.
188 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
192 btrfs_super_csum_size(&root
->fs_info
->super_copy
);
195 unsigned long cur_len
;
196 unsigned long offset
= BTRFS_CSUM_SIZE
;
197 char *map_token
= NULL
;
199 unsigned long map_start
;
200 unsigned long map_len
;
203 unsigned long inline_result
;
205 len
= buf
->len
- offset
;
207 err
= map_private_extent_buffer(buf
, offset
, 32,
209 &map_start
, &map_len
, KM_USER0
);
212 cur_len
= min(len
, map_len
- (offset
- map_start
));
213 crc
= btrfs_csum_data(root
, kaddr
+ offset
- map_start
,
217 unmap_extent_buffer(buf
, map_token
, KM_USER0
);
219 if (csum_size
> sizeof(inline_result
)) {
220 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
224 result
= (char *)&inline_result
;
227 btrfs_csum_final(crc
, result
);
230 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
233 memcpy(&found
, result
, csum_size
);
235 read_extent_buffer(buf
, &val
, 0, csum_size
);
236 if (printk_ratelimit()) {
237 printk(KERN_INFO
"btrfs: %s checksum verify "
238 "failed on %llu wanted %X found %X "
240 root
->fs_info
->sb
->s_id
,
241 (unsigned long long)buf
->start
, val
, found
,
242 btrfs_header_level(buf
));
244 if (result
!= (char *)&inline_result
)
249 write_extent_buffer(buf
, result
, 0, csum_size
);
251 if (result
!= (char *)&inline_result
)
257 * we can't consider a given block up to date unless the transid of the
258 * block matches the transid in the parent node's pointer. This is how we
259 * detect blocks that either didn't get written at all or got written
260 * in the wrong place.
262 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
263 struct extent_buffer
*eb
, u64 parent_transid
)
265 struct extent_state
*cached_state
= NULL
;
268 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
271 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
272 0, &cached_state
, GFP_NOFS
);
273 if (extent_buffer_uptodate(io_tree
, eb
, cached_state
) &&
274 btrfs_header_generation(eb
) == parent_transid
) {
278 if (printk_ratelimit()) {
279 printk("parent transid verify failed on %llu wanted %llu "
281 (unsigned long long)eb
->start
,
282 (unsigned long long)parent_transid
,
283 (unsigned long long)btrfs_header_generation(eb
));
286 clear_extent_buffer_uptodate(io_tree
, eb
, &cached_state
);
288 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
289 &cached_state
, GFP_NOFS
);
294 * helper to read a given tree block, doing retries as required when
295 * the checksums don't match and we have alternate mirrors to try.
297 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
298 struct extent_buffer
*eb
,
299 u64 start
, u64 parent_transid
)
301 struct extent_io_tree
*io_tree
;
306 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
308 ret
= read_extent_buffer_pages(io_tree
, eb
, start
, 1,
309 btree_get_extent
, mirror_num
);
311 !verify_parent_transid(io_tree
, eb
, parent_transid
))
314 num_copies
= btrfs_num_copies(&root
->fs_info
->mapping_tree
,
320 if (mirror_num
> num_copies
)
327 * checksum a dirty tree block before IO. This has extra checks to make sure
328 * we only fill in the checksum field in the first page of a multi-page block
331 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
333 struct extent_io_tree
*tree
;
334 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
338 struct extent_buffer
*eb
;
341 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
343 if (page
->private == EXTENT_PAGE_PRIVATE
)
347 len
= page
->private >> 2;
350 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
351 ret
= btree_read_extent_buffer_pages(root
, eb
, start
+ PAGE_CACHE_SIZE
,
352 btrfs_header_generation(eb
));
354 found_start
= btrfs_header_bytenr(eb
);
355 if (found_start
!= start
) {
359 if (eb
->first_page
!= page
) {
363 if (!PageUptodate(page
)) {
367 found_level
= btrfs_header_level(eb
);
369 csum_tree_block(root
, eb
, 0);
371 free_extent_buffer(eb
);
376 static int check_tree_block_fsid(struct btrfs_root
*root
,
377 struct extent_buffer
*eb
)
379 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
380 u8 fsid
[BTRFS_UUID_SIZE
];
383 read_extent_buffer(eb
, fsid
, (unsigned long)btrfs_header_fsid(eb
),
386 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
390 fs_devices
= fs_devices
->seed
;
395 #ifdef CONFIG_DEBUG_LOCK_ALLOC
396 void btrfs_set_buffer_lockdep_class(struct extent_buffer
*eb
, int level
)
398 lockdep_set_class_and_name(&eb
->lock
,
399 &btrfs_eb_class
[level
],
400 btrfs_eb_name
[level
]);
404 static int btree_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
405 struct extent_state
*state
)
407 struct extent_io_tree
*tree
;
411 struct extent_buffer
*eb
;
412 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
415 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
416 if (page
->private == EXTENT_PAGE_PRIVATE
)
421 len
= page
->private >> 2;
424 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
426 found_start
= btrfs_header_bytenr(eb
);
427 if (found_start
!= start
) {
428 if (printk_ratelimit()) {
429 printk(KERN_INFO
"btrfs bad tree block start "
431 (unsigned long long)found_start
,
432 (unsigned long long)eb
->start
);
437 if (eb
->first_page
!= page
) {
438 printk(KERN_INFO
"btrfs bad first page %lu %lu\n",
439 eb
->first_page
->index
, page
->index
);
444 if (check_tree_block_fsid(root
, eb
)) {
445 if (printk_ratelimit()) {
446 printk(KERN_INFO
"btrfs bad fsid on block %llu\n",
447 (unsigned long long)eb
->start
);
452 found_level
= btrfs_header_level(eb
);
454 btrfs_set_buffer_lockdep_class(eb
, found_level
);
456 ret
= csum_tree_block(root
, eb
, 1);
460 end
= min_t(u64
, eb
->len
, PAGE_CACHE_SIZE
);
461 end
= eb
->start
+ end
- 1;
463 free_extent_buffer(eb
);
468 static void end_workqueue_bio(struct bio
*bio
, int err
)
470 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
471 struct btrfs_fs_info
*fs_info
;
473 fs_info
= end_io_wq
->info
;
474 end_io_wq
->error
= err
;
475 end_io_wq
->work
.func
= end_workqueue_fn
;
476 end_io_wq
->work
.flags
= 0;
478 if (bio
->bi_rw
& (1 << BIO_RW
)) {
479 if (end_io_wq
->metadata
)
480 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
483 btrfs_queue_worker(&fs_info
->endio_write_workers
,
486 if (end_io_wq
->metadata
)
487 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
490 btrfs_queue_worker(&fs_info
->endio_workers
,
495 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
498 struct end_io_wq
*end_io_wq
;
499 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
503 end_io_wq
->private = bio
->bi_private
;
504 end_io_wq
->end_io
= bio
->bi_end_io
;
505 end_io_wq
->info
= info
;
506 end_io_wq
->error
= 0;
507 end_io_wq
->bio
= bio
;
508 end_io_wq
->metadata
= metadata
;
510 bio
->bi_private
= end_io_wq
;
511 bio
->bi_end_io
= end_workqueue_bio
;
515 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
517 unsigned long limit
= min_t(unsigned long,
518 info
->workers
.max_workers
,
519 info
->fs_devices
->open_devices
);
523 int btrfs_congested_async(struct btrfs_fs_info
*info
, int iodone
)
525 return atomic_read(&info
->nr_async_bios
) >
526 btrfs_async_submit_limit(info
);
529 static void run_one_async_start(struct btrfs_work
*work
)
531 struct btrfs_fs_info
*fs_info
;
532 struct async_submit_bio
*async
;
534 async
= container_of(work
, struct async_submit_bio
, work
);
535 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
536 async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
537 async
->mirror_num
, async
->bio_flags
);
540 static void run_one_async_done(struct btrfs_work
*work
)
542 struct btrfs_fs_info
*fs_info
;
543 struct async_submit_bio
*async
;
546 async
= container_of(work
, struct async_submit_bio
, work
);
547 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
549 limit
= btrfs_async_submit_limit(fs_info
);
550 limit
= limit
* 2 / 3;
552 atomic_dec(&fs_info
->nr_async_submits
);
554 if (atomic_read(&fs_info
->nr_async_submits
) < limit
&&
555 waitqueue_active(&fs_info
->async_submit_wait
))
556 wake_up(&fs_info
->async_submit_wait
);
558 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
559 async
->mirror_num
, async
->bio_flags
);
562 static void run_one_async_free(struct btrfs_work
*work
)
564 struct async_submit_bio
*async
;
566 async
= container_of(work
, struct async_submit_bio
, work
);
570 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
571 int rw
, struct bio
*bio
, int mirror_num
,
572 unsigned long bio_flags
,
573 extent_submit_bio_hook_t
*submit_bio_start
,
574 extent_submit_bio_hook_t
*submit_bio_done
)
576 struct async_submit_bio
*async
;
578 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
582 async
->inode
= inode
;
585 async
->mirror_num
= mirror_num
;
586 async
->submit_bio_start
= submit_bio_start
;
587 async
->submit_bio_done
= submit_bio_done
;
589 async
->work
.func
= run_one_async_start
;
590 async
->work
.ordered_func
= run_one_async_done
;
591 async
->work
.ordered_free
= run_one_async_free
;
593 async
->work
.flags
= 0;
594 async
->bio_flags
= bio_flags
;
596 atomic_inc(&fs_info
->nr_async_submits
);
598 if (rw
& (1 << BIO_RW_SYNCIO
))
599 btrfs_set_work_high_prio(&async
->work
);
601 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
603 while (atomic_read(&fs_info
->async_submit_draining
) &&
604 atomic_read(&fs_info
->nr_async_submits
)) {
605 wait_event(fs_info
->async_submit_wait
,
606 (atomic_read(&fs_info
->nr_async_submits
) == 0));
612 static int btree_csum_one_bio(struct bio
*bio
)
614 struct bio_vec
*bvec
= bio
->bi_io_vec
;
616 struct btrfs_root
*root
;
618 WARN_ON(bio
->bi_vcnt
<= 0);
619 while (bio_index
< bio
->bi_vcnt
) {
620 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
621 csum_dirty_buffer(root
, bvec
->bv_page
);
628 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
629 struct bio
*bio
, int mirror_num
,
630 unsigned long bio_flags
)
633 * when we're called for a write, we're already in the async
634 * submission context. Just jump into btrfs_map_bio
636 btree_csum_one_bio(bio
);
640 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
641 int mirror_num
, unsigned long bio_flags
)
644 * when we're called for a write, we're already in the async
645 * submission context. Just jump into btrfs_map_bio
647 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
650 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
651 int mirror_num
, unsigned long bio_flags
)
655 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
659 if (!(rw
& (1 << BIO_RW
))) {
661 * called for a read, do the setup so that checksum validation
662 * can happen in the async kernel threads
664 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
669 * kthread helpers are used to submit writes so that checksumming
670 * can happen in parallel across all CPUs
672 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
673 inode
, rw
, bio
, mirror_num
, 0,
674 __btree_submit_bio_start
,
675 __btree_submit_bio_done
);
678 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
680 struct extent_io_tree
*tree
;
681 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
682 struct extent_buffer
*eb
;
685 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
686 if (!(current
->flags
& PF_MEMALLOC
)) {
687 return extent_write_full_page(tree
, page
,
688 btree_get_extent
, wbc
);
691 redirty_page_for_writepage(wbc
, page
);
692 eb
= btrfs_find_tree_block(root
, page_offset(page
),
696 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
698 spin_lock(&root
->fs_info
->delalloc_lock
);
699 root
->fs_info
->dirty_metadata_bytes
+= PAGE_CACHE_SIZE
;
700 spin_unlock(&root
->fs_info
->delalloc_lock
);
702 free_extent_buffer(eb
);
708 static int btree_writepages(struct address_space
*mapping
,
709 struct writeback_control
*wbc
)
711 struct extent_io_tree
*tree
;
712 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
713 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
714 struct btrfs_root
*root
= BTRFS_I(mapping
->host
)->root
;
716 unsigned long thresh
= 32 * 1024 * 1024;
718 if (wbc
->for_kupdate
)
721 /* this is a bit racy, but that's ok */
722 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
723 if (num_dirty
< thresh
)
726 return extent_writepages(tree
, mapping
, btree_get_extent
, wbc
);
729 static int btree_readpage(struct file
*file
, struct page
*page
)
731 struct extent_io_tree
*tree
;
732 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
733 return extent_read_full_page(tree
, page
, btree_get_extent
);
736 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
738 struct extent_io_tree
*tree
;
739 struct extent_map_tree
*map
;
742 if (PageWriteback(page
) || PageDirty(page
))
745 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
746 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
748 ret
= try_release_extent_state(map
, tree
, page
, gfp_flags
);
752 ret
= try_release_extent_buffer(tree
, page
);
754 ClearPagePrivate(page
);
755 set_page_private(page
, 0);
756 page_cache_release(page
);
762 static void btree_invalidatepage(struct page
*page
, unsigned long offset
)
764 struct extent_io_tree
*tree
;
765 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
766 extent_invalidatepage(tree
, page
, offset
);
767 btree_releasepage(page
, GFP_NOFS
);
768 if (PagePrivate(page
)) {
769 printk(KERN_WARNING
"btrfs warning page private not zero "
770 "on page %llu\n", (unsigned long long)page_offset(page
));
771 ClearPagePrivate(page
);
772 set_page_private(page
, 0);
773 page_cache_release(page
);
777 static const struct address_space_operations btree_aops
= {
778 .readpage
= btree_readpage
,
779 .writepage
= btree_writepage
,
780 .writepages
= btree_writepages
,
781 .releasepage
= btree_releasepage
,
782 .invalidatepage
= btree_invalidatepage
,
783 .sync_page
= block_sync_page
,
786 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
789 struct extent_buffer
*buf
= NULL
;
790 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
793 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
796 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
797 buf
, 0, 0, btree_get_extent
, 0);
798 free_extent_buffer(buf
);
802 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
803 u64 bytenr
, u32 blocksize
)
805 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
806 struct extent_buffer
*eb
;
807 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
808 bytenr
, blocksize
, GFP_NOFS
);
812 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
813 u64 bytenr
, u32 blocksize
)
815 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
816 struct extent_buffer
*eb
;
818 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
819 bytenr
, blocksize
, NULL
, GFP_NOFS
);
824 int btrfs_write_tree_block(struct extent_buffer
*buf
)
826 return filemap_fdatawrite_range(buf
->first_page
->mapping
, buf
->start
,
827 buf
->start
+ buf
->len
- 1);
830 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
832 return filemap_fdatawait_range(buf
->first_page
->mapping
,
833 buf
->start
, buf
->start
+ buf
->len
- 1);
836 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
837 u32 blocksize
, u64 parent_transid
)
839 struct extent_buffer
*buf
= NULL
;
840 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
841 struct extent_io_tree
*io_tree
;
844 io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
846 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
850 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
853 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
858 int clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
859 struct extent_buffer
*buf
)
861 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
862 if (btrfs_header_generation(buf
) ==
863 root
->fs_info
->running_transaction
->transid
) {
864 btrfs_assert_tree_locked(buf
);
866 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
867 spin_lock(&root
->fs_info
->delalloc_lock
);
868 if (root
->fs_info
->dirty_metadata_bytes
>= buf
->len
)
869 root
->fs_info
->dirty_metadata_bytes
-= buf
->len
;
872 spin_unlock(&root
->fs_info
->delalloc_lock
);
875 /* ugh, clear_extent_buffer_dirty needs to lock the page */
876 btrfs_set_lock_blocking(buf
);
877 clear_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
883 static int __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
884 u32 stripesize
, struct btrfs_root
*root
,
885 struct btrfs_fs_info
*fs_info
,
889 root
->commit_root
= NULL
;
890 root
->sectorsize
= sectorsize
;
891 root
->nodesize
= nodesize
;
892 root
->leafsize
= leafsize
;
893 root
->stripesize
= stripesize
;
895 root
->track_dirty
= 0;
897 root
->clean_orphans
= 0;
899 root
->fs_info
= fs_info
;
900 root
->objectid
= objectid
;
901 root
->last_trans
= 0;
902 root
->highest_objectid
= 0;
905 root
->inode_tree
= RB_ROOT
;
907 INIT_LIST_HEAD(&root
->dirty_list
);
908 INIT_LIST_HEAD(&root
->orphan_list
);
909 INIT_LIST_HEAD(&root
->root_list
);
910 spin_lock_init(&root
->node_lock
);
911 spin_lock_init(&root
->list_lock
);
912 spin_lock_init(&root
->inode_lock
);
913 mutex_init(&root
->objectid_mutex
);
914 mutex_init(&root
->log_mutex
);
915 init_waitqueue_head(&root
->log_writer_wait
);
916 init_waitqueue_head(&root
->log_commit_wait
[0]);
917 init_waitqueue_head(&root
->log_commit_wait
[1]);
918 atomic_set(&root
->log_commit
[0], 0);
919 atomic_set(&root
->log_commit
[1], 0);
920 atomic_set(&root
->log_writers
, 0);
922 root
->log_transid
= 0;
923 root
->last_log_commit
= 0;
924 extent_io_tree_init(&root
->dirty_log_pages
,
925 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
927 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
928 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
929 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
930 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
931 root
->defrag_trans_start
= fs_info
->generation
;
932 init_completion(&root
->kobj_unregister
);
933 root
->defrag_running
= 0;
934 root
->root_key
.objectid
= objectid
;
935 root
->anon_super
.s_root
= NULL
;
936 root
->anon_super
.s_dev
= 0;
937 INIT_LIST_HEAD(&root
->anon_super
.s_list
);
938 INIT_LIST_HEAD(&root
->anon_super
.s_instances
);
939 init_rwsem(&root
->anon_super
.s_umount
);
944 static int find_and_setup_root(struct btrfs_root
*tree_root
,
945 struct btrfs_fs_info
*fs_info
,
947 struct btrfs_root
*root
)
953 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
954 tree_root
->sectorsize
, tree_root
->stripesize
,
955 root
, fs_info
, objectid
);
956 ret
= btrfs_find_last_root(tree_root
, objectid
,
957 &root
->root_item
, &root
->root_key
);
962 generation
= btrfs_root_generation(&root
->root_item
);
963 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
964 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
965 blocksize
, generation
);
967 root
->commit_root
= btrfs_root_node(root
);
971 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
972 struct btrfs_fs_info
*fs_info
)
974 struct extent_buffer
*eb
;
975 struct btrfs_root
*log_root_tree
= fs_info
->log_root_tree
;
984 ret
= find_first_extent_bit(&log_root_tree
->dirty_log_pages
,
985 0, &start
, &end
, EXTENT_DIRTY
| EXTENT_NEW
);
989 clear_extent_bits(&log_root_tree
->dirty_log_pages
, start
, end
,
990 EXTENT_DIRTY
| EXTENT_NEW
, GFP_NOFS
);
992 eb
= fs_info
->log_root_tree
->node
;
994 WARN_ON(btrfs_header_level(eb
) != 0);
995 WARN_ON(btrfs_header_nritems(eb
) != 0);
997 ret
= btrfs_free_reserved_extent(fs_info
->tree_root
,
1001 free_extent_buffer(eb
);
1002 kfree(fs_info
->log_root_tree
);
1003 fs_info
->log_root_tree
= NULL
;
1007 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1008 struct btrfs_fs_info
*fs_info
)
1010 struct btrfs_root
*root
;
1011 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1012 struct extent_buffer
*leaf
;
1014 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1016 return ERR_PTR(-ENOMEM
);
1018 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1019 tree_root
->sectorsize
, tree_root
->stripesize
,
1020 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1022 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1023 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1024 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1026 * log trees do not get reference counted because they go away
1027 * before a real commit is actually done. They do store pointers
1028 * to file data extents, and those reference counts still get
1029 * updated (along with back refs to the log tree).
1033 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
1034 BTRFS_TREE_LOG_OBJECTID
, NULL
, 0, 0, 0);
1037 return ERR_CAST(leaf
);
1040 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1041 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1042 btrfs_set_header_generation(leaf
, trans
->transid
);
1043 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1044 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1047 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1048 (unsigned long)btrfs_header_fsid(root
->node
),
1050 btrfs_mark_buffer_dirty(root
->node
);
1051 btrfs_tree_unlock(root
->node
);
1055 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1056 struct btrfs_fs_info
*fs_info
)
1058 struct btrfs_root
*log_root
;
1060 log_root
= alloc_log_tree(trans
, fs_info
);
1061 if (IS_ERR(log_root
))
1062 return PTR_ERR(log_root
);
1063 WARN_ON(fs_info
->log_root_tree
);
1064 fs_info
->log_root_tree
= log_root
;
1068 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1069 struct btrfs_root
*root
)
1071 struct btrfs_root
*log_root
;
1072 struct btrfs_inode_item
*inode_item
;
1074 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1075 if (IS_ERR(log_root
))
1076 return PTR_ERR(log_root
);
1078 log_root
->last_trans
= trans
->transid
;
1079 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1081 inode_item
= &log_root
->root_item
.inode
;
1082 inode_item
->generation
= cpu_to_le64(1);
1083 inode_item
->size
= cpu_to_le64(3);
1084 inode_item
->nlink
= cpu_to_le32(1);
1085 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
1086 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
1088 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1090 WARN_ON(root
->log_root
);
1091 root
->log_root
= log_root
;
1092 root
->log_transid
= 0;
1093 root
->last_log_commit
= 0;
1097 struct btrfs_root
*btrfs_read_fs_root_no_radix(struct btrfs_root
*tree_root
,
1098 struct btrfs_key
*location
)
1100 struct btrfs_root
*root
;
1101 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1102 struct btrfs_path
*path
;
1103 struct extent_buffer
*l
;
1108 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1110 return ERR_PTR(-ENOMEM
);
1111 if (location
->offset
== (u64
)-1) {
1112 ret
= find_and_setup_root(tree_root
, fs_info
,
1113 location
->objectid
, root
);
1116 return ERR_PTR(ret
);
1121 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1122 tree_root
->sectorsize
, tree_root
->stripesize
,
1123 root
, fs_info
, location
->objectid
);
1125 path
= btrfs_alloc_path();
1127 ret
= btrfs_search_slot(NULL
, tree_root
, location
, path
, 0, 0);
1130 read_extent_buffer(l
, &root
->root_item
,
1131 btrfs_item_ptr_offset(l
, path
->slots
[0]),
1132 sizeof(root
->root_item
));
1133 memcpy(&root
->root_key
, location
, sizeof(*location
));
1135 btrfs_free_path(path
);
1139 return ERR_PTR(ret
);
1142 generation
= btrfs_root_generation(&root
->root_item
);
1143 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1144 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1145 blocksize
, generation
);
1146 root
->commit_root
= btrfs_root_node(root
);
1147 BUG_ON(!root
->node
);
1149 if (location
->objectid
!= BTRFS_TREE_LOG_OBJECTID
)
1155 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1158 struct btrfs_root
*root
;
1160 if (root_objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1161 return fs_info
->tree_root
;
1162 if (root_objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1163 return fs_info
->extent_root
;
1165 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1166 (unsigned long)root_objectid
);
1170 struct btrfs_root
*btrfs_read_fs_root_no_name(struct btrfs_fs_info
*fs_info
,
1171 struct btrfs_key
*location
)
1173 struct btrfs_root
*root
;
1176 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1177 return fs_info
->tree_root
;
1178 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1179 return fs_info
->extent_root
;
1180 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1181 return fs_info
->chunk_root
;
1182 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1183 return fs_info
->dev_root
;
1184 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1185 return fs_info
->csum_root
;
1187 spin_lock(&fs_info
->fs_roots_radix_lock
);
1188 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1189 (unsigned long)location
->objectid
);
1190 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1194 ret
= btrfs_find_orphan_item(fs_info
->tree_root
, location
->objectid
);
1198 return ERR_PTR(ret
);
1200 root
= btrfs_read_fs_root_no_radix(fs_info
->tree_root
, location
);
1204 WARN_ON(btrfs_root_refs(&root
->root_item
) == 0);
1205 set_anon_super(&root
->anon_super
, NULL
);
1207 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
1211 spin_lock(&fs_info
->fs_roots_radix_lock
);
1212 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1213 (unsigned long)root
->root_key
.objectid
,
1217 root
->clean_orphans
= 1;
1219 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1220 radix_tree_preload_end();
1222 if (ret
== -EEXIST
) {
1229 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
1230 root
->root_key
.objectid
);
1235 return ERR_PTR(ret
);
1238 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_fs_info
*fs_info
,
1239 struct btrfs_key
*location
,
1240 const char *name
, int namelen
)
1242 return btrfs_read_fs_root_no_name(fs_info
, location
);
1244 struct btrfs_root
*root
;
1247 root
= btrfs_read_fs_root_no_name(fs_info
, location
);
1254 ret
= btrfs_set_root_name(root
, name
, namelen
);
1256 free_extent_buffer(root
->node
);
1258 return ERR_PTR(ret
);
1261 ret
= btrfs_sysfs_add_root(root
);
1263 free_extent_buffer(root
->node
);
1266 return ERR_PTR(ret
);
1273 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1275 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1277 struct btrfs_device
*device
;
1278 struct backing_dev_info
*bdi
;
1280 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1283 bdi
= blk_get_backing_dev_info(device
->bdev
);
1284 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1293 * this unplugs every device on the box, and it is only used when page
1296 static void __unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1298 struct btrfs_device
*device
;
1299 struct btrfs_fs_info
*info
;
1301 info
= (struct btrfs_fs_info
*)bdi
->unplug_io_data
;
1302 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1306 bdi
= blk_get_backing_dev_info(device
->bdev
);
1307 if (bdi
->unplug_io_fn
)
1308 bdi
->unplug_io_fn(bdi
, page
);
1312 static void btrfs_unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1314 struct inode
*inode
;
1315 struct extent_map_tree
*em_tree
;
1316 struct extent_map
*em
;
1317 struct address_space
*mapping
;
1320 /* the generic O_DIRECT read code does this */
1322 __unplug_io_fn(bdi
, page
);
1327 * page->mapping may change at any time. Get a consistent copy
1328 * and use that for everything below
1331 mapping
= page
->mapping
;
1335 inode
= mapping
->host
;
1338 * don't do the expensive searching for a small number of
1341 if (BTRFS_I(inode
)->root
->fs_info
->fs_devices
->open_devices
<= 2) {
1342 __unplug_io_fn(bdi
, page
);
1346 offset
= page_offset(page
);
1348 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1349 read_lock(&em_tree
->lock
);
1350 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_CACHE_SIZE
);
1351 read_unlock(&em_tree
->lock
);
1353 __unplug_io_fn(bdi
, page
);
1357 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1358 free_extent_map(em
);
1359 __unplug_io_fn(bdi
, page
);
1362 offset
= offset
- em
->start
;
1363 btrfs_unplug_page(&BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1364 em
->block_start
+ offset
, page
);
1365 free_extent_map(em
);
1369 * If this fails, caller must call bdi_destroy() to get rid of the
1372 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1376 bdi
->capabilities
= BDI_CAP_MAP_COPY
;
1377 err
= bdi_setup_and_register(bdi
, "btrfs", BDI_CAP_MAP_COPY
);
1381 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1382 bdi
->unplug_io_fn
= btrfs_unplug_io_fn
;
1383 bdi
->unplug_io_data
= info
;
1384 bdi
->congested_fn
= btrfs_congested_fn
;
1385 bdi
->congested_data
= info
;
1389 static int bio_ready_for_csum(struct bio
*bio
)
1395 struct extent_io_tree
*io_tree
= NULL
;
1396 struct btrfs_fs_info
*info
= NULL
;
1397 struct bio_vec
*bvec
;
1401 bio_for_each_segment(bvec
, bio
, i
) {
1402 page
= bvec
->bv_page
;
1403 if (page
->private == EXTENT_PAGE_PRIVATE
) {
1404 length
+= bvec
->bv_len
;
1407 if (!page
->private) {
1408 length
+= bvec
->bv_len
;
1411 length
= bvec
->bv_len
;
1412 buf_len
= page
->private >> 2;
1413 start
= page_offset(page
) + bvec
->bv_offset
;
1414 io_tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1415 info
= BTRFS_I(page
->mapping
->host
)->root
->fs_info
;
1417 /* are we fully contained in this bio? */
1418 if (buf_len
<= length
)
1421 ret
= extent_range_uptodate(io_tree
, start
+ length
,
1422 start
+ buf_len
- 1);
1427 * called by the kthread helper functions to finally call the bio end_io
1428 * functions. This is where read checksum verification actually happens
1430 static void end_workqueue_fn(struct btrfs_work
*work
)
1433 struct end_io_wq
*end_io_wq
;
1434 struct btrfs_fs_info
*fs_info
;
1437 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1438 bio
= end_io_wq
->bio
;
1439 fs_info
= end_io_wq
->info
;
1441 /* metadata bio reads are special because the whole tree block must
1442 * be checksummed at once. This makes sure the entire block is in
1443 * ram and up to date before trying to verify things. For
1444 * blocksize <= pagesize, it is basically a noop
1446 if (!(bio
->bi_rw
& (1 << BIO_RW
)) && end_io_wq
->metadata
&&
1447 !bio_ready_for_csum(bio
)) {
1448 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
1452 error
= end_io_wq
->error
;
1453 bio
->bi_private
= end_io_wq
->private;
1454 bio
->bi_end_io
= end_io_wq
->end_io
;
1456 bio_endio(bio
, error
);
1459 static int cleaner_kthread(void *arg
)
1461 struct btrfs_root
*root
= arg
;
1465 if (root
->fs_info
->closing
)
1468 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1470 if (!(root
->fs_info
->sb
->s_flags
& MS_RDONLY
) &&
1471 mutex_trylock(&root
->fs_info
->cleaner_mutex
)) {
1472 btrfs_run_delayed_iputs(root
);
1473 btrfs_clean_old_snapshots(root
);
1474 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1477 if (freezing(current
)) {
1481 if (root
->fs_info
->closing
)
1483 set_current_state(TASK_INTERRUPTIBLE
);
1485 __set_current_state(TASK_RUNNING
);
1487 } while (!kthread_should_stop());
1491 static int transaction_kthread(void *arg
)
1493 struct btrfs_root
*root
= arg
;
1494 struct btrfs_trans_handle
*trans
;
1495 struct btrfs_transaction
*cur
;
1497 unsigned long delay
;
1502 if (root
->fs_info
->closing
)
1506 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1507 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1509 mutex_lock(&root
->fs_info
->trans_mutex
);
1510 cur
= root
->fs_info
->running_transaction
;
1512 mutex_unlock(&root
->fs_info
->trans_mutex
);
1516 now
= get_seconds();
1517 if (now
< cur
->start_time
|| now
- cur
->start_time
< 30) {
1518 mutex_unlock(&root
->fs_info
->trans_mutex
);
1522 mutex_unlock(&root
->fs_info
->trans_mutex
);
1523 trans
= btrfs_start_transaction(root
, 1);
1524 ret
= btrfs_commit_transaction(trans
, root
);
1527 wake_up_process(root
->fs_info
->cleaner_kthread
);
1528 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1530 if (freezing(current
)) {
1533 if (root
->fs_info
->closing
)
1535 set_current_state(TASK_INTERRUPTIBLE
);
1536 schedule_timeout(delay
);
1537 __set_current_state(TASK_RUNNING
);
1539 } while (!kthread_should_stop());
1543 struct btrfs_root
*open_ctree(struct super_block
*sb
,
1544 struct btrfs_fs_devices
*fs_devices
,
1554 struct btrfs_key location
;
1555 struct buffer_head
*bh
;
1556 struct btrfs_root
*extent_root
= kzalloc(sizeof(struct btrfs_root
),
1558 struct btrfs_root
*csum_root
= kzalloc(sizeof(struct btrfs_root
),
1560 struct btrfs_root
*tree_root
= kzalloc(sizeof(struct btrfs_root
),
1562 struct btrfs_fs_info
*fs_info
= kzalloc(sizeof(*fs_info
),
1564 struct btrfs_root
*chunk_root
= kzalloc(sizeof(struct btrfs_root
),
1566 struct btrfs_root
*dev_root
= kzalloc(sizeof(struct btrfs_root
),
1568 struct btrfs_root
*log_tree_root
;
1573 struct btrfs_super_block
*disk_super
;
1575 if (!extent_root
|| !tree_root
|| !fs_info
||
1576 !chunk_root
|| !dev_root
|| !csum_root
) {
1581 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
1587 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
1593 fs_info
->btree_inode
= new_inode(sb
);
1594 if (!fs_info
->btree_inode
) {
1599 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
1600 INIT_LIST_HEAD(&fs_info
->trans_list
);
1601 INIT_LIST_HEAD(&fs_info
->dead_roots
);
1602 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
1603 INIT_LIST_HEAD(&fs_info
->hashers
);
1604 INIT_LIST_HEAD(&fs_info
->delalloc_inodes
);
1605 INIT_LIST_HEAD(&fs_info
->ordered_operations
);
1606 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
1607 spin_lock_init(&fs_info
->delalloc_lock
);
1608 spin_lock_init(&fs_info
->new_trans_lock
);
1609 spin_lock_init(&fs_info
->ref_cache_lock
);
1610 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
1611 spin_lock_init(&fs_info
->delayed_iput_lock
);
1613 init_completion(&fs_info
->kobj_unregister
);
1614 fs_info
->tree_root
= tree_root
;
1615 fs_info
->extent_root
= extent_root
;
1616 fs_info
->csum_root
= csum_root
;
1617 fs_info
->chunk_root
= chunk_root
;
1618 fs_info
->dev_root
= dev_root
;
1619 fs_info
->fs_devices
= fs_devices
;
1620 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
1621 INIT_LIST_HEAD(&fs_info
->space_info
);
1622 btrfs_mapping_init(&fs_info
->mapping_tree
);
1623 atomic_set(&fs_info
->nr_async_submits
, 0);
1624 atomic_set(&fs_info
->async_delalloc_pages
, 0);
1625 atomic_set(&fs_info
->async_submit_draining
, 0);
1626 atomic_set(&fs_info
->nr_async_bios
, 0);
1628 fs_info
->max_inline
= 8192 * 1024;
1629 fs_info
->metadata_ratio
= 0;
1631 fs_info
->thread_pool_size
= min_t(unsigned long,
1632 num_online_cpus() + 2, 8);
1634 INIT_LIST_HEAD(&fs_info
->ordered_extents
);
1635 spin_lock_init(&fs_info
->ordered_extent_lock
);
1637 sb
->s_blocksize
= 4096;
1638 sb
->s_blocksize_bits
= blksize_bits(4096);
1639 sb
->s_bdi
= &fs_info
->bdi
;
1641 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
1642 fs_info
->btree_inode
->i_nlink
= 1;
1644 * we set the i_size on the btree inode to the max possible int.
1645 * the real end of the address space is determined by all of
1646 * the devices in the system
1648 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
1649 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
1650 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
1652 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
1653 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
1654 fs_info
->btree_inode
->i_mapping
,
1656 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
,
1659 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
1661 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
1662 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
1663 sizeof(struct btrfs_key
));
1664 BTRFS_I(fs_info
->btree_inode
)->dummy_inode
= 1;
1665 insert_inode_hash(fs_info
->btree_inode
);
1667 spin_lock_init(&fs_info
->block_group_cache_lock
);
1668 fs_info
->block_group_cache_tree
= RB_ROOT
;
1670 extent_io_tree_init(&fs_info
->freed_extents
[0],
1671 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1672 extent_io_tree_init(&fs_info
->freed_extents
[1],
1673 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1674 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
1675 fs_info
->do_barriers
= 1;
1678 mutex_init(&fs_info
->trans_mutex
);
1679 mutex_init(&fs_info
->ordered_operations_mutex
);
1680 mutex_init(&fs_info
->tree_log_mutex
);
1681 mutex_init(&fs_info
->chunk_mutex
);
1682 mutex_init(&fs_info
->transaction_kthread_mutex
);
1683 mutex_init(&fs_info
->cleaner_mutex
);
1684 mutex_init(&fs_info
->volume_mutex
);
1685 init_rwsem(&fs_info
->extent_commit_sem
);
1686 init_rwsem(&fs_info
->cleanup_work_sem
);
1687 init_rwsem(&fs_info
->subvol_sem
);
1689 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
1690 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
1692 init_waitqueue_head(&fs_info
->transaction_throttle
);
1693 init_waitqueue_head(&fs_info
->transaction_wait
);
1694 init_waitqueue_head(&fs_info
->async_submit_wait
);
1696 __setup_root(4096, 4096, 4096, 4096, tree_root
,
1697 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1700 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
1704 memcpy(&fs_info
->super_copy
, bh
->b_data
, sizeof(fs_info
->super_copy
));
1705 memcpy(&fs_info
->super_for_commit
, &fs_info
->super_copy
,
1706 sizeof(fs_info
->super_for_commit
));
1709 memcpy(fs_info
->fsid
, fs_info
->super_copy
.fsid
, BTRFS_FSID_SIZE
);
1711 disk_super
= &fs_info
->super_copy
;
1712 if (!btrfs_super_root(disk_super
))
1715 ret
= btrfs_parse_options(tree_root
, options
);
1721 features
= btrfs_super_incompat_flags(disk_super
) &
1722 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
1724 printk(KERN_ERR
"BTRFS: couldn't mount because of "
1725 "unsupported optional features (%Lx).\n",
1726 (unsigned long long)features
);
1731 features
= btrfs_super_incompat_flags(disk_super
);
1732 if (!(features
& BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
)) {
1733 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
1734 btrfs_set_super_incompat_flags(disk_super
, features
);
1737 features
= btrfs_super_compat_ro_flags(disk_super
) &
1738 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
1739 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
1740 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
1741 "unsupported option features (%Lx).\n",
1742 (unsigned long long)features
);
1747 btrfs_init_workers(&fs_info
->generic_worker
,
1748 "genwork", 1, NULL
);
1750 btrfs_init_workers(&fs_info
->workers
, "worker",
1751 fs_info
->thread_pool_size
,
1752 &fs_info
->generic_worker
);
1754 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
1755 fs_info
->thread_pool_size
,
1756 &fs_info
->generic_worker
);
1758 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
1759 min_t(u64
, fs_devices
->num_devices
,
1760 fs_info
->thread_pool_size
),
1761 &fs_info
->generic_worker
);
1762 btrfs_init_workers(&fs_info
->enospc_workers
, "enospc",
1763 fs_info
->thread_pool_size
,
1764 &fs_info
->generic_worker
);
1766 /* a higher idle thresh on the submit workers makes it much more
1767 * likely that bios will be send down in a sane order to the
1770 fs_info
->submit_workers
.idle_thresh
= 64;
1772 fs_info
->workers
.idle_thresh
= 16;
1773 fs_info
->workers
.ordered
= 1;
1775 fs_info
->delalloc_workers
.idle_thresh
= 2;
1776 fs_info
->delalloc_workers
.ordered
= 1;
1778 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1,
1779 &fs_info
->generic_worker
);
1780 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
1781 fs_info
->thread_pool_size
,
1782 &fs_info
->generic_worker
);
1783 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
1784 fs_info
->thread_pool_size
,
1785 &fs_info
->generic_worker
);
1786 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
1787 "endio-meta-write", fs_info
->thread_pool_size
,
1788 &fs_info
->generic_worker
);
1789 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
1790 fs_info
->thread_pool_size
,
1791 &fs_info
->generic_worker
);
1794 * endios are largely parallel and should have a very
1797 fs_info
->endio_workers
.idle_thresh
= 4;
1798 fs_info
->endio_meta_workers
.idle_thresh
= 4;
1800 fs_info
->endio_write_workers
.idle_thresh
= 2;
1801 fs_info
->endio_meta_write_workers
.idle_thresh
= 2;
1803 btrfs_start_workers(&fs_info
->workers
, 1);
1804 btrfs_start_workers(&fs_info
->generic_worker
, 1);
1805 btrfs_start_workers(&fs_info
->submit_workers
, 1);
1806 btrfs_start_workers(&fs_info
->delalloc_workers
, 1);
1807 btrfs_start_workers(&fs_info
->fixup_workers
, 1);
1808 btrfs_start_workers(&fs_info
->endio_workers
, 1);
1809 btrfs_start_workers(&fs_info
->endio_meta_workers
, 1);
1810 btrfs_start_workers(&fs_info
->endio_meta_write_workers
, 1);
1811 btrfs_start_workers(&fs_info
->endio_write_workers
, 1);
1812 btrfs_start_workers(&fs_info
->enospc_workers
, 1);
1814 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
1815 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
1816 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
1818 nodesize
= btrfs_super_nodesize(disk_super
);
1819 leafsize
= btrfs_super_leafsize(disk_super
);
1820 sectorsize
= btrfs_super_sectorsize(disk_super
);
1821 stripesize
= btrfs_super_stripesize(disk_super
);
1822 tree_root
->nodesize
= nodesize
;
1823 tree_root
->leafsize
= leafsize
;
1824 tree_root
->sectorsize
= sectorsize
;
1825 tree_root
->stripesize
= stripesize
;
1827 sb
->s_blocksize
= sectorsize
;
1828 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
1830 if (strncmp((char *)(&disk_super
->magic
), BTRFS_MAGIC
,
1831 sizeof(disk_super
->magic
))) {
1832 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
1833 goto fail_sb_buffer
;
1836 mutex_lock(&fs_info
->chunk_mutex
);
1837 ret
= btrfs_read_sys_array(tree_root
);
1838 mutex_unlock(&fs_info
->chunk_mutex
);
1840 printk(KERN_WARNING
"btrfs: failed to read the system "
1841 "array on %s\n", sb
->s_id
);
1842 goto fail_sb_buffer
;
1845 blocksize
= btrfs_level_size(tree_root
,
1846 btrfs_super_chunk_root_level(disk_super
));
1847 generation
= btrfs_super_chunk_root_generation(disk_super
);
1849 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1850 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
1852 chunk_root
->node
= read_tree_block(chunk_root
,
1853 btrfs_super_chunk_root(disk_super
),
1854 blocksize
, generation
);
1855 BUG_ON(!chunk_root
->node
);
1856 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &chunk_root
->node
->bflags
)) {
1857 printk(KERN_WARNING
"btrfs: failed to read chunk root on %s\n",
1859 goto fail_chunk_root
;
1861 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
1862 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
1864 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
1865 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root
->node
),
1868 mutex_lock(&fs_info
->chunk_mutex
);
1869 ret
= btrfs_read_chunk_tree(chunk_root
);
1870 mutex_unlock(&fs_info
->chunk_mutex
);
1872 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
1874 goto fail_chunk_root
;
1877 btrfs_close_extra_devices(fs_devices
);
1879 blocksize
= btrfs_level_size(tree_root
,
1880 btrfs_super_root_level(disk_super
));
1881 generation
= btrfs_super_generation(disk_super
);
1883 tree_root
->node
= read_tree_block(tree_root
,
1884 btrfs_super_root(disk_super
),
1885 blocksize
, generation
);
1886 if (!tree_root
->node
)
1887 goto fail_chunk_root
;
1888 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &tree_root
->node
->bflags
)) {
1889 printk(KERN_WARNING
"btrfs: failed to read tree root on %s\n",
1891 goto fail_tree_root
;
1893 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
1894 tree_root
->commit_root
= btrfs_root_node(tree_root
);
1896 ret
= find_and_setup_root(tree_root
, fs_info
,
1897 BTRFS_EXTENT_TREE_OBJECTID
, extent_root
);
1899 goto fail_tree_root
;
1900 extent_root
->track_dirty
= 1;
1902 ret
= find_and_setup_root(tree_root
, fs_info
,
1903 BTRFS_DEV_TREE_OBJECTID
, dev_root
);
1905 goto fail_extent_root
;
1906 dev_root
->track_dirty
= 1;
1908 ret
= find_and_setup_root(tree_root
, fs_info
,
1909 BTRFS_CSUM_TREE_OBJECTID
, csum_root
);
1913 csum_root
->track_dirty
= 1;
1915 ret
= btrfs_read_block_groups(extent_root
);
1917 printk(KERN_ERR
"Failed to read block groups: %d\n", ret
);
1918 goto fail_block_groups
;
1921 fs_info
->generation
= generation
;
1922 fs_info
->last_trans_committed
= generation
;
1923 fs_info
->data_alloc_profile
= (u64
)-1;
1924 fs_info
->metadata_alloc_profile
= (u64
)-1;
1925 fs_info
->system_alloc_profile
= fs_info
->metadata_alloc_profile
;
1926 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
1928 if (IS_ERR(fs_info
->cleaner_kthread
))
1929 goto fail_block_groups
;
1931 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
1933 "btrfs-transaction");
1934 if (IS_ERR(fs_info
->transaction_kthread
))
1937 if (!btrfs_test_opt(tree_root
, SSD
) &&
1938 !btrfs_test_opt(tree_root
, NOSSD
) &&
1939 !fs_info
->fs_devices
->rotating
) {
1940 printk(KERN_INFO
"Btrfs detected SSD devices, enabling SSD "
1942 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
1945 if (btrfs_super_log_root(disk_super
) != 0) {
1946 u64 bytenr
= btrfs_super_log_root(disk_super
);
1948 if (fs_devices
->rw_devices
== 0) {
1949 printk(KERN_WARNING
"Btrfs log replay required "
1952 goto fail_trans_kthread
;
1955 btrfs_level_size(tree_root
,
1956 btrfs_super_log_root_level(disk_super
));
1958 log_tree_root
= kzalloc(sizeof(struct btrfs_root
),
1961 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1962 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1964 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
1967 ret
= btrfs_recover_log_trees(log_tree_root
);
1970 if (sb
->s_flags
& MS_RDONLY
) {
1971 ret
= btrfs_commit_super(tree_root
);
1976 ret
= btrfs_find_orphan_roots(tree_root
);
1979 if (!(sb
->s_flags
& MS_RDONLY
)) {
1980 ret
= btrfs_recover_relocation(tree_root
);
1983 "btrfs: failed to recover relocation\n");
1985 goto fail_trans_kthread
;
1989 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
1990 location
.type
= BTRFS_ROOT_ITEM_KEY
;
1991 location
.offset
= (u64
)-1;
1993 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
1994 if (!fs_info
->fs_root
)
1995 goto fail_trans_kthread
;
1997 if (!(sb
->s_flags
& MS_RDONLY
)) {
1998 down_read(&fs_info
->cleanup_work_sem
);
1999 btrfs_orphan_cleanup(fs_info
->fs_root
);
2000 up_read(&fs_info
->cleanup_work_sem
);
2006 kthread_stop(fs_info
->transaction_kthread
);
2008 kthread_stop(fs_info
->cleaner_kthread
);
2011 * make sure we're done with the btree inode before we stop our
2014 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
2015 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2018 btrfs_free_block_groups(fs_info
);
2019 free_extent_buffer(csum_root
->node
);
2020 free_extent_buffer(csum_root
->commit_root
);
2022 free_extent_buffer(dev_root
->node
);
2023 free_extent_buffer(dev_root
->commit_root
);
2025 free_extent_buffer(extent_root
->node
);
2026 free_extent_buffer(extent_root
->commit_root
);
2028 free_extent_buffer(tree_root
->node
);
2029 free_extent_buffer(tree_root
->commit_root
);
2031 free_extent_buffer(chunk_root
->node
);
2032 free_extent_buffer(chunk_root
->commit_root
);
2034 btrfs_stop_workers(&fs_info
->generic_worker
);
2035 btrfs_stop_workers(&fs_info
->fixup_workers
);
2036 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2037 btrfs_stop_workers(&fs_info
->workers
);
2038 btrfs_stop_workers(&fs_info
->endio_workers
);
2039 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2040 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2041 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2042 btrfs_stop_workers(&fs_info
->submit_workers
);
2043 btrfs_stop_workers(&fs_info
->enospc_workers
);
2045 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2046 iput(fs_info
->btree_inode
);
2048 btrfs_close_devices(fs_info
->fs_devices
);
2049 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2051 bdi_destroy(&fs_info
->bdi
);
2053 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2061 return ERR_PTR(err
);
2064 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
2066 char b
[BDEVNAME_SIZE
];
2069 set_buffer_uptodate(bh
);
2071 if (!buffer_eopnotsupp(bh
) && printk_ratelimit()) {
2072 printk(KERN_WARNING
"lost page write due to "
2073 "I/O error on %s\n",
2074 bdevname(bh
->b_bdev
, b
));
2076 /* note, we dont' set_buffer_write_io_error because we have
2077 * our own ways of dealing with the IO errors
2079 clear_buffer_uptodate(bh
);
2085 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
2087 struct buffer_head
*bh
;
2088 struct buffer_head
*latest
= NULL
;
2089 struct btrfs_super_block
*super
;
2094 /* we would like to check all the supers, but that would make
2095 * a btrfs mount succeed after a mkfs from a different FS.
2096 * So, we need to add a special mount option to scan for
2097 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2099 for (i
= 0; i
< 1; i
++) {
2100 bytenr
= btrfs_sb_offset(i
);
2101 if (bytenr
+ 4096 >= i_size_read(bdev
->bd_inode
))
2103 bh
= __bread(bdev
, bytenr
/ 4096, 4096);
2107 super
= (struct btrfs_super_block
*)bh
->b_data
;
2108 if (btrfs_super_bytenr(super
) != bytenr
||
2109 strncmp((char *)(&super
->magic
), BTRFS_MAGIC
,
2110 sizeof(super
->magic
))) {
2115 if (!latest
|| btrfs_super_generation(super
) > transid
) {
2118 transid
= btrfs_super_generation(super
);
2127 * this should be called twice, once with wait == 0 and
2128 * once with wait == 1. When wait == 0 is done, all the buffer heads
2129 * we write are pinned.
2131 * They are released when wait == 1 is done.
2132 * max_mirrors must be the same for both runs, and it indicates how
2133 * many supers on this one device should be written.
2135 * max_mirrors == 0 means to write them all.
2137 static int write_dev_supers(struct btrfs_device
*device
,
2138 struct btrfs_super_block
*sb
,
2139 int do_barriers
, int wait
, int max_mirrors
)
2141 struct buffer_head
*bh
;
2147 int last_barrier
= 0;
2149 if (max_mirrors
== 0)
2150 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
2152 /* make sure only the last submit_bh does a barrier */
2154 for (i
= 0; i
< max_mirrors
; i
++) {
2155 bytenr
= btrfs_sb_offset(i
);
2156 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
2157 device
->total_bytes
)
2163 for (i
= 0; i
< max_mirrors
; i
++) {
2164 bytenr
= btrfs_sb_offset(i
);
2165 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
2169 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
2170 BTRFS_SUPER_INFO_SIZE
);
2173 if (!buffer_uptodate(bh
))
2176 /* drop our reference */
2179 /* drop the reference from the wait == 0 run */
2183 btrfs_set_super_bytenr(sb
, bytenr
);
2186 crc
= btrfs_csum_data(NULL
, (char *)sb
+
2187 BTRFS_CSUM_SIZE
, crc
,
2188 BTRFS_SUPER_INFO_SIZE
-
2190 btrfs_csum_final(crc
, sb
->csum
);
2193 * one reference for us, and we leave it for the
2196 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
2197 BTRFS_SUPER_INFO_SIZE
);
2198 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
2200 /* one reference for submit_bh */
2203 set_buffer_uptodate(bh
);
2205 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
2208 if (i
== last_barrier
&& do_barriers
&& device
->barriers
) {
2209 ret
= submit_bh(WRITE_BARRIER
, bh
);
2210 if (ret
== -EOPNOTSUPP
) {
2211 printk("btrfs: disabling barriers on dev %s\n",
2213 set_buffer_uptodate(bh
);
2214 device
->barriers
= 0;
2215 /* one reference for submit_bh */
2218 ret
= submit_bh(WRITE_SYNC
, bh
);
2221 ret
= submit_bh(WRITE_SYNC
, bh
);
2227 return errors
< i
? 0 : -1;
2230 int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
2232 struct list_head
*head
;
2233 struct btrfs_device
*dev
;
2234 struct btrfs_super_block
*sb
;
2235 struct btrfs_dev_item
*dev_item
;
2239 int total_errors
= 0;
2242 max_errors
= btrfs_super_num_devices(&root
->fs_info
->super_copy
) - 1;
2243 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
2245 sb
= &root
->fs_info
->super_for_commit
;
2246 dev_item
= &sb
->dev_item
;
2248 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2249 head
= &root
->fs_info
->fs_devices
->devices
;
2250 list_for_each_entry(dev
, head
, dev_list
) {
2255 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2258 btrfs_set_stack_device_generation(dev_item
, 0);
2259 btrfs_set_stack_device_type(dev_item
, dev
->type
);
2260 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
2261 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
2262 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
2263 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
2264 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
2265 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
2266 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
2267 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
2269 flags
= btrfs_super_flags(sb
);
2270 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
2272 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
2276 if (total_errors
> max_errors
) {
2277 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2283 list_for_each_entry(dev
, head
, dev_list
) {
2286 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2289 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
2293 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2294 if (total_errors
> max_errors
) {
2295 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2302 int write_ctree_super(struct btrfs_trans_handle
*trans
,
2303 struct btrfs_root
*root
, int max_mirrors
)
2307 ret
= write_all_supers(root
, max_mirrors
);
2311 int btrfs_free_fs_root(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2313 spin_lock(&fs_info
->fs_roots_radix_lock
);
2314 radix_tree_delete(&fs_info
->fs_roots_radix
,
2315 (unsigned long)root
->root_key
.objectid
);
2316 spin_unlock(&fs_info
->fs_roots_radix_lock
);
2318 if (btrfs_root_refs(&root
->root_item
) == 0)
2319 synchronize_srcu(&fs_info
->subvol_srcu
);
2325 static void free_fs_root(struct btrfs_root
*root
)
2327 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
2328 if (root
->anon_super
.s_dev
) {
2329 down_write(&root
->anon_super
.s_umount
);
2330 kill_anon_super(&root
->anon_super
);
2332 free_extent_buffer(root
->node
);
2333 free_extent_buffer(root
->commit_root
);
2338 static int del_fs_roots(struct btrfs_fs_info
*fs_info
)
2341 struct btrfs_root
*gang
[8];
2344 while (!list_empty(&fs_info
->dead_roots
)) {
2345 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2346 struct btrfs_root
, root_list
);
2347 list_del(&gang
[0]->root_list
);
2349 if (gang
[0]->in_radix
) {
2350 btrfs_free_fs_root(fs_info
, gang
[0]);
2352 free_extent_buffer(gang
[0]->node
);
2353 free_extent_buffer(gang
[0]->commit_root
);
2359 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2364 for (i
= 0; i
< ret
; i
++)
2365 btrfs_free_fs_root(fs_info
, gang
[i
]);
2370 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
2372 u64 root_objectid
= 0;
2373 struct btrfs_root
*gang
[8];
2378 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2379 (void **)gang
, root_objectid
,
2384 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
2385 for (i
= 0; i
< ret
; i
++) {
2386 root_objectid
= gang
[i
]->root_key
.objectid
;
2387 btrfs_orphan_cleanup(gang
[i
]);
2394 int btrfs_commit_super(struct btrfs_root
*root
)
2396 struct btrfs_trans_handle
*trans
;
2399 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2400 btrfs_run_delayed_iputs(root
);
2401 btrfs_clean_old_snapshots(root
);
2402 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2404 /* wait until ongoing cleanup work done */
2405 down_write(&root
->fs_info
->cleanup_work_sem
);
2406 up_write(&root
->fs_info
->cleanup_work_sem
);
2408 trans
= btrfs_start_transaction(root
, 1);
2409 ret
= btrfs_commit_transaction(trans
, root
);
2411 /* run commit again to drop the original snapshot */
2412 trans
= btrfs_start_transaction(root
, 1);
2413 btrfs_commit_transaction(trans
, root
);
2414 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
2417 ret
= write_ctree_super(NULL
, root
, 0);
2421 int close_ctree(struct btrfs_root
*root
)
2423 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2426 fs_info
->closing
= 1;
2429 kthread_stop(root
->fs_info
->transaction_kthread
);
2430 kthread_stop(root
->fs_info
->cleaner_kthread
);
2432 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
2433 ret
= btrfs_commit_super(root
);
2435 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2438 fs_info
->closing
= 2;
2441 if (fs_info
->delalloc_bytes
) {
2442 printk(KERN_INFO
"btrfs: at unmount delalloc count %llu\n",
2443 (unsigned long long)fs_info
->delalloc_bytes
);
2445 if (fs_info
->total_ref_cache_size
) {
2446 printk(KERN_INFO
"btrfs: at umount reference cache size %llu\n",
2447 (unsigned long long)fs_info
->total_ref_cache_size
);
2450 free_extent_buffer(fs_info
->extent_root
->node
);
2451 free_extent_buffer(fs_info
->extent_root
->commit_root
);
2452 free_extent_buffer(fs_info
->tree_root
->node
);
2453 free_extent_buffer(fs_info
->tree_root
->commit_root
);
2454 free_extent_buffer(root
->fs_info
->chunk_root
->node
);
2455 free_extent_buffer(root
->fs_info
->chunk_root
->commit_root
);
2456 free_extent_buffer(root
->fs_info
->dev_root
->node
);
2457 free_extent_buffer(root
->fs_info
->dev_root
->commit_root
);
2458 free_extent_buffer(root
->fs_info
->csum_root
->node
);
2459 free_extent_buffer(root
->fs_info
->csum_root
->commit_root
);
2461 btrfs_free_block_groups(root
->fs_info
);
2463 del_fs_roots(fs_info
);
2465 iput(fs_info
->btree_inode
);
2467 btrfs_stop_workers(&fs_info
->generic_worker
);
2468 btrfs_stop_workers(&fs_info
->fixup_workers
);
2469 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2470 btrfs_stop_workers(&fs_info
->workers
);
2471 btrfs_stop_workers(&fs_info
->endio_workers
);
2472 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2473 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2474 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2475 btrfs_stop_workers(&fs_info
->submit_workers
);
2476 btrfs_stop_workers(&fs_info
->enospc_workers
);
2478 btrfs_close_devices(fs_info
->fs_devices
);
2479 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2481 bdi_destroy(&fs_info
->bdi
);
2482 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2484 kfree(fs_info
->extent_root
);
2485 kfree(fs_info
->tree_root
);
2486 kfree(fs_info
->chunk_root
);
2487 kfree(fs_info
->dev_root
);
2488 kfree(fs_info
->csum_root
);
2492 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
)
2495 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2497 ret
= extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2502 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2507 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
2509 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2510 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
,
2514 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
2516 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2517 u64 transid
= btrfs_header_generation(buf
);
2518 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
2521 btrfs_assert_tree_locked(buf
);
2522 if (transid
!= root
->fs_info
->generation
) {
2523 printk(KERN_CRIT
"btrfs transid mismatch buffer %llu, "
2524 "found %llu running %llu\n",
2525 (unsigned long long)buf
->start
,
2526 (unsigned long long)transid
,
2527 (unsigned long long)root
->fs_info
->generation
);
2530 was_dirty
= set_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
2533 spin_lock(&root
->fs_info
->delalloc_lock
);
2534 root
->fs_info
->dirty_metadata_bytes
+= buf
->len
;
2535 spin_unlock(&root
->fs_info
->delalloc_lock
);
2539 void btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
2542 * looks as though older kernels can get into trouble with
2543 * this code, they end up stuck in balance_dirty_pages forever
2546 unsigned long thresh
= 32 * 1024 * 1024;
2548 if (current
->flags
& PF_MEMALLOC
)
2551 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
2553 if (num_dirty
> thresh
) {
2554 balance_dirty_pages_ratelimited_nr(
2555 root
->fs_info
->btree_inode
->i_mapping
, 1);
2560 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
2562 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2564 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
2566 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
2570 int btree_lock_page_hook(struct page
*page
)
2572 struct inode
*inode
= page
->mapping
->host
;
2573 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2574 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2575 struct extent_buffer
*eb
;
2577 u64 bytenr
= page_offset(page
);
2579 if (page
->private == EXTENT_PAGE_PRIVATE
)
2582 len
= page
->private >> 2;
2583 eb
= find_extent_buffer(io_tree
, bytenr
, len
, GFP_NOFS
);
2587 btrfs_tree_lock(eb
);
2588 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
2590 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
2591 spin_lock(&root
->fs_info
->delalloc_lock
);
2592 if (root
->fs_info
->dirty_metadata_bytes
>= eb
->len
)
2593 root
->fs_info
->dirty_metadata_bytes
-= eb
->len
;
2596 spin_unlock(&root
->fs_info
->delalloc_lock
);
2599 btrfs_tree_unlock(eb
);
2600 free_extent_buffer(eb
);
2606 static struct extent_io_ops btree_extent_io_ops
= {
2607 .write_cache_pages_lock_hook
= btree_lock_page_hook
,
2608 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
2609 .submit_bio_hook
= btree_submit_bio_hook
,
2610 /* note we're sharing with inode.c for the merge bio hook */
2611 .merge_bio_hook
= btrfs_merge_bio_hook
,