gru: update driver version number
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / socket.c
blobb94c3dd71015f8443b122706fcd08388ebe57247
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
91 #include <asm/uaccess.h>
92 #include <asm/unistd.h>
94 #include <net/compat.h>
95 #include <net/wext.h>
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/sockios.h>
104 #include <linux/atalk.h>
106 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
107 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
108 unsigned long nr_segs, loff_t pos);
109 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
113 static int sock_close(struct inode *inode, struct file *file);
114 static unsigned int sock_poll(struct file *file,
115 struct poll_table_struct *wait);
116 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
117 #ifdef CONFIG_COMPAT
118 static long compat_sock_ioctl(struct file *file,
119 unsigned int cmd, unsigned long arg);
120 #endif
121 static int sock_fasync(int fd, struct file *filp, int on);
122 static ssize_t sock_sendpage(struct file *file, struct page *page,
123 int offset, size_t size, loff_t *ppos, int more);
124 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
125 struct pipe_inode_info *pipe, size_t len,
126 unsigned int flags);
129 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
130 * in the operation structures but are done directly via the socketcall() multiplexor.
133 static const struct file_operations socket_file_ops = {
134 .owner = THIS_MODULE,
135 .llseek = no_llseek,
136 .aio_read = sock_aio_read,
137 .aio_write = sock_aio_write,
138 .poll = sock_poll,
139 .unlocked_ioctl = sock_ioctl,
140 #ifdef CONFIG_COMPAT
141 .compat_ioctl = compat_sock_ioctl,
142 #endif
143 .mmap = sock_mmap,
144 .open = sock_no_open, /* special open code to disallow open via /proc */
145 .release = sock_close,
146 .fasync = sock_fasync,
147 .sendpage = sock_sendpage,
148 .splice_write = generic_splice_sendpage,
149 .splice_read = sock_splice_read,
153 * The protocol list. Each protocol is registered in here.
156 static DEFINE_SPINLOCK(net_family_lock);
157 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
160 * Statistics counters of the socket lists
163 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
166 * Support routines.
167 * Move socket addresses back and forth across the kernel/user
168 * divide and look after the messy bits.
171 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
172 16 for IP, 16 for IPX,
173 24 for IPv6,
174 about 80 for AX.25
175 must be at least one bigger than
176 the AF_UNIX size (see net/unix/af_unix.c
177 :unix_mkname()).
181 * move_addr_to_kernel - copy a socket address into kernel space
182 * @uaddr: Address in user space
183 * @kaddr: Address in kernel space
184 * @ulen: Length in user space
186 * The address is copied into kernel space. If the provided address is
187 * too long an error code of -EINVAL is returned. If the copy gives
188 * invalid addresses -EFAULT is returned. On a success 0 is returned.
191 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
193 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
194 return -EINVAL;
195 if (ulen == 0)
196 return 0;
197 if (copy_from_user(kaddr, uaddr, ulen))
198 return -EFAULT;
199 return audit_sockaddr(ulen, kaddr);
203 * move_addr_to_user - copy an address to user space
204 * @kaddr: kernel space address
205 * @klen: length of address in kernel
206 * @uaddr: user space address
207 * @ulen: pointer to user length field
209 * The value pointed to by ulen on entry is the buffer length available.
210 * This is overwritten with the buffer space used. -EINVAL is returned
211 * if an overlong buffer is specified or a negative buffer size. -EFAULT
212 * is returned if either the buffer or the length field are not
213 * accessible.
214 * After copying the data up to the limit the user specifies, the true
215 * length of the data is written over the length limit the user
216 * specified. Zero is returned for a success.
219 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
220 int __user *ulen)
222 int err;
223 int len;
225 err = get_user(len, ulen);
226 if (err)
227 return err;
228 if (len > klen)
229 len = klen;
230 if (len < 0 || len > sizeof(struct sockaddr_storage))
231 return -EINVAL;
232 if (len) {
233 if (audit_sockaddr(klen, kaddr))
234 return -ENOMEM;
235 if (copy_to_user(uaddr, kaddr, len))
236 return -EFAULT;
239 * "fromlen shall refer to the value before truncation.."
240 * 1003.1g
242 return __put_user(klen, ulen);
245 static struct kmem_cache *sock_inode_cachep __read_mostly;
247 static struct inode *sock_alloc_inode(struct super_block *sb)
249 struct socket_alloc *ei;
251 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
252 if (!ei)
253 return NULL;
254 init_waitqueue_head(&ei->socket.wait);
256 ei->socket.fasync_list = NULL;
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
263 return &ei->vfs_inode;
266 static void sock_destroy_inode(struct inode *inode)
268 kmem_cache_free(sock_inode_cachep,
269 container_of(inode, struct socket_alloc, vfs_inode));
272 static void init_once(void *foo)
274 struct socket_alloc *ei = (struct socket_alloc *)foo;
276 inode_init_once(&ei->vfs_inode);
279 static int init_inodecache(void)
281 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
282 sizeof(struct socket_alloc),
284 (SLAB_HWCACHE_ALIGN |
285 SLAB_RECLAIM_ACCOUNT |
286 SLAB_MEM_SPREAD),
287 init_once);
288 if (sock_inode_cachep == NULL)
289 return -ENOMEM;
290 return 0;
293 static const struct super_operations sockfs_ops = {
294 .alloc_inode = sock_alloc_inode,
295 .destroy_inode =sock_destroy_inode,
296 .statfs = simple_statfs,
299 static int sockfs_get_sb(struct file_system_type *fs_type,
300 int flags, const char *dev_name, void *data,
301 struct vfsmount *mnt)
303 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
304 mnt);
307 static struct vfsmount *sock_mnt __read_mostly;
309 static struct file_system_type sock_fs_type = {
310 .name = "sockfs",
311 .get_sb = sockfs_get_sb,
312 .kill_sb = kill_anon_super,
315 static int sockfs_delete_dentry(struct dentry *dentry)
318 * At creation time, we pretended this dentry was hashed
319 * (by clearing DCACHE_UNHASHED bit in d_flags)
320 * At delete time, we restore the truth : not hashed.
321 * (so that dput() can proceed correctly)
323 dentry->d_flags |= DCACHE_UNHASHED;
324 return 0;
328 * sockfs_dname() is called from d_path().
330 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
332 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
333 dentry->d_inode->i_ino);
336 static const struct dentry_operations sockfs_dentry_operations = {
337 .d_delete = sockfs_delete_dentry,
338 .d_dname = sockfs_dname,
342 * Obtains the first available file descriptor and sets it up for use.
344 * These functions create file structures and maps them to fd space
345 * of the current process. On success it returns file descriptor
346 * and file struct implicitly stored in sock->file.
347 * Note that another thread may close file descriptor before we return
348 * from this function. We use the fact that now we do not refer
349 * to socket after mapping. If one day we will need it, this
350 * function will increment ref. count on file by 1.
352 * In any case returned fd MAY BE not valid!
353 * This race condition is unavoidable
354 * with shared fd spaces, we cannot solve it inside kernel,
355 * but we take care of internal coherence yet.
358 static int sock_alloc_fd(struct file **filep, int flags)
360 int fd;
362 fd = get_unused_fd_flags(flags);
363 if (likely(fd >= 0)) {
364 struct file *file = get_empty_filp();
366 *filep = file;
367 if (unlikely(!file)) {
368 put_unused_fd(fd);
369 return -ENFILE;
371 } else
372 *filep = NULL;
373 return fd;
376 static int sock_attach_fd(struct socket *sock, struct file *file, int flags)
378 struct dentry *dentry;
379 struct qstr name = { .name = "" };
381 dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
382 if (unlikely(!dentry))
383 return -ENOMEM;
385 dentry->d_op = &sockfs_dentry_operations;
387 * We dont want to push this dentry into global dentry hash table.
388 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
389 * This permits a working /proc/$pid/fd/XXX on sockets
391 dentry->d_flags &= ~DCACHE_UNHASHED;
392 d_instantiate(dentry, SOCK_INODE(sock));
394 sock->file = file;
395 init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
396 &socket_file_ops);
397 SOCK_INODE(sock)->i_fop = &socket_file_ops;
398 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
399 file->f_pos = 0;
400 file->private_data = sock;
402 return 0;
405 int sock_map_fd(struct socket *sock, int flags)
407 struct file *newfile;
408 int fd = sock_alloc_fd(&newfile, flags);
410 if (likely(fd >= 0)) {
411 int err = sock_attach_fd(sock, newfile, flags);
413 if (unlikely(err < 0)) {
414 put_filp(newfile);
415 put_unused_fd(fd);
416 return err;
418 fd_install(fd, newfile);
420 return fd;
423 static struct socket *sock_from_file(struct file *file, int *err)
425 if (file->f_op == &socket_file_ops)
426 return file->private_data; /* set in sock_map_fd */
428 *err = -ENOTSOCK;
429 return NULL;
433 * sockfd_lookup - Go from a file number to its socket slot
434 * @fd: file handle
435 * @err: pointer to an error code return
437 * The file handle passed in is locked and the socket it is bound
438 * too is returned. If an error occurs the err pointer is overwritten
439 * with a negative errno code and NULL is returned. The function checks
440 * for both invalid handles and passing a handle which is not a socket.
442 * On a success the socket object pointer is returned.
445 struct socket *sockfd_lookup(int fd, int *err)
447 struct file *file;
448 struct socket *sock;
450 file = fget(fd);
451 if (!file) {
452 *err = -EBADF;
453 return NULL;
456 sock = sock_from_file(file, err);
457 if (!sock)
458 fput(file);
459 return sock;
462 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
464 struct file *file;
465 struct socket *sock;
467 *err = -EBADF;
468 file = fget_light(fd, fput_needed);
469 if (file) {
470 sock = sock_from_file(file, err);
471 if (sock)
472 return sock;
473 fput_light(file, *fput_needed);
475 return NULL;
479 * sock_alloc - allocate a socket
481 * Allocate a new inode and socket object. The two are bound together
482 * and initialised. The socket is then returned. If we are out of inodes
483 * NULL is returned.
486 static struct socket *sock_alloc(void)
488 struct inode *inode;
489 struct socket *sock;
491 inode = new_inode(sock_mnt->mnt_sb);
492 if (!inode)
493 return NULL;
495 sock = SOCKET_I(inode);
497 kmemcheck_annotate_bitfield(sock, type);
498 inode->i_mode = S_IFSOCK | S_IRWXUGO;
499 inode->i_uid = current_fsuid();
500 inode->i_gid = current_fsgid();
502 percpu_add(sockets_in_use, 1);
503 return sock;
507 * In theory you can't get an open on this inode, but /proc provides
508 * a back door. Remember to keep it shut otherwise you'll let the
509 * creepy crawlies in.
512 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
514 return -ENXIO;
517 const struct file_operations bad_sock_fops = {
518 .owner = THIS_MODULE,
519 .open = sock_no_open,
523 * sock_release - close a socket
524 * @sock: socket to close
526 * The socket is released from the protocol stack if it has a release
527 * callback, and the inode is then released if the socket is bound to
528 * an inode not a file.
531 void sock_release(struct socket *sock)
533 if (sock->ops) {
534 struct module *owner = sock->ops->owner;
536 sock->ops->release(sock);
537 sock->ops = NULL;
538 module_put(owner);
541 if (sock->fasync_list)
542 printk(KERN_ERR "sock_release: fasync list not empty!\n");
544 percpu_sub(sockets_in_use, 1);
545 if (!sock->file) {
546 iput(SOCK_INODE(sock));
547 return;
549 sock->file = NULL;
552 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
553 union skb_shared_tx *shtx)
555 shtx->flags = 0;
556 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
557 shtx->hardware = 1;
558 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
559 shtx->software = 1;
560 return 0;
562 EXPORT_SYMBOL(sock_tx_timestamp);
564 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
565 struct msghdr *msg, size_t size)
567 struct sock_iocb *si = kiocb_to_siocb(iocb);
568 int err;
570 si->sock = sock;
571 si->scm = NULL;
572 si->msg = msg;
573 si->size = size;
575 err = security_socket_sendmsg(sock, msg, size);
576 if (err)
577 return err;
579 return sock->ops->sendmsg(iocb, sock, msg, size);
582 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
584 struct kiocb iocb;
585 struct sock_iocb siocb;
586 int ret;
588 init_sync_kiocb(&iocb, NULL);
589 iocb.private = &siocb;
590 ret = __sock_sendmsg(&iocb, sock, msg, size);
591 if (-EIOCBQUEUED == ret)
592 ret = wait_on_sync_kiocb(&iocb);
593 return ret;
596 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
597 struct kvec *vec, size_t num, size_t size)
599 mm_segment_t oldfs = get_fs();
600 int result;
602 set_fs(KERNEL_DS);
604 * the following is safe, since for compiler definitions of kvec and
605 * iovec are identical, yielding the same in-core layout and alignment
607 msg->msg_iov = (struct iovec *)vec;
608 msg->msg_iovlen = num;
609 result = sock_sendmsg(sock, msg, size);
610 set_fs(oldfs);
611 return result;
614 static int ktime2ts(ktime_t kt, struct timespec *ts)
616 if (kt.tv64) {
617 *ts = ktime_to_timespec(kt);
618 return 1;
619 } else {
620 return 0;
625 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
627 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
628 struct sk_buff *skb)
630 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
631 struct timespec ts[3];
632 int empty = 1;
633 struct skb_shared_hwtstamps *shhwtstamps =
634 skb_hwtstamps(skb);
636 /* Race occurred between timestamp enabling and packet
637 receiving. Fill in the current time for now. */
638 if (need_software_tstamp && skb->tstamp.tv64 == 0)
639 __net_timestamp(skb);
641 if (need_software_tstamp) {
642 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
643 struct timeval tv;
644 skb_get_timestamp(skb, &tv);
645 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
646 sizeof(tv), &tv);
647 } else {
648 struct timespec ts;
649 skb_get_timestampns(skb, &ts);
650 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
651 sizeof(ts), &ts);
656 memset(ts, 0, sizeof(ts));
657 if (skb->tstamp.tv64 &&
658 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
659 skb_get_timestampns(skb, ts + 0);
660 empty = 0;
662 if (shhwtstamps) {
663 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
664 ktime2ts(shhwtstamps->syststamp, ts + 1))
665 empty = 0;
666 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
667 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
668 empty = 0;
670 if (!empty)
671 put_cmsg(msg, SOL_SOCKET,
672 SCM_TIMESTAMPING, sizeof(ts), &ts);
675 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
677 inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
679 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
680 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
681 sizeof(__u32), &skb->dropcount);
684 void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
685 struct sk_buff *skb)
687 sock_recv_timestamp(msg, sk, skb);
688 sock_recv_drops(msg, sk, skb);
690 EXPORT_SYMBOL_GPL(sock_recv_ts_and_drops);
692 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
693 struct msghdr *msg, size_t size, int flags)
695 struct sock_iocb *si = kiocb_to_siocb(iocb);
697 si->sock = sock;
698 si->scm = NULL;
699 si->msg = msg;
700 si->size = size;
701 si->flags = flags;
703 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
706 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
707 struct msghdr *msg, size_t size, int flags)
709 int err = security_socket_recvmsg(sock, msg, size, flags);
711 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
714 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
715 size_t size, int flags)
717 struct kiocb iocb;
718 struct sock_iocb siocb;
719 int ret;
721 init_sync_kiocb(&iocb, NULL);
722 iocb.private = &siocb;
723 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
724 if (-EIOCBQUEUED == ret)
725 ret = wait_on_sync_kiocb(&iocb);
726 return ret;
729 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
730 size_t size, int flags)
732 struct kiocb iocb;
733 struct sock_iocb siocb;
734 int ret;
736 init_sync_kiocb(&iocb, NULL);
737 iocb.private = &siocb;
738 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
739 if (-EIOCBQUEUED == ret)
740 ret = wait_on_sync_kiocb(&iocb);
741 return ret;
744 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
745 struct kvec *vec, size_t num, size_t size, int flags)
747 mm_segment_t oldfs = get_fs();
748 int result;
750 set_fs(KERNEL_DS);
752 * the following is safe, since for compiler definitions of kvec and
753 * iovec are identical, yielding the same in-core layout and alignment
755 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
756 result = sock_recvmsg(sock, msg, size, flags);
757 set_fs(oldfs);
758 return result;
761 static void sock_aio_dtor(struct kiocb *iocb)
763 kfree(iocb->private);
766 static ssize_t sock_sendpage(struct file *file, struct page *page,
767 int offset, size_t size, loff_t *ppos, int more)
769 struct socket *sock;
770 int flags;
772 sock = file->private_data;
774 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
775 if (more)
776 flags |= MSG_MORE;
778 return kernel_sendpage(sock, page, offset, size, flags);
781 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
782 struct pipe_inode_info *pipe, size_t len,
783 unsigned int flags)
785 struct socket *sock = file->private_data;
787 if (unlikely(!sock->ops->splice_read))
788 return -EINVAL;
790 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
793 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
794 struct sock_iocb *siocb)
796 if (!is_sync_kiocb(iocb)) {
797 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
798 if (!siocb)
799 return NULL;
800 iocb->ki_dtor = sock_aio_dtor;
803 siocb->kiocb = iocb;
804 iocb->private = siocb;
805 return siocb;
808 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
809 struct file *file, const struct iovec *iov,
810 unsigned long nr_segs)
812 struct socket *sock = file->private_data;
813 size_t size = 0;
814 int i;
816 for (i = 0; i < nr_segs; i++)
817 size += iov[i].iov_len;
819 msg->msg_name = NULL;
820 msg->msg_namelen = 0;
821 msg->msg_control = NULL;
822 msg->msg_controllen = 0;
823 msg->msg_iov = (struct iovec *)iov;
824 msg->msg_iovlen = nr_segs;
825 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
827 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
830 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
831 unsigned long nr_segs, loff_t pos)
833 struct sock_iocb siocb, *x;
835 if (pos != 0)
836 return -ESPIPE;
838 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
839 return 0;
842 x = alloc_sock_iocb(iocb, &siocb);
843 if (!x)
844 return -ENOMEM;
845 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
848 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
849 struct file *file, const struct iovec *iov,
850 unsigned long nr_segs)
852 struct socket *sock = file->private_data;
853 size_t size = 0;
854 int i;
856 for (i = 0; i < nr_segs; i++)
857 size += iov[i].iov_len;
859 msg->msg_name = NULL;
860 msg->msg_namelen = 0;
861 msg->msg_control = NULL;
862 msg->msg_controllen = 0;
863 msg->msg_iov = (struct iovec *)iov;
864 msg->msg_iovlen = nr_segs;
865 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
866 if (sock->type == SOCK_SEQPACKET)
867 msg->msg_flags |= MSG_EOR;
869 return __sock_sendmsg(iocb, sock, msg, size);
872 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
873 unsigned long nr_segs, loff_t pos)
875 struct sock_iocb siocb, *x;
877 if (pos != 0)
878 return -ESPIPE;
880 x = alloc_sock_iocb(iocb, &siocb);
881 if (!x)
882 return -ENOMEM;
884 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
888 * Atomic setting of ioctl hooks to avoid race
889 * with module unload.
892 static DEFINE_MUTEX(br_ioctl_mutex);
893 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
895 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
897 mutex_lock(&br_ioctl_mutex);
898 br_ioctl_hook = hook;
899 mutex_unlock(&br_ioctl_mutex);
902 EXPORT_SYMBOL(brioctl_set);
904 static DEFINE_MUTEX(vlan_ioctl_mutex);
905 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
907 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
909 mutex_lock(&vlan_ioctl_mutex);
910 vlan_ioctl_hook = hook;
911 mutex_unlock(&vlan_ioctl_mutex);
914 EXPORT_SYMBOL(vlan_ioctl_set);
916 static DEFINE_MUTEX(dlci_ioctl_mutex);
917 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
919 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
921 mutex_lock(&dlci_ioctl_mutex);
922 dlci_ioctl_hook = hook;
923 mutex_unlock(&dlci_ioctl_mutex);
926 EXPORT_SYMBOL(dlci_ioctl_set);
928 static long sock_do_ioctl(struct net *net, struct socket *sock,
929 unsigned int cmd, unsigned long arg)
931 int err;
932 void __user *argp = (void __user *)arg;
934 err = sock->ops->ioctl(sock, cmd, arg);
937 * If this ioctl is unknown try to hand it down
938 * to the NIC driver.
940 if (err == -ENOIOCTLCMD)
941 err = dev_ioctl(net, cmd, argp);
943 return err;
947 * With an ioctl, arg may well be a user mode pointer, but we don't know
948 * what to do with it - that's up to the protocol still.
951 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
953 struct socket *sock;
954 struct sock *sk;
955 void __user *argp = (void __user *)arg;
956 int pid, err;
957 struct net *net;
959 sock = file->private_data;
960 sk = sock->sk;
961 net = sock_net(sk);
962 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
963 err = dev_ioctl(net, cmd, argp);
964 } else
965 #ifdef CONFIG_WEXT_CORE
966 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
967 err = dev_ioctl(net, cmd, argp);
968 } else
969 #endif
970 switch (cmd) {
971 case FIOSETOWN:
972 case SIOCSPGRP:
973 err = -EFAULT;
974 if (get_user(pid, (int __user *)argp))
975 break;
976 err = f_setown(sock->file, pid, 1);
977 break;
978 case FIOGETOWN:
979 case SIOCGPGRP:
980 err = put_user(f_getown(sock->file),
981 (int __user *)argp);
982 break;
983 case SIOCGIFBR:
984 case SIOCSIFBR:
985 case SIOCBRADDBR:
986 case SIOCBRDELBR:
987 err = -ENOPKG;
988 if (!br_ioctl_hook)
989 request_module("bridge");
991 mutex_lock(&br_ioctl_mutex);
992 if (br_ioctl_hook)
993 err = br_ioctl_hook(net, cmd, argp);
994 mutex_unlock(&br_ioctl_mutex);
995 break;
996 case SIOCGIFVLAN:
997 case SIOCSIFVLAN:
998 err = -ENOPKG;
999 if (!vlan_ioctl_hook)
1000 request_module("8021q");
1002 mutex_lock(&vlan_ioctl_mutex);
1003 if (vlan_ioctl_hook)
1004 err = vlan_ioctl_hook(net, argp);
1005 mutex_unlock(&vlan_ioctl_mutex);
1006 break;
1007 case SIOCADDDLCI:
1008 case SIOCDELDLCI:
1009 err = -ENOPKG;
1010 if (!dlci_ioctl_hook)
1011 request_module("dlci");
1013 mutex_lock(&dlci_ioctl_mutex);
1014 if (dlci_ioctl_hook)
1015 err = dlci_ioctl_hook(cmd, argp);
1016 mutex_unlock(&dlci_ioctl_mutex);
1017 break;
1018 default:
1019 err = sock_do_ioctl(net, sock, cmd, arg);
1020 break;
1022 return err;
1025 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1027 int err;
1028 struct socket *sock = NULL;
1030 err = security_socket_create(family, type, protocol, 1);
1031 if (err)
1032 goto out;
1034 sock = sock_alloc();
1035 if (!sock) {
1036 err = -ENOMEM;
1037 goto out;
1040 sock->type = type;
1041 err = security_socket_post_create(sock, family, type, protocol, 1);
1042 if (err)
1043 goto out_release;
1045 out:
1046 *res = sock;
1047 return err;
1048 out_release:
1049 sock_release(sock);
1050 sock = NULL;
1051 goto out;
1054 /* No kernel lock held - perfect */
1055 static unsigned int sock_poll(struct file *file, poll_table *wait)
1057 struct socket *sock;
1060 * We can't return errors to poll, so it's either yes or no.
1062 sock = file->private_data;
1063 return sock->ops->poll(file, sock, wait);
1066 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1068 struct socket *sock = file->private_data;
1070 return sock->ops->mmap(file, sock, vma);
1073 static int sock_close(struct inode *inode, struct file *filp)
1076 * It was possible the inode is NULL we were
1077 * closing an unfinished socket.
1080 if (!inode) {
1081 printk(KERN_DEBUG "sock_close: NULL inode\n");
1082 return 0;
1084 sock_release(SOCKET_I(inode));
1085 return 0;
1089 * Update the socket async list
1091 * Fasync_list locking strategy.
1093 * 1. fasync_list is modified only under process context socket lock
1094 * i.e. under semaphore.
1095 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1096 * or under socket lock.
1097 * 3. fasync_list can be used from softirq context, so that
1098 * modification under socket lock have to be enhanced with
1099 * write_lock_bh(&sk->sk_callback_lock).
1100 * --ANK (990710)
1103 static int sock_fasync(int fd, struct file *filp, int on)
1105 struct fasync_struct *fa, *fna = NULL, **prev;
1106 struct socket *sock;
1107 struct sock *sk;
1109 if (on) {
1110 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1111 if (fna == NULL)
1112 return -ENOMEM;
1115 sock = filp->private_data;
1117 sk = sock->sk;
1118 if (sk == NULL) {
1119 kfree(fna);
1120 return -EINVAL;
1123 lock_sock(sk);
1125 spin_lock(&filp->f_lock);
1126 if (on)
1127 filp->f_flags |= FASYNC;
1128 else
1129 filp->f_flags &= ~FASYNC;
1130 spin_unlock(&filp->f_lock);
1132 prev = &(sock->fasync_list);
1134 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1135 if (fa->fa_file == filp)
1136 break;
1138 if (on) {
1139 if (fa != NULL) {
1140 write_lock_bh(&sk->sk_callback_lock);
1141 fa->fa_fd = fd;
1142 write_unlock_bh(&sk->sk_callback_lock);
1144 kfree(fna);
1145 goto out;
1147 fna->fa_file = filp;
1148 fna->fa_fd = fd;
1149 fna->magic = FASYNC_MAGIC;
1150 fna->fa_next = sock->fasync_list;
1151 write_lock_bh(&sk->sk_callback_lock);
1152 sock->fasync_list = fna;
1153 sock_set_flag(sk, SOCK_FASYNC);
1154 write_unlock_bh(&sk->sk_callback_lock);
1155 } else {
1156 if (fa != NULL) {
1157 write_lock_bh(&sk->sk_callback_lock);
1158 *prev = fa->fa_next;
1159 if (!sock->fasync_list)
1160 sock_reset_flag(sk, SOCK_FASYNC);
1161 write_unlock_bh(&sk->sk_callback_lock);
1162 kfree(fa);
1166 out:
1167 release_sock(sock->sk);
1168 return 0;
1171 /* This function may be called only under socket lock or callback_lock */
1173 int sock_wake_async(struct socket *sock, int how, int band)
1175 if (!sock || !sock->fasync_list)
1176 return -1;
1177 switch (how) {
1178 case SOCK_WAKE_WAITD:
1179 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1180 break;
1181 goto call_kill;
1182 case SOCK_WAKE_SPACE:
1183 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1184 break;
1185 /* fall through */
1186 case SOCK_WAKE_IO:
1187 call_kill:
1188 __kill_fasync(sock->fasync_list, SIGIO, band);
1189 break;
1190 case SOCK_WAKE_URG:
1191 __kill_fasync(sock->fasync_list, SIGURG, band);
1193 return 0;
1196 static int __sock_create(struct net *net, int family, int type, int protocol,
1197 struct socket **res, int kern)
1199 int err;
1200 struct socket *sock;
1201 const struct net_proto_family *pf;
1204 * Check protocol is in range
1206 if (family < 0 || family >= NPROTO)
1207 return -EAFNOSUPPORT;
1208 if (type < 0 || type >= SOCK_MAX)
1209 return -EINVAL;
1211 /* Compatibility.
1213 This uglymoron is moved from INET layer to here to avoid
1214 deadlock in module load.
1216 if (family == PF_INET && type == SOCK_PACKET) {
1217 static int warned;
1218 if (!warned) {
1219 warned = 1;
1220 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1221 current->comm);
1223 family = PF_PACKET;
1226 err = security_socket_create(family, type, protocol, kern);
1227 if (err)
1228 return err;
1231 * Allocate the socket and allow the family to set things up. if
1232 * the protocol is 0, the family is instructed to select an appropriate
1233 * default.
1235 sock = sock_alloc();
1236 if (!sock) {
1237 if (net_ratelimit())
1238 printk(KERN_WARNING "socket: no more sockets\n");
1239 return -ENFILE; /* Not exactly a match, but its the
1240 closest posix thing */
1243 sock->type = type;
1245 #ifdef CONFIG_MODULES
1246 /* Attempt to load a protocol module if the find failed.
1248 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1249 * requested real, full-featured networking support upon configuration.
1250 * Otherwise module support will break!
1252 if (net_families[family] == NULL)
1253 request_module("net-pf-%d", family);
1254 #endif
1256 rcu_read_lock();
1257 pf = rcu_dereference(net_families[family]);
1258 err = -EAFNOSUPPORT;
1259 if (!pf)
1260 goto out_release;
1263 * We will call the ->create function, that possibly is in a loadable
1264 * module, so we have to bump that loadable module refcnt first.
1266 if (!try_module_get(pf->owner))
1267 goto out_release;
1269 /* Now protected by module ref count */
1270 rcu_read_unlock();
1272 err = pf->create(net, sock, protocol, kern);
1273 if (err < 0)
1274 goto out_module_put;
1277 * Now to bump the refcnt of the [loadable] module that owns this
1278 * socket at sock_release time we decrement its refcnt.
1280 if (!try_module_get(sock->ops->owner))
1281 goto out_module_busy;
1284 * Now that we're done with the ->create function, the [loadable]
1285 * module can have its refcnt decremented
1287 module_put(pf->owner);
1288 err = security_socket_post_create(sock, family, type, protocol, kern);
1289 if (err)
1290 goto out_sock_release;
1291 *res = sock;
1293 return 0;
1295 out_module_busy:
1296 err = -EAFNOSUPPORT;
1297 out_module_put:
1298 sock->ops = NULL;
1299 module_put(pf->owner);
1300 out_sock_release:
1301 sock_release(sock);
1302 return err;
1304 out_release:
1305 rcu_read_unlock();
1306 goto out_sock_release;
1309 int sock_create(int family, int type, int protocol, struct socket **res)
1311 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1314 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1316 return __sock_create(&init_net, family, type, protocol, res, 1);
1319 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1321 int retval;
1322 struct socket *sock;
1323 int flags;
1325 /* Check the SOCK_* constants for consistency. */
1326 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1327 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1328 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1329 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1331 flags = type & ~SOCK_TYPE_MASK;
1332 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1333 return -EINVAL;
1334 type &= SOCK_TYPE_MASK;
1336 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1337 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1339 retval = sock_create(family, type, protocol, &sock);
1340 if (retval < 0)
1341 goto out;
1343 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1344 if (retval < 0)
1345 goto out_release;
1347 out:
1348 /* It may be already another descriptor 8) Not kernel problem. */
1349 return retval;
1351 out_release:
1352 sock_release(sock);
1353 return retval;
1357 * Create a pair of connected sockets.
1360 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1361 int __user *, usockvec)
1363 struct socket *sock1, *sock2;
1364 int fd1, fd2, err;
1365 struct file *newfile1, *newfile2;
1366 int flags;
1368 flags = type & ~SOCK_TYPE_MASK;
1369 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1370 return -EINVAL;
1371 type &= SOCK_TYPE_MASK;
1373 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1374 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1377 * Obtain the first socket and check if the underlying protocol
1378 * supports the socketpair call.
1381 err = sock_create(family, type, protocol, &sock1);
1382 if (err < 0)
1383 goto out;
1385 err = sock_create(family, type, protocol, &sock2);
1386 if (err < 0)
1387 goto out_release_1;
1389 err = sock1->ops->socketpair(sock1, sock2);
1390 if (err < 0)
1391 goto out_release_both;
1393 fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC);
1394 if (unlikely(fd1 < 0)) {
1395 err = fd1;
1396 goto out_release_both;
1399 fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC);
1400 if (unlikely(fd2 < 0)) {
1401 err = fd2;
1402 put_filp(newfile1);
1403 put_unused_fd(fd1);
1404 goto out_release_both;
1407 err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK);
1408 if (unlikely(err < 0)) {
1409 goto out_fd2;
1412 err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK);
1413 if (unlikely(err < 0)) {
1414 fput(newfile1);
1415 goto out_fd1;
1418 audit_fd_pair(fd1, fd2);
1419 fd_install(fd1, newfile1);
1420 fd_install(fd2, newfile2);
1421 /* fd1 and fd2 may be already another descriptors.
1422 * Not kernel problem.
1425 err = put_user(fd1, &usockvec[0]);
1426 if (!err)
1427 err = put_user(fd2, &usockvec[1]);
1428 if (!err)
1429 return 0;
1431 sys_close(fd2);
1432 sys_close(fd1);
1433 return err;
1435 out_release_both:
1436 sock_release(sock2);
1437 out_release_1:
1438 sock_release(sock1);
1439 out:
1440 return err;
1442 out_fd2:
1443 put_filp(newfile1);
1444 sock_release(sock1);
1445 out_fd1:
1446 put_filp(newfile2);
1447 sock_release(sock2);
1448 put_unused_fd(fd1);
1449 put_unused_fd(fd2);
1450 goto out;
1454 * Bind a name to a socket. Nothing much to do here since it's
1455 * the protocol's responsibility to handle the local address.
1457 * We move the socket address to kernel space before we call
1458 * the protocol layer (having also checked the address is ok).
1461 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1463 struct socket *sock;
1464 struct sockaddr_storage address;
1465 int err, fput_needed;
1467 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1468 if (sock) {
1469 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1470 if (err >= 0) {
1471 err = security_socket_bind(sock,
1472 (struct sockaddr *)&address,
1473 addrlen);
1474 if (!err)
1475 err = sock->ops->bind(sock,
1476 (struct sockaddr *)
1477 &address, addrlen);
1479 fput_light(sock->file, fput_needed);
1481 return err;
1485 * Perform a listen. Basically, we allow the protocol to do anything
1486 * necessary for a listen, and if that works, we mark the socket as
1487 * ready for listening.
1490 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1492 struct socket *sock;
1493 int err, fput_needed;
1494 int somaxconn;
1496 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1497 if (sock) {
1498 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1499 if ((unsigned)backlog > somaxconn)
1500 backlog = somaxconn;
1502 err = security_socket_listen(sock, backlog);
1503 if (!err)
1504 err = sock->ops->listen(sock, backlog);
1506 fput_light(sock->file, fput_needed);
1508 return err;
1512 * For accept, we attempt to create a new socket, set up the link
1513 * with the client, wake up the client, then return the new
1514 * connected fd. We collect the address of the connector in kernel
1515 * space and move it to user at the very end. This is unclean because
1516 * we open the socket then return an error.
1518 * 1003.1g adds the ability to recvmsg() to query connection pending
1519 * status to recvmsg. We need to add that support in a way thats
1520 * clean when we restucture accept also.
1523 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1524 int __user *, upeer_addrlen, int, flags)
1526 struct socket *sock, *newsock;
1527 struct file *newfile;
1528 int err, len, newfd, fput_needed;
1529 struct sockaddr_storage address;
1531 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1532 return -EINVAL;
1534 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1535 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1537 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1538 if (!sock)
1539 goto out;
1541 err = -ENFILE;
1542 if (!(newsock = sock_alloc()))
1543 goto out_put;
1545 newsock->type = sock->type;
1546 newsock->ops = sock->ops;
1549 * We don't need try_module_get here, as the listening socket (sock)
1550 * has the protocol module (sock->ops->owner) held.
1552 __module_get(newsock->ops->owner);
1554 newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC);
1555 if (unlikely(newfd < 0)) {
1556 err = newfd;
1557 sock_release(newsock);
1558 goto out_put;
1561 err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK);
1562 if (err < 0)
1563 goto out_fd_simple;
1565 err = security_socket_accept(sock, newsock);
1566 if (err)
1567 goto out_fd;
1569 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1570 if (err < 0)
1571 goto out_fd;
1573 if (upeer_sockaddr) {
1574 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1575 &len, 2) < 0) {
1576 err = -ECONNABORTED;
1577 goto out_fd;
1579 err = move_addr_to_user((struct sockaddr *)&address,
1580 len, upeer_sockaddr, upeer_addrlen);
1581 if (err < 0)
1582 goto out_fd;
1585 /* File flags are not inherited via accept() unlike another OSes. */
1587 fd_install(newfd, newfile);
1588 err = newfd;
1590 out_put:
1591 fput_light(sock->file, fput_needed);
1592 out:
1593 return err;
1594 out_fd_simple:
1595 sock_release(newsock);
1596 put_filp(newfile);
1597 put_unused_fd(newfd);
1598 goto out_put;
1599 out_fd:
1600 fput(newfile);
1601 put_unused_fd(newfd);
1602 goto out_put;
1605 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1606 int __user *, upeer_addrlen)
1608 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1612 * Attempt to connect to a socket with the server address. The address
1613 * is in user space so we verify it is OK and move it to kernel space.
1615 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1616 * break bindings
1618 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1619 * other SEQPACKET protocols that take time to connect() as it doesn't
1620 * include the -EINPROGRESS status for such sockets.
1623 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1624 int, addrlen)
1626 struct socket *sock;
1627 struct sockaddr_storage address;
1628 int err, fput_needed;
1630 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1631 if (!sock)
1632 goto out;
1633 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1634 if (err < 0)
1635 goto out_put;
1637 err =
1638 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1639 if (err)
1640 goto out_put;
1642 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1643 sock->file->f_flags);
1644 out_put:
1645 fput_light(sock->file, fput_needed);
1646 out:
1647 return err;
1651 * Get the local address ('name') of a socket object. Move the obtained
1652 * name to user space.
1655 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1656 int __user *, usockaddr_len)
1658 struct socket *sock;
1659 struct sockaddr_storage address;
1660 int len, err, fput_needed;
1662 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1663 if (!sock)
1664 goto out;
1666 err = security_socket_getsockname(sock);
1667 if (err)
1668 goto out_put;
1670 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1671 if (err)
1672 goto out_put;
1673 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1675 out_put:
1676 fput_light(sock->file, fput_needed);
1677 out:
1678 return err;
1682 * Get the remote address ('name') of a socket object. Move the obtained
1683 * name to user space.
1686 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1687 int __user *, usockaddr_len)
1689 struct socket *sock;
1690 struct sockaddr_storage address;
1691 int len, err, fput_needed;
1693 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1694 if (sock != NULL) {
1695 err = security_socket_getpeername(sock);
1696 if (err) {
1697 fput_light(sock->file, fput_needed);
1698 return err;
1701 err =
1702 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1704 if (!err)
1705 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1706 usockaddr_len);
1707 fput_light(sock->file, fput_needed);
1709 return err;
1713 * Send a datagram to a given address. We move the address into kernel
1714 * space and check the user space data area is readable before invoking
1715 * the protocol.
1718 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1719 unsigned, flags, struct sockaddr __user *, addr,
1720 int, addr_len)
1722 struct socket *sock;
1723 struct sockaddr_storage address;
1724 int err;
1725 struct msghdr msg;
1726 struct iovec iov;
1727 int fput_needed;
1729 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1730 if (!sock)
1731 goto out;
1733 iov.iov_base = buff;
1734 iov.iov_len = len;
1735 msg.msg_name = NULL;
1736 msg.msg_iov = &iov;
1737 msg.msg_iovlen = 1;
1738 msg.msg_control = NULL;
1739 msg.msg_controllen = 0;
1740 msg.msg_namelen = 0;
1741 if (addr) {
1742 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1743 if (err < 0)
1744 goto out_put;
1745 msg.msg_name = (struct sockaddr *)&address;
1746 msg.msg_namelen = addr_len;
1748 if (sock->file->f_flags & O_NONBLOCK)
1749 flags |= MSG_DONTWAIT;
1750 msg.msg_flags = flags;
1751 err = sock_sendmsg(sock, &msg, len);
1753 out_put:
1754 fput_light(sock->file, fput_needed);
1755 out:
1756 return err;
1760 * Send a datagram down a socket.
1763 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1764 unsigned, flags)
1766 return sys_sendto(fd, buff, len, flags, NULL, 0);
1770 * Receive a frame from the socket and optionally record the address of the
1771 * sender. We verify the buffers are writable and if needed move the
1772 * sender address from kernel to user space.
1775 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1776 unsigned, flags, struct sockaddr __user *, addr,
1777 int __user *, addr_len)
1779 struct socket *sock;
1780 struct iovec iov;
1781 struct msghdr msg;
1782 struct sockaddr_storage address;
1783 int err, err2;
1784 int fput_needed;
1786 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1787 if (!sock)
1788 goto out;
1790 msg.msg_control = NULL;
1791 msg.msg_controllen = 0;
1792 msg.msg_iovlen = 1;
1793 msg.msg_iov = &iov;
1794 iov.iov_len = size;
1795 iov.iov_base = ubuf;
1796 msg.msg_name = (struct sockaddr *)&address;
1797 msg.msg_namelen = sizeof(address);
1798 if (sock->file->f_flags & O_NONBLOCK)
1799 flags |= MSG_DONTWAIT;
1800 err = sock_recvmsg(sock, &msg, size, flags);
1802 if (err >= 0 && addr != NULL) {
1803 err2 = move_addr_to_user((struct sockaddr *)&address,
1804 msg.msg_namelen, addr, addr_len);
1805 if (err2 < 0)
1806 err = err2;
1809 fput_light(sock->file, fput_needed);
1810 out:
1811 return err;
1815 * Receive a datagram from a socket.
1818 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1819 unsigned flags)
1821 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1825 * Set a socket option. Because we don't know the option lengths we have
1826 * to pass the user mode parameter for the protocols to sort out.
1829 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1830 char __user *, optval, int, optlen)
1832 int err, fput_needed;
1833 struct socket *sock;
1835 if (optlen < 0)
1836 return -EINVAL;
1838 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1839 if (sock != NULL) {
1840 err = security_socket_setsockopt(sock, level, optname);
1841 if (err)
1842 goto out_put;
1844 if (level == SOL_SOCKET)
1845 err =
1846 sock_setsockopt(sock, level, optname, optval,
1847 optlen);
1848 else
1849 err =
1850 sock->ops->setsockopt(sock, level, optname, optval,
1851 optlen);
1852 out_put:
1853 fput_light(sock->file, fput_needed);
1855 return err;
1859 * Get a socket option. Because we don't know the option lengths we have
1860 * to pass a user mode parameter for the protocols to sort out.
1863 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1864 char __user *, optval, int __user *, optlen)
1866 int err, fput_needed;
1867 struct socket *sock;
1869 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1870 if (sock != NULL) {
1871 err = security_socket_getsockopt(sock, level, optname);
1872 if (err)
1873 goto out_put;
1875 if (level == SOL_SOCKET)
1876 err =
1877 sock_getsockopt(sock, level, optname, optval,
1878 optlen);
1879 else
1880 err =
1881 sock->ops->getsockopt(sock, level, optname, optval,
1882 optlen);
1883 out_put:
1884 fput_light(sock->file, fput_needed);
1886 return err;
1890 * Shutdown a socket.
1893 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1895 int err, fput_needed;
1896 struct socket *sock;
1898 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1899 if (sock != NULL) {
1900 err = security_socket_shutdown(sock, how);
1901 if (!err)
1902 err = sock->ops->shutdown(sock, how);
1903 fput_light(sock->file, fput_needed);
1905 return err;
1908 /* A couple of helpful macros for getting the address of the 32/64 bit
1909 * fields which are the same type (int / unsigned) on our platforms.
1911 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1912 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1913 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1916 * BSD sendmsg interface
1919 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1921 struct compat_msghdr __user *msg_compat =
1922 (struct compat_msghdr __user *)msg;
1923 struct socket *sock;
1924 struct sockaddr_storage address;
1925 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1926 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1927 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1928 /* 20 is size of ipv6_pktinfo */
1929 unsigned char *ctl_buf = ctl;
1930 struct msghdr msg_sys;
1931 int err, ctl_len, iov_size, total_len;
1932 int fput_needed;
1934 err = -EFAULT;
1935 if (MSG_CMSG_COMPAT & flags) {
1936 if (get_compat_msghdr(&msg_sys, msg_compat))
1937 return -EFAULT;
1939 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1940 return -EFAULT;
1942 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1943 if (!sock)
1944 goto out;
1946 /* do not move before msg_sys is valid */
1947 err = -EMSGSIZE;
1948 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1949 goto out_put;
1951 /* Check whether to allocate the iovec area */
1952 err = -ENOMEM;
1953 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1954 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1955 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1956 if (!iov)
1957 goto out_put;
1960 /* This will also move the address data into kernel space */
1961 if (MSG_CMSG_COMPAT & flags) {
1962 err = verify_compat_iovec(&msg_sys, iov,
1963 (struct sockaddr *)&address,
1964 VERIFY_READ);
1965 } else
1966 err = verify_iovec(&msg_sys, iov,
1967 (struct sockaddr *)&address,
1968 VERIFY_READ);
1969 if (err < 0)
1970 goto out_freeiov;
1971 total_len = err;
1973 err = -ENOBUFS;
1975 if (msg_sys.msg_controllen > INT_MAX)
1976 goto out_freeiov;
1977 ctl_len = msg_sys.msg_controllen;
1978 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1979 err =
1980 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1981 sizeof(ctl));
1982 if (err)
1983 goto out_freeiov;
1984 ctl_buf = msg_sys.msg_control;
1985 ctl_len = msg_sys.msg_controllen;
1986 } else if (ctl_len) {
1987 if (ctl_len > sizeof(ctl)) {
1988 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1989 if (ctl_buf == NULL)
1990 goto out_freeiov;
1992 err = -EFAULT;
1994 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1995 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1996 * checking falls down on this.
1998 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1999 ctl_len))
2000 goto out_freectl;
2001 msg_sys.msg_control = ctl_buf;
2003 msg_sys.msg_flags = flags;
2005 if (sock->file->f_flags & O_NONBLOCK)
2006 msg_sys.msg_flags |= MSG_DONTWAIT;
2007 err = sock_sendmsg(sock, &msg_sys, total_len);
2009 out_freectl:
2010 if (ctl_buf != ctl)
2011 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2012 out_freeiov:
2013 if (iov != iovstack)
2014 sock_kfree_s(sock->sk, iov, iov_size);
2015 out_put:
2016 fput_light(sock->file, fput_needed);
2017 out:
2018 return err;
2021 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2022 struct msghdr *msg_sys, unsigned flags, int nosec)
2024 struct compat_msghdr __user *msg_compat =
2025 (struct compat_msghdr __user *)msg;
2026 struct iovec iovstack[UIO_FASTIOV];
2027 struct iovec *iov = iovstack;
2028 unsigned long cmsg_ptr;
2029 int err, iov_size, total_len, len;
2031 /* kernel mode address */
2032 struct sockaddr_storage addr;
2034 /* user mode address pointers */
2035 struct sockaddr __user *uaddr;
2036 int __user *uaddr_len;
2038 if (MSG_CMSG_COMPAT & flags) {
2039 if (get_compat_msghdr(msg_sys, msg_compat))
2040 return -EFAULT;
2042 else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2043 return -EFAULT;
2045 err = -EMSGSIZE;
2046 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2047 goto out;
2049 /* Check whether to allocate the iovec area */
2050 err = -ENOMEM;
2051 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
2052 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2053 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2054 if (!iov)
2055 goto out;
2059 * Save the user-mode address (verify_iovec will change the
2060 * kernel msghdr to use the kernel address space)
2063 uaddr = (__force void __user *)msg_sys->msg_name;
2064 uaddr_len = COMPAT_NAMELEN(msg);
2065 if (MSG_CMSG_COMPAT & flags) {
2066 err = verify_compat_iovec(msg_sys, iov,
2067 (struct sockaddr *)&addr,
2068 VERIFY_WRITE);
2069 } else
2070 err = verify_iovec(msg_sys, iov,
2071 (struct sockaddr *)&addr,
2072 VERIFY_WRITE);
2073 if (err < 0)
2074 goto out_freeiov;
2075 total_len = err;
2077 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2078 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2080 if (sock->file->f_flags & O_NONBLOCK)
2081 flags |= MSG_DONTWAIT;
2082 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2083 total_len, flags);
2084 if (err < 0)
2085 goto out_freeiov;
2086 len = err;
2088 if (uaddr != NULL) {
2089 err = move_addr_to_user((struct sockaddr *)&addr,
2090 msg_sys->msg_namelen, uaddr,
2091 uaddr_len);
2092 if (err < 0)
2093 goto out_freeiov;
2095 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2096 COMPAT_FLAGS(msg));
2097 if (err)
2098 goto out_freeiov;
2099 if (MSG_CMSG_COMPAT & flags)
2100 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2101 &msg_compat->msg_controllen);
2102 else
2103 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2104 &msg->msg_controllen);
2105 if (err)
2106 goto out_freeiov;
2107 err = len;
2109 out_freeiov:
2110 if (iov != iovstack)
2111 sock_kfree_s(sock->sk, iov, iov_size);
2112 out:
2113 return err;
2117 * BSD recvmsg interface
2120 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2121 unsigned int, flags)
2123 int fput_needed, err;
2124 struct msghdr msg_sys;
2125 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2127 if (!sock)
2128 goto out;
2130 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2132 fput_light(sock->file, fput_needed);
2133 out:
2134 return err;
2138 * Linux recvmmsg interface
2141 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2142 unsigned int flags, struct timespec *timeout)
2144 int fput_needed, err, datagrams;
2145 struct socket *sock;
2146 struct mmsghdr __user *entry;
2147 struct compat_mmsghdr __user *compat_entry;
2148 struct msghdr msg_sys;
2149 struct timespec end_time;
2151 if (timeout &&
2152 poll_select_set_timeout(&end_time, timeout->tv_sec,
2153 timeout->tv_nsec))
2154 return -EINVAL;
2156 datagrams = 0;
2158 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2159 if (!sock)
2160 return err;
2162 err = sock_error(sock->sk);
2163 if (err)
2164 goto out_put;
2166 entry = mmsg;
2167 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2169 while (datagrams < vlen) {
2171 * No need to ask LSM for more than the first datagram.
2173 if (MSG_CMSG_COMPAT & flags) {
2174 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2175 &msg_sys, flags, datagrams);
2176 if (err < 0)
2177 break;
2178 err = __put_user(err, &compat_entry->msg_len);
2179 ++compat_entry;
2180 } else {
2181 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2182 &msg_sys, flags, datagrams);
2183 if (err < 0)
2184 break;
2185 err = put_user(err, &entry->msg_len);
2186 ++entry;
2189 if (err)
2190 break;
2191 ++datagrams;
2193 if (timeout) {
2194 ktime_get_ts(timeout);
2195 *timeout = timespec_sub(end_time, *timeout);
2196 if (timeout->tv_sec < 0) {
2197 timeout->tv_sec = timeout->tv_nsec = 0;
2198 break;
2201 /* Timeout, return less than vlen datagrams */
2202 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2203 break;
2206 /* Out of band data, return right away */
2207 if (msg_sys.msg_flags & MSG_OOB)
2208 break;
2211 out_put:
2212 fput_light(sock->file, fput_needed);
2214 if (err == 0)
2215 return datagrams;
2217 if (datagrams != 0) {
2219 * We may return less entries than requested (vlen) if the
2220 * sock is non block and there aren't enough datagrams...
2222 if (err != -EAGAIN) {
2224 * ... or if recvmsg returns an error after we
2225 * received some datagrams, where we record the
2226 * error to return on the next call or if the
2227 * app asks about it using getsockopt(SO_ERROR).
2229 sock->sk->sk_err = -err;
2232 return datagrams;
2235 return err;
2238 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2239 unsigned int, vlen, unsigned int, flags,
2240 struct timespec __user *, timeout)
2242 int datagrams;
2243 struct timespec timeout_sys;
2245 if (!timeout)
2246 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2248 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2249 return -EFAULT;
2251 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2253 if (datagrams > 0 &&
2254 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2255 datagrams = -EFAULT;
2257 return datagrams;
2260 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2261 /* Argument list sizes for sys_socketcall */
2262 #define AL(x) ((x) * sizeof(unsigned long))
2263 static const unsigned char nargs[20] = {
2264 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2265 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2266 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2267 AL(4),AL(5)
2270 #undef AL
2273 * System call vectors.
2275 * Argument checking cleaned up. Saved 20% in size.
2276 * This function doesn't need to set the kernel lock because
2277 * it is set by the callees.
2280 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2282 unsigned long a[6];
2283 unsigned long a0, a1;
2284 int err;
2285 unsigned int len;
2287 if (call < 1 || call > SYS_RECVMMSG)
2288 return -EINVAL;
2290 len = nargs[call];
2291 if (len > sizeof(a))
2292 return -EINVAL;
2294 /* copy_from_user should be SMP safe. */
2295 if (copy_from_user(a, args, len))
2296 return -EFAULT;
2298 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2300 a0 = a[0];
2301 a1 = a[1];
2303 switch (call) {
2304 case SYS_SOCKET:
2305 err = sys_socket(a0, a1, a[2]);
2306 break;
2307 case SYS_BIND:
2308 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2309 break;
2310 case SYS_CONNECT:
2311 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2312 break;
2313 case SYS_LISTEN:
2314 err = sys_listen(a0, a1);
2315 break;
2316 case SYS_ACCEPT:
2317 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2318 (int __user *)a[2], 0);
2319 break;
2320 case SYS_GETSOCKNAME:
2321 err =
2322 sys_getsockname(a0, (struct sockaddr __user *)a1,
2323 (int __user *)a[2]);
2324 break;
2325 case SYS_GETPEERNAME:
2326 err =
2327 sys_getpeername(a0, (struct sockaddr __user *)a1,
2328 (int __user *)a[2]);
2329 break;
2330 case SYS_SOCKETPAIR:
2331 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2332 break;
2333 case SYS_SEND:
2334 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2335 break;
2336 case SYS_SENDTO:
2337 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2338 (struct sockaddr __user *)a[4], a[5]);
2339 break;
2340 case SYS_RECV:
2341 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2342 break;
2343 case SYS_RECVFROM:
2344 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2345 (struct sockaddr __user *)a[4],
2346 (int __user *)a[5]);
2347 break;
2348 case SYS_SHUTDOWN:
2349 err = sys_shutdown(a0, a1);
2350 break;
2351 case SYS_SETSOCKOPT:
2352 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2353 break;
2354 case SYS_GETSOCKOPT:
2355 err =
2356 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2357 (int __user *)a[4]);
2358 break;
2359 case SYS_SENDMSG:
2360 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2361 break;
2362 case SYS_RECVMSG:
2363 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2364 break;
2365 case SYS_RECVMMSG:
2366 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2367 (struct timespec __user *)a[4]);
2368 break;
2369 case SYS_ACCEPT4:
2370 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2371 (int __user *)a[2], a[3]);
2372 break;
2373 default:
2374 err = -EINVAL;
2375 break;
2377 return err;
2380 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2383 * sock_register - add a socket protocol handler
2384 * @ops: description of protocol
2386 * This function is called by a protocol handler that wants to
2387 * advertise its address family, and have it linked into the
2388 * socket interface. The value ops->family coresponds to the
2389 * socket system call protocol family.
2391 int sock_register(const struct net_proto_family *ops)
2393 int err;
2395 if (ops->family >= NPROTO) {
2396 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2397 NPROTO);
2398 return -ENOBUFS;
2401 spin_lock(&net_family_lock);
2402 if (net_families[ops->family])
2403 err = -EEXIST;
2404 else {
2405 net_families[ops->family] = ops;
2406 err = 0;
2408 spin_unlock(&net_family_lock);
2410 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2411 return err;
2415 * sock_unregister - remove a protocol handler
2416 * @family: protocol family to remove
2418 * This function is called by a protocol handler that wants to
2419 * remove its address family, and have it unlinked from the
2420 * new socket creation.
2422 * If protocol handler is a module, then it can use module reference
2423 * counts to protect against new references. If protocol handler is not
2424 * a module then it needs to provide its own protection in
2425 * the ops->create routine.
2427 void sock_unregister(int family)
2429 BUG_ON(family < 0 || family >= NPROTO);
2431 spin_lock(&net_family_lock);
2432 net_families[family] = NULL;
2433 spin_unlock(&net_family_lock);
2435 synchronize_rcu();
2437 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2440 static int __init sock_init(void)
2443 * Initialize sock SLAB cache.
2446 sk_init();
2449 * Initialize skbuff SLAB cache
2451 skb_init();
2454 * Initialize the protocols module.
2457 init_inodecache();
2458 register_filesystem(&sock_fs_type);
2459 sock_mnt = kern_mount(&sock_fs_type);
2461 /* The real protocol initialization is performed in later initcalls.
2464 #ifdef CONFIG_NETFILTER
2465 netfilter_init();
2466 #endif
2468 return 0;
2471 core_initcall(sock_init); /* early initcall */
2473 #ifdef CONFIG_PROC_FS
2474 void socket_seq_show(struct seq_file *seq)
2476 int cpu;
2477 int counter = 0;
2479 for_each_possible_cpu(cpu)
2480 counter += per_cpu(sockets_in_use, cpu);
2482 /* It can be negative, by the way. 8) */
2483 if (counter < 0)
2484 counter = 0;
2486 seq_printf(seq, "sockets: used %d\n", counter);
2488 #endif /* CONFIG_PROC_FS */
2490 #ifdef CONFIG_COMPAT
2491 static int do_siocgstamp(struct net *net, struct socket *sock,
2492 unsigned int cmd, struct compat_timeval __user *up)
2494 mm_segment_t old_fs = get_fs();
2495 struct timeval ktv;
2496 int err;
2498 set_fs(KERNEL_DS);
2499 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2500 set_fs(old_fs);
2501 if (!err) {
2502 err = put_user(ktv.tv_sec, &up->tv_sec);
2503 err |= __put_user(ktv.tv_usec, &up->tv_usec);
2505 return err;
2508 static int do_siocgstampns(struct net *net, struct socket *sock,
2509 unsigned int cmd, struct compat_timespec __user *up)
2511 mm_segment_t old_fs = get_fs();
2512 struct timespec kts;
2513 int err;
2515 set_fs(KERNEL_DS);
2516 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2517 set_fs(old_fs);
2518 if (!err) {
2519 err = put_user(kts.tv_sec, &up->tv_sec);
2520 err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2522 return err;
2525 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2527 struct ifreq __user *uifr;
2528 int err;
2530 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2531 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2532 return -EFAULT;
2534 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2535 if (err)
2536 return err;
2538 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2539 return -EFAULT;
2541 return 0;
2544 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2546 struct compat_ifconf ifc32;
2547 struct ifconf ifc;
2548 struct ifconf __user *uifc;
2549 struct compat_ifreq __user *ifr32;
2550 struct ifreq __user *ifr;
2551 unsigned int i, j;
2552 int err;
2554 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2555 return -EFAULT;
2557 if (ifc32.ifcbuf == 0) {
2558 ifc32.ifc_len = 0;
2559 ifc.ifc_len = 0;
2560 ifc.ifc_req = NULL;
2561 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2562 } else {
2563 size_t len =((ifc32.ifc_len / sizeof (struct compat_ifreq)) + 1) *
2564 sizeof (struct ifreq);
2565 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2566 ifc.ifc_len = len;
2567 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2568 ifr32 = compat_ptr(ifc32.ifcbuf);
2569 for (i = 0; i < ifc32.ifc_len; i += sizeof (struct compat_ifreq)) {
2570 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2571 return -EFAULT;
2572 ifr++;
2573 ifr32++;
2576 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2577 return -EFAULT;
2579 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2580 if (err)
2581 return err;
2583 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2584 return -EFAULT;
2586 ifr = ifc.ifc_req;
2587 ifr32 = compat_ptr(ifc32.ifcbuf);
2588 for (i = 0, j = 0;
2589 i + sizeof (struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2590 i += sizeof (struct compat_ifreq), j += sizeof (struct ifreq)) {
2591 if (copy_in_user(ifr32, ifr, sizeof (struct compat_ifreq)))
2592 return -EFAULT;
2593 ifr32++;
2594 ifr++;
2597 if (ifc32.ifcbuf == 0) {
2598 /* Translate from 64-bit structure multiple to
2599 * a 32-bit one.
2601 i = ifc.ifc_len;
2602 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2603 ifc32.ifc_len = i;
2604 } else {
2605 ifc32.ifc_len = i;
2607 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2608 return -EFAULT;
2610 return 0;
2613 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2615 struct ifreq __user *ifr;
2616 u32 data;
2617 void __user *datap;
2619 ifr = compat_alloc_user_space(sizeof(*ifr));
2621 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2622 return -EFAULT;
2624 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2625 return -EFAULT;
2627 datap = compat_ptr(data);
2628 if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2629 return -EFAULT;
2631 return dev_ioctl(net, SIOCETHTOOL, ifr);
2634 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2636 void __user *uptr;
2637 compat_uptr_t uptr32;
2638 struct ifreq __user *uifr;
2640 uifr = compat_alloc_user_space(sizeof (*uifr));
2641 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2642 return -EFAULT;
2644 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2645 return -EFAULT;
2647 uptr = compat_ptr(uptr32);
2649 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2650 return -EFAULT;
2652 return dev_ioctl(net, SIOCWANDEV, uifr);
2655 static int bond_ioctl(struct net *net, unsigned int cmd,
2656 struct compat_ifreq __user *ifr32)
2658 struct ifreq kifr;
2659 struct ifreq __user *uifr;
2660 mm_segment_t old_fs;
2661 int err;
2662 u32 data;
2663 void __user *datap;
2665 switch (cmd) {
2666 case SIOCBONDENSLAVE:
2667 case SIOCBONDRELEASE:
2668 case SIOCBONDSETHWADDR:
2669 case SIOCBONDCHANGEACTIVE:
2670 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2671 return -EFAULT;
2673 old_fs = get_fs();
2674 set_fs (KERNEL_DS);
2675 err = dev_ioctl(net, cmd, &kifr);
2676 set_fs (old_fs);
2678 return err;
2679 case SIOCBONDSLAVEINFOQUERY:
2680 case SIOCBONDINFOQUERY:
2681 uifr = compat_alloc_user_space(sizeof(*uifr));
2682 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2683 return -EFAULT;
2685 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2686 return -EFAULT;
2688 datap = compat_ptr(data);
2689 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2690 return -EFAULT;
2692 return dev_ioctl(net, cmd, uifr);
2693 default:
2694 return -EINVAL;
2698 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2699 struct compat_ifreq __user *u_ifreq32)
2701 struct ifreq __user *u_ifreq64;
2702 char tmp_buf[IFNAMSIZ];
2703 void __user *data64;
2704 u32 data32;
2706 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2707 IFNAMSIZ))
2708 return -EFAULT;
2709 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2710 return -EFAULT;
2711 data64 = compat_ptr(data32);
2713 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2715 /* Don't check these user accesses, just let that get trapped
2716 * in the ioctl handler instead.
2718 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2719 IFNAMSIZ))
2720 return -EFAULT;
2721 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2722 return -EFAULT;
2724 return dev_ioctl(net, cmd, u_ifreq64);
2727 static int dev_ifsioc(struct net *net, struct socket *sock,
2728 unsigned int cmd, struct compat_ifreq __user *uifr32)
2730 struct ifreq __user *uifr;
2731 int err;
2733 uifr = compat_alloc_user_space(sizeof(*uifr));
2734 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2735 return -EFAULT;
2737 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2739 if (!err) {
2740 switch (cmd) {
2741 case SIOCGIFFLAGS:
2742 case SIOCGIFMETRIC:
2743 case SIOCGIFMTU:
2744 case SIOCGIFMEM:
2745 case SIOCGIFHWADDR:
2746 case SIOCGIFINDEX:
2747 case SIOCGIFADDR:
2748 case SIOCGIFBRDADDR:
2749 case SIOCGIFDSTADDR:
2750 case SIOCGIFNETMASK:
2751 case SIOCGIFPFLAGS:
2752 case SIOCGIFTXQLEN:
2753 case SIOCGMIIPHY:
2754 case SIOCGMIIREG:
2755 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2756 err = -EFAULT;
2757 break;
2760 return err;
2763 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2764 struct compat_ifreq __user *uifr32)
2766 struct ifreq ifr;
2767 struct compat_ifmap __user *uifmap32;
2768 mm_segment_t old_fs;
2769 int err;
2771 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2772 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2773 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2774 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2775 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2776 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2777 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2778 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2779 if (err)
2780 return -EFAULT;
2782 old_fs = get_fs();
2783 set_fs (KERNEL_DS);
2784 err = dev_ioctl(net, cmd, (void __user *)&ifr);
2785 set_fs (old_fs);
2787 if (cmd == SIOCGIFMAP && !err) {
2788 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2789 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2790 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2791 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2792 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2793 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2794 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2795 if (err)
2796 err = -EFAULT;
2798 return err;
2801 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2803 void __user *uptr;
2804 compat_uptr_t uptr32;
2805 struct ifreq __user *uifr;
2807 uifr = compat_alloc_user_space(sizeof (*uifr));
2808 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2809 return -EFAULT;
2811 if (get_user(uptr32, &uifr32->ifr_data))
2812 return -EFAULT;
2814 uptr = compat_ptr(uptr32);
2816 if (put_user(uptr, &uifr->ifr_data))
2817 return -EFAULT;
2819 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2822 struct rtentry32 {
2823 u32 rt_pad1;
2824 struct sockaddr rt_dst; /* target address */
2825 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2826 struct sockaddr rt_genmask; /* target network mask (IP) */
2827 unsigned short rt_flags;
2828 short rt_pad2;
2829 u32 rt_pad3;
2830 unsigned char rt_tos;
2831 unsigned char rt_class;
2832 short rt_pad4;
2833 short rt_metric; /* +1 for binary compatibility! */
2834 /* char * */ u32 rt_dev; /* forcing the device at add */
2835 u32 rt_mtu; /* per route MTU/Window */
2836 u32 rt_window; /* Window clamping */
2837 unsigned short rt_irtt; /* Initial RTT */
2840 struct in6_rtmsg32 {
2841 struct in6_addr rtmsg_dst;
2842 struct in6_addr rtmsg_src;
2843 struct in6_addr rtmsg_gateway;
2844 u32 rtmsg_type;
2845 u16 rtmsg_dst_len;
2846 u16 rtmsg_src_len;
2847 u32 rtmsg_metric;
2848 u32 rtmsg_info;
2849 u32 rtmsg_flags;
2850 s32 rtmsg_ifindex;
2853 static int routing_ioctl(struct net *net, struct socket *sock,
2854 unsigned int cmd, void __user *argp)
2856 int ret;
2857 void *r = NULL;
2858 struct in6_rtmsg r6;
2859 struct rtentry r4;
2860 char devname[16];
2861 u32 rtdev;
2862 mm_segment_t old_fs = get_fs();
2864 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2865 struct in6_rtmsg32 __user *ur6 = argp;
2866 ret = copy_from_user (&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2867 3 * sizeof(struct in6_addr));
2868 ret |= __get_user (r6.rtmsg_type, &(ur6->rtmsg_type));
2869 ret |= __get_user (r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2870 ret |= __get_user (r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2871 ret |= __get_user (r6.rtmsg_metric, &(ur6->rtmsg_metric));
2872 ret |= __get_user (r6.rtmsg_info, &(ur6->rtmsg_info));
2873 ret |= __get_user (r6.rtmsg_flags, &(ur6->rtmsg_flags));
2874 ret |= __get_user (r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2876 r = (void *) &r6;
2877 } else { /* ipv4 */
2878 struct rtentry32 __user *ur4 = argp;
2879 ret = copy_from_user (&r4.rt_dst, &(ur4->rt_dst),
2880 3 * sizeof(struct sockaddr));
2881 ret |= __get_user (r4.rt_flags, &(ur4->rt_flags));
2882 ret |= __get_user (r4.rt_metric, &(ur4->rt_metric));
2883 ret |= __get_user (r4.rt_mtu, &(ur4->rt_mtu));
2884 ret |= __get_user (r4.rt_window, &(ur4->rt_window));
2885 ret |= __get_user (r4.rt_irtt, &(ur4->rt_irtt));
2886 ret |= __get_user (rtdev, &(ur4->rt_dev));
2887 if (rtdev) {
2888 ret |= copy_from_user (devname, compat_ptr(rtdev), 15);
2889 r4.rt_dev = devname; devname[15] = 0;
2890 } else
2891 r4.rt_dev = NULL;
2893 r = (void *) &r4;
2896 if (ret) {
2897 ret = -EFAULT;
2898 goto out;
2901 set_fs (KERNEL_DS);
2902 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2903 set_fs (old_fs);
2905 out:
2906 return ret;
2909 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2910 * for some operations; this forces use of the newer bridge-utils that
2911 * use compatiable ioctls
2913 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2915 compat_ulong_t tmp;
2917 if (get_user(tmp, argp))
2918 return -EFAULT;
2919 if (tmp == BRCTL_GET_VERSION)
2920 return BRCTL_VERSION + 1;
2921 return -EINVAL;
2924 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2925 unsigned int cmd, unsigned long arg)
2927 void __user *argp = compat_ptr(arg);
2928 struct sock *sk = sock->sk;
2929 struct net *net = sock_net(sk);
2931 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2932 return siocdevprivate_ioctl(net, cmd, argp);
2934 switch (cmd) {
2935 case SIOCSIFBR:
2936 case SIOCGIFBR:
2937 return old_bridge_ioctl(argp);
2938 case SIOCGIFNAME:
2939 return dev_ifname32(net, argp);
2940 case SIOCGIFCONF:
2941 return dev_ifconf(net, argp);
2942 case SIOCETHTOOL:
2943 return ethtool_ioctl(net, argp);
2944 case SIOCWANDEV:
2945 return compat_siocwandev(net, argp);
2946 case SIOCGIFMAP:
2947 case SIOCSIFMAP:
2948 return compat_sioc_ifmap(net, cmd, argp);
2949 case SIOCBONDENSLAVE:
2950 case SIOCBONDRELEASE:
2951 case SIOCBONDSETHWADDR:
2952 case SIOCBONDSLAVEINFOQUERY:
2953 case SIOCBONDINFOQUERY:
2954 case SIOCBONDCHANGEACTIVE:
2955 return bond_ioctl(net, cmd, argp);
2956 case SIOCADDRT:
2957 case SIOCDELRT:
2958 return routing_ioctl(net, sock, cmd, argp);
2959 case SIOCGSTAMP:
2960 return do_siocgstamp(net, sock, cmd, argp);
2961 case SIOCGSTAMPNS:
2962 return do_siocgstampns(net, sock, cmd, argp);
2963 case SIOCSHWTSTAMP:
2964 return compat_siocshwtstamp(net, argp);
2966 case FIOSETOWN:
2967 case SIOCSPGRP:
2968 case FIOGETOWN:
2969 case SIOCGPGRP:
2970 case SIOCBRADDBR:
2971 case SIOCBRDELBR:
2972 case SIOCGIFVLAN:
2973 case SIOCSIFVLAN:
2974 case SIOCADDDLCI:
2975 case SIOCDELDLCI:
2976 return sock_ioctl(file, cmd, arg);
2978 case SIOCGIFFLAGS:
2979 case SIOCSIFFLAGS:
2980 case SIOCGIFMETRIC:
2981 case SIOCSIFMETRIC:
2982 case SIOCGIFMTU:
2983 case SIOCSIFMTU:
2984 case SIOCGIFMEM:
2985 case SIOCSIFMEM:
2986 case SIOCGIFHWADDR:
2987 case SIOCSIFHWADDR:
2988 case SIOCADDMULTI:
2989 case SIOCDELMULTI:
2990 case SIOCGIFINDEX:
2991 case SIOCGIFADDR:
2992 case SIOCSIFADDR:
2993 case SIOCSIFHWBROADCAST:
2994 case SIOCDIFADDR:
2995 case SIOCGIFBRDADDR:
2996 case SIOCSIFBRDADDR:
2997 case SIOCGIFDSTADDR:
2998 case SIOCSIFDSTADDR:
2999 case SIOCGIFNETMASK:
3000 case SIOCSIFNETMASK:
3001 case SIOCSIFPFLAGS:
3002 case SIOCGIFPFLAGS:
3003 case SIOCGIFTXQLEN:
3004 case SIOCSIFTXQLEN:
3005 case SIOCBRADDIF:
3006 case SIOCBRDELIF:
3007 case SIOCSIFNAME:
3008 case SIOCGMIIPHY:
3009 case SIOCGMIIREG:
3010 case SIOCSMIIREG:
3011 return dev_ifsioc(net, sock, cmd, argp);
3013 case SIOCSARP:
3014 case SIOCGARP:
3015 case SIOCDARP:
3016 case SIOCATMARK:
3017 return sock_do_ioctl(net, sock, cmd, arg);
3020 /* Prevent warning from compat_sys_ioctl, these always
3021 * result in -EINVAL in the native case anyway. */
3022 switch (cmd) {
3023 case SIOCRTMSG:
3024 case SIOCGIFCOUNT:
3025 case SIOCSRARP:
3026 case SIOCGRARP:
3027 case SIOCDRARP:
3028 case SIOCSIFLINK:
3029 case SIOCGIFSLAVE:
3030 case SIOCSIFSLAVE:
3031 return -EINVAL;
3034 return -ENOIOCTLCMD;
3037 static long compat_sock_ioctl(struct file *file, unsigned cmd,
3038 unsigned long arg)
3040 struct socket *sock = file->private_data;
3041 int ret = -ENOIOCTLCMD;
3042 struct sock *sk;
3043 struct net *net;
3045 sk = sock->sk;
3046 net = sock_net(sk);
3048 if (sock->ops->compat_ioctl)
3049 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3051 if (ret == -ENOIOCTLCMD &&
3052 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3053 ret = compat_wext_handle_ioctl(net, cmd, arg);
3055 if (ret == -ENOIOCTLCMD)
3056 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3058 return ret;
3060 #endif
3062 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3064 return sock->ops->bind(sock, addr, addrlen);
3067 int kernel_listen(struct socket *sock, int backlog)
3069 return sock->ops->listen(sock, backlog);
3072 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3074 struct sock *sk = sock->sk;
3075 int err;
3077 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3078 newsock);
3079 if (err < 0)
3080 goto done;
3082 err = sock->ops->accept(sock, *newsock, flags);
3083 if (err < 0) {
3084 sock_release(*newsock);
3085 *newsock = NULL;
3086 goto done;
3089 (*newsock)->ops = sock->ops;
3090 __module_get((*newsock)->ops->owner);
3092 done:
3093 return err;
3096 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3097 int flags)
3099 return sock->ops->connect(sock, addr, addrlen, flags);
3102 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3103 int *addrlen)
3105 return sock->ops->getname(sock, addr, addrlen, 0);
3108 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3109 int *addrlen)
3111 return sock->ops->getname(sock, addr, addrlen, 1);
3114 int kernel_getsockopt(struct socket *sock, int level, int optname,
3115 char *optval, int *optlen)
3117 mm_segment_t oldfs = get_fs();
3118 int err;
3120 set_fs(KERNEL_DS);
3121 if (level == SOL_SOCKET)
3122 err = sock_getsockopt(sock, level, optname, optval, optlen);
3123 else
3124 err = sock->ops->getsockopt(sock, level, optname, optval,
3125 optlen);
3126 set_fs(oldfs);
3127 return err;
3130 int kernel_setsockopt(struct socket *sock, int level, int optname,
3131 char *optval, unsigned int optlen)
3133 mm_segment_t oldfs = get_fs();
3134 int err;
3136 set_fs(KERNEL_DS);
3137 if (level == SOL_SOCKET)
3138 err = sock_setsockopt(sock, level, optname, optval, optlen);
3139 else
3140 err = sock->ops->setsockopt(sock, level, optname, optval,
3141 optlen);
3142 set_fs(oldfs);
3143 return err;
3146 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3147 size_t size, int flags)
3149 if (sock->ops->sendpage)
3150 return sock->ops->sendpage(sock, page, offset, size, flags);
3152 return sock_no_sendpage(sock, page, offset, size, flags);
3155 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3157 mm_segment_t oldfs = get_fs();
3158 int err;
3160 set_fs(KERNEL_DS);
3161 err = sock->ops->ioctl(sock, cmd, arg);
3162 set_fs(oldfs);
3164 return err;
3167 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3169 return sock->ops->shutdown(sock, how);
3172 EXPORT_SYMBOL(sock_create);
3173 EXPORT_SYMBOL(sock_create_kern);
3174 EXPORT_SYMBOL(sock_create_lite);
3175 EXPORT_SYMBOL(sock_map_fd);
3176 EXPORT_SYMBOL(sock_recvmsg);
3177 EXPORT_SYMBOL(sock_register);
3178 EXPORT_SYMBOL(sock_release);
3179 EXPORT_SYMBOL(sock_sendmsg);
3180 EXPORT_SYMBOL(sock_unregister);
3181 EXPORT_SYMBOL(sock_wake_async);
3182 EXPORT_SYMBOL(sockfd_lookup);
3183 EXPORT_SYMBOL(kernel_sendmsg);
3184 EXPORT_SYMBOL(kernel_recvmsg);
3185 EXPORT_SYMBOL(kernel_bind);
3186 EXPORT_SYMBOL(kernel_listen);
3187 EXPORT_SYMBOL(kernel_accept);
3188 EXPORT_SYMBOL(kernel_connect);
3189 EXPORT_SYMBOL(kernel_getsockname);
3190 EXPORT_SYMBOL(kernel_getpeername);
3191 EXPORT_SYMBOL(kernel_getsockopt);
3192 EXPORT_SYMBOL(kernel_setsockopt);
3193 EXPORT_SYMBOL(kernel_sendpage);
3194 EXPORT_SYMBOL(kernel_sock_ioctl);
3195 EXPORT_SYMBOL(kernel_sock_shutdown);