firewire: ohci: flush MMIO writes in the interrupt handler
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / exec.c
blobd68c378a31375bfb848aaa887fb655a8b08ec080
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include "internal.h"
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 unsigned int core_pipe_limit;
67 int suid_dumpable = 0;
69 struct core_name {
70 char *corename;
71 int used, size;
73 static atomic_t call_count = ATOMIC_INIT(1);
75 /* The maximal length of core_pattern is also specified in sysctl.c */
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
80 int __register_binfmt(struct linux_binfmt * fmt, int insert)
82 if (!fmt)
83 return -EINVAL;
84 write_lock(&binfmt_lock);
85 insert ? list_add(&fmt->lh, &formats) :
86 list_add_tail(&fmt->lh, &formats);
87 write_unlock(&binfmt_lock);
88 return 0;
91 EXPORT_SYMBOL(__register_binfmt);
93 void unregister_binfmt(struct linux_binfmt * fmt)
95 write_lock(&binfmt_lock);
96 list_del(&fmt->lh);
97 write_unlock(&binfmt_lock);
100 EXPORT_SYMBOL(unregister_binfmt);
102 static inline void put_binfmt(struct linux_binfmt * fmt)
104 module_put(fmt->module);
108 * Note that a shared library must be both readable and executable due to
109 * security reasons.
111 * Also note that we take the address to load from from the file itself.
113 SYSCALL_DEFINE1(uselib, const char __user *, library)
115 struct file *file;
116 char *tmp = getname(library);
117 int error = PTR_ERR(tmp);
119 if (IS_ERR(tmp))
120 goto out;
122 file = do_filp_open(AT_FDCWD, tmp,
123 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
124 MAY_READ | MAY_EXEC | MAY_OPEN);
125 putname(tmp);
126 error = PTR_ERR(file);
127 if (IS_ERR(file))
128 goto out;
130 error = -EINVAL;
131 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
132 goto exit;
134 error = -EACCES;
135 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
136 goto exit;
138 fsnotify_open(file);
140 error = -ENOEXEC;
141 if(file->f_op) {
142 struct linux_binfmt * fmt;
144 read_lock(&binfmt_lock);
145 list_for_each_entry(fmt, &formats, lh) {
146 if (!fmt->load_shlib)
147 continue;
148 if (!try_module_get(fmt->module))
149 continue;
150 read_unlock(&binfmt_lock);
151 error = fmt->load_shlib(file);
152 read_lock(&binfmt_lock);
153 put_binfmt(fmt);
154 if (error != -ENOEXEC)
155 break;
157 read_unlock(&binfmt_lock);
159 exit:
160 fput(file);
161 out:
162 return error;
165 #ifdef CONFIG_MMU
167 void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
169 struct mm_struct *mm = current->mm;
170 long diff = (long)(pages - bprm->vma_pages);
172 if (!mm || !diff)
173 return;
175 bprm->vma_pages = pages;
177 #ifdef SPLIT_RSS_COUNTING
178 add_mm_counter(mm, MM_ANONPAGES, diff);
179 #else
180 spin_lock(&mm->page_table_lock);
181 add_mm_counter(mm, MM_ANONPAGES, diff);
182 spin_unlock(&mm->page_table_lock);
183 #endif
186 struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
187 int write)
189 struct page *page;
190 int ret;
192 #ifdef CONFIG_STACK_GROWSUP
193 if (write) {
194 ret = expand_stack_downwards(bprm->vma, pos);
195 if (ret < 0)
196 return NULL;
198 #endif
199 ret = get_user_pages(current, bprm->mm, pos,
200 1, write, 1, &page, NULL);
201 if (ret <= 0)
202 return NULL;
204 if (write) {
205 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
206 struct rlimit *rlim;
208 acct_arg_size(bprm, size / PAGE_SIZE);
211 * We've historically supported up to 32 pages (ARG_MAX)
212 * of argument strings even with small stacks
214 if (size <= ARG_MAX)
215 return page;
218 * Limit to 1/4-th the stack size for the argv+env strings.
219 * This ensures that:
220 * - the remaining binfmt code will not run out of stack space,
221 * - the program will have a reasonable amount of stack left
222 * to work from.
224 rlim = current->signal->rlim;
225 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
226 put_page(page);
227 return NULL;
231 return page;
234 static void put_arg_page(struct page *page)
236 put_page(page);
239 static void free_arg_page(struct linux_binprm *bprm, int i)
243 static void free_arg_pages(struct linux_binprm *bprm)
247 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
248 struct page *page)
250 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
253 static int __bprm_mm_init(struct linux_binprm *bprm)
255 int err;
256 struct vm_area_struct *vma = NULL;
257 struct mm_struct *mm = bprm->mm;
259 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
260 if (!vma)
261 return -ENOMEM;
263 down_write(&mm->mmap_sem);
264 vma->vm_mm = mm;
267 * Place the stack at the largest stack address the architecture
268 * supports. Later, we'll move this to an appropriate place. We don't
269 * use STACK_TOP because that can depend on attributes which aren't
270 * configured yet.
272 BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
273 vma->vm_end = STACK_TOP_MAX;
274 vma->vm_start = vma->vm_end - PAGE_SIZE;
275 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
276 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
277 INIT_LIST_HEAD(&vma->anon_vma_chain);
278 err = insert_vm_struct(mm, vma);
279 if (err)
280 goto err;
282 mm->stack_vm = mm->total_vm = 1;
283 up_write(&mm->mmap_sem);
284 bprm->p = vma->vm_end - sizeof(void *);
285 return 0;
286 err:
287 up_write(&mm->mmap_sem);
288 bprm->vma = NULL;
289 kmem_cache_free(vm_area_cachep, vma);
290 return err;
293 static bool valid_arg_len(struct linux_binprm *bprm, long len)
295 return len <= MAX_ARG_STRLEN;
298 #else
300 void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
304 struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
305 int write)
307 struct page *page;
309 page = bprm->page[pos / PAGE_SIZE];
310 if (!page && write) {
311 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
312 if (!page)
313 return NULL;
314 bprm->page[pos / PAGE_SIZE] = page;
317 return page;
320 static void put_arg_page(struct page *page)
324 static void free_arg_page(struct linux_binprm *bprm, int i)
326 if (bprm->page[i]) {
327 __free_page(bprm->page[i]);
328 bprm->page[i] = NULL;
332 static void free_arg_pages(struct linux_binprm *bprm)
334 int i;
336 for (i = 0; i < MAX_ARG_PAGES; i++)
337 free_arg_page(bprm, i);
340 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
341 struct page *page)
345 static int __bprm_mm_init(struct linux_binprm *bprm)
347 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
348 return 0;
351 static bool valid_arg_len(struct linux_binprm *bprm, long len)
353 return len <= bprm->p;
356 #endif /* CONFIG_MMU */
359 * Create a new mm_struct and populate it with a temporary stack
360 * vm_area_struct. We don't have enough context at this point to set the stack
361 * flags, permissions, and offset, so we use temporary values. We'll update
362 * them later in setup_arg_pages().
364 int bprm_mm_init(struct linux_binprm *bprm)
366 int err;
367 struct mm_struct *mm = NULL;
369 bprm->mm = mm = mm_alloc();
370 err = -ENOMEM;
371 if (!mm)
372 goto err;
374 err = init_new_context(current, mm);
375 if (err)
376 goto err;
378 err = __bprm_mm_init(bprm);
379 if (err)
380 goto err;
382 return 0;
384 err:
385 if (mm) {
386 bprm->mm = NULL;
387 mmdrop(mm);
390 return err;
394 * count() counts the number of strings in array ARGV.
396 static int count(const char __user * const __user * argv, int max)
398 int i = 0;
400 if (argv != NULL) {
401 for (;;) {
402 const char __user * p;
404 if (get_user(p, argv))
405 return -EFAULT;
406 if (!p)
407 break;
408 argv++;
409 if (i++ >= max)
410 return -E2BIG;
412 if (fatal_signal_pending(current))
413 return -ERESTARTNOHAND;
414 cond_resched();
417 return i;
421 * 'copy_strings()' copies argument/environment strings from the old
422 * processes's memory to the new process's stack. The call to get_user_pages()
423 * ensures the destination page is created and not swapped out.
425 static int copy_strings(int argc, const char __user *const __user *argv,
426 struct linux_binprm *bprm)
428 struct page *kmapped_page = NULL;
429 char *kaddr = NULL;
430 unsigned long kpos = 0;
431 int ret;
433 while (argc-- > 0) {
434 const char __user *str;
435 int len;
436 unsigned long pos;
438 if (get_user(str, argv+argc) ||
439 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
440 ret = -EFAULT;
441 goto out;
444 if (!valid_arg_len(bprm, len)) {
445 ret = -E2BIG;
446 goto out;
449 /* We're going to work our way backwords. */
450 pos = bprm->p;
451 str += len;
452 bprm->p -= len;
454 while (len > 0) {
455 int offset, bytes_to_copy;
457 if (fatal_signal_pending(current)) {
458 ret = -ERESTARTNOHAND;
459 goto out;
461 cond_resched();
463 offset = pos % PAGE_SIZE;
464 if (offset == 0)
465 offset = PAGE_SIZE;
467 bytes_to_copy = offset;
468 if (bytes_to_copy > len)
469 bytes_to_copy = len;
471 offset -= bytes_to_copy;
472 pos -= bytes_to_copy;
473 str -= bytes_to_copy;
474 len -= bytes_to_copy;
476 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
477 struct page *page;
479 page = get_arg_page(bprm, pos, 1);
480 if (!page) {
481 ret = -E2BIG;
482 goto out;
485 if (kmapped_page) {
486 flush_kernel_dcache_page(kmapped_page);
487 kunmap(kmapped_page);
488 put_arg_page(kmapped_page);
490 kmapped_page = page;
491 kaddr = kmap(kmapped_page);
492 kpos = pos & PAGE_MASK;
493 flush_arg_page(bprm, kpos, kmapped_page);
495 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
496 ret = -EFAULT;
497 goto out;
501 ret = 0;
502 out:
503 if (kmapped_page) {
504 flush_kernel_dcache_page(kmapped_page);
505 kunmap(kmapped_page);
506 put_arg_page(kmapped_page);
508 return ret;
512 * Like copy_strings, but get argv and its values from kernel memory.
514 int copy_strings_kernel(int argc, const char *const *argv,
515 struct linux_binprm *bprm)
517 int r;
518 mm_segment_t oldfs = get_fs();
519 set_fs(KERNEL_DS);
520 r = copy_strings(argc, (const char __user *const __user *)argv, bprm);
521 set_fs(oldfs);
522 return r;
524 EXPORT_SYMBOL(copy_strings_kernel);
526 #ifdef CONFIG_MMU
529 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
530 * the binfmt code determines where the new stack should reside, we shift it to
531 * its final location. The process proceeds as follows:
533 * 1) Use shift to calculate the new vma endpoints.
534 * 2) Extend vma to cover both the old and new ranges. This ensures the
535 * arguments passed to subsequent functions are consistent.
536 * 3) Move vma's page tables to the new range.
537 * 4) Free up any cleared pgd range.
538 * 5) Shrink the vma to cover only the new range.
540 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
542 struct mm_struct *mm = vma->vm_mm;
543 unsigned long old_start = vma->vm_start;
544 unsigned long old_end = vma->vm_end;
545 unsigned long length = old_end - old_start;
546 unsigned long new_start = old_start - shift;
547 unsigned long new_end = old_end - shift;
548 struct mmu_gather *tlb;
550 BUG_ON(new_start > new_end);
553 * ensure there are no vmas between where we want to go
554 * and where we are
556 if (vma != find_vma(mm, new_start))
557 return -EFAULT;
560 * cover the whole range: [new_start, old_end)
562 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
563 return -ENOMEM;
566 * move the page tables downwards, on failure we rely on
567 * process cleanup to remove whatever mess we made.
569 if (length != move_page_tables(vma, old_start,
570 vma, new_start, length))
571 return -ENOMEM;
573 lru_add_drain();
574 tlb = tlb_gather_mmu(mm, 0);
575 if (new_end > old_start) {
577 * when the old and new regions overlap clear from new_end.
579 free_pgd_range(tlb, new_end, old_end, new_end,
580 vma->vm_next ? vma->vm_next->vm_start : 0);
581 } else {
583 * otherwise, clean from old_start; this is done to not touch
584 * the address space in [new_end, old_start) some architectures
585 * have constraints on va-space that make this illegal (IA64) -
586 * for the others its just a little faster.
588 free_pgd_range(tlb, old_start, old_end, new_end,
589 vma->vm_next ? vma->vm_next->vm_start : 0);
591 tlb_finish_mmu(tlb, new_end, old_end);
594 * Shrink the vma to just the new range. Always succeeds.
596 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
598 return 0;
602 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
603 * the stack is optionally relocated, and some extra space is added.
605 int setup_arg_pages(struct linux_binprm *bprm,
606 unsigned long stack_top,
607 int executable_stack)
609 unsigned long ret;
610 unsigned long stack_shift;
611 struct mm_struct *mm = current->mm;
612 struct vm_area_struct *vma = bprm->vma;
613 struct vm_area_struct *prev = NULL;
614 unsigned long vm_flags;
615 unsigned long stack_base;
616 unsigned long stack_size;
617 unsigned long stack_expand;
618 unsigned long rlim_stack;
620 #ifdef CONFIG_STACK_GROWSUP
621 /* Limit stack size to 1GB */
622 stack_base = rlimit_max(RLIMIT_STACK);
623 if (stack_base > (1 << 30))
624 stack_base = 1 << 30;
626 /* Make sure we didn't let the argument array grow too large. */
627 if (vma->vm_end - vma->vm_start > stack_base)
628 return -ENOMEM;
630 stack_base = PAGE_ALIGN(stack_top - stack_base);
632 stack_shift = vma->vm_start - stack_base;
633 mm->arg_start = bprm->p - stack_shift;
634 bprm->p = vma->vm_end - stack_shift;
635 #else
636 stack_top = arch_align_stack(stack_top);
637 stack_top = PAGE_ALIGN(stack_top);
639 if (unlikely(stack_top < mmap_min_addr) ||
640 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
641 return -ENOMEM;
643 stack_shift = vma->vm_end - stack_top;
645 bprm->p -= stack_shift;
646 mm->arg_start = bprm->p;
647 #endif
649 if (bprm->loader)
650 bprm->loader -= stack_shift;
651 bprm->exec -= stack_shift;
653 down_write(&mm->mmap_sem);
654 vm_flags = VM_STACK_FLAGS;
657 * Adjust stack execute permissions; explicitly enable for
658 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
659 * (arch default) otherwise.
661 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
662 vm_flags |= VM_EXEC;
663 else if (executable_stack == EXSTACK_DISABLE_X)
664 vm_flags &= ~VM_EXEC;
665 vm_flags |= mm->def_flags;
666 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
668 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
669 vm_flags);
670 if (ret)
671 goto out_unlock;
672 BUG_ON(prev != vma);
674 /* Move stack pages down in memory. */
675 if (stack_shift) {
676 ret = shift_arg_pages(vma, stack_shift);
677 if (ret)
678 goto out_unlock;
681 /* mprotect_fixup is overkill to remove the temporary stack flags */
682 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
684 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
685 stack_size = vma->vm_end - vma->vm_start;
687 * Align this down to a page boundary as expand_stack
688 * will align it up.
690 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
691 #ifdef CONFIG_STACK_GROWSUP
692 if (stack_size + stack_expand > rlim_stack)
693 stack_base = vma->vm_start + rlim_stack;
694 else
695 stack_base = vma->vm_end + stack_expand;
696 #else
697 if (stack_size + stack_expand > rlim_stack)
698 stack_base = vma->vm_end - rlim_stack;
699 else
700 stack_base = vma->vm_start - stack_expand;
701 #endif
702 current->mm->start_stack = bprm->p;
703 ret = expand_stack(vma, stack_base);
704 if (ret)
705 ret = -EFAULT;
707 out_unlock:
708 up_write(&mm->mmap_sem);
709 return ret;
711 EXPORT_SYMBOL(setup_arg_pages);
713 #endif /* CONFIG_MMU */
715 struct file *open_exec(const char *name)
717 struct file *file;
718 int err;
720 file = do_filp_open(AT_FDCWD, name,
721 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
722 MAY_EXEC | MAY_OPEN);
723 if (IS_ERR(file))
724 goto out;
726 err = -EACCES;
727 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
728 goto exit;
730 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
731 goto exit;
733 fsnotify_open(file);
735 err = deny_write_access(file);
736 if (err)
737 goto exit;
739 out:
740 return file;
742 exit:
743 fput(file);
744 return ERR_PTR(err);
746 EXPORT_SYMBOL(open_exec);
748 int kernel_read(struct file *file, loff_t offset,
749 char *addr, unsigned long count)
751 mm_segment_t old_fs;
752 loff_t pos = offset;
753 int result;
755 old_fs = get_fs();
756 set_fs(get_ds());
757 /* The cast to a user pointer is valid due to the set_fs() */
758 result = vfs_read(file, (void __user *)addr, count, &pos);
759 set_fs(old_fs);
760 return result;
763 EXPORT_SYMBOL(kernel_read);
765 static int exec_mmap(struct mm_struct *mm)
767 struct task_struct *tsk;
768 struct mm_struct * old_mm, *active_mm;
770 /* Notify parent that we're no longer interested in the old VM */
771 tsk = current;
772 old_mm = current->mm;
773 sync_mm_rss(tsk, old_mm);
774 mm_release(tsk, old_mm);
776 if (old_mm) {
778 * Make sure that if there is a core dump in progress
779 * for the old mm, we get out and die instead of going
780 * through with the exec. We must hold mmap_sem around
781 * checking core_state and changing tsk->mm.
783 down_read(&old_mm->mmap_sem);
784 if (unlikely(old_mm->core_state)) {
785 up_read(&old_mm->mmap_sem);
786 return -EINTR;
789 task_lock(tsk);
790 active_mm = tsk->active_mm;
791 tsk->mm = mm;
792 tsk->active_mm = mm;
793 activate_mm(active_mm, mm);
794 if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
795 atomic_dec(&old_mm->oom_disable_count);
796 atomic_inc(&tsk->mm->oom_disable_count);
798 task_unlock(tsk);
799 arch_pick_mmap_layout(mm);
800 if (old_mm) {
801 up_read(&old_mm->mmap_sem);
802 BUG_ON(active_mm != old_mm);
803 mm_update_next_owner(old_mm);
804 mmput(old_mm);
805 return 0;
807 mmdrop(active_mm);
808 return 0;
812 * This function makes sure the current process has its own signal table,
813 * so that flush_signal_handlers can later reset the handlers without
814 * disturbing other processes. (Other processes might share the signal
815 * table via the CLONE_SIGHAND option to clone().)
817 static int de_thread(struct task_struct *tsk)
819 struct signal_struct *sig = tsk->signal;
820 struct sighand_struct *oldsighand = tsk->sighand;
821 spinlock_t *lock = &oldsighand->siglock;
823 if (thread_group_empty(tsk))
824 goto no_thread_group;
827 * Kill all other threads in the thread group.
829 spin_lock_irq(lock);
830 if (signal_group_exit(sig)) {
832 * Another group action in progress, just
833 * return so that the signal is processed.
835 spin_unlock_irq(lock);
836 return -EAGAIN;
839 sig->group_exit_task = tsk;
840 sig->notify_count = zap_other_threads(tsk);
841 if (!thread_group_leader(tsk))
842 sig->notify_count--;
844 while (sig->notify_count) {
845 __set_current_state(TASK_UNINTERRUPTIBLE);
846 spin_unlock_irq(lock);
847 schedule();
848 spin_lock_irq(lock);
850 spin_unlock_irq(lock);
853 * At this point all other threads have exited, all we have to
854 * do is to wait for the thread group leader to become inactive,
855 * and to assume its PID:
857 if (!thread_group_leader(tsk)) {
858 struct task_struct *leader = tsk->group_leader;
860 sig->notify_count = -1; /* for exit_notify() */
861 for (;;) {
862 write_lock_irq(&tasklist_lock);
863 if (likely(leader->exit_state))
864 break;
865 __set_current_state(TASK_UNINTERRUPTIBLE);
866 write_unlock_irq(&tasklist_lock);
867 schedule();
871 * The only record we have of the real-time age of a
872 * process, regardless of execs it's done, is start_time.
873 * All the past CPU time is accumulated in signal_struct
874 * from sister threads now dead. But in this non-leader
875 * exec, nothing survives from the original leader thread,
876 * whose birth marks the true age of this process now.
877 * When we take on its identity by switching to its PID, we
878 * also take its birthdate (always earlier than our own).
880 tsk->start_time = leader->start_time;
882 BUG_ON(!same_thread_group(leader, tsk));
883 BUG_ON(has_group_leader_pid(tsk));
885 * An exec() starts a new thread group with the
886 * TGID of the previous thread group. Rehash the
887 * two threads with a switched PID, and release
888 * the former thread group leader:
891 /* Become a process group leader with the old leader's pid.
892 * The old leader becomes a thread of the this thread group.
893 * Note: The old leader also uses this pid until release_task
894 * is called. Odd but simple and correct.
896 detach_pid(tsk, PIDTYPE_PID);
897 tsk->pid = leader->pid;
898 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
899 transfer_pid(leader, tsk, PIDTYPE_PGID);
900 transfer_pid(leader, tsk, PIDTYPE_SID);
902 list_replace_rcu(&leader->tasks, &tsk->tasks);
903 list_replace_init(&leader->sibling, &tsk->sibling);
905 tsk->group_leader = tsk;
906 leader->group_leader = tsk;
908 tsk->exit_signal = SIGCHLD;
910 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
911 leader->exit_state = EXIT_DEAD;
912 write_unlock_irq(&tasklist_lock);
914 release_task(leader);
917 sig->group_exit_task = NULL;
918 sig->notify_count = 0;
920 no_thread_group:
921 if (current->mm)
922 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
924 exit_itimers(sig);
925 flush_itimer_signals();
927 if (atomic_read(&oldsighand->count) != 1) {
928 struct sighand_struct *newsighand;
930 * This ->sighand is shared with the CLONE_SIGHAND
931 * but not CLONE_THREAD task, switch to the new one.
933 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
934 if (!newsighand)
935 return -ENOMEM;
937 atomic_set(&newsighand->count, 1);
938 memcpy(newsighand->action, oldsighand->action,
939 sizeof(newsighand->action));
941 write_lock_irq(&tasklist_lock);
942 spin_lock(&oldsighand->siglock);
943 rcu_assign_pointer(tsk->sighand, newsighand);
944 spin_unlock(&oldsighand->siglock);
945 write_unlock_irq(&tasklist_lock);
947 __cleanup_sighand(oldsighand);
950 BUG_ON(!thread_group_leader(tsk));
951 return 0;
955 * These functions flushes out all traces of the currently running executable
956 * so that a new one can be started
958 static void flush_old_files(struct files_struct * files)
960 long j = -1;
961 struct fdtable *fdt;
963 spin_lock(&files->file_lock);
964 for (;;) {
965 unsigned long set, i;
967 j++;
968 i = j * __NFDBITS;
969 fdt = files_fdtable(files);
970 if (i >= fdt->max_fds)
971 break;
972 set = fdt->close_on_exec->fds_bits[j];
973 if (!set)
974 continue;
975 fdt->close_on_exec->fds_bits[j] = 0;
976 spin_unlock(&files->file_lock);
977 for ( ; set ; i++,set >>= 1) {
978 if (set & 1) {
979 sys_close(i);
982 spin_lock(&files->file_lock);
985 spin_unlock(&files->file_lock);
988 char *get_task_comm(char *buf, struct task_struct *tsk)
990 /* buf must be at least sizeof(tsk->comm) in size */
991 task_lock(tsk);
992 strncpy(buf, tsk->comm, sizeof(tsk->comm));
993 task_unlock(tsk);
994 return buf;
997 void set_task_comm(struct task_struct *tsk, char *buf)
999 task_lock(tsk);
1002 * Threads may access current->comm without holding
1003 * the task lock, so write the string carefully.
1004 * Readers without a lock may see incomplete new
1005 * names but are safe from non-terminating string reads.
1007 memset(tsk->comm, 0, TASK_COMM_LEN);
1008 wmb();
1009 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1010 task_unlock(tsk);
1011 perf_event_comm(tsk);
1014 int flush_old_exec(struct linux_binprm * bprm)
1016 int retval;
1019 * Make sure we have a private signal table and that
1020 * we are unassociated from the previous thread group.
1022 retval = de_thread(current);
1023 if (retval)
1024 goto out;
1026 set_mm_exe_file(bprm->mm, bprm->file);
1029 * Release all of the old mmap stuff
1031 acct_arg_size(bprm, 0);
1032 retval = exec_mmap(bprm->mm);
1033 if (retval)
1034 goto out;
1036 bprm->mm = NULL; /* We're using it now */
1038 current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
1039 flush_thread();
1040 current->personality &= ~bprm->per_clear;
1042 return 0;
1044 out:
1045 return retval;
1047 EXPORT_SYMBOL(flush_old_exec);
1049 void setup_new_exec(struct linux_binprm * bprm)
1051 int i, ch;
1052 const char *name;
1053 char tcomm[sizeof(current->comm)];
1055 arch_pick_mmap_layout(current->mm);
1057 /* This is the point of no return */
1058 current->sas_ss_sp = current->sas_ss_size = 0;
1060 if (current_euid() == current_uid() && current_egid() == current_gid())
1061 set_dumpable(current->mm, 1);
1062 else
1063 set_dumpable(current->mm, suid_dumpable);
1065 name = bprm->filename;
1067 /* Copies the binary name from after last slash */
1068 for (i=0; (ch = *(name++)) != '\0';) {
1069 if (ch == '/')
1070 i = 0; /* overwrite what we wrote */
1071 else
1072 if (i < (sizeof(tcomm) - 1))
1073 tcomm[i++] = ch;
1075 tcomm[i] = '\0';
1076 set_task_comm(current, tcomm);
1078 /* Set the new mm task size. We have to do that late because it may
1079 * depend on TIF_32BIT which is only updated in flush_thread() on
1080 * some architectures like powerpc
1082 current->mm->task_size = TASK_SIZE;
1084 /* install the new credentials */
1085 if (bprm->cred->uid != current_euid() ||
1086 bprm->cred->gid != current_egid()) {
1087 current->pdeath_signal = 0;
1088 } else if (file_permission(bprm->file, MAY_READ) ||
1089 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1090 set_dumpable(current->mm, suid_dumpable);
1094 * Flush performance counters when crossing a
1095 * security domain:
1097 if (!get_dumpable(current->mm))
1098 perf_event_exit_task(current);
1100 /* An exec changes our domain. We are no longer part of the thread
1101 group */
1103 current->self_exec_id++;
1105 flush_signal_handlers(current, 0);
1106 flush_old_files(current->files);
1108 EXPORT_SYMBOL(setup_new_exec);
1111 * Prepare credentials and lock ->cred_guard_mutex.
1112 * install_exec_creds() commits the new creds and drops the lock.
1113 * Or, if exec fails before, free_bprm() should release ->cred and
1114 * and unlock.
1116 int prepare_bprm_creds(struct linux_binprm *bprm)
1118 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1119 return -ERESTARTNOINTR;
1121 bprm->cred = prepare_exec_creds();
1122 if (likely(bprm->cred))
1123 return 0;
1125 mutex_unlock(&current->signal->cred_guard_mutex);
1126 return -ENOMEM;
1129 void free_bprm(struct linux_binprm *bprm)
1131 free_arg_pages(bprm);
1132 if (bprm->cred) {
1133 mutex_unlock(&current->signal->cred_guard_mutex);
1134 abort_creds(bprm->cred);
1136 kfree(bprm);
1140 * install the new credentials for this executable
1142 void install_exec_creds(struct linux_binprm *bprm)
1144 security_bprm_committing_creds(bprm);
1146 commit_creds(bprm->cred);
1147 bprm->cred = NULL;
1149 * cred_guard_mutex must be held at least to this point to prevent
1150 * ptrace_attach() from altering our determination of the task's
1151 * credentials; any time after this it may be unlocked.
1153 security_bprm_committed_creds(bprm);
1154 mutex_unlock(&current->signal->cred_guard_mutex);
1156 EXPORT_SYMBOL(install_exec_creds);
1159 * determine how safe it is to execute the proposed program
1160 * - the caller must hold ->cred_guard_mutex to protect against
1161 * PTRACE_ATTACH
1163 int check_unsafe_exec(struct linux_binprm *bprm)
1165 struct task_struct *p = current, *t;
1166 unsigned n_fs;
1167 int res = 0;
1169 bprm->unsafe = tracehook_unsafe_exec(p);
1171 n_fs = 1;
1172 spin_lock(&p->fs->lock);
1173 rcu_read_lock();
1174 for (t = next_thread(p); t != p; t = next_thread(t)) {
1175 if (t->fs == p->fs)
1176 n_fs++;
1178 rcu_read_unlock();
1180 if (p->fs->users > n_fs) {
1181 bprm->unsafe |= LSM_UNSAFE_SHARE;
1182 } else {
1183 res = -EAGAIN;
1184 if (!p->fs->in_exec) {
1185 p->fs->in_exec = 1;
1186 res = 1;
1189 spin_unlock(&p->fs->lock);
1191 return res;
1195 * Fill the binprm structure from the inode.
1196 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1198 * This may be called multiple times for binary chains (scripts for example).
1200 int prepare_binprm(struct linux_binprm *bprm)
1202 umode_t mode;
1203 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1204 int retval;
1206 mode = inode->i_mode;
1207 if (bprm->file->f_op == NULL)
1208 return -EACCES;
1210 /* clear any previous set[ug]id data from a previous binary */
1211 bprm->cred->euid = current_euid();
1212 bprm->cred->egid = current_egid();
1214 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1215 /* Set-uid? */
1216 if (mode & S_ISUID) {
1217 bprm->per_clear |= PER_CLEAR_ON_SETID;
1218 bprm->cred->euid = inode->i_uid;
1221 /* Set-gid? */
1223 * If setgid is set but no group execute bit then this
1224 * is a candidate for mandatory locking, not a setgid
1225 * executable.
1227 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1228 bprm->per_clear |= PER_CLEAR_ON_SETID;
1229 bprm->cred->egid = inode->i_gid;
1233 /* fill in binprm security blob */
1234 retval = security_bprm_set_creds(bprm);
1235 if (retval)
1236 return retval;
1237 bprm->cred_prepared = 1;
1239 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1240 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1243 EXPORT_SYMBOL(prepare_binprm);
1246 * Arguments are '\0' separated strings found at the location bprm->p
1247 * points to; chop off the first by relocating brpm->p to right after
1248 * the first '\0' encountered.
1250 int remove_arg_zero(struct linux_binprm *bprm)
1252 int ret = 0;
1253 unsigned long offset;
1254 char *kaddr;
1255 struct page *page;
1257 if (!bprm->argc)
1258 return 0;
1260 do {
1261 offset = bprm->p & ~PAGE_MASK;
1262 page = get_arg_page(bprm, bprm->p, 0);
1263 if (!page) {
1264 ret = -EFAULT;
1265 goto out;
1267 kaddr = kmap_atomic(page, KM_USER0);
1269 for (; offset < PAGE_SIZE && kaddr[offset];
1270 offset++, bprm->p++)
1273 kunmap_atomic(kaddr, KM_USER0);
1274 put_arg_page(page);
1276 if (offset == PAGE_SIZE)
1277 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1278 } while (offset == PAGE_SIZE);
1280 bprm->p++;
1281 bprm->argc--;
1282 ret = 0;
1284 out:
1285 return ret;
1287 EXPORT_SYMBOL(remove_arg_zero);
1290 * cycle the list of binary formats handler, until one recognizes the image
1292 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1294 unsigned int depth = bprm->recursion_depth;
1295 int try,retval;
1296 struct linux_binfmt *fmt;
1298 retval = security_bprm_check(bprm);
1299 if (retval)
1300 return retval;
1302 /* kernel module loader fixup */
1303 /* so we don't try to load run modprobe in kernel space. */
1304 set_fs(USER_DS);
1306 retval = audit_bprm(bprm);
1307 if (retval)
1308 return retval;
1310 retval = -ENOENT;
1311 for (try=0; try<2; try++) {
1312 read_lock(&binfmt_lock);
1313 list_for_each_entry(fmt, &formats, lh) {
1314 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1315 if (!fn)
1316 continue;
1317 if (!try_module_get(fmt->module))
1318 continue;
1319 read_unlock(&binfmt_lock);
1320 retval = fn(bprm, regs);
1322 * Restore the depth counter to its starting value
1323 * in this call, so we don't have to rely on every
1324 * load_binary function to restore it on return.
1326 bprm->recursion_depth = depth;
1327 if (retval >= 0) {
1328 if (depth == 0)
1329 tracehook_report_exec(fmt, bprm, regs);
1330 put_binfmt(fmt);
1331 allow_write_access(bprm->file);
1332 if (bprm->file)
1333 fput(bprm->file);
1334 bprm->file = NULL;
1335 current->did_exec = 1;
1336 proc_exec_connector(current);
1337 return retval;
1339 read_lock(&binfmt_lock);
1340 put_binfmt(fmt);
1341 if (retval != -ENOEXEC || bprm->mm == NULL)
1342 break;
1343 if (!bprm->file) {
1344 read_unlock(&binfmt_lock);
1345 return retval;
1348 read_unlock(&binfmt_lock);
1349 if (retval != -ENOEXEC || bprm->mm == NULL) {
1350 break;
1351 #ifdef CONFIG_MODULES
1352 } else {
1353 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1354 if (printable(bprm->buf[0]) &&
1355 printable(bprm->buf[1]) &&
1356 printable(bprm->buf[2]) &&
1357 printable(bprm->buf[3]))
1358 break; /* -ENOEXEC */
1359 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1360 #endif
1363 return retval;
1366 EXPORT_SYMBOL(search_binary_handler);
1369 * sys_execve() executes a new program.
1371 int do_execve(const char * filename,
1372 const char __user *const __user *argv,
1373 const char __user *const __user *envp,
1374 struct pt_regs * regs)
1376 struct linux_binprm *bprm;
1377 struct file *file;
1378 struct files_struct *displaced;
1379 bool clear_in_exec;
1380 int retval;
1382 retval = unshare_files(&displaced);
1383 if (retval)
1384 goto out_ret;
1386 retval = -ENOMEM;
1387 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1388 if (!bprm)
1389 goto out_files;
1391 retval = prepare_bprm_creds(bprm);
1392 if (retval)
1393 goto out_free;
1395 retval = check_unsafe_exec(bprm);
1396 if (retval < 0)
1397 goto out_free;
1398 clear_in_exec = retval;
1399 current->in_execve = 1;
1401 file = open_exec(filename);
1402 retval = PTR_ERR(file);
1403 if (IS_ERR(file))
1404 goto out_unmark;
1406 sched_exec();
1408 bprm->file = file;
1409 bprm->filename = filename;
1410 bprm->interp = filename;
1412 retval = bprm_mm_init(bprm);
1413 if (retval)
1414 goto out_file;
1416 bprm->argc = count(argv, MAX_ARG_STRINGS);
1417 if ((retval = bprm->argc) < 0)
1418 goto out;
1420 bprm->envc = count(envp, MAX_ARG_STRINGS);
1421 if ((retval = bprm->envc) < 0)
1422 goto out;
1424 retval = prepare_binprm(bprm);
1425 if (retval < 0)
1426 goto out;
1428 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1429 if (retval < 0)
1430 goto out;
1432 bprm->exec = bprm->p;
1433 retval = copy_strings(bprm->envc, envp, bprm);
1434 if (retval < 0)
1435 goto out;
1437 retval = copy_strings(bprm->argc, argv, bprm);
1438 if (retval < 0)
1439 goto out;
1441 retval = search_binary_handler(bprm,regs);
1442 if (retval < 0)
1443 goto out;
1445 /* execve succeeded */
1446 current->fs->in_exec = 0;
1447 current->in_execve = 0;
1448 acct_update_integrals(current);
1449 free_bprm(bprm);
1450 if (displaced)
1451 put_files_struct(displaced);
1452 return retval;
1454 out:
1455 if (bprm->mm) {
1456 acct_arg_size(bprm, 0);
1457 mmput(bprm->mm);
1460 out_file:
1461 if (bprm->file) {
1462 allow_write_access(bprm->file);
1463 fput(bprm->file);
1466 out_unmark:
1467 if (clear_in_exec)
1468 current->fs->in_exec = 0;
1469 current->in_execve = 0;
1471 out_free:
1472 free_bprm(bprm);
1474 out_files:
1475 if (displaced)
1476 reset_files_struct(displaced);
1477 out_ret:
1478 return retval;
1481 void set_binfmt(struct linux_binfmt *new)
1483 struct mm_struct *mm = current->mm;
1485 if (mm->binfmt)
1486 module_put(mm->binfmt->module);
1488 mm->binfmt = new;
1489 if (new)
1490 __module_get(new->module);
1493 EXPORT_SYMBOL(set_binfmt);
1495 static int expand_corename(struct core_name *cn)
1497 char *old_corename = cn->corename;
1499 cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1500 cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1502 if (!cn->corename) {
1503 kfree(old_corename);
1504 return -ENOMEM;
1507 return 0;
1510 static int cn_printf(struct core_name *cn, const char *fmt, ...)
1512 char *cur;
1513 int need;
1514 int ret;
1515 va_list arg;
1517 va_start(arg, fmt);
1518 need = vsnprintf(NULL, 0, fmt, arg);
1519 va_end(arg);
1521 if (likely(need < cn->size - cn->used - 1))
1522 goto out_printf;
1524 ret = expand_corename(cn);
1525 if (ret)
1526 goto expand_fail;
1528 out_printf:
1529 cur = cn->corename + cn->used;
1530 va_start(arg, fmt);
1531 vsnprintf(cur, need + 1, fmt, arg);
1532 va_end(arg);
1533 cn->used += need;
1534 return 0;
1536 expand_fail:
1537 return ret;
1540 /* format_corename will inspect the pattern parameter, and output a
1541 * name into corename, which must have space for at least
1542 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1544 static int format_corename(struct core_name *cn, long signr)
1546 const struct cred *cred = current_cred();
1547 const char *pat_ptr = core_pattern;
1548 int ispipe = (*pat_ptr == '|');
1549 int pid_in_pattern = 0;
1550 int err = 0;
1552 cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1553 cn->corename = kmalloc(cn->size, GFP_KERNEL);
1554 cn->used = 0;
1556 if (!cn->corename)
1557 return -ENOMEM;
1559 /* Repeat as long as we have more pattern to process and more output
1560 space */
1561 while (*pat_ptr) {
1562 if (*pat_ptr != '%') {
1563 if (*pat_ptr == 0)
1564 goto out;
1565 err = cn_printf(cn, "%c", *pat_ptr++);
1566 } else {
1567 switch (*++pat_ptr) {
1568 /* single % at the end, drop that */
1569 case 0:
1570 goto out;
1571 /* Double percent, output one percent */
1572 case '%':
1573 err = cn_printf(cn, "%c", '%');
1574 break;
1575 /* pid */
1576 case 'p':
1577 pid_in_pattern = 1;
1578 err = cn_printf(cn, "%d",
1579 task_tgid_vnr(current));
1580 break;
1581 /* uid */
1582 case 'u':
1583 err = cn_printf(cn, "%d", cred->uid);
1584 break;
1585 /* gid */
1586 case 'g':
1587 err = cn_printf(cn, "%d", cred->gid);
1588 break;
1589 /* signal that caused the coredump */
1590 case 's':
1591 err = cn_printf(cn, "%ld", signr);
1592 break;
1593 /* UNIX time of coredump */
1594 case 't': {
1595 struct timeval tv;
1596 do_gettimeofday(&tv);
1597 err = cn_printf(cn, "%lu", tv.tv_sec);
1598 break;
1600 /* hostname */
1601 case 'h':
1602 down_read(&uts_sem);
1603 err = cn_printf(cn, "%s",
1604 utsname()->nodename);
1605 up_read(&uts_sem);
1606 break;
1607 /* executable */
1608 case 'e':
1609 err = cn_printf(cn, "%s", current->comm);
1610 break;
1611 /* core limit size */
1612 case 'c':
1613 err = cn_printf(cn, "%lu",
1614 rlimit(RLIMIT_CORE));
1615 break;
1616 default:
1617 break;
1619 ++pat_ptr;
1622 if (err)
1623 return err;
1626 /* Backward compatibility with core_uses_pid:
1628 * If core_pattern does not include a %p (as is the default)
1629 * and core_uses_pid is set, then .%pid will be appended to
1630 * the filename. Do not do this for piped commands. */
1631 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1632 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1633 if (err)
1634 return err;
1636 out:
1637 return ispipe;
1640 static int zap_process(struct task_struct *start, int exit_code)
1642 struct task_struct *t;
1643 int nr = 0;
1645 start->signal->flags = SIGNAL_GROUP_EXIT;
1646 start->signal->group_exit_code = exit_code;
1647 start->signal->group_stop_count = 0;
1649 t = start;
1650 do {
1651 if (t != current && t->mm) {
1652 sigaddset(&t->pending.signal, SIGKILL);
1653 signal_wake_up(t, 1);
1654 nr++;
1656 } while_each_thread(start, t);
1658 return nr;
1661 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1662 struct core_state *core_state, int exit_code)
1664 struct task_struct *g, *p;
1665 unsigned long flags;
1666 int nr = -EAGAIN;
1668 spin_lock_irq(&tsk->sighand->siglock);
1669 if (!signal_group_exit(tsk->signal)) {
1670 mm->core_state = core_state;
1671 nr = zap_process(tsk, exit_code);
1673 spin_unlock_irq(&tsk->sighand->siglock);
1674 if (unlikely(nr < 0))
1675 return nr;
1677 if (atomic_read(&mm->mm_users) == nr + 1)
1678 goto done;
1680 * We should find and kill all tasks which use this mm, and we should
1681 * count them correctly into ->nr_threads. We don't take tasklist
1682 * lock, but this is safe wrt:
1684 * fork:
1685 * None of sub-threads can fork after zap_process(leader). All
1686 * processes which were created before this point should be
1687 * visible to zap_threads() because copy_process() adds the new
1688 * process to the tail of init_task.tasks list, and lock/unlock
1689 * of ->siglock provides a memory barrier.
1691 * do_exit:
1692 * The caller holds mm->mmap_sem. This means that the task which
1693 * uses this mm can't pass exit_mm(), so it can't exit or clear
1694 * its ->mm.
1696 * de_thread:
1697 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1698 * we must see either old or new leader, this does not matter.
1699 * However, it can change p->sighand, so lock_task_sighand(p)
1700 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1701 * it can't fail.
1703 * Note also that "g" can be the old leader with ->mm == NULL
1704 * and already unhashed and thus removed from ->thread_group.
1705 * This is OK, __unhash_process()->list_del_rcu() does not
1706 * clear the ->next pointer, we will find the new leader via
1707 * next_thread().
1709 rcu_read_lock();
1710 for_each_process(g) {
1711 if (g == tsk->group_leader)
1712 continue;
1713 if (g->flags & PF_KTHREAD)
1714 continue;
1715 p = g;
1716 do {
1717 if (p->mm) {
1718 if (unlikely(p->mm == mm)) {
1719 lock_task_sighand(p, &flags);
1720 nr += zap_process(p, exit_code);
1721 unlock_task_sighand(p, &flags);
1723 break;
1725 } while_each_thread(g, p);
1727 rcu_read_unlock();
1728 done:
1729 atomic_set(&core_state->nr_threads, nr);
1730 return nr;
1733 static int coredump_wait(int exit_code, struct core_state *core_state)
1735 struct task_struct *tsk = current;
1736 struct mm_struct *mm = tsk->mm;
1737 struct completion *vfork_done;
1738 int core_waiters = -EBUSY;
1740 init_completion(&core_state->startup);
1741 core_state->dumper.task = tsk;
1742 core_state->dumper.next = NULL;
1744 down_write(&mm->mmap_sem);
1745 if (!mm->core_state)
1746 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1747 up_write(&mm->mmap_sem);
1749 if (unlikely(core_waiters < 0))
1750 goto fail;
1753 * Make sure nobody is waiting for us to release the VM,
1754 * otherwise we can deadlock when we wait on each other
1756 vfork_done = tsk->vfork_done;
1757 if (vfork_done) {
1758 tsk->vfork_done = NULL;
1759 complete(vfork_done);
1762 if (core_waiters)
1763 wait_for_completion(&core_state->startup);
1764 fail:
1765 return core_waiters;
1768 static void coredump_finish(struct mm_struct *mm)
1770 struct core_thread *curr, *next;
1771 struct task_struct *task;
1773 next = mm->core_state->dumper.next;
1774 while ((curr = next) != NULL) {
1775 next = curr->next;
1776 task = curr->task;
1778 * see exit_mm(), curr->task must not see
1779 * ->task == NULL before we read ->next.
1781 smp_mb();
1782 curr->task = NULL;
1783 wake_up_process(task);
1786 mm->core_state = NULL;
1790 * set_dumpable converts traditional three-value dumpable to two flags and
1791 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1792 * these bits are not changed atomically. So get_dumpable can observe the
1793 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1794 * return either old dumpable or new one by paying attention to the order of
1795 * modifying the bits.
1797 * dumpable | mm->flags (binary)
1798 * old new | initial interim final
1799 * ---------+-----------------------
1800 * 0 1 | 00 01 01
1801 * 0 2 | 00 10(*) 11
1802 * 1 0 | 01 00 00
1803 * 1 2 | 01 11 11
1804 * 2 0 | 11 10(*) 00
1805 * 2 1 | 11 11 01
1807 * (*) get_dumpable regards interim value of 10 as 11.
1809 void set_dumpable(struct mm_struct *mm, int value)
1811 switch (value) {
1812 case 0:
1813 clear_bit(MMF_DUMPABLE, &mm->flags);
1814 smp_wmb();
1815 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1816 break;
1817 case 1:
1818 set_bit(MMF_DUMPABLE, &mm->flags);
1819 smp_wmb();
1820 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1821 break;
1822 case 2:
1823 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1824 smp_wmb();
1825 set_bit(MMF_DUMPABLE, &mm->flags);
1826 break;
1830 static int __get_dumpable(unsigned long mm_flags)
1832 int ret;
1834 ret = mm_flags & MMF_DUMPABLE_MASK;
1835 return (ret >= 2) ? 2 : ret;
1838 int get_dumpable(struct mm_struct *mm)
1840 return __get_dumpable(mm->flags);
1843 static void wait_for_dump_helpers(struct file *file)
1845 struct pipe_inode_info *pipe;
1847 pipe = file->f_path.dentry->d_inode->i_pipe;
1849 pipe_lock(pipe);
1850 pipe->readers++;
1851 pipe->writers--;
1853 while ((pipe->readers > 1) && (!signal_pending(current))) {
1854 wake_up_interruptible_sync(&pipe->wait);
1855 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1856 pipe_wait(pipe);
1859 pipe->readers--;
1860 pipe->writers++;
1861 pipe_unlock(pipe);
1867 * uhm_pipe_setup
1868 * helper function to customize the process used
1869 * to collect the core in userspace. Specifically
1870 * it sets up a pipe and installs it as fd 0 (stdin)
1871 * for the process. Returns 0 on success, or
1872 * PTR_ERR on failure.
1873 * Note that it also sets the core limit to 1. This
1874 * is a special value that we use to trap recursive
1875 * core dumps
1877 static int umh_pipe_setup(struct subprocess_info *info)
1879 struct file *rp, *wp;
1880 struct fdtable *fdt;
1881 struct coredump_params *cp = (struct coredump_params *)info->data;
1882 struct files_struct *cf = current->files;
1884 wp = create_write_pipe(0);
1885 if (IS_ERR(wp))
1886 return PTR_ERR(wp);
1888 rp = create_read_pipe(wp, 0);
1889 if (IS_ERR(rp)) {
1890 free_write_pipe(wp);
1891 return PTR_ERR(rp);
1894 cp->file = wp;
1896 sys_close(0);
1897 fd_install(0, rp);
1898 spin_lock(&cf->file_lock);
1899 fdt = files_fdtable(cf);
1900 FD_SET(0, fdt->open_fds);
1901 FD_CLR(0, fdt->close_on_exec);
1902 spin_unlock(&cf->file_lock);
1904 /* and disallow core files too */
1905 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
1907 return 0;
1910 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1912 struct core_state core_state;
1913 struct core_name cn;
1914 struct mm_struct *mm = current->mm;
1915 struct linux_binfmt * binfmt;
1916 const struct cred *old_cred;
1917 struct cred *cred;
1918 int retval = 0;
1919 int flag = 0;
1920 int ispipe;
1921 static atomic_t core_dump_count = ATOMIC_INIT(0);
1922 struct coredump_params cprm = {
1923 .signr = signr,
1924 .regs = regs,
1925 .limit = rlimit(RLIMIT_CORE),
1927 * We must use the same mm->flags while dumping core to avoid
1928 * inconsistency of bit flags, since this flag is not protected
1929 * by any locks.
1931 .mm_flags = mm->flags,
1934 audit_core_dumps(signr);
1936 binfmt = mm->binfmt;
1937 if (!binfmt || !binfmt->core_dump)
1938 goto fail;
1939 if (!__get_dumpable(cprm.mm_flags))
1940 goto fail;
1942 cred = prepare_creds();
1943 if (!cred)
1944 goto fail;
1946 * We cannot trust fsuid as being the "true" uid of the
1947 * process nor do we know its entire history. We only know it
1948 * was tainted so we dump it as root in mode 2.
1950 if (__get_dumpable(cprm.mm_flags) == 2) {
1951 /* Setuid core dump mode */
1952 flag = O_EXCL; /* Stop rewrite attacks */
1953 cred->fsuid = 0; /* Dump root private */
1956 retval = coredump_wait(exit_code, &core_state);
1957 if (retval < 0)
1958 goto fail_creds;
1960 old_cred = override_creds(cred);
1963 * Clear any false indication of pending signals that might
1964 * be seen by the filesystem code called to write the core file.
1966 clear_thread_flag(TIF_SIGPENDING);
1968 ispipe = format_corename(&cn, signr);
1970 if (ispipe == -ENOMEM) {
1971 printk(KERN_WARNING "format_corename failed\n");
1972 printk(KERN_WARNING "Aborting core\n");
1973 goto fail_corename;
1976 if (ispipe) {
1977 int dump_count;
1978 char **helper_argv;
1980 if (cprm.limit == 1) {
1982 * Normally core limits are irrelevant to pipes, since
1983 * we're not writing to the file system, but we use
1984 * cprm.limit of 1 here as a speacial value. Any
1985 * non-1 limit gets set to RLIM_INFINITY below, but
1986 * a limit of 0 skips the dump. This is a consistent
1987 * way to catch recursive crashes. We can still crash
1988 * if the core_pattern binary sets RLIM_CORE = !1
1989 * but it runs as root, and can do lots of stupid things
1990 * Note that we use task_tgid_vnr here to grab the pid
1991 * of the process group leader. That way we get the
1992 * right pid if a thread in a multi-threaded
1993 * core_pattern process dies.
1995 printk(KERN_WARNING
1996 "Process %d(%s) has RLIMIT_CORE set to 1\n",
1997 task_tgid_vnr(current), current->comm);
1998 printk(KERN_WARNING "Aborting core\n");
1999 goto fail_unlock;
2001 cprm.limit = RLIM_INFINITY;
2003 dump_count = atomic_inc_return(&core_dump_count);
2004 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2005 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2006 task_tgid_vnr(current), current->comm);
2007 printk(KERN_WARNING "Skipping core dump\n");
2008 goto fail_dropcount;
2011 helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2012 if (!helper_argv) {
2013 printk(KERN_WARNING "%s failed to allocate memory\n",
2014 __func__);
2015 goto fail_dropcount;
2018 retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2019 NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2020 NULL, &cprm);
2021 argv_free(helper_argv);
2022 if (retval) {
2023 printk(KERN_INFO "Core dump to %s pipe failed\n",
2024 cn.corename);
2025 goto close_fail;
2027 } else {
2028 struct inode *inode;
2030 if (cprm.limit < binfmt->min_coredump)
2031 goto fail_unlock;
2033 cprm.file = filp_open(cn.corename,
2034 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2035 0600);
2036 if (IS_ERR(cprm.file))
2037 goto fail_unlock;
2039 inode = cprm.file->f_path.dentry->d_inode;
2040 if (inode->i_nlink > 1)
2041 goto close_fail;
2042 if (d_unhashed(cprm.file->f_path.dentry))
2043 goto close_fail;
2045 * AK: actually i see no reason to not allow this for named
2046 * pipes etc, but keep the previous behaviour for now.
2048 if (!S_ISREG(inode->i_mode))
2049 goto close_fail;
2051 * Dont allow local users get cute and trick others to coredump
2052 * into their pre-created files.
2054 if (inode->i_uid != current_fsuid())
2055 goto close_fail;
2056 if (!cprm.file->f_op || !cprm.file->f_op->write)
2057 goto close_fail;
2058 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2059 goto close_fail;
2062 retval = binfmt->core_dump(&cprm);
2063 if (retval)
2064 current->signal->group_exit_code |= 0x80;
2066 if (ispipe && core_pipe_limit)
2067 wait_for_dump_helpers(cprm.file);
2068 close_fail:
2069 if (cprm.file)
2070 filp_close(cprm.file, NULL);
2071 fail_dropcount:
2072 if (ispipe)
2073 atomic_dec(&core_dump_count);
2074 fail_unlock:
2075 kfree(cn.corename);
2076 fail_corename:
2077 coredump_finish(mm);
2078 revert_creds(old_cred);
2079 fail_creds:
2080 put_cred(cred);
2081 fail:
2082 return;
2086 * Core dumping helper functions. These are the only things you should
2087 * do on a core-file: use only these functions to write out all the
2088 * necessary info.
2090 int dump_write(struct file *file, const void *addr, int nr)
2092 return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2094 EXPORT_SYMBOL(dump_write);
2096 int dump_seek(struct file *file, loff_t off)
2098 int ret = 1;
2100 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2101 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2102 return 0;
2103 } else {
2104 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2106 if (!buf)
2107 return 0;
2108 while (off > 0) {
2109 unsigned long n = off;
2111 if (n > PAGE_SIZE)
2112 n = PAGE_SIZE;
2113 if (!dump_write(file, buf, n)) {
2114 ret = 0;
2115 break;
2117 off -= n;
2119 free_page((unsigned long)buf);
2121 return ret;
2123 EXPORT_SYMBOL(dump_seek);