drm/radeon/kms: rs6xx/rs740: clamp vram to aperture size
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / inode.c
blob1dae9a4dbb0374de6d19fe0322cafce78b914ad7
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
54 return jbd2_journal_begin_ordered_truncate(
55 EXT4_SB(inode->i_sb)->s_journal,
56 &EXT4_I(inode)->jinode,
57 new_size);
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
63 * Test whether an inode is a fast symlink.
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
67 int ea_blocks = EXT4_I(inode)->i_file_acl ?
68 (inode->i_sb->s_blocksize >> 9) : 0;
70 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
74 * The ext4 forget function must perform a revoke if we are freeing data
75 * which has been journaled. Metadata (eg. indirect blocks) must be
76 * revoked in all cases.
78 * "bh" may be NULL: a metadata block may have been freed from memory
79 * but there may still be a record of it in the journal, and that record
80 * still needs to be revoked.
82 * If the handle isn't valid we're not journaling, but we still need to
83 * call into ext4_journal_revoke() to put the buffer head.
85 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
86 struct buffer_head *bh, ext4_fsblk_t blocknr)
88 int err;
90 might_sleep();
92 BUFFER_TRACE(bh, "enter");
94 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
95 "data mode %x\n",
96 bh, is_metadata, inode->i_mode,
97 test_opt(inode->i_sb, DATA_FLAGS));
99 /* Never use the revoke function if we are doing full data
100 * journaling: there is no need to, and a V1 superblock won't
101 * support it. Otherwise, only skip the revoke on un-journaled
102 * data blocks. */
104 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
105 (!is_metadata && !ext4_should_journal_data(inode))) {
106 if (bh) {
107 BUFFER_TRACE(bh, "call jbd2_journal_forget");
108 return ext4_journal_forget(handle, bh);
110 return 0;
114 * data!=journal && (is_metadata || should_journal_data(inode))
116 BUFFER_TRACE(bh, "call ext4_journal_revoke");
117 err = ext4_journal_revoke(handle, blocknr, bh);
118 if (err)
119 ext4_abort(inode->i_sb, __func__,
120 "error %d when attempting revoke", err);
121 BUFFER_TRACE(bh, "exit");
122 return err;
126 * Work out how many blocks we need to proceed with the next chunk of a
127 * truncate transaction.
129 static unsigned long blocks_for_truncate(struct inode *inode)
131 ext4_lblk_t needed;
133 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
135 /* Give ourselves just enough room to cope with inodes in which
136 * i_blocks is corrupt: we've seen disk corruptions in the past
137 * which resulted in random data in an inode which looked enough
138 * like a regular file for ext4 to try to delete it. Things
139 * will go a bit crazy if that happens, but at least we should
140 * try not to panic the whole kernel. */
141 if (needed < 2)
142 needed = 2;
144 /* But we need to bound the transaction so we don't overflow the
145 * journal. */
146 if (needed > EXT4_MAX_TRANS_DATA)
147 needed = EXT4_MAX_TRANS_DATA;
149 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
153 * Truncate transactions can be complex and absolutely huge. So we need to
154 * be able to restart the transaction at a conventient checkpoint to make
155 * sure we don't overflow the journal.
157 * start_transaction gets us a new handle for a truncate transaction,
158 * and extend_transaction tries to extend the existing one a bit. If
159 * extend fails, we need to propagate the failure up and restart the
160 * transaction in the top-level truncate loop. --sct
162 static handle_t *start_transaction(struct inode *inode)
164 handle_t *result;
166 result = ext4_journal_start(inode, blocks_for_truncate(inode));
167 if (!IS_ERR(result))
168 return result;
170 ext4_std_error(inode->i_sb, PTR_ERR(result));
171 return result;
175 * Try to extend this transaction for the purposes of truncation.
177 * Returns 0 if we managed to create more room. If we can't create more
178 * room, and the transaction must be restarted we return 1.
180 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
182 if (!ext4_handle_valid(handle))
183 return 0;
184 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
185 return 0;
186 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
187 return 0;
188 return 1;
192 * Restart the transaction associated with *handle. This does a commit,
193 * so before we call here everything must be consistently dirtied against
194 * this transaction.
196 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
197 int nblocks)
199 int ret;
202 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
203 * moment, get_block can be called only for blocks inside i_size since
204 * page cache has been already dropped and writes are blocked by
205 * i_mutex. So we can safely drop the i_data_sem here.
207 BUG_ON(EXT4_JOURNAL(inode) == NULL);
208 jbd_debug(2, "restarting handle %p\n", handle);
209 up_write(&EXT4_I(inode)->i_data_sem);
210 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
211 down_write(&EXT4_I(inode)->i_data_sem);
212 ext4_discard_preallocations(inode);
214 return ret;
218 * Called at the last iput() if i_nlink is zero.
220 void ext4_delete_inode(struct inode *inode)
222 handle_t *handle;
223 int err;
225 if (ext4_should_order_data(inode))
226 ext4_begin_ordered_truncate(inode, 0);
227 truncate_inode_pages(&inode->i_data, 0);
229 if (is_bad_inode(inode))
230 goto no_delete;
232 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
233 if (IS_ERR(handle)) {
234 ext4_std_error(inode->i_sb, PTR_ERR(handle));
236 * If we're going to skip the normal cleanup, we still need to
237 * make sure that the in-core orphan linked list is properly
238 * cleaned up.
240 ext4_orphan_del(NULL, inode);
241 goto no_delete;
244 if (IS_SYNC(inode))
245 ext4_handle_sync(handle);
246 inode->i_size = 0;
247 err = ext4_mark_inode_dirty(handle, inode);
248 if (err) {
249 ext4_warning(inode->i_sb, __func__,
250 "couldn't mark inode dirty (err %d)", err);
251 goto stop_handle;
253 if (inode->i_blocks)
254 ext4_truncate(inode);
257 * ext4_ext_truncate() doesn't reserve any slop when it
258 * restarts journal transactions; therefore there may not be
259 * enough credits left in the handle to remove the inode from
260 * the orphan list and set the dtime field.
262 if (!ext4_handle_has_enough_credits(handle, 3)) {
263 err = ext4_journal_extend(handle, 3);
264 if (err > 0)
265 err = ext4_journal_restart(handle, 3);
266 if (err != 0) {
267 ext4_warning(inode->i_sb, __func__,
268 "couldn't extend journal (err %d)", err);
269 stop_handle:
270 ext4_journal_stop(handle);
271 goto no_delete;
276 * Kill off the orphan record which ext4_truncate created.
277 * AKPM: I think this can be inside the above `if'.
278 * Note that ext4_orphan_del() has to be able to cope with the
279 * deletion of a non-existent orphan - this is because we don't
280 * know if ext4_truncate() actually created an orphan record.
281 * (Well, we could do this if we need to, but heck - it works)
283 ext4_orphan_del(handle, inode);
284 EXT4_I(inode)->i_dtime = get_seconds();
287 * One subtle ordering requirement: if anything has gone wrong
288 * (transaction abort, IO errors, whatever), then we can still
289 * do these next steps (the fs will already have been marked as
290 * having errors), but we can't free the inode if the mark_dirty
291 * fails.
293 if (ext4_mark_inode_dirty(handle, inode))
294 /* If that failed, just do the required in-core inode clear. */
295 clear_inode(inode);
296 else
297 ext4_free_inode(handle, inode);
298 ext4_journal_stop(handle);
299 return;
300 no_delete:
301 clear_inode(inode); /* We must guarantee clearing of inode... */
304 typedef struct {
305 __le32 *p;
306 __le32 key;
307 struct buffer_head *bh;
308 } Indirect;
310 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
312 p->key = *(p->p = v);
313 p->bh = bh;
317 * ext4_block_to_path - parse the block number into array of offsets
318 * @inode: inode in question (we are only interested in its superblock)
319 * @i_block: block number to be parsed
320 * @offsets: array to store the offsets in
321 * @boundary: set this non-zero if the referred-to block is likely to be
322 * followed (on disk) by an indirect block.
324 * To store the locations of file's data ext4 uses a data structure common
325 * for UNIX filesystems - tree of pointers anchored in the inode, with
326 * data blocks at leaves and indirect blocks in intermediate nodes.
327 * This function translates the block number into path in that tree -
328 * return value is the path length and @offsets[n] is the offset of
329 * pointer to (n+1)th node in the nth one. If @block is out of range
330 * (negative or too large) warning is printed and zero returned.
332 * Note: function doesn't find node addresses, so no IO is needed. All
333 * we need to know is the capacity of indirect blocks (taken from the
334 * inode->i_sb).
338 * Portability note: the last comparison (check that we fit into triple
339 * indirect block) is spelled differently, because otherwise on an
340 * architecture with 32-bit longs and 8Kb pages we might get into trouble
341 * if our filesystem had 8Kb blocks. We might use long long, but that would
342 * kill us on x86. Oh, well, at least the sign propagation does not matter -
343 * i_block would have to be negative in the very beginning, so we would not
344 * get there at all.
347 static int ext4_block_to_path(struct inode *inode,
348 ext4_lblk_t i_block,
349 ext4_lblk_t offsets[4], int *boundary)
351 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
352 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
353 const long direct_blocks = EXT4_NDIR_BLOCKS,
354 indirect_blocks = ptrs,
355 double_blocks = (1 << (ptrs_bits * 2));
356 int n = 0;
357 int final = 0;
359 if (i_block < direct_blocks) {
360 offsets[n++] = i_block;
361 final = direct_blocks;
362 } else if ((i_block -= direct_blocks) < indirect_blocks) {
363 offsets[n++] = EXT4_IND_BLOCK;
364 offsets[n++] = i_block;
365 final = ptrs;
366 } else if ((i_block -= indirect_blocks) < double_blocks) {
367 offsets[n++] = EXT4_DIND_BLOCK;
368 offsets[n++] = i_block >> ptrs_bits;
369 offsets[n++] = i_block & (ptrs - 1);
370 final = ptrs;
371 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
372 offsets[n++] = EXT4_TIND_BLOCK;
373 offsets[n++] = i_block >> (ptrs_bits * 2);
374 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
375 offsets[n++] = i_block & (ptrs - 1);
376 final = ptrs;
377 } else {
378 ext4_warning(inode->i_sb, "ext4_block_to_path",
379 "block %lu > max in inode %lu",
380 i_block + direct_blocks +
381 indirect_blocks + double_blocks, inode->i_ino);
383 if (boundary)
384 *boundary = final - 1 - (i_block & (ptrs - 1));
385 return n;
388 static int __ext4_check_blockref(const char *function, struct inode *inode,
389 __le32 *p, unsigned int max)
391 __le32 *bref = p;
392 unsigned int blk;
394 while (bref < p+max) {
395 blk = le32_to_cpu(*bref++);
396 if (blk &&
397 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
398 blk, 1))) {
399 ext4_error(inode->i_sb, function,
400 "invalid block reference %u "
401 "in inode #%lu", blk, inode->i_ino);
402 return -EIO;
405 return 0;
409 #define ext4_check_indirect_blockref(inode, bh) \
410 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
411 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
413 #define ext4_check_inode_blockref(inode) \
414 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
415 EXT4_NDIR_BLOCKS)
418 * ext4_get_branch - read the chain of indirect blocks leading to data
419 * @inode: inode in question
420 * @depth: depth of the chain (1 - direct pointer, etc.)
421 * @offsets: offsets of pointers in inode/indirect blocks
422 * @chain: place to store the result
423 * @err: here we store the error value
425 * Function fills the array of triples <key, p, bh> and returns %NULL
426 * if everything went OK or the pointer to the last filled triple
427 * (incomplete one) otherwise. Upon the return chain[i].key contains
428 * the number of (i+1)-th block in the chain (as it is stored in memory,
429 * i.e. little-endian 32-bit), chain[i].p contains the address of that
430 * number (it points into struct inode for i==0 and into the bh->b_data
431 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
432 * block for i>0 and NULL for i==0. In other words, it holds the block
433 * numbers of the chain, addresses they were taken from (and where we can
434 * verify that chain did not change) and buffer_heads hosting these
435 * numbers.
437 * Function stops when it stumbles upon zero pointer (absent block)
438 * (pointer to last triple returned, *@err == 0)
439 * or when it gets an IO error reading an indirect block
440 * (ditto, *@err == -EIO)
441 * or when it reads all @depth-1 indirect blocks successfully and finds
442 * the whole chain, all way to the data (returns %NULL, *err == 0).
444 * Need to be called with
445 * down_read(&EXT4_I(inode)->i_data_sem)
447 static Indirect *ext4_get_branch(struct inode *inode, int depth,
448 ext4_lblk_t *offsets,
449 Indirect chain[4], int *err)
451 struct super_block *sb = inode->i_sb;
452 Indirect *p = chain;
453 struct buffer_head *bh;
455 *err = 0;
456 /* i_data is not going away, no lock needed */
457 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
458 if (!p->key)
459 goto no_block;
460 while (--depth) {
461 bh = sb_getblk(sb, le32_to_cpu(p->key));
462 if (unlikely(!bh))
463 goto failure;
465 if (!bh_uptodate_or_lock(bh)) {
466 if (bh_submit_read(bh) < 0) {
467 put_bh(bh);
468 goto failure;
470 /* validate block references */
471 if (ext4_check_indirect_blockref(inode, bh)) {
472 put_bh(bh);
473 goto failure;
477 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
478 /* Reader: end */
479 if (!p->key)
480 goto no_block;
482 return NULL;
484 failure:
485 *err = -EIO;
486 no_block:
487 return p;
491 * ext4_find_near - find a place for allocation with sufficient locality
492 * @inode: owner
493 * @ind: descriptor of indirect block.
495 * This function returns the preferred place for block allocation.
496 * It is used when heuristic for sequential allocation fails.
497 * Rules are:
498 * + if there is a block to the left of our position - allocate near it.
499 * + if pointer will live in indirect block - allocate near that block.
500 * + if pointer will live in inode - allocate in the same
501 * cylinder group.
503 * In the latter case we colour the starting block by the callers PID to
504 * prevent it from clashing with concurrent allocations for a different inode
505 * in the same block group. The PID is used here so that functionally related
506 * files will be close-by on-disk.
508 * Caller must make sure that @ind is valid and will stay that way.
510 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
512 struct ext4_inode_info *ei = EXT4_I(inode);
513 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
514 __le32 *p;
515 ext4_fsblk_t bg_start;
516 ext4_fsblk_t last_block;
517 ext4_grpblk_t colour;
518 ext4_group_t block_group;
519 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
521 /* Try to find previous block */
522 for (p = ind->p - 1; p >= start; p--) {
523 if (*p)
524 return le32_to_cpu(*p);
527 /* No such thing, so let's try location of indirect block */
528 if (ind->bh)
529 return ind->bh->b_blocknr;
532 * It is going to be referred to from the inode itself? OK, just put it
533 * into the same cylinder group then.
535 block_group = ei->i_block_group;
536 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
537 block_group &= ~(flex_size-1);
538 if (S_ISREG(inode->i_mode))
539 block_group++;
541 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
542 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
545 * If we are doing delayed allocation, we don't need take
546 * colour into account.
548 if (test_opt(inode->i_sb, DELALLOC))
549 return bg_start;
551 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
552 colour = (current->pid % 16) *
553 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
554 else
555 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
556 return bg_start + colour;
560 * ext4_find_goal - find a preferred place for allocation.
561 * @inode: owner
562 * @block: block we want
563 * @partial: pointer to the last triple within a chain
565 * Normally this function find the preferred place for block allocation,
566 * returns it.
567 * Because this is only used for non-extent files, we limit the block nr
568 * to 32 bits.
570 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
571 Indirect *partial)
573 ext4_fsblk_t goal;
576 * XXX need to get goal block from mballoc's data structures
579 goal = ext4_find_near(inode, partial);
580 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
581 return goal;
585 * ext4_blks_to_allocate: Look up the block map and count the number
586 * of direct blocks need to be allocated for the given branch.
588 * @branch: chain of indirect blocks
589 * @k: number of blocks need for indirect blocks
590 * @blks: number of data blocks to be mapped.
591 * @blocks_to_boundary: the offset in the indirect block
593 * return the total number of blocks to be allocate, including the
594 * direct and indirect blocks.
596 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
597 int blocks_to_boundary)
599 unsigned int count = 0;
602 * Simple case, [t,d]Indirect block(s) has not allocated yet
603 * then it's clear blocks on that path have not allocated
605 if (k > 0) {
606 /* right now we don't handle cross boundary allocation */
607 if (blks < blocks_to_boundary + 1)
608 count += blks;
609 else
610 count += blocks_to_boundary + 1;
611 return count;
614 count++;
615 while (count < blks && count <= blocks_to_boundary &&
616 le32_to_cpu(*(branch[0].p + count)) == 0) {
617 count++;
619 return count;
623 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
624 * @indirect_blks: the number of blocks need to allocate for indirect
625 * blocks
627 * @new_blocks: on return it will store the new block numbers for
628 * the indirect blocks(if needed) and the first direct block,
629 * @blks: on return it will store the total number of allocated
630 * direct blocks
632 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
633 ext4_lblk_t iblock, ext4_fsblk_t goal,
634 int indirect_blks, int blks,
635 ext4_fsblk_t new_blocks[4], int *err)
637 struct ext4_allocation_request ar;
638 int target, i;
639 unsigned long count = 0, blk_allocated = 0;
640 int index = 0;
641 ext4_fsblk_t current_block = 0;
642 int ret = 0;
645 * Here we try to allocate the requested multiple blocks at once,
646 * on a best-effort basis.
647 * To build a branch, we should allocate blocks for
648 * the indirect blocks(if not allocated yet), and at least
649 * the first direct block of this branch. That's the
650 * minimum number of blocks need to allocate(required)
652 /* first we try to allocate the indirect blocks */
653 target = indirect_blks;
654 while (target > 0) {
655 count = target;
656 /* allocating blocks for indirect blocks and direct blocks */
657 current_block = ext4_new_meta_blocks(handle, inode,
658 goal, &count, err);
659 if (*err)
660 goto failed_out;
662 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
664 target -= count;
665 /* allocate blocks for indirect blocks */
666 while (index < indirect_blks && count) {
667 new_blocks[index++] = current_block++;
668 count--;
670 if (count > 0) {
672 * save the new block number
673 * for the first direct block
675 new_blocks[index] = current_block;
676 printk(KERN_INFO "%s returned more blocks than "
677 "requested\n", __func__);
678 WARN_ON(1);
679 break;
683 target = blks - count ;
684 blk_allocated = count;
685 if (!target)
686 goto allocated;
687 /* Now allocate data blocks */
688 memset(&ar, 0, sizeof(ar));
689 ar.inode = inode;
690 ar.goal = goal;
691 ar.len = target;
692 ar.logical = iblock;
693 if (S_ISREG(inode->i_mode))
694 /* enable in-core preallocation only for regular files */
695 ar.flags = EXT4_MB_HINT_DATA;
697 current_block = ext4_mb_new_blocks(handle, &ar, err);
698 BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
700 if (*err && (target == blks)) {
702 * if the allocation failed and we didn't allocate
703 * any blocks before
705 goto failed_out;
707 if (!*err) {
708 if (target == blks) {
710 * save the new block number
711 * for the first direct block
713 new_blocks[index] = current_block;
715 blk_allocated += ar.len;
717 allocated:
718 /* total number of blocks allocated for direct blocks */
719 ret = blk_allocated;
720 *err = 0;
721 return ret;
722 failed_out:
723 for (i = 0; i < index; i++)
724 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
725 return ret;
729 * ext4_alloc_branch - allocate and set up a chain of blocks.
730 * @inode: owner
731 * @indirect_blks: number of allocated indirect blocks
732 * @blks: number of allocated direct blocks
733 * @offsets: offsets (in the blocks) to store the pointers to next.
734 * @branch: place to store the chain in.
736 * This function allocates blocks, zeroes out all but the last one,
737 * links them into chain and (if we are synchronous) writes them to disk.
738 * In other words, it prepares a branch that can be spliced onto the
739 * inode. It stores the information about that chain in the branch[], in
740 * the same format as ext4_get_branch() would do. We are calling it after
741 * we had read the existing part of chain and partial points to the last
742 * triple of that (one with zero ->key). Upon the exit we have the same
743 * picture as after the successful ext4_get_block(), except that in one
744 * place chain is disconnected - *branch->p is still zero (we did not
745 * set the last link), but branch->key contains the number that should
746 * be placed into *branch->p to fill that gap.
748 * If allocation fails we free all blocks we've allocated (and forget
749 * their buffer_heads) and return the error value the from failed
750 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
751 * as described above and return 0.
753 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
754 ext4_lblk_t iblock, int indirect_blks,
755 int *blks, ext4_fsblk_t goal,
756 ext4_lblk_t *offsets, Indirect *branch)
758 int blocksize = inode->i_sb->s_blocksize;
759 int i, n = 0;
760 int err = 0;
761 struct buffer_head *bh;
762 int num;
763 ext4_fsblk_t new_blocks[4];
764 ext4_fsblk_t current_block;
766 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
767 *blks, new_blocks, &err);
768 if (err)
769 return err;
771 branch[0].key = cpu_to_le32(new_blocks[0]);
773 * metadata blocks and data blocks are allocated.
775 for (n = 1; n <= indirect_blks; n++) {
777 * Get buffer_head for parent block, zero it out
778 * and set the pointer to new one, then send
779 * parent to disk.
781 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
782 branch[n].bh = bh;
783 lock_buffer(bh);
784 BUFFER_TRACE(bh, "call get_create_access");
785 err = ext4_journal_get_create_access(handle, bh);
786 if (err) {
787 /* Don't brelse(bh) here; it's done in
788 * ext4_journal_forget() below */
789 unlock_buffer(bh);
790 goto failed;
793 memset(bh->b_data, 0, blocksize);
794 branch[n].p = (__le32 *) bh->b_data + offsets[n];
795 branch[n].key = cpu_to_le32(new_blocks[n]);
796 *branch[n].p = branch[n].key;
797 if (n == indirect_blks) {
798 current_block = new_blocks[n];
800 * End of chain, update the last new metablock of
801 * the chain to point to the new allocated
802 * data blocks numbers
804 for (i = 1; i < num; i++)
805 *(branch[n].p + i) = cpu_to_le32(++current_block);
807 BUFFER_TRACE(bh, "marking uptodate");
808 set_buffer_uptodate(bh);
809 unlock_buffer(bh);
811 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
812 err = ext4_handle_dirty_metadata(handle, inode, bh);
813 if (err)
814 goto failed;
816 *blks = num;
817 return err;
818 failed:
819 /* Allocation failed, free what we already allocated */
820 for (i = 1; i <= n ; i++) {
821 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
822 ext4_journal_forget(handle, branch[i].bh);
824 for (i = 0; i < indirect_blks; i++)
825 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
827 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
829 return err;
833 * ext4_splice_branch - splice the allocated branch onto inode.
834 * @inode: owner
835 * @block: (logical) number of block we are adding
836 * @chain: chain of indirect blocks (with a missing link - see
837 * ext4_alloc_branch)
838 * @where: location of missing link
839 * @num: number of indirect blocks we are adding
840 * @blks: number of direct blocks we are adding
842 * This function fills the missing link and does all housekeeping needed in
843 * inode (->i_blocks, etc.). In case of success we end up with the full
844 * chain to new block and return 0.
846 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
847 ext4_lblk_t block, Indirect *where, int num,
848 int blks)
850 int i;
851 int err = 0;
852 ext4_fsblk_t current_block;
855 * If we're splicing into a [td]indirect block (as opposed to the
856 * inode) then we need to get write access to the [td]indirect block
857 * before the splice.
859 if (where->bh) {
860 BUFFER_TRACE(where->bh, "get_write_access");
861 err = ext4_journal_get_write_access(handle, where->bh);
862 if (err)
863 goto err_out;
865 /* That's it */
867 *where->p = where->key;
870 * Update the host buffer_head or inode to point to more just allocated
871 * direct blocks blocks
873 if (num == 0 && blks > 1) {
874 current_block = le32_to_cpu(where->key) + 1;
875 for (i = 1; i < blks; i++)
876 *(where->p + i) = cpu_to_le32(current_block++);
879 /* We are done with atomic stuff, now do the rest of housekeeping */
880 /* had we spliced it onto indirect block? */
881 if (where->bh) {
883 * If we spliced it onto an indirect block, we haven't
884 * altered the inode. Note however that if it is being spliced
885 * onto an indirect block at the very end of the file (the
886 * file is growing) then we *will* alter the inode to reflect
887 * the new i_size. But that is not done here - it is done in
888 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
890 jbd_debug(5, "splicing indirect only\n");
891 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
892 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
893 if (err)
894 goto err_out;
895 } else {
897 * OK, we spliced it into the inode itself on a direct block.
899 ext4_mark_inode_dirty(handle, inode);
900 jbd_debug(5, "splicing direct\n");
902 return err;
904 err_out:
905 for (i = 1; i <= num; i++) {
906 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
907 ext4_journal_forget(handle, where[i].bh);
908 ext4_free_blocks(handle, inode,
909 le32_to_cpu(where[i-1].key), 1, 0);
911 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
913 return err;
917 * The ext4_ind_get_blocks() function handles non-extents inodes
918 * (i.e., using the traditional indirect/double-indirect i_blocks
919 * scheme) for ext4_get_blocks().
921 * Allocation strategy is simple: if we have to allocate something, we will
922 * have to go the whole way to leaf. So let's do it before attaching anything
923 * to tree, set linkage between the newborn blocks, write them if sync is
924 * required, recheck the path, free and repeat if check fails, otherwise
925 * set the last missing link (that will protect us from any truncate-generated
926 * removals - all blocks on the path are immune now) and possibly force the
927 * write on the parent block.
928 * That has a nice additional property: no special recovery from the failed
929 * allocations is needed - we simply release blocks and do not touch anything
930 * reachable from inode.
932 * `handle' can be NULL if create == 0.
934 * return > 0, # of blocks mapped or allocated.
935 * return = 0, if plain lookup failed.
936 * return < 0, error case.
938 * The ext4_ind_get_blocks() function should be called with
939 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
940 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
941 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
942 * blocks.
944 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
945 ext4_lblk_t iblock, unsigned int maxblocks,
946 struct buffer_head *bh_result,
947 int flags)
949 int err = -EIO;
950 ext4_lblk_t offsets[4];
951 Indirect chain[4];
952 Indirect *partial;
953 ext4_fsblk_t goal;
954 int indirect_blks;
955 int blocks_to_boundary = 0;
956 int depth;
957 int count = 0;
958 ext4_fsblk_t first_block = 0;
960 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
961 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
962 depth = ext4_block_to_path(inode, iblock, offsets,
963 &blocks_to_boundary);
965 if (depth == 0)
966 goto out;
968 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
970 /* Simplest case - block found, no allocation needed */
971 if (!partial) {
972 first_block = le32_to_cpu(chain[depth - 1].key);
973 clear_buffer_new(bh_result);
974 count++;
975 /*map more blocks*/
976 while (count < maxblocks && count <= blocks_to_boundary) {
977 ext4_fsblk_t blk;
979 blk = le32_to_cpu(*(chain[depth-1].p + count));
981 if (blk == first_block + count)
982 count++;
983 else
984 break;
986 goto got_it;
989 /* Next simple case - plain lookup or failed read of indirect block */
990 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
991 goto cleanup;
994 * Okay, we need to do block allocation.
996 goal = ext4_find_goal(inode, iblock, partial);
998 /* the number of blocks need to allocate for [d,t]indirect blocks */
999 indirect_blks = (chain + depth) - partial - 1;
1002 * Next look up the indirect map to count the totoal number of
1003 * direct blocks to allocate for this branch.
1005 count = ext4_blks_to_allocate(partial, indirect_blks,
1006 maxblocks, blocks_to_boundary);
1008 * Block out ext4_truncate while we alter the tree
1010 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
1011 &count, goal,
1012 offsets + (partial - chain), partial);
1015 * The ext4_splice_branch call will free and forget any buffers
1016 * on the new chain if there is a failure, but that risks using
1017 * up transaction credits, especially for bitmaps where the
1018 * credits cannot be returned. Can we handle this somehow? We
1019 * may need to return -EAGAIN upwards in the worst case. --sct
1021 if (!err)
1022 err = ext4_splice_branch(handle, inode, iblock,
1023 partial, indirect_blks, count);
1024 if (err)
1025 goto cleanup;
1027 set_buffer_new(bh_result);
1029 ext4_update_inode_fsync_trans(handle, inode, 1);
1030 got_it:
1031 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1032 if (count > blocks_to_boundary)
1033 set_buffer_boundary(bh_result);
1034 err = count;
1035 /* Clean up and exit */
1036 partial = chain + depth - 1; /* the whole chain */
1037 cleanup:
1038 while (partial > chain) {
1039 BUFFER_TRACE(partial->bh, "call brelse");
1040 brelse(partial->bh);
1041 partial--;
1043 BUFFER_TRACE(bh_result, "returned");
1044 out:
1045 return err;
1048 qsize_t ext4_get_reserved_space(struct inode *inode)
1050 unsigned long long total;
1052 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1053 total = EXT4_I(inode)->i_reserved_data_blocks +
1054 EXT4_I(inode)->i_reserved_meta_blocks;
1055 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1057 return (total << inode->i_blkbits);
1060 * Calculate the number of metadata blocks need to reserve
1061 * to allocate @blocks for non extent file based file
1063 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1065 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1066 int ind_blks, dind_blks, tind_blks;
1068 /* number of new indirect blocks needed */
1069 ind_blks = (blocks + icap - 1) / icap;
1071 dind_blks = (ind_blks + icap - 1) / icap;
1073 tind_blks = 1;
1075 return ind_blks + dind_blks + tind_blks;
1079 * Calculate the number of metadata blocks need to reserve
1080 * to allocate given number of blocks
1082 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1084 if (!blocks)
1085 return 0;
1087 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1088 return ext4_ext_calc_metadata_amount(inode, blocks);
1090 return ext4_indirect_calc_metadata_amount(inode, blocks);
1093 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1095 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1096 int total, mdb, mdb_free;
1098 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1099 /* recalculate the number of metablocks still need to be reserved */
1100 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1101 mdb = ext4_calc_metadata_amount(inode, total);
1103 /* figure out how many metablocks to release */
1104 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1105 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1107 if (mdb_free) {
1108 /* Account for allocated meta_blocks */
1109 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1111 /* update fs dirty blocks counter */
1112 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1113 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1114 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1117 /* update per-inode reservations */
1118 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1119 EXT4_I(inode)->i_reserved_data_blocks -= used;
1120 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1123 * free those over-booking quota for metadata blocks
1125 if (mdb_free)
1126 vfs_dq_release_reservation_block(inode, mdb_free);
1129 * If we have done all the pending block allocations and if
1130 * there aren't any writers on the inode, we can discard the
1131 * inode's preallocations.
1133 if (!total && (atomic_read(&inode->i_writecount) == 0))
1134 ext4_discard_preallocations(inode);
1137 static int check_block_validity(struct inode *inode, const char *msg,
1138 sector_t logical, sector_t phys, int len)
1140 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1141 ext4_error(inode->i_sb, msg,
1142 "inode #%lu logical block %llu mapped to %llu "
1143 "(size %d)", inode->i_ino,
1144 (unsigned long long) logical,
1145 (unsigned long long) phys, len);
1146 return -EIO;
1148 return 0;
1152 * Return the number of contiguous dirty pages in a given inode
1153 * starting at page frame idx.
1155 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1156 unsigned int max_pages)
1158 struct address_space *mapping = inode->i_mapping;
1159 pgoff_t index;
1160 struct pagevec pvec;
1161 pgoff_t num = 0;
1162 int i, nr_pages, done = 0;
1164 if (max_pages == 0)
1165 return 0;
1166 pagevec_init(&pvec, 0);
1167 while (!done) {
1168 index = idx;
1169 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1170 PAGECACHE_TAG_DIRTY,
1171 (pgoff_t)PAGEVEC_SIZE);
1172 if (nr_pages == 0)
1173 break;
1174 for (i = 0; i < nr_pages; i++) {
1175 struct page *page = pvec.pages[i];
1176 struct buffer_head *bh, *head;
1178 lock_page(page);
1179 if (unlikely(page->mapping != mapping) ||
1180 !PageDirty(page) ||
1181 PageWriteback(page) ||
1182 page->index != idx) {
1183 done = 1;
1184 unlock_page(page);
1185 break;
1187 if (page_has_buffers(page)) {
1188 bh = head = page_buffers(page);
1189 do {
1190 if (!buffer_delay(bh) &&
1191 !buffer_unwritten(bh))
1192 done = 1;
1193 bh = bh->b_this_page;
1194 } while (!done && (bh != head));
1196 unlock_page(page);
1197 if (done)
1198 break;
1199 idx++;
1200 num++;
1201 if (num >= max_pages)
1202 break;
1204 pagevec_release(&pvec);
1206 return num;
1210 * The ext4_get_blocks() function tries to look up the requested blocks,
1211 * and returns if the blocks are already mapped.
1213 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1214 * and store the allocated blocks in the result buffer head and mark it
1215 * mapped.
1217 * If file type is extents based, it will call ext4_ext_get_blocks(),
1218 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1219 * based files
1221 * On success, it returns the number of blocks being mapped or allocate.
1222 * if create==0 and the blocks are pre-allocated and uninitialized block,
1223 * the result buffer head is unmapped. If the create ==1, it will make sure
1224 * the buffer head is mapped.
1226 * It returns 0 if plain look up failed (blocks have not been allocated), in
1227 * that casem, buffer head is unmapped
1229 * It returns the error in case of allocation failure.
1231 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1232 unsigned int max_blocks, struct buffer_head *bh,
1233 int flags)
1235 int retval;
1237 clear_buffer_mapped(bh);
1238 clear_buffer_unwritten(bh);
1240 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1241 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1242 (unsigned long)block);
1244 * Try to see if we can get the block without requesting a new
1245 * file system block.
1247 down_read((&EXT4_I(inode)->i_data_sem));
1248 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1249 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1250 bh, 0);
1251 } else {
1252 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1253 bh, 0);
1255 up_read((&EXT4_I(inode)->i_data_sem));
1257 if (retval > 0 && buffer_mapped(bh)) {
1258 int ret = check_block_validity(inode, "file system corruption",
1259 block, bh->b_blocknr, retval);
1260 if (ret != 0)
1261 return ret;
1264 /* If it is only a block(s) look up */
1265 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1266 return retval;
1269 * Returns if the blocks have already allocated
1271 * Note that if blocks have been preallocated
1272 * ext4_ext_get_block() returns th create = 0
1273 * with buffer head unmapped.
1275 if (retval > 0 && buffer_mapped(bh))
1276 return retval;
1279 * When we call get_blocks without the create flag, the
1280 * BH_Unwritten flag could have gotten set if the blocks
1281 * requested were part of a uninitialized extent. We need to
1282 * clear this flag now that we are committed to convert all or
1283 * part of the uninitialized extent to be an initialized
1284 * extent. This is because we need to avoid the combination
1285 * of BH_Unwritten and BH_Mapped flags being simultaneously
1286 * set on the buffer_head.
1288 clear_buffer_unwritten(bh);
1291 * New blocks allocate and/or writing to uninitialized extent
1292 * will possibly result in updating i_data, so we take
1293 * the write lock of i_data_sem, and call get_blocks()
1294 * with create == 1 flag.
1296 down_write((&EXT4_I(inode)->i_data_sem));
1299 * if the caller is from delayed allocation writeout path
1300 * we have already reserved fs blocks for allocation
1301 * let the underlying get_block() function know to
1302 * avoid double accounting
1304 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1305 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1307 * We need to check for EXT4 here because migrate
1308 * could have changed the inode type in between
1310 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1311 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1312 bh, flags);
1313 } else {
1314 retval = ext4_ind_get_blocks(handle, inode, block,
1315 max_blocks, bh, flags);
1317 if (retval > 0 && buffer_new(bh)) {
1319 * We allocated new blocks which will result in
1320 * i_data's format changing. Force the migrate
1321 * to fail by clearing migrate flags
1323 EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1327 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1328 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1331 * Update reserved blocks/metadata blocks after successful
1332 * block allocation which had been deferred till now.
1334 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1335 ext4_da_update_reserve_space(inode, retval);
1337 up_write((&EXT4_I(inode)->i_data_sem));
1338 if (retval > 0 && buffer_mapped(bh)) {
1339 int ret = check_block_validity(inode, "file system "
1340 "corruption after allocation",
1341 block, bh->b_blocknr, retval);
1342 if (ret != 0)
1343 return ret;
1345 return retval;
1348 /* Maximum number of blocks we map for direct IO at once. */
1349 #define DIO_MAX_BLOCKS 4096
1351 int ext4_get_block(struct inode *inode, sector_t iblock,
1352 struct buffer_head *bh_result, int create)
1354 handle_t *handle = ext4_journal_current_handle();
1355 int ret = 0, started = 0;
1356 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1357 int dio_credits;
1359 if (create && !handle) {
1360 /* Direct IO write... */
1361 if (max_blocks > DIO_MAX_BLOCKS)
1362 max_blocks = DIO_MAX_BLOCKS;
1363 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1364 handle = ext4_journal_start(inode, dio_credits);
1365 if (IS_ERR(handle)) {
1366 ret = PTR_ERR(handle);
1367 goto out;
1369 started = 1;
1372 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1373 create ? EXT4_GET_BLOCKS_CREATE : 0);
1374 if (ret > 0) {
1375 bh_result->b_size = (ret << inode->i_blkbits);
1376 ret = 0;
1378 if (started)
1379 ext4_journal_stop(handle);
1380 out:
1381 return ret;
1385 * `handle' can be NULL if create is zero
1387 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1388 ext4_lblk_t block, int create, int *errp)
1390 struct buffer_head dummy;
1391 int fatal = 0, err;
1392 int flags = 0;
1394 J_ASSERT(handle != NULL || create == 0);
1396 dummy.b_state = 0;
1397 dummy.b_blocknr = -1000;
1398 buffer_trace_init(&dummy.b_history);
1399 if (create)
1400 flags |= EXT4_GET_BLOCKS_CREATE;
1401 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1403 * ext4_get_blocks() returns number of blocks mapped. 0 in
1404 * case of a HOLE.
1406 if (err > 0) {
1407 if (err > 1)
1408 WARN_ON(1);
1409 err = 0;
1411 *errp = err;
1412 if (!err && buffer_mapped(&dummy)) {
1413 struct buffer_head *bh;
1414 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1415 if (!bh) {
1416 *errp = -EIO;
1417 goto err;
1419 if (buffer_new(&dummy)) {
1420 J_ASSERT(create != 0);
1421 J_ASSERT(handle != NULL);
1424 * Now that we do not always journal data, we should
1425 * keep in mind whether this should always journal the
1426 * new buffer as metadata. For now, regular file
1427 * writes use ext4_get_block instead, so it's not a
1428 * problem.
1430 lock_buffer(bh);
1431 BUFFER_TRACE(bh, "call get_create_access");
1432 fatal = ext4_journal_get_create_access(handle, bh);
1433 if (!fatal && !buffer_uptodate(bh)) {
1434 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1435 set_buffer_uptodate(bh);
1437 unlock_buffer(bh);
1438 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1439 err = ext4_handle_dirty_metadata(handle, inode, bh);
1440 if (!fatal)
1441 fatal = err;
1442 } else {
1443 BUFFER_TRACE(bh, "not a new buffer");
1445 if (fatal) {
1446 *errp = fatal;
1447 brelse(bh);
1448 bh = NULL;
1450 return bh;
1452 err:
1453 return NULL;
1456 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1457 ext4_lblk_t block, int create, int *err)
1459 struct buffer_head *bh;
1461 bh = ext4_getblk(handle, inode, block, create, err);
1462 if (!bh)
1463 return bh;
1464 if (buffer_uptodate(bh))
1465 return bh;
1466 ll_rw_block(READ_META, 1, &bh);
1467 wait_on_buffer(bh);
1468 if (buffer_uptodate(bh))
1469 return bh;
1470 put_bh(bh);
1471 *err = -EIO;
1472 return NULL;
1475 static int walk_page_buffers(handle_t *handle,
1476 struct buffer_head *head,
1477 unsigned from,
1478 unsigned to,
1479 int *partial,
1480 int (*fn)(handle_t *handle,
1481 struct buffer_head *bh))
1483 struct buffer_head *bh;
1484 unsigned block_start, block_end;
1485 unsigned blocksize = head->b_size;
1486 int err, ret = 0;
1487 struct buffer_head *next;
1489 for (bh = head, block_start = 0;
1490 ret == 0 && (bh != head || !block_start);
1491 block_start = block_end, bh = next) {
1492 next = bh->b_this_page;
1493 block_end = block_start + blocksize;
1494 if (block_end <= from || block_start >= to) {
1495 if (partial && !buffer_uptodate(bh))
1496 *partial = 1;
1497 continue;
1499 err = (*fn)(handle, bh);
1500 if (!ret)
1501 ret = err;
1503 return ret;
1507 * To preserve ordering, it is essential that the hole instantiation and
1508 * the data write be encapsulated in a single transaction. We cannot
1509 * close off a transaction and start a new one between the ext4_get_block()
1510 * and the commit_write(). So doing the jbd2_journal_start at the start of
1511 * prepare_write() is the right place.
1513 * Also, this function can nest inside ext4_writepage() ->
1514 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1515 * has generated enough buffer credits to do the whole page. So we won't
1516 * block on the journal in that case, which is good, because the caller may
1517 * be PF_MEMALLOC.
1519 * By accident, ext4 can be reentered when a transaction is open via
1520 * quota file writes. If we were to commit the transaction while thus
1521 * reentered, there can be a deadlock - we would be holding a quota
1522 * lock, and the commit would never complete if another thread had a
1523 * transaction open and was blocking on the quota lock - a ranking
1524 * violation.
1526 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1527 * will _not_ run commit under these circumstances because handle->h_ref
1528 * is elevated. We'll still have enough credits for the tiny quotafile
1529 * write.
1531 static int do_journal_get_write_access(handle_t *handle,
1532 struct buffer_head *bh)
1534 if (!buffer_mapped(bh) || buffer_freed(bh))
1535 return 0;
1536 return ext4_journal_get_write_access(handle, bh);
1540 * Truncate blocks that were not used by write. We have to truncate the
1541 * pagecache as well so that corresponding buffers get properly unmapped.
1543 static void ext4_truncate_failed_write(struct inode *inode)
1545 truncate_inode_pages(inode->i_mapping, inode->i_size);
1546 ext4_truncate(inode);
1549 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1550 loff_t pos, unsigned len, unsigned flags,
1551 struct page **pagep, void **fsdata)
1553 struct inode *inode = mapping->host;
1554 int ret, needed_blocks;
1555 handle_t *handle;
1556 int retries = 0;
1557 struct page *page;
1558 pgoff_t index;
1559 unsigned from, to;
1561 trace_ext4_write_begin(inode, pos, len, flags);
1563 * Reserve one block more for addition to orphan list in case
1564 * we allocate blocks but write fails for some reason
1566 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1567 index = pos >> PAGE_CACHE_SHIFT;
1568 from = pos & (PAGE_CACHE_SIZE - 1);
1569 to = from + len;
1571 retry:
1572 handle = ext4_journal_start(inode, needed_blocks);
1573 if (IS_ERR(handle)) {
1574 ret = PTR_ERR(handle);
1575 goto out;
1578 /* We cannot recurse into the filesystem as the transaction is already
1579 * started */
1580 flags |= AOP_FLAG_NOFS;
1582 page = grab_cache_page_write_begin(mapping, index, flags);
1583 if (!page) {
1584 ext4_journal_stop(handle);
1585 ret = -ENOMEM;
1586 goto out;
1588 *pagep = page;
1590 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1591 ext4_get_block);
1593 if (!ret && ext4_should_journal_data(inode)) {
1594 ret = walk_page_buffers(handle, page_buffers(page),
1595 from, to, NULL, do_journal_get_write_access);
1598 if (ret) {
1599 unlock_page(page);
1600 page_cache_release(page);
1602 * block_write_begin may have instantiated a few blocks
1603 * outside i_size. Trim these off again. Don't need
1604 * i_size_read because we hold i_mutex.
1606 * Add inode to orphan list in case we crash before
1607 * truncate finishes
1609 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1610 ext4_orphan_add(handle, inode);
1612 ext4_journal_stop(handle);
1613 if (pos + len > inode->i_size) {
1614 ext4_truncate_failed_write(inode);
1616 * If truncate failed early the inode might
1617 * still be on the orphan list; we need to
1618 * make sure the inode is removed from the
1619 * orphan list in that case.
1621 if (inode->i_nlink)
1622 ext4_orphan_del(NULL, inode);
1626 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1627 goto retry;
1628 out:
1629 return ret;
1632 /* For write_end() in data=journal mode */
1633 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1635 if (!buffer_mapped(bh) || buffer_freed(bh))
1636 return 0;
1637 set_buffer_uptodate(bh);
1638 return ext4_handle_dirty_metadata(handle, NULL, bh);
1641 static int ext4_generic_write_end(struct file *file,
1642 struct address_space *mapping,
1643 loff_t pos, unsigned len, unsigned copied,
1644 struct page *page, void *fsdata)
1646 int i_size_changed = 0;
1647 struct inode *inode = mapping->host;
1648 handle_t *handle = ext4_journal_current_handle();
1650 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1653 * No need to use i_size_read() here, the i_size
1654 * cannot change under us because we hold i_mutex.
1656 * But it's important to update i_size while still holding page lock:
1657 * page writeout could otherwise come in and zero beyond i_size.
1659 if (pos + copied > inode->i_size) {
1660 i_size_write(inode, pos + copied);
1661 i_size_changed = 1;
1664 if (pos + copied > EXT4_I(inode)->i_disksize) {
1665 /* We need to mark inode dirty even if
1666 * new_i_size is less that inode->i_size
1667 * bu greater than i_disksize.(hint delalloc)
1669 ext4_update_i_disksize(inode, (pos + copied));
1670 i_size_changed = 1;
1672 unlock_page(page);
1673 page_cache_release(page);
1676 * Don't mark the inode dirty under page lock. First, it unnecessarily
1677 * makes the holding time of page lock longer. Second, it forces lock
1678 * ordering of page lock and transaction start for journaling
1679 * filesystems.
1681 if (i_size_changed)
1682 ext4_mark_inode_dirty(handle, inode);
1684 return copied;
1688 * We need to pick up the new inode size which generic_commit_write gave us
1689 * `file' can be NULL - eg, when called from page_symlink().
1691 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1692 * buffers are managed internally.
1694 static int ext4_ordered_write_end(struct file *file,
1695 struct address_space *mapping,
1696 loff_t pos, unsigned len, unsigned copied,
1697 struct page *page, void *fsdata)
1699 handle_t *handle = ext4_journal_current_handle();
1700 struct inode *inode = mapping->host;
1701 int ret = 0, ret2;
1703 trace_ext4_ordered_write_end(inode, pos, len, copied);
1704 ret = ext4_jbd2_file_inode(handle, inode);
1706 if (ret == 0) {
1707 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1708 page, fsdata);
1709 copied = ret2;
1710 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1711 /* if we have allocated more blocks and copied
1712 * less. We will have blocks allocated outside
1713 * inode->i_size. So truncate them
1715 ext4_orphan_add(handle, inode);
1716 if (ret2 < 0)
1717 ret = ret2;
1719 ret2 = ext4_journal_stop(handle);
1720 if (!ret)
1721 ret = ret2;
1723 if (pos + len > inode->i_size) {
1724 ext4_truncate_failed_write(inode);
1726 * If truncate failed early the inode might still be
1727 * on the orphan list; we need to make sure the inode
1728 * is removed from the orphan list in that case.
1730 if (inode->i_nlink)
1731 ext4_orphan_del(NULL, inode);
1735 return ret ? ret : copied;
1738 static int ext4_writeback_write_end(struct file *file,
1739 struct address_space *mapping,
1740 loff_t pos, unsigned len, unsigned copied,
1741 struct page *page, void *fsdata)
1743 handle_t *handle = ext4_journal_current_handle();
1744 struct inode *inode = mapping->host;
1745 int ret = 0, ret2;
1747 trace_ext4_writeback_write_end(inode, pos, len, copied);
1748 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1749 page, fsdata);
1750 copied = ret2;
1751 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1752 /* if we have allocated more blocks and copied
1753 * less. We will have blocks allocated outside
1754 * inode->i_size. So truncate them
1756 ext4_orphan_add(handle, inode);
1758 if (ret2 < 0)
1759 ret = ret2;
1761 ret2 = ext4_journal_stop(handle);
1762 if (!ret)
1763 ret = ret2;
1765 if (pos + len > inode->i_size) {
1766 ext4_truncate_failed_write(inode);
1768 * If truncate failed early the inode might still be
1769 * on the orphan list; we need to make sure the inode
1770 * is removed from the orphan list in that case.
1772 if (inode->i_nlink)
1773 ext4_orphan_del(NULL, inode);
1776 return ret ? ret : copied;
1779 static int ext4_journalled_write_end(struct file *file,
1780 struct address_space *mapping,
1781 loff_t pos, unsigned len, unsigned copied,
1782 struct page *page, void *fsdata)
1784 handle_t *handle = ext4_journal_current_handle();
1785 struct inode *inode = mapping->host;
1786 int ret = 0, ret2;
1787 int partial = 0;
1788 unsigned from, to;
1789 loff_t new_i_size;
1791 trace_ext4_journalled_write_end(inode, pos, len, copied);
1792 from = pos & (PAGE_CACHE_SIZE - 1);
1793 to = from + len;
1795 if (copied < len) {
1796 if (!PageUptodate(page))
1797 copied = 0;
1798 page_zero_new_buffers(page, from+copied, to);
1801 ret = walk_page_buffers(handle, page_buffers(page), from,
1802 to, &partial, write_end_fn);
1803 if (!partial)
1804 SetPageUptodate(page);
1805 new_i_size = pos + copied;
1806 if (new_i_size > inode->i_size)
1807 i_size_write(inode, pos+copied);
1808 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1809 if (new_i_size > EXT4_I(inode)->i_disksize) {
1810 ext4_update_i_disksize(inode, new_i_size);
1811 ret2 = ext4_mark_inode_dirty(handle, inode);
1812 if (!ret)
1813 ret = ret2;
1816 unlock_page(page);
1817 page_cache_release(page);
1818 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1819 /* if we have allocated more blocks and copied
1820 * less. We will have blocks allocated outside
1821 * inode->i_size. So truncate them
1823 ext4_orphan_add(handle, inode);
1825 ret2 = ext4_journal_stop(handle);
1826 if (!ret)
1827 ret = ret2;
1828 if (pos + len > inode->i_size) {
1829 ext4_truncate_failed_write(inode);
1831 * If truncate failed early the inode might still be
1832 * on the orphan list; we need to make sure the inode
1833 * is removed from the orphan list in that case.
1835 if (inode->i_nlink)
1836 ext4_orphan_del(NULL, inode);
1839 return ret ? ret : copied;
1842 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1844 int retries = 0;
1845 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1846 unsigned long md_needed, mdblocks, total = 0;
1849 * recalculate the amount of metadata blocks to reserve
1850 * in order to allocate nrblocks
1851 * worse case is one extent per block
1853 repeat:
1854 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1855 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1856 mdblocks = ext4_calc_metadata_amount(inode, total);
1857 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1859 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1860 total = md_needed + nrblocks;
1863 * Make quota reservation here to prevent quota overflow
1864 * later. Real quota accounting is done at pages writeout
1865 * time.
1867 if (vfs_dq_reserve_block(inode, total)) {
1868 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1869 return -EDQUOT;
1872 if (ext4_claim_free_blocks(sbi, total)) {
1873 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1874 vfs_dq_release_reservation_block(inode, total);
1875 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1876 yield();
1877 goto repeat;
1879 return -ENOSPC;
1881 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1882 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1884 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1885 return 0; /* success */
1888 static void ext4_da_release_space(struct inode *inode, int to_free)
1890 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1891 int total, mdb, mdb_free, release;
1893 if (!to_free)
1894 return; /* Nothing to release, exit */
1896 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1898 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1900 * if there is no reserved blocks, but we try to free some
1901 * then the counter is messed up somewhere.
1902 * but since this function is called from invalidate
1903 * page, it's harmless to return without any action
1905 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1906 "blocks for inode %lu, but there is no reserved "
1907 "data blocks\n", to_free, inode->i_ino);
1908 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1909 return;
1912 /* recalculate the number of metablocks still need to be reserved */
1913 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1914 mdb = ext4_calc_metadata_amount(inode, total);
1916 /* figure out how many metablocks to release */
1917 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1918 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1920 release = to_free + mdb_free;
1922 /* update fs dirty blocks counter for truncate case */
1923 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1925 /* update per-inode reservations */
1926 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1927 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1929 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1930 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1931 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1933 vfs_dq_release_reservation_block(inode, release);
1936 static void ext4_da_page_release_reservation(struct page *page,
1937 unsigned long offset)
1939 int to_release = 0;
1940 struct buffer_head *head, *bh;
1941 unsigned int curr_off = 0;
1943 head = page_buffers(page);
1944 bh = head;
1945 do {
1946 unsigned int next_off = curr_off + bh->b_size;
1948 if ((offset <= curr_off) && (buffer_delay(bh))) {
1949 to_release++;
1950 clear_buffer_delay(bh);
1952 curr_off = next_off;
1953 } while ((bh = bh->b_this_page) != head);
1954 ext4_da_release_space(page->mapping->host, to_release);
1958 * Delayed allocation stuff
1962 * mpage_da_submit_io - walks through extent of pages and try to write
1963 * them with writepage() call back
1965 * @mpd->inode: inode
1966 * @mpd->first_page: first page of the extent
1967 * @mpd->next_page: page after the last page of the extent
1969 * By the time mpage_da_submit_io() is called we expect all blocks
1970 * to be allocated. this may be wrong if allocation failed.
1972 * As pages are already locked by write_cache_pages(), we can't use it
1974 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1976 long pages_skipped;
1977 struct pagevec pvec;
1978 unsigned long index, end;
1979 int ret = 0, err, nr_pages, i;
1980 struct inode *inode = mpd->inode;
1981 struct address_space *mapping = inode->i_mapping;
1983 BUG_ON(mpd->next_page <= mpd->first_page);
1985 * We need to start from the first_page to the next_page - 1
1986 * to make sure we also write the mapped dirty buffer_heads.
1987 * If we look at mpd->b_blocknr we would only be looking
1988 * at the currently mapped buffer_heads.
1990 index = mpd->first_page;
1991 end = mpd->next_page - 1;
1993 pagevec_init(&pvec, 0);
1994 while (index <= end) {
1995 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1996 if (nr_pages == 0)
1997 break;
1998 for (i = 0; i < nr_pages; i++) {
1999 struct page *page = pvec.pages[i];
2001 index = page->index;
2002 if (index > end)
2003 break;
2004 index++;
2006 BUG_ON(!PageLocked(page));
2007 BUG_ON(PageWriteback(page));
2009 pages_skipped = mpd->wbc->pages_skipped;
2010 err = mapping->a_ops->writepage(page, mpd->wbc);
2011 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2013 * have successfully written the page
2014 * without skipping the same
2016 mpd->pages_written++;
2018 * In error case, we have to continue because
2019 * remaining pages are still locked
2020 * XXX: unlock and re-dirty them?
2022 if (ret == 0)
2023 ret = err;
2025 pagevec_release(&pvec);
2027 return ret;
2031 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2033 * @mpd->inode - inode to walk through
2034 * @exbh->b_blocknr - first block on a disk
2035 * @exbh->b_size - amount of space in bytes
2036 * @logical - first logical block to start assignment with
2038 * the function goes through all passed space and put actual disk
2039 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2041 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2042 struct buffer_head *exbh)
2044 struct inode *inode = mpd->inode;
2045 struct address_space *mapping = inode->i_mapping;
2046 int blocks = exbh->b_size >> inode->i_blkbits;
2047 sector_t pblock = exbh->b_blocknr, cur_logical;
2048 struct buffer_head *head, *bh;
2049 pgoff_t index, end;
2050 struct pagevec pvec;
2051 int nr_pages, i;
2053 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2054 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2055 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2057 pagevec_init(&pvec, 0);
2059 while (index <= end) {
2060 /* XXX: optimize tail */
2061 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2062 if (nr_pages == 0)
2063 break;
2064 for (i = 0; i < nr_pages; i++) {
2065 struct page *page = pvec.pages[i];
2067 index = page->index;
2068 if (index > end)
2069 break;
2070 index++;
2072 BUG_ON(!PageLocked(page));
2073 BUG_ON(PageWriteback(page));
2074 BUG_ON(!page_has_buffers(page));
2076 bh = page_buffers(page);
2077 head = bh;
2079 /* skip blocks out of the range */
2080 do {
2081 if (cur_logical >= logical)
2082 break;
2083 cur_logical++;
2084 } while ((bh = bh->b_this_page) != head);
2086 do {
2087 if (cur_logical >= logical + blocks)
2088 break;
2090 if (buffer_delay(bh) ||
2091 buffer_unwritten(bh)) {
2093 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2095 if (buffer_delay(bh)) {
2096 clear_buffer_delay(bh);
2097 bh->b_blocknr = pblock;
2098 } else {
2100 * unwritten already should have
2101 * blocknr assigned. Verify that
2103 clear_buffer_unwritten(bh);
2104 BUG_ON(bh->b_blocknr != pblock);
2107 } else if (buffer_mapped(bh))
2108 BUG_ON(bh->b_blocknr != pblock);
2110 cur_logical++;
2111 pblock++;
2112 } while ((bh = bh->b_this_page) != head);
2114 pagevec_release(&pvec);
2120 * __unmap_underlying_blocks - just a helper function to unmap
2121 * set of blocks described by @bh
2123 static inline void __unmap_underlying_blocks(struct inode *inode,
2124 struct buffer_head *bh)
2126 struct block_device *bdev = inode->i_sb->s_bdev;
2127 int blocks, i;
2129 blocks = bh->b_size >> inode->i_blkbits;
2130 for (i = 0; i < blocks; i++)
2131 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2134 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2135 sector_t logical, long blk_cnt)
2137 int nr_pages, i;
2138 pgoff_t index, end;
2139 struct pagevec pvec;
2140 struct inode *inode = mpd->inode;
2141 struct address_space *mapping = inode->i_mapping;
2143 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2144 end = (logical + blk_cnt - 1) >>
2145 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2146 while (index <= end) {
2147 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2148 if (nr_pages == 0)
2149 break;
2150 for (i = 0; i < nr_pages; i++) {
2151 struct page *page = pvec.pages[i];
2152 index = page->index;
2153 if (index > end)
2154 break;
2155 index++;
2157 BUG_ON(!PageLocked(page));
2158 BUG_ON(PageWriteback(page));
2159 block_invalidatepage(page, 0);
2160 ClearPageUptodate(page);
2161 unlock_page(page);
2164 return;
2167 static void ext4_print_free_blocks(struct inode *inode)
2169 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2170 printk(KERN_CRIT "Total free blocks count %lld\n",
2171 ext4_count_free_blocks(inode->i_sb));
2172 printk(KERN_CRIT "Free/Dirty block details\n");
2173 printk(KERN_CRIT "free_blocks=%lld\n",
2174 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2175 printk(KERN_CRIT "dirty_blocks=%lld\n",
2176 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2177 printk(KERN_CRIT "Block reservation details\n");
2178 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2179 EXT4_I(inode)->i_reserved_data_blocks);
2180 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2181 EXT4_I(inode)->i_reserved_meta_blocks);
2182 return;
2186 * mpage_da_map_blocks - go through given space
2188 * @mpd - bh describing space
2190 * The function skips space we know is already mapped to disk blocks.
2193 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2195 int err, blks, get_blocks_flags;
2196 struct buffer_head new;
2197 sector_t next = mpd->b_blocknr;
2198 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2199 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2200 handle_t *handle = NULL;
2203 * We consider only non-mapped and non-allocated blocks
2205 if ((mpd->b_state & (1 << BH_Mapped)) &&
2206 !(mpd->b_state & (1 << BH_Delay)) &&
2207 !(mpd->b_state & (1 << BH_Unwritten)))
2208 return 0;
2211 * If we didn't accumulate anything to write simply return
2213 if (!mpd->b_size)
2214 return 0;
2216 handle = ext4_journal_current_handle();
2217 BUG_ON(!handle);
2220 * Call ext4_get_blocks() to allocate any delayed allocation
2221 * blocks, or to convert an uninitialized extent to be
2222 * initialized (in the case where we have written into
2223 * one or more preallocated blocks).
2225 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2226 * indicate that we are on the delayed allocation path. This
2227 * affects functions in many different parts of the allocation
2228 * call path. This flag exists primarily because we don't
2229 * want to change *many* call functions, so ext4_get_blocks()
2230 * will set the magic i_delalloc_reserved_flag once the
2231 * inode's allocation semaphore is taken.
2233 * If the blocks in questions were delalloc blocks, set
2234 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2235 * variables are updated after the blocks have been allocated.
2237 new.b_state = 0;
2238 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2239 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2240 if (mpd->b_state & (1 << BH_Delay))
2241 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2242 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2243 &new, get_blocks_flags);
2244 if (blks < 0) {
2245 err = blks;
2247 * If get block returns with error we simply
2248 * return. Later writepage will redirty the page and
2249 * writepages will find the dirty page again
2251 if (err == -EAGAIN)
2252 return 0;
2254 if (err == -ENOSPC &&
2255 ext4_count_free_blocks(mpd->inode->i_sb)) {
2256 mpd->retval = err;
2257 return 0;
2261 * get block failure will cause us to loop in
2262 * writepages, because a_ops->writepage won't be able
2263 * to make progress. The page will be redirtied by
2264 * writepage and writepages will again try to write
2265 * the same.
2267 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2268 "delayed block allocation failed for inode %lu at "
2269 "logical offset %llu with max blocks %zd with "
2270 "error %d\n", mpd->inode->i_ino,
2271 (unsigned long long) next,
2272 mpd->b_size >> mpd->inode->i_blkbits, err);
2273 printk(KERN_CRIT "This should not happen!! "
2274 "Data will be lost\n");
2275 if (err == -ENOSPC) {
2276 ext4_print_free_blocks(mpd->inode);
2278 /* invalidate all the pages */
2279 ext4_da_block_invalidatepages(mpd, next,
2280 mpd->b_size >> mpd->inode->i_blkbits);
2281 return err;
2283 BUG_ON(blks == 0);
2285 new.b_size = (blks << mpd->inode->i_blkbits);
2287 if (buffer_new(&new))
2288 __unmap_underlying_blocks(mpd->inode, &new);
2291 * If blocks are delayed marked, we need to
2292 * put actual blocknr and drop delayed bit
2294 if ((mpd->b_state & (1 << BH_Delay)) ||
2295 (mpd->b_state & (1 << BH_Unwritten)))
2296 mpage_put_bnr_to_bhs(mpd, next, &new);
2298 if (ext4_should_order_data(mpd->inode)) {
2299 err = ext4_jbd2_file_inode(handle, mpd->inode);
2300 if (err)
2301 return err;
2305 * Update on-disk size along with block allocation.
2307 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2308 if (disksize > i_size_read(mpd->inode))
2309 disksize = i_size_read(mpd->inode);
2310 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2311 ext4_update_i_disksize(mpd->inode, disksize);
2312 return ext4_mark_inode_dirty(handle, mpd->inode);
2315 return 0;
2318 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2319 (1 << BH_Delay) | (1 << BH_Unwritten))
2322 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2324 * @mpd->lbh - extent of blocks
2325 * @logical - logical number of the block in the file
2326 * @bh - bh of the block (used to access block's state)
2328 * the function is used to collect contig. blocks in same state
2330 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2331 sector_t logical, size_t b_size,
2332 unsigned long b_state)
2334 sector_t next;
2335 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2337 /* check if thereserved journal credits might overflow */
2338 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2339 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2341 * With non-extent format we are limited by the journal
2342 * credit available. Total credit needed to insert
2343 * nrblocks contiguous blocks is dependent on the
2344 * nrblocks. So limit nrblocks.
2346 goto flush_it;
2347 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2348 EXT4_MAX_TRANS_DATA) {
2350 * Adding the new buffer_head would make it cross the
2351 * allowed limit for which we have journal credit
2352 * reserved. So limit the new bh->b_size
2354 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2355 mpd->inode->i_blkbits;
2356 /* we will do mpage_da_submit_io in the next loop */
2360 * First block in the extent
2362 if (mpd->b_size == 0) {
2363 mpd->b_blocknr = logical;
2364 mpd->b_size = b_size;
2365 mpd->b_state = b_state & BH_FLAGS;
2366 return;
2369 next = mpd->b_blocknr + nrblocks;
2371 * Can we merge the block to our big extent?
2373 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2374 mpd->b_size += b_size;
2375 return;
2378 flush_it:
2380 * We couldn't merge the block to our extent, so we
2381 * need to flush current extent and start new one
2383 if (mpage_da_map_blocks(mpd) == 0)
2384 mpage_da_submit_io(mpd);
2385 mpd->io_done = 1;
2386 return;
2389 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2391 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2395 * __mpage_da_writepage - finds extent of pages and blocks
2397 * @page: page to consider
2398 * @wbc: not used, we just follow rules
2399 * @data: context
2401 * The function finds extents of pages and scan them for all blocks.
2403 static int __mpage_da_writepage(struct page *page,
2404 struct writeback_control *wbc, void *data)
2406 struct mpage_da_data *mpd = data;
2407 struct inode *inode = mpd->inode;
2408 struct buffer_head *bh, *head;
2409 sector_t logical;
2411 if (mpd->io_done) {
2413 * Rest of the page in the page_vec
2414 * redirty then and skip then. We will
2415 * try to write them again after
2416 * starting a new transaction
2418 redirty_page_for_writepage(wbc, page);
2419 unlock_page(page);
2420 return MPAGE_DA_EXTENT_TAIL;
2423 * Can we merge this page to current extent?
2425 if (mpd->next_page != page->index) {
2427 * Nope, we can't. So, we map non-allocated blocks
2428 * and start IO on them using writepage()
2430 if (mpd->next_page != mpd->first_page) {
2431 if (mpage_da_map_blocks(mpd) == 0)
2432 mpage_da_submit_io(mpd);
2434 * skip rest of the page in the page_vec
2436 mpd->io_done = 1;
2437 redirty_page_for_writepage(wbc, page);
2438 unlock_page(page);
2439 return MPAGE_DA_EXTENT_TAIL;
2443 * Start next extent of pages ...
2445 mpd->first_page = page->index;
2448 * ... and blocks
2450 mpd->b_size = 0;
2451 mpd->b_state = 0;
2452 mpd->b_blocknr = 0;
2455 mpd->next_page = page->index + 1;
2456 logical = (sector_t) page->index <<
2457 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2459 if (!page_has_buffers(page)) {
2460 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2461 (1 << BH_Dirty) | (1 << BH_Uptodate));
2462 if (mpd->io_done)
2463 return MPAGE_DA_EXTENT_TAIL;
2464 } else {
2466 * Page with regular buffer heads, just add all dirty ones
2468 head = page_buffers(page);
2469 bh = head;
2470 do {
2471 BUG_ON(buffer_locked(bh));
2473 * We need to try to allocate
2474 * unmapped blocks in the same page.
2475 * Otherwise we won't make progress
2476 * with the page in ext4_writepage
2478 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2479 mpage_add_bh_to_extent(mpd, logical,
2480 bh->b_size,
2481 bh->b_state);
2482 if (mpd->io_done)
2483 return MPAGE_DA_EXTENT_TAIL;
2484 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2486 * mapped dirty buffer. We need to update
2487 * the b_state because we look at
2488 * b_state in mpage_da_map_blocks. We don't
2489 * update b_size because if we find an
2490 * unmapped buffer_head later we need to
2491 * use the b_state flag of that buffer_head.
2493 if (mpd->b_size == 0)
2494 mpd->b_state = bh->b_state & BH_FLAGS;
2496 logical++;
2497 } while ((bh = bh->b_this_page) != head);
2500 return 0;
2504 * This is a special get_blocks_t callback which is used by
2505 * ext4_da_write_begin(). It will either return mapped block or
2506 * reserve space for a single block.
2508 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2509 * We also have b_blocknr = -1 and b_bdev initialized properly
2511 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2512 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2513 * initialized properly.
2515 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2516 struct buffer_head *bh_result, int create)
2518 int ret = 0;
2519 sector_t invalid_block = ~((sector_t) 0xffff);
2521 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2522 invalid_block = ~0;
2524 BUG_ON(create == 0);
2525 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2528 * first, we need to know whether the block is allocated already
2529 * preallocated blocks are unmapped but should treated
2530 * the same as allocated blocks.
2532 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2533 if ((ret == 0) && !buffer_delay(bh_result)) {
2534 /* the block isn't (pre)allocated yet, let's reserve space */
2536 * XXX: __block_prepare_write() unmaps passed block,
2537 * is it OK?
2539 ret = ext4_da_reserve_space(inode, 1);
2540 if (ret)
2541 /* not enough space to reserve */
2542 return ret;
2544 map_bh(bh_result, inode->i_sb, invalid_block);
2545 set_buffer_new(bh_result);
2546 set_buffer_delay(bh_result);
2547 } else if (ret > 0) {
2548 bh_result->b_size = (ret << inode->i_blkbits);
2549 if (buffer_unwritten(bh_result)) {
2550 /* A delayed write to unwritten bh should
2551 * be marked new and mapped. Mapped ensures
2552 * that we don't do get_block multiple times
2553 * when we write to the same offset and new
2554 * ensures that we do proper zero out for
2555 * partial write.
2557 set_buffer_new(bh_result);
2558 set_buffer_mapped(bh_result);
2560 ret = 0;
2563 return ret;
2567 * This function is used as a standard get_block_t calback function
2568 * when there is no desire to allocate any blocks. It is used as a
2569 * callback function for block_prepare_write(), nobh_writepage(), and
2570 * block_write_full_page(). These functions should only try to map a
2571 * single block at a time.
2573 * Since this function doesn't do block allocations even if the caller
2574 * requests it by passing in create=1, it is critically important that
2575 * any caller checks to make sure that any buffer heads are returned
2576 * by this function are either all already mapped or marked for
2577 * delayed allocation before calling nobh_writepage() or
2578 * block_write_full_page(). Otherwise, b_blocknr could be left
2579 * unitialized, and the page write functions will be taken by
2580 * surprise.
2582 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2583 struct buffer_head *bh_result, int create)
2585 int ret = 0;
2586 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2588 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2591 * we don't want to do block allocation in writepage
2592 * so call get_block_wrap with create = 0
2594 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2595 if (ret > 0) {
2596 bh_result->b_size = (ret << inode->i_blkbits);
2597 ret = 0;
2599 return ret;
2602 static int bget_one(handle_t *handle, struct buffer_head *bh)
2604 get_bh(bh);
2605 return 0;
2608 static int bput_one(handle_t *handle, struct buffer_head *bh)
2610 put_bh(bh);
2611 return 0;
2614 static int __ext4_journalled_writepage(struct page *page,
2615 struct writeback_control *wbc,
2616 unsigned int len)
2618 struct address_space *mapping = page->mapping;
2619 struct inode *inode = mapping->host;
2620 struct buffer_head *page_bufs;
2621 handle_t *handle = NULL;
2622 int ret = 0;
2623 int err;
2625 page_bufs = page_buffers(page);
2626 BUG_ON(!page_bufs);
2627 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2628 /* As soon as we unlock the page, it can go away, but we have
2629 * references to buffers so we are safe */
2630 unlock_page(page);
2632 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2633 if (IS_ERR(handle)) {
2634 ret = PTR_ERR(handle);
2635 goto out;
2638 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2639 do_journal_get_write_access);
2641 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2642 write_end_fn);
2643 if (ret == 0)
2644 ret = err;
2645 err = ext4_journal_stop(handle);
2646 if (!ret)
2647 ret = err;
2649 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2650 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2651 out:
2652 return ret;
2656 * Note that we don't need to start a transaction unless we're journaling data
2657 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2658 * need to file the inode to the transaction's list in ordered mode because if
2659 * we are writing back data added by write(), the inode is already there and if
2660 * we are writing back data modified via mmap(), noone guarantees in which
2661 * transaction the data will hit the disk. In case we are journaling data, we
2662 * cannot start transaction directly because transaction start ranks above page
2663 * lock so we have to do some magic.
2665 * This function can get called via...
2666 * - ext4_da_writepages after taking page lock (have journal handle)
2667 * - journal_submit_inode_data_buffers (no journal handle)
2668 * - shrink_page_list via pdflush (no journal handle)
2669 * - grab_page_cache when doing write_begin (have journal handle)
2671 * We don't do any block allocation in this function. If we have page with
2672 * multiple blocks we need to write those buffer_heads that are mapped. This
2673 * is important for mmaped based write. So if we do with blocksize 1K
2674 * truncate(f, 1024);
2675 * a = mmap(f, 0, 4096);
2676 * a[0] = 'a';
2677 * truncate(f, 4096);
2678 * we have in the page first buffer_head mapped via page_mkwrite call back
2679 * but other bufer_heads would be unmapped but dirty(dirty done via the
2680 * do_wp_page). So writepage should write the first block. If we modify
2681 * the mmap area beyond 1024 we will again get a page_fault and the
2682 * page_mkwrite callback will do the block allocation and mark the
2683 * buffer_heads mapped.
2685 * We redirty the page if we have any buffer_heads that is either delay or
2686 * unwritten in the page.
2688 * We can get recursively called as show below.
2690 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2691 * ext4_writepage()
2693 * But since we don't do any block allocation we should not deadlock.
2694 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2696 static int ext4_writepage(struct page *page,
2697 struct writeback_control *wbc)
2699 int ret = 0;
2700 loff_t size;
2701 unsigned int len;
2702 struct buffer_head *page_bufs;
2703 struct inode *inode = page->mapping->host;
2705 trace_ext4_writepage(inode, page);
2706 size = i_size_read(inode);
2707 if (page->index == size >> PAGE_CACHE_SHIFT)
2708 len = size & ~PAGE_CACHE_MASK;
2709 else
2710 len = PAGE_CACHE_SIZE;
2712 if (page_has_buffers(page)) {
2713 page_bufs = page_buffers(page);
2714 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2715 ext4_bh_delay_or_unwritten)) {
2717 * We don't want to do block allocation
2718 * So redirty the page and return
2719 * We may reach here when we do a journal commit
2720 * via journal_submit_inode_data_buffers.
2721 * If we don't have mapping block we just ignore
2722 * them. We can also reach here via shrink_page_list
2724 redirty_page_for_writepage(wbc, page);
2725 unlock_page(page);
2726 return 0;
2728 } else {
2730 * The test for page_has_buffers() is subtle:
2731 * We know the page is dirty but it lost buffers. That means
2732 * that at some moment in time after write_begin()/write_end()
2733 * has been called all buffers have been clean and thus they
2734 * must have been written at least once. So they are all
2735 * mapped and we can happily proceed with mapping them
2736 * and writing the page.
2738 * Try to initialize the buffer_heads and check whether
2739 * all are mapped and non delay. We don't want to
2740 * do block allocation here.
2742 ret = block_prepare_write(page, 0, len,
2743 noalloc_get_block_write);
2744 if (!ret) {
2745 page_bufs = page_buffers(page);
2746 /* check whether all are mapped and non delay */
2747 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2748 ext4_bh_delay_or_unwritten)) {
2749 redirty_page_for_writepage(wbc, page);
2750 unlock_page(page);
2751 return 0;
2753 } else {
2755 * We can't do block allocation here
2756 * so just redity the page and unlock
2757 * and return
2759 redirty_page_for_writepage(wbc, page);
2760 unlock_page(page);
2761 return 0;
2763 /* now mark the buffer_heads as dirty and uptodate */
2764 block_commit_write(page, 0, len);
2767 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2769 * It's mmapped pagecache. Add buffers and journal it. There
2770 * doesn't seem much point in redirtying the page here.
2772 ClearPageChecked(page);
2773 return __ext4_journalled_writepage(page, wbc, len);
2776 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2777 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2778 else
2779 ret = block_write_full_page(page, noalloc_get_block_write,
2780 wbc);
2782 return ret;
2786 * This is called via ext4_da_writepages() to
2787 * calulate the total number of credits to reserve to fit
2788 * a single extent allocation into a single transaction,
2789 * ext4_da_writpeages() will loop calling this before
2790 * the block allocation.
2793 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2795 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2798 * With non-extent format the journal credit needed to
2799 * insert nrblocks contiguous block is dependent on
2800 * number of contiguous block. So we will limit
2801 * number of contiguous block to a sane value
2803 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2804 (max_blocks > EXT4_MAX_TRANS_DATA))
2805 max_blocks = EXT4_MAX_TRANS_DATA;
2807 return ext4_chunk_trans_blocks(inode, max_blocks);
2810 static int ext4_da_writepages(struct address_space *mapping,
2811 struct writeback_control *wbc)
2813 pgoff_t index;
2814 int range_whole = 0;
2815 handle_t *handle = NULL;
2816 struct mpage_da_data mpd;
2817 struct inode *inode = mapping->host;
2818 int no_nrwrite_index_update;
2819 int pages_written = 0;
2820 long pages_skipped;
2821 unsigned int max_pages;
2822 int range_cyclic, cycled = 1, io_done = 0;
2823 int needed_blocks, ret = 0;
2824 long desired_nr_to_write, nr_to_writebump = 0;
2825 loff_t range_start = wbc->range_start;
2826 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2828 trace_ext4_da_writepages(inode, wbc);
2831 * No pages to write? This is mainly a kludge to avoid starting
2832 * a transaction for special inodes like journal inode on last iput()
2833 * because that could violate lock ordering on umount
2835 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2836 return 0;
2839 * If the filesystem has aborted, it is read-only, so return
2840 * right away instead of dumping stack traces later on that
2841 * will obscure the real source of the problem. We test
2842 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2843 * the latter could be true if the filesystem is mounted
2844 * read-only, and in that case, ext4_da_writepages should
2845 * *never* be called, so if that ever happens, we would want
2846 * the stack trace.
2848 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2849 return -EROFS;
2851 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2852 range_whole = 1;
2854 range_cyclic = wbc->range_cyclic;
2855 if (wbc->range_cyclic) {
2856 index = mapping->writeback_index;
2857 if (index)
2858 cycled = 0;
2859 wbc->range_start = index << PAGE_CACHE_SHIFT;
2860 wbc->range_end = LLONG_MAX;
2861 wbc->range_cyclic = 0;
2862 } else
2863 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2866 * This works around two forms of stupidity. The first is in
2867 * the writeback code, which caps the maximum number of pages
2868 * written to be 1024 pages. This is wrong on multiple
2869 * levels; different architectues have a different page size,
2870 * which changes the maximum amount of data which gets
2871 * written. Secondly, 4 megabytes is way too small. XFS
2872 * forces this value to be 16 megabytes by multiplying
2873 * nr_to_write parameter by four, and then relies on its
2874 * allocator to allocate larger extents to make them
2875 * contiguous. Unfortunately this brings us to the second
2876 * stupidity, which is that ext4's mballoc code only allocates
2877 * at most 2048 blocks. So we force contiguous writes up to
2878 * the number of dirty blocks in the inode, or
2879 * sbi->max_writeback_mb_bump whichever is smaller.
2881 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2882 if (!range_cyclic && range_whole)
2883 desired_nr_to_write = wbc->nr_to_write * 8;
2884 else
2885 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2886 max_pages);
2887 if (desired_nr_to_write > max_pages)
2888 desired_nr_to_write = max_pages;
2890 if (wbc->nr_to_write < desired_nr_to_write) {
2891 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2892 wbc->nr_to_write = desired_nr_to_write;
2895 mpd.wbc = wbc;
2896 mpd.inode = mapping->host;
2899 * we don't want write_cache_pages to update
2900 * nr_to_write and writeback_index
2902 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2903 wbc->no_nrwrite_index_update = 1;
2904 pages_skipped = wbc->pages_skipped;
2906 retry:
2907 while (!ret && wbc->nr_to_write > 0) {
2910 * we insert one extent at a time. So we need
2911 * credit needed for single extent allocation.
2912 * journalled mode is currently not supported
2913 * by delalloc
2915 BUG_ON(ext4_should_journal_data(inode));
2916 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2918 /* start a new transaction*/
2919 handle = ext4_journal_start(inode, needed_blocks);
2920 if (IS_ERR(handle)) {
2921 ret = PTR_ERR(handle);
2922 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2923 "%ld pages, ino %lu; err %d\n", __func__,
2924 wbc->nr_to_write, inode->i_ino, ret);
2925 goto out_writepages;
2929 * Now call __mpage_da_writepage to find the next
2930 * contiguous region of logical blocks that need
2931 * blocks to be allocated by ext4. We don't actually
2932 * submit the blocks for I/O here, even though
2933 * write_cache_pages thinks it will, and will set the
2934 * pages as clean for write before calling
2935 * __mpage_da_writepage().
2937 mpd.b_size = 0;
2938 mpd.b_state = 0;
2939 mpd.b_blocknr = 0;
2940 mpd.first_page = 0;
2941 mpd.next_page = 0;
2942 mpd.io_done = 0;
2943 mpd.pages_written = 0;
2944 mpd.retval = 0;
2945 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2946 &mpd);
2948 * If we have a contigous extent of pages and we
2949 * haven't done the I/O yet, map the blocks and submit
2950 * them for I/O.
2952 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2953 if (mpage_da_map_blocks(&mpd) == 0)
2954 mpage_da_submit_io(&mpd);
2955 mpd.io_done = 1;
2956 ret = MPAGE_DA_EXTENT_TAIL;
2958 trace_ext4_da_write_pages(inode, &mpd);
2959 wbc->nr_to_write -= mpd.pages_written;
2961 ext4_journal_stop(handle);
2963 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2964 /* commit the transaction which would
2965 * free blocks released in the transaction
2966 * and try again
2968 jbd2_journal_force_commit_nested(sbi->s_journal);
2969 wbc->pages_skipped = pages_skipped;
2970 ret = 0;
2971 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2973 * got one extent now try with
2974 * rest of the pages
2976 pages_written += mpd.pages_written;
2977 wbc->pages_skipped = pages_skipped;
2978 ret = 0;
2979 io_done = 1;
2980 } else if (wbc->nr_to_write)
2982 * There is no more writeout needed
2983 * or we requested for a noblocking writeout
2984 * and we found the device congested
2986 break;
2988 if (!io_done && !cycled) {
2989 cycled = 1;
2990 index = 0;
2991 wbc->range_start = index << PAGE_CACHE_SHIFT;
2992 wbc->range_end = mapping->writeback_index - 1;
2993 goto retry;
2995 if (pages_skipped != wbc->pages_skipped)
2996 ext4_msg(inode->i_sb, KERN_CRIT,
2997 "This should not happen leaving %s "
2998 "with nr_to_write = %ld ret = %d\n",
2999 __func__, wbc->nr_to_write, ret);
3001 /* Update index */
3002 index += pages_written;
3003 wbc->range_cyclic = range_cyclic;
3004 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3006 * set the writeback_index so that range_cyclic
3007 * mode will write it back later
3009 mapping->writeback_index = index;
3011 out_writepages:
3012 if (!no_nrwrite_index_update)
3013 wbc->no_nrwrite_index_update = 0;
3014 if (wbc->nr_to_write > nr_to_writebump)
3015 wbc->nr_to_write -= nr_to_writebump;
3016 wbc->range_start = range_start;
3017 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3018 return ret;
3021 #define FALL_BACK_TO_NONDELALLOC 1
3022 static int ext4_nonda_switch(struct super_block *sb)
3024 s64 free_blocks, dirty_blocks;
3025 struct ext4_sb_info *sbi = EXT4_SB(sb);
3028 * switch to non delalloc mode if we are running low
3029 * on free block. The free block accounting via percpu
3030 * counters can get slightly wrong with percpu_counter_batch getting
3031 * accumulated on each CPU without updating global counters
3032 * Delalloc need an accurate free block accounting. So switch
3033 * to non delalloc when we are near to error range.
3035 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3036 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3037 if (2 * free_blocks < 3 * dirty_blocks ||
3038 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3040 * free block count is less that 150% of dirty blocks
3041 * or free blocks is less that watermark
3043 return 1;
3045 return 0;
3048 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3049 loff_t pos, unsigned len, unsigned flags,
3050 struct page **pagep, void **fsdata)
3052 int ret, retries = 0;
3053 struct page *page;
3054 pgoff_t index;
3055 unsigned from, to;
3056 struct inode *inode = mapping->host;
3057 handle_t *handle;
3059 index = pos >> PAGE_CACHE_SHIFT;
3060 from = pos & (PAGE_CACHE_SIZE - 1);
3061 to = from + len;
3063 if (ext4_nonda_switch(inode->i_sb)) {
3064 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3065 return ext4_write_begin(file, mapping, pos,
3066 len, flags, pagep, fsdata);
3068 *fsdata = (void *)0;
3069 trace_ext4_da_write_begin(inode, pos, len, flags);
3070 retry:
3072 * With delayed allocation, we don't log the i_disksize update
3073 * if there is delayed block allocation. But we still need
3074 * to journalling the i_disksize update if writes to the end
3075 * of file which has an already mapped buffer.
3077 handle = ext4_journal_start(inode, 1);
3078 if (IS_ERR(handle)) {
3079 ret = PTR_ERR(handle);
3080 goto out;
3082 /* We cannot recurse into the filesystem as the transaction is already
3083 * started */
3084 flags |= AOP_FLAG_NOFS;
3086 page = grab_cache_page_write_begin(mapping, index, flags);
3087 if (!page) {
3088 ext4_journal_stop(handle);
3089 ret = -ENOMEM;
3090 goto out;
3092 *pagep = page;
3094 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3095 ext4_da_get_block_prep);
3096 if (ret < 0) {
3097 unlock_page(page);
3098 ext4_journal_stop(handle);
3099 page_cache_release(page);
3101 * block_write_begin may have instantiated a few blocks
3102 * outside i_size. Trim these off again. Don't need
3103 * i_size_read because we hold i_mutex.
3105 if (pos + len > inode->i_size)
3106 ext4_truncate_failed_write(inode);
3109 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3110 goto retry;
3111 out:
3112 return ret;
3116 * Check if we should update i_disksize
3117 * when write to the end of file but not require block allocation
3119 static int ext4_da_should_update_i_disksize(struct page *page,
3120 unsigned long offset)
3122 struct buffer_head *bh;
3123 struct inode *inode = page->mapping->host;
3124 unsigned int idx;
3125 int i;
3127 bh = page_buffers(page);
3128 idx = offset >> inode->i_blkbits;
3130 for (i = 0; i < idx; i++)
3131 bh = bh->b_this_page;
3133 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3134 return 0;
3135 return 1;
3138 static int ext4_da_write_end(struct file *file,
3139 struct address_space *mapping,
3140 loff_t pos, unsigned len, unsigned copied,
3141 struct page *page, void *fsdata)
3143 struct inode *inode = mapping->host;
3144 int ret = 0, ret2;
3145 handle_t *handle = ext4_journal_current_handle();
3146 loff_t new_i_size;
3147 unsigned long start, end;
3148 int write_mode = (int)(unsigned long)fsdata;
3150 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3151 if (ext4_should_order_data(inode)) {
3152 return ext4_ordered_write_end(file, mapping, pos,
3153 len, copied, page, fsdata);
3154 } else if (ext4_should_writeback_data(inode)) {
3155 return ext4_writeback_write_end(file, mapping, pos,
3156 len, copied, page, fsdata);
3157 } else {
3158 BUG();
3162 trace_ext4_da_write_end(inode, pos, len, copied);
3163 start = pos & (PAGE_CACHE_SIZE - 1);
3164 end = start + copied - 1;
3167 * generic_write_end() will run mark_inode_dirty() if i_size
3168 * changes. So let's piggyback the i_disksize mark_inode_dirty
3169 * into that.
3172 new_i_size = pos + copied;
3173 if (new_i_size > EXT4_I(inode)->i_disksize) {
3174 if (ext4_da_should_update_i_disksize(page, end)) {
3175 down_write(&EXT4_I(inode)->i_data_sem);
3176 if (new_i_size > EXT4_I(inode)->i_disksize) {
3178 * Updating i_disksize when extending file
3179 * without needing block allocation
3181 if (ext4_should_order_data(inode))
3182 ret = ext4_jbd2_file_inode(handle,
3183 inode);
3185 EXT4_I(inode)->i_disksize = new_i_size;
3187 up_write(&EXT4_I(inode)->i_data_sem);
3188 /* We need to mark inode dirty even if
3189 * new_i_size is less that inode->i_size
3190 * bu greater than i_disksize.(hint delalloc)
3192 ext4_mark_inode_dirty(handle, inode);
3195 ret2 = generic_write_end(file, mapping, pos, len, copied,
3196 page, fsdata);
3197 copied = ret2;
3198 if (ret2 < 0)
3199 ret = ret2;
3200 ret2 = ext4_journal_stop(handle);
3201 if (!ret)
3202 ret = ret2;
3204 return ret ? ret : copied;
3207 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3210 * Drop reserved blocks
3212 BUG_ON(!PageLocked(page));
3213 if (!page_has_buffers(page))
3214 goto out;
3216 ext4_da_page_release_reservation(page, offset);
3218 out:
3219 ext4_invalidatepage(page, offset);
3221 return;
3225 * Force all delayed allocation blocks to be allocated for a given inode.
3227 int ext4_alloc_da_blocks(struct inode *inode)
3229 trace_ext4_alloc_da_blocks(inode);
3231 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3232 !EXT4_I(inode)->i_reserved_meta_blocks)
3233 return 0;
3236 * We do something simple for now. The filemap_flush() will
3237 * also start triggering a write of the data blocks, which is
3238 * not strictly speaking necessary (and for users of
3239 * laptop_mode, not even desirable). However, to do otherwise
3240 * would require replicating code paths in:
3242 * ext4_da_writepages() ->
3243 * write_cache_pages() ---> (via passed in callback function)
3244 * __mpage_da_writepage() -->
3245 * mpage_add_bh_to_extent()
3246 * mpage_da_map_blocks()
3248 * The problem is that write_cache_pages(), located in
3249 * mm/page-writeback.c, marks pages clean in preparation for
3250 * doing I/O, which is not desirable if we're not planning on
3251 * doing I/O at all.
3253 * We could call write_cache_pages(), and then redirty all of
3254 * the pages by calling redirty_page_for_writeback() but that
3255 * would be ugly in the extreme. So instead we would need to
3256 * replicate parts of the code in the above functions,
3257 * simplifying them becuase we wouldn't actually intend to
3258 * write out the pages, but rather only collect contiguous
3259 * logical block extents, call the multi-block allocator, and
3260 * then update the buffer heads with the block allocations.
3262 * For now, though, we'll cheat by calling filemap_flush(),
3263 * which will map the blocks, and start the I/O, but not
3264 * actually wait for the I/O to complete.
3266 return filemap_flush(inode->i_mapping);
3270 * bmap() is special. It gets used by applications such as lilo and by
3271 * the swapper to find the on-disk block of a specific piece of data.
3273 * Naturally, this is dangerous if the block concerned is still in the
3274 * journal. If somebody makes a swapfile on an ext4 data-journaling
3275 * filesystem and enables swap, then they may get a nasty shock when the
3276 * data getting swapped to that swapfile suddenly gets overwritten by
3277 * the original zero's written out previously to the journal and
3278 * awaiting writeback in the kernel's buffer cache.
3280 * So, if we see any bmap calls here on a modified, data-journaled file,
3281 * take extra steps to flush any blocks which might be in the cache.
3283 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3285 struct inode *inode = mapping->host;
3286 journal_t *journal;
3287 int err;
3289 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3290 test_opt(inode->i_sb, DELALLOC)) {
3292 * With delalloc we want to sync the file
3293 * so that we can make sure we allocate
3294 * blocks for file
3296 filemap_write_and_wait(mapping);
3299 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3301 * This is a REALLY heavyweight approach, but the use of
3302 * bmap on dirty files is expected to be extremely rare:
3303 * only if we run lilo or swapon on a freshly made file
3304 * do we expect this to happen.
3306 * (bmap requires CAP_SYS_RAWIO so this does not
3307 * represent an unprivileged user DOS attack --- we'd be
3308 * in trouble if mortal users could trigger this path at
3309 * will.)
3311 * NB. EXT4_STATE_JDATA is not set on files other than
3312 * regular files. If somebody wants to bmap a directory
3313 * or symlink and gets confused because the buffer
3314 * hasn't yet been flushed to disk, they deserve
3315 * everything they get.
3318 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3319 journal = EXT4_JOURNAL(inode);
3320 jbd2_journal_lock_updates(journal);
3321 err = jbd2_journal_flush(journal);
3322 jbd2_journal_unlock_updates(journal);
3324 if (err)
3325 return 0;
3328 return generic_block_bmap(mapping, block, ext4_get_block);
3331 static int ext4_readpage(struct file *file, struct page *page)
3333 return mpage_readpage(page, ext4_get_block);
3336 static int
3337 ext4_readpages(struct file *file, struct address_space *mapping,
3338 struct list_head *pages, unsigned nr_pages)
3340 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3343 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3345 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3348 * If it's a full truncate we just forget about the pending dirtying
3350 if (offset == 0)
3351 ClearPageChecked(page);
3353 if (journal)
3354 jbd2_journal_invalidatepage(journal, page, offset);
3355 else
3356 block_invalidatepage(page, offset);
3359 static int ext4_releasepage(struct page *page, gfp_t wait)
3361 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3363 WARN_ON(PageChecked(page));
3364 if (!page_has_buffers(page))
3365 return 0;
3366 if (journal)
3367 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3368 else
3369 return try_to_free_buffers(page);
3373 * O_DIRECT for ext3 (or indirect map) based files
3375 * If the O_DIRECT write will extend the file then add this inode to the
3376 * orphan list. So recovery will truncate it back to the original size
3377 * if the machine crashes during the write.
3379 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3380 * crashes then stale disk data _may_ be exposed inside the file. But current
3381 * VFS code falls back into buffered path in that case so we are safe.
3383 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3384 const struct iovec *iov, loff_t offset,
3385 unsigned long nr_segs)
3387 struct file *file = iocb->ki_filp;
3388 struct inode *inode = file->f_mapping->host;
3389 struct ext4_inode_info *ei = EXT4_I(inode);
3390 handle_t *handle;
3391 ssize_t ret;
3392 int orphan = 0;
3393 size_t count = iov_length(iov, nr_segs);
3394 int retries = 0;
3396 if (rw == WRITE) {
3397 loff_t final_size = offset + count;
3399 if (final_size > inode->i_size) {
3400 /* Credits for sb + inode write */
3401 handle = ext4_journal_start(inode, 2);
3402 if (IS_ERR(handle)) {
3403 ret = PTR_ERR(handle);
3404 goto out;
3406 ret = ext4_orphan_add(handle, inode);
3407 if (ret) {
3408 ext4_journal_stop(handle);
3409 goto out;
3411 orphan = 1;
3412 ei->i_disksize = inode->i_size;
3413 ext4_journal_stop(handle);
3417 retry:
3418 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3419 offset, nr_segs,
3420 ext4_get_block, NULL);
3421 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3422 goto retry;
3424 if (orphan) {
3425 int err;
3427 /* Credits for sb + inode write */
3428 handle = ext4_journal_start(inode, 2);
3429 if (IS_ERR(handle)) {
3430 /* This is really bad luck. We've written the data
3431 * but cannot extend i_size. Bail out and pretend
3432 * the write failed... */
3433 ret = PTR_ERR(handle);
3434 goto out;
3436 if (inode->i_nlink)
3437 ext4_orphan_del(handle, inode);
3438 if (ret > 0) {
3439 loff_t end = offset + ret;
3440 if (end > inode->i_size) {
3441 ei->i_disksize = end;
3442 i_size_write(inode, end);
3444 * We're going to return a positive `ret'
3445 * here due to non-zero-length I/O, so there's
3446 * no way of reporting error returns from
3447 * ext4_mark_inode_dirty() to userspace. So
3448 * ignore it.
3450 ext4_mark_inode_dirty(handle, inode);
3453 err = ext4_journal_stop(handle);
3454 if (ret == 0)
3455 ret = err;
3457 out:
3458 return ret;
3461 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3462 struct buffer_head *bh_result, int create)
3464 handle_t *handle = NULL;
3465 int ret = 0;
3466 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3467 int dio_credits;
3469 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3470 inode->i_ino, create);
3472 * DIO VFS code passes create = 0 flag for write to
3473 * the middle of file. It does this to avoid block
3474 * allocation for holes, to prevent expose stale data
3475 * out when there is parallel buffered read (which does
3476 * not hold the i_mutex lock) while direct IO write has
3477 * not completed. DIO request on holes finally falls back
3478 * to buffered IO for this reason.
3480 * For ext4 extent based file, since we support fallocate,
3481 * new allocated extent as uninitialized, for holes, we
3482 * could fallocate blocks for holes, thus parallel
3483 * buffered IO read will zero out the page when read on
3484 * a hole while parallel DIO write to the hole has not completed.
3486 * when we come here, we know it's a direct IO write to
3487 * to the middle of file (<i_size)
3488 * so it's safe to override the create flag from VFS.
3490 create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3492 if (max_blocks > DIO_MAX_BLOCKS)
3493 max_blocks = DIO_MAX_BLOCKS;
3494 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3495 handle = ext4_journal_start(inode, dio_credits);
3496 if (IS_ERR(handle)) {
3497 ret = PTR_ERR(handle);
3498 goto out;
3500 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3501 create);
3502 if (ret > 0) {
3503 bh_result->b_size = (ret << inode->i_blkbits);
3504 ret = 0;
3506 ext4_journal_stop(handle);
3507 out:
3508 return ret;
3511 static void ext4_free_io_end(ext4_io_end_t *io)
3513 BUG_ON(!io);
3514 iput(io->inode);
3515 kfree(io);
3517 static void dump_aio_dio_list(struct inode * inode)
3519 #ifdef EXT4_DEBUG
3520 struct list_head *cur, *before, *after;
3521 ext4_io_end_t *io, *io0, *io1;
3523 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3524 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3525 return;
3528 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3529 list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3530 cur = &io->list;
3531 before = cur->prev;
3532 io0 = container_of(before, ext4_io_end_t, list);
3533 after = cur->next;
3534 io1 = container_of(after, ext4_io_end_t, list);
3536 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3537 io, inode->i_ino, io0, io1);
3539 #endif
3543 * check a range of space and convert unwritten extents to written.
3545 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3547 struct inode *inode = io->inode;
3548 loff_t offset = io->offset;
3549 size_t size = io->size;
3550 int ret = 0;
3552 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3553 "list->prev 0x%p\n",
3554 io, inode->i_ino, io->list.next, io->list.prev);
3556 if (list_empty(&io->list))
3557 return ret;
3559 if (io->flag != DIO_AIO_UNWRITTEN)
3560 return ret;
3562 if (offset + size <= i_size_read(inode))
3563 ret = ext4_convert_unwritten_extents(inode, offset, size);
3565 if (ret < 0) {
3566 printk(KERN_EMERG "%s: failed to convert unwritten"
3567 "extents to written extents, error is %d"
3568 " io is still on inode %lu aio dio list\n",
3569 __func__, ret, inode->i_ino);
3570 return ret;
3573 /* clear the DIO AIO unwritten flag */
3574 io->flag = 0;
3575 return ret;
3578 * work on completed aio dio IO, to convert unwritten extents to extents
3580 static void ext4_end_aio_dio_work(struct work_struct *work)
3582 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3583 struct inode *inode = io->inode;
3584 int ret = 0;
3586 mutex_lock(&inode->i_mutex);
3587 ret = ext4_end_aio_dio_nolock(io);
3588 if (ret >= 0) {
3589 if (!list_empty(&io->list))
3590 list_del_init(&io->list);
3591 ext4_free_io_end(io);
3593 mutex_unlock(&inode->i_mutex);
3596 * This function is called from ext4_sync_file().
3598 * When AIO DIO IO is completed, the work to convert unwritten
3599 * extents to written is queued on workqueue but may not get immediately
3600 * scheduled. When fsync is called, we need to ensure the
3601 * conversion is complete before fsync returns.
3602 * The inode keeps track of a list of completed AIO from DIO path
3603 * that might needs to do the conversion. This function walks through
3604 * the list and convert the related unwritten extents to written.
3606 int flush_aio_dio_completed_IO(struct inode *inode)
3608 ext4_io_end_t *io;
3609 int ret = 0;
3610 int ret2 = 0;
3612 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3613 return ret;
3615 dump_aio_dio_list(inode);
3616 while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3617 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3618 ext4_io_end_t, list);
3620 * Calling ext4_end_aio_dio_nolock() to convert completed
3621 * IO to written.
3623 * When ext4_sync_file() is called, run_queue() may already
3624 * about to flush the work corresponding to this io structure.
3625 * It will be upset if it founds the io structure related
3626 * to the work-to-be schedule is freed.
3628 * Thus we need to keep the io structure still valid here after
3629 * convertion finished. The io structure has a flag to
3630 * avoid double converting from both fsync and background work
3631 * queue work.
3633 ret = ext4_end_aio_dio_nolock(io);
3634 if (ret < 0)
3635 ret2 = ret;
3636 else
3637 list_del_init(&io->list);
3639 return (ret2 < 0) ? ret2 : 0;
3642 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3644 ext4_io_end_t *io = NULL;
3646 io = kmalloc(sizeof(*io), GFP_NOFS);
3648 if (io) {
3649 igrab(inode);
3650 io->inode = inode;
3651 io->flag = 0;
3652 io->offset = 0;
3653 io->size = 0;
3654 io->error = 0;
3655 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3656 INIT_LIST_HEAD(&io->list);
3659 return io;
3662 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3663 ssize_t size, void *private)
3665 ext4_io_end_t *io_end = iocb->private;
3666 struct workqueue_struct *wq;
3668 /* if not async direct IO or dio with 0 bytes write, just return */
3669 if (!io_end || !size)
3670 return;
3672 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3673 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3674 iocb->private, io_end->inode->i_ino, iocb, offset,
3675 size);
3677 /* if not aio dio with unwritten extents, just free io and return */
3678 if (io_end->flag != DIO_AIO_UNWRITTEN){
3679 ext4_free_io_end(io_end);
3680 iocb->private = NULL;
3681 return;
3684 io_end->offset = offset;
3685 io_end->size = size;
3686 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3688 /* queue the work to convert unwritten extents to written */
3689 queue_work(wq, &io_end->work);
3691 /* Add the io_end to per-inode completed aio dio list*/
3692 list_add_tail(&io_end->list,
3693 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3694 iocb->private = NULL;
3697 * For ext4 extent files, ext4 will do direct-io write to holes,
3698 * preallocated extents, and those write extend the file, no need to
3699 * fall back to buffered IO.
3701 * For holes, we fallocate those blocks, mark them as unintialized
3702 * If those blocks were preallocated, we mark sure they are splited, but
3703 * still keep the range to write as unintialized.
3705 * The unwrritten extents will be converted to written when DIO is completed.
3706 * For async direct IO, since the IO may still pending when return, we
3707 * set up an end_io call back function, which will do the convertion
3708 * when async direct IO completed.
3710 * If the O_DIRECT write will extend the file then add this inode to the
3711 * orphan list. So recovery will truncate it back to the original size
3712 * if the machine crashes during the write.
3715 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3716 const struct iovec *iov, loff_t offset,
3717 unsigned long nr_segs)
3719 struct file *file = iocb->ki_filp;
3720 struct inode *inode = file->f_mapping->host;
3721 ssize_t ret;
3722 size_t count = iov_length(iov, nr_segs);
3724 loff_t final_size = offset + count;
3725 if (rw == WRITE && final_size <= inode->i_size) {
3727 * We could direct write to holes and fallocate.
3729 * Allocated blocks to fill the hole are marked as uninitialized
3730 * to prevent paralel buffered read to expose the stale data
3731 * before DIO complete the data IO.
3733 * As to previously fallocated extents, ext4 get_block
3734 * will just simply mark the buffer mapped but still
3735 * keep the extents uninitialized.
3737 * for non AIO case, we will convert those unwritten extents
3738 * to written after return back from blockdev_direct_IO.
3740 * for async DIO, the conversion needs to be defered when
3741 * the IO is completed. The ext4 end_io callback function
3742 * will be called to take care of the conversion work.
3743 * Here for async case, we allocate an io_end structure to
3744 * hook to the iocb.
3746 iocb->private = NULL;
3747 EXT4_I(inode)->cur_aio_dio = NULL;
3748 if (!is_sync_kiocb(iocb)) {
3749 iocb->private = ext4_init_io_end(inode);
3750 if (!iocb->private)
3751 return -ENOMEM;
3753 * we save the io structure for current async
3754 * direct IO, so that later ext4_get_blocks()
3755 * could flag the io structure whether there
3756 * is a unwritten extents needs to be converted
3757 * when IO is completed.
3759 EXT4_I(inode)->cur_aio_dio = iocb->private;
3762 ret = blockdev_direct_IO(rw, iocb, inode,
3763 inode->i_sb->s_bdev, iov,
3764 offset, nr_segs,
3765 ext4_get_block_dio_write,
3766 ext4_end_io_dio);
3767 if (iocb->private)
3768 EXT4_I(inode)->cur_aio_dio = NULL;
3770 * The io_end structure takes a reference to the inode,
3771 * that structure needs to be destroyed and the
3772 * reference to the inode need to be dropped, when IO is
3773 * complete, even with 0 byte write, or failed.
3775 * In the successful AIO DIO case, the io_end structure will be
3776 * desctroyed and the reference to the inode will be dropped
3777 * after the end_io call back function is called.
3779 * In the case there is 0 byte write, or error case, since
3780 * VFS direct IO won't invoke the end_io call back function,
3781 * we need to free the end_io structure here.
3783 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3784 ext4_free_io_end(iocb->private);
3785 iocb->private = NULL;
3786 } else if (ret > 0 && (EXT4_I(inode)->i_state &
3787 EXT4_STATE_DIO_UNWRITTEN)) {
3788 int err;
3790 * for non AIO case, since the IO is already
3791 * completed, we could do the convertion right here
3793 err = ext4_convert_unwritten_extents(inode,
3794 offset, ret);
3795 if (err < 0)
3796 ret = err;
3797 EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
3799 return ret;
3802 /* for write the the end of file case, we fall back to old way */
3803 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3806 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3807 const struct iovec *iov, loff_t offset,
3808 unsigned long nr_segs)
3810 struct file *file = iocb->ki_filp;
3811 struct inode *inode = file->f_mapping->host;
3813 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3814 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3816 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3820 * Pages can be marked dirty completely asynchronously from ext4's journalling
3821 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3822 * much here because ->set_page_dirty is called under VFS locks. The page is
3823 * not necessarily locked.
3825 * We cannot just dirty the page and leave attached buffers clean, because the
3826 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3827 * or jbddirty because all the journalling code will explode.
3829 * So what we do is to mark the page "pending dirty" and next time writepage
3830 * is called, propagate that into the buffers appropriately.
3832 static int ext4_journalled_set_page_dirty(struct page *page)
3834 SetPageChecked(page);
3835 return __set_page_dirty_nobuffers(page);
3838 static const struct address_space_operations ext4_ordered_aops = {
3839 .readpage = ext4_readpage,
3840 .readpages = ext4_readpages,
3841 .writepage = ext4_writepage,
3842 .sync_page = block_sync_page,
3843 .write_begin = ext4_write_begin,
3844 .write_end = ext4_ordered_write_end,
3845 .bmap = ext4_bmap,
3846 .invalidatepage = ext4_invalidatepage,
3847 .releasepage = ext4_releasepage,
3848 .direct_IO = ext4_direct_IO,
3849 .migratepage = buffer_migrate_page,
3850 .is_partially_uptodate = block_is_partially_uptodate,
3851 .error_remove_page = generic_error_remove_page,
3854 static const struct address_space_operations ext4_writeback_aops = {
3855 .readpage = ext4_readpage,
3856 .readpages = ext4_readpages,
3857 .writepage = ext4_writepage,
3858 .sync_page = block_sync_page,
3859 .write_begin = ext4_write_begin,
3860 .write_end = ext4_writeback_write_end,
3861 .bmap = ext4_bmap,
3862 .invalidatepage = ext4_invalidatepage,
3863 .releasepage = ext4_releasepage,
3864 .direct_IO = ext4_direct_IO,
3865 .migratepage = buffer_migrate_page,
3866 .is_partially_uptodate = block_is_partially_uptodate,
3867 .error_remove_page = generic_error_remove_page,
3870 static const struct address_space_operations ext4_journalled_aops = {
3871 .readpage = ext4_readpage,
3872 .readpages = ext4_readpages,
3873 .writepage = ext4_writepage,
3874 .sync_page = block_sync_page,
3875 .write_begin = ext4_write_begin,
3876 .write_end = ext4_journalled_write_end,
3877 .set_page_dirty = ext4_journalled_set_page_dirty,
3878 .bmap = ext4_bmap,
3879 .invalidatepage = ext4_invalidatepage,
3880 .releasepage = ext4_releasepage,
3881 .is_partially_uptodate = block_is_partially_uptodate,
3882 .error_remove_page = generic_error_remove_page,
3885 static const struct address_space_operations ext4_da_aops = {
3886 .readpage = ext4_readpage,
3887 .readpages = ext4_readpages,
3888 .writepage = ext4_writepage,
3889 .writepages = ext4_da_writepages,
3890 .sync_page = block_sync_page,
3891 .write_begin = ext4_da_write_begin,
3892 .write_end = ext4_da_write_end,
3893 .bmap = ext4_bmap,
3894 .invalidatepage = ext4_da_invalidatepage,
3895 .releasepage = ext4_releasepage,
3896 .direct_IO = ext4_direct_IO,
3897 .migratepage = buffer_migrate_page,
3898 .is_partially_uptodate = block_is_partially_uptodate,
3899 .error_remove_page = generic_error_remove_page,
3902 void ext4_set_aops(struct inode *inode)
3904 if (ext4_should_order_data(inode) &&
3905 test_opt(inode->i_sb, DELALLOC))
3906 inode->i_mapping->a_ops = &ext4_da_aops;
3907 else if (ext4_should_order_data(inode))
3908 inode->i_mapping->a_ops = &ext4_ordered_aops;
3909 else if (ext4_should_writeback_data(inode) &&
3910 test_opt(inode->i_sb, DELALLOC))
3911 inode->i_mapping->a_ops = &ext4_da_aops;
3912 else if (ext4_should_writeback_data(inode))
3913 inode->i_mapping->a_ops = &ext4_writeback_aops;
3914 else
3915 inode->i_mapping->a_ops = &ext4_journalled_aops;
3919 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3920 * up to the end of the block which corresponds to `from'.
3921 * This required during truncate. We need to physically zero the tail end
3922 * of that block so it doesn't yield old data if the file is later grown.
3924 int ext4_block_truncate_page(handle_t *handle,
3925 struct address_space *mapping, loff_t from)
3927 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3928 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3929 unsigned blocksize, length, pos;
3930 ext4_lblk_t iblock;
3931 struct inode *inode = mapping->host;
3932 struct buffer_head *bh;
3933 struct page *page;
3934 int err = 0;
3936 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3937 mapping_gfp_mask(mapping) & ~__GFP_FS);
3938 if (!page)
3939 return -EINVAL;
3941 blocksize = inode->i_sb->s_blocksize;
3942 length = blocksize - (offset & (blocksize - 1));
3943 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3946 * For "nobh" option, we can only work if we don't need to
3947 * read-in the page - otherwise we create buffers to do the IO.
3949 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3950 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3951 zero_user(page, offset, length);
3952 set_page_dirty(page);
3953 goto unlock;
3956 if (!page_has_buffers(page))
3957 create_empty_buffers(page, blocksize, 0);
3959 /* Find the buffer that contains "offset" */
3960 bh = page_buffers(page);
3961 pos = blocksize;
3962 while (offset >= pos) {
3963 bh = bh->b_this_page;
3964 iblock++;
3965 pos += blocksize;
3968 err = 0;
3969 if (buffer_freed(bh)) {
3970 BUFFER_TRACE(bh, "freed: skip");
3971 goto unlock;
3974 if (!buffer_mapped(bh)) {
3975 BUFFER_TRACE(bh, "unmapped");
3976 ext4_get_block(inode, iblock, bh, 0);
3977 /* unmapped? It's a hole - nothing to do */
3978 if (!buffer_mapped(bh)) {
3979 BUFFER_TRACE(bh, "still unmapped");
3980 goto unlock;
3984 /* Ok, it's mapped. Make sure it's up-to-date */
3985 if (PageUptodate(page))
3986 set_buffer_uptodate(bh);
3988 if (!buffer_uptodate(bh)) {
3989 err = -EIO;
3990 ll_rw_block(READ, 1, &bh);
3991 wait_on_buffer(bh);
3992 /* Uhhuh. Read error. Complain and punt. */
3993 if (!buffer_uptodate(bh))
3994 goto unlock;
3997 if (ext4_should_journal_data(inode)) {
3998 BUFFER_TRACE(bh, "get write access");
3999 err = ext4_journal_get_write_access(handle, bh);
4000 if (err)
4001 goto unlock;
4004 zero_user(page, offset, length);
4006 BUFFER_TRACE(bh, "zeroed end of block");
4008 err = 0;
4009 if (ext4_should_journal_data(inode)) {
4010 err = ext4_handle_dirty_metadata(handle, inode, bh);
4011 } else {
4012 if (ext4_should_order_data(inode))
4013 err = ext4_jbd2_file_inode(handle, inode);
4014 mark_buffer_dirty(bh);
4017 unlock:
4018 unlock_page(page);
4019 page_cache_release(page);
4020 return err;
4024 * Probably it should be a library function... search for first non-zero word
4025 * or memcmp with zero_page, whatever is better for particular architecture.
4026 * Linus?
4028 static inline int all_zeroes(__le32 *p, __le32 *q)
4030 while (p < q)
4031 if (*p++)
4032 return 0;
4033 return 1;
4037 * ext4_find_shared - find the indirect blocks for partial truncation.
4038 * @inode: inode in question
4039 * @depth: depth of the affected branch
4040 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4041 * @chain: place to store the pointers to partial indirect blocks
4042 * @top: place to the (detached) top of branch
4044 * This is a helper function used by ext4_truncate().
4046 * When we do truncate() we may have to clean the ends of several
4047 * indirect blocks but leave the blocks themselves alive. Block is
4048 * partially truncated if some data below the new i_size is refered
4049 * from it (and it is on the path to the first completely truncated
4050 * data block, indeed). We have to free the top of that path along
4051 * with everything to the right of the path. Since no allocation
4052 * past the truncation point is possible until ext4_truncate()
4053 * finishes, we may safely do the latter, but top of branch may
4054 * require special attention - pageout below the truncation point
4055 * might try to populate it.
4057 * We atomically detach the top of branch from the tree, store the
4058 * block number of its root in *@top, pointers to buffer_heads of
4059 * partially truncated blocks - in @chain[].bh and pointers to
4060 * their last elements that should not be removed - in
4061 * @chain[].p. Return value is the pointer to last filled element
4062 * of @chain.
4064 * The work left to caller to do the actual freeing of subtrees:
4065 * a) free the subtree starting from *@top
4066 * b) free the subtrees whose roots are stored in
4067 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4068 * c) free the subtrees growing from the inode past the @chain[0].
4069 * (no partially truncated stuff there). */
4071 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4072 ext4_lblk_t offsets[4], Indirect chain[4],
4073 __le32 *top)
4075 Indirect *partial, *p;
4076 int k, err;
4078 *top = 0;
4079 /* Make k index the deepest non-null offest + 1 */
4080 for (k = depth; k > 1 && !offsets[k-1]; k--)
4082 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4083 /* Writer: pointers */
4084 if (!partial)
4085 partial = chain + k-1;
4087 * If the branch acquired continuation since we've looked at it -
4088 * fine, it should all survive and (new) top doesn't belong to us.
4090 if (!partial->key && *partial->p)
4091 /* Writer: end */
4092 goto no_top;
4093 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4096 * OK, we've found the last block that must survive. The rest of our
4097 * branch should be detached before unlocking. However, if that rest
4098 * of branch is all ours and does not grow immediately from the inode
4099 * it's easier to cheat and just decrement partial->p.
4101 if (p == chain + k - 1 && p > chain) {
4102 p->p--;
4103 } else {
4104 *top = *p->p;
4105 /* Nope, don't do this in ext4. Must leave the tree intact */
4106 #if 0
4107 *p->p = 0;
4108 #endif
4110 /* Writer: end */
4112 while (partial > p) {
4113 brelse(partial->bh);
4114 partial--;
4116 no_top:
4117 return partial;
4121 * Zero a number of block pointers in either an inode or an indirect block.
4122 * If we restart the transaction we must again get write access to the
4123 * indirect block for further modification.
4125 * We release `count' blocks on disk, but (last - first) may be greater
4126 * than `count' because there can be holes in there.
4128 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4129 struct buffer_head *bh,
4130 ext4_fsblk_t block_to_free,
4131 unsigned long count, __le32 *first,
4132 __le32 *last)
4134 __le32 *p;
4135 int is_metadata = S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode);
4137 if (try_to_extend_transaction(handle, inode)) {
4138 if (bh) {
4139 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4140 ext4_handle_dirty_metadata(handle, inode, bh);
4142 ext4_mark_inode_dirty(handle, inode);
4143 ext4_truncate_restart_trans(handle, inode,
4144 blocks_for_truncate(inode));
4145 if (bh) {
4146 BUFFER_TRACE(bh, "retaking write access");
4147 ext4_journal_get_write_access(handle, bh);
4152 * Any buffers which are on the journal will be in memory. We
4153 * find them on the hash table so jbd2_journal_revoke() will
4154 * run jbd2_journal_forget() on them. We've already detached
4155 * each block from the file, so bforget() in
4156 * jbd2_journal_forget() should be safe.
4158 * AKPM: turn on bforget in jbd2_journal_forget()!!!
4160 for (p = first; p < last; p++) {
4161 u32 nr = le32_to_cpu(*p);
4162 if (nr) {
4163 struct buffer_head *tbh;
4165 *p = 0;
4166 tbh = sb_find_get_block(inode->i_sb, nr);
4167 ext4_forget(handle, is_metadata, inode, tbh, nr);
4171 ext4_free_blocks(handle, inode, block_to_free, count, is_metadata);
4175 * ext4_free_data - free a list of data blocks
4176 * @handle: handle for this transaction
4177 * @inode: inode we are dealing with
4178 * @this_bh: indirect buffer_head which contains *@first and *@last
4179 * @first: array of block numbers
4180 * @last: points immediately past the end of array
4182 * We are freeing all blocks refered from that array (numbers are stored as
4183 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4185 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4186 * blocks are contiguous then releasing them at one time will only affect one
4187 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4188 * actually use a lot of journal space.
4190 * @this_bh will be %NULL if @first and @last point into the inode's direct
4191 * block pointers.
4193 static void ext4_free_data(handle_t *handle, struct inode *inode,
4194 struct buffer_head *this_bh,
4195 __le32 *first, __le32 *last)
4197 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4198 unsigned long count = 0; /* Number of blocks in the run */
4199 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4200 corresponding to
4201 block_to_free */
4202 ext4_fsblk_t nr; /* Current block # */
4203 __le32 *p; /* Pointer into inode/ind
4204 for current block */
4205 int err;
4207 if (this_bh) { /* For indirect block */
4208 BUFFER_TRACE(this_bh, "get_write_access");
4209 err = ext4_journal_get_write_access(handle, this_bh);
4210 /* Important: if we can't update the indirect pointers
4211 * to the blocks, we can't free them. */
4212 if (err)
4213 return;
4216 for (p = first; p < last; p++) {
4217 nr = le32_to_cpu(*p);
4218 if (nr) {
4219 /* accumulate blocks to free if they're contiguous */
4220 if (count == 0) {
4221 block_to_free = nr;
4222 block_to_free_p = p;
4223 count = 1;
4224 } else if (nr == block_to_free + count) {
4225 count++;
4226 } else {
4227 ext4_clear_blocks(handle, inode, this_bh,
4228 block_to_free,
4229 count, block_to_free_p, p);
4230 block_to_free = nr;
4231 block_to_free_p = p;
4232 count = 1;
4237 if (count > 0)
4238 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4239 count, block_to_free_p, p);
4241 if (this_bh) {
4242 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4245 * The buffer head should have an attached journal head at this
4246 * point. However, if the data is corrupted and an indirect
4247 * block pointed to itself, it would have been detached when
4248 * the block was cleared. Check for this instead of OOPSing.
4250 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4251 ext4_handle_dirty_metadata(handle, inode, this_bh);
4252 else
4253 ext4_error(inode->i_sb, __func__,
4254 "circular indirect block detected, "
4255 "inode=%lu, block=%llu",
4256 inode->i_ino,
4257 (unsigned long long) this_bh->b_blocknr);
4262 * ext4_free_branches - free an array of branches
4263 * @handle: JBD handle for this transaction
4264 * @inode: inode we are dealing with
4265 * @parent_bh: the buffer_head which contains *@first and *@last
4266 * @first: array of block numbers
4267 * @last: pointer immediately past the end of array
4268 * @depth: depth of the branches to free
4270 * We are freeing all blocks refered from these branches (numbers are
4271 * stored as little-endian 32-bit) and updating @inode->i_blocks
4272 * appropriately.
4274 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4275 struct buffer_head *parent_bh,
4276 __le32 *first, __le32 *last, int depth)
4278 ext4_fsblk_t nr;
4279 __le32 *p;
4281 if (ext4_handle_is_aborted(handle))
4282 return;
4284 if (depth--) {
4285 struct buffer_head *bh;
4286 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4287 p = last;
4288 while (--p >= first) {
4289 nr = le32_to_cpu(*p);
4290 if (!nr)
4291 continue; /* A hole */
4293 /* Go read the buffer for the next level down */
4294 bh = sb_bread(inode->i_sb, nr);
4297 * A read failure? Report error and clear slot
4298 * (should be rare).
4300 if (!bh) {
4301 ext4_error(inode->i_sb, "ext4_free_branches",
4302 "Read failure, inode=%lu, block=%llu",
4303 inode->i_ino, nr);
4304 continue;
4307 /* This zaps the entire block. Bottom up. */
4308 BUFFER_TRACE(bh, "free child branches");
4309 ext4_free_branches(handle, inode, bh,
4310 (__le32 *) bh->b_data,
4311 (__le32 *) bh->b_data + addr_per_block,
4312 depth);
4315 * We've probably journalled the indirect block several
4316 * times during the truncate. But it's no longer
4317 * needed and we now drop it from the transaction via
4318 * jbd2_journal_revoke().
4320 * That's easy if it's exclusively part of this
4321 * transaction. But if it's part of the committing
4322 * transaction then jbd2_journal_forget() will simply
4323 * brelse() it. That means that if the underlying
4324 * block is reallocated in ext4_get_block(),
4325 * unmap_underlying_metadata() will find this block
4326 * and will try to get rid of it. damn, damn.
4328 * If this block has already been committed to the
4329 * journal, a revoke record will be written. And
4330 * revoke records must be emitted *before* clearing
4331 * this block's bit in the bitmaps.
4333 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4336 * Everything below this this pointer has been
4337 * released. Now let this top-of-subtree go.
4339 * We want the freeing of this indirect block to be
4340 * atomic in the journal with the updating of the
4341 * bitmap block which owns it. So make some room in
4342 * the journal.
4344 * We zero the parent pointer *after* freeing its
4345 * pointee in the bitmaps, so if extend_transaction()
4346 * for some reason fails to put the bitmap changes and
4347 * the release into the same transaction, recovery
4348 * will merely complain about releasing a free block,
4349 * rather than leaking blocks.
4351 if (ext4_handle_is_aborted(handle))
4352 return;
4353 if (try_to_extend_transaction(handle, inode)) {
4354 ext4_mark_inode_dirty(handle, inode);
4355 ext4_truncate_restart_trans(handle, inode,
4356 blocks_for_truncate(inode));
4359 ext4_free_blocks(handle, inode, nr, 1, 1);
4361 if (parent_bh) {
4363 * The block which we have just freed is
4364 * pointed to by an indirect block: journal it
4366 BUFFER_TRACE(parent_bh, "get_write_access");
4367 if (!ext4_journal_get_write_access(handle,
4368 parent_bh)){
4369 *p = 0;
4370 BUFFER_TRACE(parent_bh,
4371 "call ext4_handle_dirty_metadata");
4372 ext4_handle_dirty_metadata(handle,
4373 inode,
4374 parent_bh);
4378 } else {
4379 /* We have reached the bottom of the tree. */
4380 BUFFER_TRACE(parent_bh, "free data blocks");
4381 ext4_free_data(handle, inode, parent_bh, first, last);
4385 int ext4_can_truncate(struct inode *inode)
4387 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4388 return 0;
4389 if (S_ISREG(inode->i_mode))
4390 return 1;
4391 if (S_ISDIR(inode->i_mode))
4392 return 1;
4393 if (S_ISLNK(inode->i_mode))
4394 return !ext4_inode_is_fast_symlink(inode);
4395 return 0;
4399 * ext4_truncate()
4401 * We block out ext4_get_block() block instantiations across the entire
4402 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4403 * simultaneously on behalf of the same inode.
4405 * As we work through the truncate and commmit bits of it to the journal there
4406 * is one core, guiding principle: the file's tree must always be consistent on
4407 * disk. We must be able to restart the truncate after a crash.
4409 * The file's tree may be transiently inconsistent in memory (although it
4410 * probably isn't), but whenever we close off and commit a journal transaction,
4411 * the contents of (the filesystem + the journal) must be consistent and
4412 * restartable. It's pretty simple, really: bottom up, right to left (although
4413 * left-to-right works OK too).
4415 * Note that at recovery time, journal replay occurs *before* the restart of
4416 * truncate against the orphan inode list.
4418 * The committed inode has the new, desired i_size (which is the same as
4419 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4420 * that this inode's truncate did not complete and it will again call
4421 * ext4_truncate() to have another go. So there will be instantiated blocks
4422 * to the right of the truncation point in a crashed ext4 filesystem. But
4423 * that's fine - as long as they are linked from the inode, the post-crash
4424 * ext4_truncate() run will find them and release them.
4426 void ext4_truncate(struct inode *inode)
4428 handle_t *handle;
4429 struct ext4_inode_info *ei = EXT4_I(inode);
4430 __le32 *i_data = ei->i_data;
4431 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4432 struct address_space *mapping = inode->i_mapping;
4433 ext4_lblk_t offsets[4];
4434 Indirect chain[4];
4435 Indirect *partial;
4436 __le32 nr = 0;
4437 int n;
4438 ext4_lblk_t last_block;
4439 unsigned blocksize = inode->i_sb->s_blocksize;
4441 if (!ext4_can_truncate(inode))
4442 return;
4444 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4445 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4447 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4448 ext4_ext_truncate(inode);
4449 return;
4452 handle = start_transaction(inode);
4453 if (IS_ERR(handle))
4454 return; /* AKPM: return what? */
4456 last_block = (inode->i_size + blocksize-1)
4457 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4459 if (inode->i_size & (blocksize - 1))
4460 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4461 goto out_stop;
4463 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4464 if (n == 0)
4465 goto out_stop; /* error */
4468 * OK. This truncate is going to happen. We add the inode to the
4469 * orphan list, so that if this truncate spans multiple transactions,
4470 * and we crash, we will resume the truncate when the filesystem
4471 * recovers. It also marks the inode dirty, to catch the new size.
4473 * Implication: the file must always be in a sane, consistent
4474 * truncatable state while each transaction commits.
4476 if (ext4_orphan_add(handle, inode))
4477 goto out_stop;
4480 * From here we block out all ext4_get_block() callers who want to
4481 * modify the block allocation tree.
4483 down_write(&ei->i_data_sem);
4485 ext4_discard_preallocations(inode);
4488 * The orphan list entry will now protect us from any crash which
4489 * occurs before the truncate completes, so it is now safe to propagate
4490 * the new, shorter inode size (held for now in i_size) into the
4491 * on-disk inode. We do this via i_disksize, which is the value which
4492 * ext4 *really* writes onto the disk inode.
4494 ei->i_disksize = inode->i_size;
4496 if (n == 1) { /* direct blocks */
4497 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4498 i_data + EXT4_NDIR_BLOCKS);
4499 goto do_indirects;
4502 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4503 /* Kill the top of shared branch (not detached) */
4504 if (nr) {
4505 if (partial == chain) {
4506 /* Shared branch grows from the inode */
4507 ext4_free_branches(handle, inode, NULL,
4508 &nr, &nr+1, (chain+n-1) - partial);
4509 *partial->p = 0;
4511 * We mark the inode dirty prior to restart,
4512 * and prior to stop. No need for it here.
4514 } else {
4515 /* Shared branch grows from an indirect block */
4516 BUFFER_TRACE(partial->bh, "get_write_access");
4517 ext4_free_branches(handle, inode, partial->bh,
4518 partial->p,
4519 partial->p+1, (chain+n-1) - partial);
4522 /* Clear the ends of indirect blocks on the shared branch */
4523 while (partial > chain) {
4524 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4525 (__le32*)partial->bh->b_data+addr_per_block,
4526 (chain+n-1) - partial);
4527 BUFFER_TRACE(partial->bh, "call brelse");
4528 brelse(partial->bh);
4529 partial--;
4531 do_indirects:
4532 /* Kill the remaining (whole) subtrees */
4533 switch (offsets[0]) {
4534 default:
4535 nr = i_data[EXT4_IND_BLOCK];
4536 if (nr) {
4537 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4538 i_data[EXT4_IND_BLOCK] = 0;
4540 case EXT4_IND_BLOCK:
4541 nr = i_data[EXT4_DIND_BLOCK];
4542 if (nr) {
4543 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4544 i_data[EXT4_DIND_BLOCK] = 0;
4546 case EXT4_DIND_BLOCK:
4547 nr = i_data[EXT4_TIND_BLOCK];
4548 if (nr) {
4549 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4550 i_data[EXT4_TIND_BLOCK] = 0;
4552 case EXT4_TIND_BLOCK:
4556 up_write(&ei->i_data_sem);
4557 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4558 ext4_mark_inode_dirty(handle, inode);
4561 * In a multi-transaction truncate, we only make the final transaction
4562 * synchronous
4564 if (IS_SYNC(inode))
4565 ext4_handle_sync(handle);
4566 out_stop:
4568 * If this was a simple ftruncate(), and the file will remain alive
4569 * then we need to clear up the orphan record which we created above.
4570 * However, if this was a real unlink then we were called by
4571 * ext4_delete_inode(), and we allow that function to clean up the
4572 * orphan info for us.
4574 if (inode->i_nlink)
4575 ext4_orphan_del(handle, inode);
4577 ext4_journal_stop(handle);
4581 * ext4_get_inode_loc returns with an extra refcount against the inode's
4582 * underlying buffer_head on success. If 'in_mem' is true, we have all
4583 * data in memory that is needed to recreate the on-disk version of this
4584 * inode.
4586 static int __ext4_get_inode_loc(struct inode *inode,
4587 struct ext4_iloc *iloc, int in_mem)
4589 struct ext4_group_desc *gdp;
4590 struct buffer_head *bh;
4591 struct super_block *sb = inode->i_sb;
4592 ext4_fsblk_t block;
4593 int inodes_per_block, inode_offset;
4595 iloc->bh = NULL;
4596 if (!ext4_valid_inum(sb, inode->i_ino))
4597 return -EIO;
4599 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4600 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4601 if (!gdp)
4602 return -EIO;
4605 * Figure out the offset within the block group inode table
4607 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4608 inode_offset = ((inode->i_ino - 1) %
4609 EXT4_INODES_PER_GROUP(sb));
4610 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4611 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4613 bh = sb_getblk(sb, block);
4614 if (!bh) {
4615 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4616 "inode block - inode=%lu, block=%llu",
4617 inode->i_ino, block);
4618 return -EIO;
4620 if (!buffer_uptodate(bh)) {
4621 lock_buffer(bh);
4624 * If the buffer has the write error flag, we have failed
4625 * to write out another inode in the same block. In this
4626 * case, we don't have to read the block because we may
4627 * read the old inode data successfully.
4629 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4630 set_buffer_uptodate(bh);
4632 if (buffer_uptodate(bh)) {
4633 /* someone brought it uptodate while we waited */
4634 unlock_buffer(bh);
4635 goto has_buffer;
4639 * If we have all information of the inode in memory and this
4640 * is the only valid inode in the block, we need not read the
4641 * block.
4643 if (in_mem) {
4644 struct buffer_head *bitmap_bh;
4645 int i, start;
4647 start = inode_offset & ~(inodes_per_block - 1);
4649 /* Is the inode bitmap in cache? */
4650 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4651 if (!bitmap_bh)
4652 goto make_io;
4655 * If the inode bitmap isn't in cache then the
4656 * optimisation may end up performing two reads instead
4657 * of one, so skip it.
4659 if (!buffer_uptodate(bitmap_bh)) {
4660 brelse(bitmap_bh);
4661 goto make_io;
4663 for (i = start; i < start + inodes_per_block; i++) {
4664 if (i == inode_offset)
4665 continue;
4666 if (ext4_test_bit(i, bitmap_bh->b_data))
4667 break;
4669 brelse(bitmap_bh);
4670 if (i == start + inodes_per_block) {
4671 /* all other inodes are free, so skip I/O */
4672 memset(bh->b_data, 0, bh->b_size);
4673 set_buffer_uptodate(bh);
4674 unlock_buffer(bh);
4675 goto has_buffer;
4679 make_io:
4681 * If we need to do any I/O, try to pre-readahead extra
4682 * blocks from the inode table.
4684 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4685 ext4_fsblk_t b, end, table;
4686 unsigned num;
4688 table = ext4_inode_table(sb, gdp);
4689 /* s_inode_readahead_blks is always a power of 2 */
4690 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4691 if (table > b)
4692 b = table;
4693 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4694 num = EXT4_INODES_PER_GROUP(sb);
4695 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4696 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4697 num -= ext4_itable_unused_count(sb, gdp);
4698 table += num / inodes_per_block;
4699 if (end > table)
4700 end = table;
4701 while (b <= end)
4702 sb_breadahead(sb, b++);
4706 * There are other valid inodes in the buffer, this inode
4707 * has in-inode xattrs, or we don't have this inode in memory.
4708 * Read the block from disk.
4710 get_bh(bh);
4711 bh->b_end_io = end_buffer_read_sync;
4712 submit_bh(READ_META, bh);
4713 wait_on_buffer(bh);
4714 if (!buffer_uptodate(bh)) {
4715 ext4_error(sb, __func__,
4716 "unable to read inode block - inode=%lu, "
4717 "block=%llu", inode->i_ino, block);
4718 brelse(bh);
4719 return -EIO;
4722 has_buffer:
4723 iloc->bh = bh;
4724 return 0;
4727 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4729 /* We have all inode data except xattrs in memory here. */
4730 return __ext4_get_inode_loc(inode, iloc,
4731 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4734 void ext4_set_inode_flags(struct inode *inode)
4736 unsigned int flags = EXT4_I(inode)->i_flags;
4738 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4739 if (flags & EXT4_SYNC_FL)
4740 inode->i_flags |= S_SYNC;
4741 if (flags & EXT4_APPEND_FL)
4742 inode->i_flags |= S_APPEND;
4743 if (flags & EXT4_IMMUTABLE_FL)
4744 inode->i_flags |= S_IMMUTABLE;
4745 if (flags & EXT4_NOATIME_FL)
4746 inode->i_flags |= S_NOATIME;
4747 if (flags & EXT4_DIRSYNC_FL)
4748 inode->i_flags |= S_DIRSYNC;
4751 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4752 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4754 unsigned int flags = ei->vfs_inode.i_flags;
4756 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4757 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4758 if (flags & S_SYNC)
4759 ei->i_flags |= EXT4_SYNC_FL;
4760 if (flags & S_APPEND)
4761 ei->i_flags |= EXT4_APPEND_FL;
4762 if (flags & S_IMMUTABLE)
4763 ei->i_flags |= EXT4_IMMUTABLE_FL;
4764 if (flags & S_NOATIME)
4765 ei->i_flags |= EXT4_NOATIME_FL;
4766 if (flags & S_DIRSYNC)
4767 ei->i_flags |= EXT4_DIRSYNC_FL;
4770 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4771 struct ext4_inode_info *ei)
4773 blkcnt_t i_blocks ;
4774 struct inode *inode = &(ei->vfs_inode);
4775 struct super_block *sb = inode->i_sb;
4777 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4778 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4779 /* we are using combined 48 bit field */
4780 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4781 le32_to_cpu(raw_inode->i_blocks_lo);
4782 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4783 /* i_blocks represent file system block size */
4784 return i_blocks << (inode->i_blkbits - 9);
4785 } else {
4786 return i_blocks;
4788 } else {
4789 return le32_to_cpu(raw_inode->i_blocks_lo);
4793 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4795 struct ext4_iloc iloc;
4796 struct ext4_inode *raw_inode;
4797 struct ext4_inode_info *ei;
4798 struct inode *inode;
4799 journal_t *journal = EXT4_SB(sb)->s_journal;
4800 long ret;
4801 int block;
4803 inode = iget_locked(sb, ino);
4804 if (!inode)
4805 return ERR_PTR(-ENOMEM);
4806 if (!(inode->i_state & I_NEW))
4807 return inode;
4809 ei = EXT4_I(inode);
4810 iloc.bh = 0;
4812 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4813 if (ret < 0)
4814 goto bad_inode;
4815 raw_inode = ext4_raw_inode(&iloc);
4816 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4817 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4818 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4819 if (!(test_opt(inode->i_sb, NO_UID32))) {
4820 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4821 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4823 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4825 ei->i_state = 0;
4826 ei->i_dir_start_lookup = 0;
4827 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4828 /* We now have enough fields to check if the inode was active or not.
4829 * This is needed because nfsd might try to access dead inodes
4830 * the test is that same one that e2fsck uses
4831 * NeilBrown 1999oct15
4833 if (inode->i_nlink == 0) {
4834 if (inode->i_mode == 0 ||
4835 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4836 /* this inode is deleted */
4837 ret = -ESTALE;
4838 goto bad_inode;
4840 /* The only unlinked inodes we let through here have
4841 * valid i_mode and are being read by the orphan
4842 * recovery code: that's fine, we're about to complete
4843 * the process of deleting those. */
4845 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4846 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4847 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4848 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4849 ei->i_file_acl |=
4850 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4851 inode->i_size = ext4_isize(raw_inode);
4852 ei->i_disksize = inode->i_size;
4853 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4854 ei->i_block_group = iloc.block_group;
4855 ei->i_last_alloc_group = ~0;
4857 * NOTE! The in-memory inode i_data array is in little-endian order
4858 * even on big-endian machines: we do NOT byteswap the block numbers!
4860 for (block = 0; block < EXT4_N_BLOCKS; block++)
4861 ei->i_data[block] = raw_inode->i_block[block];
4862 INIT_LIST_HEAD(&ei->i_orphan);
4865 * Set transaction id's of transactions that have to be committed
4866 * to finish f[data]sync. We set them to currently running transaction
4867 * as we cannot be sure that the inode or some of its metadata isn't
4868 * part of the transaction - the inode could have been reclaimed and
4869 * now it is reread from disk.
4871 if (journal) {
4872 transaction_t *transaction;
4873 tid_t tid;
4875 spin_lock(&journal->j_state_lock);
4876 if (journal->j_running_transaction)
4877 transaction = journal->j_running_transaction;
4878 else
4879 transaction = journal->j_committing_transaction;
4880 if (transaction)
4881 tid = transaction->t_tid;
4882 else
4883 tid = journal->j_commit_sequence;
4884 spin_unlock(&journal->j_state_lock);
4885 ei->i_sync_tid = tid;
4886 ei->i_datasync_tid = tid;
4889 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4890 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4891 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4892 EXT4_INODE_SIZE(inode->i_sb)) {
4893 ret = -EIO;
4894 goto bad_inode;
4896 if (ei->i_extra_isize == 0) {
4897 /* The extra space is currently unused. Use it. */
4898 ei->i_extra_isize = sizeof(struct ext4_inode) -
4899 EXT4_GOOD_OLD_INODE_SIZE;
4900 } else {
4901 __le32 *magic = (void *)raw_inode +
4902 EXT4_GOOD_OLD_INODE_SIZE +
4903 ei->i_extra_isize;
4904 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4905 ei->i_state |= EXT4_STATE_XATTR;
4907 } else
4908 ei->i_extra_isize = 0;
4910 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4911 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4912 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4913 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4915 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4916 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4917 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4918 inode->i_version |=
4919 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4922 ret = 0;
4923 if (ei->i_file_acl &&
4924 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4925 ext4_error(sb, __func__,
4926 "bad extended attribute block %llu in inode #%lu",
4927 ei->i_file_acl, inode->i_ino);
4928 ret = -EIO;
4929 goto bad_inode;
4930 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4931 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4932 (S_ISLNK(inode->i_mode) &&
4933 !ext4_inode_is_fast_symlink(inode)))
4934 /* Validate extent which is part of inode */
4935 ret = ext4_ext_check_inode(inode);
4936 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4937 (S_ISLNK(inode->i_mode) &&
4938 !ext4_inode_is_fast_symlink(inode))) {
4939 /* Validate block references which are part of inode */
4940 ret = ext4_check_inode_blockref(inode);
4942 if (ret)
4943 goto bad_inode;
4945 if (S_ISREG(inode->i_mode)) {
4946 inode->i_op = &ext4_file_inode_operations;
4947 inode->i_fop = &ext4_file_operations;
4948 ext4_set_aops(inode);
4949 } else if (S_ISDIR(inode->i_mode)) {
4950 inode->i_op = &ext4_dir_inode_operations;
4951 inode->i_fop = &ext4_dir_operations;
4952 } else if (S_ISLNK(inode->i_mode)) {
4953 if (ext4_inode_is_fast_symlink(inode)) {
4954 inode->i_op = &ext4_fast_symlink_inode_operations;
4955 nd_terminate_link(ei->i_data, inode->i_size,
4956 sizeof(ei->i_data) - 1);
4957 } else {
4958 inode->i_op = &ext4_symlink_inode_operations;
4959 ext4_set_aops(inode);
4961 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4962 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4963 inode->i_op = &ext4_special_inode_operations;
4964 if (raw_inode->i_block[0])
4965 init_special_inode(inode, inode->i_mode,
4966 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4967 else
4968 init_special_inode(inode, inode->i_mode,
4969 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4970 } else {
4971 ret = -EIO;
4972 ext4_error(inode->i_sb, __func__,
4973 "bogus i_mode (%o) for inode=%lu",
4974 inode->i_mode, inode->i_ino);
4975 goto bad_inode;
4977 brelse(iloc.bh);
4978 ext4_set_inode_flags(inode);
4979 unlock_new_inode(inode);
4980 return inode;
4982 bad_inode:
4983 brelse(iloc.bh);
4984 iget_failed(inode);
4985 return ERR_PTR(ret);
4988 static int ext4_inode_blocks_set(handle_t *handle,
4989 struct ext4_inode *raw_inode,
4990 struct ext4_inode_info *ei)
4992 struct inode *inode = &(ei->vfs_inode);
4993 u64 i_blocks = inode->i_blocks;
4994 struct super_block *sb = inode->i_sb;
4996 if (i_blocks <= ~0U) {
4998 * i_blocks can be represnted in a 32 bit variable
4999 * as multiple of 512 bytes
5001 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5002 raw_inode->i_blocks_high = 0;
5003 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5004 return 0;
5006 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5007 return -EFBIG;
5009 if (i_blocks <= 0xffffffffffffULL) {
5011 * i_blocks can be represented in a 48 bit variable
5012 * as multiple of 512 bytes
5014 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5015 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5016 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5017 } else {
5018 ei->i_flags |= EXT4_HUGE_FILE_FL;
5019 /* i_block is stored in file system block size */
5020 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5021 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5022 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5024 return 0;
5028 * Post the struct inode info into an on-disk inode location in the
5029 * buffer-cache. This gobbles the caller's reference to the
5030 * buffer_head in the inode location struct.
5032 * The caller must have write access to iloc->bh.
5034 static int ext4_do_update_inode(handle_t *handle,
5035 struct inode *inode,
5036 struct ext4_iloc *iloc)
5038 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5039 struct ext4_inode_info *ei = EXT4_I(inode);
5040 struct buffer_head *bh = iloc->bh;
5041 int err = 0, rc, block;
5043 /* For fields not not tracking in the in-memory inode,
5044 * initialise them to zero for new inodes. */
5045 if (ei->i_state & EXT4_STATE_NEW)
5046 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5048 ext4_get_inode_flags(ei);
5049 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5050 if (!(test_opt(inode->i_sb, NO_UID32))) {
5051 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5052 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5054 * Fix up interoperability with old kernels. Otherwise, old inodes get
5055 * re-used with the upper 16 bits of the uid/gid intact
5057 if (!ei->i_dtime) {
5058 raw_inode->i_uid_high =
5059 cpu_to_le16(high_16_bits(inode->i_uid));
5060 raw_inode->i_gid_high =
5061 cpu_to_le16(high_16_bits(inode->i_gid));
5062 } else {
5063 raw_inode->i_uid_high = 0;
5064 raw_inode->i_gid_high = 0;
5066 } else {
5067 raw_inode->i_uid_low =
5068 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5069 raw_inode->i_gid_low =
5070 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5071 raw_inode->i_uid_high = 0;
5072 raw_inode->i_gid_high = 0;
5074 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5076 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5077 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5078 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5079 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5081 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5082 goto out_brelse;
5083 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5084 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5085 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5086 cpu_to_le32(EXT4_OS_HURD))
5087 raw_inode->i_file_acl_high =
5088 cpu_to_le16(ei->i_file_acl >> 32);
5089 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5090 ext4_isize_set(raw_inode, ei->i_disksize);
5091 if (ei->i_disksize > 0x7fffffffULL) {
5092 struct super_block *sb = inode->i_sb;
5093 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5094 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5095 EXT4_SB(sb)->s_es->s_rev_level ==
5096 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5097 /* If this is the first large file
5098 * created, add a flag to the superblock.
5100 err = ext4_journal_get_write_access(handle,
5101 EXT4_SB(sb)->s_sbh);
5102 if (err)
5103 goto out_brelse;
5104 ext4_update_dynamic_rev(sb);
5105 EXT4_SET_RO_COMPAT_FEATURE(sb,
5106 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5107 sb->s_dirt = 1;
5108 ext4_handle_sync(handle);
5109 err = ext4_handle_dirty_metadata(handle, inode,
5110 EXT4_SB(sb)->s_sbh);
5113 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5114 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5115 if (old_valid_dev(inode->i_rdev)) {
5116 raw_inode->i_block[0] =
5117 cpu_to_le32(old_encode_dev(inode->i_rdev));
5118 raw_inode->i_block[1] = 0;
5119 } else {
5120 raw_inode->i_block[0] = 0;
5121 raw_inode->i_block[1] =
5122 cpu_to_le32(new_encode_dev(inode->i_rdev));
5123 raw_inode->i_block[2] = 0;
5125 } else
5126 for (block = 0; block < EXT4_N_BLOCKS; block++)
5127 raw_inode->i_block[block] = ei->i_data[block];
5129 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5130 if (ei->i_extra_isize) {
5131 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5132 raw_inode->i_version_hi =
5133 cpu_to_le32(inode->i_version >> 32);
5134 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5137 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5138 rc = ext4_handle_dirty_metadata(handle, inode, bh);
5139 if (!err)
5140 err = rc;
5141 ei->i_state &= ~EXT4_STATE_NEW;
5143 ext4_update_inode_fsync_trans(handle, inode, 0);
5144 out_brelse:
5145 brelse(bh);
5146 ext4_std_error(inode->i_sb, err);
5147 return err;
5151 * ext4_write_inode()
5153 * We are called from a few places:
5155 * - Within generic_file_write() for O_SYNC files.
5156 * Here, there will be no transaction running. We wait for any running
5157 * trasnaction to commit.
5159 * - Within sys_sync(), kupdate and such.
5160 * We wait on commit, if tol to.
5162 * - Within prune_icache() (PF_MEMALLOC == true)
5163 * Here we simply return. We can't afford to block kswapd on the
5164 * journal commit.
5166 * In all cases it is actually safe for us to return without doing anything,
5167 * because the inode has been copied into a raw inode buffer in
5168 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5169 * knfsd.
5171 * Note that we are absolutely dependent upon all inode dirtiers doing the
5172 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5173 * which we are interested.
5175 * It would be a bug for them to not do this. The code:
5177 * mark_inode_dirty(inode)
5178 * stuff();
5179 * inode->i_size = expr;
5181 * is in error because a kswapd-driven write_inode() could occur while
5182 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5183 * will no longer be on the superblock's dirty inode list.
5185 int ext4_write_inode(struct inode *inode, int wait)
5187 int err;
5189 if (current->flags & PF_MEMALLOC)
5190 return 0;
5192 if (EXT4_SB(inode->i_sb)->s_journal) {
5193 if (ext4_journal_current_handle()) {
5194 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5195 dump_stack();
5196 return -EIO;
5199 if (!wait)
5200 return 0;
5202 err = ext4_force_commit(inode->i_sb);
5203 } else {
5204 struct ext4_iloc iloc;
5206 err = ext4_get_inode_loc(inode, &iloc);
5207 if (err)
5208 return err;
5209 if (wait)
5210 sync_dirty_buffer(iloc.bh);
5211 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5212 ext4_error(inode->i_sb, __func__,
5213 "IO error syncing inode, "
5214 "inode=%lu, block=%llu",
5215 inode->i_ino,
5216 (unsigned long long)iloc.bh->b_blocknr);
5217 err = -EIO;
5220 return err;
5224 * ext4_setattr()
5226 * Called from notify_change.
5228 * We want to trap VFS attempts to truncate the file as soon as
5229 * possible. In particular, we want to make sure that when the VFS
5230 * shrinks i_size, we put the inode on the orphan list and modify
5231 * i_disksize immediately, so that during the subsequent flushing of
5232 * dirty pages and freeing of disk blocks, we can guarantee that any
5233 * commit will leave the blocks being flushed in an unused state on
5234 * disk. (On recovery, the inode will get truncated and the blocks will
5235 * be freed, so we have a strong guarantee that no future commit will
5236 * leave these blocks visible to the user.)
5238 * Another thing we have to assure is that if we are in ordered mode
5239 * and inode is still attached to the committing transaction, we must
5240 * we start writeout of all the dirty pages which are being truncated.
5241 * This way we are sure that all the data written in the previous
5242 * transaction are already on disk (truncate waits for pages under
5243 * writeback).
5245 * Called with inode->i_mutex down.
5247 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5249 struct inode *inode = dentry->d_inode;
5250 int error, rc = 0;
5251 const unsigned int ia_valid = attr->ia_valid;
5253 error = inode_change_ok(inode, attr);
5254 if (error)
5255 return error;
5257 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5258 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5259 handle_t *handle;
5261 /* (user+group)*(old+new) structure, inode write (sb,
5262 * inode block, ? - but truncate inode update has it) */
5263 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5264 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5265 if (IS_ERR(handle)) {
5266 error = PTR_ERR(handle);
5267 goto err_out;
5269 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5270 if (error) {
5271 ext4_journal_stop(handle);
5272 return error;
5274 /* Update corresponding info in inode so that everything is in
5275 * one transaction */
5276 if (attr->ia_valid & ATTR_UID)
5277 inode->i_uid = attr->ia_uid;
5278 if (attr->ia_valid & ATTR_GID)
5279 inode->i_gid = attr->ia_gid;
5280 error = ext4_mark_inode_dirty(handle, inode);
5281 ext4_journal_stop(handle);
5284 if (attr->ia_valid & ATTR_SIZE) {
5285 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5286 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5288 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5289 error = -EFBIG;
5290 goto err_out;
5295 if (S_ISREG(inode->i_mode) &&
5296 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5297 handle_t *handle;
5299 handle = ext4_journal_start(inode, 3);
5300 if (IS_ERR(handle)) {
5301 error = PTR_ERR(handle);
5302 goto err_out;
5305 error = ext4_orphan_add(handle, inode);
5306 EXT4_I(inode)->i_disksize = attr->ia_size;
5307 rc = ext4_mark_inode_dirty(handle, inode);
5308 if (!error)
5309 error = rc;
5310 ext4_journal_stop(handle);
5312 if (ext4_should_order_data(inode)) {
5313 error = ext4_begin_ordered_truncate(inode,
5314 attr->ia_size);
5315 if (error) {
5316 /* Do as much error cleanup as possible */
5317 handle = ext4_journal_start(inode, 3);
5318 if (IS_ERR(handle)) {
5319 ext4_orphan_del(NULL, inode);
5320 goto err_out;
5322 ext4_orphan_del(handle, inode);
5323 ext4_journal_stop(handle);
5324 goto err_out;
5329 rc = inode_setattr(inode, attr);
5331 /* If inode_setattr's call to ext4_truncate failed to get a
5332 * transaction handle at all, we need to clean up the in-core
5333 * orphan list manually. */
5334 if (inode->i_nlink)
5335 ext4_orphan_del(NULL, inode);
5337 if (!rc && (ia_valid & ATTR_MODE))
5338 rc = ext4_acl_chmod(inode);
5340 err_out:
5341 ext4_std_error(inode->i_sb, error);
5342 if (!error)
5343 error = rc;
5344 return error;
5347 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5348 struct kstat *stat)
5350 struct inode *inode;
5351 unsigned long delalloc_blocks;
5353 inode = dentry->d_inode;
5354 generic_fillattr(inode, stat);
5357 * We can't update i_blocks if the block allocation is delayed
5358 * otherwise in the case of system crash before the real block
5359 * allocation is done, we will have i_blocks inconsistent with
5360 * on-disk file blocks.
5361 * We always keep i_blocks updated together with real
5362 * allocation. But to not confuse with user, stat
5363 * will return the blocks that include the delayed allocation
5364 * blocks for this file.
5366 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5367 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5368 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5370 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5371 return 0;
5374 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5375 int chunk)
5377 int indirects;
5379 /* if nrblocks are contiguous */
5380 if (chunk) {
5382 * With N contiguous data blocks, it need at most
5383 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5384 * 2 dindirect blocks
5385 * 1 tindirect block
5387 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5388 return indirects + 3;
5391 * if nrblocks are not contiguous, worse case, each block touch
5392 * a indirect block, and each indirect block touch a double indirect
5393 * block, plus a triple indirect block
5395 indirects = nrblocks * 2 + 1;
5396 return indirects;
5399 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5401 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5402 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5403 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5407 * Account for index blocks, block groups bitmaps and block group
5408 * descriptor blocks if modify datablocks and index blocks
5409 * worse case, the indexs blocks spread over different block groups
5411 * If datablocks are discontiguous, they are possible to spread over
5412 * different block groups too. If they are contiugous, with flexbg,
5413 * they could still across block group boundary.
5415 * Also account for superblock, inode, quota and xattr blocks
5417 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5419 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5420 int gdpblocks;
5421 int idxblocks;
5422 int ret = 0;
5425 * How many index blocks need to touch to modify nrblocks?
5426 * The "Chunk" flag indicating whether the nrblocks is
5427 * physically contiguous on disk
5429 * For Direct IO and fallocate, they calls get_block to allocate
5430 * one single extent at a time, so they could set the "Chunk" flag
5432 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5434 ret = idxblocks;
5437 * Now let's see how many group bitmaps and group descriptors need
5438 * to account
5440 groups = idxblocks;
5441 if (chunk)
5442 groups += 1;
5443 else
5444 groups += nrblocks;
5446 gdpblocks = groups;
5447 if (groups > ngroups)
5448 groups = ngroups;
5449 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5450 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5452 /* bitmaps and block group descriptor blocks */
5453 ret += groups + gdpblocks;
5455 /* Blocks for super block, inode, quota and xattr blocks */
5456 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5458 return ret;
5462 * Calulate the total number of credits to reserve to fit
5463 * the modification of a single pages into a single transaction,
5464 * which may include multiple chunks of block allocations.
5466 * This could be called via ext4_write_begin()
5468 * We need to consider the worse case, when
5469 * one new block per extent.
5471 int ext4_writepage_trans_blocks(struct inode *inode)
5473 int bpp = ext4_journal_blocks_per_page(inode);
5474 int ret;
5476 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5478 /* Account for data blocks for journalled mode */
5479 if (ext4_should_journal_data(inode))
5480 ret += bpp;
5481 return ret;
5485 * Calculate the journal credits for a chunk of data modification.
5487 * This is called from DIO, fallocate or whoever calling
5488 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5490 * journal buffers for data blocks are not included here, as DIO
5491 * and fallocate do no need to journal data buffers.
5493 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5495 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5499 * The caller must have previously called ext4_reserve_inode_write().
5500 * Give this, we know that the caller already has write access to iloc->bh.
5502 int ext4_mark_iloc_dirty(handle_t *handle,
5503 struct inode *inode, struct ext4_iloc *iloc)
5505 int err = 0;
5507 if (test_opt(inode->i_sb, I_VERSION))
5508 inode_inc_iversion(inode);
5510 /* the do_update_inode consumes one bh->b_count */
5511 get_bh(iloc->bh);
5513 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5514 err = ext4_do_update_inode(handle, inode, iloc);
5515 put_bh(iloc->bh);
5516 return err;
5520 * On success, We end up with an outstanding reference count against
5521 * iloc->bh. This _must_ be cleaned up later.
5525 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5526 struct ext4_iloc *iloc)
5528 int err;
5530 err = ext4_get_inode_loc(inode, iloc);
5531 if (!err) {
5532 BUFFER_TRACE(iloc->bh, "get_write_access");
5533 err = ext4_journal_get_write_access(handle, iloc->bh);
5534 if (err) {
5535 brelse(iloc->bh);
5536 iloc->bh = NULL;
5539 ext4_std_error(inode->i_sb, err);
5540 return err;
5544 * Expand an inode by new_extra_isize bytes.
5545 * Returns 0 on success or negative error number on failure.
5547 static int ext4_expand_extra_isize(struct inode *inode,
5548 unsigned int new_extra_isize,
5549 struct ext4_iloc iloc,
5550 handle_t *handle)
5552 struct ext4_inode *raw_inode;
5553 struct ext4_xattr_ibody_header *header;
5554 struct ext4_xattr_entry *entry;
5556 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5557 return 0;
5559 raw_inode = ext4_raw_inode(&iloc);
5561 header = IHDR(inode, raw_inode);
5562 entry = IFIRST(header);
5564 /* No extended attributes present */
5565 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5566 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5567 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5568 new_extra_isize);
5569 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5570 return 0;
5573 /* try to expand with EAs present */
5574 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5575 raw_inode, handle);
5579 * What we do here is to mark the in-core inode as clean with respect to inode
5580 * dirtiness (it may still be data-dirty).
5581 * This means that the in-core inode may be reaped by prune_icache
5582 * without having to perform any I/O. This is a very good thing,
5583 * because *any* task may call prune_icache - even ones which
5584 * have a transaction open against a different journal.
5586 * Is this cheating? Not really. Sure, we haven't written the
5587 * inode out, but prune_icache isn't a user-visible syncing function.
5588 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5589 * we start and wait on commits.
5591 * Is this efficient/effective? Well, we're being nice to the system
5592 * by cleaning up our inodes proactively so they can be reaped
5593 * without I/O. But we are potentially leaving up to five seconds'
5594 * worth of inodes floating about which prune_icache wants us to
5595 * write out. One way to fix that would be to get prune_icache()
5596 * to do a write_super() to free up some memory. It has the desired
5597 * effect.
5599 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5601 struct ext4_iloc iloc;
5602 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5603 static unsigned int mnt_count;
5604 int err, ret;
5606 might_sleep();
5607 err = ext4_reserve_inode_write(handle, inode, &iloc);
5608 if (ext4_handle_valid(handle) &&
5609 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5610 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5612 * We need extra buffer credits since we may write into EA block
5613 * with this same handle. If journal_extend fails, then it will
5614 * only result in a minor loss of functionality for that inode.
5615 * If this is felt to be critical, then e2fsck should be run to
5616 * force a large enough s_min_extra_isize.
5618 if ((jbd2_journal_extend(handle,
5619 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5620 ret = ext4_expand_extra_isize(inode,
5621 sbi->s_want_extra_isize,
5622 iloc, handle);
5623 if (ret) {
5624 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5625 if (mnt_count !=
5626 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5627 ext4_warning(inode->i_sb, __func__,
5628 "Unable to expand inode %lu. Delete"
5629 " some EAs or run e2fsck.",
5630 inode->i_ino);
5631 mnt_count =
5632 le16_to_cpu(sbi->s_es->s_mnt_count);
5637 if (!err)
5638 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5639 return err;
5643 * ext4_dirty_inode() is called from __mark_inode_dirty()
5645 * We're really interested in the case where a file is being extended.
5646 * i_size has been changed by generic_commit_write() and we thus need
5647 * to include the updated inode in the current transaction.
5649 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5650 * are allocated to the file.
5652 * If the inode is marked synchronous, we don't honour that here - doing
5653 * so would cause a commit on atime updates, which we don't bother doing.
5654 * We handle synchronous inodes at the highest possible level.
5656 void ext4_dirty_inode(struct inode *inode)
5658 handle_t *handle;
5660 handle = ext4_journal_start(inode, 2);
5661 if (IS_ERR(handle))
5662 goto out;
5664 ext4_mark_inode_dirty(handle, inode);
5666 ext4_journal_stop(handle);
5667 out:
5668 return;
5671 #if 0
5673 * Bind an inode's backing buffer_head into this transaction, to prevent
5674 * it from being flushed to disk early. Unlike
5675 * ext4_reserve_inode_write, this leaves behind no bh reference and
5676 * returns no iloc structure, so the caller needs to repeat the iloc
5677 * lookup to mark the inode dirty later.
5679 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5681 struct ext4_iloc iloc;
5683 int err = 0;
5684 if (handle) {
5685 err = ext4_get_inode_loc(inode, &iloc);
5686 if (!err) {
5687 BUFFER_TRACE(iloc.bh, "get_write_access");
5688 err = jbd2_journal_get_write_access(handle, iloc.bh);
5689 if (!err)
5690 err = ext4_handle_dirty_metadata(handle,
5691 inode,
5692 iloc.bh);
5693 brelse(iloc.bh);
5696 ext4_std_error(inode->i_sb, err);
5697 return err;
5699 #endif
5701 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5703 journal_t *journal;
5704 handle_t *handle;
5705 int err;
5708 * We have to be very careful here: changing a data block's
5709 * journaling status dynamically is dangerous. If we write a
5710 * data block to the journal, change the status and then delete
5711 * that block, we risk forgetting to revoke the old log record
5712 * from the journal and so a subsequent replay can corrupt data.
5713 * So, first we make sure that the journal is empty and that
5714 * nobody is changing anything.
5717 journal = EXT4_JOURNAL(inode);
5718 if (!journal)
5719 return 0;
5720 if (is_journal_aborted(journal))
5721 return -EROFS;
5723 jbd2_journal_lock_updates(journal);
5724 jbd2_journal_flush(journal);
5727 * OK, there are no updates running now, and all cached data is
5728 * synced to disk. We are now in a completely consistent state
5729 * which doesn't have anything in the journal, and we know that
5730 * no filesystem updates are running, so it is safe to modify
5731 * the inode's in-core data-journaling state flag now.
5734 if (val)
5735 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5736 else
5737 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5738 ext4_set_aops(inode);
5740 jbd2_journal_unlock_updates(journal);
5742 /* Finally we can mark the inode as dirty. */
5744 handle = ext4_journal_start(inode, 1);
5745 if (IS_ERR(handle))
5746 return PTR_ERR(handle);
5748 err = ext4_mark_inode_dirty(handle, inode);
5749 ext4_handle_sync(handle);
5750 ext4_journal_stop(handle);
5751 ext4_std_error(inode->i_sb, err);
5753 return err;
5756 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5758 return !buffer_mapped(bh);
5761 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5763 struct page *page = vmf->page;
5764 loff_t size;
5765 unsigned long len;
5766 int ret = -EINVAL;
5767 void *fsdata;
5768 struct file *file = vma->vm_file;
5769 struct inode *inode = file->f_path.dentry->d_inode;
5770 struct address_space *mapping = inode->i_mapping;
5773 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5774 * get i_mutex because we are already holding mmap_sem.
5776 down_read(&inode->i_alloc_sem);
5777 size = i_size_read(inode);
5778 if (page->mapping != mapping || size <= page_offset(page)
5779 || !PageUptodate(page)) {
5780 /* page got truncated from under us? */
5781 goto out_unlock;
5783 ret = 0;
5784 if (PageMappedToDisk(page))
5785 goto out_unlock;
5787 if (page->index == size >> PAGE_CACHE_SHIFT)
5788 len = size & ~PAGE_CACHE_MASK;
5789 else
5790 len = PAGE_CACHE_SIZE;
5792 lock_page(page);
5794 * return if we have all the buffers mapped. This avoid
5795 * the need to call write_begin/write_end which does a
5796 * journal_start/journal_stop which can block and take
5797 * long time
5799 if (page_has_buffers(page)) {
5800 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5801 ext4_bh_unmapped)) {
5802 unlock_page(page);
5803 goto out_unlock;
5806 unlock_page(page);
5808 * OK, we need to fill the hole... Do write_begin write_end
5809 * to do block allocation/reservation.We are not holding
5810 * inode.i__mutex here. That allow * parallel write_begin,
5811 * write_end call. lock_page prevent this from happening
5812 * on the same page though
5814 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5815 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5816 if (ret < 0)
5817 goto out_unlock;
5818 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5819 len, len, page, fsdata);
5820 if (ret < 0)
5821 goto out_unlock;
5822 ret = 0;
5823 out_unlock:
5824 if (ret)
5825 ret = VM_FAULT_SIGBUS;
5826 up_read(&inode->i_alloc_sem);
5827 return ret;