2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/gfp.h>
39 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
42 * migrate_prep() needs to be called before we start compiling a list of pages
43 * to be migrated using isolate_lru_page().
45 int migrate_prep(void)
48 * Clear the LRU lists so pages can be isolated.
49 * Note that pages may be moved off the LRU after we have
50 * drained them. Those pages will fail to migrate like other
51 * pages that may be busy.
59 * Add isolated pages on the list back to the LRU under page lock
60 * to avoid leaking evictable pages back onto unevictable list.
62 * returns the number of pages put back.
64 int putback_lru_pages(struct list_head
*l
)
70 list_for_each_entry_safe(page
, page2
, l
, lru
) {
72 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
73 page_is_file_cache(page
));
74 putback_lru_page(page
);
81 * Restore a potential migration pte to a working pte entry
83 static int remove_migration_pte(struct page
*new, struct vm_area_struct
*vma
,
84 unsigned long addr
, void *old
)
86 struct mm_struct
*mm
= vma
->vm_mm
;
94 pgd
= pgd_offset(mm
, addr
);
95 if (!pgd_present(*pgd
))
98 pud
= pud_offset(pgd
, addr
);
99 if (!pud_present(*pud
))
102 pmd
= pmd_offset(pud
, addr
);
103 if (!pmd_present(*pmd
))
106 ptep
= pte_offset_map(pmd
, addr
);
108 if (!is_swap_pte(*ptep
)) {
113 ptl
= pte_lockptr(mm
, pmd
);
116 if (!is_swap_pte(pte
))
119 entry
= pte_to_swp_entry(pte
);
121 if (!is_migration_entry(entry
) ||
122 migration_entry_to_page(entry
) != old
)
126 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
127 if (is_write_migration_entry(entry
))
128 pte
= pte_mkwrite(pte
);
129 flush_cache_page(vma
, addr
, pte_pfn(pte
));
130 set_pte_at(mm
, addr
, ptep
, pte
);
133 page_add_anon_rmap(new, vma
, addr
);
135 page_add_file_rmap(new);
137 /* No need to invalidate - it was non-present before */
138 update_mmu_cache(vma
, addr
, ptep
);
140 pte_unmap_unlock(ptep
, ptl
);
146 * Get rid of all migration entries and replace them by
147 * references to the indicated page.
149 static void remove_migration_ptes(struct page
*old
, struct page
*new)
151 rmap_walk(new, remove_migration_pte
, old
);
155 * Something used the pte of a page under migration. We need to
156 * get to the page and wait until migration is finished.
157 * When we return from this function the fault will be retried.
159 * This function is called from do_swap_page().
161 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
162 unsigned long address
)
169 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
171 if (!is_swap_pte(pte
))
174 entry
= pte_to_swp_entry(pte
);
175 if (!is_migration_entry(entry
))
178 page
= migration_entry_to_page(entry
);
181 * Once radix-tree replacement of page migration started, page_count
182 * *must* be zero. And, we don't want to call wait_on_page_locked()
183 * against a page without get_page().
184 * So, we use get_page_unless_zero(), here. Even failed, page fault
187 if (!get_page_unless_zero(page
))
189 pte_unmap_unlock(ptep
, ptl
);
190 wait_on_page_locked(page
);
194 pte_unmap_unlock(ptep
, ptl
);
198 * Replace the page in the mapping.
200 * The number of remaining references must be:
201 * 1 for anonymous pages without a mapping
202 * 2 for pages with a mapping
203 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
205 static int migrate_page_move_mapping(struct address_space
*mapping
,
206 struct page
*newpage
, struct page
*page
)
212 /* Anonymous page without mapping */
213 if (page_count(page
) != 1)
218 spin_lock_irq(&mapping
->tree_lock
);
220 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
223 expected_count
= 2 + page_has_private(page
);
224 if (page_count(page
) != expected_count
||
225 (struct page
*)radix_tree_deref_slot(pslot
) != page
) {
226 spin_unlock_irq(&mapping
->tree_lock
);
230 if (!page_freeze_refs(page
, expected_count
)) {
231 spin_unlock_irq(&mapping
->tree_lock
);
236 * Now we know that no one else is looking at the page.
238 get_page(newpage
); /* add cache reference */
239 if (PageSwapCache(page
)) {
240 SetPageSwapCache(newpage
);
241 set_page_private(newpage
, page_private(page
));
244 radix_tree_replace_slot(pslot
, newpage
);
246 page_unfreeze_refs(page
, expected_count
);
248 * Drop cache reference from old page.
249 * We know this isn't the last reference.
254 * If moved to a different zone then also account
255 * the page for that zone. Other VM counters will be
256 * taken care of when we establish references to the
257 * new page and drop references to the old page.
259 * Note that anonymous pages are accounted for
260 * via NR_FILE_PAGES and NR_ANON_PAGES if they
261 * are mapped to swap space.
263 __dec_zone_page_state(page
, NR_FILE_PAGES
);
264 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
265 if (PageSwapBacked(page
)) {
266 __dec_zone_page_state(page
, NR_SHMEM
);
267 __inc_zone_page_state(newpage
, NR_SHMEM
);
269 spin_unlock_irq(&mapping
->tree_lock
);
275 * Copy the page to its new location
277 static void migrate_page_copy(struct page
*newpage
, struct page
*page
)
279 copy_highpage(newpage
, page
);
282 SetPageError(newpage
);
283 if (PageReferenced(page
))
284 SetPageReferenced(newpage
);
285 if (PageUptodate(page
))
286 SetPageUptodate(newpage
);
287 if (TestClearPageActive(page
)) {
288 VM_BUG_ON(PageUnevictable(page
));
289 SetPageActive(newpage
);
290 } else if (TestClearPageUnevictable(page
))
291 SetPageUnevictable(newpage
);
292 if (PageChecked(page
))
293 SetPageChecked(newpage
);
294 if (PageMappedToDisk(page
))
295 SetPageMappedToDisk(newpage
);
297 if (PageDirty(page
)) {
298 clear_page_dirty_for_io(page
);
300 * Want to mark the page and the radix tree as dirty, and
301 * redo the accounting that clear_page_dirty_for_io undid,
302 * but we can't use set_page_dirty because that function
303 * is actually a signal that all of the page has become dirty.
304 * Wheras only part of our page may be dirty.
306 __set_page_dirty_nobuffers(newpage
);
309 mlock_migrate_page(newpage
, page
);
310 ksm_migrate_page(newpage
, page
);
312 ClearPageSwapCache(page
);
313 ClearPagePrivate(page
);
314 set_page_private(page
, 0);
315 page
->mapping
= NULL
;
318 * If any waiters have accumulated on the new page then
321 if (PageWriteback(newpage
))
322 end_page_writeback(newpage
);
325 /************************************************************
326 * Migration functions
327 ***********************************************************/
329 /* Always fail migration. Used for mappings that are not movable */
330 int fail_migrate_page(struct address_space
*mapping
,
331 struct page
*newpage
, struct page
*page
)
335 EXPORT_SYMBOL(fail_migrate_page
);
338 * Common logic to directly migrate a single page suitable for
339 * pages that do not use PagePrivate/PagePrivate2.
341 * Pages are locked upon entry and exit.
343 int migrate_page(struct address_space
*mapping
,
344 struct page
*newpage
, struct page
*page
)
348 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
350 rc
= migrate_page_move_mapping(mapping
, newpage
, page
);
355 migrate_page_copy(newpage
, page
);
358 EXPORT_SYMBOL(migrate_page
);
362 * Migration function for pages with buffers. This function can only be used
363 * if the underlying filesystem guarantees that no other references to "page"
366 int buffer_migrate_page(struct address_space
*mapping
,
367 struct page
*newpage
, struct page
*page
)
369 struct buffer_head
*bh
, *head
;
372 if (!page_has_buffers(page
))
373 return migrate_page(mapping
, newpage
, page
);
375 head
= page_buffers(page
);
377 rc
= migrate_page_move_mapping(mapping
, newpage
, page
);
386 bh
= bh
->b_this_page
;
388 } while (bh
!= head
);
390 ClearPagePrivate(page
);
391 set_page_private(newpage
, page_private(page
));
392 set_page_private(page
, 0);
398 set_bh_page(bh
, newpage
, bh_offset(bh
));
399 bh
= bh
->b_this_page
;
401 } while (bh
!= head
);
403 SetPagePrivate(newpage
);
405 migrate_page_copy(newpage
, page
);
411 bh
= bh
->b_this_page
;
413 } while (bh
!= head
);
417 EXPORT_SYMBOL(buffer_migrate_page
);
421 * Writeback a page to clean the dirty state
423 static int writeout(struct address_space
*mapping
, struct page
*page
)
425 struct writeback_control wbc
= {
426 .sync_mode
= WB_SYNC_NONE
,
429 .range_end
= LLONG_MAX
,
435 if (!mapping
->a_ops
->writepage
)
436 /* No write method for the address space */
439 if (!clear_page_dirty_for_io(page
))
440 /* Someone else already triggered a write */
444 * A dirty page may imply that the underlying filesystem has
445 * the page on some queue. So the page must be clean for
446 * migration. Writeout may mean we loose the lock and the
447 * page state is no longer what we checked for earlier.
448 * At this point we know that the migration attempt cannot
451 remove_migration_ptes(page
, page
);
453 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
455 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
456 /* unlocked. Relock */
459 return (rc
< 0) ? -EIO
: -EAGAIN
;
463 * Default handling if a filesystem does not provide a migration function.
465 static int fallback_migrate_page(struct address_space
*mapping
,
466 struct page
*newpage
, struct page
*page
)
469 return writeout(mapping
, page
);
472 * Buffers may be managed in a filesystem specific way.
473 * We must have no buffers or drop them.
475 if (page_has_private(page
) &&
476 !try_to_release_page(page
, GFP_KERNEL
))
479 return migrate_page(mapping
, newpage
, page
);
483 * Move a page to a newly allocated page
484 * The page is locked and all ptes have been successfully removed.
486 * The new page will have replaced the old page if this function
493 static int move_to_new_page(struct page
*newpage
, struct page
*page
)
495 struct address_space
*mapping
;
499 * Block others from accessing the page when we get around to
500 * establishing additional references. We are the only one
501 * holding a reference to the new page at this point.
503 if (!trylock_page(newpage
))
506 /* Prepare mapping for the new page.*/
507 newpage
->index
= page
->index
;
508 newpage
->mapping
= page
->mapping
;
509 if (PageSwapBacked(page
))
510 SetPageSwapBacked(newpage
);
512 mapping
= page_mapping(page
);
514 rc
= migrate_page(mapping
, newpage
, page
);
515 else if (mapping
->a_ops
->migratepage
)
517 * Most pages have a mapping and most filesystems
518 * should provide a migration function. Anonymous
519 * pages are part of swap space which also has its
520 * own migration function. This is the most common
521 * path for page migration.
523 rc
= mapping
->a_ops
->migratepage(mapping
,
526 rc
= fallback_migrate_page(mapping
, newpage
, page
);
529 remove_migration_ptes(page
, newpage
);
531 newpage
->mapping
= NULL
;
533 unlock_page(newpage
);
539 * Obtain the lock on page, remove all ptes and migrate the page
540 * to the newly allocated page in newpage.
542 static int unmap_and_move(new_page_t get_new_page
, unsigned long private,
543 struct page
*page
, int force
, int offlining
)
547 struct page
*newpage
= get_new_page(page
, private, &result
);
550 struct mem_cgroup
*mem
= NULL
;
555 if (page_count(page
) == 1) {
556 /* page was freed from under us. So we are done. */
560 /* prepare cgroup just returns 0 or -ENOMEM */
563 if (!trylock_page(page
)) {
570 * Only memory hotplug's offline_pages() caller has locked out KSM,
571 * and can safely migrate a KSM page. The other cases have skipped
572 * PageKsm along with PageReserved - but it is only now when we have
573 * the page lock that we can be certain it will not go KSM beneath us
574 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
575 * its pagecount raised, but only here do we take the page lock which
578 if (PageKsm(page
) && !offlining
) {
583 /* charge against new page */
584 charge
= mem_cgroup_prepare_migration(page
, &mem
);
585 if (charge
== -ENOMEM
) {
591 if (PageWriteback(page
)) {
594 wait_on_page_writeback(page
);
597 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
598 * we cannot notice that anon_vma is freed while we migrates a page.
599 * This rcu_read_lock() delays freeing anon_vma pointer until the end
600 * of migration. File cache pages are no problem because of page_lock()
601 * File Caches may use write_page() or lock_page() in migration, then,
602 * just care Anon page here.
604 if (PageAnon(page
)) {
610 * Corner case handling:
611 * 1. When a new swap-cache page is read into, it is added to the LRU
612 * and treated as swapcache but it has no rmap yet.
613 * Calling try_to_unmap() against a page->mapping==NULL page will
614 * trigger a BUG. So handle it here.
615 * 2. An orphaned page (see truncate_complete_page) might have
616 * fs-private metadata. The page can be picked up due to memory
617 * offlining. Everywhere else except page reclaim, the page is
618 * invisible to the vm, so the page can not be migrated. So try to
619 * free the metadata, so the page can be freed.
621 if (!page
->mapping
) {
622 if (!PageAnon(page
) && page_has_private(page
)) {
624 * Go direct to try_to_free_buffers() here because
625 * a) that's what try_to_release_page() would do anyway
626 * b) we may be under rcu_read_lock() here, so we can't
627 * use GFP_KERNEL which is what try_to_release_page()
628 * needs to be effective.
630 try_to_free_buffers(page
);
636 /* Establish migration ptes or remove ptes */
637 try_to_unmap(page
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
640 if (!page_mapped(page
))
641 rc
= move_to_new_page(newpage
, page
);
644 remove_migration_ptes(page
, page
);
650 mem_cgroup_end_migration(mem
, page
, newpage
);
656 * A page that has been migrated has all references
657 * removed and will be freed. A page that has not been
658 * migrated will have kepts its references and be
661 list_del(&page
->lru
);
662 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
663 page_is_file_cache(page
));
664 putback_lru_page(page
);
670 * Move the new page to the LRU. If migration was not successful
671 * then this will free the page.
673 putback_lru_page(newpage
);
679 *result
= page_to_nid(newpage
);
687 * The function takes one list of pages to migrate and a function
688 * that determines from the page to be migrated and the private data
689 * the target of the move and allocates the page.
691 * The function returns after 10 attempts or if no pages
692 * are movable anymore because to has become empty
693 * or no retryable pages exist anymore. All pages will be
694 * returned to the LRU or freed.
696 * Return: Number of pages not migrated or error code.
698 int migrate_pages(struct list_head
*from
,
699 new_page_t get_new_page
, unsigned long private, int offlining
)
706 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
710 current
->flags
|= PF_SWAPWRITE
;
712 for(pass
= 0; pass
< 10 && retry
; pass
++) {
715 list_for_each_entry_safe(page
, page2
, from
, lru
) {
718 rc
= unmap_and_move(get_new_page
, private,
719 page
, pass
> 2, offlining
);
730 /* Permanent failure */
739 current
->flags
&= ~PF_SWAPWRITE
;
741 putback_lru_pages(from
);
746 return nr_failed
+ retry
;
751 * Move a list of individual pages
753 struct page_to_node
{
760 static struct page
*new_page_node(struct page
*p
, unsigned long private,
763 struct page_to_node
*pm
= (struct page_to_node
*)private;
765 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
768 if (pm
->node
== MAX_NUMNODES
)
771 *result
= &pm
->status
;
773 return alloc_pages_exact_node(pm
->node
,
774 GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
, 0);
778 * Move a set of pages as indicated in the pm array. The addr
779 * field must be set to the virtual address of the page to be moved
780 * and the node number must contain a valid target node.
781 * The pm array ends with node = MAX_NUMNODES.
783 static int do_move_page_to_node_array(struct mm_struct
*mm
,
784 struct page_to_node
*pm
,
788 struct page_to_node
*pp
;
791 down_read(&mm
->mmap_sem
);
794 * Build a list of pages to migrate
796 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
797 struct vm_area_struct
*vma
;
801 vma
= find_vma(mm
, pp
->addr
);
802 if (!vma
|| !vma_migratable(vma
))
805 page
= follow_page(vma
, pp
->addr
, FOLL_GET
);
815 /* Use PageReserved to check for zero page */
816 if (PageReserved(page
) || PageKsm(page
))
820 err
= page_to_nid(page
);
824 * Node already in the right place
829 if (page_mapcount(page
) > 1 &&
833 err
= isolate_lru_page(page
);
835 list_add_tail(&page
->lru
, &pagelist
);
836 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
837 page_is_file_cache(page
));
841 * Either remove the duplicate refcount from
842 * isolate_lru_page() or drop the page ref if it was
851 if (!list_empty(&pagelist
))
852 err
= migrate_pages(&pagelist
, new_page_node
,
853 (unsigned long)pm
, 0);
855 up_read(&mm
->mmap_sem
);
860 * Migrate an array of page address onto an array of nodes and fill
861 * the corresponding array of status.
863 static int do_pages_move(struct mm_struct
*mm
, struct task_struct
*task
,
864 unsigned long nr_pages
,
865 const void __user
* __user
*pages
,
866 const int __user
*nodes
,
867 int __user
*status
, int flags
)
869 struct page_to_node
*pm
;
870 nodemask_t task_nodes
;
871 unsigned long chunk_nr_pages
;
872 unsigned long chunk_start
;
875 task_nodes
= cpuset_mems_allowed(task
);
878 pm
= (struct page_to_node
*)__get_free_page(GFP_KERNEL
);
885 * Store a chunk of page_to_node array in a page,
886 * but keep the last one as a marker
888 chunk_nr_pages
= (PAGE_SIZE
/ sizeof(struct page_to_node
)) - 1;
890 for (chunk_start
= 0;
891 chunk_start
< nr_pages
;
892 chunk_start
+= chunk_nr_pages
) {
895 if (chunk_start
+ chunk_nr_pages
> nr_pages
)
896 chunk_nr_pages
= nr_pages
- chunk_start
;
898 /* fill the chunk pm with addrs and nodes from user-space */
899 for (j
= 0; j
< chunk_nr_pages
; j
++) {
900 const void __user
*p
;
904 if (get_user(p
, pages
+ j
+ chunk_start
))
906 pm
[j
].addr
= (unsigned long) p
;
908 if (get_user(node
, nodes
+ j
+ chunk_start
))
912 if (node
< 0 || node
>= MAX_NUMNODES
)
915 if (!node_state(node
, N_HIGH_MEMORY
))
919 if (!node_isset(node
, task_nodes
))
925 /* End marker for this chunk */
926 pm
[chunk_nr_pages
].node
= MAX_NUMNODES
;
928 /* Migrate this chunk */
929 err
= do_move_page_to_node_array(mm
, pm
,
930 flags
& MPOL_MF_MOVE_ALL
);
934 /* Return status information */
935 for (j
= 0; j
< chunk_nr_pages
; j
++)
936 if (put_user(pm
[j
].status
, status
+ j
+ chunk_start
)) {
944 free_page((unsigned long)pm
);
950 * Determine the nodes of an array of pages and store it in an array of status.
952 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
953 const void __user
**pages
, int *status
)
957 down_read(&mm
->mmap_sem
);
959 for (i
= 0; i
< nr_pages
; i
++) {
960 unsigned long addr
= (unsigned long)(*pages
);
961 struct vm_area_struct
*vma
;
965 vma
= find_vma(mm
, addr
);
969 page
= follow_page(vma
, addr
, 0);
976 /* Use PageReserved to check for zero page */
977 if (!page
|| PageReserved(page
) || PageKsm(page
))
980 err
= page_to_nid(page
);
988 up_read(&mm
->mmap_sem
);
992 * Determine the nodes of a user array of pages and store it in
993 * a user array of status.
995 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
996 const void __user
* __user
*pages
,
999 #define DO_PAGES_STAT_CHUNK_NR 16
1000 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1001 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1004 unsigned long chunk_nr
;
1006 chunk_nr
= nr_pages
;
1007 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1008 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1010 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1013 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1015 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1020 nr_pages
-= chunk_nr
;
1022 return nr_pages
? -EFAULT
: 0;
1026 * Move a list of pages in the address space of the currently executing
1029 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1030 const void __user
* __user
*, pages
,
1031 const int __user
*, nodes
,
1032 int __user
*, status
, int, flags
)
1034 const struct cred
*cred
= current_cred(), *tcred
;
1035 struct task_struct
*task
;
1036 struct mm_struct
*mm
;
1040 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1043 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1046 /* Find the mm_struct */
1047 read_lock(&tasklist_lock
);
1048 task
= pid
? find_task_by_vpid(pid
) : current
;
1050 read_unlock(&tasklist_lock
);
1053 mm
= get_task_mm(task
);
1054 read_unlock(&tasklist_lock
);
1060 * Check if this process has the right to modify the specified
1061 * process. The right exists if the process has administrative
1062 * capabilities, superuser privileges or the same
1063 * userid as the target process.
1066 tcred
= __task_cred(task
);
1067 if (cred
->euid
!= tcred
->suid
&& cred
->euid
!= tcred
->uid
&&
1068 cred
->uid
!= tcred
->suid
&& cred
->uid
!= tcred
->uid
&&
1069 !capable(CAP_SYS_NICE
)) {
1076 err
= security_task_movememory(task
);
1081 err
= do_pages_move(mm
, task
, nr_pages
, pages
, nodes
, status
,
1084 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1093 * Call migration functions in the vma_ops that may prepare
1094 * memory in a vm for migration. migration functions may perform
1095 * the migration for vmas that do not have an underlying page struct.
1097 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
1098 const nodemask_t
*from
, unsigned long flags
)
1100 struct vm_area_struct
*vma
;
1103 for (vma
= mm
->mmap
; vma
&& !err
; vma
= vma
->vm_next
) {
1104 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
1105 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);