drm/i915: Eliminate nested get/put pages
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
blobabe6d901f95b2b5f04ea563d55ae5c4085f19828
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
39 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
41 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
45 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
53 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment, bool mappable);
55 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
59 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
61 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
62 int nr_to_scan,
63 gfp_t gfp_mask);
66 /* some bookkeeping */
67 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
68 size_t size)
70 dev_priv->mm.object_count++;
71 dev_priv->mm.object_memory += size;
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
77 dev_priv->mm.object_count--;
78 dev_priv->mm.object_memory -= size;
81 static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
82 struct drm_gem_object *obj)
84 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
85 dev_priv->mm.gtt_count++;
86 dev_priv->mm.gtt_memory += obj->size;
87 if (obj_priv->gtt_offset < dev_priv->mm.gtt_mappable_end) {
88 dev_priv->mm.mappable_gtt_used +=
89 min_t(size_t, obj->size,
90 dev_priv->mm.gtt_mappable_end
91 - obj_priv->gtt_offset);
95 static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
96 struct drm_gem_object *obj)
98 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
99 dev_priv->mm.gtt_count--;
100 dev_priv->mm.gtt_memory -= obj->size;
101 if (obj_priv->gtt_offset < dev_priv->mm.gtt_mappable_end) {
102 dev_priv->mm.mappable_gtt_used -=
103 min_t(size_t, obj->size,
104 dev_priv->mm.gtt_mappable_end
105 - obj_priv->gtt_offset);
110 * Update the mappable working set counters. Call _only_ when there is a change
111 * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
112 * @mappable: new state the changed mappable flag (either pin_ or fault_).
114 static void
115 i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
116 struct drm_gem_object *obj,
117 bool mappable)
119 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
121 if (mappable) {
122 if (obj_priv->pin_mappable && obj_priv->fault_mappable)
123 /* Combined state was already mappable. */
124 return;
125 dev_priv->mm.gtt_mappable_count++;
126 dev_priv->mm.gtt_mappable_memory += obj->size;
127 } else {
128 if (obj_priv->pin_mappable || obj_priv->fault_mappable)
129 /* Combined state still mappable. */
130 return;
131 dev_priv->mm.gtt_mappable_count--;
132 dev_priv->mm.gtt_mappable_memory -= obj->size;
136 static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
137 struct drm_gem_object *obj,
138 bool mappable)
140 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
141 dev_priv->mm.pin_count++;
142 dev_priv->mm.pin_memory += obj->size;
143 if (mappable) {
144 obj_priv->pin_mappable = true;
145 i915_gem_info_update_mappable(dev_priv, obj, true);
149 static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
150 struct drm_gem_object *obj)
152 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
153 dev_priv->mm.pin_count--;
154 dev_priv->mm.pin_memory -= obj->size;
155 if (obj_priv->pin_mappable) {
156 obj_priv->pin_mappable = false;
157 i915_gem_info_update_mappable(dev_priv, obj, false);
162 i915_gem_check_is_wedged(struct drm_device *dev)
164 struct drm_i915_private *dev_priv = dev->dev_private;
165 struct completion *x = &dev_priv->error_completion;
166 unsigned long flags;
167 int ret;
169 if (!atomic_read(&dev_priv->mm.wedged))
170 return 0;
172 ret = wait_for_completion_interruptible(x);
173 if (ret)
174 return ret;
176 /* Success, we reset the GPU! */
177 if (!atomic_read(&dev_priv->mm.wedged))
178 return 0;
180 /* GPU is hung, bump the completion count to account for
181 * the token we just consumed so that we never hit zero and
182 * end up waiting upon a subsequent completion event that
183 * will never happen.
185 spin_lock_irqsave(&x->wait.lock, flags);
186 x->done++;
187 spin_unlock_irqrestore(&x->wait.lock, flags);
188 return -EIO;
191 static int i915_mutex_lock_interruptible(struct drm_device *dev)
193 struct drm_i915_private *dev_priv = dev->dev_private;
194 int ret;
196 ret = i915_gem_check_is_wedged(dev);
197 if (ret)
198 return ret;
200 ret = mutex_lock_interruptible(&dev->struct_mutex);
201 if (ret)
202 return ret;
204 if (atomic_read(&dev_priv->mm.wedged)) {
205 mutex_unlock(&dev->struct_mutex);
206 return -EAGAIN;
209 WARN_ON(i915_verify_lists(dev));
210 return 0;
213 static inline bool
214 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
216 return obj_priv->gtt_space &&
217 !obj_priv->active &&
218 obj_priv->pin_count == 0;
221 int i915_gem_do_init(struct drm_device *dev,
222 unsigned long start,
223 unsigned long mappable_end,
224 unsigned long end)
226 drm_i915_private_t *dev_priv = dev->dev_private;
228 if (start >= end ||
229 (start & (PAGE_SIZE - 1)) != 0 ||
230 (end & (PAGE_SIZE - 1)) != 0) {
231 return -EINVAL;
234 drm_mm_init(&dev_priv->mm.gtt_space, start,
235 end - start);
237 dev_priv->mm.gtt_total = end - start;
238 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
239 dev_priv->mm.gtt_mappable_end = mappable_end;
241 return 0;
245 i915_gem_init_ioctl(struct drm_device *dev, void *data,
246 struct drm_file *file_priv)
248 struct drm_i915_gem_init *args = data;
249 int ret;
251 mutex_lock(&dev->struct_mutex);
252 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
253 mutex_unlock(&dev->struct_mutex);
255 return ret;
259 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
260 struct drm_file *file_priv)
262 struct drm_i915_private *dev_priv = dev->dev_private;
263 struct drm_i915_gem_get_aperture *args = data;
265 if (!(dev->driver->driver_features & DRIVER_GEM))
266 return -ENODEV;
268 mutex_lock(&dev->struct_mutex);
269 args->aper_size = dev_priv->mm.gtt_total;
270 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
271 mutex_unlock(&dev->struct_mutex);
273 return 0;
278 * Creates a new mm object and returns a handle to it.
281 i915_gem_create_ioctl(struct drm_device *dev, void *data,
282 struct drm_file *file_priv)
284 struct drm_i915_gem_create *args = data;
285 struct drm_gem_object *obj;
286 int ret;
287 u32 handle;
289 args->size = roundup(args->size, PAGE_SIZE);
291 /* Allocate the new object */
292 obj = i915_gem_alloc_object(dev, args->size);
293 if (obj == NULL)
294 return -ENOMEM;
296 ret = drm_gem_handle_create(file_priv, obj, &handle);
297 if (ret) {
298 drm_gem_object_release(obj);
299 i915_gem_info_remove_obj(dev->dev_private, obj->size);
300 kfree(obj);
301 return ret;
304 /* drop reference from allocate - handle holds it now */
305 drm_gem_object_unreference(obj);
306 trace_i915_gem_object_create(obj);
308 args->handle = handle;
309 return 0;
312 static bool
313 i915_gem_object_cpu_accessible(struct drm_i915_gem_object *obj)
315 struct drm_device *dev = obj->base.dev;
316 drm_i915_private_t *dev_priv = dev->dev_private;
318 return obj->gtt_space == NULL ||
319 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
322 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
324 drm_i915_private_t *dev_priv = obj->dev->dev_private;
325 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
327 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
328 obj_priv->tiling_mode != I915_TILING_NONE;
331 static inline void
332 slow_shmem_copy(struct page *dst_page,
333 int dst_offset,
334 struct page *src_page,
335 int src_offset,
336 int length)
338 char *dst_vaddr, *src_vaddr;
340 dst_vaddr = kmap(dst_page);
341 src_vaddr = kmap(src_page);
343 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
345 kunmap(src_page);
346 kunmap(dst_page);
349 static inline void
350 slow_shmem_bit17_copy(struct page *gpu_page,
351 int gpu_offset,
352 struct page *cpu_page,
353 int cpu_offset,
354 int length,
355 int is_read)
357 char *gpu_vaddr, *cpu_vaddr;
359 /* Use the unswizzled path if this page isn't affected. */
360 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
361 if (is_read)
362 return slow_shmem_copy(cpu_page, cpu_offset,
363 gpu_page, gpu_offset, length);
364 else
365 return slow_shmem_copy(gpu_page, gpu_offset,
366 cpu_page, cpu_offset, length);
369 gpu_vaddr = kmap(gpu_page);
370 cpu_vaddr = kmap(cpu_page);
372 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
373 * XORing with the other bits (A9 for Y, A9 and A10 for X)
375 while (length > 0) {
376 int cacheline_end = ALIGN(gpu_offset + 1, 64);
377 int this_length = min(cacheline_end - gpu_offset, length);
378 int swizzled_gpu_offset = gpu_offset ^ 64;
380 if (is_read) {
381 memcpy(cpu_vaddr + cpu_offset,
382 gpu_vaddr + swizzled_gpu_offset,
383 this_length);
384 } else {
385 memcpy(gpu_vaddr + swizzled_gpu_offset,
386 cpu_vaddr + cpu_offset,
387 this_length);
389 cpu_offset += this_length;
390 gpu_offset += this_length;
391 length -= this_length;
394 kunmap(cpu_page);
395 kunmap(gpu_page);
399 * This is the fast shmem pread path, which attempts to copy_from_user directly
400 * from the backing pages of the object to the user's address space. On a
401 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
403 static int
404 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
405 struct drm_i915_gem_pread *args,
406 struct drm_file *file_priv)
408 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
409 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
410 ssize_t remain;
411 loff_t offset;
412 char __user *user_data;
413 int page_offset, page_length;
415 user_data = (char __user *) (uintptr_t) args->data_ptr;
416 remain = args->size;
418 obj_priv = to_intel_bo(obj);
419 offset = args->offset;
421 while (remain > 0) {
422 struct page *page;
423 char *vaddr;
424 int ret;
426 /* Operation in this page
428 * page_offset = offset within page
429 * page_length = bytes to copy for this page
431 page_offset = offset & (PAGE_SIZE-1);
432 page_length = remain;
433 if ((page_offset + remain) > PAGE_SIZE)
434 page_length = PAGE_SIZE - page_offset;
436 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
437 GFP_HIGHUSER | __GFP_RECLAIMABLE);
438 if (IS_ERR(page))
439 return PTR_ERR(page);
441 vaddr = kmap_atomic(page);
442 ret = __copy_to_user_inatomic(user_data,
443 vaddr + page_offset,
444 page_length);
445 kunmap_atomic(vaddr);
447 mark_page_accessed(page);
448 page_cache_release(page);
449 if (ret)
450 return -EFAULT;
452 remain -= page_length;
453 user_data += page_length;
454 offset += page_length;
457 return 0;
461 * This is the fallback shmem pread path, which allocates temporary storage
462 * in kernel space to copy_to_user into outside of the struct_mutex, so we
463 * can copy out of the object's backing pages while holding the struct mutex
464 * and not take page faults.
466 static int
467 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
468 struct drm_i915_gem_pread *args,
469 struct drm_file *file_priv)
471 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
472 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
473 struct mm_struct *mm = current->mm;
474 struct page **user_pages;
475 ssize_t remain;
476 loff_t offset, pinned_pages, i;
477 loff_t first_data_page, last_data_page, num_pages;
478 int shmem_page_offset;
479 int data_page_index, data_page_offset;
480 int page_length;
481 int ret;
482 uint64_t data_ptr = args->data_ptr;
483 int do_bit17_swizzling;
485 remain = args->size;
487 /* Pin the user pages containing the data. We can't fault while
488 * holding the struct mutex, yet we want to hold it while
489 * dereferencing the user data.
491 first_data_page = data_ptr / PAGE_SIZE;
492 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
493 num_pages = last_data_page - first_data_page + 1;
495 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
496 if (user_pages == NULL)
497 return -ENOMEM;
499 mutex_unlock(&dev->struct_mutex);
500 down_read(&mm->mmap_sem);
501 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
502 num_pages, 1, 0, user_pages, NULL);
503 up_read(&mm->mmap_sem);
504 mutex_lock(&dev->struct_mutex);
505 if (pinned_pages < num_pages) {
506 ret = -EFAULT;
507 goto out;
510 ret = i915_gem_object_set_cpu_read_domain_range(obj,
511 args->offset,
512 args->size);
513 if (ret)
514 goto out;
516 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
518 obj_priv = to_intel_bo(obj);
519 offset = args->offset;
521 while (remain > 0) {
522 struct page *page;
524 /* Operation in this page
526 * shmem_page_offset = offset within page in shmem file
527 * data_page_index = page number in get_user_pages return
528 * data_page_offset = offset with data_page_index page.
529 * page_length = bytes to copy for this page
531 shmem_page_offset = offset & ~PAGE_MASK;
532 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
533 data_page_offset = data_ptr & ~PAGE_MASK;
535 page_length = remain;
536 if ((shmem_page_offset + page_length) > PAGE_SIZE)
537 page_length = PAGE_SIZE - shmem_page_offset;
538 if ((data_page_offset + page_length) > PAGE_SIZE)
539 page_length = PAGE_SIZE - data_page_offset;
541 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
542 GFP_HIGHUSER | __GFP_RECLAIMABLE);
543 if (IS_ERR(page))
544 return PTR_ERR(page);
546 if (do_bit17_swizzling) {
547 slow_shmem_bit17_copy(page,
548 shmem_page_offset,
549 user_pages[data_page_index],
550 data_page_offset,
551 page_length,
553 } else {
554 slow_shmem_copy(user_pages[data_page_index],
555 data_page_offset,
556 page,
557 shmem_page_offset,
558 page_length);
561 mark_page_accessed(page);
562 page_cache_release(page);
564 remain -= page_length;
565 data_ptr += page_length;
566 offset += page_length;
569 out:
570 for (i = 0; i < pinned_pages; i++) {
571 SetPageDirty(user_pages[i]);
572 mark_page_accessed(user_pages[i]);
573 page_cache_release(user_pages[i]);
575 drm_free_large(user_pages);
577 return ret;
581 * Reads data from the object referenced by handle.
583 * On error, the contents of *data are undefined.
586 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
587 struct drm_file *file_priv)
589 struct drm_i915_gem_pread *args = data;
590 struct drm_gem_object *obj;
591 struct drm_i915_gem_object *obj_priv;
592 int ret = 0;
594 ret = i915_mutex_lock_interruptible(dev);
595 if (ret)
596 return ret;
598 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
599 if (obj == NULL) {
600 ret = -ENOENT;
601 goto unlock;
603 obj_priv = to_intel_bo(obj);
605 /* Bounds check source. */
606 if (args->offset > obj->size || args->size > obj->size - args->offset) {
607 ret = -EINVAL;
608 goto out;
611 if (args->size == 0)
612 goto out;
614 if (!access_ok(VERIFY_WRITE,
615 (char __user *)(uintptr_t)args->data_ptr,
616 args->size)) {
617 ret = -EFAULT;
618 goto out;
621 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
622 args->size);
623 if (ret) {
624 ret = -EFAULT;
625 goto out;
628 ret = i915_gem_object_set_cpu_read_domain_range(obj,
629 args->offset,
630 args->size);
631 if (ret)
632 goto out;
634 ret = -EFAULT;
635 if (!i915_gem_object_needs_bit17_swizzle(obj))
636 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
637 if (ret == -EFAULT)
638 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
640 out:
641 drm_gem_object_unreference(obj);
642 unlock:
643 mutex_unlock(&dev->struct_mutex);
644 return ret;
647 /* This is the fast write path which cannot handle
648 * page faults in the source data
651 static inline int
652 fast_user_write(struct io_mapping *mapping,
653 loff_t page_base, int page_offset,
654 char __user *user_data,
655 int length)
657 char *vaddr_atomic;
658 unsigned long unwritten;
660 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
661 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
662 user_data, length);
663 io_mapping_unmap_atomic(vaddr_atomic);
664 return unwritten;
667 /* Here's the write path which can sleep for
668 * page faults
671 static inline void
672 slow_kernel_write(struct io_mapping *mapping,
673 loff_t gtt_base, int gtt_offset,
674 struct page *user_page, int user_offset,
675 int length)
677 char __iomem *dst_vaddr;
678 char *src_vaddr;
680 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
681 src_vaddr = kmap(user_page);
683 memcpy_toio(dst_vaddr + gtt_offset,
684 src_vaddr + user_offset,
685 length);
687 kunmap(user_page);
688 io_mapping_unmap(dst_vaddr);
692 * This is the fast pwrite path, where we copy the data directly from the
693 * user into the GTT, uncached.
695 static int
696 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
697 struct drm_i915_gem_pwrite *args,
698 struct drm_file *file_priv)
700 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
701 drm_i915_private_t *dev_priv = dev->dev_private;
702 ssize_t remain;
703 loff_t offset, page_base;
704 char __user *user_data;
705 int page_offset, page_length;
707 user_data = (char __user *) (uintptr_t) args->data_ptr;
708 remain = args->size;
710 obj_priv = to_intel_bo(obj);
711 offset = obj_priv->gtt_offset + args->offset;
713 while (remain > 0) {
714 /* Operation in this page
716 * page_base = page offset within aperture
717 * page_offset = offset within page
718 * page_length = bytes to copy for this page
720 page_base = (offset & ~(PAGE_SIZE-1));
721 page_offset = offset & (PAGE_SIZE-1);
722 page_length = remain;
723 if ((page_offset + remain) > PAGE_SIZE)
724 page_length = PAGE_SIZE - page_offset;
726 /* If we get a fault while copying data, then (presumably) our
727 * source page isn't available. Return the error and we'll
728 * retry in the slow path.
730 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
731 page_offset, user_data, page_length))
733 return -EFAULT;
735 remain -= page_length;
736 user_data += page_length;
737 offset += page_length;
740 return 0;
744 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
745 * the memory and maps it using kmap_atomic for copying.
747 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
748 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
750 static int
751 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
752 struct drm_i915_gem_pwrite *args,
753 struct drm_file *file_priv)
755 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
756 drm_i915_private_t *dev_priv = dev->dev_private;
757 ssize_t remain;
758 loff_t gtt_page_base, offset;
759 loff_t first_data_page, last_data_page, num_pages;
760 loff_t pinned_pages, i;
761 struct page **user_pages;
762 struct mm_struct *mm = current->mm;
763 int gtt_page_offset, data_page_offset, data_page_index, page_length;
764 int ret;
765 uint64_t data_ptr = args->data_ptr;
767 remain = args->size;
769 /* Pin the user pages containing the data. We can't fault while
770 * holding the struct mutex, and all of the pwrite implementations
771 * want to hold it while dereferencing the user data.
773 first_data_page = data_ptr / PAGE_SIZE;
774 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
775 num_pages = last_data_page - first_data_page + 1;
777 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
778 if (user_pages == NULL)
779 return -ENOMEM;
781 mutex_unlock(&dev->struct_mutex);
782 down_read(&mm->mmap_sem);
783 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
784 num_pages, 0, 0, user_pages, NULL);
785 up_read(&mm->mmap_sem);
786 mutex_lock(&dev->struct_mutex);
787 if (pinned_pages < num_pages) {
788 ret = -EFAULT;
789 goto out_unpin_pages;
792 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
793 if (ret)
794 goto out_unpin_pages;
796 obj_priv = to_intel_bo(obj);
797 offset = obj_priv->gtt_offset + args->offset;
799 while (remain > 0) {
800 /* Operation in this page
802 * gtt_page_base = page offset within aperture
803 * gtt_page_offset = offset within page in aperture
804 * data_page_index = page number in get_user_pages return
805 * data_page_offset = offset with data_page_index page.
806 * page_length = bytes to copy for this page
808 gtt_page_base = offset & PAGE_MASK;
809 gtt_page_offset = offset & ~PAGE_MASK;
810 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
811 data_page_offset = data_ptr & ~PAGE_MASK;
813 page_length = remain;
814 if ((gtt_page_offset + page_length) > PAGE_SIZE)
815 page_length = PAGE_SIZE - gtt_page_offset;
816 if ((data_page_offset + page_length) > PAGE_SIZE)
817 page_length = PAGE_SIZE - data_page_offset;
819 slow_kernel_write(dev_priv->mm.gtt_mapping,
820 gtt_page_base, gtt_page_offset,
821 user_pages[data_page_index],
822 data_page_offset,
823 page_length);
825 remain -= page_length;
826 offset += page_length;
827 data_ptr += page_length;
830 out_unpin_pages:
831 for (i = 0; i < pinned_pages; i++)
832 page_cache_release(user_pages[i]);
833 drm_free_large(user_pages);
835 return ret;
839 * This is the fast shmem pwrite path, which attempts to directly
840 * copy_from_user into the kmapped pages backing the object.
842 static int
843 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
844 struct drm_i915_gem_pwrite *args,
845 struct drm_file *file_priv)
847 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
848 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
849 ssize_t remain;
850 loff_t offset;
851 char __user *user_data;
852 int page_offset, page_length;
854 user_data = (char __user *) (uintptr_t) args->data_ptr;
855 remain = args->size;
857 obj_priv = to_intel_bo(obj);
858 offset = args->offset;
859 obj_priv->dirty = 1;
861 while (remain > 0) {
862 struct page *page;
863 char *vaddr;
864 int ret;
866 /* Operation in this page
868 * page_offset = offset within page
869 * page_length = bytes to copy for this page
871 page_offset = offset & (PAGE_SIZE-1);
872 page_length = remain;
873 if ((page_offset + remain) > PAGE_SIZE)
874 page_length = PAGE_SIZE - page_offset;
876 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
877 GFP_HIGHUSER | __GFP_RECLAIMABLE);
878 if (IS_ERR(page))
879 return PTR_ERR(page);
881 vaddr = kmap_atomic(page, KM_USER0);
882 ret = __copy_from_user_inatomic(vaddr + page_offset,
883 user_data,
884 page_length);
885 kunmap_atomic(vaddr, KM_USER0);
887 set_page_dirty(page);
888 mark_page_accessed(page);
889 page_cache_release(page);
891 /* If we get a fault while copying data, then (presumably) our
892 * source page isn't available. Return the error and we'll
893 * retry in the slow path.
895 if (ret)
896 return -EFAULT;
898 remain -= page_length;
899 user_data += page_length;
900 offset += page_length;
903 return 0;
907 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
908 * the memory and maps it using kmap_atomic for copying.
910 * This avoids taking mmap_sem for faulting on the user's address while the
911 * struct_mutex is held.
913 static int
914 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
915 struct drm_i915_gem_pwrite *args,
916 struct drm_file *file_priv)
918 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
919 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
920 struct mm_struct *mm = current->mm;
921 struct page **user_pages;
922 ssize_t remain;
923 loff_t offset, pinned_pages, i;
924 loff_t first_data_page, last_data_page, num_pages;
925 int shmem_page_offset;
926 int data_page_index, data_page_offset;
927 int page_length;
928 int ret;
929 uint64_t data_ptr = args->data_ptr;
930 int do_bit17_swizzling;
932 remain = args->size;
934 /* Pin the user pages containing the data. We can't fault while
935 * holding the struct mutex, and all of the pwrite implementations
936 * want to hold it while dereferencing the user data.
938 first_data_page = data_ptr / PAGE_SIZE;
939 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
940 num_pages = last_data_page - first_data_page + 1;
942 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
943 if (user_pages == NULL)
944 return -ENOMEM;
946 mutex_unlock(&dev->struct_mutex);
947 down_read(&mm->mmap_sem);
948 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
949 num_pages, 0, 0, user_pages, NULL);
950 up_read(&mm->mmap_sem);
951 mutex_lock(&dev->struct_mutex);
952 if (pinned_pages < num_pages) {
953 ret = -EFAULT;
954 goto out;
957 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
958 if (ret)
959 goto out;
961 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
963 obj_priv = to_intel_bo(obj);
964 offset = args->offset;
965 obj_priv->dirty = 1;
967 while (remain > 0) {
968 struct page *page;
970 /* Operation in this page
972 * shmem_page_offset = offset within page in shmem file
973 * data_page_index = page number in get_user_pages return
974 * data_page_offset = offset with data_page_index page.
975 * page_length = bytes to copy for this page
977 shmem_page_offset = offset & ~PAGE_MASK;
978 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
979 data_page_offset = data_ptr & ~PAGE_MASK;
981 page_length = remain;
982 if ((shmem_page_offset + page_length) > PAGE_SIZE)
983 page_length = PAGE_SIZE - shmem_page_offset;
984 if ((data_page_offset + page_length) > PAGE_SIZE)
985 page_length = PAGE_SIZE - data_page_offset;
987 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
988 GFP_HIGHUSER | __GFP_RECLAIMABLE);
989 if (IS_ERR(page)) {
990 ret = PTR_ERR(page);
991 goto out;
994 if (do_bit17_swizzling) {
995 slow_shmem_bit17_copy(page,
996 shmem_page_offset,
997 user_pages[data_page_index],
998 data_page_offset,
999 page_length,
1001 } else {
1002 slow_shmem_copy(page,
1003 shmem_page_offset,
1004 user_pages[data_page_index],
1005 data_page_offset,
1006 page_length);
1009 set_page_dirty(page);
1010 mark_page_accessed(page);
1011 page_cache_release(page);
1013 remain -= page_length;
1014 data_ptr += page_length;
1015 offset += page_length;
1018 out:
1019 for (i = 0; i < pinned_pages; i++)
1020 page_cache_release(user_pages[i]);
1021 drm_free_large(user_pages);
1023 return ret;
1027 * Writes data to the object referenced by handle.
1029 * On error, the contents of the buffer that were to be modified are undefined.
1032 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1033 struct drm_file *file)
1035 struct drm_i915_gem_pwrite *args = data;
1036 struct drm_gem_object *obj;
1037 struct drm_i915_gem_object *obj_priv;
1038 int ret = 0;
1040 ret = i915_mutex_lock_interruptible(dev);
1041 if (ret)
1042 return ret;
1044 obj = drm_gem_object_lookup(dev, file, args->handle);
1045 if (obj == NULL) {
1046 ret = -ENOENT;
1047 goto unlock;
1049 obj_priv = to_intel_bo(obj);
1052 /* Bounds check destination. */
1053 if (args->offset > obj->size || args->size > obj->size - args->offset) {
1054 ret = -EINVAL;
1055 goto out;
1058 if (args->size == 0)
1059 goto out;
1061 if (!access_ok(VERIFY_READ,
1062 (char __user *)(uintptr_t)args->data_ptr,
1063 args->size)) {
1064 ret = -EFAULT;
1065 goto out;
1068 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1069 args->size);
1070 if (ret) {
1071 ret = -EFAULT;
1072 goto out;
1075 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1076 * it would end up going through the fenced access, and we'll get
1077 * different detiling behavior between reading and writing.
1078 * pread/pwrite currently are reading and writing from the CPU
1079 * perspective, requiring manual detiling by the client.
1081 if (obj_priv->phys_obj)
1082 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1083 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1084 obj_priv->gtt_space &&
1085 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1086 ret = i915_gem_object_pin(obj, 0, true);
1087 if (ret)
1088 goto out;
1090 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1091 if (ret)
1092 goto out_unpin;
1094 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1095 if (ret == -EFAULT)
1096 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1098 out_unpin:
1099 i915_gem_object_unpin(obj);
1100 } else {
1101 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1102 if (ret)
1103 goto out;
1105 ret = -EFAULT;
1106 if (!i915_gem_object_needs_bit17_swizzle(obj))
1107 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1108 if (ret == -EFAULT)
1109 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1112 out:
1113 drm_gem_object_unreference(obj);
1114 unlock:
1115 mutex_unlock(&dev->struct_mutex);
1116 return ret;
1120 * Called when user space prepares to use an object with the CPU, either
1121 * through the mmap ioctl's mapping or a GTT mapping.
1124 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1125 struct drm_file *file_priv)
1127 struct drm_i915_private *dev_priv = dev->dev_private;
1128 struct drm_i915_gem_set_domain *args = data;
1129 struct drm_gem_object *obj;
1130 struct drm_i915_gem_object *obj_priv;
1131 uint32_t read_domains = args->read_domains;
1132 uint32_t write_domain = args->write_domain;
1133 int ret;
1135 if (!(dev->driver->driver_features & DRIVER_GEM))
1136 return -ENODEV;
1138 /* Only handle setting domains to types used by the CPU. */
1139 if (write_domain & I915_GEM_GPU_DOMAINS)
1140 return -EINVAL;
1142 if (read_domains & I915_GEM_GPU_DOMAINS)
1143 return -EINVAL;
1145 /* Having something in the write domain implies it's in the read
1146 * domain, and only that read domain. Enforce that in the request.
1148 if (write_domain != 0 && read_domains != write_domain)
1149 return -EINVAL;
1151 ret = i915_mutex_lock_interruptible(dev);
1152 if (ret)
1153 return ret;
1155 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1156 if (obj == NULL) {
1157 ret = -ENOENT;
1158 goto unlock;
1160 obj_priv = to_intel_bo(obj);
1162 intel_mark_busy(dev, obj);
1164 if (read_domains & I915_GEM_DOMAIN_GTT) {
1165 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1167 /* Update the LRU on the fence for the CPU access that's
1168 * about to occur.
1170 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1171 struct drm_i915_fence_reg *reg =
1172 &dev_priv->fence_regs[obj_priv->fence_reg];
1173 list_move_tail(&reg->lru_list,
1174 &dev_priv->mm.fence_list);
1177 /* Silently promote "you're not bound, there was nothing to do"
1178 * to success, since the client was just asking us to
1179 * make sure everything was done.
1181 if (ret == -EINVAL)
1182 ret = 0;
1183 } else {
1184 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1187 /* Maintain LRU order of "inactive" objects */
1188 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1189 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1191 drm_gem_object_unreference(obj);
1192 unlock:
1193 mutex_unlock(&dev->struct_mutex);
1194 return ret;
1198 * Called when user space has done writes to this buffer
1201 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1202 struct drm_file *file_priv)
1204 struct drm_i915_gem_sw_finish *args = data;
1205 struct drm_gem_object *obj;
1206 int ret = 0;
1208 if (!(dev->driver->driver_features & DRIVER_GEM))
1209 return -ENODEV;
1211 ret = i915_mutex_lock_interruptible(dev);
1212 if (ret)
1213 return ret;
1215 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1216 if (obj == NULL) {
1217 ret = -ENOENT;
1218 goto unlock;
1221 /* Pinned buffers may be scanout, so flush the cache */
1222 if (to_intel_bo(obj)->pin_count)
1223 i915_gem_object_flush_cpu_write_domain(obj);
1225 drm_gem_object_unreference(obj);
1226 unlock:
1227 mutex_unlock(&dev->struct_mutex);
1228 return ret;
1232 * Maps the contents of an object, returning the address it is mapped
1233 * into.
1235 * While the mapping holds a reference on the contents of the object, it doesn't
1236 * imply a ref on the object itself.
1239 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1240 struct drm_file *file_priv)
1242 struct drm_i915_private *dev_priv = dev->dev_private;
1243 struct drm_i915_gem_mmap *args = data;
1244 struct drm_gem_object *obj;
1245 loff_t offset;
1246 unsigned long addr;
1248 if (!(dev->driver->driver_features & DRIVER_GEM))
1249 return -ENODEV;
1251 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1252 if (obj == NULL)
1253 return -ENOENT;
1255 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1256 drm_gem_object_unreference_unlocked(obj);
1257 return -E2BIG;
1260 offset = args->offset;
1262 down_write(&current->mm->mmap_sem);
1263 addr = do_mmap(obj->filp, 0, args->size,
1264 PROT_READ | PROT_WRITE, MAP_SHARED,
1265 args->offset);
1266 up_write(&current->mm->mmap_sem);
1267 drm_gem_object_unreference_unlocked(obj);
1268 if (IS_ERR((void *)addr))
1269 return addr;
1271 args->addr_ptr = (uint64_t) addr;
1273 return 0;
1277 * i915_gem_fault - fault a page into the GTT
1278 * vma: VMA in question
1279 * vmf: fault info
1281 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1282 * from userspace. The fault handler takes care of binding the object to
1283 * the GTT (if needed), allocating and programming a fence register (again,
1284 * only if needed based on whether the old reg is still valid or the object
1285 * is tiled) and inserting a new PTE into the faulting process.
1287 * Note that the faulting process may involve evicting existing objects
1288 * from the GTT and/or fence registers to make room. So performance may
1289 * suffer if the GTT working set is large or there are few fence registers
1290 * left.
1292 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1294 struct drm_gem_object *obj = vma->vm_private_data;
1295 struct drm_device *dev = obj->dev;
1296 drm_i915_private_t *dev_priv = dev->dev_private;
1297 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1298 pgoff_t page_offset;
1299 unsigned long pfn;
1300 int ret = 0;
1301 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1303 /* We don't use vmf->pgoff since that has the fake offset */
1304 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1305 PAGE_SHIFT;
1307 /* Now bind it into the GTT if needed */
1308 mutex_lock(&dev->struct_mutex);
1309 BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
1310 if (!i915_gem_object_cpu_accessible(obj_priv))
1311 i915_gem_object_unbind(obj);
1313 if (!obj_priv->gtt_space) {
1314 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1315 if (ret)
1316 goto unlock;
1318 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1319 if (ret)
1320 goto unlock;
1323 if (!obj_priv->fault_mappable) {
1324 obj_priv->fault_mappable = true;
1325 i915_gem_info_update_mappable(dev_priv, obj, true);
1328 /* Need a new fence register? */
1329 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1330 ret = i915_gem_object_get_fence_reg(obj, true);
1331 if (ret)
1332 goto unlock;
1335 if (i915_gem_object_is_inactive(obj_priv))
1336 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1338 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1339 page_offset;
1341 /* Finally, remap it using the new GTT offset */
1342 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1343 unlock:
1344 mutex_unlock(&dev->struct_mutex);
1346 switch (ret) {
1347 case 0:
1348 case -ERESTARTSYS:
1349 return VM_FAULT_NOPAGE;
1350 case -ENOMEM:
1351 case -EAGAIN:
1352 return VM_FAULT_OOM;
1353 default:
1354 return VM_FAULT_SIGBUS;
1359 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1360 * @obj: obj in question
1362 * GEM memory mapping works by handing back to userspace a fake mmap offset
1363 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1364 * up the object based on the offset and sets up the various memory mapping
1365 * structures.
1367 * This routine allocates and attaches a fake offset for @obj.
1369 static int
1370 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1372 struct drm_device *dev = obj->dev;
1373 struct drm_gem_mm *mm = dev->mm_private;
1374 struct drm_map_list *list;
1375 struct drm_local_map *map;
1376 int ret = 0;
1378 /* Set the object up for mmap'ing */
1379 list = &obj->map_list;
1380 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1381 if (!list->map)
1382 return -ENOMEM;
1384 map = list->map;
1385 map->type = _DRM_GEM;
1386 map->size = obj->size;
1387 map->handle = obj;
1389 /* Get a DRM GEM mmap offset allocated... */
1390 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1391 obj->size / PAGE_SIZE, 0, 0);
1392 if (!list->file_offset_node) {
1393 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1394 ret = -ENOSPC;
1395 goto out_free_list;
1398 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1399 obj->size / PAGE_SIZE, 0);
1400 if (!list->file_offset_node) {
1401 ret = -ENOMEM;
1402 goto out_free_list;
1405 list->hash.key = list->file_offset_node->start;
1406 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1407 if (ret) {
1408 DRM_ERROR("failed to add to map hash\n");
1409 goto out_free_mm;
1412 return 0;
1414 out_free_mm:
1415 drm_mm_put_block(list->file_offset_node);
1416 out_free_list:
1417 kfree(list->map);
1418 list->map = NULL;
1420 return ret;
1424 * i915_gem_release_mmap - remove physical page mappings
1425 * @obj: obj in question
1427 * Preserve the reservation of the mmapping with the DRM core code, but
1428 * relinquish ownership of the pages back to the system.
1430 * It is vital that we remove the page mapping if we have mapped a tiled
1431 * object through the GTT and then lose the fence register due to
1432 * resource pressure. Similarly if the object has been moved out of the
1433 * aperture, than pages mapped into userspace must be revoked. Removing the
1434 * mapping will then trigger a page fault on the next user access, allowing
1435 * fixup by i915_gem_fault().
1437 void
1438 i915_gem_release_mmap(struct drm_gem_object *obj)
1440 struct drm_device *dev = obj->dev;
1441 struct drm_i915_private *dev_priv = dev->dev_private;
1442 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1444 if (unlikely(obj->map_list.map && dev->dev_mapping))
1445 unmap_mapping_range(dev->dev_mapping,
1446 (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
1447 obj->size, 1);
1449 if (obj_priv->fault_mappable) {
1450 obj_priv->fault_mappable = false;
1451 i915_gem_info_update_mappable(dev_priv, obj, false);
1455 static void
1456 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1458 struct drm_device *dev = obj->dev;
1459 struct drm_gem_mm *mm = dev->mm_private;
1460 struct drm_map_list *list = &obj->map_list;
1462 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1463 drm_mm_put_block(list->file_offset_node);
1464 kfree(list->map);
1465 list->map = NULL;
1469 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1470 * @obj: object to check
1472 * Return the required GTT alignment for an object, taking into account
1473 * potential fence register mapping if needed.
1475 static uint32_t
1476 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1478 struct drm_device *dev = obj->dev;
1479 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1480 int start, i;
1483 * Minimum alignment is 4k (GTT page size), but might be greater
1484 * if a fence register is needed for the object.
1486 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1487 return 4096;
1490 * Previous chips need to be aligned to the size of the smallest
1491 * fence register that can contain the object.
1493 if (INTEL_INFO(dev)->gen == 3)
1494 start = 1024*1024;
1495 else
1496 start = 512*1024;
1498 for (i = start; i < obj->size; i <<= 1)
1501 return i;
1505 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1506 * @dev: DRM device
1507 * @data: GTT mapping ioctl data
1508 * @file_priv: GEM object info
1510 * Simply returns the fake offset to userspace so it can mmap it.
1511 * The mmap call will end up in drm_gem_mmap(), which will set things
1512 * up so we can get faults in the handler above.
1514 * The fault handler will take care of binding the object into the GTT
1515 * (since it may have been evicted to make room for something), allocating
1516 * a fence register, and mapping the appropriate aperture address into
1517 * userspace.
1520 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1521 struct drm_file *file_priv)
1523 struct drm_i915_private *dev_priv = dev->dev_private;
1524 struct drm_i915_gem_mmap_gtt *args = data;
1525 struct drm_gem_object *obj;
1526 struct drm_i915_gem_object *obj_priv;
1527 int ret;
1529 if (!(dev->driver->driver_features & DRIVER_GEM))
1530 return -ENODEV;
1532 ret = i915_mutex_lock_interruptible(dev);
1533 if (ret)
1534 return ret;
1536 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1537 if (obj == NULL) {
1538 ret = -ENOENT;
1539 goto unlock;
1541 obj_priv = to_intel_bo(obj);
1543 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1544 ret = -E2BIG;
1545 goto unlock;
1548 if (obj_priv->madv != I915_MADV_WILLNEED) {
1549 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1550 ret = -EINVAL;
1551 goto out;
1554 if (!obj->map_list.map) {
1555 ret = i915_gem_create_mmap_offset(obj);
1556 if (ret)
1557 goto out;
1560 args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
1562 out:
1563 drm_gem_object_unreference(obj);
1564 unlock:
1565 mutex_unlock(&dev->struct_mutex);
1566 return ret;
1569 static int
1570 i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
1571 gfp_t gfpmask)
1573 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1574 int page_count, i;
1575 struct address_space *mapping;
1576 struct inode *inode;
1577 struct page *page;
1579 /* Get the list of pages out of our struct file. They'll be pinned
1580 * at this point until we release them.
1582 page_count = obj->size / PAGE_SIZE;
1583 BUG_ON(obj_priv->pages != NULL);
1584 obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1585 if (obj_priv->pages == NULL)
1586 return -ENOMEM;
1588 inode = obj->filp->f_path.dentry->d_inode;
1589 mapping = inode->i_mapping;
1590 for (i = 0; i < page_count; i++) {
1591 page = read_cache_page_gfp(mapping, i,
1592 GFP_HIGHUSER |
1593 __GFP_COLD |
1594 __GFP_RECLAIMABLE |
1595 gfpmask);
1596 if (IS_ERR(page))
1597 goto err_pages;
1599 obj_priv->pages[i] = page;
1602 if (obj_priv->tiling_mode != I915_TILING_NONE)
1603 i915_gem_object_do_bit_17_swizzle(obj);
1605 return 0;
1607 err_pages:
1608 while (i--)
1609 page_cache_release(obj_priv->pages[i]);
1611 drm_free_large(obj_priv->pages);
1612 obj_priv->pages = NULL;
1613 return PTR_ERR(page);
1616 static void
1617 i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
1619 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1620 int page_count = obj->size / PAGE_SIZE;
1621 int i;
1623 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1625 if (obj_priv->tiling_mode != I915_TILING_NONE)
1626 i915_gem_object_save_bit_17_swizzle(obj);
1628 if (obj_priv->madv == I915_MADV_DONTNEED)
1629 obj_priv->dirty = 0;
1631 for (i = 0; i < page_count; i++) {
1632 if (obj_priv->dirty)
1633 set_page_dirty(obj_priv->pages[i]);
1635 if (obj_priv->madv == I915_MADV_WILLNEED)
1636 mark_page_accessed(obj_priv->pages[i]);
1638 page_cache_release(obj_priv->pages[i]);
1640 obj_priv->dirty = 0;
1642 drm_free_large(obj_priv->pages);
1643 obj_priv->pages = NULL;
1646 static uint32_t
1647 i915_gem_next_request_seqno(struct drm_device *dev,
1648 struct intel_ring_buffer *ring)
1650 drm_i915_private_t *dev_priv = dev->dev_private;
1652 ring->outstanding_lazy_request = true;
1653 return dev_priv->next_seqno;
1656 static void
1657 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1658 struct intel_ring_buffer *ring)
1660 struct drm_device *dev = obj->dev;
1661 struct drm_i915_private *dev_priv = dev->dev_private;
1662 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1663 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1665 BUG_ON(ring == NULL);
1666 obj_priv->ring = ring;
1668 /* Add a reference if we're newly entering the active list. */
1669 if (!obj_priv->active) {
1670 drm_gem_object_reference(obj);
1671 obj_priv->active = 1;
1674 /* Move from whatever list we were on to the tail of execution. */
1675 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1676 list_move_tail(&obj_priv->ring_list, &ring->active_list);
1677 obj_priv->last_rendering_seqno = seqno;
1680 static void
1681 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1683 struct drm_device *dev = obj->dev;
1684 drm_i915_private_t *dev_priv = dev->dev_private;
1685 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1687 BUG_ON(!obj_priv->active);
1688 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1689 list_del_init(&obj_priv->ring_list);
1690 obj_priv->last_rendering_seqno = 0;
1693 /* Immediately discard the backing storage */
1694 static void
1695 i915_gem_object_truncate(struct drm_gem_object *obj)
1697 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1698 struct inode *inode;
1700 /* Our goal here is to return as much of the memory as
1701 * is possible back to the system as we are called from OOM.
1702 * To do this we must instruct the shmfs to drop all of its
1703 * backing pages, *now*. Here we mirror the actions taken
1704 * when by shmem_delete_inode() to release the backing store.
1706 inode = obj->filp->f_path.dentry->d_inode;
1707 truncate_inode_pages(inode->i_mapping, 0);
1708 if (inode->i_op->truncate_range)
1709 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1711 obj_priv->madv = __I915_MADV_PURGED;
1714 static inline int
1715 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1717 return obj_priv->madv == I915_MADV_DONTNEED;
1720 static void
1721 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1723 struct drm_device *dev = obj->dev;
1724 drm_i915_private_t *dev_priv = dev->dev_private;
1725 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1727 if (obj_priv->pin_count != 0)
1728 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
1729 else
1730 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1731 list_del_init(&obj_priv->ring_list);
1733 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1735 obj_priv->last_rendering_seqno = 0;
1736 obj_priv->ring = NULL;
1737 if (obj_priv->active) {
1738 obj_priv->active = 0;
1739 drm_gem_object_unreference(obj);
1741 WARN_ON(i915_verify_lists(dev));
1744 static void
1745 i915_gem_process_flushing_list(struct drm_device *dev,
1746 uint32_t flush_domains,
1747 struct intel_ring_buffer *ring)
1749 drm_i915_private_t *dev_priv = dev->dev_private;
1750 struct drm_i915_gem_object *obj_priv, *next;
1752 list_for_each_entry_safe(obj_priv, next,
1753 &ring->gpu_write_list,
1754 gpu_write_list) {
1755 struct drm_gem_object *obj = &obj_priv->base;
1757 if (obj->write_domain & flush_domains) {
1758 uint32_t old_write_domain = obj->write_domain;
1760 obj->write_domain = 0;
1761 list_del_init(&obj_priv->gpu_write_list);
1762 i915_gem_object_move_to_active(obj, ring);
1764 /* update the fence lru list */
1765 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1766 struct drm_i915_fence_reg *reg =
1767 &dev_priv->fence_regs[obj_priv->fence_reg];
1768 list_move_tail(&reg->lru_list,
1769 &dev_priv->mm.fence_list);
1772 trace_i915_gem_object_change_domain(obj,
1773 obj->read_domains,
1774 old_write_domain);
1780 i915_add_request(struct drm_device *dev,
1781 struct drm_file *file,
1782 struct drm_i915_gem_request *request,
1783 struct intel_ring_buffer *ring)
1785 drm_i915_private_t *dev_priv = dev->dev_private;
1786 struct drm_i915_file_private *file_priv = NULL;
1787 uint32_t seqno;
1788 int was_empty;
1789 int ret;
1791 BUG_ON(request == NULL);
1793 if (file != NULL)
1794 file_priv = file->driver_priv;
1796 ret = ring->add_request(ring, &seqno);
1797 if (ret)
1798 return ret;
1800 ring->outstanding_lazy_request = false;
1802 request->seqno = seqno;
1803 request->ring = ring;
1804 request->emitted_jiffies = jiffies;
1805 was_empty = list_empty(&ring->request_list);
1806 list_add_tail(&request->list, &ring->request_list);
1808 if (file_priv) {
1809 spin_lock(&file_priv->mm.lock);
1810 request->file_priv = file_priv;
1811 list_add_tail(&request->client_list,
1812 &file_priv->mm.request_list);
1813 spin_unlock(&file_priv->mm.lock);
1816 if (!dev_priv->mm.suspended) {
1817 mod_timer(&dev_priv->hangcheck_timer,
1818 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1819 if (was_empty)
1820 queue_delayed_work(dev_priv->wq,
1821 &dev_priv->mm.retire_work, HZ);
1823 return 0;
1827 * Command execution barrier
1829 * Ensures that all commands in the ring are finished
1830 * before signalling the CPU
1832 static void
1833 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1835 uint32_t flush_domains = 0;
1837 /* The sampler always gets flushed on i965 (sigh) */
1838 if (INTEL_INFO(dev)->gen >= 4)
1839 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1841 ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
1844 static inline void
1845 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1847 struct drm_i915_file_private *file_priv = request->file_priv;
1849 if (!file_priv)
1850 return;
1852 spin_lock(&file_priv->mm.lock);
1853 list_del(&request->client_list);
1854 request->file_priv = NULL;
1855 spin_unlock(&file_priv->mm.lock);
1858 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1859 struct intel_ring_buffer *ring)
1861 while (!list_empty(&ring->request_list)) {
1862 struct drm_i915_gem_request *request;
1864 request = list_first_entry(&ring->request_list,
1865 struct drm_i915_gem_request,
1866 list);
1868 list_del(&request->list);
1869 i915_gem_request_remove_from_client(request);
1870 kfree(request);
1873 while (!list_empty(&ring->active_list)) {
1874 struct drm_i915_gem_object *obj_priv;
1876 obj_priv = list_first_entry(&ring->active_list,
1877 struct drm_i915_gem_object,
1878 ring_list);
1880 obj_priv->base.write_domain = 0;
1881 list_del_init(&obj_priv->gpu_write_list);
1882 i915_gem_object_move_to_inactive(&obj_priv->base);
1886 void i915_gem_reset(struct drm_device *dev)
1888 struct drm_i915_private *dev_priv = dev->dev_private;
1889 struct drm_i915_gem_object *obj_priv;
1890 int i;
1892 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1893 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1894 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1896 /* Remove anything from the flushing lists. The GPU cache is likely
1897 * to be lost on reset along with the data, so simply move the
1898 * lost bo to the inactive list.
1900 while (!list_empty(&dev_priv->mm.flushing_list)) {
1901 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1902 struct drm_i915_gem_object,
1903 mm_list);
1905 obj_priv->base.write_domain = 0;
1906 list_del_init(&obj_priv->gpu_write_list);
1907 i915_gem_object_move_to_inactive(&obj_priv->base);
1910 /* Move everything out of the GPU domains to ensure we do any
1911 * necessary invalidation upon reuse.
1913 list_for_each_entry(obj_priv,
1914 &dev_priv->mm.inactive_list,
1915 mm_list)
1917 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1920 /* The fence registers are invalidated so clear them out */
1921 for (i = 0; i < 16; i++) {
1922 struct drm_i915_fence_reg *reg;
1924 reg = &dev_priv->fence_regs[i];
1925 if (!reg->obj)
1926 continue;
1928 i915_gem_clear_fence_reg(reg->obj);
1933 * This function clears the request list as sequence numbers are passed.
1935 static void
1936 i915_gem_retire_requests_ring(struct drm_device *dev,
1937 struct intel_ring_buffer *ring)
1939 drm_i915_private_t *dev_priv = dev->dev_private;
1940 uint32_t seqno;
1942 if (!ring->status_page.page_addr ||
1943 list_empty(&ring->request_list))
1944 return;
1946 WARN_ON(i915_verify_lists(dev));
1948 seqno = ring->get_seqno(ring);
1949 while (!list_empty(&ring->request_list)) {
1950 struct drm_i915_gem_request *request;
1952 request = list_first_entry(&ring->request_list,
1953 struct drm_i915_gem_request,
1954 list);
1956 if (!i915_seqno_passed(seqno, request->seqno))
1957 break;
1959 trace_i915_gem_request_retire(dev, request->seqno);
1961 list_del(&request->list);
1962 i915_gem_request_remove_from_client(request);
1963 kfree(request);
1966 /* Move any buffers on the active list that are no longer referenced
1967 * by the ringbuffer to the flushing/inactive lists as appropriate.
1969 while (!list_empty(&ring->active_list)) {
1970 struct drm_gem_object *obj;
1971 struct drm_i915_gem_object *obj_priv;
1973 obj_priv = list_first_entry(&ring->active_list,
1974 struct drm_i915_gem_object,
1975 ring_list);
1977 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1978 break;
1980 obj = &obj_priv->base;
1981 if (obj->write_domain != 0)
1982 i915_gem_object_move_to_flushing(obj);
1983 else
1984 i915_gem_object_move_to_inactive(obj);
1987 if (unlikely (dev_priv->trace_irq_seqno &&
1988 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1989 ring->user_irq_put(ring);
1990 dev_priv->trace_irq_seqno = 0;
1993 WARN_ON(i915_verify_lists(dev));
1996 void
1997 i915_gem_retire_requests(struct drm_device *dev)
1999 drm_i915_private_t *dev_priv = dev->dev_private;
2001 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
2002 struct drm_i915_gem_object *obj_priv, *tmp;
2004 /* We must be careful that during unbind() we do not
2005 * accidentally infinitely recurse into retire requests.
2006 * Currently:
2007 * retire -> free -> unbind -> wait -> retire_ring
2009 list_for_each_entry_safe(obj_priv, tmp,
2010 &dev_priv->mm.deferred_free_list,
2011 mm_list)
2012 i915_gem_free_object_tail(&obj_priv->base);
2015 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
2016 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
2017 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
2020 static void
2021 i915_gem_retire_work_handler(struct work_struct *work)
2023 drm_i915_private_t *dev_priv;
2024 struct drm_device *dev;
2026 dev_priv = container_of(work, drm_i915_private_t,
2027 mm.retire_work.work);
2028 dev = dev_priv->dev;
2030 /* Come back later if the device is busy... */
2031 if (!mutex_trylock(&dev->struct_mutex)) {
2032 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2033 return;
2036 i915_gem_retire_requests(dev);
2038 if (!dev_priv->mm.suspended &&
2039 (!list_empty(&dev_priv->render_ring.request_list) ||
2040 !list_empty(&dev_priv->bsd_ring.request_list) ||
2041 !list_empty(&dev_priv->blt_ring.request_list)))
2042 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2043 mutex_unlock(&dev->struct_mutex);
2047 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
2048 bool interruptible, struct intel_ring_buffer *ring)
2050 drm_i915_private_t *dev_priv = dev->dev_private;
2051 u32 ier;
2052 int ret = 0;
2054 BUG_ON(seqno == 0);
2056 if (atomic_read(&dev_priv->mm.wedged))
2057 return -EAGAIN;
2059 if (ring->outstanding_lazy_request) {
2060 struct drm_i915_gem_request *request;
2062 request = kzalloc(sizeof(*request), GFP_KERNEL);
2063 if (request == NULL)
2064 return -ENOMEM;
2066 ret = i915_add_request(dev, NULL, request, ring);
2067 if (ret) {
2068 kfree(request);
2069 return ret;
2072 seqno = request->seqno;
2074 BUG_ON(seqno == dev_priv->next_seqno);
2076 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2077 if (HAS_PCH_SPLIT(dev))
2078 ier = I915_READ(DEIER) | I915_READ(GTIER);
2079 else
2080 ier = I915_READ(IER);
2081 if (!ier) {
2082 DRM_ERROR("something (likely vbetool) disabled "
2083 "interrupts, re-enabling\n");
2084 i915_driver_irq_preinstall(dev);
2085 i915_driver_irq_postinstall(dev);
2088 trace_i915_gem_request_wait_begin(dev, seqno);
2090 ring->waiting_seqno = seqno;
2091 ring->user_irq_get(ring);
2092 if (interruptible)
2093 ret = wait_event_interruptible(ring->irq_queue,
2094 i915_seqno_passed(ring->get_seqno(ring), seqno)
2095 || atomic_read(&dev_priv->mm.wedged));
2096 else
2097 wait_event(ring->irq_queue,
2098 i915_seqno_passed(ring->get_seqno(ring), seqno)
2099 || atomic_read(&dev_priv->mm.wedged));
2101 ring->user_irq_put(ring);
2102 ring->waiting_seqno = 0;
2104 trace_i915_gem_request_wait_end(dev, seqno);
2106 if (atomic_read(&dev_priv->mm.wedged))
2107 ret = -EAGAIN;
2109 if (ret && ret != -ERESTARTSYS)
2110 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2111 __func__, ret, seqno, ring->get_seqno(ring),
2112 dev_priv->next_seqno);
2114 /* Directly dispatch request retiring. While we have the work queue
2115 * to handle this, the waiter on a request often wants an associated
2116 * buffer to have made it to the inactive list, and we would need
2117 * a separate wait queue to handle that.
2119 if (ret == 0)
2120 i915_gem_retire_requests_ring(dev, ring);
2122 return ret;
2126 * Waits for a sequence number to be signaled, and cleans up the
2127 * request and object lists appropriately for that event.
2129 static int
2130 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2131 struct intel_ring_buffer *ring)
2133 return i915_do_wait_request(dev, seqno, 1, ring);
2136 static void
2137 i915_gem_flush_ring(struct drm_device *dev,
2138 struct drm_file *file_priv,
2139 struct intel_ring_buffer *ring,
2140 uint32_t invalidate_domains,
2141 uint32_t flush_domains)
2143 ring->flush(ring, invalidate_domains, flush_domains);
2144 i915_gem_process_flushing_list(dev, flush_domains, ring);
2147 static void
2148 i915_gem_flush(struct drm_device *dev,
2149 struct drm_file *file_priv,
2150 uint32_t invalidate_domains,
2151 uint32_t flush_domains,
2152 uint32_t flush_rings)
2154 drm_i915_private_t *dev_priv = dev->dev_private;
2156 if (flush_domains & I915_GEM_DOMAIN_CPU)
2157 drm_agp_chipset_flush(dev);
2159 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2160 if (flush_rings & RING_RENDER)
2161 i915_gem_flush_ring(dev, file_priv,
2162 &dev_priv->render_ring,
2163 invalidate_domains, flush_domains);
2164 if (flush_rings & RING_BSD)
2165 i915_gem_flush_ring(dev, file_priv,
2166 &dev_priv->bsd_ring,
2167 invalidate_domains, flush_domains);
2168 if (flush_rings & RING_BLT)
2169 i915_gem_flush_ring(dev, file_priv,
2170 &dev_priv->blt_ring,
2171 invalidate_domains, flush_domains);
2176 * Ensures that all rendering to the object has completed and the object is
2177 * safe to unbind from the GTT or access from the CPU.
2179 static int
2180 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2181 bool interruptible)
2183 struct drm_device *dev = obj->dev;
2184 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2185 int ret;
2187 /* This function only exists to support waiting for existing rendering,
2188 * not for emitting required flushes.
2190 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2192 /* If there is rendering queued on the buffer being evicted, wait for
2193 * it.
2195 if (obj_priv->active) {
2196 ret = i915_do_wait_request(dev,
2197 obj_priv->last_rendering_seqno,
2198 interruptible,
2199 obj_priv->ring);
2200 if (ret)
2201 return ret;
2204 return 0;
2208 * Unbinds an object from the GTT aperture.
2211 i915_gem_object_unbind(struct drm_gem_object *obj)
2213 struct drm_device *dev = obj->dev;
2214 struct drm_i915_private *dev_priv = dev->dev_private;
2215 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2216 int ret = 0;
2218 if (obj_priv->gtt_space == NULL)
2219 return 0;
2221 if (obj_priv->pin_count != 0) {
2222 DRM_ERROR("Attempting to unbind pinned buffer\n");
2223 return -EINVAL;
2226 /* blow away mappings if mapped through GTT */
2227 i915_gem_release_mmap(obj);
2229 /* Move the object to the CPU domain to ensure that
2230 * any possible CPU writes while it's not in the GTT
2231 * are flushed when we go to remap it. This will
2232 * also ensure that all pending GPU writes are finished
2233 * before we unbind.
2235 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2236 if (ret == -ERESTARTSYS)
2237 return ret;
2238 /* Continue on if we fail due to EIO, the GPU is hung so we
2239 * should be safe and we need to cleanup or else we might
2240 * cause memory corruption through use-after-free.
2242 if (ret) {
2243 i915_gem_clflush_object(obj);
2244 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2247 /* release the fence reg _after_ flushing */
2248 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2249 i915_gem_clear_fence_reg(obj);
2251 drm_unbind_agp(obj_priv->agp_mem);
2252 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2254 i915_gem_object_put_pages_gtt(obj);
2256 i915_gem_info_remove_gtt(dev_priv, obj);
2257 list_del_init(&obj_priv->mm_list);
2259 drm_mm_put_block(obj_priv->gtt_space);
2260 obj_priv->gtt_space = NULL;
2261 obj_priv->gtt_offset = 0;
2263 if (i915_gem_object_is_purgeable(obj_priv))
2264 i915_gem_object_truncate(obj);
2266 trace_i915_gem_object_unbind(obj);
2268 return ret;
2271 static int i915_ring_idle(struct drm_device *dev,
2272 struct intel_ring_buffer *ring)
2274 if (list_empty(&ring->gpu_write_list))
2275 return 0;
2277 i915_gem_flush_ring(dev, NULL, ring,
2278 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2279 return i915_wait_request(dev,
2280 i915_gem_next_request_seqno(dev, ring),
2281 ring);
2285 i915_gpu_idle(struct drm_device *dev)
2287 drm_i915_private_t *dev_priv = dev->dev_private;
2288 bool lists_empty;
2289 int ret;
2291 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2292 list_empty(&dev_priv->render_ring.active_list) &&
2293 list_empty(&dev_priv->bsd_ring.active_list) &&
2294 list_empty(&dev_priv->blt_ring.active_list));
2295 if (lists_empty)
2296 return 0;
2298 /* Flush everything onto the inactive list. */
2299 ret = i915_ring_idle(dev, &dev_priv->render_ring);
2300 if (ret)
2301 return ret;
2303 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2304 if (ret)
2305 return ret;
2307 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2308 if (ret)
2309 return ret;
2311 return 0;
2314 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2316 struct drm_gem_object *obj = reg->obj;
2317 struct drm_device *dev = obj->dev;
2318 drm_i915_private_t *dev_priv = dev->dev_private;
2319 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2320 int regnum = obj_priv->fence_reg;
2321 uint64_t val;
2323 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2324 0xfffff000) << 32;
2325 val |= obj_priv->gtt_offset & 0xfffff000;
2326 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2327 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2329 if (obj_priv->tiling_mode == I915_TILING_Y)
2330 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2331 val |= I965_FENCE_REG_VALID;
2333 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2336 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2338 struct drm_gem_object *obj = reg->obj;
2339 struct drm_device *dev = obj->dev;
2340 drm_i915_private_t *dev_priv = dev->dev_private;
2341 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2342 int regnum = obj_priv->fence_reg;
2343 uint64_t val;
2345 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2346 0xfffff000) << 32;
2347 val |= obj_priv->gtt_offset & 0xfffff000;
2348 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2349 if (obj_priv->tiling_mode == I915_TILING_Y)
2350 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2351 val |= I965_FENCE_REG_VALID;
2353 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2356 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2358 struct drm_gem_object *obj = reg->obj;
2359 struct drm_device *dev = obj->dev;
2360 drm_i915_private_t *dev_priv = dev->dev_private;
2361 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2362 int regnum = obj_priv->fence_reg;
2363 int tile_width;
2364 uint32_t fence_reg, val;
2365 uint32_t pitch_val;
2367 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2368 (obj_priv->gtt_offset & (obj->size - 1))) {
2369 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2370 __func__, obj_priv->gtt_offset, obj->size);
2371 return;
2374 if (obj_priv->tiling_mode == I915_TILING_Y &&
2375 HAS_128_BYTE_Y_TILING(dev))
2376 tile_width = 128;
2377 else
2378 tile_width = 512;
2380 /* Note: pitch better be a power of two tile widths */
2381 pitch_val = obj_priv->stride / tile_width;
2382 pitch_val = ffs(pitch_val) - 1;
2384 if (obj_priv->tiling_mode == I915_TILING_Y &&
2385 HAS_128_BYTE_Y_TILING(dev))
2386 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2387 else
2388 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2390 val = obj_priv->gtt_offset;
2391 if (obj_priv->tiling_mode == I915_TILING_Y)
2392 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2393 val |= I915_FENCE_SIZE_BITS(obj->size);
2394 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2395 val |= I830_FENCE_REG_VALID;
2397 if (regnum < 8)
2398 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2399 else
2400 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2401 I915_WRITE(fence_reg, val);
2404 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2406 struct drm_gem_object *obj = reg->obj;
2407 struct drm_device *dev = obj->dev;
2408 drm_i915_private_t *dev_priv = dev->dev_private;
2409 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2410 int regnum = obj_priv->fence_reg;
2411 uint32_t val;
2412 uint32_t pitch_val;
2413 uint32_t fence_size_bits;
2415 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2416 (obj_priv->gtt_offset & (obj->size - 1))) {
2417 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2418 __func__, obj_priv->gtt_offset);
2419 return;
2422 pitch_val = obj_priv->stride / 128;
2423 pitch_val = ffs(pitch_val) - 1;
2424 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2426 val = obj_priv->gtt_offset;
2427 if (obj_priv->tiling_mode == I915_TILING_Y)
2428 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2429 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2430 WARN_ON(fence_size_bits & ~0x00000f00);
2431 val |= fence_size_bits;
2432 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2433 val |= I830_FENCE_REG_VALID;
2435 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2438 static int i915_find_fence_reg(struct drm_device *dev,
2439 bool interruptible)
2441 struct drm_i915_fence_reg *reg = NULL;
2442 struct drm_i915_gem_object *obj_priv = NULL;
2443 struct drm_i915_private *dev_priv = dev->dev_private;
2444 struct drm_gem_object *obj = NULL;
2445 int i, avail, ret;
2447 /* First try to find a free reg */
2448 avail = 0;
2449 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2450 reg = &dev_priv->fence_regs[i];
2451 if (!reg->obj)
2452 return i;
2454 obj_priv = to_intel_bo(reg->obj);
2455 if (!obj_priv->pin_count)
2456 avail++;
2459 if (avail == 0)
2460 return -ENOSPC;
2462 /* None available, try to steal one or wait for a user to finish */
2463 i = I915_FENCE_REG_NONE;
2464 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2465 lru_list) {
2466 obj = reg->obj;
2467 obj_priv = to_intel_bo(obj);
2469 if (obj_priv->pin_count)
2470 continue;
2472 /* found one! */
2473 i = obj_priv->fence_reg;
2474 break;
2477 BUG_ON(i == I915_FENCE_REG_NONE);
2479 /* We only have a reference on obj from the active list. put_fence_reg
2480 * might drop that one, causing a use-after-free in it. So hold a
2481 * private reference to obj like the other callers of put_fence_reg
2482 * (set_tiling ioctl) do. */
2483 drm_gem_object_reference(obj);
2484 ret = i915_gem_object_put_fence_reg(obj, interruptible);
2485 drm_gem_object_unreference(obj);
2486 if (ret != 0)
2487 return ret;
2489 return i;
2493 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2494 * @obj: object to map through a fence reg
2496 * When mapping objects through the GTT, userspace wants to be able to write
2497 * to them without having to worry about swizzling if the object is tiled.
2499 * This function walks the fence regs looking for a free one for @obj,
2500 * stealing one if it can't find any.
2502 * It then sets up the reg based on the object's properties: address, pitch
2503 * and tiling format.
2506 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2507 bool interruptible)
2509 struct drm_device *dev = obj->dev;
2510 struct drm_i915_private *dev_priv = dev->dev_private;
2511 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2512 struct drm_i915_fence_reg *reg = NULL;
2513 int ret;
2515 /* Just update our place in the LRU if our fence is getting used. */
2516 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2517 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2518 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2519 return 0;
2522 switch (obj_priv->tiling_mode) {
2523 case I915_TILING_NONE:
2524 WARN(1, "allocating a fence for non-tiled object?\n");
2525 break;
2526 case I915_TILING_X:
2527 if (!obj_priv->stride)
2528 return -EINVAL;
2529 WARN((obj_priv->stride & (512 - 1)),
2530 "object 0x%08x is X tiled but has non-512B pitch\n",
2531 obj_priv->gtt_offset);
2532 break;
2533 case I915_TILING_Y:
2534 if (!obj_priv->stride)
2535 return -EINVAL;
2536 WARN((obj_priv->stride & (128 - 1)),
2537 "object 0x%08x is Y tiled but has non-128B pitch\n",
2538 obj_priv->gtt_offset);
2539 break;
2542 ret = i915_find_fence_reg(dev, interruptible);
2543 if (ret < 0)
2544 return ret;
2546 obj_priv->fence_reg = ret;
2547 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2548 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2550 reg->obj = obj;
2552 switch (INTEL_INFO(dev)->gen) {
2553 case 6:
2554 sandybridge_write_fence_reg(reg);
2555 break;
2556 case 5:
2557 case 4:
2558 i965_write_fence_reg(reg);
2559 break;
2560 case 3:
2561 i915_write_fence_reg(reg);
2562 break;
2563 case 2:
2564 i830_write_fence_reg(reg);
2565 break;
2568 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2569 obj_priv->tiling_mode);
2571 return 0;
2575 * i915_gem_clear_fence_reg - clear out fence register info
2576 * @obj: object to clear
2578 * Zeroes out the fence register itself and clears out the associated
2579 * data structures in dev_priv and obj_priv.
2581 static void
2582 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2584 struct drm_device *dev = obj->dev;
2585 drm_i915_private_t *dev_priv = dev->dev_private;
2586 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2587 struct drm_i915_fence_reg *reg =
2588 &dev_priv->fence_regs[obj_priv->fence_reg];
2589 uint32_t fence_reg;
2591 switch (INTEL_INFO(dev)->gen) {
2592 case 6:
2593 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2594 (obj_priv->fence_reg * 8), 0);
2595 break;
2596 case 5:
2597 case 4:
2598 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2599 break;
2600 case 3:
2601 if (obj_priv->fence_reg >= 8)
2602 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2603 else
2604 case 2:
2605 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2607 I915_WRITE(fence_reg, 0);
2608 break;
2611 reg->obj = NULL;
2612 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2613 list_del_init(&reg->lru_list);
2617 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2618 * to the buffer to finish, and then resets the fence register.
2619 * @obj: tiled object holding a fence register.
2620 * @bool: whether the wait upon the fence is interruptible
2622 * Zeroes out the fence register itself and clears out the associated
2623 * data structures in dev_priv and obj_priv.
2626 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2627 bool interruptible)
2629 struct drm_device *dev = obj->dev;
2630 struct drm_i915_private *dev_priv = dev->dev_private;
2631 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2632 struct drm_i915_fence_reg *reg;
2634 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2635 return 0;
2637 /* If we've changed tiling, GTT-mappings of the object
2638 * need to re-fault to ensure that the correct fence register
2639 * setup is in place.
2641 i915_gem_release_mmap(obj);
2643 /* On the i915, GPU access to tiled buffers is via a fence,
2644 * therefore we must wait for any outstanding access to complete
2645 * before clearing the fence.
2647 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2648 if (reg->gpu) {
2649 int ret;
2651 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2652 if (ret)
2653 return ret;
2655 ret = i915_gem_object_wait_rendering(obj, interruptible);
2656 if (ret)
2657 return ret;
2659 reg->gpu = false;
2662 i915_gem_object_flush_gtt_write_domain(obj);
2663 i915_gem_clear_fence_reg(obj);
2665 return 0;
2669 * Finds free space in the GTT aperture and binds the object there.
2671 static int
2672 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
2673 unsigned alignment,
2674 bool mappable)
2676 struct drm_device *dev = obj->dev;
2677 drm_i915_private_t *dev_priv = dev->dev_private;
2678 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2679 struct drm_mm_node *free_space;
2680 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2681 int ret;
2683 if (obj_priv->madv != I915_MADV_WILLNEED) {
2684 DRM_ERROR("Attempting to bind a purgeable object\n");
2685 return -EINVAL;
2688 if (alignment == 0)
2689 alignment = i915_gem_get_gtt_alignment(obj);
2690 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2691 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2692 return -EINVAL;
2695 /* If the object is bigger than the entire aperture, reject it early
2696 * before evicting everything in a vain attempt to find space.
2698 if (obj->size >
2699 (mappable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2700 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2701 return -E2BIG;
2704 search_free:
2705 if (mappable)
2706 free_space =
2707 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2708 obj->size, alignment, 0,
2709 dev_priv->mm.gtt_mappable_end,
2711 else
2712 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2713 obj->size, alignment, 0);
2715 if (free_space != NULL) {
2716 if (mappable)
2717 obj_priv->gtt_space =
2718 drm_mm_get_block_range_generic(free_space,
2719 obj->size,
2720 alignment, 0,
2721 dev_priv->mm.gtt_mappable_end,
2723 else
2724 obj_priv->gtt_space =
2725 drm_mm_get_block(free_space, obj->size,
2726 alignment);
2728 if (obj_priv->gtt_space == NULL) {
2729 /* If the gtt is empty and we're still having trouble
2730 * fitting our object in, we're out of memory.
2732 ret = i915_gem_evict_something(dev, obj->size, alignment,
2733 mappable);
2734 if (ret)
2735 return ret;
2737 goto search_free;
2740 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2741 if (ret) {
2742 drm_mm_put_block(obj_priv->gtt_space);
2743 obj_priv->gtt_space = NULL;
2745 if (ret == -ENOMEM) {
2746 /* first try to clear up some space from the GTT */
2747 ret = i915_gem_evict_something(dev, obj->size,
2748 alignment, mappable);
2749 if (ret) {
2750 /* now try to shrink everyone else */
2751 if (gfpmask) {
2752 gfpmask = 0;
2753 goto search_free;
2756 return ret;
2759 goto search_free;
2762 return ret;
2765 /* Create an AGP memory structure pointing at our pages, and bind it
2766 * into the GTT.
2768 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2769 obj_priv->pages,
2770 obj->size >> PAGE_SHIFT,
2771 obj_priv->gtt_space->start,
2772 obj_priv->agp_type);
2773 if (obj_priv->agp_mem == NULL) {
2774 i915_gem_object_put_pages_gtt(obj);
2775 drm_mm_put_block(obj_priv->gtt_space);
2776 obj_priv->gtt_space = NULL;
2778 ret = i915_gem_evict_something(dev, obj->size, alignment,
2779 mappable);
2780 if (ret)
2781 return ret;
2783 goto search_free;
2786 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2788 /* keep track of bounds object by adding it to the inactive list */
2789 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
2790 i915_gem_info_add_gtt(dev_priv, obj);
2792 /* Assert that the object is not currently in any GPU domain. As it
2793 * wasn't in the GTT, there shouldn't be any way it could have been in
2794 * a GPU cache
2796 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2797 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2799 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, mappable);
2801 return 0;
2804 void
2805 i915_gem_clflush_object(struct drm_gem_object *obj)
2807 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2809 /* If we don't have a page list set up, then we're not pinned
2810 * to GPU, and we can ignore the cache flush because it'll happen
2811 * again at bind time.
2813 if (obj_priv->pages == NULL)
2814 return;
2816 trace_i915_gem_object_clflush(obj);
2818 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2821 /** Flushes any GPU write domain for the object if it's dirty. */
2822 static int
2823 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2824 bool pipelined)
2826 struct drm_device *dev = obj->dev;
2827 uint32_t old_write_domain;
2829 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2830 return 0;
2832 /* Queue the GPU write cache flushing we need. */
2833 old_write_domain = obj->write_domain;
2834 i915_gem_flush_ring(dev, NULL,
2835 to_intel_bo(obj)->ring,
2836 0, obj->write_domain);
2837 BUG_ON(obj->write_domain);
2839 trace_i915_gem_object_change_domain(obj,
2840 obj->read_domains,
2841 old_write_domain);
2843 if (pipelined)
2844 return 0;
2846 return i915_gem_object_wait_rendering(obj, true);
2849 /** Flushes the GTT write domain for the object if it's dirty. */
2850 static void
2851 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2853 uint32_t old_write_domain;
2855 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2856 return;
2858 /* No actual flushing is required for the GTT write domain. Writes
2859 * to it immediately go to main memory as far as we know, so there's
2860 * no chipset flush. It also doesn't land in render cache.
2862 old_write_domain = obj->write_domain;
2863 obj->write_domain = 0;
2865 trace_i915_gem_object_change_domain(obj,
2866 obj->read_domains,
2867 old_write_domain);
2870 /** Flushes the CPU write domain for the object if it's dirty. */
2871 static void
2872 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2874 struct drm_device *dev = obj->dev;
2875 uint32_t old_write_domain;
2877 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2878 return;
2880 i915_gem_clflush_object(obj);
2881 drm_agp_chipset_flush(dev);
2882 old_write_domain = obj->write_domain;
2883 obj->write_domain = 0;
2885 trace_i915_gem_object_change_domain(obj,
2886 obj->read_domains,
2887 old_write_domain);
2891 * Moves a single object to the GTT read, and possibly write domain.
2893 * This function returns when the move is complete, including waiting on
2894 * flushes to occur.
2897 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2899 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2900 uint32_t old_write_domain, old_read_domains;
2901 int ret;
2903 /* Not valid to be called on unbound objects. */
2904 if (obj_priv->gtt_space == NULL)
2905 return -EINVAL;
2907 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2908 if (ret != 0)
2909 return ret;
2911 i915_gem_object_flush_cpu_write_domain(obj);
2913 if (write) {
2914 ret = i915_gem_object_wait_rendering(obj, true);
2915 if (ret)
2916 return ret;
2919 old_write_domain = obj->write_domain;
2920 old_read_domains = obj->read_domains;
2922 /* It should now be out of any other write domains, and we can update
2923 * the domain values for our changes.
2925 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2926 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2927 if (write) {
2928 obj->read_domains = I915_GEM_DOMAIN_GTT;
2929 obj->write_domain = I915_GEM_DOMAIN_GTT;
2930 obj_priv->dirty = 1;
2933 trace_i915_gem_object_change_domain(obj,
2934 old_read_domains,
2935 old_write_domain);
2937 return 0;
2941 * Prepare buffer for display plane. Use uninterruptible for possible flush
2942 * wait, as in modesetting process we're not supposed to be interrupted.
2945 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2946 bool pipelined)
2948 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2949 uint32_t old_read_domains;
2950 int ret;
2952 /* Not valid to be called on unbound objects. */
2953 if (obj_priv->gtt_space == NULL)
2954 return -EINVAL;
2956 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2957 if (ret)
2958 return ret;
2960 /* Currently, we are always called from an non-interruptible context. */
2961 if (!pipelined) {
2962 ret = i915_gem_object_wait_rendering(obj, false);
2963 if (ret)
2964 return ret;
2967 i915_gem_object_flush_cpu_write_domain(obj);
2969 old_read_domains = obj->read_domains;
2970 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2972 trace_i915_gem_object_change_domain(obj,
2973 old_read_domains,
2974 obj->write_domain);
2976 return 0;
2980 * Moves a single object to the CPU read, and possibly write domain.
2982 * This function returns when the move is complete, including waiting on
2983 * flushes to occur.
2985 static int
2986 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2988 uint32_t old_write_domain, old_read_domains;
2989 int ret;
2991 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2992 if (ret != 0)
2993 return ret;
2995 i915_gem_object_flush_gtt_write_domain(obj);
2997 /* If we have a partially-valid cache of the object in the CPU,
2998 * finish invalidating it and free the per-page flags.
3000 i915_gem_object_set_to_full_cpu_read_domain(obj);
3002 if (write) {
3003 ret = i915_gem_object_wait_rendering(obj, true);
3004 if (ret)
3005 return ret;
3008 old_write_domain = obj->write_domain;
3009 old_read_domains = obj->read_domains;
3011 /* Flush the CPU cache if it's still invalid. */
3012 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3013 i915_gem_clflush_object(obj);
3015 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3018 /* It should now be out of any other write domains, and we can update
3019 * the domain values for our changes.
3021 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3023 /* If we're writing through the CPU, then the GPU read domains will
3024 * need to be invalidated at next use.
3026 if (write) {
3027 obj->read_domains = I915_GEM_DOMAIN_CPU;
3028 obj->write_domain = I915_GEM_DOMAIN_CPU;
3031 trace_i915_gem_object_change_domain(obj,
3032 old_read_domains,
3033 old_write_domain);
3035 return 0;
3039 * Set the next domain for the specified object. This
3040 * may not actually perform the necessary flushing/invaliding though,
3041 * as that may want to be batched with other set_domain operations
3043 * This is (we hope) the only really tricky part of gem. The goal
3044 * is fairly simple -- track which caches hold bits of the object
3045 * and make sure they remain coherent. A few concrete examples may
3046 * help to explain how it works. For shorthand, we use the notation
3047 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3048 * a pair of read and write domain masks.
3050 * Case 1: the batch buffer
3052 * 1. Allocated
3053 * 2. Written by CPU
3054 * 3. Mapped to GTT
3055 * 4. Read by GPU
3056 * 5. Unmapped from GTT
3057 * 6. Freed
3059 * Let's take these a step at a time
3061 * 1. Allocated
3062 * Pages allocated from the kernel may still have
3063 * cache contents, so we set them to (CPU, CPU) always.
3064 * 2. Written by CPU (using pwrite)
3065 * The pwrite function calls set_domain (CPU, CPU) and
3066 * this function does nothing (as nothing changes)
3067 * 3. Mapped by GTT
3068 * This function asserts that the object is not
3069 * currently in any GPU-based read or write domains
3070 * 4. Read by GPU
3071 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3072 * As write_domain is zero, this function adds in the
3073 * current read domains (CPU+COMMAND, 0).
3074 * flush_domains is set to CPU.
3075 * invalidate_domains is set to COMMAND
3076 * clflush is run to get data out of the CPU caches
3077 * then i915_dev_set_domain calls i915_gem_flush to
3078 * emit an MI_FLUSH and drm_agp_chipset_flush
3079 * 5. Unmapped from GTT
3080 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3081 * flush_domains and invalidate_domains end up both zero
3082 * so no flushing/invalidating happens
3083 * 6. Freed
3084 * yay, done
3086 * Case 2: The shared render buffer
3088 * 1. Allocated
3089 * 2. Mapped to GTT
3090 * 3. Read/written by GPU
3091 * 4. set_domain to (CPU,CPU)
3092 * 5. Read/written by CPU
3093 * 6. Read/written by GPU
3095 * 1. Allocated
3096 * Same as last example, (CPU, CPU)
3097 * 2. Mapped to GTT
3098 * Nothing changes (assertions find that it is not in the GPU)
3099 * 3. Read/written by GPU
3100 * execbuffer calls set_domain (RENDER, RENDER)
3101 * flush_domains gets CPU
3102 * invalidate_domains gets GPU
3103 * clflush (obj)
3104 * MI_FLUSH and drm_agp_chipset_flush
3105 * 4. set_domain (CPU, CPU)
3106 * flush_domains gets GPU
3107 * invalidate_domains gets CPU
3108 * wait_rendering (obj) to make sure all drawing is complete.
3109 * This will include an MI_FLUSH to get the data from GPU
3110 * to memory
3111 * clflush (obj) to invalidate the CPU cache
3112 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3113 * 5. Read/written by CPU
3114 * cache lines are loaded and dirtied
3115 * 6. Read written by GPU
3116 * Same as last GPU access
3118 * Case 3: The constant buffer
3120 * 1. Allocated
3121 * 2. Written by CPU
3122 * 3. Read by GPU
3123 * 4. Updated (written) by CPU again
3124 * 5. Read by GPU
3126 * 1. Allocated
3127 * (CPU, CPU)
3128 * 2. Written by CPU
3129 * (CPU, CPU)
3130 * 3. Read by GPU
3131 * (CPU+RENDER, 0)
3132 * flush_domains = CPU
3133 * invalidate_domains = RENDER
3134 * clflush (obj)
3135 * MI_FLUSH
3136 * drm_agp_chipset_flush
3137 * 4. Updated (written) by CPU again
3138 * (CPU, CPU)
3139 * flush_domains = 0 (no previous write domain)
3140 * invalidate_domains = 0 (no new read domains)
3141 * 5. Read by GPU
3142 * (CPU+RENDER, 0)
3143 * flush_domains = CPU
3144 * invalidate_domains = RENDER
3145 * clflush (obj)
3146 * MI_FLUSH
3147 * drm_agp_chipset_flush
3149 static void
3150 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3151 struct intel_ring_buffer *ring)
3153 struct drm_device *dev = obj->dev;
3154 struct drm_i915_private *dev_priv = dev->dev_private;
3155 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3156 uint32_t invalidate_domains = 0;
3157 uint32_t flush_domains = 0;
3160 * If the object isn't moving to a new write domain,
3161 * let the object stay in multiple read domains
3163 if (obj->pending_write_domain == 0)
3164 obj->pending_read_domains |= obj->read_domains;
3167 * Flush the current write domain if
3168 * the new read domains don't match. Invalidate
3169 * any read domains which differ from the old
3170 * write domain
3172 if (obj->write_domain &&
3173 obj->write_domain != obj->pending_read_domains) {
3174 flush_domains |= obj->write_domain;
3175 invalidate_domains |=
3176 obj->pending_read_domains & ~obj->write_domain;
3179 * Invalidate any read caches which may have
3180 * stale data. That is, any new read domains.
3182 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3183 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3184 i915_gem_clflush_object(obj);
3186 /* The actual obj->write_domain will be updated with
3187 * pending_write_domain after we emit the accumulated flush for all
3188 * of our domain changes in execbuffers (which clears objects'
3189 * write_domains). So if we have a current write domain that we
3190 * aren't changing, set pending_write_domain to that.
3192 if (flush_domains == 0 && obj->pending_write_domain == 0)
3193 obj->pending_write_domain = obj->write_domain;
3195 dev->invalidate_domains |= invalidate_domains;
3196 dev->flush_domains |= flush_domains;
3197 if (flush_domains & I915_GEM_GPU_DOMAINS)
3198 dev_priv->mm.flush_rings |= obj_priv->ring->id;
3199 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3200 dev_priv->mm.flush_rings |= ring->id;
3204 * Moves the object from a partially CPU read to a full one.
3206 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3207 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3209 static void
3210 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3212 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3214 if (!obj_priv->page_cpu_valid)
3215 return;
3217 /* If we're partially in the CPU read domain, finish moving it in.
3219 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3220 int i;
3222 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3223 if (obj_priv->page_cpu_valid[i])
3224 continue;
3225 drm_clflush_pages(obj_priv->pages + i, 1);
3229 /* Free the page_cpu_valid mappings which are now stale, whether
3230 * or not we've got I915_GEM_DOMAIN_CPU.
3232 kfree(obj_priv->page_cpu_valid);
3233 obj_priv->page_cpu_valid = NULL;
3237 * Set the CPU read domain on a range of the object.
3239 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3240 * not entirely valid. The page_cpu_valid member of the object flags which
3241 * pages have been flushed, and will be respected by
3242 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3243 * of the whole object.
3245 * This function returns when the move is complete, including waiting on
3246 * flushes to occur.
3248 static int
3249 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3250 uint64_t offset, uint64_t size)
3252 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3253 uint32_t old_read_domains;
3254 int i, ret;
3256 if (offset == 0 && size == obj->size)
3257 return i915_gem_object_set_to_cpu_domain(obj, 0);
3259 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3260 if (ret != 0)
3261 return ret;
3262 i915_gem_object_flush_gtt_write_domain(obj);
3264 /* If we're already fully in the CPU read domain, we're done. */
3265 if (obj_priv->page_cpu_valid == NULL &&
3266 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3267 return 0;
3269 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3270 * newly adding I915_GEM_DOMAIN_CPU
3272 if (obj_priv->page_cpu_valid == NULL) {
3273 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3274 GFP_KERNEL);
3275 if (obj_priv->page_cpu_valid == NULL)
3276 return -ENOMEM;
3277 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3278 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3280 /* Flush the cache on any pages that are still invalid from the CPU's
3281 * perspective.
3283 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3284 i++) {
3285 if (obj_priv->page_cpu_valid[i])
3286 continue;
3288 drm_clflush_pages(obj_priv->pages + i, 1);
3290 obj_priv->page_cpu_valid[i] = 1;
3293 /* It should now be out of any other write domains, and we can update
3294 * the domain values for our changes.
3296 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3298 old_read_domains = obj->read_domains;
3299 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3301 trace_i915_gem_object_change_domain(obj,
3302 old_read_domains,
3303 obj->write_domain);
3305 return 0;
3309 * Pin an object to the GTT and evaluate the relocations landing in it.
3311 static int
3312 i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3313 struct drm_file *file_priv,
3314 struct drm_i915_gem_exec_object2 *entry)
3316 struct drm_device *dev = obj->base.dev;
3317 drm_i915_private_t *dev_priv = dev->dev_private;
3318 struct drm_i915_gem_relocation_entry __user *user_relocs;
3319 struct drm_gem_object *target_obj = NULL;
3320 uint32_t target_handle = 0;
3321 int i, ret = 0;
3323 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3324 for (i = 0; i < entry->relocation_count; i++) {
3325 struct drm_i915_gem_relocation_entry reloc;
3326 uint32_t target_offset;
3328 if (__copy_from_user_inatomic(&reloc,
3329 user_relocs+i,
3330 sizeof(reloc))) {
3331 ret = -EFAULT;
3332 break;
3335 if (reloc.target_handle != target_handle) {
3336 drm_gem_object_unreference(target_obj);
3338 target_obj = drm_gem_object_lookup(dev, file_priv,
3339 reloc.target_handle);
3340 if (target_obj == NULL) {
3341 ret = -ENOENT;
3342 break;
3345 target_handle = reloc.target_handle;
3347 target_offset = to_intel_bo(target_obj)->gtt_offset;
3349 #if WATCH_RELOC
3350 DRM_INFO("%s: obj %p offset %08x target %d "
3351 "read %08x write %08x gtt %08x "
3352 "presumed %08x delta %08x\n",
3353 __func__,
3354 obj,
3355 (int) reloc.offset,
3356 (int) reloc.target_handle,
3357 (int) reloc.read_domains,
3358 (int) reloc.write_domain,
3359 (int) target_offset,
3360 (int) reloc.presumed_offset,
3361 reloc.delta);
3362 #endif
3364 /* The target buffer should have appeared before us in the
3365 * exec_object list, so it should have a GTT space bound by now.
3367 if (target_offset == 0) {
3368 DRM_ERROR("No GTT space found for object %d\n",
3369 reloc.target_handle);
3370 ret = -EINVAL;
3371 break;
3374 /* Validate that the target is in a valid r/w GPU domain */
3375 if (reloc.write_domain & (reloc.write_domain - 1)) {
3376 DRM_ERROR("reloc with multiple write domains: "
3377 "obj %p target %d offset %d "
3378 "read %08x write %08x",
3379 obj, reloc.target_handle,
3380 (int) reloc.offset,
3381 reloc.read_domains,
3382 reloc.write_domain);
3383 ret = -EINVAL;
3384 break;
3386 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3387 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3388 DRM_ERROR("reloc with read/write CPU domains: "
3389 "obj %p target %d offset %d "
3390 "read %08x write %08x",
3391 obj, reloc.target_handle,
3392 (int) reloc.offset,
3393 reloc.read_domains,
3394 reloc.write_domain);
3395 ret = -EINVAL;
3396 break;
3398 if (reloc.write_domain && target_obj->pending_write_domain &&
3399 reloc.write_domain != target_obj->pending_write_domain) {
3400 DRM_ERROR("Write domain conflict: "
3401 "obj %p target %d offset %d "
3402 "new %08x old %08x\n",
3403 obj, reloc.target_handle,
3404 (int) reloc.offset,
3405 reloc.write_domain,
3406 target_obj->pending_write_domain);
3407 ret = -EINVAL;
3408 break;
3411 target_obj->pending_read_domains |= reloc.read_domains;
3412 target_obj->pending_write_domain |= reloc.write_domain;
3414 /* If the relocation already has the right value in it, no
3415 * more work needs to be done.
3417 if (target_offset == reloc.presumed_offset)
3418 continue;
3420 /* Check that the relocation address is valid... */
3421 if (reloc.offset > obj->base.size - 4) {
3422 DRM_ERROR("Relocation beyond object bounds: "
3423 "obj %p target %d offset %d size %d.\n",
3424 obj, reloc.target_handle,
3425 (int) reloc.offset, (int) obj->base.size);
3426 ret = -EINVAL;
3427 break;
3429 if (reloc.offset & 3) {
3430 DRM_ERROR("Relocation not 4-byte aligned: "
3431 "obj %p target %d offset %d.\n",
3432 obj, reloc.target_handle,
3433 (int) reloc.offset);
3434 ret = -EINVAL;
3435 break;
3438 /* and points to somewhere within the target object. */
3439 if (reloc.delta >= target_obj->size) {
3440 DRM_ERROR("Relocation beyond target object bounds: "
3441 "obj %p target %d delta %d size %d.\n",
3442 obj, reloc.target_handle,
3443 (int) reloc.delta, (int) target_obj->size);
3444 ret = -EINVAL;
3445 break;
3448 reloc.delta += target_offset;
3449 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3450 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3451 char *vaddr;
3453 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
3454 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
3455 kunmap_atomic(vaddr);
3456 } else {
3457 uint32_t __iomem *reloc_entry;
3458 void __iomem *reloc_page;
3460 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3461 if (ret)
3462 break;
3464 /* Map the page containing the relocation we're going to perform. */
3465 reloc.offset += obj->gtt_offset;
3466 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3467 reloc.offset & PAGE_MASK);
3468 reloc_entry = (uint32_t __iomem *)
3469 (reloc_page + (reloc.offset & ~PAGE_MASK));
3470 iowrite32(reloc.delta, reloc_entry);
3471 io_mapping_unmap_atomic(reloc_page);
3474 /* and update the user's relocation entry */
3475 reloc.presumed_offset = target_offset;
3476 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3477 &reloc.presumed_offset,
3478 sizeof(reloc.presumed_offset))) {
3479 ret = -EFAULT;
3480 break;
3484 drm_gem_object_unreference(target_obj);
3485 return ret;
3488 static int
3489 i915_gem_execbuffer_pin(struct drm_device *dev,
3490 struct drm_file *file,
3491 struct drm_gem_object **object_list,
3492 struct drm_i915_gem_exec_object2 *exec_list,
3493 int count)
3495 struct drm_i915_private *dev_priv = dev->dev_private;
3496 int ret, i, retry;
3498 /* attempt to pin all of the buffers into the GTT */
3499 for (retry = 0; retry < 2; retry++) {
3500 ret = 0;
3501 for (i = 0; i < count; i++) {
3502 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3503 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3504 bool need_fence =
3505 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3506 obj->tiling_mode != I915_TILING_NONE;
3508 /* g33/pnv can't fence buffers in the unmappable part */
3509 bool need_mappable =
3510 entry->relocation_count ? true : need_fence;
3512 /* Check fence reg constraints and rebind if necessary */
3513 if (need_fence &&
3514 !i915_gem_object_fence_offset_ok(&obj->base,
3515 obj->tiling_mode)) {
3516 ret = i915_gem_object_unbind(&obj->base);
3517 if (ret)
3518 break;
3521 ret = i915_gem_object_pin(&obj->base,
3522 entry->alignment,
3523 need_mappable);
3524 if (ret)
3525 break;
3528 * Pre-965 chips need a fence register set up in order
3529 * to properly handle blits to/from tiled surfaces.
3531 if (need_fence) {
3532 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3533 if (ret) {
3534 i915_gem_object_unpin(&obj->base);
3535 break;
3538 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3541 entry->offset = obj->gtt_offset;
3544 while (i--)
3545 i915_gem_object_unpin(object_list[i]);
3547 if (ret == 0)
3548 break;
3550 if (ret != -ENOSPC || retry)
3551 return ret;
3553 ret = i915_gem_evict_everything(dev);
3554 if (ret)
3555 return ret;
3558 return 0;
3561 /* Throttle our rendering by waiting until the ring has completed our requests
3562 * emitted over 20 msec ago.
3564 * Note that if we were to use the current jiffies each time around the loop,
3565 * we wouldn't escape the function with any frames outstanding if the time to
3566 * render a frame was over 20ms.
3568 * This should get us reasonable parallelism between CPU and GPU but also
3569 * relatively low latency when blocking on a particular request to finish.
3571 static int
3572 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3574 struct drm_i915_private *dev_priv = dev->dev_private;
3575 struct drm_i915_file_private *file_priv = file->driver_priv;
3576 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3577 struct drm_i915_gem_request *request;
3578 struct intel_ring_buffer *ring = NULL;
3579 u32 seqno = 0;
3580 int ret;
3582 spin_lock(&file_priv->mm.lock);
3583 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3584 if (time_after_eq(request->emitted_jiffies, recent_enough))
3585 break;
3587 ring = request->ring;
3588 seqno = request->seqno;
3590 spin_unlock(&file_priv->mm.lock);
3592 if (seqno == 0)
3593 return 0;
3595 ret = 0;
3596 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3597 /* And wait for the seqno passing without holding any locks and
3598 * causing extra latency for others. This is safe as the irq
3599 * generation is designed to be run atomically and so is
3600 * lockless.
3602 ring->user_irq_get(ring);
3603 ret = wait_event_interruptible(ring->irq_queue,
3604 i915_seqno_passed(ring->get_seqno(ring), seqno)
3605 || atomic_read(&dev_priv->mm.wedged));
3606 ring->user_irq_put(ring);
3608 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3609 ret = -EIO;
3612 if (ret == 0)
3613 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3615 return ret;
3618 static int
3619 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3620 uint64_t exec_offset)
3622 uint32_t exec_start, exec_len;
3624 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3625 exec_len = (uint32_t) exec->batch_len;
3627 if ((exec_start | exec_len) & 0x7)
3628 return -EINVAL;
3630 if (!exec_start)
3631 return -EINVAL;
3633 return 0;
3636 static int
3637 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3638 int count)
3640 int i;
3642 for (i = 0; i < count; i++) {
3643 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3644 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3646 if (!access_ok(VERIFY_READ, ptr, length))
3647 return -EFAULT;
3649 /* we may also need to update the presumed offsets */
3650 if (!access_ok(VERIFY_WRITE, ptr, length))
3651 return -EFAULT;
3653 if (fault_in_pages_readable(ptr, length))
3654 return -EFAULT;
3657 return 0;
3660 static int
3661 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3662 struct drm_file *file,
3663 struct drm_i915_gem_execbuffer2 *args,
3664 struct drm_i915_gem_exec_object2 *exec_list)
3666 drm_i915_private_t *dev_priv = dev->dev_private;
3667 struct drm_gem_object **object_list = NULL;
3668 struct drm_gem_object *batch_obj;
3669 struct drm_clip_rect *cliprects = NULL;
3670 struct drm_i915_gem_request *request = NULL;
3671 int ret, i, flips;
3672 uint64_t exec_offset;
3674 struct intel_ring_buffer *ring = NULL;
3676 ret = i915_gem_check_is_wedged(dev);
3677 if (ret)
3678 return ret;
3680 ret = validate_exec_list(exec_list, args->buffer_count);
3681 if (ret)
3682 return ret;
3684 #if WATCH_EXEC
3685 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3686 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3687 #endif
3688 switch (args->flags & I915_EXEC_RING_MASK) {
3689 case I915_EXEC_DEFAULT:
3690 case I915_EXEC_RENDER:
3691 ring = &dev_priv->render_ring;
3692 break;
3693 case I915_EXEC_BSD:
3694 if (!HAS_BSD(dev)) {
3695 DRM_ERROR("execbuf with invalid ring (BSD)\n");
3696 return -EINVAL;
3698 ring = &dev_priv->bsd_ring;
3699 break;
3700 case I915_EXEC_BLT:
3701 if (!HAS_BLT(dev)) {
3702 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3703 return -EINVAL;
3705 ring = &dev_priv->blt_ring;
3706 break;
3707 default:
3708 DRM_ERROR("execbuf with unknown ring: %d\n",
3709 (int)(args->flags & I915_EXEC_RING_MASK));
3710 return -EINVAL;
3713 if (args->buffer_count < 1) {
3714 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3715 return -EINVAL;
3717 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3718 if (object_list == NULL) {
3719 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3720 args->buffer_count);
3721 ret = -ENOMEM;
3722 goto pre_mutex_err;
3725 if (args->num_cliprects != 0) {
3726 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3727 GFP_KERNEL);
3728 if (cliprects == NULL) {
3729 ret = -ENOMEM;
3730 goto pre_mutex_err;
3733 ret = copy_from_user(cliprects,
3734 (struct drm_clip_rect __user *)
3735 (uintptr_t) args->cliprects_ptr,
3736 sizeof(*cliprects) * args->num_cliprects);
3737 if (ret != 0) {
3738 DRM_ERROR("copy %d cliprects failed: %d\n",
3739 args->num_cliprects, ret);
3740 ret = -EFAULT;
3741 goto pre_mutex_err;
3745 request = kzalloc(sizeof(*request), GFP_KERNEL);
3746 if (request == NULL) {
3747 ret = -ENOMEM;
3748 goto pre_mutex_err;
3751 ret = i915_mutex_lock_interruptible(dev);
3752 if (ret)
3753 goto pre_mutex_err;
3755 if (dev_priv->mm.suspended) {
3756 mutex_unlock(&dev->struct_mutex);
3757 ret = -EBUSY;
3758 goto pre_mutex_err;
3761 /* Look up object handles */
3762 for (i = 0; i < args->buffer_count; i++) {
3763 struct drm_i915_gem_object *obj_priv;
3765 object_list[i] = drm_gem_object_lookup(dev, file,
3766 exec_list[i].handle);
3767 if (object_list[i] == NULL) {
3768 DRM_ERROR("Invalid object handle %d at index %d\n",
3769 exec_list[i].handle, i);
3770 /* prevent error path from reading uninitialized data */
3771 args->buffer_count = i + 1;
3772 ret = -ENOENT;
3773 goto err;
3776 obj_priv = to_intel_bo(object_list[i]);
3777 if (obj_priv->in_execbuffer) {
3778 DRM_ERROR("Object %p appears more than once in object list\n",
3779 object_list[i]);
3780 /* prevent error path from reading uninitialized data */
3781 args->buffer_count = i + 1;
3782 ret = -EINVAL;
3783 goto err;
3785 obj_priv->in_execbuffer = true;
3788 /* Move the objects en-masse into the GTT, evicting if necessary. */
3789 ret = i915_gem_execbuffer_pin(dev, file,
3790 object_list, exec_list,
3791 args->buffer_count);
3792 if (ret)
3793 goto err;
3795 /* The objects are in their final locations, apply the relocations. */
3796 for (i = 0; i < args->buffer_count; i++) {
3797 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3798 obj->base.pending_read_domains = 0;
3799 obj->base.pending_write_domain = 0;
3800 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3801 if (ret)
3802 goto err;
3805 /* Set the pending read domains for the batch buffer to COMMAND */
3806 batch_obj = object_list[args->buffer_count-1];
3807 if (batch_obj->pending_write_domain) {
3808 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3809 ret = -EINVAL;
3810 goto err;
3812 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3814 /* Sanity check the batch buffer */
3815 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3816 ret = i915_gem_check_execbuffer(args, exec_offset);
3817 if (ret != 0) {
3818 DRM_ERROR("execbuf with invalid offset/length\n");
3819 goto err;
3822 /* Zero the global flush/invalidate flags. These
3823 * will be modified as new domains are computed
3824 * for each object
3826 dev->invalidate_domains = 0;
3827 dev->flush_domains = 0;
3828 dev_priv->mm.flush_rings = 0;
3829 for (i = 0; i < args->buffer_count; i++)
3830 i915_gem_object_set_to_gpu_domain(object_list[i], ring);
3832 if (dev->invalidate_domains | dev->flush_domains) {
3833 #if WATCH_EXEC
3834 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3835 __func__,
3836 dev->invalidate_domains,
3837 dev->flush_domains);
3838 #endif
3839 i915_gem_flush(dev, file,
3840 dev->invalidate_domains,
3841 dev->flush_domains,
3842 dev_priv->mm.flush_rings);
3845 #if WATCH_COHERENCY
3846 for (i = 0; i < args->buffer_count; i++) {
3847 i915_gem_object_check_coherency(object_list[i],
3848 exec_list[i].handle);
3850 #endif
3852 #if WATCH_EXEC
3853 i915_gem_dump_object(batch_obj,
3854 args->batch_len,
3855 __func__,
3856 ~0);
3857 #endif
3859 /* Check for any pending flips. As we only maintain a flip queue depth
3860 * of 1, we can simply insert a WAIT for the next display flip prior
3861 * to executing the batch and avoid stalling the CPU.
3863 flips = 0;
3864 for (i = 0; i < args->buffer_count; i++) {
3865 if (object_list[i]->write_domain)
3866 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3868 if (flips) {
3869 int plane, flip_mask;
3871 for (plane = 0; flips >> plane; plane++) {
3872 if (((flips >> plane) & 1) == 0)
3873 continue;
3875 if (plane)
3876 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3877 else
3878 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3880 ret = intel_ring_begin(ring, 2);
3881 if (ret)
3882 goto err;
3884 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
3885 intel_ring_emit(ring, MI_NOOP);
3886 intel_ring_advance(ring);
3890 /* Exec the batchbuffer */
3891 ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
3892 if (ret) {
3893 DRM_ERROR("dispatch failed %d\n", ret);
3894 goto err;
3897 for (i = 0; i < args->buffer_count; i++) {
3898 struct drm_gem_object *obj = object_list[i];
3900 obj->read_domains = obj->pending_read_domains;
3901 obj->write_domain = obj->pending_write_domain;
3903 i915_gem_object_move_to_active(obj, ring);
3904 if (obj->write_domain) {
3905 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3906 obj_priv->dirty = 1;
3907 list_move_tail(&obj_priv->gpu_write_list,
3908 &ring->gpu_write_list);
3909 intel_mark_busy(dev, obj);
3912 trace_i915_gem_object_change_domain(obj,
3913 obj->read_domains,
3914 obj->write_domain);
3918 * Ensure that the commands in the batch buffer are
3919 * finished before the interrupt fires
3921 i915_retire_commands(dev, ring);
3923 if (i915_add_request(dev, file, request, ring))
3924 ring->outstanding_lazy_request = true;
3925 else
3926 request = NULL;
3928 err:
3929 for (i = 0; i < args->buffer_count; i++) {
3930 if (object_list[i] == NULL)
3931 break;
3933 to_intel_bo(object_list[i])->in_execbuffer = false;
3934 drm_gem_object_unreference(object_list[i]);
3937 mutex_unlock(&dev->struct_mutex);
3939 pre_mutex_err:
3940 drm_free_large(object_list);
3941 kfree(cliprects);
3942 kfree(request);
3944 return ret;
3948 * Legacy execbuffer just creates an exec2 list from the original exec object
3949 * list array and passes it to the real function.
3952 i915_gem_execbuffer(struct drm_device *dev, void *data,
3953 struct drm_file *file_priv)
3955 struct drm_i915_gem_execbuffer *args = data;
3956 struct drm_i915_gem_execbuffer2 exec2;
3957 struct drm_i915_gem_exec_object *exec_list = NULL;
3958 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3959 int ret, i;
3961 #if WATCH_EXEC
3962 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3963 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3964 #endif
3966 if (args->buffer_count < 1) {
3967 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3968 return -EINVAL;
3971 /* Copy in the exec list from userland */
3972 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3973 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3974 if (exec_list == NULL || exec2_list == NULL) {
3975 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3976 args->buffer_count);
3977 drm_free_large(exec_list);
3978 drm_free_large(exec2_list);
3979 return -ENOMEM;
3981 ret = copy_from_user(exec_list,
3982 (struct drm_i915_relocation_entry __user *)
3983 (uintptr_t) args->buffers_ptr,
3984 sizeof(*exec_list) * args->buffer_count);
3985 if (ret != 0) {
3986 DRM_ERROR("copy %d exec entries failed %d\n",
3987 args->buffer_count, ret);
3988 drm_free_large(exec_list);
3989 drm_free_large(exec2_list);
3990 return -EFAULT;
3993 for (i = 0; i < args->buffer_count; i++) {
3994 exec2_list[i].handle = exec_list[i].handle;
3995 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3996 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3997 exec2_list[i].alignment = exec_list[i].alignment;
3998 exec2_list[i].offset = exec_list[i].offset;
3999 if (INTEL_INFO(dev)->gen < 4)
4000 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4001 else
4002 exec2_list[i].flags = 0;
4005 exec2.buffers_ptr = args->buffers_ptr;
4006 exec2.buffer_count = args->buffer_count;
4007 exec2.batch_start_offset = args->batch_start_offset;
4008 exec2.batch_len = args->batch_len;
4009 exec2.DR1 = args->DR1;
4010 exec2.DR4 = args->DR4;
4011 exec2.num_cliprects = args->num_cliprects;
4012 exec2.cliprects_ptr = args->cliprects_ptr;
4013 exec2.flags = I915_EXEC_RENDER;
4015 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4016 if (!ret) {
4017 /* Copy the new buffer offsets back to the user's exec list. */
4018 for (i = 0; i < args->buffer_count; i++)
4019 exec_list[i].offset = exec2_list[i].offset;
4020 /* ... and back out to userspace */
4021 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4022 (uintptr_t) args->buffers_ptr,
4023 exec_list,
4024 sizeof(*exec_list) * args->buffer_count);
4025 if (ret) {
4026 ret = -EFAULT;
4027 DRM_ERROR("failed to copy %d exec entries "
4028 "back to user (%d)\n",
4029 args->buffer_count, ret);
4033 drm_free_large(exec_list);
4034 drm_free_large(exec2_list);
4035 return ret;
4039 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4040 struct drm_file *file_priv)
4042 struct drm_i915_gem_execbuffer2 *args = data;
4043 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4044 int ret;
4046 #if WATCH_EXEC
4047 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4048 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4049 #endif
4051 if (args->buffer_count < 1) {
4052 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4053 return -EINVAL;
4056 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4057 if (exec2_list == NULL) {
4058 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4059 args->buffer_count);
4060 return -ENOMEM;
4062 ret = copy_from_user(exec2_list,
4063 (struct drm_i915_relocation_entry __user *)
4064 (uintptr_t) args->buffers_ptr,
4065 sizeof(*exec2_list) * args->buffer_count);
4066 if (ret != 0) {
4067 DRM_ERROR("copy %d exec entries failed %d\n",
4068 args->buffer_count, ret);
4069 drm_free_large(exec2_list);
4070 return -EFAULT;
4073 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4074 if (!ret) {
4075 /* Copy the new buffer offsets back to the user's exec list. */
4076 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4077 (uintptr_t) args->buffers_ptr,
4078 exec2_list,
4079 sizeof(*exec2_list) * args->buffer_count);
4080 if (ret) {
4081 ret = -EFAULT;
4082 DRM_ERROR("failed to copy %d exec entries "
4083 "back to user (%d)\n",
4084 args->buffer_count, ret);
4088 drm_free_large(exec2_list);
4089 return ret;
4093 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
4094 bool mappable)
4096 struct drm_device *dev = obj->dev;
4097 struct drm_i915_private *dev_priv = dev->dev_private;
4098 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4099 int ret;
4101 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4102 WARN_ON(i915_verify_lists(dev));
4104 if (obj_priv->gtt_space != NULL) {
4105 if (alignment == 0)
4106 alignment = i915_gem_get_gtt_alignment(obj);
4107 if (obj_priv->gtt_offset & (alignment - 1) ||
4108 (mappable && !i915_gem_object_cpu_accessible(obj_priv))) {
4109 WARN(obj_priv->pin_count,
4110 "bo is already pinned with incorrect alignment:"
4111 " offset=%x, req.alignment=%x\n",
4112 obj_priv->gtt_offset, alignment);
4113 ret = i915_gem_object_unbind(obj);
4114 if (ret)
4115 return ret;
4119 if (obj_priv->gtt_space == NULL) {
4120 ret = i915_gem_object_bind_to_gtt(obj, alignment, mappable);
4121 if (ret)
4122 return ret;
4125 obj_priv->pin_count++;
4127 /* If the object is not active and not pending a flush,
4128 * remove it from the inactive list
4130 if (obj_priv->pin_count == 1) {
4131 i915_gem_info_add_pin(dev_priv, obj, mappable);
4132 if (!obj_priv->active)
4133 list_move_tail(&obj_priv->mm_list,
4134 &dev_priv->mm.pinned_list);
4136 BUG_ON(!obj_priv->pin_mappable && mappable);
4138 WARN_ON(i915_verify_lists(dev));
4139 return 0;
4142 void
4143 i915_gem_object_unpin(struct drm_gem_object *obj)
4145 struct drm_device *dev = obj->dev;
4146 drm_i915_private_t *dev_priv = dev->dev_private;
4147 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4149 WARN_ON(i915_verify_lists(dev));
4150 obj_priv->pin_count--;
4151 BUG_ON(obj_priv->pin_count < 0);
4152 BUG_ON(obj_priv->gtt_space == NULL);
4154 /* If the object is no longer pinned, and is
4155 * neither active nor being flushed, then stick it on
4156 * the inactive list
4158 if (obj_priv->pin_count == 0) {
4159 if (!obj_priv->active)
4160 list_move_tail(&obj_priv->mm_list,
4161 &dev_priv->mm.inactive_list);
4162 i915_gem_info_remove_pin(dev_priv, obj);
4164 WARN_ON(i915_verify_lists(dev));
4168 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4169 struct drm_file *file_priv)
4171 struct drm_i915_gem_pin *args = data;
4172 struct drm_gem_object *obj;
4173 struct drm_i915_gem_object *obj_priv;
4174 int ret;
4176 ret = i915_mutex_lock_interruptible(dev);
4177 if (ret)
4178 return ret;
4180 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4181 if (obj == NULL) {
4182 ret = -ENOENT;
4183 goto unlock;
4185 obj_priv = to_intel_bo(obj);
4187 if (obj_priv->madv != I915_MADV_WILLNEED) {
4188 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4189 ret = -EINVAL;
4190 goto out;
4193 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4194 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4195 args->handle);
4196 ret = -EINVAL;
4197 goto out;
4200 obj_priv->user_pin_count++;
4201 obj_priv->pin_filp = file_priv;
4202 if (obj_priv->user_pin_count == 1) {
4203 ret = i915_gem_object_pin(obj, args->alignment, true);
4204 if (ret)
4205 goto out;
4208 /* XXX - flush the CPU caches for pinned objects
4209 * as the X server doesn't manage domains yet
4211 i915_gem_object_flush_cpu_write_domain(obj);
4212 args->offset = obj_priv->gtt_offset;
4213 out:
4214 drm_gem_object_unreference(obj);
4215 unlock:
4216 mutex_unlock(&dev->struct_mutex);
4217 return ret;
4221 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4222 struct drm_file *file_priv)
4224 struct drm_i915_gem_pin *args = data;
4225 struct drm_gem_object *obj;
4226 struct drm_i915_gem_object *obj_priv;
4227 int ret;
4229 ret = i915_mutex_lock_interruptible(dev);
4230 if (ret)
4231 return ret;
4233 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4234 if (obj == NULL) {
4235 ret = -ENOENT;
4236 goto unlock;
4238 obj_priv = to_intel_bo(obj);
4240 if (obj_priv->pin_filp != file_priv) {
4241 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4242 args->handle);
4243 ret = -EINVAL;
4244 goto out;
4246 obj_priv->user_pin_count--;
4247 if (obj_priv->user_pin_count == 0) {
4248 obj_priv->pin_filp = NULL;
4249 i915_gem_object_unpin(obj);
4252 out:
4253 drm_gem_object_unreference(obj);
4254 unlock:
4255 mutex_unlock(&dev->struct_mutex);
4256 return ret;
4260 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4261 struct drm_file *file_priv)
4263 struct drm_i915_gem_busy *args = data;
4264 struct drm_gem_object *obj;
4265 struct drm_i915_gem_object *obj_priv;
4266 int ret;
4268 ret = i915_mutex_lock_interruptible(dev);
4269 if (ret)
4270 return ret;
4272 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4273 if (obj == NULL) {
4274 ret = -ENOENT;
4275 goto unlock;
4277 obj_priv = to_intel_bo(obj);
4279 /* Count all active objects as busy, even if they are currently not used
4280 * by the gpu. Users of this interface expect objects to eventually
4281 * become non-busy without any further actions, therefore emit any
4282 * necessary flushes here.
4284 args->busy = obj_priv->active;
4285 if (args->busy) {
4286 /* Unconditionally flush objects, even when the gpu still uses this
4287 * object. Userspace calling this function indicates that it wants to
4288 * use this buffer rather sooner than later, so issuing the required
4289 * flush earlier is beneficial.
4291 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4292 i915_gem_flush_ring(dev, file_priv,
4293 obj_priv->ring,
4294 0, obj->write_domain);
4296 /* Update the active list for the hardware's current position.
4297 * Otherwise this only updates on a delayed timer or when irqs
4298 * are actually unmasked, and our working set ends up being
4299 * larger than required.
4301 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4303 args->busy = obj_priv->active;
4306 drm_gem_object_unreference(obj);
4307 unlock:
4308 mutex_unlock(&dev->struct_mutex);
4309 return ret;
4313 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4314 struct drm_file *file_priv)
4316 return i915_gem_ring_throttle(dev, file_priv);
4320 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4321 struct drm_file *file_priv)
4323 struct drm_i915_gem_madvise *args = data;
4324 struct drm_gem_object *obj;
4325 struct drm_i915_gem_object *obj_priv;
4326 int ret;
4328 switch (args->madv) {
4329 case I915_MADV_DONTNEED:
4330 case I915_MADV_WILLNEED:
4331 break;
4332 default:
4333 return -EINVAL;
4336 ret = i915_mutex_lock_interruptible(dev);
4337 if (ret)
4338 return ret;
4340 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4341 if (obj == NULL) {
4342 ret = -ENOENT;
4343 goto unlock;
4345 obj_priv = to_intel_bo(obj);
4347 if (obj_priv->pin_count) {
4348 ret = -EINVAL;
4349 goto out;
4352 if (obj_priv->madv != __I915_MADV_PURGED)
4353 obj_priv->madv = args->madv;
4355 /* if the object is no longer bound, discard its backing storage */
4356 if (i915_gem_object_is_purgeable(obj_priv) &&
4357 obj_priv->gtt_space == NULL)
4358 i915_gem_object_truncate(obj);
4360 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4362 out:
4363 drm_gem_object_unreference(obj);
4364 unlock:
4365 mutex_unlock(&dev->struct_mutex);
4366 return ret;
4369 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4370 size_t size)
4372 struct drm_i915_private *dev_priv = dev->dev_private;
4373 struct drm_i915_gem_object *obj;
4375 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4376 if (obj == NULL)
4377 return NULL;
4379 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4380 kfree(obj);
4381 return NULL;
4384 i915_gem_info_add_obj(dev_priv, size);
4386 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4387 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4389 obj->agp_type = AGP_USER_MEMORY;
4390 obj->base.driver_private = NULL;
4391 obj->fence_reg = I915_FENCE_REG_NONE;
4392 INIT_LIST_HEAD(&obj->mm_list);
4393 INIT_LIST_HEAD(&obj->ring_list);
4394 INIT_LIST_HEAD(&obj->gpu_write_list);
4395 obj->madv = I915_MADV_WILLNEED;
4397 return &obj->base;
4400 int i915_gem_init_object(struct drm_gem_object *obj)
4402 BUG();
4404 return 0;
4407 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4409 struct drm_device *dev = obj->dev;
4410 drm_i915_private_t *dev_priv = dev->dev_private;
4411 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4412 int ret;
4414 ret = i915_gem_object_unbind(obj);
4415 if (ret == -ERESTARTSYS) {
4416 list_move(&obj_priv->mm_list,
4417 &dev_priv->mm.deferred_free_list);
4418 return;
4421 if (obj->map_list.map)
4422 i915_gem_free_mmap_offset(obj);
4424 drm_gem_object_release(obj);
4425 i915_gem_info_remove_obj(dev_priv, obj->size);
4427 kfree(obj_priv->page_cpu_valid);
4428 kfree(obj_priv->bit_17);
4429 kfree(obj_priv);
4432 void i915_gem_free_object(struct drm_gem_object *obj)
4434 struct drm_device *dev = obj->dev;
4435 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4437 trace_i915_gem_object_destroy(obj);
4439 while (obj_priv->pin_count > 0)
4440 i915_gem_object_unpin(obj);
4442 if (obj_priv->phys_obj)
4443 i915_gem_detach_phys_object(dev, obj);
4445 i915_gem_free_object_tail(obj);
4449 i915_gem_idle(struct drm_device *dev)
4451 drm_i915_private_t *dev_priv = dev->dev_private;
4452 int ret;
4454 mutex_lock(&dev->struct_mutex);
4456 if (dev_priv->mm.suspended) {
4457 mutex_unlock(&dev->struct_mutex);
4458 return 0;
4461 ret = i915_gpu_idle(dev);
4462 if (ret) {
4463 mutex_unlock(&dev->struct_mutex);
4464 return ret;
4467 /* Under UMS, be paranoid and evict. */
4468 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4469 ret = i915_gem_evict_inactive(dev);
4470 if (ret) {
4471 mutex_unlock(&dev->struct_mutex);
4472 return ret;
4476 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4477 * We need to replace this with a semaphore, or something.
4478 * And not confound mm.suspended!
4480 dev_priv->mm.suspended = 1;
4481 del_timer_sync(&dev_priv->hangcheck_timer);
4483 i915_kernel_lost_context(dev);
4484 i915_gem_cleanup_ringbuffer(dev);
4486 mutex_unlock(&dev->struct_mutex);
4488 /* Cancel the retire work handler, which should be idle now. */
4489 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4491 return 0;
4495 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4496 * over cache flushing.
4498 static int
4499 i915_gem_init_pipe_control(struct drm_device *dev)
4501 drm_i915_private_t *dev_priv = dev->dev_private;
4502 struct drm_gem_object *obj;
4503 struct drm_i915_gem_object *obj_priv;
4504 int ret;
4506 obj = i915_gem_alloc_object(dev, 4096);
4507 if (obj == NULL) {
4508 DRM_ERROR("Failed to allocate seqno page\n");
4509 ret = -ENOMEM;
4510 goto err;
4512 obj_priv = to_intel_bo(obj);
4513 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4515 ret = i915_gem_object_pin(obj, 4096, true);
4516 if (ret)
4517 goto err_unref;
4519 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4520 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4521 if (dev_priv->seqno_page == NULL)
4522 goto err_unpin;
4524 dev_priv->seqno_obj = obj;
4525 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4527 return 0;
4529 err_unpin:
4530 i915_gem_object_unpin(obj);
4531 err_unref:
4532 drm_gem_object_unreference(obj);
4533 err:
4534 return ret;
4538 static void
4539 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4541 drm_i915_private_t *dev_priv = dev->dev_private;
4542 struct drm_gem_object *obj;
4543 struct drm_i915_gem_object *obj_priv;
4545 obj = dev_priv->seqno_obj;
4546 obj_priv = to_intel_bo(obj);
4547 kunmap(obj_priv->pages[0]);
4548 i915_gem_object_unpin(obj);
4549 drm_gem_object_unreference(obj);
4550 dev_priv->seqno_obj = NULL;
4552 dev_priv->seqno_page = NULL;
4556 i915_gem_init_ringbuffer(struct drm_device *dev)
4558 drm_i915_private_t *dev_priv = dev->dev_private;
4559 int ret;
4561 if (HAS_PIPE_CONTROL(dev)) {
4562 ret = i915_gem_init_pipe_control(dev);
4563 if (ret)
4564 return ret;
4567 ret = intel_init_render_ring_buffer(dev);
4568 if (ret)
4569 goto cleanup_pipe_control;
4571 if (HAS_BSD(dev)) {
4572 ret = intel_init_bsd_ring_buffer(dev);
4573 if (ret)
4574 goto cleanup_render_ring;
4577 if (HAS_BLT(dev)) {
4578 ret = intel_init_blt_ring_buffer(dev);
4579 if (ret)
4580 goto cleanup_bsd_ring;
4583 dev_priv->next_seqno = 1;
4585 return 0;
4587 cleanup_bsd_ring:
4588 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4589 cleanup_render_ring:
4590 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4591 cleanup_pipe_control:
4592 if (HAS_PIPE_CONTROL(dev))
4593 i915_gem_cleanup_pipe_control(dev);
4594 return ret;
4597 void
4598 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4600 drm_i915_private_t *dev_priv = dev->dev_private;
4602 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4603 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4604 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
4605 if (HAS_PIPE_CONTROL(dev))
4606 i915_gem_cleanup_pipe_control(dev);
4610 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4611 struct drm_file *file_priv)
4613 drm_i915_private_t *dev_priv = dev->dev_private;
4614 int ret;
4616 if (drm_core_check_feature(dev, DRIVER_MODESET))
4617 return 0;
4619 if (atomic_read(&dev_priv->mm.wedged)) {
4620 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4621 atomic_set(&dev_priv->mm.wedged, 0);
4624 mutex_lock(&dev->struct_mutex);
4625 dev_priv->mm.suspended = 0;
4627 ret = i915_gem_init_ringbuffer(dev);
4628 if (ret != 0) {
4629 mutex_unlock(&dev->struct_mutex);
4630 return ret;
4633 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4634 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4635 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4636 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
4637 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4638 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4639 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4640 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4641 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
4642 mutex_unlock(&dev->struct_mutex);
4644 ret = drm_irq_install(dev);
4645 if (ret)
4646 goto cleanup_ringbuffer;
4648 return 0;
4650 cleanup_ringbuffer:
4651 mutex_lock(&dev->struct_mutex);
4652 i915_gem_cleanup_ringbuffer(dev);
4653 dev_priv->mm.suspended = 1;
4654 mutex_unlock(&dev->struct_mutex);
4656 return ret;
4660 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4661 struct drm_file *file_priv)
4663 if (drm_core_check_feature(dev, DRIVER_MODESET))
4664 return 0;
4666 drm_irq_uninstall(dev);
4667 return i915_gem_idle(dev);
4670 void
4671 i915_gem_lastclose(struct drm_device *dev)
4673 int ret;
4675 if (drm_core_check_feature(dev, DRIVER_MODESET))
4676 return;
4678 ret = i915_gem_idle(dev);
4679 if (ret)
4680 DRM_ERROR("failed to idle hardware: %d\n", ret);
4683 static void
4684 init_ring_lists(struct intel_ring_buffer *ring)
4686 INIT_LIST_HEAD(&ring->active_list);
4687 INIT_LIST_HEAD(&ring->request_list);
4688 INIT_LIST_HEAD(&ring->gpu_write_list);
4691 void
4692 i915_gem_load(struct drm_device *dev)
4694 int i;
4695 drm_i915_private_t *dev_priv = dev->dev_private;
4697 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4698 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4699 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4700 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4701 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4702 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4703 init_ring_lists(&dev_priv->render_ring);
4704 init_ring_lists(&dev_priv->bsd_ring);
4705 init_ring_lists(&dev_priv->blt_ring);
4706 for (i = 0; i < 16; i++)
4707 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4708 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4709 i915_gem_retire_work_handler);
4710 init_completion(&dev_priv->error_completion);
4712 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4713 if (IS_GEN3(dev)) {
4714 u32 tmp = I915_READ(MI_ARB_STATE);
4715 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4716 /* arb state is a masked write, so set bit + bit in mask */
4717 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4718 I915_WRITE(MI_ARB_STATE, tmp);
4722 /* Old X drivers will take 0-2 for front, back, depth buffers */
4723 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4724 dev_priv->fence_reg_start = 3;
4726 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4727 dev_priv->num_fence_regs = 16;
4728 else
4729 dev_priv->num_fence_regs = 8;
4731 /* Initialize fence registers to zero */
4732 switch (INTEL_INFO(dev)->gen) {
4733 case 6:
4734 for (i = 0; i < 16; i++)
4735 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4736 break;
4737 case 5:
4738 case 4:
4739 for (i = 0; i < 16; i++)
4740 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4741 break;
4742 case 3:
4743 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4744 for (i = 0; i < 8; i++)
4745 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4746 case 2:
4747 for (i = 0; i < 8; i++)
4748 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4749 break;
4751 i915_gem_detect_bit_6_swizzle(dev);
4752 init_waitqueue_head(&dev_priv->pending_flip_queue);
4754 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4755 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4756 register_shrinker(&dev_priv->mm.inactive_shrinker);
4760 * Create a physically contiguous memory object for this object
4761 * e.g. for cursor + overlay regs
4763 static int i915_gem_init_phys_object(struct drm_device *dev,
4764 int id, int size, int align)
4766 drm_i915_private_t *dev_priv = dev->dev_private;
4767 struct drm_i915_gem_phys_object *phys_obj;
4768 int ret;
4770 if (dev_priv->mm.phys_objs[id - 1] || !size)
4771 return 0;
4773 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4774 if (!phys_obj)
4775 return -ENOMEM;
4777 phys_obj->id = id;
4779 phys_obj->handle = drm_pci_alloc(dev, size, align);
4780 if (!phys_obj->handle) {
4781 ret = -ENOMEM;
4782 goto kfree_obj;
4784 #ifdef CONFIG_X86
4785 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4786 #endif
4788 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4790 return 0;
4791 kfree_obj:
4792 kfree(phys_obj);
4793 return ret;
4796 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4798 drm_i915_private_t *dev_priv = dev->dev_private;
4799 struct drm_i915_gem_phys_object *phys_obj;
4801 if (!dev_priv->mm.phys_objs[id - 1])
4802 return;
4804 phys_obj = dev_priv->mm.phys_objs[id - 1];
4805 if (phys_obj->cur_obj) {
4806 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4809 #ifdef CONFIG_X86
4810 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4811 #endif
4812 drm_pci_free(dev, phys_obj->handle);
4813 kfree(phys_obj);
4814 dev_priv->mm.phys_objs[id - 1] = NULL;
4817 void i915_gem_free_all_phys_object(struct drm_device *dev)
4819 int i;
4821 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4822 i915_gem_free_phys_object(dev, i);
4825 void i915_gem_detach_phys_object(struct drm_device *dev,
4826 struct drm_gem_object *obj)
4828 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
4829 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4830 char *vaddr;
4831 int i;
4832 int page_count;
4834 if (!obj_priv->phys_obj)
4835 return;
4836 vaddr = obj_priv->phys_obj->handle->vaddr;
4838 page_count = obj->size / PAGE_SIZE;
4840 for (i = 0; i < page_count; i++) {
4841 struct page *page = read_cache_page_gfp(mapping, i,
4842 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4843 if (!IS_ERR(page)) {
4844 char *dst = kmap_atomic(page);
4845 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4846 kunmap_atomic(dst);
4848 drm_clflush_pages(&page, 1);
4850 set_page_dirty(page);
4851 mark_page_accessed(page);
4852 page_cache_release(page);
4855 drm_agp_chipset_flush(dev);
4857 obj_priv->phys_obj->cur_obj = NULL;
4858 obj_priv->phys_obj = NULL;
4862 i915_gem_attach_phys_object(struct drm_device *dev,
4863 struct drm_gem_object *obj,
4864 int id,
4865 int align)
4867 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
4868 drm_i915_private_t *dev_priv = dev->dev_private;
4869 struct drm_i915_gem_object *obj_priv;
4870 int ret = 0;
4871 int page_count;
4872 int i;
4874 if (id > I915_MAX_PHYS_OBJECT)
4875 return -EINVAL;
4877 obj_priv = to_intel_bo(obj);
4879 if (obj_priv->phys_obj) {
4880 if (obj_priv->phys_obj->id == id)
4881 return 0;
4882 i915_gem_detach_phys_object(dev, obj);
4885 /* create a new object */
4886 if (!dev_priv->mm.phys_objs[id - 1]) {
4887 ret = i915_gem_init_phys_object(dev, id,
4888 obj->size, align);
4889 if (ret) {
4890 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4891 return ret;
4895 /* bind to the object */
4896 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4897 obj_priv->phys_obj->cur_obj = obj;
4899 page_count = obj->size / PAGE_SIZE;
4901 for (i = 0; i < page_count; i++) {
4902 struct page *page;
4903 char *dst, *src;
4905 page = read_cache_page_gfp(mapping, i,
4906 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4907 if (IS_ERR(page))
4908 return PTR_ERR(page);
4910 src = kmap_atomic(obj_priv->pages[i]);
4911 dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4912 memcpy(dst, src, PAGE_SIZE);
4913 kunmap_atomic(src);
4915 mark_page_accessed(page);
4916 page_cache_release(page);
4919 return 0;
4922 static int
4923 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4924 struct drm_i915_gem_pwrite *args,
4925 struct drm_file *file_priv)
4927 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4928 void *obj_addr;
4929 int ret;
4930 char __user *user_data;
4932 user_data = (char __user *) (uintptr_t) args->data_ptr;
4933 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4935 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4936 ret = copy_from_user(obj_addr, user_data, args->size);
4937 if (ret)
4938 return -EFAULT;
4940 drm_agp_chipset_flush(dev);
4941 return 0;
4944 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4946 struct drm_i915_file_private *file_priv = file->driver_priv;
4948 /* Clean up our request list when the client is going away, so that
4949 * later retire_requests won't dereference our soon-to-be-gone
4950 * file_priv.
4952 spin_lock(&file_priv->mm.lock);
4953 while (!list_empty(&file_priv->mm.request_list)) {
4954 struct drm_i915_gem_request *request;
4956 request = list_first_entry(&file_priv->mm.request_list,
4957 struct drm_i915_gem_request,
4958 client_list);
4959 list_del(&request->client_list);
4960 request->file_priv = NULL;
4962 spin_unlock(&file_priv->mm.lock);
4965 static int
4966 i915_gpu_is_active(struct drm_device *dev)
4968 drm_i915_private_t *dev_priv = dev->dev_private;
4969 int lists_empty;
4971 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4972 list_empty(&dev_priv->mm.active_list);
4974 return !lists_empty;
4977 static int
4978 i915_gem_inactive_shrink(struct shrinker *shrinker,
4979 int nr_to_scan,
4980 gfp_t gfp_mask)
4982 struct drm_i915_private *dev_priv =
4983 container_of(shrinker,
4984 struct drm_i915_private,
4985 mm.inactive_shrinker);
4986 struct drm_device *dev = dev_priv->dev;
4987 struct drm_i915_gem_object *obj, *next;
4988 int cnt;
4990 if (!mutex_trylock(&dev->struct_mutex))
4991 return nr_to_scan ? 0 : -1;
4993 /* "fast-path" to count number of available objects */
4994 if (nr_to_scan == 0) {
4995 cnt = 0;
4996 list_for_each_entry(obj,
4997 &dev_priv->mm.inactive_list,
4998 mm_list)
4999 cnt++;
5000 mutex_unlock(&dev->struct_mutex);
5001 return cnt / 100 * sysctl_vfs_cache_pressure;
5004 rescan:
5005 /* first scan for clean buffers */
5006 i915_gem_retire_requests(dev);
5008 list_for_each_entry_safe(obj, next,
5009 &dev_priv->mm.inactive_list,
5010 mm_list) {
5011 if (i915_gem_object_is_purgeable(obj)) {
5012 i915_gem_object_unbind(&obj->base);
5013 if (--nr_to_scan == 0)
5014 break;
5018 /* second pass, evict/count anything still on the inactive list */
5019 cnt = 0;
5020 list_for_each_entry_safe(obj, next,
5021 &dev_priv->mm.inactive_list,
5022 mm_list) {
5023 if (nr_to_scan) {
5024 i915_gem_object_unbind(&obj->base);
5025 nr_to_scan--;
5026 } else
5027 cnt++;
5030 if (nr_to_scan && i915_gpu_is_active(dev)) {
5032 * We are desperate for pages, so as a last resort, wait
5033 * for the GPU to finish and discard whatever we can.
5034 * This has a dramatic impact to reduce the number of
5035 * OOM-killer events whilst running the GPU aggressively.
5037 if (i915_gpu_idle(dev) == 0)
5038 goto rescan;
5040 mutex_unlock(&dev->struct_mutex);
5041 return cnt / 100 * sysctl_vfs_cache_pressure;