ath5k: fix formatting errors found by checkpatch.pl
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / ath / ath5k / eeprom.c
blobf2657bf34fea40fb57614dd7d49482ed1d17b9b6
1 /*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
24 #include <linux/slab.h>
26 #include "ath5k.h"
27 #include "reg.h"
28 #include "debug.h"
29 #include "base.h"
32 /******************\
33 * Helper functions *
34 \******************/
37 * Translate binary channel representation in EEPROM to frequency
39 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
40 unsigned int mode)
42 u16 val;
44 if (bin == AR5K_EEPROM_CHANNEL_DIS)
45 return bin;
47 if (mode == AR5K_EEPROM_MODE_11A) {
48 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
49 val = (5 * bin) + 4800;
50 else
51 val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
52 (bin * 10) + 5100;
53 } else {
54 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
55 val = bin + 2300;
56 else
57 val = bin + 2400;
60 return val;
64 /*********\
65 * Parsers *
66 \*********/
69 * Initialize eeprom & capabilities structs
71 static int
72 ath5k_eeprom_init_header(struct ath5k_hw *ah)
74 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
75 u16 val;
76 u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
79 * Read values from EEPROM and store them in the capability structure
81 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
82 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
83 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
84 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
85 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
87 /* Return if we have an old EEPROM */
88 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
89 return 0;
92 * Validate the checksum of the EEPROM date. There are some
93 * devices with invalid EEPROMs.
95 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
96 if (val) {
97 eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
98 AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
99 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
100 eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
103 * Fail safe check to prevent stupid loops due
104 * to busted EEPROMs. XXX: This value is likely too
105 * big still, waiting on a better value.
107 if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
108 ATH5K_ERR(ah->ah_sc, "Invalid max custom EEPROM size: "
109 "%d (0x%04x) max expected: %d (0x%04x)\n",
110 eep_max, eep_max,
111 3 * AR5K_EEPROM_INFO_MAX,
112 3 * AR5K_EEPROM_INFO_MAX);
113 return -EIO;
117 for (cksum = 0, offset = 0; offset < eep_max; offset++) {
118 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
119 cksum ^= val;
121 if (cksum != AR5K_EEPROM_INFO_CKSUM) {
122 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM "
123 "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
124 cksum, eep_max,
125 eep_max == AR5K_EEPROM_INFO_MAX ?
126 "default size" : "custom size");
127 return -EIO;
130 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
131 ee_ant_gain);
133 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
134 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
135 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
137 /* XXX: Don't know which versions include these two */
138 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
140 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
141 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
143 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
144 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
145 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
146 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
150 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
151 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
152 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
153 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
155 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
156 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
157 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
160 AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
162 if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
163 ee->ee_is_hb63 = true;
164 else
165 ee->ee_is_hb63 = false;
167 AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
168 ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
169 ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
171 /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
172 * and enable serdes programming if needed.
174 * XXX: Serdes values seem to be fixed so
175 * no need to read them here, we write them
176 * during ath5k_hw_init */
177 AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
178 ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
179 true : false;
181 return 0;
186 * Read antenna infos from eeprom
188 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
189 unsigned int mode)
191 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
192 u32 o = *offset;
193 u16 val;
194 int i = 0;
196 AR5K_EEPROM_READ(o++, val);
197 ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
198 ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
199 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
201 AR5K_EEPROM_READ(o++, val);
202 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
203 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
204 ee->ee_ant_control[mode][i++] = val & 0x3f;
206 AR5K_EEPROM_READ(o++, val);
207 ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
208 ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
209 ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
211 AR5K_EEPROM_READ(o++, val);
212 ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
213 ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
214 ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
215 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
217 AR5K_EEPROM_READ(o++, val);
218 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
219 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
220 ee->ee_ant_control[mode][i++] = val & 0x3f;
222 /* Get antenna switch tables */
223 ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
224 (ee->ee_ant_control[mode][0] << 4);
225 ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
226 ee->ee_ant_control[mode][1] |
227 (ee->ee_ant_control[mode][2] << 6) |
228 (ee->ee_ant_control[mode][3] << 12) |
229 (ee->ee_ant_control[mode][4] << 18) |
230 (ee->ee_ant_control[mode][5] << 24);
231 ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
232 ee->ee_ant_control[mode][6] |
233 (ee->ee_ant_control[mode][7] << 6) |
234 (ee->ee_ant_control[mode][8] << 12) |
235 (ee->ee_ant_control[mode][9] << 18) |
236 (ee->ee_ant_control[mode][10] << 24);
238 /* return new offset */
239 *offset = o;
241 return 0;
245 * Read supported modes and some mode-specific calibration data
246 * from eeprom
248 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
249 unsigned int mode)
251 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
252 u32 o = *offset;
253 u16 val;
255 ee->ee_n_piers[mode] = 0;
256 AR5K_EEPROM_READ(o++, val);
257 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
258 switch (mode) {
259 case AR5K_EEPROM_MODE_11A:
260 ee->ee_ob[mode][3] = (val >> 5) & 0x7;
261 ee->ee_db[mode][3] = (val >> 2) & 0x7;
262 ee->ee_ob[mode][2] = (val << 1) & 0x7;
264 AR5K_EEPROM_READ(o++, val);
265 ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
266 ee->ee_db[mode][2] = (val >> 12) & 0x7;
267 ee->ee_ob[mode][1] = (val >> 9) & 0x7;
268 ee->ee_db[mode][1] = (val >> 6) & 0x7;
269 ee->ee_ob[mode][0] = (val >> 3) & 0x7;
270 ee->ee_db[mode][0] = val & 0x7;
271 break;
272 case AR5K_EEPROM_MODE_11G:
273 case AR5K_EEPROM_MODE_11B:
274 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
275 ee->ee_db[mode][1] = val & 0x7;
276 break;
279 AR5K_EEPROM_READ(o++, val);
280 ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
281 ee->ee_thr_62[mode] = val & 0xff;
283 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
284 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
286 AR5K_EEPROM_READ(o++, val);
287 ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
288 ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
290 AR5K_EEPROM_READ(o++, val);
291 ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
293 if ((val & 0xff) & 0x80)
294 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
295 else
296 ee->ee_noise_floor_thr[mode] = val & 0xff;
298 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
299 ee->ee_noise_floor_thr[mode] =
300 mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
302 AR5K_EEPROM_READ(o++, val);
303 ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
304 ee->ee_x_gain[mode] = (val >> 1) & 0xf;
305 ee->ee_xpd[mode] = val & 0x1;
307 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
308 mode != AR5K_EEPROM_MODE_11B)
309 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
311 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
312 AR5K_EEPROM_READ(o++, val);
313 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
315 if (mode == AR5K_EEPROM_MODE_11A)
316 ee->ee_xr_power[mode] = val & 0x3f;
317 else {
318 /* b_DB_11[bg] and b_OB_11[bg] */
319 ee->ee_ob[mode][0] = val & 0x7;
320 ee->ee_db[mode][0] = (val >> 3) & 0x7;
324 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
325 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
326 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
327 } else {
328 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
330 AR5K_EEPROM_READ(o++, val);
331 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
333 if (mode == AR5K_EEPROM_MODE_11G) {
334 ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
335 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
336 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
340 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
341 mode == AR5K_EEPROM_MODE_11A) {
342 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
343 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
346 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
347 goto done;
349 /* Note: >= v5 have bg freq piers on another location
350 * so these freq piers are ignored for >= v5 (should be 0xff
351 * anyway) */
352 switch (mode) {
353 case AR5K_EEPROM_MODE_11A:
354 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
355 break;
357 AR5K_EEPROM_READ(o++, val);
358 ee->ee_margin_tx_rx[mode] = val & 0x3f;
359 break;
360 case AR5K_EEPROM_MODE_11B:
361 AR5K_EEPROM_READ(o++, val);
363 ee->ee_pwr_cal_b[0].freq =
364 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
365 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
366 ee->ee_n_piers[mode]++;
368 ee->ee_pwr_cal_b[1].freq =
369 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
370 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
371 ee->ee_n_piers[mode]++;
373 AR5K_EEPROM_READ(o++, val);
374 ee->ee_pwr_cal_b[2].freq =
375 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
376 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
377 ee->ee_n_piers[mode]++;
379 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
380 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
381 break;
382 case AR5K_EEPROM_MODE_11G:
383 AR5K_EEPROM_READ(o++, val);
385 ee->ee_pwr_cal_g[0].freq =
386 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
387 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
388 ee->ee_n_piers[mode]++;
390 ee->ee_pwr_cal_g[1].freq =
391 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
392 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
393 ee->ee_n_piers[mode]++;
395 AR5K_EEPROM_READ(o++, val);
396 ee->ee_turbo_max_power[mode] = val & 0x7f;
397 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
399 AR5K_EEPROM_READ(o++, val);
400 ee->ee_pwr_cal_g[2].freq =
401 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
402 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
403 ee->ee_n_piers[mode]++;
405 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
406 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
408 AR5K_EEPROM_READ(o++, val);
409 ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
410 ee->ee_q_cal[mode] = val & 0x1f;
412 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
413 AR5K_EEPROM_READ(o++, val);
414 ee->ee_cck_ofdm_gain_delta = val & 0xff;
416 break;
420 * Read turbo mode information on newer EEPROM versions
422 if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
423 goto done;
425 switch (mode) {
426 case AR5K_EEPROM_MODE_11A:
427 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
429 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
430 AR5K_EEPROM_READ(o++, val);
431 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
432 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
434 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
435 AR5K_EEPROM_READ(o++, val);
436 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
437 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
439 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >= 2)
440 ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
441 break;
442 case AR5K_EEPROM_MODE_11G:
443 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
445 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
446 AR5K_EEPROM_READ(o++, val);
447 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
448 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
450 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
451 AR5K_EEPROM_READ(o++, val);
452 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
453 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
454 break;
457 done:
458 /* return new offset */
459 *offset = o;
461 return 0;
464 /* Read mode-specific data (except power calibration data) */
465 static int
466 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
468 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
469 u32 mode_offset[3];
470 unsigned int mode;
471 u32 offset;
472 int ret;
475 * Get values for all modes
477 mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
478 mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
479 mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
481 ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
482 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
484 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
485 offset = mode_offset[mode];
487 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
488 if (ret)
489 return ret;
491 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
492 if (ret)
493 return ret;
496 /* override for older eeprom versions for better performance */
497 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
498 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
499 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
500 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
503 return 0;
506 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
507 * frequency mask) */
508 static inline int
509 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
510 struct ath5k_chan_pcal_info *pc, unsigned int mode)
512 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
513 int o = *offset;
514 int i = 0;
515 u8 freq1, freq2;
516 u16 val;
518 ee->ee_n_piers[mode] = 0;
519 while (i < max) {
520 AR5K_EEPROM_READ(o++, val);
522 freq1 = val & 0xff;
523 if (!freq1)
524 break;
526 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
527 freq1, mode);
528 ee->ee_n_piers[mode]++;
530 freq2 = (val >> 8) & 0xff;
531 if (!freq2)
532 break;
534 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
535 freq2, mode);
536 ee->ee_n_piers[mode]++;
539 /* return new offset */
540 *offset = o;
542 return 0;
545 /* Read frequency piers for 802.11a */
546 static int
547 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
549 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
550 struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
551 int i;
552 u16 val;
553 u8 mask;
555 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
556 ath5k_eeprom_read_freq_list(ah, &offset,
557 AR5K_EEPROM_N_5GHZ_CHAN, pcal,
558 AR5K_EEPROM_MODE_11A);
559 } else {
560 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
562 AR5K_EEPROM_READ(offset++, val);
563 pcal[0].freq = (val >> 9) & mask;
564 pcal[1].freq = (val >> 2) & mask;
565 pcal[2].freq = (val << 5) & mask;
567 AR5K_EEPROM_READ(offset++, val);
568 pcal[2].freq |= (val >> 11) & 0x1f;
569 pcal[3].freq = (val >> 4) & mask;
570 pcal[4].freq = (val << 3) & mask;
572 AR5K_EEPROM_READ(offset++, val);
573 pcal[4].freq |= (val >> 13) & 0x7;
574 pcal[5].freq = (val >> 6) & mask;
575 pcal[6].freq = (val << 1) & mask;
577 AR5K_EEPROM_READ(offset++, val);
578 pcal[6].freq |= (val >> 15) & 0x1;
579 pcal[7].freq = (val >> 8) & mask;
580 pcal[8].freq = (val >> 1) & mask;
581 pcal[9].freq = (val << 6) & mask;
583 AR5K_EEPROM_READ(offset++, val);
584 pcal[9].freq |= (val >> 10) & 0x3f;
586 /* Fixed number of piers */
587 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
589 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
590 pcal[i].freq = ath5k_eeprom_bin2freq(ee,
591 pcal[i].freq, AR5K_EEPROM_MODE_11A);
595 return 0;
598 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
599 static inline int
600 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
602 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
603 struct ath5k_chan_pcal_info *pcal;
605 switch (mode) {
606 case AR5K_EEPROM_MODE_11B:
607 pcal = ee->ee_pwr_cal_b;
608 break;
609 case AR5K_EEPROM_MODE_11G:
610 pcal = ee->ee_pwr_cal_g;
611 break;
612 default:
613 return -EINVAL;
616 ath5k_eeprom_read_freq_list(ah, &offset,
617 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
618 mode);
620 return 0;
625 * Read power calibration for RF5111 chips
627 * For RF5111 we have an XPD -eXternal Power Detector- curve
628 * for each calibrated channel. Each curve has 0,5dB Power steps
629 * on x axis and PCDAC steps (offsets) on y axis and looks like an
630 * exponential function. To recreate the curve we read 11 points
631 * here and interpolate later.
634 /* Used to match PCDAC steps with power values on RF5111 chips
635 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
636 * steps that match with the power values we read from eeprom. On
637 * older eeprom versions (< 3.2) these steps are equaly spaced at
638 * 10% of the pcdac curve -until the curve reaches its maximum-
639 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
640 * these 11 steps are spaced in a different way. This function returns
641 * the pcdac steps based on eeprom version and curve min/max so that we
642 * can have pcdac/pwr points.
644 static inline void
645 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
647 static const u16 intercepts3[] = {
648 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100
650 static const u16 intercepts3_2[] = {
651 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
653 const u16 *ip;
654 int i;
656 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
657 ip = intercepts3_2;
658 else
659 ip = intercepts3;
661 for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
662 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
665 static int
666 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
668 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
669 struct ath5k_chan_pcal_info *chinfo;
670 u8 pier, pdg;
672 switch (mode) {
673 case AR5K_EEPROM_MODE_11A:
674 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
675 return 0;
676 chinfo = ee->ee_pwr_cal_a;
677 break;
678 case AR5K_EEPROM_MODE_11B:
679 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
680 return 0;
681 chinfo = ee->ee_pwr_cal_b;
682 break;
683 case AR5K_EEPROM_MODE_11G:
684 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
685 return 0;
686 chinfo = ee->ee_pwr_cal_g;
687 break;
688 default:
689 return -EINVAL;
692 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
693 if (!chinfo[pier].pd_curves)
694 continue;
696 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
697 struct ath5k_pdgain_info *pd =
698 &chinfo[pier].pd_curves[pdg];
700 if (pd != NULL) {
701 kfree(pd->pd_step);
702 kfree(pd->pd_pwr);
706 kfree(chinfo[pier].pd_curves);
709 return 0;
712 /* Convert RF5111 specific data to generic raw data
713 * used by interpolation code */
714 static int
715 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
716 struct ath5k_chan_pcal_info *chinfo)
718 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
719 struct ath5k_chan_pcal_info_rf5111 *pcinfo;
720 struct ath5k_pdgain_info *pd;
721 u8 pier, point, idx;
722 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
724 /* Fill raw data for each calibration pier */
725 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
727 pcinfo = &chinfo[pier].rf5111_info;
729 /* Allocate pd_curves for this cal pier */
730 chinfo[pier].pd_curves =
731 kcalloc(AR5K_EEPROM_N_PD_CURVES,
732 sizeof(struct ath5k_pdgain_info),
733 GFP_KERNEL);
735 if (!chinfo[pier].pd_curves)
736 goto err_out;
738 /* Only one curve for RF5111
739 * find out which one and place
740 * in pd_curves.
741 * Note: ee_x_gain is reversed here */
742 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
744 if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
745 pdgain_idx[0] = idx;
746 break;
750 ee->ee_pd_gains[mode] = 1;
752 pd = &chinfo[pier].pd_curves[idx];
754 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
756 /* Allocate pd points for this curve */
757 pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
758 sizeof(u8), GFP_KERNEL);
759 if (!pd->pd_step)
760 goto err_out;
762 pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
763 sizeof(s16), GFP_KERNEL);
764 if (!pd->pd_pwr)
765 goto err_out;
767 /* Fill raw dataset
768 * (convert power to 0.25dB units
769 * for RF5112 combatibility) */
770 for (point = 0; point < pd->pd_points; point++) {
772 /* Absolute values */
773 pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
775 /* Already sorted */
776 pd->pd_step[point] = pcinfo->pcdac[point];
779 /* Set min/max pwr */
780 chinfo[pier].min_pwr = pd->pd_pwr[0];
781 chinfo[pier].max_pwr = pd->pd_pwr[10];
785 return 0;
787 err_out:
788 ath5k_eeprom_free_pcal_info(ah, mode);
789 return -ENOMEM;
792 /* Parse EEPROM data */
793 static int
794 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
796 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
797 struct ath5k_chan_pcal_info *pcal;
798 int offset, ret;
799 int i;
800 u16 val;
802 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
803 switch (mode) {
804 case AR5K_EEPROM_MODE_11A:
805 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
806 return 0;
808 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
809 offset + AR5K_EEPROM_GROUP1_OFFSET);
810 if (ret < 0)
811 return ret;
813 offset += AR5K_EEPROM_GROUP2_OFFSET;
814 pcal = ee->ee_pwr_cal_a;
815 break;
816 case AR5K_EEPROM_MODE_11B:
817 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
818 !AR5K_EEPROM_HDR_11G(ee->ee_header))
819 return 0;
821 pcal = ee->ee_pwr_cal_b;
822 offset += AR5K_EEPROM_GROUP3_OFFSET;
824 /* fixed piers */
825 pcal[0].freq = 2412;
826 pcal[1].freq = 2447;
827 pcal[2].freq = 2484;
828 ee->ee_n_piers[mode] = 3;
829 break;
830 case AR5K_EEPROM_MODE_11G:
831 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
832 return 0;
834 pcal = ee->ee_pwr_cal_g;
835 offset += AR5K_EEPROM_GROUP4_OFFSET;
837 /* fixed piers */
838 pcal[0].freq = 2312;
839 pcal[1].freq = 2412;
840 pcal[2].freq = 2484;
841 ee->ee_n_piers[mode] = 3;
842 break;
843 default:
844 return -EINVAL;
847 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
848 struct ath5k_chan_pcal_info_rf5111 *cdata =
849 &pcal[i].rf5111_info;
851 AR5K_EEPROM_READ(offset++, val);
852 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
853 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
854 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
856 AR5K_EEPROM_READ(offset++, val);
857 cdata->pwr[0] |= ((val >> 14) & 0x3);
858 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
859 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
860 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
862 AR5K_EEPROM_READ(offset++, val);
863 cdata->pwr[3] |= ((val >> 12) & 0xf);
864 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
865 cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
867 AR5K_EEPROM_READ(offset++, val);
868 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
869 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
870 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
872 AR5K_EEPROM_READ(offset++, val);
873 cdata->pwr[8] |= ((val >> 14) & 0x3);
874 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
875 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
877 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
878 cdata->pcdac_max, cdata->pcdac);
881 return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
886 * Read power calibration for RF5112 chips
888 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
889 * for each calibrated channel on 0, -6, -12 and -18dbm but we only
890 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
891 * power steps on x axis and PCDAC steps on y axis and looks like a
892 * linear function. To recreate the curve and pass the power values
893 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
894 * and 3 points for xpd 3 (higher gain -> lower power) here and
895 * interpolate later.
897 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
900 /* Convert RF5112 specific data to generic raw data
901 * used by interpolation code */
902 static int
903 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
904 struct ath5k_chan_pcal_info *chinfo)
906 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
907 struct ath5k_chan_pcal_info_rf5112 *pcinfo;
908 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
909 unsigned int pier, pdg, point;
911 /* Fill raw data for each calibration pier */
912 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
914 pcinfo = &chinfo[pier].rf5112_info;
916 /* Allocate pd_curves for this cal pier */
917 chinfo[pier].pd_curves =
918 kcalloc(AR5K_EEPROM_N_PD_CURVES,
919 sizeof(struct ath5k_pdgain_info),
920 GFP_KERNEL);
922 if (!chinfo[pier].pd_curves)
923 goto err_out;
925 /* Fill pd_curves */
926 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
928 u8 idx = pdgain_idx[pdg];
929 struct ath5k_pdgain_info *pd =
930 &chinfo[pier].pd_curves[idx];
932 /* Lowest gain curve (max power) */
933 if (pdg == 0) {
934 /* One more point for better accuracy */
935 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
937 /* Allocate pd points for this curve */
938 pd->pd_step = kcalloc(pd->pd_points,
939 sizeof(u8), GFP_KERNEL);
941 if (!pd->pd_step)
942 goto err_out;
944 pd->pd_pwr = kcalloc(pd->pd_points,
945 sizeof(s16), GFP_KERNEL);
947 if (!pd->pd_pwr)
948 goto err_out;
950 /* Fill raw dataset
951 * (all power levels are in 0.25dB units) */
952 pd->pd_step[0] = pcinfo->pcdac_x0[0];
953 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
955 for (point = 1; point < pd->pd_points;
956 point++) {
957 /* Absolute values */
958 pd->pd_pwr[point] =
959 pcinfo->pwr_x0[point];
961 /* Deltas */
962 pd->pd_step[point] =
963 pd->pd_step[point - 1] +
964 pcinfo->pcdac_x0[point];
967 /* Set min power for this frequency */
968 chinfo[pier].min_pwr = pd->pd_pwr[0];
970 /* Highest gain curve (min power) */
971 } else if (pdg == 1) {
973 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
975 /* Allocate pd points for this curve */
976 pd->pd_step = kcalloc(pd->pd_points,
977 sizeof(u8), GFP_KERNEL);
979 if (!pd->pd_step)
980 goto err_out;
982 pd->pd_pwr = kcalloc(pd->pd_points,
983 sizeof(s16), GFP_KERNEL);
985 if (!pd->pd_pwr)
986 goto err_out;
988 /* Fill raw dataset
989 * (all power levels are in 0.25dB units) */
990 for (point = 0; point < pd->pd_points;
991 point++) {
992 /* Absolute values */
993 pd->pd_pwr[point] =
994 pcinfo->pwr_x3[point];
996 /* Fixed points */
997 pd->pd_step[point] =
998 pcinfo->pcdac_x3[point];
1001 /* Since we have a higher gain curve
1002 * override min power */
1003 chinfo[pier].min_pwr = pd->pd_pwr[0];
1008 return 0;
1010 err_out:
1011 ath5k_eeprom_free_pcal_info(ah, mode);
1012 return -ENOMEM;
1015 /* Parse EEPROM data */
1016 static int
1017 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
1019 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1020 struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
1021 struct ath5k_chan_pcal_info *gen_chan_info;
1022 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1023 u32 offset;
1024 u8 i, c;
1025 u16 val;
1026 u8 pd_gains = 0;
1028 /* Count how many curves we have and
1029 * identify them (which one of the 4
1030 * available curves we have on each count).
1031 * Curves are stored from lower (x0) to
1032 * higher (x3) gain */
1033 for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
1034 /* ee_x_gain[mode] is x gain mask */
1035 if ((ee->ee_x_gain[mode] >> i) & 0x1)
1036 pdgain_idx[pd_gains++] = i;
1038 ee->ee_pd_gains[mode] = pd_gains;
1040 if (pd_gains == 0 || pd_gains > 2)
1041 return -EINVAL;
1043 switch (mode) {
1044 case AR5K_EEPROM_MODE_11A:
1046 * Read 5GHz EEPROM channels
1048 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1049 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1051 offset += AR5K_EEPROM_GROUP2_OFFSET;
1052 gen_chan_info = ee->ee_pwr_cal_a;
1053 break;
1054 case AR5K_EEPROM_MODE_11B:
1055 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1056 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1057 offset += AR5K_EEPROM_GROUP3_OFFSET;
1059 /* NB: frequency piers parsed during mode init */
1060 gen_chan_info = ee->ee_pwr_cal_b;
1061 break;
1062 case AR5K_EEPROM_MODE_11G:
1063 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1064 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1065 offset += AR5K_EEPROM_GROUP4_OFFSET;
1066 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1067 offset += AR5K_EEPROM_GROUP2_OFFSET;
1069 /* NB: frequency piers parsed during mode init */
1070 gen_chan_info = ee->ee_pwr_cal_g;
1071 break;
1072 default:
1073 return -EINVAL;
1076 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1077 chan_pcal_info = &gen_chan_info[i].rf5112_info;
1079 /* Power values in quarter dB
1080 * for the lower xpd gain curve
1081 * (0 dBm -> higher output power) */
1082 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1083 AR5K_EEPROM_READ(offset++, val);
1084 chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1085 chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1088 /* PCDAC steps
1089 * corresponding to the above power
1090 * measurements */
1091 AR5K_EEPROM_READ(offset++, val);
1092 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1093 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1094 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1096 /* Power values in quarter dB
1097 * for the higher xpd gain curve
1098 * (18 dBm -> lower output power) */
1099 AR5K_EEPROM_READ(offset++, val);
1100 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1101 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1103 AR5K_EEPROM_READ(offset++, val);
1104 chan_pcal_info->pwr_x3[2] = (val & 0xff);
1106 /* PCDAC steps
1107 * corresponding to the above power
1108 * measurements (fixed) */
1109 chan_pcal_info->pcdac_x3[0] = 20;
1110 chan_pcal_info->pcdac_x3[1] = 35;
1111 chan_pcal_info->pcdac_x3[2] = 63;
1113 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1114 chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1116 /* Last xpd0 power level is also channel maximum */
1117 gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1118 } else {
1119 chan_pcal_info->pcdac_x0[0] = 1;
1120 gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1125 return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1130 * Read power calibration for RF2413 chips
1132 * For RF2413 we have a Power to PDDAC table (Power Detector)
1133 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1134 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1135 * axis and looks like an exponential function like the RF5111 curve.
1137 * To recreate the curves we read here the points and interpolate
1138 * later. Note that in most cases only 2 (higher and lower) curves are
1139 * used (like RF5112) but vendors have the opportunity to include all
1140 * 4 curves on eeprom. The final curve (higher power) has an extra
1141 * point for better accuracy like RF5112.
1144 /* For RF2413 power calibration data doesn't start on a fixed location and
1145 * if a mode is not supported, its section is missing -not zeroed-.
1146 * So we need to calculate the starting offset for each section by using
1147 * these two functions */
1149 /* Return the size of each section based on the mode and the number of pd
1150 * gains available (maximum 4). */
1151 static inline unsigned int
1152 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1154 static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1155 unsigned int sz;
1157 sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1158 sz *= ee->ee_n_piers[mode];
1160 return sz;
1163 /* Return the starting offset for a section based on the modes supported
1164 * and each section's size. */
1165 static unsigned int
1166 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1168 u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1170 switch (mode) {
1171 case AR5K_EEPROM_MODE_11G:
1172 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1173 offset += ath5k_pdgains_size_2413(ee,
1174 AR5K_EEPROM_MODE_11B) +
1175 AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1176 /* fall through */
1177 case AR5K_EEPROM_MODE_11B:
1178 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1179 offset += ath5k_pdgains_size_2413(ee,
1180 AR5K_EEPROM_MODE_11A) +
1181 AR5K_EEPROM_N_5GHZ_CHAN / 2;
1182 /* fall through */
1183 case AR5K_EEPROM_MODE_11A:
1184 break;
1185 default:
1186 break;
1189 return offset;
1192 /* Convert RF2413 specific data to generic raw data
1193 * used by interpolation code */
1194 static int
1195 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1196 struct ath5k_chan_pcal_info *chinfo)
1198 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1199 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1200 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1201 unsigned int pier, pdg, point;
1203 /* Fill raw data for each calibration pier */
1204 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1206 pcinfo = &chinfo[pier].rf2413_info;
1208 /* Allocate pd_curves for this cal pier */
1209 chinfo[pier].pd_curves =
1210 kcalloc(AR5K_EEPROM_N_PD_CURVES,
1211 sizeof(struct ath5k_pdgain_info),
1212 GFP_KERNEL);
1214 if (!chinfo[pier].pd_curves)
1215 goto err_out;
1217 /* Fill pd_curves */
1218 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1220 u8 idx = pdgain_idx[pdg];
1221 struct ath5k_pdgain_info *pd =
1222 &chinfo[pier].pd_curves[idx];
1224 /* One more point for the highest power
1225 * curve (lowest gain) */
1226 if (pdg == ee->ee_pd_gains[mode] - 1)
1227 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1228 else
1229 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1231 /* Allocate pd points for this curve */
1232 pd->pd_step = kcalloc(pd->pd_points,
1233 sizeof(u8), GFP_KERNEL);
1235 if (!pd->pd_step)
1236 goto err_out;
1238 pd->pd_pwr = kcalloc(pd->pd_points,
1239 sizeof(s16), GFP_KERNEL);
1241 if (!pd->pd_pwr)
1242 goto err_out;
1244 /* Fill raw dataset
1245 * convert all pwr levels to
1246 * quarter dB for RF5112 combatibility */
1247 pd->pd_step[0] = pcinfo->pddac_i[pdg];
1248 pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1250 for (point = 1; point < pd->pd_points; point++) {
1252 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1253 2 * pcinfo->pwr[pdg][point - 1];
1255 pd->pd_step[point] = pd->pd_step[point - 1] +
1256 pcinfo->pddac[pdg][point - 1];
1260 /* Highest gain curve -> min power */
1261 if (pdg == 0)
1262 chinfo[pier].min_pwr = pd->pd_pwr[0];
1264 /* Lowest gain curve -> max power */
1265 if (pdg == ee->ee_pd_gains[mode] - 1)
1266 chinfo[pier].max_pwr =
1267 pd->pd_pwr[pd->pd_points - 1];
1271 return 0;
1273 err_out:
1274 ath5k_eeprom_free_pcal_info(ah, mode);
1275 return -ENOMEM;
1278 /* Parse EEPROM data */
1279 static int
1280 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1282 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1283 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1284 struct ath5k_chan_pcal_info *chinfo;
1285 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1286 u32 offset;
1287 int idx, i;
1288 u16 val;
1289 u8 pd_gains = 0;
1291 /* Count how many curves we have and
1292 * identify them (which one of the 4
1293 * available curves we have on each count).
1294 * Curves are stored from higher to
1295 * lower gain so we go backwards */
1296 for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1297 /* ee_x_gain[mode] is x gain mask */
1298 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1299 pdgain_idx[pd_gains++] = idx;
1302 ee->ee_pd_gains[mode] = pd_gains;
1304 if (pd_gains == 0)
1305 return -EINVAL;
1307 offset = ath5k_cal_data_offset_2413(ee, mode);
1308 switch (mode) {
1309 case AR5K_EEPROM_MODE_11A:
1310 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1311 return 0;
1313 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1314 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1315 chinfo = ee->ee_pwr_cal_a;
1316 break;
1317 case AR5K_EEPROM_MODE_11B:
1318 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1319 return 0;
1321 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1322 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1323 chinfo = ee->ee_pwr_cal_b;
1324 break;
1325 case AR5K_EEPROM_MODE_11G:
1326 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1327 return 0;
1329 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1330 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1331 chinfo = ee->ee_pwr_cal_g;
1332 break;
1333 default:
1334 return -EINVAL;
1337 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1338 pcinfo = &chinfo[i].rf2413_info;
1341 * Read pwr_i, pddac_i and the first
1342 * 2 pd points (pwr, pddac)
1344 AR5K_EEPROM_READ(offset++, val);
1345 pcinfo->pwr_i[0] = val & 0x1f;
1346 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1347 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1349 AR5K_EEPROM_READ(offset++, val);
1350 pcinfo->pddac[0][0] = val & 0x3f;
1351 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1352 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1354 AR5K_EEPROM_READ(offset++, val);
1355 pcinfo->pwr[0][2] = val & 0xf;
1356 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1358 pcinfo->pwr[0][3] = 0;
1359 pcinfo->pddac[0][3] = 0;
1361 if (pd_gains > 1) {
1363 * Pd gain 0 is not the last pd gain
1364 * so it only has 2 pd points.
1365 * Continue with pd gain 1.
1367 pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1369 pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1370 AR5K_EEPROM_READ(offset++, val);
1371 pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1373 pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1374 pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1376 AR5K_EEPROM_READ(offset++, val);
1377 pcinfo->pwr[1][1] = val & 0xf;
1378 pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1379 pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1381 pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1382 AR5K_EEPROM_READ(offset++, val);
1383 pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1385 pcinfo->pwr[1][3] = 0;
1386 pcinfo->pddac[1][3] = 0;
1387 } else if (pd_gains == 1) {
1389 * Pd gain 0 is the last one so
1390 * read the extra point.
1392 pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1394 pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1395 AR5K_EEPROM_READ(offset++, val);
1396 pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1400 * Proceed with the other pd_gains
1401 * as above.
1403 if (pd_gains > 2) {
1404 pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1405 pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1407 AR5K_EEPROM_READ(offset++, val);
1408 pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1409 pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1410 pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1412 pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1413 AR5K_EEPROM_READ(offset++, val);
1414 pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1416 pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1417 pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1419 pcinfo->pwr[2][3] = 0;
1420 pcinfo->pddac[2][3] = 0;
1421 } else if (pd_gains == 2) {
1422 pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1423 pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1426 if (pd_gains > 3) {
1427 pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1428 AR5K_EEPROM_READ(offset++, val);
1429 pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1431 pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1432 pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1433 pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1435 AR5K_EEPROM_READ(offset++, val);
1436 pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1437 pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1438 pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1440 pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1441 AR5K_EEPROM_READ(offset++, val);
1442 pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1444 pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1445 pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1447 pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1448 AR5K_EEPROM_READ(offset++, val);
1449 pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1450 } else if (pd_gains == 3) {
1451 pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1452 AR5K_EEPROM_READ(offset++, val);
1453 pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1455 pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1459 return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1464 * Read per rate target power (this is the maximum tx power
1465 * supported by the card). This info is used when setting
1466 * tx power, no matter the channel.
1468 * This also works for v5 EEPROMs.
1470 static int
1471 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1473 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1474 struct ath5k_rate_pcal_info *rate_pcal_info;
1475 u8 *rate_target_pwr_num;
1476 u32 offset;
1477 u16 val;
1478 int i;
1480 offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1481 rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1482 switch (mode) {
1483 case AR5K_EEPROM_MODE_11A:
1484 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1485 rate_pcal_info = ee->ee_rate_tpwr_a;
1486 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1487 break;
1488 case AR5K_EEPROM_MODE_11B:
1489 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1490 rate_pcal_info = ee->ee_rate_tpwr_b;
1491 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1492 break;
1493 case AR5K_EEPROM_MODE_11G:
1494 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1495 rate_pcal_info = ee->ee_rate_tpwr_g;
1496 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1497 break;
1498 default:
1499 return -EINVAL;
1502 /* Different freq mask for older eeproms (<= v3.2) */
1503 if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1504 for (i = 0; i < (*rate_target_pwr_num); i++) {
1505 AR5K_EEPROM_READ(offset++, val);
1506 rate_pcal_info[i].freq =
1507 ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1509 rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1510 rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1512 AR5K_EEPROM_READ(offset++, val);
1514 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1515 val == 0) {
1516 (*rate_target_pwr_num) = i;
1517 break;
1520 rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1521 rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1522 rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1524 } else {
1525 for (i = 0; i < (*rate_target_pwr_num); i++) {
1526 AR5K_EEPROM_READ(offset++, val);
1527 rate_pcal_info[i].freq =
1528 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1530 rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1531 rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1533 AR5K_EEPROM_READ(offset++, val);
1535 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1536 val == 0) {
1537 (*rate_target_pwr_num) = i;
1538 break;
1541 rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1542 rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1543 rate_pcal_info[i].target_power_54 = (val & 0x3f);
1547 return 0;
1552 * Read per channel calibration info from EEPROM
1554 * This info is used to calibrate the baseband power table. Imagine
1555 * that for each channel there is a power curve that's hw specific
1556 * (depends on amplifier etc) and we try to "correct" this curve using
1557 * offsets we pass on to phy chip (baseband -> before amplifier) so that
1558 * it can use accurate power values when setting tx power (takes amplifier's
1559 * performance on each channel into account).
1561 * EEPROM provides us with the offsets for some pre-calibrated channels
1562 * and we have to interpolate to create the full table for these channels and
1563 * also the table for any channel.
1565 static int
1566 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1568 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1569 int (*read_pcal)(struct ath5k_hw *hw, int mode);
1570 int mode;
1571 int err;
1573 if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1574 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1575 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1576 else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1577 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1578 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1579 else
1580 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1583 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1584 mode++) {
1585 err = read_pcal(ah, mode);
1586 if (err)
1587 return err;
1589 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1590 if (err < 0)
1591 return err;
1594 return 0;
1597 /* Read conformance test limits used for regulatory control */
1598 static int
1599 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1601 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1602 struct ath5k_edge_power *rep;
1603 unsigned int fmask, pmask;
1604 unsigned int ctl_mode;
1605 int i, j;
1606 u32 offset;
1607 u16 val;
1609 pmask = AR5K_EEPROM_POWER_M;
1610 fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1611 offset = AR5K_EEPROM_CTL(ee->ee_version);
1612 ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1613 for (i = 0; i < ee->ee_ctls; i += 2) {
1614 AR5K_EEPROM_READ(offset++, val);
1615 ee->ee_ctl[i] = (val >> 8) & 0xff;
1616 ee->ee_ctl[i + 1] = val & 0xff;
1619 offset = AR5K_EEPROM_GROUP8_OFFSET;
1620 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1621 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1622 AR5K_EEPROM_GROUP5_OFFSET;
1623 else
1624 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1626 rep = ee->ee_ctl_pwr;
1627 for (i = 0; i < ee->ee_ctls; i++) {
1628 switch (ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1629 case AR5K_CTL_11A:
1630 case AR5K_CTL_TURBO:
1631 ctl_mode = AR5K_EEPROM_MODE_11A;
1632 break;
1633 default:
1634 ctl_mode = AR5K_EEPROM_MODE_11G;
1635 break;
1637 if (ee->ee_ctl[i] == 0) {
1638 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1639 offset += 8;
1640 else
1641 offset += 7;
1642 rep += AR5K_EEPROM_N_EDGES;
1643 continue;
1645 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1646 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1647 AR5K_EEPROM_READ(offset++, val);
1648 rep[j].freq = (val >> 8) & fmask;
1649 rep[j + 1].freq = val & fmask;
1651 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1652 AR5K_EEPROM_READ(offset++, val);
1653 rep[j].edge = (val >> 8) & pmask;
1654 rep[j].flag = (val >> 14) & 1;
1655 rep[j + 1].edge = val & pmask;
1656 rep[j + 1].flag = (val >> 6) & 1;
1658 } else {
1659 AR5K_EEPROM_READ(offset++, val);
1660 rep[0].freq = (val >> 9) & fmask;
1661 rep[1].freq = (val >> 2) & fmask;
1662 rep[2].freq = (val << 5) & fmask;
1664 AR5K_EEPROM_READ(offset++, val);
1665 rep[2].freq |= (val >> 11) & 0x1f;
1666 rep[3].freq = (val >> 4) & fmask;
1667 rep[4].freq = (val << 3) & fmask;
1669 AR5K_EEPROM_READ(offset++, val);
1670 rep[4].freq |= (val >> 13) & 0x7;
1671 rep[5].freq = (val >> 6) & fmask;
1672 rep[6].freq = (val << 1) & fmask;
1674 AR5K_EEPROM_READ(offset++, val);
1675 rep[6].freq |= (val >> 15) & 0x1;
1676 rep[7].freq = (val >> 8) & fmask;
1678 rep[0].edge = (val >> 2) & pmask;
1679 rep[1].edge = (val << 4) & pmask;
1681 AR5K_EEPROM_READ(offset++, val);
1682 rep[1].edge |= (val >> 12) & 0xf;
1683 rep[2].edge = (val >> 6) & pmask;
1684 rep[3].edge = val & pmask;
1686 AR5K_EEPROM_READ(offset++, val);
1687 rep[4].edge = (val >> 10) & pmask;
1688 rep[5].edge = (val >> 4) & pmask;
1689 rep[6].edge = (val << 2) & pmask;
1691 AR5K_EEPROM_READ(offset++, val);
1692 rep[6].edge |= (val >> 14) & 0x3;
1693 rep[7].edge = (val >> 8) & pmask;
1695 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1696 rep[j].freq = ath5k_eeprom_bin2freq(ee,
1697 rep[j].freq, ctl_mode);
1699 rep += AR5K_EEPROM_N_EDGES;
1702 return 0;
1705 static int
1706 ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1708 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1709 u32 offset;
1710 u16 val;
1711 int ret = 0, i;
1713 offset = AR5K_EEPROM_CTL(ee->ee_version) +
1714 AR5K_EEPROM_N_CTLS(ee->ee_version);
1716 if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1717 /* No spur info for 5GHz */
1718 ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1719 /* 2 channels for 2GHz (2464/2420) */
1720 ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1721 ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1722 ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1723 } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1724 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1725 AR5K_EEPROM_READ(offset, val);
1726 ee->ee_spur_chans[i][0] = val;
1727 AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1728 val);
1729 ee->ee_spur_chans[i][1] = val;
1730 offset++;
1734 return ret;
1738 /***********************\
1739 * Init/Detach functions *
1740 \***********************/
1743 * Initialize eeprom data structure
1746 ath5k_eeprom_init(struct ath5k_hw *ah)
1748 int err;
1750 err = ath5k_eeprom_init_header(ah);
1751 if (err < 0)
1752 return err;
1754 err = ath5k_eeprom_init_modes(ah);
1755 if (err < 0)
1756 return err;
1758 err = ath5k_eeprom_read_pcal_info(ah);
1759 if (err < 0)
1760 return err;
1762 err = ath5k_eeprom_read_ctl_info(ah);
1763 if (err < 0)
1764 return err;
1766 err = ath5k_eeprom_read_spur_chans(ah);
1767 if (err < 0)
1768 return err;
1770 return 0;
1773 void
1774 ath5k_eeprom_detach(struct ath5k_hw *ah)
1776 u8 mode;
1778 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1779 ath5k_eeprom_free_pcal_info(ah, mode);
1783 ath5k_eeprom_mode_from_channel(struct ieee80211_channel *channel)
1785 switch (channel->hw_value & CHANNEL_MODES) {
1786 case CHANNEL_A:
1787 case CHANNEL_XR:
1788 return AR5K_EEPROM_MODE_11A;
1789 case CHANNEL_G:
1790 return AR5K_EEPROM_MODE_11G;
1791 case CHANNEL_B:
1792 return AR5K_EEPROM_MODE_11B;
1793 default:
1794 return -1;