USB: misc: usbsevseg: fix up some sysfs attribute permissions
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / perf_event.c
blob183d437f4a0fb7c5ad96ad82ae3f6d28333e52e1
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
32 #include <asm/irq_regs.h>
35 * Each CPU has a list of per CPU events:
37 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
39 int perf_max_events __read_mostly = 1;
40 static int perf_reserved_percpu __read_mostly;
41 static int perf_overcommit __read_mostly = 1;
43 static atomic_t nr_events __read_mostly;
44 static atomic_t nr_mmap_events __read_mostly;
45 static atomic_t nr_comm_events __read_mostly;
46 static atomic_t nr_task_events __read_mostly;
49 * perf event paranoia level:
50 * -1 - not paranoid at all
51 * 0 - disallow raw tracepoint access for unpriv
52 * 1 - disallow cpu events for unpriv
53 * 2 - disallow kernel profiling for unpriv
55 int sysctl_perf_event_paranoid __read_mostly = 1;
57 static inline bool perf_paranoid_tracepoint_raw(void)
59 return sysctl_perf_event_paranoid > -1;
62 static inline bool perf_paranoid_cpu(void)
64 return sysctl_perf_event_paranoid > 0;
67 static inline bool perf_paranoid_kernel(void)
69 return sysctl_perf_event_paranoid > 1;
72 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75 * max perf event sample rate
77 int sysctl_perf_event_sample_rate __read_mostly = 100000;
79 static atomic64_t perf_event_id;
82 * Lock for (sysadmin-configurable) event reservations:
84 static DEFINE_SPINLOCK(perf_resource_lock);
87 * Architecture provided APIs - weak aliases:
89 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
91 return NULL;
94 void __weak hw_perf_disable(void) { barrier(); }
95 void __weak hw_perf_enable(void) { barrier(); }
97 void __weak hw_perf_event_setup(int cpu) { barrier(); }
98 void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
100 int __weak
101 hw_perf_group_sched_in(struct perf_event *group_leader,
102 struct perf_cpu_context *cpuctx,
103 struct perf_event_context *ctx, int cpu)
105 return 0;
108 void __weak perf_event_print_debug(void) { }
110 static DEFINE_PER_CPU(int, perf_disable_count);
112 void __perf_disable(void)
114 __get_cpu_var(perf_disable_count)++;
117 bool __perf_enable(void)
119 return !--__get_cpu_var(perf_disable_count);
122 void perf_disable(void)
124 __perf_disable();
125 hw_perf_disable();
128 void perf_enable(void)
130 if (__perf_enable())
131 hw_perf_enable();
134 static void get_ctx(struct perf_event_context *ctx)
136 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139 static void free_ctx(struct rcu_head *head)
141 struct perf_event_context *ctx;
143 ctx = container_of(head, struct perf_event_context, rcu_head);
144 kfree(ctx);
147 static void put_ctx(struct perf_event_context *ctx)
149 if (atomic_dec_and_test(&ctx->refcount)) {
150 if (ctx->parent_ctx)
151 put_ctx(ctx->parent_ctx);
152 if (ctx->task)
153 put_task_struct(ctx->task);
154 call_rcu(&ctx->rcu_head, free_ctx);
158 static void unclone_ctx(struct perf_event_context *ctx)
160 if (ctx->parent_ctx) {
161 put_ctx(ctx->parent_ctx);
162 ctx->parent_ctx = NULL;
167 * If we inherit events we want to return the parent event id
168 * to userspace.
170 static u64 primary_event_id(struct perf_event *event)
172 u64 id = event->id;
174 if (event->parent)
175 id = event->parent->id;
177 return id;
181 * Get the perf_event_context for a task and lock it.
182 * This has to cope with with the fact that until it is locked,
183 * the context could get moved to another task.
185 static struct perf_event_context *
186 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
188 struct perf_event_context *ctx;
190 rcu_read_lock();
191 retry:
192 ctx = rcu_dereference(task->perf_event_ctxp);
193 if (ctx) {
195 * If this context is a clone of another, it might
196 * get swapped for another underneath us by
197 * perf_event_task_sched_out, though the
198 * rcu_read_lock() protects us from any context
199 * getting freed. Lock the context and check if it
200 * got swapped before we could get the lock, and retry
201 * if so. If we locked the right context, then it
202 * can't get swapped on us any more.
204 spin_lock_irqsave(&ctx->lock, *flags);
205 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
206 spin_unlock_irqrestore(&ctx->lock, *flags);
207 goto retry;
210 if (!atomic_inc_not_zero(&ctx->refcount)) {
211 spin_unlock_irqrestore(&ctx->lock, *flags);
212 ctx = NULL;
215 rcu_read_unlock();
216 return ctx;
220 * Get the context for a task and increment its pin_count so it
221 * can't get swapped to another task. This also increments its
222 * reference count so that the context can't get freed.
224 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
226 struct perf_event_context *ctx;
227 unsigned long flags;
229 ctx = perf_lock_task_context(task, &flags);
230 if (ctx) {
231 ++ctx->pin_count;
232 spin_unlock_irqrestore(&ctx->lock, flags);
234 return ctx;
237 static void perf_unpin_context(struct perf_event_context *ctx)
239 unsigned long flags;
241 spin_lock_irqsave(&ctx->lock, flags);
242 --ctx->pin_count;
243 spin_unlock_irqrestore(&ctx->lock, flags);
244 put_ctx(ctx);
248 * Add a event from the lists for its context.
249 * Must be called with ctx->mutex and ctx->lock held.
251 static void
252 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
254 struct perf_event *group_leader = event->group_leader;
257 * Depending on whether it is a standalone or sibling event,
258 * add it straight to the context's event list, or to the group
259 * leader's sibling list:
261 if (group_leader == event)
262 list_add_tail(&event->group_entry, &ctx->group_list);
263 else {
264 list_add_tail(&event->group_entry, &group_leader->sibling_list);
265 group_leader->nr_siblings++;
268 list_add_rcu(&event->event_entry, &ctx->event_list);
269 ctx->nr_events++;
270 if (event->attr.inherit_stat)
271 ctx->nr_stat++;
275 * Remove a event from the lists for its context.
276 * Must be called with ctx->mutex and ctx->lock held.
278 static void
279 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
281 struct perf_event *sibling, *tmp;
283 if (list_empty(&event->group_entry))
284 return;
285 ctx->nr_events--;
286 if (event->attr.inherit_stat)
287 ctx->nr_stat--;
289 list_del_init(&event->group_entry);
290 list_del_rcu(&event->event_entry);
292 if (event->group_leader != event)
293 event->group_leader->nr_siblings--;
296 * If this was a group event with sibling events then
297 * upgrade the siblings to singleton events by adding them
298 * to the context list directly:
300 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
302 list_move_tail(&sibling->group_entry, &ctx->group_list);
303 sibling->group_leader = sibling;
307 static void
308 event_sched_out(struct perf_event *event,
309 struct perf_cpu_context *cpuctx,
310 struct perf_event_context *ctx)
312 if (event->state != PERF_EVENT_STATE_ACTIVE)
313 return;
315 event->state = PERF_EVENT_STATE_INACTIVE;
316 if (event->pending_disable) {
317 event->pending_disable = 0;
318 event->state = PERF_EVENT_STATE_OFF;
320 event->tstamp_stopped = ctx->time;
321 event->pmu->disable(event);
322 event->oncpu = -1;
324 if (!is_software_event(event))
325 cpuctx->active_oncpu--;
326 ctx->nr_active--;
327 if (event->attr.exclusive || !cpuctx->active_oncpu)
328 cpuctx->exclusive = 0;
331 static void
332 group_sched_out(struct perf_event *group_event,
333 struct perf_cpu_context *cpuctx,
334 struct perf_event_context *ctx)
336 struct perf_event *event;
338 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
339 return;
341 event_sched_out(group_event, cpuctx, ctx);
344 * Schedule out siblings (if any):
346 list_for_each_entry(event, &group_event->sibling_list, group_entry)
347 event_sched_out(event, cpuctx, ctx);
349 if (group_event->attr.exclusive)
350 cpuctx->exclusive = 0;
354 * Cross CPU call to remove a performance event
356 * We disable the event on the hardware level first. After that we
357 * remove it from the context list.
359 static void __perf_event_remove_from_context(void *info)
361 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
362 struct perf_event *event = info;
363 struct perf_event_context *ctx = event->ctx;
366 * If this is a task context, we need to check whether it is
367 * the current task context of this cpu. If not it has been
368 * scheduled out before the smp call arrived.
370 if (ctx->task && cpuctx->task_ctx != ctx)
371 return;
373 spin_lock(&ctx->lock);
375 * Protect the list operation against NMI by disabling the
376 * events on a global level.
378 perf_disable();
380 event_sched_out(event, cpuctx, ctx);
382 list_del_event(event, ctx);
384 if (!ctx->task) {
386 * Allow more per task events with respect to the
387 * reservation:
389 cpuctx->max_pertask =
390 min(perf_max_events - ctx->nr_events,
391 perf_max_events - perf_reserved_percpu);
394 perf_enable();
395 spin_unlock(&ctx->lock);
400 * Remove the event from a task's (or a CPU's) list of events.
402 * Must be called with ctx->mutex held.
404 * CPU events are removed with a smp call. For task events we only
405 * call when the task is on a CPU.
407 * If event->ctx is a cloned context, callers must make sure that
408 * every task struct that event->ctx->task could possibly point to
409 * remains valid. This is OK when called from perf_release since
410 * that only calls us on the top-level context, which can't be a clone.
411 * When called from perf_event_exit_task, it's OK because the
412 * context has been detached from its task.
414 static void perf_event_remove_from_context(struct perf_event *event)
416 struct perf_event_context *ctx = event->ctx;
417 struct task_struct *task = ctx->task;
419 if (!task) {
421 * Per cpu events are removed via an smp call and
422 * the removal is always sucessful.
424 smp_call_function_single(event->cpu,
425 __perf_event_remove_from_context,
426 event, 1);
427 return;
430 retry:
431 task_oncpu_function_call(task, __perf_event_remove_from_context,
432 event);
434 spin_lock_irq(&ctx->lock);
436 * If the context is active we need to retry the smp call.
438 if (ctx->nr_active && !list_empty(&event->group_entry)) {
439 spin_unlock_irq(&ctx->lock);
440 goto retry;
444 * The lock prevents that this context is scheduled in so we
445 * can remove the event safely, if the call above did not
446 * succeed.
448 if (!list_empty(&event->group_entry)) {
449 list_del_event(event, ctx);
451 spin_unlock_irq(&ctx->lock);
454 static inline u64 perf_clock(void)
456 return cpu_clock(smp_processor_id());
460 * Update the record of the current time in a context.
462 static void update_context_time(struct perf_event_context *ctx)
464 u64 now = perf_clock();
466 ctx->time += now - ctx->timestamp;
467 ctx->timestamp = now;
471 * Update the total_time_enabled and total_time_running fields for a event.
473 static void update_event_times(struct perf_event *event)
475 struct perf_event_context *ctx = event->ctx;
476 u64 run_end;
478 if (event->state < PERF_EVENT_STATE_INACTIVE ||
479 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
480 return;
482 event->total_time_enabled = ctx->time - event->tstamp_enabled;
484 if (event->state == PERF_EVENT_STATE_INACTIVE)
485 run_end = event->tstamp_stopped;
486 else
487 run_end = ctx->time;
489 event->total_time_running = run_end - event->tstamp_running;
493 * Update total_time_enabled and total_time_running for all events in a group.
495 static void update_group_times(struct perf_event *leader)
497 struct perf_event *event;
499 update_event_times(leader);
500 list_for_each_entry(event, &leader->sibling_list, group_entry)
501 update_event_times(event);
505 * Cross CPU call to disable a performance event
507 static void __perf_event_disable(void *info)
509 struct perf_event *event = info;
510 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
511 struct perf_event_context *ctx = event->ctx;
514 * If this is a per-task event, need to check whether this
515 * event's task is the current task on this cpu.
517 if (ctx->task && cpuctx->task_ctx != ctx)
518 return;
520 spin_lock(&ctx->lock);
523 * If the event is on, turn it off.
524 * If it is in error state, leave it in error state.
526 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
527 update_context_time(ctx);
528 update_group_times(event);
529 if (event == event->group_leader)
530 group_sched_out(event, cpuctx, ctx);
531 else
532 event_sched_out(event, cpuctx, ctx);
533 event->state = PERF_EVENT_STATE_OFF;
536 spin_unlock(&ctx->lock);
540 * Disable a event.
542 * If event->ctx is a cloned context, callers must make sure that
543 * every task struct that event->ctx->task could possibly point to
544 * remains valid. This condition is satisifed when called through
545 * perf_event_for_each_child or perf_event_for_each because they
546 * hold the top-level event's child_mutex, so any descendant that
547 * goes to exit will block in sync_child_event.
548 * When called from perf_pending_event it's OK because event->ctx
549 * is the current context on this CPU and preemption is disabled,
550 * hence we can't get into perf_event_task_sched_out for this context.
552 static void perf_event_disable(struct perf_event *event)
554 struct perf_event_context *ctx = event->ctx;
555 struct task_struct *task = ctx->task;
557 if (!task) {
559 * Disable the event on the cpu that it's on
561 smp_call_function_single(event->cpu, __perf_event_disable,
562 event, 1);
563 return;
566 retry:
567 task_oncpu_function_call(task, __perf_event_disable, event);
569 spin_lock_irq(&ctx->lock);
571 * If the event is still active, we need to retry the cross-call.
573 if (event->state == PERF_EVENT_STATE_ACTIVE) {
574 spin_unlock_irq(&ctx->lock);
575 goto retry;
579 * Since we have the lock this context can't be scheduled
580 * in, so we can change the state safely.
582 if (event->state == PERF_EVENT_STATE_INACTIVE) {
583 update_group_times(event);
584 event->state = PERF_EVENT_STATE_OFF;
587 spin_unlock_irq(&ctx->lock);
590 static int
591 event_sched_in(struct perf_event *event,
592 struct perf_cpu_context *cpuctx,
593 struct perf_event_context *ctx,
594 int cpu)
596 if (event->state <= PERF_EVENT_STATE_OFF)
597 return 0;
599 event->state = PERF_EVENT_STATE_ACTIVE;
600 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
602 * The new state must be visible before we turn it on in the hardware:
604 smp_wmb();
606 if (event->pmu->enable(event)) {
607 event->state = PERF_EVENT_STATE_INACTIVE;
608 event->oncpu = -1;
609 return -EAGAIN;
612 event->tstamp_running += ctx->time - event->tstamp_stopped;
614 if (!is_software_event(event))
615 cpuctx->active_oncpu++;
616 ctx->nr_active++;
618 if (event->attr.exclusive)
619 cpuctx->exclusive = 1;
621 return 0;
624 static int
625 group_sched_in(struct perf_event *group_event,
626 struct perf_cpu_context *cpuctx,
627 struct perf_event_context *ctx,
628 int cpu)
630 struct perf_event *event, *partial_group;
631 int ret;
633 if (group_event->state == PERF_EVENT_STATE_OFF)
634 return 0;
636 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
637 if (ret)
638 return ret < 0 ? ret : 0;
640 if (event_sched_in(group_event, cpuctx, ctx, cpu))
641 return -EAGAIN;
644 * Schedule in siblings as one group (if any):
646 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
647 if (event_sched_in(event, cpuctx, ctx, cpu)) {
648 partial_group = event;
649 goto group_error;
653 return 0;
655 group_error:
657 * Groups can be scheduled in as one unit only, so undo any
658 * partial group before returning:
660 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
661 if (event == partial_group)
662 break;
663 event_sched_out(event, cpuctx, ctx);
665 event_sched_out(group_event, cpuctx, ctx);
667 return -EAGAIN;
671 * Return 1 for a group consisting entirely of software events,
672 * 0 if the group contains any hardware events.
674 static int is_software_only_group(struct perf_event *leader)
676 struct perf_event *event;
678 if (!is_software_event(leader))
679 return 0;
681 list_for_each_entry(event, &leader->sibling_list, group_entry)
682 if (!is_software_event(event))
683 return 0;
685 return 1;
689 * Work out whether we can put this event group on the CPU now.
691 static int group_can_go_on(struct perf_event *event,
692 struct perf_cpu_context *cpuctx,
693 int can_add_hw)
696 * Groups consisting entirely of software events can always go on.
698 if (is_software_only_group(event))
699 return 1;
701 * If an exclusive group is already on, no other hardware
702 * events can go on.
704 if (cpuctx->exclusive)
705 return 0;
707 * If this group is exclusive and there are already
708 * events on the CPU, it can't go on.
710 if (event->attr.exclusive && cpuctx->active_oncpu)
711 return 0;
713 * Otherwise, try to add it if all previous groups were able
714 * to go on.
716 return can_add_hw;
719 static void add_event_to_ctx(struct perf_event *event,
720 struct perf_event_context *ctx)
722 list_add_event(event, ctx);
723 event->tstamp_enabled = ctx->time;
724 event->tstamp_running = ctx->time;
725 event->tstamp_stopped = ctx->time;
729 * Cross CPU call to install and enable a performance event
731 * Must be called with ctx->mutex held
733 static void __perf_install_in_context(void *info)
735 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
736 struct perf_event *event = info;
737 struct perf_event_context *ctx = event->ctx;
738 struct perf_event *leader = event->group_leader;
739 int cpu = smp_processor_id();
740 int err;
743 * If this is a task context, we need to check whether it is
744 * the current task context of this cpu. If not it has been
745 * scheduled out before the smp call arrived.
746 * Or possibly this is the right context but it isn't
747 * on this cpu because it had no events.
749 if (ctx->task && cpuctx->task_ctx != ctx) {
750 if (cpuctx->task_ctx || ctx->task != current)
751 return;
752 cpuctx->task_ctx = ctx;
755 spin_lock(&ctx->lock);
756 ctx->is_active = 1;
757 update_context_time(ctx);
760 * Protect the list operation against NMI by disabling the
761 * events on a global level. NOP for non NMI based events.
763 perf_disable();
765 add_event_to_ctx(event, ctx);
768 * Don't put the event on if it is disabled or if
769 * it is in a group and the group isn't on.
771 if (event->state != PERF_EVENT_STATE_INACTIVE ||
772 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
773 goto unlock;
776 * An exclusive event can't go on if there are already active
777 * hardware events, and no hardware event can go on if there
778 * is already an exclusive event on.
780 if (!group_can_go_on(event, cpuctx, 1))
781 err = -EEXIST;
782 else
783 err = event_sched_in(event, cpuctx, ctx, cpu);
785 if (err) {
787 * This event couldn't go on. If it is in a group
788 * then we have to pull the whole group off.
789 * If the event group is pinned then put it in error state.
791 if (leader != event)
792 group_sched_out(leader, cpuctx, ctx);
793 if (leader->attr.pinned) {
794 update_group_times(leader);
795 leader->state = PERF_EVENT_STATE_ERROR;
799 if (!err && !ctx->task && cpuctx->max_pertask)
800 cpuctx->max_pertask--;
802 unlock:
803 perf_enable();
805 spin_unlock(&ctx->lock);
809 * Attach a performance event to a context
811 * First we add the event to the list with the hardware enable bit
812 * in event->hw_config cleared.
814 * If the event is attached to a task which is on a CPU we use a smp
815 * call to enable it in the task context. The task might have been
816 * scheduled away, but we check this in the smp call again.
818 * Must be called with ctx->mutex held.
820 static void
821 perf_install_in_context(struct perf_event_context *ctx,
822 struct perf_event *event,
823 int cpu)
825 struct task_struct *task = ctx->task;
827 if (!task) {
829 * Per cpu events are installed via an smp call and
830 * the install is always sucessful.
832 smp_call_function_single(cpu, __perf_install_in_context,
833 event, 1);
834 return;
837 retry:
838 task_oncpu_function_call(task, __perf_install_in_context,
839 event);
841 spin_lock_irq(&ctx->lock);
843 * we need to retry the smp call.
845 if (ctx->is_active && list_empty(&event->group_entry)) {
846 spin_unlock_irq(&ctx->lock);
847 goto retry;
851 * The lock prevents that this context is scheduled in so we
852 * can add the event safely, if it the call above did not
853 * succeed.
855 if (list_empty(&event->group_entry))
856 add_event_to_ctx(event, ctx);
857 spin_unlock_irq(&ctx->lock);
861 * Put a event into inactive state and update time fields.
862 * Enabling the leader of a group effectively enables all
863 * the group members that aren't explicitly disabled, so we
864 * have to update their ->tstamp_enabled also.
865 * Note: this works for group members as well as group leaders
866 * since the non-leader members' sibling_lists will be empty.
868 static void __perf_event_mark_enabled(struct perf_event *event,
869 struct perf_event_context *ctx)
871 struct perf_event *sub;
873 event->state = PERF_EVENT_STATE_INACTIVE;
874 event->tstamp_enabled = ctx->time - event->total_time_enabled;
875 list_for_each_entry(sub, &event->sibling_list, group_entry)
876 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
877 sub->tstamp_enabled =
878 ctx->time - sub->total_time_enabled;
882 * Cross CPU call to enable a performance event
884 static void __perf_event_enable(void *info)
886 struct perf_event *event = info;
887 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
888 struct perf_event_context *ctx = event->ctx;
889 struct perf_event *leader = event->group_leader;
890 int err;
893 * If this is a per-task event, need to check whether this
894 * event's task is the current task on this cpu.
896 if (ctx->task && cpuctx->task_ctx != ctx) {
897 if (cpuctx->task_ctx || ctx->task != current)
898 return;
899 cpuctx->task_ctx = ctx;
902 spin_lock(&ctx->lock);
903 ctx->is_active = 1;
904 update_context_time(ctx);
906 if (event->state >= PERF_EVENT_STATE_INACTIVE)
907 goto unlock;
908 __perf_event_mark_enabled(event, ctx);
911 * If the event is in a group and isn't the group leader,
912 * then don't put it on unless the group is on.
914 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
915 goto unlock;
917 if (!group_can_go_on(event, cpuctx, 1)) {
918 err = -EEXIST;
919 } else {
920 perf_disable();
921 if (event == leader)
922 err = group_sched_in(event, cpuctx, ctx,
923 smp_processor_id());
924 else
925 err = event_sched_in(event, cpuctx, ctx,
926 smp_processor_id());
927 perf_enable();
930 if (err) {
932 * If this event can't go on and it's part of a
933 * group, then the whole group has to come off.
935 if (leader != event)
936 group_sched_out(leader, cpuctx, ctx);
937 if (leader->attr.pinned) {
938 update_group_times(leader);
939 leader->state = PERF_EVENT_STATE_ERROR;
943 unlock:
944 spin_unlock(&ctx->lock);
948 * Enable a event.
950 * If event->ctx is a cloned context, callers must make sure that
951 * every task struct that event->ctx->task could possibly point to
952 * remains valid. This condition is satisfied when called through
953 * perf_event_for_each_child or perf_event_for_each as described
954 * for perf_event_disable.
956 static void perf_event_enable(struct perf_event *event)
958 struct perf_event_context *ctx = event->ctx;
959 struct task_struct *task = ctx->task;
961 if (!task) {
963 * Enable the event on the cpu that it's on
965 smp_call_function_single(event->cpu, __perf_event_enable,
966 event, 1);
967 return;
970 spin_lock_irq(&ctx->lock);
971 if (event->state >= PERF_EVENT_STATE_INACTIVE)
972 goto out;
975 * If the event is in error state, clear that first.
976 * That way, if we see the event in error state below, we
977 * know that it has gone back into error state, as distinct
978 * from the task having been scheduled away before the
979 * cross-call arrived.
981 if (event->state == PERF_EVENT_STATE_ERROR)
982 event->state = PERF_EVENT_STATE_OFF;
984 retry:
985 spin_unlock_irq(&ctx->lock);
986 task_oncpu_function_call(task, __perf_event_enable, event);
988 spin_lock_irq(&ctx->lock);
991 * If the context is active and the event is still off,
992 * we need to retry the cross-call.
994 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
995 goto retry;
998 * Since we have the lock this context can't be scheduled
999 * in, so we can change the state safely.
1001 if (event->state == PERF_EVENT_STATE_OFF)
1002 __perf_event_mark_enabled(event, ctx);
1004 out:
1005 spin_unlock_irq(&ctx->lock);
1008 static int perf_event_refresh(struct perf_event *event, int refresh)
1011 * not supported on inherited events
1013 if (event->attr.inherit)
1014 return -EINVAL;
1016 atomic_add(refresh, &event->event_limit);
1017 perf_event_enable(event);
1019 return 0;
1022 void __perf_event_sched_out(struct perf_event_context *ctx,
1023 struct perf_cpu_context *cpuctx)
1025 struct perf_event *event;
1027 spin_lock(&ctx->lock);
1028 ctx->is_active = 0;
1029 if (likely(!ctx->nr_events))
1030 goto out;
1031 update_context_time(ctx);
1033 perf_disable();
1034 if (ctx->nr_active)
1035 list_for_each_entry(event, &ctx->group_list, group_entry)
1036 group_sched_out(event, cpuctx, ctx);
1038 perf_enable();
1039 out:
1040 spin_unlock(&ctx->lock);
1044 * Test whether two contexts are equivalent, i.e. whether they
1045 * have both been cloned from the same version of the same context
1046 * and they both have the same number of enabled events.
1047 * If the number of enabled events is the same, then the set
1048 * of enabled events should be the same, because these are both
1049 * inherited contexts, therefore we can't access individual events
1050 * in them directly with an fd; we can only enable/disable all
1051 * events via prctl, or enable/disable all events in a family
1052 * via ioctl, which will have the same effect on both contexts.
1054 static int context_equiv(struct perf_event_context *ctx1,
1055 struct perf_event_context *ctx2)
1057 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1058 && ctx1->parent_gen == ctx2->parent_gen
1059 && !ctx1->pin_count && !ctx2->pin_count;
1062 static void __perf_event_read(void *event);
1064 static void __perf_event_sync_stat(struct perf_event *event,
1065 struct perf_event *next_event)
1067 u64 value;
1069 if (!event->attr.inherit_stat)
1070 return;
1073 * Update the event value, we cannot use perf_event_read()
1074 * because we're in the middle of a context switch and have IRQs
1075 * disabled, which upsets smp_call_function_single(), however
1076 * we know the event must be on the current CPU, therefore we
1077 * don't need to use it.
1079 switch (event->state) {
1080 case PERF_EVENT_STATE_ACTIVE:
1081 __perf_event_read(event);
1082 break;
1084 case PERF_EVENT_STATE_INACTIVE:
1085 update_event_times(event);
1086 break;
1088 default:
1089 break;
1093 * In order to keep per-task stats reliable we need to flip the event
1094 * values when we flip the contexts.
1096 value = atomic64_read(&next_event->count);
1097 value = atomic64_xchg(&event->count, value);
1098 atomic64_set(&next_event->count, value);
1100 swap(event->total_time_enabled, next_event->total_time_enabled);
1101 swap(event->total_time_running, next_event->total_time_running);
1104 * Since we swizzled the values, update the user visible data too.
1106 perf_event_update_userpage(event);
1107 perf_event_update_userpage(next_event);
1110 #define list_next_entry(pos, member) \
1111 list_entry(pos->member.next, typeof(*pos), member)
1113 static void perf_event_sync_stat(struct perf_event_context *ctx,
1114 struct perf_event_context *next_ctx)
1116 struct perf_event *event, *next_event;
1118 if (!ctx->nr_stat)
1119 return;
1121 event = list_first_entry(&ctx->event_list,
1122 struct perf_event, event_entry);
1124 next_event = list_first_entry(&next_ctx->event_list,
1125 struct perf_event, event_entry);
1127 while (&event->event_entry != &ctx->event_list &&
1128 &next_event->event_entry != &next_ctx->event_list) {
1130 __perf_event_sync_stat(event, next_event);
1132 event = list_next_entry(event, event_entry);
1133 next_event = list_next_entry(next_event, event_entry);
1138 * Called from scheduler to remove the events of the current task,
1139 * with interrupts disabled.
1141 * We stop each event and update the event value in event->count.
1143 * This does not protect us against NMI, but disable()
1144 * sets the disabled bit in the control field of event _before_
1145 * accessing the event control register. If a NMI hits, then it will
1146 * not restart the event.
1148 void perf_event_task_sched_out(struct task_struct *task,
1149 struct task_struct *next, int cpu)
1151 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1152 struct perf_event_context *ctx = task->perf_event_ctxp;
1153 struct perf_event_context *next_ctx;
1154 struct perf_event_context *parent;
1155 struct pt_regs *regs;
1156 int do_switch = 1;
1158 regs = task_pt_regs(task);
1159 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1161 if (likely(!ctx || !cpuctx->task_ctx))
1162 return;
1164 update_context_time(ctx);
1166 rcu_read_lock();
1167 parent = rcu_dereference(ctx->parent_ctx);
1168 next_ctx = next->perf_event_ctxp;
1169 if (parent && next_ctx &&
1170 rcu_dereference(next_ctx->parent_ctx) == parent) {
1172 * Looks like the two contexts are clones, so we might be
1173 * able to optimize the context switch. We lock both
1174 * contexts and check that they are clones under the
1175 * lock (including re-checking that neither has been
1176 * uncloned in the meantime). It doesn't matter which
1177 * order we take the locks because no other cpu could
1178 * be trying to lock both of these tasks.
1180 spin_lock(&ctx->lock);
1181 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1182 if (context_equiv(ctx, next_ctx)) {
1184 * XXX do we need a memory barrier of sorts
1185 * wrt to rcu_dereference() of perf_event_ctxp
1187 task->perf_event_ctxp = next_ctx;
1188 next->perf_event_ctxp = ctx;
1189 ctx->task = next;
1190 next_ctx->task = task;
1191 do_switch = 0;
1193 perf_event_sync_stat(ctx, next_ctx);
1195 spin_unlock(&next_ctx->lock);
1196 spin_unlock(&ctx->lock);
1198 rcu_read_unlock();
1200 if (do_switch) {
1201 __perf_event_sched_out(ctx, cpuctx);
1202 cpuctx->task_ctx = NULL;
1207 * Called with IRQs disabled
1209 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1211 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1213 if (!cpuctx->task_ctx)
1214 return;
1216 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1217 return;
1219 __perf_event_sched_out(ctx, cpuctx);
1220 cpuctx->task_ctx = NULL;
1224 * Called with IRQs disabled
1226 static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1228 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1231 static void
1232 __perf_event_sched_in(struct perf_event_context *ctx,
1233 struct perf_cpu_context *cpuctx, int cpu)
1235 struct perf_event *event;
1236 int can_add_hw = 1;
1238 spin_lock(&ctx->lock);
1239 ctx->is_active = 1;
1240 if (likely(!ctx->nr_events))
1241 goto out;
1243 ctx->timestamp = perf_clock();
1245 perf_disable();
1248 * First go through the list and put on any pinned groups
1249 * in order to give them the best chance of going on.
1251 list_for_each_entry(event, &ctx->group_list, group_entry) {
1252 if (event->state <= PERF_EVENT_STATE_OFF ||
1253 !event->attr.pinned)
1254 continue;
1255 if (event->cpu != -1 && event->cpu != cpu)
1256 continue;
1258 if (group_can_go_on(event, cpuctx, 1))
1259 group_sched_in(event, cpuctx, ctx, cpu);
1262 * If this pinned group hasn't been scheduled,
1263 * put it in error state.
1265 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1266 update_group_times(event);
1267 event->state = PERF_EVENT_STATE_ERROR;
1271 list_for_each_entry(event, &ctx->group_list, group_entry) {
1273 * Ignore events in OFF or ERROR state, and
1274 * ignore pinned events since we did them already.
1276 if (event->state <= PERF_EVENT_STATE_OFF ||
1277 event->attr.pinned)
1278 continue;
1281 * Listen to the 'cpu' scheduling filter constraint
1282 * of events:
1284 if (event->cpu != -1 && event->cpu != cpu)
1285 continue;
1287 if (group_can_go_on(event, cpuctx, can_add_hw))
1288 if (group_sched_in(event, cpuctx, ctx, cpu))
1289 can_add_hw = 0;
1291 perf_enable();
1292 out:
1293 spin_unlock(&ctx->lock);
1297 * Called from scheduler to add the events of the current task
1298 * with interrupts disabled.
1300 * We restore the event value and then enable it.
1302 * This does not protect us against NMI, but enable()
1303 * sets the enabled bit in the control field of event _before_
1304 * accessing the event control register. If a NMI hits, then it will
1305 * keep the event running.
1307 void perf_event_task_sched_in(struct task_struct *task, int cpu)
1309 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1310 struct perf_event_context *ctx = task->perf_event_ctxp;
1312 if (likely(!ctx))
1313 return;
1314 if (cpuctx->task_ctx == ctx)
1315 return;
1316 __perf_event_sched_in(ctx, cpuctx, cpu);
1317 cpuctx->task_ctx = ctx;
1320 static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1322 struct perf_event_context *ctx = &cpuctx->ctx;
1324 __perf_event_sched_in(ctx, cpuctx, cpu);
1327 #define MAX_INTERRUPTS (~0ULL)
1329 static void perf_log_throttle(struct perf_event *event, int enable);
1331 static void perf_adjust_period(struct perf_event *event, u64 events)
1333 struct hw_perf_event *hwc = &event->hw;
1334 u64 period, sample_period;
1335 s64 delta;
1337 events *= hwc->sample_period;
1338 period = div64_u64(events, event->attr.sample_freq);
1340 delta = (s64)(period - hwc->sample_period);
1341 delta = (delta + 7) / 8; /* low pass filter */
1343 sample_period = hwc->sample_period + delta;
1345 if (!sample_period)
1346 sample_period = 1;
1348 hwc->sample_period = sample_period;
1351 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1353 struct perf_event *event;
1354 struct hw_perf_event *hwc;
1355 u64 interrupts, freq;
1357 spin_lock(&ctx->lock);
1358 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1359 if (event->state != PERF_EVENT_STATE_ACTIVE)
1360 continue;
1362 if (event->cpu != -1 && event->cpu != smp_processor_id())
1363 continue;
1365 hwc = &event->hw;
1367 interrupts = hwc->interrupts;
1368 hwc->interrupts = 0;
1371 * unthrottle events on the tick
1373 if (interrupts == MAX_INTERRUPTS) {
1374 perf_log_throttle(event, 1);
1375 event->pmu->unthrottle(event);
1376 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1379 if (!event->attr.freq || !event->attr.sample_freq)
1380 continue;
1383 * if the specified freq < HZ then we need to skip ticks
1385 if (event->attr.sample_freq < HZ) {
1386 freq = event->attr.sample_freq;
1388 hwc->freq_count += freq;
1389 hwc->freq_interrupts += interrupts;
1391 if (hwc->freq_count < HZ)
1392 continue;
1394 interrupts = hwc->freq_interrupts;
1395 hwc->freq_interrupts = 0;
1396 hwc->freq_count -= HZ;
1397 } else
1398 freq = HZ;
1400 perf_adjust_period(event, freq * interrupts);
1403 * In order to avoid being stalled by an (accidental) huge
1404 * sample period, force reset the sample period if we didn't
1405 * get any events in this freq period.
1407 if (!interrupts) {
1408 perf_disable();
1409 event->pmu->disable(event);
1410 atomic64_set(&hwc->period_left, 0);
1411 event->pmu->enable(event);
1412 perf_enable();
1415 spin_unlock(&ctx->lock);
1419 * Round-robin a context's events:
1421 static void rotate_ctx(struct perf_event_context *ctx)
1423 struct perf_event *event;
1425 if (!ctx->nr_events)
1426 return;
1428 spin_lock(&ctx->lock);
1430 * Rotate the first entry last (works just fine for group events too):
1432 perf_disable();
1433 list_for_each_entry(event, &ctx->group_list, group_entry) {
1434 list_move_tail(&event->group_entry, &ctx->group_list);
1435 break;
1437 perf_enable();
1439 spin_unlock(&ctx->lock);
1442 void perf_event_task_tick(struct task_struct *curr, int cpu)
1444 struct perf_cpu_context *cpuctx;
1445 struct perf_event_context *ctx;
1447 if (!atomic_read(&nr_events))
1448 return;
1450 cpuctx = &per_cpu(perf_cpu_context, cpu);
1451 ctx = curr->perf_event_ctxp;
1453 perf_ctx_adjust_freq(&cpuctx->ctx);
1454 if (ctx)
1455 perf_ctx_adjust_freq(ctx);
1457 perf_event_cpu_sched_out(cpuctx);
1458 if (ctx)
1459 __perf_event_task_sched_out(ctx);
1461 rotate_ctx(&cpuctx->ctx);
1462 if (ctx)
1463 rotate_ctx(ctx);
1465 perf_event_cpu_sched_in(cpuctx, cpu);
1466 if (ctx)
1467 perf_event_task_sched_in(curr, cpu);
1471 * Enable all of a task's events that have been marked enable-on-exec.
1472 * This expects task == current.
1474 static void perf_event_enable_on_exec(struct task_struct *task)
1476 struct perf_event_context *ctx;
1477 struct perf_event *event;
1478 unsigned long flags;
1479 int enabled = 0;
1481 local_irq_save(flags);
1482 ctx = task->perf_event_ctxp;
1483 if (!ctx || !ctx->nr_events)
1484 goto out;
1486 __perf_event_task_sched_out(ctx);
1488 spin_lock(&ctx->lock);
1490 list_for_each_entry(event, &ctx->group_list, group_entry) {
1491 if (!event->attr.enable_on_exec)
1492 continue;
1493 event->attr.enable_on_exec = 0;
1494 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1495 continue;
1496 __perf_event_mark_enabled(event, ctx);
1497 enabled = 1;
1501 * Unclone this context if we enabled any event.
1503 if (enabled)
1504 unclone_ctx(ctx);
1506 spin_unlock(&ctx->lock);
1508 perf_event_task_sched_in(task, smp_processor_id());
1509 out:
1510 local_irq_restore(flags);
1514 * Cross CPU call to read the hardware event
1516 static void __perf_event_read(void *info)
1518 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1519 struct perf_event *event = info;
1520 struct perf_event_context *ctx = event->ctx;
1521 unsigned long flags;
1524 * If this is a task context, we need to check whether it is
1525 * the current task context of this cpu. If not it has been
1526 * scheduled out before the smp call arrived. In that case
1527 * event->count would have been updated to a recent sample
1528 * when the event was scheduled out.
1530 if (ctx->task && cpuctx->task_ctx != ctx)
1531 return;
1533 local_irq_save(flags);
1534 if (ctx->is_active)
1535 update_context_time(ctx);
1536 event->pmu->read(event);
1537 update_event_times(event);
1538 local_irq_restore(flags);
1541 static u64 perf_event_read(struct perf_event *event)
1544 * If event is enabled and currently active on a CPU, update the
1545 * value in the event structure:
1547 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1548 smp_call_function_single(event->oncpu,
1549 __perf_event_read, event, 1);
1550 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1551 update_event_times(event);
1554 return atomic64_read(&event->count);
1558 * Initialize the perf_event context in a task_struct:
1560 static void
1561 __perf_event_init_context(struct perf_event_context *ctx,
1562 struct task_struct *task)
1564 memset(ctx, 0, sizeof(*ctx));
1565 spin_lock_init(&ctx->lock);
1566 mutex_init(&ctx->mutex);
1567 INIT_LIST_HEAD(&ctx->group_list);
1568 INIT_LIST_HEAD(&ctx->event_list);
1569 atomic_set(&ctx->refcount, 1);
1570 ctx->task = task;
1573 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1575 struct perf_event_context *ctx;
1576 struct perf_cpu_context *cpuctx;
1577 struct task_struct *task;
1578 unsigned long flags;
1579 int err;
1582 * If cpu is not a wildcard then this is a percpu event:
1584 if (cpu != -1) {
1585 /* Must be root to operate on a CPU event: */
1586 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1587 return ERR_PTR(-EACCES);
1589 if (cpu < 0 || cpu >= nr_cpumask_bits)
1590 return ERR_PTR(-EINVAL);
1593 * We could be clever and allow to attach a event to an
1594 * offline CPU and activate it when the CPU comes up, but
1595 * that's for later.
1597 if (!cpu_isset(cpu, cpu_online_map))
1598 return ERR_PTR(-ENODEV);
1600 cpuctx = &per_cpu(perf_cpu_context, cpu);
1601 ctx = &cpuctx->ctx;
1602 get_ctx(ctx);
1604 return ctx;
1607 rcu_read_lock();
1608 if (!pid)
1609 task = current;
1610 else
1611 task = find_task_by_vpid(pid);
1612 if (task)
1613 get_task_struct(task);
1614 rcu_read_unlock();
1616 if (!task)
1617 return ERR_PTR(-ESRCH);
1620 * Can't attach events to a dying task.
1622 err = -ESRCH;
1623 if (task->flags & PF_EXITING)
1624 goto errout;
1626 /* Reuse ptrace permission checks for now. */
1627 err = -EACCES;
1628 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1629 goto errout;
1631 retry:
1632 ctx = perf_lock_task_context(task, &flags);
1633 if (ctx) {
1634 unclone_ctx(ctx);
1635 spin_unlock_irqrestore(&ctx->lock, flags);
1638 if (!ctx) {
1639 ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1640 err = -ENOMEM;
1641 if (!ctx)
1642 goto errout;
1643 __perf_event_init_context(ctx, task);
1644 get_ctx(ctx);
1645 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1647 * We raced with some other task; use
1648 * the context they set.
1650 kfree(ctx);
1651 goto retry;
1653 get_task_struct(task);
1656 put_task_struct(task);
1657 return ctx;
1659 errout:
1660 put_task_struct(task);
1661 return ERR_PTR(err);
1664 static void free_event_rcu(struct rcu_head *head)
1666 struct perf_event *event;
1668 event = container_of(head, struct perf_event, rcu_head);
1669 if (event->ns)
1670 put_pid_ns(event->ns);
1671 kfree(event);
1674 static void perf_pending_sync(struct perf_event *event);
1676 static void free_event(struct perf_event *event)
1678 perf_pending_sync(event);
1680 if (!event->parent) {
1681 atomic_dec(&nr_events);
1682 if (event->attr.mmap)
1683 atomic_dec(&nr_mmap_events);
1684 if (event->attr.comm)
1685 atomic_dec(&nr_comm_events);
1686 if (event->attr.task)
1687 atomic_dec(&nr_task_events);
1690 if (event->output) {
1691 fput(event->output->filp);
1692 event->output = NULL;
1695 if (event->destroy)
1696 event->destroy(event);
1698 put_ctx(event->ctx);
1699 call_rcu(&event->rcu_head, free_event_rcu);
1703 * Called when the last reference to the file is gone.
1705 static int perf_release(struct inode *inode, struct file *file)
1707 struct perf_event *event = file->private_data;
1708 struct perf_event_context *ctx = event->ctx;
1710 file->private_data = NULL;
1712 WARN_ON_ONCE(ctx->parent_ctx);
1713 mutex_lock(&ctx->mutex);
1714 perf_event_remove_from_context(event);
1715 mutex_unlock(&ctx->mutex);
1717 mutex_lock(&event->owner->perf_event_mutex);
1718 list_del_init(&event->owner_entry);
1719 mutex_unlock(&event->owner->perf_event_mutex);
1720 put_task_struct(event->owner);
1722 free_event(event);
1724 return 0;
1727 static int perf_event_read_size(struct perf_event *event)
1729 int entry = sizeof(u64); /* value */
1730 int size = 0;
1731 int nr = 1;
1733 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1734 size += sizeof(u64);
1736 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1737 size += sizeof(u64);
1739 if (event->attr.read_format & PERF_FORMAT_ID)
1740 entry += sizeof(u64);
1742 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1743 nr += event->group_leader->nr_siblings;
1744 size += sizeof(u64);
1747 size += entry * nr;
1749 return size;
1752 static u64 perf_event_read_value(struct perf_event *event)
1754 struct perf_event *child;
1755 u64 total = 0;
1757 total += perf_event_read(event);
1758 list_for_each_entry(child, &event->child_list, child_list)
1759 total += perf_event_read(child);
1761 return total;
1764 static int perf_event_read_entry(struct perf_event *event,
1765 u64 read_format, char __user *buf)
1767 int n = 0, count = 0;
1768 u64 values[2];
1770 values[n++] = perf_event_read_value(event);
1771 if (read_format & PERF_FORMAT_ID)
1772 values[n++] = primary_event_id(event);
1774 count = n * sizeof(u64);
1776 if (copy_to_user(buf, values, count))
1777 return -EFAULT;
1779 return count;
1782 static int perf_event_read_group(struct perf_event *event,
1783 u64 read_format, char __user *buf)
1785 struct perf_event *leader = event->group_leader, *sub;
1786 int n = 0, size = 0, err = -EFAULT;
1787 u64 values[3];
1789 values[n++] = 1 + leader->nr_siblings;
1790 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1791 values[n++] = leader->total_time_enabled +
1792 atomic64_read(&leader->child_total_time_enabled);
1794 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1795 values[n++] = leader->total_time_running +
1796 atomic64_read(&leader->child_total_time_running);
1799 size = n * sizeof(u64);
1801 if (copy_to_user(buf, values, size))
1802 return -EFAULT;
1804 err = perf_event_read_entry(leader, read_format, buf + size);
1805 if (err < 0)
1806 return err;
1808 size += err;
1810 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1811 err = perf_event_read_entry(sub, read_format,
1812 buf + size);
1813 if (err < 0)
1814 return err;
1816 size += err;
1819 return size;
1822 static int perf_event_read_one(struct perf_event *event,
1823 u64 read_format, char __user *buf)
1825 u64 values[4];
1826 int n = 0;
1828 values[n++] = perf_event_read_value(event);
1829 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1830 values[n++] = event->total_time_enabled +
1831 atomic64_read(&event->child_total_time_enabled);
1833 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1834 values[n++] = event->total_time_running +
1835 atomic64_read(&event->child_total_time_running);
1837 if (read_format & PERF_FORMAT_ID)
1838 values[n++] = primary_event_id(event);
1840 if (copy_to_user(buf, values, n * sizeof(u64)))
1841 return -EFAULT;
1843 return n * sizeof(u64);
1847 * Read the performance event - simple non blocking version for now
1849 static ssize_t
1850 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1852 u64 read_format = event->attr.read_format;
1853 int ret;
1856 * Return end-of-file for a read on a event that is in
1857 * error state (i.e. because it was pinned but it couldn't be
1858 * scheduled on to the CPU at some point).
1860 if (event->state == PERF_EVENT_STATE_ERROR)
1861 return 0;
1863 if (count < perf_event_read_size(event))
1864 return -ENOSPC;
1866 WARN_ON_ONCE(event->ctx->parent_ctx);
1867 mutex_lock(&event->child_mutex);
1868 if (read_format & PERF_FORMAT_GROUP)
1869 ret = perf_event_read_group(event, read_format, buf);
1870 else
1871 ret = perf_event_read_one(event, read_format, buf);
1872 mutex_unlock(&event->child_mutex);
1874 return ret;
1877 static ssize_t
1878 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1880 struct perf_event *event = file->private_data;
1882 return perf_read_hw(event, buf, count);
1885 static unsigned int perf_poll(struct file *file, poll_table *wait)
1887 struct perf_event *event = file->private_data;
1888 struct perf_mmap_data *data;
1889 unsigned int events = POLL_HUP;
1891 rcu_read_lock();
1892 data = rcu_dereference(event->data);
1893 if (data)
1894 events = atomic_xchg(&data->poll, 0);
1895 rcu_read_unlock();
1897 poll_wait(file, &event->waitq, wait);
1899 return events;
1902 static void perf_event_reset(struct perf_event *event)
1904 (void)perf_event_read(event);
1905 atomic64_set(&event->count, 0);
1906 perf_event_update_userpage(event);
1910 * Holding the top-level event's child_mutex means that any
1911 * descendant process that has inherited this event will block
1912 * in sync_child_event if it goes to exit, thus satisfying the
1913 * task existence requirements of perf_event_enable/disable.
1915 static void perf_event_for_each_child(struct perf_event *event,
1916 void (*func)(struct perf_event *))
1918 struct perf_event *child;
1920 WARN_ON_ONCE(event->ctx->parent_ctx);
1921 mutex_lock(&event->child_mutex);
1922 func(event);
1923 list_for_each_entry(child, &event->child_list, child_list)
1924 func(child);
1925 mutex_unlock(&event->child_mutex);
1928 static void perf_event_for_each(struct perf_event *event,
1929 void (*func)(struct perf_event *))
1931 struct perf_event_context *ctx = event->ctx;
1932 struct perf_event *sibling;
1934 WARN_ON_ONCE(ctx->parent_ctx);
1935 mutex_lock(&ctx->mutex);
1936 event = event->group_leader;
1938 perf_event_for_each_child(event, func);
1939 func(event);
1940 list_for_each_entry(sibling, &event->sibling_list, group_entry)
1941 perf_event_for_each_child(event, func);
1942 mutex_unlock(&ctx->mutex);
1945 static int perf_event_period(struct perf_event *event, u64 __user *arg)
1947 struct perf_event_context *ctx = event->ctx;
1948 unsigned long size;
1949 int ret = 0;
1950 u64 value;
1952 if (!event->attr.sample_period)
1953 return -EINVAL;
1955 size = copy_from_user(&value, arg, sizeof(value));
1956 if (size != sizeof(value))
1957 return -EFAULT;
1959 if (!value)
1960 return -EINVAL;
1962 spin_lock_irq(&ctx->lock);
1963 if (event->attr.freq) {
1964 if (value > sysctl_perf_event_sample_rate) {
1965 ret = -EINVAL;
1966 goto unlock;
1969 event->attr.sample_freq = value;
1970 } else {
1971 event->attr.sample_period = value;
1972 event->hw.sample_period = value;
1974 unlock:
1975 spin_unlock_irq(&ctx->lock);
1977 return ret;
1980 int perf_event_set_output(struct perf_event *event, int output_fd);
1982 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1984 struct perf_event *event = file->private_data;
1985 void (*func)(struct perf_event *);
1986 u32 flags = arg;
1988 switch (cmd) {
1989 case PERF_EVENT_IOC_ENABLE:
1990 func = perf_event_enable;
1991 break;
1992 case PERF_EVENT_IOC_DISABLE:
1993 func = perf_event_disable;
1994 break;
1995 case PERF_EVENT_IOC_RESET:
1996 func = perf_event_reset;
1997 break;
1999 case PERF_EVENT_IOC_REFRESH:
2000 return perf_event_refresh(event, arg);
2002 case PERF_EVENT_IOC_PERIOD:
2003 return perf_event_period(event, (u64 __user *)arg);
2005 case PERF_EVENT_IOC_SET_OUTPUT:
2006 return perf_event_set_output(event, arg);
2008 default:
2009 return -ENOTTY;
2012 if (flags & PERF_IOC_FLAG_GROUP)
2013 perf_event_for_each(event, func);
2014 else
2015 perf_event_for_each_child(event, func);
2017 return 0;
2020 int perf_event_task_enable(void)
2022 struct perf_event *event;
2024 mutex_lock(&current->perf_event_mutex);
2025 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2026 perf_event_for_each_child(event, perf_event_enable);
2027 mutex_unlock(&current->perf_event_mutex);
2029 return 0;
2032 int perf_event_task_disable(void)
2034 struct perf_event *event;
2036 mutex_lock(&current->perf_event_mutex);
2037 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2038 perf_event_for_each_child(event, perf_event_disable);
2039 mutex_unlock(&current->perf_event_mutex);
2041 return 0;
2044 #ifndef PERF_EVENT_INDEX_OFFSET
2045 # define PERF_EVENT_INDEX_OFFSET 0
2046 #endif
2048 static int perf_event_index(struct perf_event *event)
2050 if (event->state != PERF_EVENT_STATE_ACTIVE)
2051 return 0;
2053 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2057 * Callers need to ensure there can be no nesting of this function, otherwise
2058 * the seqlock logic goes bad. We can not serialize this because the arch
2059 * code calls this from NMI context.
2061 void perf_event_update_userpage(struct perf_event *event)
2063 struct perf_event_mmap_page *userpg;
2064 struct perf_mmap_data *data;
2066 rcu_read_lock();
2067 data = rcu_dereference(event->data);
2068 if (!data)
2069 goto unlock;
2071 userpg = data->user_page;
2074 * Disable preemption so as to not let the corresponding user-space
2075 * spin too long if we get preempted.
2077 preempt_disable();
2078 ++userpg->lock;
2079 barrier();
2080 userpg->index = perf_event_index(event);
2081 userpg->offset = atomic64_read(&event->count);
2082 if (event->state == PERF_EVENT_STATE_ACTIVE)
2083 userpg->offset -= atomic64_read(&event->hw.prev_count);
2085 userpg->time_enabled = event->total_time_enabled +
2086 atomic64_read(&event->child_total_time_enabled);
2088 userpg->time_running = event->total_time_running +
2089 atomic64_read(&event->child_total_time_running);
2091 barrier();
2092 ++userpg->lock;
2093 preempt_enable();
2094 unlock:
2095 rcu_read_unlock();
2098 static unsigned long perf_data_size(struct perf_mmap_data *data)
2100 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2103 #ifndef CONFIG_PERF_USE_VMALLOC
2106 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2109 static struct page *
2110 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2112 if (pgoff > data->nr_pages)
2113 return NULL;
2115 if (pgoff == 0)
2116 return virt_to_page(data->user_page);
2118 return virt_to_page(data->data_pages[pgoff - 1]);
2121 static struct perf_mmap_data *
2122 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2124 struct perf_mmap_data *data;
2125 unsigned long size;
2126 int i;
2128 WARN_ON(atomic_read(&event->mmap_count));
2130 size = sizeof(struct perf_mmap_data);
2131 size += nr_pages * sizeof(void *);
2133 data = kzalloc(size, GFP_KERNEL);
2134 if (!data)
2135 goto fail;
2137 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2138 if (!data->user_page)
2139 goto fail_user_page;
2141 for (i = 0; i < nr_pages; i++) {
2142 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2143 if (!data->data_pages[i])
2144 goto fail_data_pages;
2147 data->data_order = 0;
2148 data->nr_pages = nr_pages;
2150 return data;
2152 fail_data_pages:
2153 for (i--; i >= 0; i--)
2154 free_page((unsigned long)data->data_pages[i]);
2156 free_page((unsigned long)data->user_page);
2158 fail_user_page:
2159 kfree(data);
2161 fail:
2162 return NULL;
2165 static void perf_mmap_free_page(unsigned long addr)
2167 struct page *page = virt_to_page((void *)addr);
2169 page->mapping = NULL;
2170 __free_page(page);
2173 static void perf_mmap_data_free(struct perf_mmap_data *data)
2175 int i;
2177 perf_mmap_free_page((unsigned long)data->user_page);
2178 for (i = 0; i < data->nr_pages; i++)
2179 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2180 kfree(data);
2183 #else
2186 * Back perf_mmap() with vmalloc memory.
2188 * Required for architectures that have d-cache aliasing issues.
2191 static struct page *
2192 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2194 if (pgoff > (1UL << data->data_order))
2195 return NULL;
2197 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2200 static void perf_mmap_unmark_page(void *addr)
2202 struct page *page = vmalloc_to_page(addr);
2204 page->mapping = NULL;
2207 static void perf_mmap_data_free_work(struct work_struct *work)
2209 struct perf_mmap_data *data;
2210 void *base;
2211 int i, nr;
2213 data = container_of(work, struct perf_mmap_data, work);
2214 nr = 1 << data->data_order;
2216 base = data->user_page;
2217 for (i = 0; i < nr + 1; i++)
2218 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2220 vfree(base);
2221 kfree(data);
2224 static void perf_mmap_data_free(struct perf_mmap_data *data)
2226 schedule_work(&data->work);
2229 static struct perf_mmap_data *
2230 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2232 struct perf_mmap_data *data;
2233 unsigned long size;
2234 void *all_buf;
2236 WARN_ON(atomic_read(&event->mmap_count));
2238 size = sizeof(struct perf_mmap_data);
2239 size += sizeof(void *);
2241 data = kzalloc(size, GFP_KERNEL);
2242 if (!data)
2243 goto fail;
2245 INIT_WORK(&data->work, perf_mmap_data_free_work);
2247 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2248 if (!all_buf)
2249 goto fail_all_buf;
2251 data->user_page = all_buf;
2252 data->data_pages[0] = all_buf + PAGE_SIZE;
2253 data->data_order = ilog2(nr_pages);
2254 data->nr_pages = 1;
2256 return data;
2258 fail_all_buf:
2259 kfree(data);
2261 fail:
2262 return NULL;
2265 #endif
2267 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2269 struct perf_event *event = vma->vm_file->private_data;
2270 struct perf_mmap_data *data;
2271 int ret = VM_FAULT_SIGBUS;
2273 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2274 if (vmf->pgoff == 0)
2275 ret = 0;
2276 return ret;
2279 rcu_read_lock();
2280 data = rcu_dereference(event->data);
2281 if (!data)
2282 goto unlock;
2284 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2285 goto unlock;
2287 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2288 if (!vmf->page)
2289 goto unlock;
2291 get_page(vmf->page);
2292 vmf->page->mapping = vma->vm_file->f_mapping;
2293 vmf->page->index = vmf->pgoff;
2295 ret = 0;
2296 unlock:
2297 rcu_read_unlock();
2299 return ret;
2302 static void
2303 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2305 long max_size = perf_data_size(data);
2307 atomic_set(&data->lock, -1);
2309 if (event->attr.watermark) {
2310 data->watermark = min_t(long, max_size,
2311 event->attr.wakeup_watermark);
2314 if (!data->watermark)
2315 data->watermark = max_t(long, PAGE_SIZE, max_size / 2);
2318 rcu_assign_pointer(event->data, data);
2321 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2323 struct perf_mmap_data *data;
2325 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2326 perf_mmap_data_free(data);
2329 static void perf_mmap_data_release(struct perf_event *event)
2331 struct perf_mmap_data *data = event->data;
2333 WARN_ON(atomic_read(&event->mmap_count));
2335 rcu_assign_pointer(event->data, NULL);
2336 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2339 static void perf_mmap_open(struct vm_area_struct *vma)
2341 struct perf_event *event = vma->vm_file->private_data;
2343 atomic_inc(&event->mmap_count);
2346 static void perf_mmap_close(struct vm_area_struct *vma)
2348 struct perf_event *event = vma->vm_file->private_data;
2350 WARN_ON_ONCE(event->ctx->parent_ctx);
2351 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2352 unsigned long size = perf_data_size(event->data);
2353 struct user_struct *user = current_user();
2355 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2356 vma->vm_mm->locked_vm -= event->data->nr_locked;
2357 perf_mmap_data_release(event);
2358 mutex_unlock(&event->mmap_mutex);
2362 static const struct vm_operations_struct perf_mmap_vmops = {
2363 .open = perf_mmap_open,
2364 .close = perf_mmap_close,
2365 .fault = perf_mmap_fault,
2366 .page_mkwrite = perf_mmap_fault,
2369 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2371 struct perf_event *event = file->private_data;
2372 unsigned long user_locked, user_lock_limit;
2373 struct user_struct *user = current_user();
2374 unsigned long locked, lock_limit;
2375 struct perf_mmap_data *data;
2376 unsigned long vma_size;
2377 unsigned long nr_pages;
2378 long user_extra, extra;
2379 int ret = 0;
2381 if (!(vma->vm_flags & VM_SHARED))
2382 return -EINVAL;
2384 vma_size = vma->vm_end - vma->vm_start;
2385 nr_pages = (vma_size / PAGE_SIZE) - 1;
2388 * If we have data pages ensure they're a power-of-two number, so we
2389 * can do bitmasks instead of modulo.
2391 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2392 return -EINVAL;
2394 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2395 return -EINVAL;
2397 if (vma->vm_pgoff != 0)
2398 return -EINVAL;
2400 WARN_ON_ONCE(event->ctx->parent_ctx);
2401 mutex_lock(&event->mmap_mutex);
2402 if (event->output) {
2403 ret = -EINVAL;
2404 goto unlock;
2407 if (atomic_inc_not_zero(&event->mmap_count)) {
2408 if (nr_pages != event->data->nr_pages)
2409 ret = -EINVAL;
2410 goto unlock;
2413 user_extra = nr_pages + 1;
2414 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2417 * Increase the limit linearly with more CPUs:
2419 user_lock_limit *= num_online_cpus();
2421 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2423 extra = 0;
2424 if (user_locked > user_lock_limit)
2425 extra = user_locked - user_lock_limit;
2427 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2428 lock_limit >>= PAGE_SHIFT;
2429 locked = vma->vm_mm->locked_vm + extra;
2431 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2432 !capable(CAP_IPC_LOCK)) {
2433 ret = -EPERM;
2434 goto unlock;
2437 WARN_ON(event->data);
2439 data = perf_mmap_data_alloc(event, nr_pages);
2440 ret = -ENOMEM;
2441 if (!data)
2442 goto unlock;
2444 ret = 0;
2445 perf_mmap_data_init(event, data);
2447 atomic_set(&event->mmap_count, 1);
2448 atomic_long_add(user_extra, &user->locked_vm);
2449 vma->vm_mm->locked_vm += extra;
2450 event->data->nr_locked = extra;
2451 if (vma->vm_flags & VM_WRITE)
2452 event->data->writable = 1;
2454 unlock:
2455 mutex_unlock(&event->mmap_mutex);
2457 vma->vm_flags |= VM_RESERVED;
2458 vma->vm_ops = &perf_mmap_vmops;
2460 return ret;
2463 static int perf_fasync(int fd, struct file *filp, int on)
2465 struct inode *inode = filp->f_path.dentry->d_inode;
2466 struct perf_event *event = filp->private_data;
2467 int retval;
2469 mutex_lock(&inode->i_mutex);
2470 retval = fasync_helper(fd, filp, on, &event->fasync);
2471 mutex_unlock(&inode->i_mutex);
2473 if (retval < 0)
2474 return retval;
2476 return 0;
2479 static const struct file_operations perf_fops = {
2480 .release = perf_release,
2481 .read = perf_read,
2482 .poll = perf_poll,
2483 .unlocked_ioctl = perf_ioctl,
2484 .compat_ioctl = perf_ioctl,
2485 .mmap = perf_mmap,
2486 .fasync = perf_fasync,
2490 * Perf event wakeup
2492 * If there's data, ensure we set the poll() state and publish everything
2493 * to user-space before waking everybody up.
2496 void perf_event_wakeup(struct perf_event *event)
2498 wake_up_all(&event->waitq);
2500 if (event->pending_kill) {
2501 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2502 event->pending_kill = 0;
2507 * Pending wakeups
2509 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2511 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2512 * single linked list and use cmpxchg() to add entries lockless.
2515 static void perf_pending_event(struct perf_pending_entry *entry)
2517 struct perf_event *event = container_of(entry,
2518 struct perf_event, pending);
2520 if (event->pending_disable) {
2521 event->pending_disable = 0;
2522 __perf_event_disable(event);
2525 if (event->pending_wakeup) {
2526 event->pending_wakeup = 0;
2527 perf_event_wakeup(event);
2531 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2533 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2534 PENDING_TAIL,
2537 static void perf_pending_queue(struct perf_pending_entry *entry,
2538 void (*func)(struct perf_pending_entry *))
2540 struct perf_pending_entry **head;
2542 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2543 return;
2545 entry->func = func;
2547 head = &get_cpu_var(perf_pending_head);
2549 do {
2550 entry->next = *head;
2551 } while (cmpxchg(head, entry->next, entry) != entry->next);
2553 set_perf_event_pending();
2555 put_cpu_var(perf_pending_head);
2558 static int __perf_pending_run(void)
2560 struct perf_pending_entry *list;
2561 int nr = 0;
2563 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2564 while (list != PENDING_TAIL) {
2565 void (*func)(struct perf_pending_entry *);
2566 struct perf_pending_entry *entry = list;
2568 list = list->next;
2570 func = entry->func;
2571 entry->next = NULL;
2573 * Ensure we observe the unqueue before we issue the wakeup,
2574 * so that we won't be waiting forever.
2575 * -- see perf_not_pending().
2577 smp_wmb();
2579 func(entry);
2580 nr++;
2583 return nr;
2586 static inline int perf_not_pending(struct perf_event *event)
2589 * If we flush on whatever cpu we run, there is a chance we don't
2590 * need to wait.
2592 get_cpu();
2593 __perf_pending_run();
2594 put_cpu();
2597 * Ensure we see the proper queue state before going to sleep
2598 * so that we do not miss the wakeup. -- see perf_pending_handle()
2600 smp_rmb();
2601 return event->pending.next == NULL;
2604 static void perf_pending_sync(struct perf_event *event)
2606 wait_event(event->waitq, perf_not_pending(event));
2609 void perf_event_do_pending(void)
2611 __perf_pending_run();
2615 * Callchain support -- arch specific
2618 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2620 return NULL;
2624 * Output
2626 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2627 unsigned long offset, unsigned long head)
2629 unsigned long mask;
2631 if (!data->writable)
2632 return true;
2634 mask = perf_data_size(data) - 1;
2636 offset = (offset - tail) & mask;
2637 head = (head - tail) & mask;
2639 if ((int)(head - offset) < 0)
2640 return false;
2642 return true;
2645 static void perf_output_wakeup(struct perf_output_handle *handle)
2647 atomic_set(&handle->data->poll, POLL_IN);
2649 if (handle->nmi) {
2650 handle->event->pending_wakeup = 1;
2651 perf_pending_queue(&handle->event->pending,
2652 perf_pending_event);
2653 } else
2654 perf_event_wakeup(handle->event);
2658 * Curious locking construct.
2660 * We need to ensure a later event_id doesn't publish a head when a former
2661 * event_id isn't done writing. However since we need to deal with NMIs we
2662 * cannot fully serialize things.
2664 * What we do is serialize between CPUs so we only have to deal with NMI
2665 * nesting on a single CPU.
2667 * We only publish the head (and generate a wakeup) when the outer-most
2668 * event_id completes.
2670 static void perf_output_lock(struct perf_output_handle *handle)
2672 struct perf_mmap_data *data = handle->data;
2673 int cpu;
2675 handle->locked = 0;
2677 local_irq_save(handle->flags);
2678 cpu = smp_processor_id();
2680 if (in_nmi() && atomic_read(&data->lock) == cpu)
2681 return;
2683 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2684 cpu_relax();
2686 handle->locked = 1;
2689 static void perf_output_unlock(struct perf_output_handle *handle)
2691 struct perf_mmap_data *data = handle->data;
2692 unsigned long head;
2693 int cpu;
2695 data->done_head = data->head;
2697 if (!handle->locked)
2698 goto out;
2700 again:
2702 * The xchg implies a full barrier that ensures all writes are done
2703 * before we publish the new head, matched by a rmb() in userspace when
2704 * reading this position.
2706 while ((head = atomic_long_xchg(&data->done_head, 0)))
2707 data->user_page->data_head = head;
2710 * NMI can happen here, which means we can miss a done_head update.
2713 cpu = atomic_xchg(&data->lock, -1);
2714 WARN_ON_ONCE(cpu != smp_processor_id());
2717 * Therefore we have to validate we did not indeed do so.
2719 if (unlikely(atomic_long_read(&data->done_head))) {
2721 * Since we had it locked, we can lock it again.
2723 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2724 cpu_relax();
2726 goto again;
2729 if (atomic_xchg(&data->wakeup, 0))
2730 perf_output_wakeup(handle);
2731 out:
2732 local_irq_restore(handle->flags);
2735 void perf_output_copy(struct perf_output_handle *handle,
2736 const void *buf, unsigned int len)
2738 unsigned int pages_mask;
2739 unsigned long offset;
2740 unsigned int size;
2741 void **pages;
2743 offset = handle->offset;
2744 pages_mask = handle->data->nr_pages - 1;
2745 pages = handle->data->data_pages;
2747 do {
2748 unsigned long page_offset;
2749 unsigned long page_size;
2750 int nr;
2752 nr = (offset >> PAGE_SHIFT) & pages_mask;
2753 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2754 page_offset = offset & (page_size - 1);
2755 size = min_t(unsigned int, page_size - page_offset, len);
2757 memcpy(pages[nr] + page_offset, buf, size);
2759 len -= size;
2760 buf += size;
2761 offset += size;
2762 } while (len);
2764 handle->offset = offset;
2767 * Check we didn't copy past our reservation window, taking the
2768 * possible unsigned int wrap into account.
2770 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2773 int perf_output_begin(struct perf_output_handle *handle,
2774 struct perf_event *event, unsigned int size,
2775 int nmi, int sample)
2777 struct perf_event *output_event;
2778 struct perf_mmap_data *data;
2779 unsigned long tail, offset, head;
2780 int have_lost;
2781 struct {
2782 struct perf_event_header header;
2783 u64 id;
2784 u64 lost;
2785 } lost_event;
2787 rcu_read_lock();
2789 * For inherited events we send all the output towards the parent.
2791 if (event->parent)
2792 event = event->parent;
2794 output_event = rcu_dereference(event->output);
2795 if (output_event)
2796 event = output_event;
2798 data = rcu_dereference(event->data);
2799 if (!data)
2800 goto out;
2802 handle->data = data;
2803 handle->event = event;
2804 handle->nmi = nmi;
2805 handle->sample = sample;
2807 if (!data->nr_pages)
2808 goto fail;
2810 have_lost = atomic_read(&data->lost);
2811 if (have_lost)
2812 size += sizeof(lost_event);
2814 perf_output_lock(handle);
2816 do {
2818 * Userspace could choose to issue a mb() before updating the
2819 * tail pointer. So that all reads will be completed before the
2820 * write is issued.
2822 tail = ACCESS_ONCE(data->user_page->data_tail);
2823 smp_rmb();
2824 offset = head = atomic_long_read(&data->head);
2825 head += size;
2826 if (unlikely(!perf_output_space(data, tail, offset, head)))
2827 goto fail;
2828 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2830 handle->offset = offset;
2831 handle->head = head;
2833 if (head - tail > data->watermark)
2834 atomic_set(&data->wakeup, 1);
2836 if (have_lost) {
2837 lost_event.header.type = PERF_RECORD_LOST;
2838 lost_event.header.misc = 0;
2839 lost_event.header.size = sizeof(lost_event);
2840 lost_event.id = event->id;
2841 lost_event.lost = atomic_xchg(&data->lost, 0);
2843 perf_output_put(handle, lost_event);
2846 return 0;
2848 fail:
2849 atomic_inc(&data->lost);
2850 perf_output_unlock(handle);
2851 out:
2852 rcu_read_unlock();
2854 return -ENOSPC;
2857 void perf_output_end(struct perf_output_handle *handle)
2859 struct perf_event *event = handle->event;
2860 struct perf_mmap_data *data = handle->data;
2862 int wakeup_events = event->attr.wakeup_events;
2864 if (handle->sample && wakeup_events) {
2865 int events = atomic_inc_return(&data->events);
2866 if (events >= wakeup_events) {
2867 atomic_sub(wakeup_events, &data->events);
2868 atomic_set(&data->wakeup, 1);
2872 perf_output_unlock(handle);
2873 rcu_read_unlock();
2876 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2879 * only top level events have the pid namespace they were created in
2881 if (event->parent)
2882 event = event->parent;
2884 return task_tgid_nr_ns(p, event->ns);
2887 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2890 * only top level events have the pid namespace they were created in
2892 if (event->parent)
2893 event = event->parent;
2895 return task_pid_nr_ns(p, event->ns);
2898 static void perf_output_read_one(struct perf_output_handle *handle,
2899 struct perf_event *event)
2901 u64 read_format = event->attr.read_format;
2902 u64 values[4];
2903 int n = 0;
2905 values[n++] = atomic64_read(&event->count);
2906 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2907 values[n++] = event->total_time_enabled +
2908 atomic64_read(&event->child_total_time_enabled);
2910 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2911 values[n++] = event->total_time_running +
2912 atomic64_read(&event->child_total_time_running);
2914 if (read_format & PERF_FORMAT_ID)
2915 values[n++] = primary_event_id(event);
2917 perf_output_copy(handle, values, n * sizeof(u64));
2921 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2923 static void perf_output_read_group(struct perf_output_handle *handle,
2924 struct perf_event *event)
2926 struct perf_event *leader = event->group_leader, *sub;
2927 u64 read_format = event->attr.read_format;
2928 u64 values[5];
2929 int n = 0;
2931 values[n++] = 1 + leader->nr_siblings;
2933 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2934 values[n++] = leader->total_time_enabled;
2936 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2937 values[n++] = leader->total_time_running;
2939 if (leader != event)
2940 leader->pmu->read(leader);
2942 values[n++] = atomic64_read(&leader->count);
2943 if (read_format & PERF_FORMAT_ID)
2944 values[n++] = primary_event_id(leader);
2946 perf_output_copy(handle, values, n * sizeof(u64));
2948 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2949 n = 0;
2951 if (sub != event)
2952 sub->pmu->read(sub);
2954 values[n++] = atomic64_read(&sub->count);
2955 if (read_format & PERF_FORMAT_ID)
2956 values[n++] = primary_event_id(sub);
2958 perf_output_copy(handle, values, n * sizeof(u64));
2962 static void perf_output_read(struct perf_output_handle *handle,
2963 struct perf_event *event)
2965 if (event->attr.read_format & PERF_FORMAT_GROUP)
2966 perf_output_read_group(handle, event);
2967 else
2968 perf_output_read_one(handle, event);
2971 void perf_output_sample(struct perf_output_handle *handle,
2972 struct perf_event_header *header,
2973 struct perf_sample_data *data,
2974 struct perf_event *event)
2976 u64 sample_type = data->type;
2978 perf_output_put(handle, *header);
2980 if (sample_type & PERF_SAMPLE_IP)
2981 perf_output_put(handle, data->ip);
2983 if (sample_type & PERF_SAMPLE_TID)
2984 perf_output_put(handle, data->tid_entry);
2986 if (sample_type & PERF_SAMPLE_TIME)
2987 perf_output_put(handle, data->time);
2989 if (sample_type & PERF_SAMPLE_ADDR)
2990 perf_output_put(handle, data->addr);
2992 if (sample_type & PERF_SAMPLE_ID)
2993 perf_output_put(handle, data->id);
2995 if (sample_type & PERF_SAMPLE_STREAM_ID)
2996 perf_output_put(handle, data->stream_id);
2998 if (sample_type & PERF_SAMPLE_CPU)
2999 perf_output_put(handle, data->cpu_entry);
3001 if (sample_type & PERF_SAMPLE_PERIOD)
3002 perf_output_put(handle, data->period);
3004 if (sample_type & PERF_SAMPLE_READ)
3005 perf_output_read(handle, event);
3007 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3008 if (data->callchain) {
3009 int size = 1;
3011 if (data->callchain)
3012 size += data->callchain->nr;
3014 size *= sizeof(u64);
3016 perf_output_copy(handle, data->callchain, size);
3017 } else {
3018 u64 nr = 0;
3019 perf_output_put(handle, nr);
3023 if (sample_type & PERF_SAMPLE_RAW) {
3024 if (data->raw) {
3025 perf_output_put(handle, data->raw->size);
3026 perf_output_copy(handle, data->raw->data,
3027 data->raw->size);
3028 } else {
3029 struct {
3030 u32 size;
3031 u32 data;
3032 } raw = {
3033 .size = sizeof(u32),
3034 .data = 0,
3036 perf_output_put(handle, raw);
3041 void perf_prepare_sample(struct perf_event_header *header,
3042 struct perf_sample_data *data,
3043 struct perf_event *event,
3044 struct pt_regs *regs)
3046 u64 sample_type = event->attr.sample_type;
3048 data->type = sample_type;
3050 header->type = PERF_RECORD_SAMPLE;
3051 header->size = sizeof(*header);
3053 header->misc = 0;
3054 header->misc |= perf_misc_flags(regs);
3056 if (sample_type & PERF_SAMPLE_IP) {
3057 data->ip = perf_instruction_pointer(regs);
3059 header->size += sizeof(data->ip);
3062 if (sample_type & PERF_SAMPLE_TID) {
3063 /* namespace issues */
3064 data->tid_entry.pid = perf_event_pid(event, current);
3065 data->tid_entry.tid = perf_event_tid(event, current);
3067 header->size += sizeof(data->tid_entry);
3070 if (sample_type & PERF_SAMPLE_TIME) {
3071 data->time = perf_clock();
3073 header->size += sizeof(data->time);
3076 if (sample_type & PERF_SAMPLE_ADDR)
3077 header->size += sizeof(data->addr);
3079 if (sample_type & PERF_SAMPLE_ID) {
3080 data->id = primary_event_id(event);
3082 header->size += sizeof(data->id);
3085 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3086 data->stream_id = event->id;
3088 header->size += sizeof(data->stream_id);
3091 if (sample_type & PERF_SAMPLE_CPU) {
3092 data->cpu_entry.cpu = raw_smp_processor_id();
3093 data->cpu_entry.reserved = 0;
3095 header->size += sizeof(data->cpu_entry);
3098 if (sample_type & PERF_SAMPLE_PERIOD)
3099 header->size += sizeof(data->period);
3101 if (sample_type & PERF_SAMPLE_READ)
3102 header->size += perf_event_read_size(event);
3104 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3105 int size = 1;
3107 data->callchain = perf_callchain(regs);
3109 if (data->callchain)
3110 size += data->callchain->nr;
3112 header->size += size * sizeof(u64);
3115 if (sample_type & PERF_SAMPLE_RAW) {
3116 int size = sizeof(u32);
3118 if (data->raw)
3119 size += data->raw->size;
3120 else
3121 size += sizeof(u32);
3123 WARN_ON_ONCE(size & (sizeof(u64)-1));
3124 header->size += size;
3128 static void perf_event_output(struct perf_event *event, int nmi,
3129 struct perf_sample_data *data,
3130 struct pt_regs *regs)
3132 struct perf_output_handle handle;
3133 struct perf_event_header header;
3135 perf_prepare_sample(&header, data, event, regs);
3137 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3138 return;
3140 perf_output_sample(&handle, &header, data, event);
3142 perf_output_end(&handle);
3146 * read event_id
3149 struct perf_read_event {
3150 struct perf_event_header header;
3152 u32 pid;
3153 u32 tid;
3156 static void
3157 perf_event_read_event(struct perf_event *event,
3158 struct task_struct *task)
3160 struct perf_output_handle handle;
3161 struct perf_read_event read_event = {
3162 .header = {
3163 .type = PERF_RECORD_READ,
3164 .misc = 0,
3165 .size = sizeof(read_event) + perf_event_read_size(event),
3167 .pid = perf_event_pid(event, task),
3168 .tid = perf_event_tid(event, task),
3170 int ret;
3172 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3173 if (ret)
3174 return;
3176 perf_output_put(&handle, read_event);
3177 perf_output_read(&handle, event);
3179 perf_output_end(&handle);
3183 * task tracking -- fork/exit
3185 * enabled by: attr.comm | attr.mmap | attr.task
3188 struct perf_task_event {
3189 struct task_struct *task;
3190 struct perf_event_context *task_ctx;
3192 struct {
3193 struct perf_event_header header;
3195 u32 pid;
3196 u32 ppid;
3197 u32 tid;
3198 u32 ptid;
3199 u64 time;
3200 } event_id;
3203 static void perf_event_task_output(struct perf_event *event,
3204 struct perf_task_event *task_event)
3206 struct perf_output_handle handle;
3207 int size;
3208 struct task_struct *task = task_event->task;
3209 int ret;
3211 size = task_event->event_id.header.size;
3212 ret = perf_output_begin(&handle, event, size, 0, 0);
3214 if (ret)
3215 return;
3217 task_event->event_id.pid = perf_event_pid(event, task);
3218 task_event->event_id.ppid = perf_event_pid(event, current);
3220 task_event->event_id.tid = perf_event_tid(event, task);
3221 task_event->event_id.ptid = perf_event_tid(event, current);
3223 task_event->event_id.time = perf_clock();
3225 perf_output_put(&handle, task_event->event_id);
3227 perf_output_end(&handle);
3230 static int perf_event_task_match(struct perf_event *event)
3232 if (event->state != PERF_EVENT_STATE_ACTIVE)
3233 return 0;
3235 if (event->cpu != -1 && event->cpu != smp_processor_id())
3236 return 0;
3238 if (event->attr.comm || event->attr.mmap || event->attr.task)
3239 return 1;
3241 return 0;
3244 static void perf_event_task_ctx(struct perf_event_context *ctx,
3245 struct perf_task_event *task_event)
3247 struct perf_event *event;
3249 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3250 return;
3252 rcu_read_lock();
3253 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3254 if (perf_event_task_match(event))
3255 perf_event_task_output(event, task_event);
3257 rcu_read_unlock();
3260 static void perf_event_task_event(struct perf_task_event *task_event)
3262 struct perf_cpu_context *cpuctx;
3263 struct perf_event_context *ctx = task_event->task_ctx;
3265 cpuctx = &get_cpu_var(perf_cpu_context);
3266 perf_event_task_ctx(&cpuctx->ctx, task_event);
3268 rcu_read_lock();
3269 if (!ctx)
3270 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3271 if (ctx)
3272 perf_event_task_ctx(ctx, task_event);
3273 put_cpu_var(perf_cpu_context);
3274 rcu_read_unlock();
3277 static void perf_event_task(struct task_struct *task,
3278 struct perf_event_context *task_ctx,
3279 int new)
3281 struct perf_task_event task_event;
3283 if (!atomic_read(&nr_comm_events) &&
3284 !atomic_read(&nr_mmap_events) &&
3285 !atomic_read(&nr_task_events))
3286 return;
3288 task_event = (struct perf_task_event){
3289 .task = task,
3290 .task_ctx = task_ctx,
3291 .event_id = {
3292 .header = {
3293 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3294 .misc = 0,
3295 .size = sizeof(task_event.event_id),
3297 /* .pid */
3298 /* .ppid */
3299 /* .tid */
3300 /* .ptid */
3304 perf_event_task_event(&task_event);
3307 void perf_event_fork(struct task_struct *task)
3309 perf_event_task(task, NULL, 1);
3313 * comm tracking
3316 struct perf_comm_event {
3317 struct task_struct *task;
3318 char *comm;
3319 int comm_size;
3321 struct {
3322 struct perf_event_header header;
3324 u32 pid;
3325 u32 tid;
3326 } event_id;
3329 static void perf_event_comm_output(struct perf_event *event,
3330 struct perf_comm_event *comm_event)
3332 struct perf_output_handle handle;
3333 int size = comm_event->event_id.header.size;
3334 int ret = perf_output_begin(&handle, event, size, 0, 0);
3336 if (ret)
3337 return;
3339 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3340 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3342 perf_output_put(&handle, comm_event->event_id);
3343 perf_output_copy(&handle, comm_event->comm,
3344 comm_event->comm_size);
3345 perf_output_end(&handle);
3348 static int perf_event_comm_match(struct perf_event *event)
3350 if (event->state != PERF_EVENT_STATE_ACTIVE)
3351 return 0;
3353 if (event->cpu != -1 && event->cpu != smp_processor_id())
3354 return 0;
3356 if (event->attr.comm)
3357 return 1;
3359 return 0;
3362 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3363 struct perf_comm_event *comm_event)
3365 struct perf_event *event;
3367 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3368 return;
3370 rcu_read_lock();
3371 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3372 if (perf_event_comm_match(event))
3373 perf_event_comm_output(event, comm_event);
3375 rcu_read_unlock();
3378 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3380 struct perf_cpu_context *cpuctx;
3381 struct perf_event_context *ctx;
3382 unsigned int size;
3383 char comm[TASK_COMM_LEN];
3385 memset(comm, 0, sizeof(comm));
3386 strncpy(comm, comm_event->task->comm, sizeof(comm));
3387 size = ALIGN(strlen(comm)+1, sizeof(u64));
3389 comm_event->comm = comm;
3390 comm_event->comm_size = size;
3392 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3394 cpuctx = &get_cpu_var(perf_cpu_context);
3395 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3397 rcu_read_lock();
3399 * doesn't really matter which of the child contexts the
3400 * events ends up in.
3402 ctx = rcu_dereference(current->perf_event_ctxp);
3403 if (ctx)
3404 perf_event_comm_ctx(ctx, comm_event);
3405 put_cpu_var(perf_cpu_context);
3406 rcu_read_unlock();
3409 void perf_event_comm(struct task_struct *task)
3411 struct perf_comm_event comm_event;
3413 if (task->perf_event_ctxp)
3414 perf_event_enable_on_exec(task);
3416 if (!atomic_read(&nr_comm_events))
3417 return;
3419 comm_event = (struct perf_comm_event){
3420 .task = task,
3421 /* .comm */
3422 /* .comm_size */
3423 .event_id = {
3424 .header = {
3425 .type = PERF_RECORD_COMM,
3426 .misc = 0,
3427 /* .size */
3429 /* .pid */
3430 /* .tid */
3434 perf_event_comm_event(&comm_event);
3438 * mmap tracking
3441 struct perf_mmap_event {
3442 struct vm_area_struct *vma;
3444 const char *file_name;
3445 int file_size;
3447 struct {
3448 struct perf_event_header header;
3450 u32 pid;
3451 u32 tid;
3452 u64 start;
3453 u64 len;
3454 u64 pgoff;
3455 } event_id;
3458 static void perf_event_mmap_output(struct perf_event *event,
3459 struct perf_mmap_event *mmap_event)
3461 struct perf_output_handle handle;
3462 int size = mmap_event->event_id.header.size;
3463 int ret = perf_output_begin(&handle, event, size, 0, 0);
3465 if (ret)
3466 return;
3468 mmap_event->event_id.pid = perf_event_pid(event, current);
3469 mmap_event->event_id.tid = perf_event_tid(event, current);
3471 perf_output_put(&handle, mmap_event->event_id);
3472 perf_output_copy(&handle, mmap_event->file_name,
3473 mmap_event->file_size);
3474 perf_output_end(&handle);
3477 static int perf_event_mmap_match(struct perf_event *event,
3478 struct perf_mmap_event *mmap_event)
3480 if (event->state != PERF_EVENT_STATE_ACTIVE)
3481 return 0;
3483 if (event->cpu != -1 && event->cpu != smp_processor_id())
3484 return 0;
3486 if (event->attr.mmap)
3487 return 1;
3489 return 0;
3492 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3493 struct perf_mmap_event *mmap_event)
3495 struct perf_event *event;
3497 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3498 return;
3500 rcu_read_lock();
3501 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3502 if (perf_event_mmap_match(event, mmap_event))
3503 perf_event_mmap_output(event, mmap_event);
3505 rcu_read_unlock();
3508 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3510 struct perf_cpu_context *cpuctx;
3511 struct perf_event_context *ctx;
3512 struct vm_area_struct *vma = mmap_event->vma;
3513 struct file *file = vma->vm_file;
3514 unsigned int size;
3515 char tmp[16];
3516 char *buf = NULL;
3517 const char *name;
3519 memset(tmp, 0, sizeof(tmp));
3521 if (file) {
3523 * d_path works from the end of the buffer backwards, so we
3524 * need to add enough zero bytes after the string to handle
3525 * the 64bit alignment we do later.
3527 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3528 if (!buf) {
3529 name = strncpy(tmp, "//enomem", sizeof(tmp));
3530 goto got_name;
3532 name = d_path(&file->f_path, buf, PATH_MAX);
3533 if (IS_ERR(name)) {
3534 name = strncpy(tmp, "//toolong", sizeof(tmp));
3535 goto got_name;
3537 } else {
3538 if (arch_vma_name(mmap_event->vma)) {
3539 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3540 sizeof(tmp));
3541 goto got_name;
3544 if (!vma->vm_mm) {
3545 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3546 goto got_name;
3549 name = strncpy(tmp, "//anon", sizeof(tmp));
3550 goto got_name;
3553 got_name:
3554 size = ALIGN(strlen(name)+1, sizeof(u64));
3556 mmap_event->file_name = name;
3557 mmap_event->file_size = size;
3559 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3561 cpuctx = &get_cpu_var(perf_cpu_context);
3562 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3564 rcu_read_lock();
3566 * doesn't really matter which of the child contexts the
3567 * events ends up in.
3569 ctx = rcu_dereference(current->perf_event_ctxp);
3570 if (ctx)
3571 perf_event_mmap_ctx(ctx, mmap_event);
3572 put_cpu_var(perf_cpu_context);
3573 rcu_read_unlock();
3575 kfree(buf);
3578 void __perf_event_mmap(struct vm_area_struct *vma)
3580 struct perf_mmap_event mmap_event;
3582 if (!atomic_read(&nr_mmap_events))
3583 return;
3585 mmap_event = (struct perf_mmap_event){
3586 .vma = vma,
3587 /* .file_name */
3588 /* .file_size */
3589 .event_id = {
3590 .header = {
3591 .type = PERF_RECORD_MMAP,
3592 .misc = 0,
3593 /* .size */
3595 /* .pid */
3596 /* .tid */
3597 .start = vma->vm_start,
3598 .len = vma->vm_end - vma->vm_start,
3599 .pgoff = vma->vm_pgoff,
3603 perf_event_mmap_event(&mmap_event);
3607 * IRQ throttle logging
3610 static void perf_log_throttle(struct perf_event *event, int enable)
3612 struct perf_output_handle handle;
3613 int ret;
3615 struct {
3616 struct perf_event_header header;
3617 u64 time;
3618 u64 id;
3619 u64 stream_id;
3620 } throttle_event = {
3621 .header = {
3622 .type = PERF_RECORD_THROTTLE,
3623 .misc = 0,
3624 .size = sizeof(throttle_event),
3626 .time = perf_clock(),
3627 .id = primary_event_id(event),
3628 .stream_id = event->id,
3631 if (enable)
3632 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3634 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3635 if (ret)
3636 return;
3638 perf_output_put(&handle, throttle_event);
3639 perf_output_end(&handle);
3643 * Generic event overflow handling, sampling.
3646 static int __perf_event_overflow(struct perf_event *event, int nmi,
3647 int throttle, struct perf_sample_data *data,
3648 struct pt_regs *regs)
3650 int events = atomic_read(&event->event_limit);
3651 struct hw_perf_event *hwc = &event->hw;
3652 int ret = 0;
3654 throttle = (throttle && event->pmu->unthrottle != NULL);
3656 if (!throttle) {
3657 hwc->interrupts++;
3658 } else {
3659 if (hwc->interrupts != MAX_INTERRUPTS) {
3660 hwc->interrupts++;
3661 if (HZ * hwc->interrupts >
3662 (u64)sysctl_perf_event_sample_rate) {
3663 hwc->interrupts = MAX_INTERRUPTS;
3664 perf_log_throttle(event, 0);
3665 ret = 1;
3667 } else {
3669 * Keep re-disabling events even though on the previous
3670 * pass we disabled it - just in case we raced with a
3671 * sched-in and the event got enabled again:
3673 ret = 1;
3677 if (event->attr.freq) {
3678 u64 now = perf_clock();
3679 s64 delta = now - hwc->freq_stamp;
3681 hwc->freq_stamp = now;
3683 if (delta > 0 && delta < TICK_NSEC)
3684 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3688 * XXX event_limit might not quite work as expected on inherited
3689 * events
3692 event->pending_kill = POLL_IN;
3693 if (events && atomic_dec_and_test(&event->event_limit)) {
3694 ret = 1;
3695 event->pending_kill = POLL_HUP;
3696 if (nmi) {
3697 event->pending_disable = 1;
3698 perf_pending_queue(&event->pending,
3699 perf_pending_event);
3700 } else
3701 perf_event_disable(event);
3704 perf_event_output(event, nmi, data, regs);
3705 return ret;
3708 int perf_event_overflow(struct perf_event *event, int nmi,
3709 struct perf_sample_data *data,
3710 struct pt_regs *regs)
3712 return __perf_event_overflow(event, nmi, 1, data, regs);
3716 * Generic software event infrastructure
3720 * We directly increment event->count and keep a second value in
3721 * event->hw.period_left to count intervals. This period event
3722 * is kept in the range [-sample_period, 0] so that we can use the
3723 * sign as trigger.
3726 static u64 perf_swevent_set_period(struct perf_event *event)
3728 struct hw_perf_event *hwc = &event->hw;
3729 u64 period = hwc->last_period;
3730 u64 nr, offset;
3731 s64 old, val;
3733 hwc->last_period = hwc->sample_period;
3735 again:
3736 old = val = atomic64_read(&hwc->period_left);
3737 if (val < 0)
3738 return 0;
3740 nr = div64_u64(period + val, period);
3741 offset = nr * period;
3742 val -= offset;
3743 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3744 goto again;
3746 return nr;
3749 static void perf_swevent_overflow(struct perf_event *event,
3750 int nmi, struct perf_sample_data *data,
3751 struct pt_regs *regs)
3753 struct hw_perf_event *hwc = &event->hw;
3754 int throttle = 0;
3755 u64 overflow;
3757 data->period = event->hw.last_period;
3758 overflow = perf_swevent_set_period(event);
3760 if (hwc->interrupts == MAX_INTERRUPTS)
3761 return;
3763 for (; overflow; overflow--) {
3764 if (__perf_event_overflow(event, nmi, throttle,
3765 data, regs)) {
3767 * We inhibit the overflow from happening when
3768 * hwc->interrupts == MAX_INTERRUPTS.
3770 break;
3772 throttle = 1;
3776 static void perf_swevent_unthrottle(struct perf_event *event)
3779 * Nothing to do, we already reset hwc->interrupts.
3783 static void perf_swevent_add(struct perf_event *event, u64 nr,
3784 int nmi, struct perf_sample_data *data,
3785 struct pt_regs *regs)
3787 struct hw_perf_event *hwc = &event->hw;
3789 atomic64_add(nr, &event->count);
3791 if (!hwc->sample_period)
3792 return;
3794 if (!regs)
3795 return;
3797 if (!atomic64_add_negative(nr, &hwc->period_left))
3798 perf_swevent_overflow(event, nmi, data, regs);
3801 static int perf_swevent_is_counting(struct perf_event *event)
3804 * The event is active, we're good!
3806 if (event->state == PERF_EVENT_STATE_ACTIVE)
3807 return 1;
3810 * The event is off/error, not counting.
3812 if (event->state != PERF_EVENT_STATE_INACTIVE)
3813 return 0;
3816 * The event is inactive, if the context is active
3817 * we're part of a group that didn't make it on the 'pmu',
3818 * not counting.
3820 if (event->ctx->is_active)
3821 return 0;
3824 * We're inactive and the context is too, this means the
3825 * task is scheduled out, we're counting events that happen
3826 * to us, like migration events.
3828 return 1;
3831 static int perf_swevent_match(struct perf_event *event,
3832 enum perf_type_id type,
3833 u32 event_id, struct pt_regs *regs)
3835 if (event->cpu != -1 && event->cpu != smp_processor_id())
3836 return 0;
3838 if (!perf_swevent_is_counting(event))
3839 return 0;
3841 if (event->attr.type != type)
3842 return 0;
3843 if (event->attr.config != event_id)
3844 return 0;
3846 if (regs) {
3847 if (event->attr.exclude_user && user_mode(regs))
3848 return 0;
3850 if (event->attr.exclude_kernel && !user_mode(regs))
3851 return 0;
3854 return 1;
3857 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3858 enum perf_type_id type,
3859 u32 event_id, u64 nr, int nmi,
3860 struct perf_sample_data *data,
3861 struct pt_regs *regs)
3863 struct perf_event *event;
3865 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3866 return;
3868 rcu_read_lock();
3869 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3870 if (perf_swevent_match(event, type, event_id, regs))
3871 perf_swevent_add(event, nr, nmi, data, regs);
3873 rcu_read_unlock();
3876 static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
3878 if (in_nmi())
3879 return &cpuctx->recursion[3];
3881 if (in_irq())
3882 return &cpuctx->recursion[2];
3884 if (in_softirq())
3885 return &cpuctx->recursion[1];
3887 return &cpuctx->recursion[0];
3890 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3891 u64 nr, int nmi,
3892 struct perf_sample_data *data,
3893 struct pt_regs *regs)
3895 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3896 int *recursion = perf_swevent_recursion_context(cpuctx);
3897 struct perf_event_context *ctx;
3899 if (*recursion)
3900 goto out;
3902 (*recursion)++;
3903 barrier();
3905 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3906 nr, nmi, data, regs);
3907 rcu_read_lock();
3909 * doesn't really matter which of the child contexts the
3910 * events ends up in.
3912 ctx = rcu_dereference(current->perf_event_ctxp);
3913 if (ctx)
3914 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3915 rcu_read_unlock();
3917 barrier();
3918 (*recursion)--;
3920 out:
3921 put_cpu_var(perf_cpu_context);
3924 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3925 struct pt_regs *regs, u64 addr)
3927 struct perf_sample_data data = {
3928 .addr = addr,
3931 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3932 &data, regs);
3935 static void perf_swevent_read(struct perf_event *event)
3939 static int perf_swevent_enable(struct perf_event *event)
3941 struct hw_perf_event *hwc = &event->hw;
3943 if (hwc->sample_period) {
3944 hwc->last_period = hwc->sample_period;
3945 perf_swevent_set_period(event);
3947 return 0;
3950 static void perf_swevent_disable(struct perf_event *event)
3954 static const struct pmu perf_ops_generic = {
3955 .enable = perf_swevent_enable,
3956 .disable = perf_swevent_disable,
3957 .read = perf_swevent_read,
3958 .unthrottle = perf_swevent_unthrottle,
3962 * hrtimer based swevent callback
3965 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3967 enum hrtimer_restart ret = HRTIMER_RESTART;
3968 struct perf_sample_data data;
3969 struct pt_regs *regs;
3970 struct perf_event *event;
3971 u64 period;
3973 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
3974 event->pmu->read(event);
3976 data.addr = 0;
3977 data.period = event->hw.last_period;
3978 regs = get_irq_regs();
3980 * In case we exclude kernel IPs or are somehow not in interrupt
3981 * context, provide the next best thing, the user IP.
3983 if ((event->attr.exclude_kernel || !regs) &&
3984 !event->attr.exclude_user)
3985 regs = task_pt_regs(current);
3987 if (regs) {
3988 if (!(event->attr.exclude_idle && current->pid == 0))
3989 if (perf_event_overflow(event, 0, &data, regs))
3990 ret = HRTIMER_NORESTART;
3993 period = max_t(u64, 10000, event->hw.sample_period);
3994 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3996 return ret;
3999 static void perf_swevent_start_hrtimer(struct perf_event *event)
4001 struct hw_perf_event *hwc = &event->hw;
4003 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4004 hwc->hrtimer.function = perf_swevent_hrtimer;
4005 if (hwc->sample_period) {
4006 u64 period;
4008 if (hwc->remaining) {
4009 if (hwc->remaining < 0)
4010 period = 10000;
4011 else
4012 period = hwc->remaining;
4013 hwc->remaining = 0;
4014 } else {
4015 period = max_t(u64, 10000, hwc->sample_period);
4017 __hrtimer_start_range_ns(&hwc->hrtimer,
4018 ns_to_ktime(period), 0,
4019 HRTIMER_MODE_REL, 0);
4023 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4025 struct hw_perf_event *hwc = &event->hw;
4027 if (hwc->sample_period) {
4028 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4029 hwc->remaining = ktime_to_ns(remaining);
4031 hrtimer_cancel(&hwc->hrtimer);
4036 * Software event: cpu wall time clock
4039 static void cpu_clock_perf_event_update(struct perf_event *event)
4041 int cpu = raw_smp_processor_id();
4042 s64 prev;
4043 u64 now;
4045 now = cpu_clock(cpu);
4046 prev = atomic64_read(&event->hw.prev_count);
4047 atomic64_set(&event->hw.prev_count, now);
4048 atomic64_add(now - prev, &event->count);
4051 static int cpu_clock_perf_event_enable(struct perf_event *event)
4053 struct hw_perf_event *hwc = &event->hw;
4054 int cpu = raw_smp_processor_id();
4056 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4057 perf_swevent_start_hrtimer(event);
4059 return 0;
4062 static void cpu_clock_perf_event_disable(struct perf_event *event)
4064 perf_swevent_cancel_hrtimer(event);
4065 cpu_clock_perf_event_update(event);
4068 static void cpu_clock_perf_event_read(struct perf_event *event)
4070 cpu_clock_perf_event_update(event);
4073 static const struct pmu perf_ops_cpu_clock = {
4074 .enable = cpu_clock_perf_event_enable,
4075 .disable = cpu_clock_perf_event_disable,
4076 .read = cpu_clock_perf_event_read,
4080 * Software event: task time clock
4083 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4085 u64 prev;
4086 s64 delta;
4088 prev = atomic64_xchg(&event->hw.prev_count, now);
4089 delta = now - prev;
4090 atomic64_add(delta, &event->count);
4093 static int task_clock_perf_event_enable(struct perf_event *event)
4095 struct hw_perf_event *hwc = &event->hw;
4096 u64 now;
4098 now = event->ctx->time;
4100 atomic64_set(&hwc->prev_count, now);
4102 perf_swevent_start_hrtimer(event);
4104 return 0;
4107 static void task_clock_perf_event_disable(struct perf_event *event)
4109 perf_swevent_cancel_hrtimer(event);
4110 task_clock_perf_event_update(event, event->ctx->time);
4114 static void task_clock_perf_event_read(struct perf_event *event)
4116 u64 time;
4118 if (!in_nmi()) {
4119 update_context_time(event->ctx);
4120 time = event->ctx->time;
4121 } else {
4122 u64 now = perf_clock();
4123 u64 delta = now - event->ctx->timestamp;
4124 time = event->ctx->time + delta;
4127 task_clock_perf_event_update(event, time);
4130 static const struct pmu perf_ops_task_clock = {
4131 .enable = task_clock_perf_event_enable,
4132 .disable = task_clock_perf_event_disable,
4133 .read = task_clock_perf_event_read,
4136 #ifdef CONFIG_EVENT_PROFILE
4137 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4138 int entry_size)
4140 struct perf_raw_record raw = {
4141 .size = entry_size,
4142 .data = record,
4145 struct perf_sample_data data = {
4146 .addr = addr,
4147 .raw = &raw,
4150 struct pt_regs *regs = get_irq_regs();
4152 if (!regs)
4153 regs = task_pt_regs(current);
4155 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4156 &data, regs);
4158 EXPORT_SYMBOL_GPL(perf_tp_event);
4160 extern int ftrace_profile_enable(int);
4161 extern void ftrace_profile_disable(int);
4163 static void tp_perf_event_destroy(struct perf_event *event)
4165 ftrace_profile_disable(event->attr.config);
4168 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4171 * Raw tracepoint data is a severe data leak, only allow root to
4172 * have these.
4174 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4175 perf_paranoid_tracepoint_raw() &&
4176 !capable(CAP_SYS_ADMIN))
4177 return ERR_PTR(-EPERM);
4179 if (ftrace_profile_enable(event->attr.config))
4180 return NULL;
4182 event->destroy = tp_perf_event_destroy;
4184 return &perf_ops_generic;
4186 #else
4187 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4189 return NULL;
4191 #endif
4193 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4195 static void sw_perf_event_destroy(struct perf_event *event)
4197 u64 event_id = event->attr.config;
4199 WARN_ON(event->parent);
4201 atomic_dec(&perf_swevent_enabled[event_id]);
4204 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4206 const struct pmu *pmu = NULL;
4207 u64 event_id = event->attr.config;
4210 * Software events (currently) can't in general distinguish
4211 * between user, kernel and hypervisor events.
4212 * However, context switches and cpu migrations are considered
4213 * to be kernel events, and page faults are never hypervisor
4214 * events.
4216 switch (event_id) {
4217 case PERF_COUNT_SW_CPU_CLOCK:
4218 pmu = &perf_ops_cpu_clock;
4220 break;
4221 case PERF_COUNT_SW_TASK_CLOCK:
4223 * If the user instantiates this as a per-cpu event,
4224 * use the cpu_clock event instead.
4226 if (event->ctx->task)
4227 pmu = &perf_ops_task_clock;
4228 else
4229 pmu = &perf_ops_cpu_clock;
4231 break;
4232 case PERF_COUNT_SW_PAGE_FAULTS:
4233 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4234 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4235 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4236 case PERF_COUNT_SW_CPU_MIGRATIONS:
4237 if (!event->parent) {
4238 atomic_inc(&perf_swevent_enabled[event_id]);
4239 event->destroy = sw_perf_event_destroy;
4241 pmu = &perf_ops_generic;
4242 break;
4245 return pmu;
4249 * Allocate and initialize a event structure
4251 static struct perf_event *
4252 perf_event_alloc(struct perf_event_attr *attr,
4253 int cpu,
4254 struct perf_event_context *ctx,
4255 struct perf_event *group_leader,
4256 struct perf_event *parent_event,
4257 gfp_t gfpflags)
4259 const struct pmu *pmu;
4260 struct perf_event *event;
4261 struct hw_perf_event *hwc;
4262 long err;
4264 event = kzalloc(sizeof(*event), gfpflags);
4265 if (!event)
4266 return ERR_PTR(-ENOMEM);
4269 * Single events are their own group leaders, with an
4270 * empty sibling list:
4272 if (!group_leader)
4273 group_leader = event;
4275 mutex_init(&event->child_mutex);
4276 INIT_LIST_HEAD(&event->child_list);
4278 INIT_LIST_HEAD(&event->group_entry);
4279 INIT_LIST_HEAD(&event->event_entry);
4280 INIT_LIST_HEAD(&event->sibling_list);
4281 init_waitqueue_head(&event->waitq);
4283 mutex_init(&event->mmap_mutex);
4285 event->cpu = cpu;
4286 event->attr = *attr;
4287 event->group_leader = group_leader;
4288 event->pmu = NULL;
4289 event->ctx = ctx;
4290 event->oncpu = -1;
4292 event->parent = parent_event;
4294 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4295 event->id = atomic64_inc_return(&perf_event_id);
4297 event->state = PERF_EVENT_STATE_INACTIVE;
4299 if (attr->disabled)
4300 event->state = PERF_EVENT_STATE_OFF;
4302 pmu = NULL;
4304 hwc = &event->hw;
4305 hwc->sample_period = attr->sample_period;
4306 if (attr->freq && attr->sample_freq)
4307 hwc->sample_period = 1;
4308 hwc->last_period = hwc->sample_period;
4310 atomic64_set(&hwc->period_left, hwc->sample_period);
4313 * we currently do not support PERF_FORMAT_GROUP on inherited events
4315 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4316 goto done;
4318 switch (attr->type) {
4319 case PERF_TYPE_RAW:
4320 case PERF_TYPE_HARDWARE:
4321 case PERF_TYPE_HW_CACHE:
4322 pmu = hw_perf_event_init(event);
4323 break;
4325 case PERF_TYPE_SOFTWARE:
4326 pmu = sw_perf_event_init(event);
4327 break;
4329 case PERF_TYPE_TRACEPOINT:
4330 pmu = tp_perf_event_init(event);
4331 break;
4333 default:
4334 break;
4336 done:
4337 err = 0;
4338 if (!pmu)
4339 err = -EINVAL;
4340 else if (IS_ERR(pmu))
4341 err = PTR_ERR(pmu);
4343 if (err) {
4344 if (event->ns)
4345 put_pid_ns(event->ns);
4346 kfree(event);
4347 return ERR_PTR(err);
4350 event->pmu = pmu;
4352 if (!event->parent) {
4353 atomic_inc(&nr_events);
4354 if (event->attr.mmap)
4355 atomic_inc(&nr_mmap_events);
4356 if (event->attr.comm)
4357 atomic_inc(&nr_comm_events);
4358 if (event->attr.task)
4359 atomic_inc(&nr_task_events);
4362 return event;
4365 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4366 struct perf_event_attr *attr)
4368 u32 size;
4369 int ret;
4371 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4372 return -EFAULT;
4375 * zero the full structure, so that a short copy will be nice.
4377 memset(attr, 0, sizeof(*attr));
4379 ret = get_user(size, &uattr->size);
4380 if (ret)
4381 return ret;
4383 if (size > PAGE_SIZE) /* silly large */
4384 goto err_size;
4386 if (!size) /* abi compat */
4387 size = PERF_ATTR_SIZE_VER0;
4389 if (size < PERF_ATTR_SIZE_VER0)
4390 goto err_size;
4393 * If we're handed a bigger struct than we know of,
4394 * ensure all the unknown bits are 0 - i.e. new
4395 * user-space does not rely on any kernel feature
4396 * extensions we dont know about yet.
4398 if (size > sizeof(*attr)) {
4399 unsigned char __user *addr;
4400 unsigned char __user *end;
4401 unsigned char val;
4403 addr = (void __user *)uattr + sizeof(*attr);
4404 end = (void __user *)uattr + size;
4406 for (; addr < end; addr++) {
4407 ret = get_user(val, addr);
4408 if (ret)
4409 return ret;
4410 if (val)
4411 goto err_size;
4413 size = sizeof(*attr);
4416 ret = copy_from_user(attr, uattr, size);
4417 if (ret)
4418 return -EFAULT;
4421 * If the type exists, the corresponding creation will verify
4422 * the attr->config.
4424 if (attr->type >= PERF_TYPE_MAX)
4425 return -EINVAL;
4427 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4428 return -EINVAL;
4430 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4431 return -EINVAL;
4433 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4434 return -EINVAL;
4436 out:
4437 return ret;
4439 err_size:
4440 put_user(sizeof(*attr), &uattr->size);
4441 ret = -E2BIG;
4442 goto out;
4445 int perf_event_set_output(struct perf_event *event, int output_fd)
4447 struct perf_event *output_event = NULL;
4448 struct file *output_file = NULL;
4449 struct perf_event *old_output;
4450 int fput_needed = 0;
4451 int ret = -EINVAL;
4453 if (!output_fd)
4454 goto set;
4456 output_file = fget_light(output_fd, &fput_needed);
4457 if (!output_file)
4458 return -EBADF;
4460 if (output_file->f_op != &perf_fops)
4461 goto out;
4463 output_event = output_file->private_data;
4465 /* Don't chain output fds */
4466 if (output_event->output)
4467 goto out;
4469 /* Don't set an output fd when we already have an output channel */
4470 if (event->data)
4471 goto out;
4473 atomic_long_inc(&output_file->f_count);
4475 set:
4476 mutex_lock(&event->mmap_mutex);
4477 old_output = event->output;
4478 rcu_assign_pointer(event->output, output_event);
4479 mutex_unlock(&event->mmap_mutex);
4481 if (old_output) {
4483 * we need to make sure no existing perf_output_*()
4484 * is still referencing this event.
4486 synchronize_rcu();
4487 fput(old_output->filp);
4490 ret = 0;
4491 out:
4492 fput_light(output_file, fput_needed);
4493 return ret;
4497 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4499 * @attr_uptr: event_id type attributes for monitoring/sampling
4500 * @pid: target pid
4501 * @cpu: target cpu
4502 * @group_fd: group leader event fd
4504 SYSCALL_DEFINE5(perf_event_open,
4505 struct perf_event_attr __user *, attr_uptr,
4506 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4508 struct perf_event *event, *group_leader;
4509 struct perf_event_attr attr;
4510 struct perf_event_context *ctx;
4511 struct file *event_file = NULL;
4512 struct file *group_file = NULL;
4513 int event_fd;
4514 int fput_needed = 0;
4515 int err;
4517 /* for future expandability... */
4518 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4519 return -EINVAL;
4521 err = perf_copy_attr(attr_uptr, &attr);
4522 if (err)
4523 return err;
4525 if (!attr.exclude_kernel) {
4526 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4527 return -EACCES;
4530 if (attr.freq) {
4531 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4532 return -EINVAL;
4535 event_fd = get_unused_fd_flags(O_RDWR);
4536 if (event_fd < 0)
4537 return event_fd;
4540 * Get the target context (task or percpu):
4542 ctx = find_get_context(pid, cpu);
4543 if (IS_ERR(ctx)) {
4544 err = PTR_ERR(ctx);
4545 goto err_fd;
4549 * Look up the group leader (we will attach this event to it):
4551 group_leader = NULL;
4552 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4553 err = -EINVAL;
4554 group_file = fget_light(group_fd, &fput_needed);
4555 if (!group_file)
4556 goto err_put_context;
4557 if (group_file->f_op != &perf_fops)
4558 goto err_put_context;
4560 group_leader = group_file->private_data;
4562 * Do not allow a recursive hierarchy (this new sibling
4563 * becoming part of another group-sibling):
4565 if (group_leader->group_leader != group_leader)
4566 goto err_put_context;
4568 * Do not allow to attach to a group in a different
4569 * task or CPU context:
4571 if (group_leader->ctx != ctx)
4572 goto err_put_context;
4574 * Only a group leader can be exclusive or pinned
4576 if (attr.exclusive || attr.pinned)
4577 goto err_put_context;
4580 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4581 NULL, GFP_KERNEL);
4582 err = PTR_ERR(event);
4583 if (IS_ERR(event))
4584 goto err_put_context;
4586 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
4587 if (IS_ERR(event_file)) {
4588 err = PTR_ERR(event_file);
4589 goto err_free_put_context;
4592 if (flags & PERF_FLAG_FD_OUTPUT) {
4593 err = perf_event_set_output(event, group_fd);
4594 if (err)
4595 goto err_fput_free_put_context;
4598 event->filp = event_file;
4599 WARN_ON_ONCE(ctx->parent_ctx);
4600 mutex_lock(&ctx->mutex);
4601 perf_install_in_context(ctx, event, cpu);
4602 ++ctx->generation;
4603 mutex_unlock(&ctx->mutex);
4605 event->owner = current;
4606 get_task_struct(current);
4607 mutex_lock(&current->perf_event_mutex);
4608 list_add_tail(&event->owner_entry, &current->perf_event_list);
4609 mutex_unlock(&current->perf_event_mutex);
4611 fput_light(group_file, fput_needed);
4612 fd_install(event_fd, event_file);
4613 return event_fd;
4615 err_fput_free_put_context:
4616 fput(event_file);
4617 err_free_put_context:
4618 free_event(event);
4619 err_put_context:
4620 fput_light(group_file, fput_needed);
4621 put_ctx(ctx);
4622 err_fd:
4623 put_unused_fd(event_fd);
4624 return err;
4628 * inherit a event from parent task to child task:
4630 static struct perf_event *
4631 inherit_event(struct perf_event *parent_event,
4632 struct task_struct *parent,
4633 struct perf_event_context *parent_ctx,
4634 struct task_struct *child,
4635 struct perf_event *group_leader,
4636 struct perf_event_context *child_ctx)
4638 struct perf_event *child_event;
4641 * Instead of creating recursive hierarchies of events,
4642 * we link inherited events back to the original parent,
4643 * which has a filp for sure, which we use as the reference
4644 * count:
4646 if (parent_event->parent)
4647 parent_event = parent_event->parent;
4649 child_event = perf_event_alloc(&parent_event->attr,
4650 parent_event->cpu, child_ctx,
4651 group_leader, parent_event,
4652 GFP_KERNEL);
4653 if (IS_ERR(child_event))
4654 return child_event;
4655 get_ctx(child_ctx);
4658 * Make the child state follow the state of the parent event,
4659 * not its attr.disabled bit. We hold the parent's mutex,
4660 * so we won't race with perf_event_{en, dis}able_family.
4662 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4663 child_event->state = PERF_EVENT_STATE_INACTIVE;
4664 else
4665 child_event->state = PERF_EVENT_STATE_OFF;
4667 if (parent_event->attr.freq)
4668 child_event->hw.sample_period = parent_event->hw.sample_period;
4671 * Link it up in the child's context:
4673 add_event_to_ctx(child_event, child_ctx);
4676 * Get a reference to the parent filp - we will fput it
4677 * when the child event exits. This is safe to do because
4678 * we are in the parent and we know that the filp still
4679 * exists and has a nonzero count:
4681 atomic_long_inc(&parent_event->filp->f_count);
4684 * Link this into the parent event's child list
4686 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4687 mutex_lock(&parent_event->child_mutex);
4688 list_add_tail(&child_event->child_list, &parent_event->child_list);
4689 mutex_unlock(&parent_event->child_mutex);
4691 return child_event;
4694 static int inherit_group(struct perf_event *parent_event,
4695 struct task_struct *parent,
4696 struct perf_event_context *parent_ctx,
4697 struct task_struct *child,
4698 struct perf_event_context *child_ctx)
4700 struct perf_event *leader;
4701 struct perf_event *sub;
4702 struct perf_event *child_ctr;
4704 leader = inherit_event(parent_event, parent, parent_ctx,
4705 child, NULL, child_ctx);
4706 if (IS_ERR(leader))
4707 return PTR_ERR(leader);
4708 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4709 child_ctr = inherit_event(sub, parent, parent_ctx,
4710 child, leader, child_ctx);
4711 if (IS_ERR(child_ctr))
4712 return PTR_ERR(child_ctr);
4714 return 0;
4717 static void sync_child_event(struct perf_event *child_event,
4718 struct task_struct *child)
4720 struct perf_event *parent_event = child_event->parent;
4721 u64 child_val;
4723 if (child_event->attr.inherit_stat)
4724 perf_event_read_event(child_event, child);
4726 child_val = atomic64_read(&child_event->count);
4729 * Add back the child's count to the parent's count:
4731 atomic64_add(child_val, &parent_event->count);
4732 atomic64_add(child_event->total_time_enabled,
4733 &parent_event->child_total_time_enabled);
4734 atomic64_add(child_event->total_time_running,
4735 &parent_event->child_total_time_running);
4738 * Remove this event from the parent's list
4740 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4741 mutex_lock(&parent_event->child_mutex);
4742 list_del_init(&child_event->child_list);
4743 mutex_unlock(&parent_event->child_mutex);
4746 * Release the parent event, if this was the last
4747 * reference to it.
4749 fput(parent_event->filp);
4752 static void
4753 __perf_event_exit_task(struct perf_event *child_event,
4754 struct perf_event_context *child_ctx,
4755 struct task_struct *child)
4757 struct perf_event *parent_event;
4759 update_event_times(child_event);
4760 perf_event_remove_from_context(child_event);
4762 parent_event = child_event->parent;
4764 * It can happen that parent exits first, and has events
4765 * that are still around due to the child reference. These
4766 * events need to be zapped - but otherwise linger.
4768 if (parent_event) {
4769 sync_child_event(child_event, child);
4770 free_event(child_event);
4775 * When a child task exits, feed back event values to parent events.
4777 void perf_event_exit_task(struct task_struct *child)
4779 struct perf_event *child_event, *tmp;
4780 struct perf_event_context *child_ctx;
4781 unsigned long flags;
4783 if (likely(!child->perf_event_ctxp)) {
4784 perf_event_task(child, NULL, 0);
4785 return;
4788 local_irq_save(flags);
4790 * We can't reschedule here because interrupts are disabled,
4791 * and either child is current or it is a task that can't be
4792 * scheduled, so we are now safe from rescheduling changing
4793 * our context.
4795 child_ctx = child->perf_event_ctxp;
4796 __perf_event_task_sched_out(child_ctx);
4799 * Take the context lock here so that if find_get_context is
4800 * reading child->perf_event_ctxp, we wait until it has
4801 * incremented the context's refcount before we do put_ctx below.
4803 spin_lock(&child_ctx->lock);
4804 child->perf_event_ctxp = NULL;
4806 * If this context is a clone; unclone it so it can't get
4807 * swapped to another process while we're removing all
4808 * the events from it.
4810 unclone_ctx(child_ctx);
4811 spin_unlock_irqrestore(&child_ctx->lock, flags);
4814 * Report the task dead after unscheduling the events so that we
4815 * won't get any samples after PERF_RECORD_EXIT. We can however still
4816 * get a few PERF_RECORD_READ events.
4818 perf_event_task(child, child_ctx, 0);
4821 * We can recurse on the same lock type through:
4823 * __perf_event_exit_task()
4824 * sync_child_event()
4825 * fput(parent_event->filp)
4826 * perf_release()
4827 * mutex_lock(&ctx->mutex)
4829 * But since its the parent context it won't be the same instance.
4831 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4833 again:
4834 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
4835 group_entry)
4836 __perf_event_exit_task(child_event, child_ctx, child);
4839 * If the last event was a group event, it will have appended all
4840 * its siblings to the list, but we obtained 'tmp' before that which
4841 * will still point to the list head terminating the iteration.
4843 if (!list_empty(&child_ctx->group_list))
4844 goto again;
4846 mutex_unlock(&child_ctx->mutex);
4848 put_ctx(child_ctx);
4852 * free an unexposed, unused context as created by inheritance by
4853 * init_task below, used by fork() in case of fail.
4855 void perf_event_free_task(struct task_struct *task)
4857 struct perf_event_context *ctx = task->perf_event_ctxp;
4858 struct perf_event *event, *tmp;
4860 if (!ctx)
4861 return;
4863 mutex_lock(&ctx->mutex);
4864 again:
4865 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
4866 struct perf_event *parent = event->parent;
4868 if (WARN_ON_ONCE(!parent))
4869 continue;
4871 mutex_lock(&parent->child_mutex);
4872 list_del_init(&event->child_list);
4873 mutex_unlock(&parent->child_mutex);
4875 fput(parent->filp);
4877 list_del_event(event, ctx);
4878 free_event(event);
4881 if (!list_empty(&ctx->group_list))
4882 goto again;
4884 mutex_unlock(&ctx->mutex);
4886 put_ctx(ctx);
4890 * Initialize the perf_event context in task_struct
4892 int perf_event_init_task(struct task_struct *child)
4894 struct perf_event_context *child_ctx, *parent_ctx;
4895 struct perf_event_context *cloned_ctx;
4896 struct perf_event *event;
4897 struct task_struct *parent = current;
4898 int inherited_all = 1;
4899 int ret = 0;
4901 child->perf_event_ctxp = NULL;
4903 mutex_init(&child->perf_event_mutex);
4904 INIT_LIST_HEAD(&child->perf_event_list);
4906 if (likely(!parent->perf_event_ctxp))
4907 return 0;
4910 * This is executed from the parent task context, so inherit
4911 * events that have been marked for cloning.
4912 * First allocate and initialize a context for the child.
4915 child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4916 if (!child_ctx)
4917 return -ENOMEM;
4919 __perf_event_init_context(child_ctx, child);
4920 child->perf_event_ctxp = child_ctx;
4921 get_task_struct(child);
4924 * If the parent's context is a clone, pin it so it won't get
4925 * swapped under us.
4927 parent_ctx = perf_pin_task_context(parent);
4930 * No need to check if parent_ctx != NULL here; since we saw
4931 * it non-NULL earlier, the only reason for it to become NULL
4932 * is if we exit, and since we're currently in the middle of
4933 * a fork we can't be exiting at the same time.
4937 * Lock the parent list. No need to lock the child - not PID
4938 * hashed yet and not running, so nobody can access it.
4940 mutex_lock(&parent_ctx->mutex);
4943 * We dont have to disable NMIs - we are only looking at
4944 * the list, not manipulating it:
4946 list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
4948 if (!event->attr.inherit) {
4949 inherited_all = 0;
4950 continue;
4953 ret = inherit_group(event, parent, parent_ctx,
4954 child, child_ctx);
4955 if (ret) {
4956 inherited_all = 0;
4957 break;
4961 if (inherited_all) {
4963 * Mark the child context as a clone of the parent
4964 * context, or of whatever the parent is a clone of.
4965 * Note that if the parent is a clone, it could get
4966 * uncloned at any point, but that doesn't matter
4967 * because the list of events and the generation
4968 * count can't have changed since we took the mutex.
4970 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4971 if (cloned_ctx) {
4972 child_ctx->parent_ctx = cloned_ctx;
4973 child_ctx->parent_gen = parent_ctx->parent_gen;
4974 } else {
4975 child_ctx->parent_ctx = parent_ctx;
4976 child_ctx->parent_gen = parent_ctx->generation;
4978 get_ctx(child_ctx->parent_ctx);
4981 mutex_unlock(&parent_ctx->mutex);
4983 perf_unpin_context(parent_ctx);
4985 return ret;
4988 static void __init perf_event_init_all_cpus(void)
4990 int cpu;
4991 struct perf_cpu_context *cpuctx;
4993 for_each_possible_cpu(cpu) {
4994 cpuctx = &per_cpu(perf_cpu_context, cpu);
4995 __perf_event_init_context(&cpuctx->ctx, NULL);
4999 static void __cpuinit perf_event_init_cpu(int cpu)
5001 struct perf_cpu_context *cpuctx;
5003 cpuctx = &per_cpu(perf_cpu_context, cpu);
5005 spin_lock(&perf_resource_lock);
5006 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5007 spin_unlock(&perf_resource_lock);
5009 hw_perf_event_setup(cpu);
5012 #ifdef CONFIG_HOTPLUG_CPU
5013 static void __perf_event_exit_cpu(void *info)
5015 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5016 struct perf_event_context *ctx = &cpuctx->ctx;
5017 struct perf_event *event, *tmp;
5019 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5020 __perf_event_remove_from_context(event);
5022 static void perf_event_exit_cpu(int cpu)
5024 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5025 struct perf_event_context *ctx = &cpuctx->ctx;
5027 mutex_lock(&ctx->mutex);
5028 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5029 mutex_unlock(&ctx->mutex);
5031 #else
5032 static inline void perf_event_exit_cpu(int cpu) { }
5033 #endif
5035 static int __cpuinit
5036 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5038 unsigned int cpu = (long)hcpu;
5040 switch (action) {
5042 case CPU_UP_PREPARE:
5043 case CPU_UP_PREPARE_FROZEN:
5044 perf_event_init_cpu(cpu);
5045 break;
5047 case CPU_ONLINE:
5048 case CPU_ONLINE_FROZEN:
5049 hw_perf_event_setup_online(cpu);
5050 break;
5052 case CPU_DOWN_PREPARE:
5053 case CPU_DOWN_PREPARE_FROZEN:
5054 perf_event_exit_cpu(cpu);
5055 break;
5057 default:
5058 break;
5061 return NOTIFY_OK;
5065 * This has to have a higher priority than migration_notifier in sched.c.
5067 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5068 .notifier_call = perf_cpu_notify,
5069 .priority = 20,
5072 void __init perf_event_init(void)
5074 perf_event_init_all_cpus();
5075 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5076 (void *)(long)smp_processor_id());
5077 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5078 (void *)(long)smp_processor_id());
5079 register_cpu_notifier(&perf_cpu_nb);
5082 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5084 return sprintf(buf, "%d\n", perf_reserved_percpu);
5087 static ssize_t
5088 perf_set_reserve_percpu(struct sysdev_class *class,
5089 const char *buf,
5090 size_t count)
5092 struct perf_cpu_context *cpuctx;
5093 unsigned long val;
5094 int err, cpu, mpt;
5096 err = strict_strtoul(buf, 10, &val);
5097 if (err)
5098 return err;
5099 if (val > perf_max_events)
5100 return -EINVAL;
5102 spin_lock(&perf_resource_lock);
5103 perf_reserved_percpu = val;
5104 for_each_online_cpu(cpu) {
5105 cpuctx = &per_cpu(perf_cpu_context, cpu);
5106 spin_lock_irq(&cpuctx->ctx.lock);
5107 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5108 perf_max_events - perf_reserved_percpu);
5109 cpuctx->max_pertask = mpt;
5110 spin_unlock_irq(&cpuctx->ctx.lock);
5112 spin_unlock(&perf_resource_lock);
5114 return count;
5117 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5119 return sprintf(buf, "%d\n", perf_overcommit);
5122 static ssize_t
5123 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5125 unsigned long val;
5126 int err;
5128 err = strict_strtoul(buf, 10, &val);
5129 if (err)
5130 return err;
5131 if (val > 1)
5132 return -EINVAL;
5134 spin_lock(&perf_resource_lock);
5135 perf_overcommit = val;
5136 spin_unlock(&perf_resource_lock);
5138 return count;
5141 static SYSDEV_CLASS_ATTR(
5142 reserve_percpu,
5143 0644,
5144 perf_show_reserve_percpu,
5145 perf_set_reserve_percpu
5148 static SYSDEV_CLASS_ATTR(
5149 overcommit,
5150 0644,
5151 perf_show_overcommit,
5152 perf_set_overcommit
5155 static struct attribute *perfclass_attrs[] = {
5156 &attr_reserve_percpu.attr,
5157 &attr_overcommit.attr,
5158 NULL
5161 static struct attribute_group perfclass_attr_group = {
5162 .attrs = perfclass_attrs,
5163 .name = "perf_events",
5166 static int __init perf_event_sysfs_init(void)
5168 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5169 &perfclass_attr_group);
5171 device_initcall(perf_event_sysfs_init);