sched: Remove rq->lock from the first half of ttwu()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / scsi / libsas / sas_expander.c
blob874e29d9533f901ee761358a92fc5b824e2c985c
1 /*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
29 #include "sas_internal.h"
31 #include <scsi/scsi_transport.h>
32 #include <scsi/scsi_transport_sas.h>
33 #include "../scsi_sas_internal.h"
35 static int sas_discover_expander(struct domain_device *dev);
36 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
37 static int sas_configure_phy(struct domain_device *dev, int phy_id,
38 u8 *sas_addr, int include);
39 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
41 /* ---------- SMP task management ---------- */
43 static void smp_task_timedout(unsigned long _task)
45 struct sas_task *task = (void *) _task;
46 unsigned long flags;
48 spin_lock_irqsave(&task->task_state_lock, flags);
49 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
50 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
51 spin_unlock_irqrestore(&task->task_state_lock, flags);
53 complete(&task->completion);
56 static void smp_task_done(struct sas_task *task)
58 if (!del_timer(&task->timer))
59 return;
60 complete(&task->completion);
63 /* Give it some long enough timeout. In seconds. */
64 #define SMP_TIMEOUT 10
66 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
67 void *resp, int resp_size)
69 int res, retry;
70 struct sas_task *task = NULL;
71 struct sas_internal *i =
72 to_sas_internal(dev->port->ha->core.shost->transportt);
74 for (retry = 0; retry < 3; retry++) {
75 task = sas_alloc_task(GFP_KERNEL);
76 if (!task)
77 return -ENOMEM;
79 task->dev = dev;
80 task->task_proto = dev->tproto;
81 sg_init_one(&task->smp_task.smp_req, req, req_size);
82 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
84 task->task_done = smp_task_done;
86 task->timer.data = (unsigned long) task;
87 task->timer.function = smp_task_timedout;
88 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
89 add_timer(&task->timer);
91 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
93 if (res) {
94 del_timer(&task->timer);
95 SAS_DPRINTK("executing SMP task failed:%d\n", res);
96 goto ex_err;
99 wait_for_completion(&task->completion);
100 res = -ECOMM;
101 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
102 SAS_DPRINTK("smp task timed out or aborted\n");
103 i->dft->lldd_abort_task(task);
104 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
105 SAS_DPRINTK("SMP task aborted and not done\n");
106 goto ex_err;
109 if (task->task_status.resp == SAS_TASK_COMPLETE &&
110 task->task_status.stat == SAM_STAT_GOOD) {
111 res = 0;
112 break;
113 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
114 task->task_status.stat == SAS_DATA_UNDERRUN) {
115 /* no error, but return the number of bytes of
116 * underrun */
117 res = task->task_status.residual;
118 break;
119 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
120 task->task_status.stat == SAS_DATA_OVERRUN) {
121 res = -EMSGSIZE;
122 break;
123 } else {
124 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
125 "status 0x%x\n", __func__,
126 SAS_ADDR(dev->sas_addr),
127 task->task_status.resp,
128 task->task_status.stat);
129 sas_free_task(task);
130 task = NULL;
133 ex_err:
134 BUG_ON(retry == 3 && task != NULL);
135 if (task != NULL) {
136 sas_free_task(task);
138 return res;
141 /* ---------- Allocations ---------- */
143 static inline void *alloc_smp_req(int size)
145 u8 *p = kzalloc(size, GFP_KERNEL);
146 if (p)
147 p[0] = SMP_REQUEST;
148 return p;
151 static inline void *alloc_smp_resp(int size)
153 return kzalloc(size, GFP_KERNEL);
156 /* ---------- Expander configuration ---------- */
158 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
159 void *disc_resp)
161 struct expander_device *ex = &dev->ex_dev;
162 struct ex_phy *phy = &ex->ex_phy[phy_id];
163 struct smp_resp *resp = disc_resp;
164 struct discover_resp *dr = &resp->disc;
165 struct sas_rphy *rphy = dev->rphy;
166 int rediscover = (phy->phy != NULL);
168 if (!rediscover) {
169 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
171 /* FIXME: error_handling */
172 BUG_ON(!phy->phy);
175 switch (resp->result) {
176 case SMP_RESP_PHY_VACANT:
177 phy->phy_state = PHY_VACANT;
178 break;
179 default:
180 phy->phy_state = PHY_NOT_PRESENT;
181 break;
182 case SMP_RESP_FUNC_ACC:
183 phy->phy_state = PHY_EMPTY; /* do not know yet */
184 break;
187 phy->phy_id = phy_id;
188 phy->attached_dev_type = dr->attached_dev_type;
189 phy->linkrate = dr->linkrate;
190 phy->attached_sata_host = dr->attached_sata_host;
191 phy->attached_sata_dev = dr->attached_sata_dev;
192 phy->attached_sata_ps = dr->attached_sata_ps;
193 phy->attached_iproto = dr->iproto << 1;
194 phy->attached_tproto = dr->tproto << 1;
195 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
196 phy->attached_phy_id = dr->attached_phy_id;
197 phy->phy_change_count = dr->change_count;
198 phy->routing_attr = dr->routing_attr;
199 phy->virtual = dr->virtual;
200 phy->last_da_index = -1;
202 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
203 phy->phy->identify.target_port_protocols = phy->attached_tproto;
204 phy->phy->identify.phy_identifier = phy_id;
205 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
206 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
207 phy->phy->minimum_linkrate = dr->pmin_linkrate;
208 phy->phy->maximum_linkrate = dr->pmax_linkrate;
209 phy->phy->negotiated_linkrate = phy->linkrate;
211 if (!rediscover)
212 if (sas_phy_add(phy->phy)) {
213 sas_phy_free(phy->phy);
214 return;
217 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
218 SAS_ADDR(dev->sas_addr), phy->phy_id,
219 phy->routing_attr == TABLE_ROUTING ? 'T' :
220 phy->routing_attr == DIRECT_ROUTING ? 'D' :
221 phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
222 SAS_ADDR(phy->attached_sas_addr));
224 return;
227 #define DISCOVER_REQ_SIZE 16
228 #define DISCOVER_RESP_SIZE 56
230 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
231 u8 *disc_resp, int single)
233 int i, res;
235 disc_req[9] = single;
236 for (i = 1 ; i < 3; i++) {
237 struct discover_resp *dr;
239 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
240 disc_resp, DISCOVER_RESP_SIZE);
241 if (res)
242 return res;
243 /* This is detecting a failure to transmit initial
244 * dev to host FIS as described in section G.5 of
245 * sas-2 r 04b */
246 dr = &((struct smp_resp *)disc_resp)->disc;
247 if (memcmp(dev->sas_addr, dr->attached_sas_addr,
248 SAS_ADDR_SIZE) == 0) {
249 sas_printk("Found loopback topology, just ignore it!\n");
250 return 0;
252 if (!(dr->attached_dev_type == 0 &&
253 dr->attached_sata_dev))
254 break;
255 /* In order to generate the dev to host FIS, we
256 * send a link reset to the expander port */
257 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
258 /* Wait for the reset to trigger the negotiation */
259 msleep(500);
261 sas_set_ex_phy(dev, single, disc_resp);
262 return 0;
265 static int sas_ex_phy_discover(struct domain_device *dev, int single)
267 struct expander_device *ex = &dev->ex_dev;
268 int res = 0;
269 u8 *disc_req;
270 u8 *disc_resp;
272 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
273 if (!disc_req)
274 return -ENOMEM;
276 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
277 if (!disc_resp) {
278 kfree(disc_req);
279 return -ENOMEM;
282 disc_req[1] = SMP_DISCOVER;
284 if (0 <= single && single < ex->num_phys) {
285 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
286 } else {
287 int i;
289 for (i = 0; i < ex->num_phys; i++) {
290 res = sas_ex_phy_discover_helper(dev, disc_req,
291 disc_resp, i);
292 if (res)
293 goto out_err;
296 out_err:
297 kfree(disc_resp);
298 kfree(disc_req);
299 return res;
302 static int sas_expander_discover(struct domain_device *dev)
304 struct expander_device *ex = &dev->ex_dev;
305 int res = -ENOMEM;
307 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
308 if (!ex->ex_phy)
309 return -ENOMEM;
311 res = sas_ex_phy_discover(dev, -1);
312 if (res)
313 goto out_err;
315 return 0;
316 out_err:
317 kfree(ex->ex_phy);
318 ex->ex_phy = NULL;
319 return res;
322 #define MAX_EXPANDER_PHYS 128
324 static void ex_assign_report_general(struct domain_device *dev,
325 struct smp_resp *resp)
327 struct report_general_resp *rg = &resp->rg;
329 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
330 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
331 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
332 dev->ex_dev.conf_route_table = rg->conf_route_table;
333 dev->ex_dev.configuring = rg->configuring;
334 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
337 #define RG_REQ_SIZE 8
338 #define RG_RESP_SIZE 32
340 static int sas_ex_general(struct domain_device *dev)
342 u8 *rg_req;
343 struct smp_resp *rg_resp;
344 int res;
345 int i;
347 rg_req = alloc_smp_req(RG_REQ_SIZE);
348 if (!rg_req)
349 return -ENOMEM;
351 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
352 if (!rg_resp) {
353 kfree(rg_req);
354 return -ENOMEM;
357 rg_req[1] = SMP_REPORT_GENERAL;
359 for (i = 0; i < 5; i++) {
360 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
361 RG_RESP_SIZE);
363 if (res) {
364 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
365 SAS_ADDR(dev->sas_addr), res);
366 goto out;
367 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
368 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
369 SAS_ADDR(dev->sas_addr), rg_resp->result);
370 res = rg_resp->result;
371 goto out;
374 ex_assign_report_general(dev, rg_resp);
376 if (dev->ex_dev.configuring) {
377 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
378 SAS_ADDR(dev->sas_addr));
379 schedule_timeout_interruptible(5*HZ);
380 } else
381 break;
383 out:
384 kfree(rg_req);
385 kfree(rg_resp);
386 return res;
389 static void ex_assign_manuf_info(struct domain_device *dev, void
390 *_mi_resp)
392 u8 *mi_resp = _mi_resp;
393 struct sas_rphy *rphy = dev->rphy;
394 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
396 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
397 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
398 memcpy(edev->product_rev, mi_resp + 36,
399 SAS_EXPANDER_PRODUCT_REV_LEN);
401 if (mi_resp[8] & 1) {
402 memcpy(edev->component_vendor_id, mi_resp + 40,
403 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
404 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
405 edev->component_revision_id = mi_resp[50];
409 #define MI_REQ_SIZE 8
410 #define MI_RESP_SIZE 64
412 static int sas_ex_manuf_info(struct domain_device *dev)
414 u8 *mi_req;
415 u8 *mi_resp;
416 int res;
418 mi_req = alloc_smp_req(MI_REQ_SIZE);
419 if (!mi_req)
420 return -ENOMEM;
422 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
423 if (!mi_resp) {
424 kfree(mi_req);
425 return -ENOMEM;
428 mi_req[1] = SMP_REPORT_MANUF_INFO;
430 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
431 if (res) {
432 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
433 SAS_ADDR(dev->sas_addr), res);
434 goto out;
435 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
436 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
437 SAS_ADDR(dev->sas_addr), mi_resp[2]);
438 goto out;
441 ex_assign_manuf_info(dev, mi_resp);
442 out:
443 kfree(mi_req);
444 kfree(mi_resp);
445 return res;
448 #define PC_REQ_SIZE 44
449 #define PC_RESP_SIZE 8
451 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
452 enum phy_func phy_func,
453 struct sas_phy_linkrates *rates)
455 u8 *pc_req;
456 u8 *pc_resp;
457 int res;
459 pc_req = alloc_smp_req(PC_REQ_SIZE);
460 if (!pc_req)
461 return -ENOMEM;
463 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
464 if (!pc_resp) {
465 kfree(pc_req);
466 return -ENOMEM;
469 pc_req[1] = SMP_PHY_CONTROL;
470 pc_req[9] = phy_id;
471 pc_req[10]= phy_func;
472 if (rates) {
473 pc_req[32] = rates->minimum_linkrate << 4;
474 pc_req[33] = rates->maximum_linkrate << 4;
477 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
479 kfree(pc_resp);
480 kfree(pc_req);
481 return res;
484 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
486 struct expander_device *ex = &dev->ex_dev;
487 struct ex_phy *phy = &ex->ex_phy[phy_id];
489 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
490 phy->linkrate = SAS_PHY_DISABLED;
493 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
495 struct expander_device *ex = &dev->ex_dev;
496 int i;
498 for (i = 0; i < ex->num_phys; i++) {
499 struct ex_phy *phy = &ex->ex_phy[i];
501 if (phy->phy_state == PHY_VACANT ||
502 phy->phy_state == PHY_NOT_PRESENT)
503 continue;
505 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
506 sas_ex_disable_phy(dev, i);
510 static int sas_dev_present_in_domain(struct asd_sas_port *port,
511 u8 *sas_addr)
513 struct domain_device *dev;
515 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
516 return 1;
517 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
518 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
519 return 1;
521 return 0;
524 #define RPEL_REQ_SIZE 16
525 #define RPEL_RESP_SIZE 32
526 int sas_smp_get_phy_events(struct sas_phy *phy)
528 int res;
529 u8 *req;
530 u8 *resp;
531 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
532 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
534 req = alloc_smp_req(RPEL_REQ_SIZE);
535 if (!req)
536 return -ENOMEM;
538 resp = alloc_smp_resp(RPEL_RESP_SIZE);
539 if (!resp) {
540 kfree(req);
541 return -ENOMEM;
544 req[1] = SMP_REPORT_PHY_ERR_LOG;
545 req[9] = phy->number;
547 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
548 resp, RPEL_RESP_SIZE);
550 if (!res)
551 goto out;
553 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
554 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
555 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
556 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
558 out:
559 kfree(resp);
560 return res;
564 #ifdef CONFIG_SCSI_SAS_ATA
566 #define RPS_REQ_SIZE 16
567 #define RPS_RESP_SIZE 60
569 static int sas_get_report_phy_sata(struct domain_device *dev,
570 int phy_id,
571 struct smp_resp *rps_resp)
573 int res;
574 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
575 u8 *resp = (u8 *)rps_resp;
577 if (!rps_req)
578 return -ENOMEM;
580 rps_req[1] = SMP_REPORT_PHY_SATA;
581 rps_req[9] = phy_id;
583 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
584 rps_resp, RPS_RESP_SIZE);
586 /* 0x34 is the FIS type for the D2H fis. There's a potential
587 * standards cockup here. sas-2 explicitly specifies the FIS
588 * should be encoded so that FIS type is in resp[24].
589 * However, some expanders endian reverse this. Undo the
590 * reversal here */
591 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
592 int i;
594 for (i = 0; i < 5; i++) {
595 int j = 24 + (i*4);
596 u8 a, b;
597 a = resp[j + 0];
598 b = resp[j + 1];
599 resp[j + 0] = resp[j + 3];
600 resp[j + 1] = resp[j + 2];
601 resp[j + 2] = b;
602 resp[j + 3] = a;
606 kfree(rps_req);
607 return res;
609 #endif
611 static void sas_ex_get_linkrate(struct domain_device *parent,
612 struct domain_device *child,
613 struct ex_phy *parent_phy)
615 struct expander_device *parent_ex = &parent->ex_dev;
616 struct sas_port *port;
617 int i;
619 child->pathways = 0;
621 port = parent_phy->port;
623 for (i = 0; i < parent_ex->num_phys; i++) {
624 struct ex_phy *phy = &parent_ex->ex_phy[i];
626 if (phy->phy_state == PHY_VACANT ||
627 phy->phy_state == PHY_NOT_PRESENT)
628 continue;
630 if (SAS_ADDR(phy->attached_sas_addr) ==
631 SAS_ADDR(child->sas_addr)) {
633 child->min_linkrate = min(parent->min_linkrate,
634 phy->linkrate);
635 child->max_linkrate = max(parent->max_linkrate,
636 phy->linkrate);
637 child->pathways++;
638 sas_port_add_phy(port, phy->phy);
641 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
642 child->pathways = min(child->pathways, parent->pathways);
645 static struct domain_device *sas_ex_discover_end_dev(
646 struct domain_device *parent, int phy_id)
648 struct expander_device *parent_ex = &parent->ex_dev;
649 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
650 struct domain_device *child = NULL;
651 struct sas_rphy *rphy;
652 int res;
654 if (phy->attached_sata_host || phy->attached_sata_ps)
655 return NULL;
657 child = kzalloc(sizeof(*child), GFP_KERNEL);
658 if (!child)
659 return NULL;
661 child->parent = parent;
662 child->port = parent->port;
663 child->iproto = phy->attached_iproto;
664 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
665 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
666 if (!phy->port) {
667 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
668 if (unlikely(!phy->port))
669 goto out_err;
670 if (unlikely(sas_port_add(phy->port) != 0)) {
671 sas_port_free(phy->port);
672 goto out_err;
675 sas_ex_get_linkrate(parent, child, phy);
677 #ifdef CONFIG_SCSI_SAS_ATA
678 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
679 child->dev_type = SATA_DEV;
680 if (phy->attached_tproto & SAS_PROTOCOL_STP)
681 child->tproto = phy->attached_tproto;
682 if (phy->attached_sata_dev)
683 child->tproto |= SATA_DEV;
684 res = sas_get_report_phy_sata(parent, phy_id,
685 &child->sata_dev.rps_resp);
686 if (res) {
687 SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
688 "0x%x\n", SAS_ADDR(parent->sas_addr),
689 phy_id, res);
690 goto out_free;
692 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
693 sizeof(struct dev_to_host_fis));
695 rphy = sas_end_device_alloc(phy->port);
696 if (unlikely(!rphy))
697 goto out_free;
699 sas_init_dev(child);
701 child->rphy = rphy;
703 spin_lock_irq(&parent->port->dev_list_lock);
704 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
705 spin_unlock_irq(&parent->port->dev_list_lock);
707 res = sas_discover_sata(child);
708 if (res) {
709 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
710 "%016llx:0x%x returned 0x%x\n",
711 SAS_ADDR(child->sas_addr),
712 SAS_ADDR(parent->sas_addr), phy_id, res);
713 goto out_list_del;
715 } else
716 #endif
717 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
718 child->dev_type = SAS_END_DEV;
719 rphy = sas_end_device_alloc(phy->port);
720 /* FIXME: error handling */
721 if (unlikely(!rphy))
722 goto out_free;
723 child->tproto = phy->attached_tproto;
724 sas_init_dev(child);
726 child->rphy = rphy;
727 sas_fill_in_rphy(child, rphy);
729 spin_lock_irq(&parent->port->dev_list_lock);
730 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
731 spin_unlock_irq(&parent->port->dev_list_lock);
733 res = sas_discover_end_dev(child);
734 if (res) {
735 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
736 "at %016llx:0x%x returned 0x%x\n",
737 SAS_ADDR(child->sas_addr),
738 SAS_ADDR(parent->sas_addr), phy_id, res);
739 goto out_list_del;
741 } else {
742 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
743 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
744 phy_id);
745 goto out_free;
748 list_add_tail(&child->siblings, &parent_ex->children);
749 return child;
751 out_list_del:
752 sas_rphy_free(child->rphy);
753 child->rphy = NULL;
754 list_del(&child->dev_list_node);
755 out_free:
756 sas_port_delete(phy->port);
757 out_err:
758 phy->port = NULL;
759 kfree(child);
760 return NULL;
763 /* See if this phy is part of a wide port */
764 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
766 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
767 int i;
769 for (i = 0; i < parent->ex_dev.num_phys; i++) {
770 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
772 if (ephy == phy)
773 continue;
775 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
776 SAS_ADDR_SIZE) && ephy->port) {
777 sas_port_add_phy(ephy->port, phy->phy);
778 phy->port = ephy->port;
779 phy->phy_state = PHY_DEVICE_DISCOVERED;
780 return 0;
784 return -ENODEV;
787 static struct domain_device *sas_ex_discover_expander(
788 struct domain_device *parent, int phy_id)
790 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
791 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
792 struct domain_device *child = NULL;
793 struct sas_rphy *rphy;
794 struct sas_expander_device *edev;
795 struct asd_sas_port *port;
796 int res;
798 if (phy->routing_attr == DIRECT_ROUTING) {
799 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
800 "allowed\n",
801 SAS_ADDR(parent->sas_addr), phy_id,
802 SAS_ADDR(phy->attached_sas_addr),
803 phy->attached_phy_id);
804 return NULL;
806 child = kzalloc(sizeof(*child), GFP_KERNEL);
807 if (!child)
808 return NULL;
810 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
811 /* FIXME: better error handling */
812 BUG_ON(sas_port_add(phy->port) != 0);
815 switch (phy->attached_dev_type) {
816 case EDGE_DEV:
817 rphy = sas_expander_alloc(phy->port,
818 SAS_EDGE_EXPANDER_DEVICE);
819 break;
820 case FANOUT_DEV:
821 rphy = sas_expander_alloc(phy->port,
822 SAS_FANOUT_EXPANDER_DEVICE);
823 break;
824 default:
825 rphy = NULL; /* shut gcc up */
826 BUG();
828 port = parent->port;
829 child->rphy = rphy;
830 edev = rphy_to_expander_device(rphy);
831 child->dev_type = phy->attached_dev_type;
832 child->parent = parent;
833 child->port = port;
834 child->iproto = phy->attached_iproto;
835 child->tproto = phy->attached_tproto;
836 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
837 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
838 sas_ex_get_linkrate(parent, child, phy);
839 edev->level = parent_ex->level + 1;
840 parent->port->disc.max_level = max(parent->port->disc.max_level,
841 edev->level);
842 sas_init_dev(child);
843 sas_fill_in_rphy(child, rphy);
844 sas_rphy_add(rphy);
846 spin_lock_irq(&parent->port->dev_list_lock);
847 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
848 spin_unlock_irq(&parent->port->dev_list_lock);
850 res = sas_discover_expander(child);
851 if (res) {
852 kfree(child);
853 return NULL;
855 list_add_tail(&child->siblings, &parent->ex_dev.children);
856 return child;
859 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
861 struct expander_device *ex = &dev->ex_dev;
862 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
863 struct domain_device *child = NULL;
864 int res = 0;
866 /* Phy state */
867 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
868 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
869 res = sas_ex_phy_discover(dev, phy_id);
870 if (res)
871 return res;
874 /* Parent and domain coherency */
875 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
876 SAS_ADDR(dev->port->sas_addr))) {
877 sas_add_parent_port(dev, phy_id);
878 return 0;
880 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
881 SAS_ADDR(dev->parent->sas_addr))) {
882 sas_add_parent_port(dev, phy_id);
883 if (ex_phy->routing_attr == TABLE_ROUTING)
884 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
885 return 0;
888 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
889 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
891 if (ex_phy->attached_dev_type == NO_DEVICE) {
892 if (ex_phy->routing_attr == DIRECT_ROUTING) {
893 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
894 sas_configure_routing(dev, ex_phy->attached_sas_addr);
896 return 0;
897 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
898 return 0;
900 if (ex_phy->attached_dev_type != SAS_END_DEV &&
901 ex_phy->attached_dev_type != FANOUT_DEV &&
902 ex_phy->attached_dev_type != EDGE_DEV) {
903 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
904 "phy 0x%x\n", ex_phy->attached_dev_type,
905 SAS_ADDR(dev->sas_addr),
906 phy_id);
907 return 0;
910 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
911 if (res) {
912 SAS_DPRINTK("configure routing for dev %016llx "
913 "reported 0x%x. Forgotten\n",
914 SAS_ADDR(ex_phy->attached_sas_addr), res);
915 sas_disable_routing(dev, ex_phy->attached_sas_addr);
916 return res;
919 res = sas_ex_join_wide_port(dev, phy_id);
920 if (!res) {
921 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
922 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
923 return res;
926 switch (ex_phy->attached_dev_type) {
927 case SAS_END_DEV:
928 child = sas_ex_discover_end_dev(dev, phy_id);
929 break;
930 case FANOUT_DEV:
931 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
932 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
933 "attached to ex %016llx phy 0x%x\n",
934 SAS_ADDR(ex_phy->attached_sas_addr),
935 ex_phy->attached_phy_id,
936 SAS_ADDR(dev->sas_addr),
937 phy_id);
938 sas_ex_disable_phy(dev, phy_id);
939 break;
940 } else
941 memcpy(dev->port->disc.fanout_sas_addr,
942 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
943 /* fallthrough */
944 case EDGE_DEV:
945 child = sas_ex_discover_expander(dev, phy_id);
946 break;
947 default:
948 break;
951 if (child) {
952 int i;
954 for (i = 0; i < ex->num_phys; i++) {
955 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
956 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
957 continue;
959 * Due to races, the phy might not get added to the
960 * wide port, so we add the phy to the wide port here.
962 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
963 SAS_ADDR(child->sas_addr)) {
964 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
965 res = sas_ex_join_wide_port(dev, i);
966 if (!res)
967 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
968 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
974 return res;
977 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
979 struct expander_device *ex = &dev->ex_dev;
980 int i;
982 for (i = 0; i < ex->num_phys; i++) {
983 struct ex_phy *phy = &ex->ex_phy[i];
985 if (phy->phy_state == PHY_VACANT ||
986 phy->phy_state == PHY_NOT_PRESENT)
987 continue;
989 if ((phy->attached_dev_type == EDGE_DEV ||
990 phy->attached_dev_type == FANOUT_DEV) &&
991 phy->routing_attr == SUBTRACTIVE_ROUTING) {
993 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
995 return 1;
998 return 0;
1001 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1003 struct expander_device *ex = &dev->ex_dev;
1004 struct domain_device *child;
1005 u8 sub_addr[8] = {0, };
1007 list_for_each_entry(child, &ex->children, siblings) {
1008 if (child->dev_type != EDGE_DEV &&
1009 child->dev_type != FANOUT_DEV)
1010 continue;
1011 if (sub_addr[0] == 0) {
1012 sas_find_sub_addr(child, sub_addr);
1013 continue;
1014 } else {
1015 u8 s2[8];
1017 if (sas_find_sub_addr(child, s2) &&
1018 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1020 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1021 "diverges from subtractive "
1022 "boundary %016llx\n",
1023 SAS_ADDR(dev->sas_addr),
1024 SAS_ADDR(child->sas_addr),
1025 SAS_ADDR(s2),
1026 SAS_ADDR(sub_addr));
1028 sas_ex_disable_port(child, s2);
1032 return 0;
1035 * sas_ex_discover_devices -- discover devices attached to this expander
1036 * dev: pointer to the expander domain device
1037 * single: if you want to do a single phy, else set to -1;
1039 * Configure this expander for use with its devices and register the
1040 * devices of this expander.
1042 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1044 struct expander_device *ex = &dev->ex_dev;
1045 int i = 0, end = ex->num_phys;
1046 int res = 0;
1048 if (0 <= single && single < end) {
1049 i = single;
1050 end = i+1;
1053 for ( ; i < end; i++) {
1054 struct ex_phy *ex_phy = &ex->ex_phy[i];
1056 if (ex_phy->phy_state == PHY_VACANT ||
1057 ex_phy->phy_state == PHY_NOT_PRESENT ||
1058 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1059 continue;
1061 switch (ex_phy->linkrate) {
1062 case SAS_PHY_DISABLED:
1063 case SAS_PHY_RESET_PROBLEM:
1064 case SAS_SATA_PORT_SELECTOR:
1065 continue;
1066 default:
1067 res = sas_ex_discover_dev(dev, i);
1068 if (res)
1069 break;
1070 continue;
1074 if (!res)
1075 sas_check_level_subtractive_boundary(dev);
1077 return res;
1080 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1082 struct expander_device *ex = &dev->ex_dev;
1083 int i;
1084 u8 *sub_sas_addr = NULL;
1086 if (dev->dev_type != EDGE_DEV)
1087 return 0;
1089 for (i = 0; i < ex->num_phys; i++) {
1090 struct ex_phy *phy = &ex->ex_phy[i];
1092 if (phy->phy_state == PHY_VACANT ||
1093 phy->phy_state == PHY_NOT_PRESENT)
1094 continue;
1096 if ((phy->attached_dev_type == FANOUT_DEV ||
1097 phy->attached_dev_type == EDGE_DEV) &&
1098 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1100 if (!sub_sas_addr)
1101 sub_sas_addr = &phy->attached_sas_addr[0];
1102 else if (SAS_ADDR(sub_sas_addr) !=
1103 SAS_ADDR(phy->attached_sas_addr)) {
1105 SAS_DPRINTK("ex %016llx phy 0x%x "
1106 "diverges(%016llx) on subtractive "
1107 "boundary(%016llx). Disabled\n",
1108 SAS_ADDR(dev->sas_addr), i,
1109 SAS_ADDR(phy->attached_sas_addr),
1110 SAS_ADDR(sub_sas_addr));
1111 sas_ex_disable_phy(dev, i);
1115 return 0;
1118 static void sas_print_parent_topology_bug(struct domain_device *child,
1119 struct ex_phy *parent_phy,
1120 struct ex_phy *child_phy)
1122 static const char ra_char[] = {
1123 [DIRECT_ROUTING] = 'D',
1124 [SUBTRACTIVE_ROUTING] = 'S',
1125 [TABLE_ROUTING] = 'T',
1127 static const char *ex_type[] = {
1128 [EDGE_DEV] = "edge",
1129 [FANOUT_DEV] = "fanout",
1131 struct domain_device *parent = child->parent;
1133 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1134 "has %c:%c routing link!\n",
1136 ex_type[parent->dev_type],
1137 SAS_ADDR(parent->sas_addr),
1138 parent_phy->phy_id,
1140 ex_type[child->dev_type],
1141 SAS_ADDR(child->sas_addr),
1142 child_phy->phy_id,
1144 ra_char[parent_phy->routing_attr],
1145 ra_char[child_phy->routing_attr]);
1148 static int sas_check_eeds(struct domain_device *child,
1149 struct ex_phy *parent_phy,
1150 struct ex_phy *child_phy)
1152 int res = 0;
1153 struct domain_device *parent = child->parent;
1155 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1156 res = -ENODEV;
1157 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1158 "phy S:0x%x, while there is a fanout ex %016llx\n",
1159 SAS_ADDR(parent->sas_addr),
1160 parent_phy->phy_id,
1161 SAS_ADDR(child->sas_addr),
1162 child_phy->phy_id,
1163 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1164 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1165 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1166 SAS_ADDR_SIZE);
1167 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1168 SAS_ADDR_SIZE);
1169 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1170 SAS_ADDR(parent->sas_addr)) ||
1171 (SAS_ADDR(parent->port->disc.eeds_a) ==
1172 SAS_ADDR(child->sas_addr)))
1174 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1175 SAS_ADDR(parent->sas_addr)) ||
1176 (SAS_ADDR(parent->port->disc.eeds_b) ==
1177 SAS_ADDR(child->sas_addr))))
1179 else {
1180 res = -ENODEV;
1181 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1182 "phy 0x%x link forms a third EEDS!\n",
1183 SAS_ADDR(parent->sas_addr),
1184 parent_phy->phy_id,
1185 SAS_ADDR(child->sas_addr),
1186 child_phy->phy_id);
1189 return res;
1192 /* Here we spill over 80 columns. It is intentional.
1194 static int sas_check_parent_topology(struct domain_device *child)
1196 struct expander_device *child_ex = &child->ex_dev;
1197 struct expander_device *parent_ex;
1198 int i;
1199 int res = 0;
1201 if (!child->parent)
1202 return 0;
1204 if (child->parent->dev_type != EDGE_DEV &&
1205 child->parent->dev_type != FANOUT_DEV)
1206 return 0;
1208 parent_ex = &child->parent->ex_dev;
1210 for (i = 0; i < parent_ex->num_phys; i++) {
1211 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1212 struct ex_phy *child_phy;
1214 if (parent_phy->phy_state == PHY_VACANT ||
1215 parent_phy->phy_state == PHY_NOT_PRESENT)
1216 continue;
1218 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1219 continue;
1221 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1223 switch (child->parent->dev_type) {
1224 case EDGE_DEV:
1225 if (child->dev_type == FANOUT_DEV) {
1226 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1227 child_phy->routing_attr != TABLE_ROUTING) {
1228 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1229 res = -ENODEV;
1231 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1232 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1233 res = sas_check_eeds(child, parent_phy, child_phy);
1234 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1235 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1236 res = -ENODEV;
1238 } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1239 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1240 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1241 res = -ENODEV;
1243 break;
1244 case FANOUT_DEV:
1245 if (parent_phy->routing_attr != TABLE_ROUTING ||
1246 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1247 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1248 res = -ENODEV;
1250 break;
1251 default:
1252 break;
1256 return res;
1259 #define RRI_REQ_SIZE 16
1260 #define RRI_RESP_SIZE 44
1262 static int sas_configure_present(struct domain_device *dev, int phy_id,
1263 u8 *sas_addr, int *index, int *present)
1265 int i, res = 0;
1266 struct expander_device *ex = &dev->ex_dev;
1267 struct ex_phy *phy = &ex->ex_phy[phy_id];
1268 u8 *rri_req;
1269 u8 *rri_resp;
1271 *present = 0;
1272 *index = 0;
1274 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1275 if (!rri_req)
1276 return -ENOMEM;
1278 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1279 if (!rri_resp) {
1280 kfree(rri_req);
1281 return -ENOMEM;
1284 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1285 rri_req[9] = phy_id;
1287 for (i = 0; i < ex->max_route_indexes ; i++) {
1288 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1289 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1290 RRI_RESP_SIZE);
1291 if (res)
1292 goto out;
1293 res = rri_resp[2];
1294 if (res == SMP_RESP_NO_INDEX) {
1295 SAS_DPRINTK("overflow of indexes: dev %016llx "
1296 "phy 0x%x index 0x%x\n",
1297 SAS_ADDR(dev->sas_addr), phy_id, i);
1298 goto out;
1299 } else if (res != SMP_RESP_FUNC_ACC) {
1300 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1301 "result 0x%x\n", __func__,
1302 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1303 goto out;
1305 if (SAS_ADDR(sas_addr) != 0) {
1306 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1307 *index = i;
1308 if ((rri_resp[12] & 0x80) == 0x80)
1309 *present = 0;
1310 else
1311 *present = 1;
1312 goto out;
1313 } else if (SAS_ADDR(rri_resp+16) == 0) {
1314 *index = i;
1315 *present = 0;
1316 goto out;
1318 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1319 phy->last_da_index < i) {
1320 phy->last_da_index = i;
1321 *index = i;
1322 *present = 0;
1323 goto out;
1326 res = -1;
1327 out:
1328 kfree(rri_req);
1329 kfree(rri_resp);
1330 return res;
1333 #define CRI_REQ_SIZE 44
1334 #define CRI_RESP_SIZE 8
1336 static int sas_configure_set(struct domain_device *dev, int phy_id,
1337 u8 *sas_addr, int index, int include)
1339 int res;
1340 u8 *cri_req;
1341 u8 *cri_resp;
1343 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1344 if (!cri_req)
1345 return -ENOMEM;
1347 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1348 if (!cri_resp) {
1349 kfree(cri_req);
1350 return -ENOMEM;
1353 cri_req[1] = SMP_CONF_ROUTE_INFO;
1354 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1355 cri_req[9] = phy_id;
1356 if (SAS_ADDR(sas_addr) == 0 || !include)
1357 cri_req[12] |= 0x80;
1358 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1360 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1361 CRI_RESP_SIZE);
1362 if (res)
1363 goto out;
1364 res = cri_resp[2];
1365 if (res == SMP_RESP_NO_INDEX) {
1366 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1367 "index 0x%x\n",
1368 SAS_ADDR(dev->sas_addr), phy_id, index);
1370 out:
1371 kfree(cri_req);
1372 kfree(cri_resp);
1373 return res;
1376 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1377 u8 *sas_addr, int include)
1379 int index;
1380 int present;
1381 int res;
1383 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1384 if (res)
1385 return res;
1386 if (include ^ present)
1387 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1389 return res;
1393 * sas_configure_parent -- configure routing table of parent
1394 * parent: parent expander
1395 * child: child expander
1396 * sas_addr: SAS port identifier of device directly attached to child
1398 static int sas_configure_parent(struct domain_device *parent,
1399 struct domain_device *child,
1400 u8 *sas_addr, int include)
1402 struct expander_device *ex_parent = &parent->ex_dev;
1403 int res = 0;
1404 int i;
1406 if (parent->parent) {
1407 res = sas_configure_parent(parent->parent, parent, sas_addr,
1408 include);
1409 if (res)
1410 return res;
1413 if (ex_parent->conf_route_table == 0) {
1414 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1415 SAS_ADDR(parent->sas_addr));
1416 return 0;
1419 for (i = 0; i < ex_parent->num_phys; i++) {
1420 struct ex_phy *phy = &ex_parent->ex_phy[i];
1422 if ((phy->routing_attr == TABLE_ROUTING) &&
1423 (SAS_ADDR(phy->attached_sas_addr) ==
1424 SAS_ADDR(child->sas_addr))) {
1425 res = sas_configure_phy(parent, i, sas_addr, include);
1426 if (res)
1427 return res;
1431 return res;
1435 * sas_configure_routing -- configure routing
1436 * dev: expander device
1437 * sas_addr: port identifier of device directly attached to the expander device
1439 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1441 if (dev->parent)
1442 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1443 return 0;
1446 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1448 if (dev->parent)
1449 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1450 return 0;
1454 * sas_discover_expander -- expander discovery
1455 * @ex: pointer to expander domain device
1457 * See comment in sas_discover_sata().
1459 static int sas_discover_expander(struct domain_device *dev)
1461 int res;
1463 res = sas_notify_lldd_dev_found(dev);
1464 if (res)
1465 return res;
1467 res = sas_ex_general(dev);
1468 if (res)
1469 goto out_err;
1470 res = sas_ex_manuf_info(dev);
1471 if (res)
1472 goto out_err;
1474 res = sas_expander_discover(dev);
1475 if (res) {
1476 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1477 SAS_ADDR(dev->sas_addr), res);
1478 goto out_err;
1481 sas_check_ex_subtractive_boundary(dev);
1482 res = sas_check_parent_topology(dev);
1483 if (res)
1484 goto out_err;
1485 return 0;
1486 out_err:
1487 sas_notify_lldd_dev_gone(dev);
1488 return res;
1491 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1493 int res = 0;
1494 struct domain_device *dev;
1496 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1497 if (dev->dev_type == EDGE_DEV ||
1498 dev->dev_type == FANOUT_DEV) {
1499 struct sas_expander_device *ex =
1500 rphy_to_expander_device(dev->rphy);
1502 if (level == ex->level)
1503 res = sas_ex_discover_devices(dev, -1);
1504 else if (level > 0)
1505 res = sas_ex_discover_devices(port->port_dev, -1);
1510 return res;
1513 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1515 int res;
1516 int level;
1518 do {
1519 level = port->disc.max_level;
1520 res = sas_ex_level_discovery(port, level);
1521 mb();
1522 } while (level < port->disc.max_level);
1524 return res;
1527 int sas_discover_root_expander(struct domain_device *dev)
1529 int res;
1530 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1532 res = sas_rphy_add(dev->rphy);
1533 if (res)
1534 goto out_err;
1536 ex->level = dev->port->disc.max_level; /* 0 */
1537 res = sas_discover_expander(dev);
1538 if (res)
1539 goto out_err2;
1541 sas_ex_bfs_disc(dev->port);
1543 return res;
1545 out_err2:
1546 sas_rphy_remove(dev->rphy);
1547 out_err:
1548 return res;
1551 /* ---------- Domain revalidation ---------- */
1553 static int sas_get_phy_discover(struct domain_device *dev,
1554 int phy_id, struct smp_resp *disc_resp)
1556 int res;
1557 u8 *disc_req;
1559 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1560 if (!disc_req)
1561 return -ENOMEM;
1563 disc_req[1] = SMP_DISCOVER;
1564 disc_req[9] = phy_id;
1566 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1567 disc_resp, DISCOVER_RESP_SIZE);
1568 if (res)
1569 goto out;
1570 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1571 res = disc_resp->result;
1572 goto out;
1574 out:
1575 kfree(disc_req);
1576 return res;
1579 static int sas_get_phy_change_count(struct domain_device *dev,
1580 int phy_id, int *pcc)
1582 int res;
1583 struct smp_resp *disc_resp;
1585 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1586 if (!disc_resp)
1587 return -ENOMEM;
1589 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1590 if (!res)
1591 *pcc = disc_resp->disc.change_count;
1593 kfree(disc_resp);
1594 return res;
1597 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1598 int phy_id, u8 *attached_sas_addr)
1600 int res;
1601 struct smp_resp *disc_resp;
1602 struct discover_resp *dr;
1604 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1605 if (!disc_resp)
1606 return -ENOMEM;
1607 dr = &disc_resp->disc;
1609 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1610 if (!res) {
1611 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1612 if (dr->attached_dev_type == 0)
1613 memset(attached_sas_addr, 0, 8);
1615 kfree(disc_resp);
1616 return res;
1619 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1620 int from_phy, bool update)
1622 struct expander_device *ex = &dev->ex_dev;
1623 int res = 0;
1624 int i;
1626 for (i = from_phy; i < ex->num_phys; i++) {
1627 int phy_change_count = 0;
1629 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1630 if (res)
1631 goto out;
1632 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1633 if (update)
1634 ex->ex_phy[i].phy_change_count =
1635 phy_change_count;
1636 *phy_id = i;
1637 return 0;
1640 out:
1641 return res;
1644 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1646 int res;
1647 u8 *rg_req;
1648 struct smp_resp *rg_resp;
1650 rg_req = alloc_smp_req(RG_REQ_SIZE);
1651 if (!rg_req)
1652 return -ENOMEM;
1654 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1655 if (!rg_resp) {
1656 kfree(rg_req);
1657 return -ENOMEM;
1660 rg_req[1] = SMP_REPORT_GENERAL;
1662 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1663 RG_RESP_SIZE);
1664 if (res)
1665 goto out;
1666 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1667 res = rg_resp->result;
1668 goto out;
1671 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1672 out:
1673 kfree(rg_resp);
1674 kfree(rg_req);
1675 return res;
1678 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1679 * @dev:domain device to be detect.
1680 * @src_dev: the device which originated BROADCAST(CHANGE).
1682 * Add self-configuration expander suport. Suppose two expander cascading,
1683 * when the first level expander is self-configuring, hotplug the disks in
1684 * second level expander, BROADCAST(CHANGE) will not only be originated
1685 * in the second level expander, but also be originated in the first level
1686 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1687 * expander changed count in two level expanders will all increment at least
1688 * once, but the phy which chang count has changed is the source device which
1689 * we concerned.
1692 static int sas_find_bcast_dev(struct domain_device *dev,
1693 struct domain_device **src_dev)
1695 struct expander_device *ex = &dev->ex_dev;
1696 int ex_change_count = -1;
1697 int phy_id = -1;
1698 int res;
1699 struct domain_device *ch;
1701 res = sas_get_ex_change_count(dev, &ex_change_count);
1702 if (res)
1703 goto out;
1704 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1705 /* Just detect if this expander phys phy change count changed,
1706 * in order to determine if this expander originate BROADCAST,
1707 * and do not update phy change count field in our structure.
1709 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1710 if (phy_id != -1) {
1711 *src_dev = dev;
1712 ex->ex_change_count = ex_change_count;
1713 SAS_DPRINTK("Expander phy change count has changed\n");
1714 return res;
1715 } else
1716 SAS_DPRINTK("Expander phys DID NOT change\n");
1718 list_for_each_entry(ch, &ex->children, siblings) {
1719 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1720 res = sas_find_bcast_dev(ch, src_dev);
1721 if (src_dev)
1722 return res;
1725 out:
1726 return res;
1729 static void sas_unregister_ex_tree(struct domain_device *dev)
1731 struct expander_device *ex = &dev->ex_dev;
1732 struct domain_device *child, *n;
1734 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1735 child->gone = 1;
1736 if (child->dev_type == EDGE_DEV ||
1737 child->dev_type == FANOUT_DEV)
1738 sas_unregister_ex_tree(child);
1739 else
1740 sas_unregister_dev(child);
1742 sas_unregister_dev(dev);
1745 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1746 int phy_id, bool last)
1748 struct expander_device *ex_dev = &parent->ex_dev;
1749 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1750 struct domain_device *child, *n;
1751 if (last) {
1752 list_for_each_entry_safe(child, n,
1753 &ex_dev->children, siblings) {
1754 if (SAS_ADDR(child->sas_addr) ==
1755 SAS_ADDR(phy->attached_sas_addr)) {
1756 child->gone = 1;
1757 if (child->dev_type == EDGE_DEV ||
1758 child->dev_type == FANOUT_DEV)
1759 sas_unregister_ex_tree(child);
1760 else
1761 sas_unregister_dev(child);
1762 break;
1765 parent->gone = 1;
1766 sas_disable_routing(parent, phy->attached_sas_addr);
1768 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1769 sas_port_delete_phy(phy->port, phy->phy);
1770 if (phy->port->num_phys == 0)
1771 sas_port_delete(phy->port);
1772 phy->port = NULL;
1775 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1776 const int level)
1778 struct expander_device *ex_root = &root->ex_dev;
1779 struct domain_device *child;
1780 int res = 0;
1782 list_for_each_entry(child, &ex_root->children, siblings) {
1783 if (child->dev_type == EDGE_DEV ||
1784 child->dev_type == FANOUT_DEV) {
1785 struct sas_expander_device *ex =
1786 rphy_to_expander_device(child->rphy);
1788 if (level > ex->level)
1789 res = sas_discover_bfs_by_root_level(child,
1790 level);
1791 else if (level == ex->level)
1792 res = sas_ex_discover_devices(child, -1);
1795 return res;
1798 static int sas_discover_bfs_by_root(struct domain_device *dev)
1800 int res;
1801 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1802 int level = ex->level+1;
1804 res = sas_ex_discover_devices(dev, -1);
1805 if (res)
1806 goto out;
1807 do {
1808 res = sas_discover_bfs_by_root_level(dev, level);
1809 mb();
1810 level += 1;
1811 } while (level <= dev->port->disc.max_level);
1812 out:
1813 return res;
1816 static int sas_discover_new(struct domain_device *dev, int phy_id)
1818 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1819 struct domain_device *child;
1820 bool found = false;
1821 int res, i;
1823 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1824 SAS_ADDR(dev->sas_addr), phy_id);
1825 res = sas_ex_phy_discover(dev, phy_id);
1826 if (res)
1827 goto out;
1828 /* to support the wide port inserted */
1829 for (i = 0; i < dev->ex_dev.num_phys; i++) {
1830 struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1831 if (i == phy_id)
1832 continue;
1833 if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1834 SAS_ADDR(ex_phy->attached_sas_addr)) {
1835 found = true;
1836 break;
1839 if (found) {
1840 sas_ex_join_wide_port(dev, phy_id);
1841 return 0;
1843 res = sas_ex_discover_devices(dev, phy_id);
1844 if (!res)
1845 goto out;
1846 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1847 if (SAS_ADDR(child->sas_addr) ==
1848 SAS_ADDR(ex_phy->attached_sas_addr)) {
1849 if (child->dev_type == EDGE_DEV ||
1850 child->dev_type == FANOUT_DEV)
1851 res = sas_discover_bfs_by_root(child);
1852 break;
1855 out:
1856 return res;
1859 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1861 struct expander_device *ex = &dev->ex_dev;
1862 struct ex_phy *phy = &ex->ex_phy[phy_id];
1863 u8 attached_sas_addr[8];
1864 int res;
1866 res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1867 switch (res) {
1868 case SMP_RESP_NO_PHY:
1869 phy->phy_state = PHY_NOT_PRESENT;
1870 sas_unregister_devs_sas_addr(dev, phy_id, last);
1871 goto out; break;
1872 case SMP_RESP_PHY_VACANT:
1873 phy->phy_state = PHY_VACANT;
1874 sas_unregister_devs_sas_addr(dev, phy_id, last);
1875 goto out; break;
1876 case SMP_RESP_FUNC_ACC:
1877 break;
1880 if (SAS_ADDR(attached_sas_addr) == 0) {
1881 phy->phy_state = PHY_EMPTY;
1882 sas_unregister_devs_sas_addr(dev, phy_id, last);
1883 } else if (SAS_ADDR(attached_sas_addr) ==
1884 SAS_ADDR(phy->attached_sas_addr)) {
1885 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1886 SAS_ADDR(dev->sas_addr), phy_id);
1887 sas_ex_phy_discover(dev, phy_id);
1888 } else
1889 res = sas_discover_new(dev, phy_id);
1890 out:
1891 return res;
1895 * sas_rediscover - revalidate the domain.
1896 * @dev:domain device to be detect.
1897 * @phy_id: the phy id will be detected.
1899 * NOTE: this process _must_ quit (return) as soon as any connection
1900 * errors are encountered. Connection recovery is done elsewhere.
1901 * Discover process only interrogates devices in order to discover the
1902 * domain.For plugging out, we un-register the device only when it is
1903 * the last phy in the port, for other phys in this port, we just delete it
1904 * from the port.For inserting, we do discovery when it is the
1905 * first phy,for other phys in this port, we add it to the port to
1906 * forming the wide-port.
1908 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1910 struct expander_device *ex = &dev->ex_dev;
1911 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1912 int res = 0;
1913 int i;
1914 bool last = true; /* is this the last phy of the port */
1916 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1917 SAS_ADDR(dev->sas_addr), phy_id);
1919 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1920 for (i = 0; i < ex->num_phys; i++) {
1921 struct ex_phy *phy = &ex->ex_phy[i];
1923 if (i == phy_id)
1924 continue;
1925 if (SAS_ADDR(phy->attached_sas_addr) ==
1926 SAS_ADDR(changed_phy->attached_sas_addr)) {
1927 SAS_DPRINTK("phy%d part of wide port with "
1928 "phy%d\n", phy_id, i);
1929 last = false;
1930 break;
1933 res = sas_rediscover_dev(dev, phy_id, last);
1934 } else
1935 res = sas_discover_new(dev, phy_id);
1936 return res;
1940 * sas_revalidate_domain -- revalidate the domain
1941 * @port: port to the domain of interest
1943 * NOTE: this process _must_ quit (return) as soon as any connection
1944 * errors are encountered. Connection recovery is done elsewhere.
1945 * Discover process only interrogates devices in order to discover the
1946 * domain.
1948 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1950 int res;
1951 struct domain_device *dev = NULL;
1953 res = sas_find_bcast_dev(port_dev, &dev);
1954 if (res)
1955 goto out;
1956 if (dev) {
1957 struct expander_device *ex = &dev->ex_dev;
1958 int i = 0, phy_id;
1960 do {
1961 phy_id = -1;
1962 res = sas_find_bcast_phy(dev, &phy_id, i, true);
1963 if (phy_id == -1)
1964 break;
1965 res = sas_rediscover(dev, phy_id);
1966 i = phy_id + 1;
1967 } while (i < ex->num_phys);
1969 out:
1970 return res;
1973 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1974 struct request *req)
1976 struct domain_device *dev;
1977 int ret, type;
1978 struct request *rsp = req->next_rq;
1980 if (!rsp) {
1981 printk("%s: space for a smp response is missing\n",
1982 __func__);
1983 return -EINVAL;
1986 /* no rphy means no smp target support (ie aic94xx host) */
1987 if (!rphy)
1988 return sas_smp_host_handler(shost, req, rsp);
1990 type = rphy->identify.device_type;
1992 if (type != SAS_EDGE_EXPANDER_DEVICE &&
1993 type != SAS_FANOUT_EXPANDER_DEVICE) {
1994 printk("%s: can we send a smp request to a device?\n",
1995 __func__);
1996 return -EINVAL;
1999 dev = sas_find_dev_by_rphy(rphy);
2000 if (!dev) {
2001 printk("%s: fail to find a domain_device?\n", __func__);
2002 return -EINVAL;
2005 /* do we need to support multiple segments? */
2006 if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2007 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2008 __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2009 rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2010 return -EINVAL;
2013 ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2014 bio_data(rsp->bio), blk_rq_bytes(rsp));
2015 if (ret > 0) {
2016 /* positive number is the untransferred residual */
2017 rsp->resid_len = ret;
2018 req->resid_len = 0;
2019 ret = 0;
2020 } else if (ret == 0) {
2021 rsp->resid_len = 0;
2022 req->resid_len = 0;
2025 return ret;