2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
29 #include "sas_internal.h"
31 #include <scsi/scsi_transport.h>
32 #include <scsi/scsi_transport_sas.h>
33 #include "../scsi_sas_internal.h"
35 static int sas_discover_expander(struct domain_device
*dev
);
36 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
);
37 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
38 u8
*sas_addr
, int include
);
39 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
);
41 /* ---------- SMP task management ---------- */
43 static void smp_task_timedout(unsigned long _task
)
45 struct sas_task
*task
= (void *) _task
;
48 spin_lock_irqsave(&task
->task_state_lock
, flags
);
49 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
))
50 task
->task_state_flags
|= SAS_TASK_STATE_ABORTED
;
51 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
53 complete(&task
->completion
);
56 static void smp_task_done(struct sas_task
*task
)
58 if (!del_timer(&task
->timer
))
60 complete(&task
->completion
);
63 /* Give it some long enough timeout. In seconds. */
64 #define SMP_TIMEOUT 10
66 static int smp_execute_task(struct domain_device
*dev
, void *req
, int req_size
,
67 void *resp
, int resp_size
)
70 struct sas_task
*task
= NULL
;
71 struct sas_internal
*i
=
72 to_sas_internal(dev
->port
->ha
->core
.shost
->transportt
);
74 for (retry
= 0; retry
< 3; retry
++) {
75 task
= sas_alloc_task(GFP_KERNEL
);
80 task
->task_proto
= dev
->tproto
;
81 sg_init_one(&task
->smp_task
.smp_req
, req
, req_size
);
82 sg_init_one(&task
->smp_task
.smp_resp
, resp
, resp_size
);
84 task
->task_done
= smp_task_done
;
86 task
->timer
.data
= (unsigned long) task
;
87 task
->timer
.function
= smp_task_timedout
;
88 task
->timer
.expires
= jiffies
+ SMP_TIMEOUT
*HZ
;
89 add_timer(&task
->timer
);
91 res
= i
->dft
->lldd_execute_task(task
, 1, GFP_KERNEL
);
94 del_timer(&task
->timer
);
95 SAS_DPRINTK("executing SMP task failed:%d\n", res
);
99 wait_for_completion(&task
->completion
);
101 if ((task
->task_state_flags
& SAS_TASK_STATE_ABORTED
)) {
102 SAS_DPRINTK("smp task timed out or aborted\n");
103 i
->dft
->lldd_abort_task(task
);
104 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
)) {
105 SAS_DPRINTK("SMP task aborted and not done\n");
109 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
110 task
->task_status
.stat
== SAM_STAT_GOOD
) {
113 } if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
114 task
->task_status
.stat
== SAS_DATA_UNDERRUN
) {
115 /* no error, but return the number of bytes of
117 res
= task
->task_status
.residual
;
119 } if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
120 task
->task_status
.stat
== SAS_DATA_OVERRUN
) {
124 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
125 "status 0x%x\n", __func__
,
126 SAS_ADDR(dev
->sas_addr
),
127 task
->task_status
.resp
,
128 task
->task_status
.stat
);
134 BUG_ON(retry
== 3 && task
!= NULL
);
141 /* ---------- Allocations ---------- */
143 static inline void *alloc_smp_req(int size
)
145 u8
*p
= kzalloc(size
, GFP_KERNEL
);
151 static inline void *alloc_smp_resp(int size
)
153 return kzalloc(size
, GFP_KERNEL
);
156 /* ---------- Expander configuration ---------- */
158 static void sas_set_ex_phy(struct domain_device
*dev
, int phy_id
,
161 struct expander_device
*ex
= &dev
->ex_dev
;
162 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
163 struct smp_resp
*resp
= disc_resp
;
164 struct discover_resp
*dr
= &resp
->disc
;
165 struct sas_rphy
*rphy
= dev
->rphy
;
166 int rediscover
= (phy
->phy
!= NULL
);
169 phy
->phy
= sas_phy_alloc(&rphy
->dev
, phy_id
);
171 /* FIXME: error_handling */
175 switch (resp
->result
) {
176 case SMP_RESP_PHY_VACANT
:
177 phy
->phy_state
= PHY_VACANT
;
180 phy
->phy_state
= PHY_NOT_PRESENT
;
182 case SMP_RESP_FUNC_ACC
:
183 phy
->phy_state
= PHY_EMPTY
; /* do not know yet */
187 phy
->phy_id
= phy_id
;
188 phy
->attached_dev_type
= dr
->attached_dev_type
;
189 phy
->linkrate
= dr
->linkrate
;
190 phy
->attached_sata_host
= dr
->attached_sata_host
;
191 phy
->attached_sata_dev
= dr
->attached_sata_dev
;
192 phy
->attached_sata_ps
= dr
->attached_sata_ps
;
193 phy
->attached_iproto
= dr
->iproto
<< 1;
194 phy
->attached_tproto
= dr
->tproto
<< 1;
195 memcpy(phy
->attached_sas_addr
, dr
->attached_sas_addr
, SAS_ADDR_SIZE
);
196 phy
->attached_phy_id
= dr
->attached_phy_id
;
197 phy
->phy_change_count
= dr
->change_count
;
198 phy
->routing_attr
= dr
->routing_attr
;
199 phy
->virtual = dr
->virtual;
200 phy
->last_da_index
= -1;
202 phy
->phy
->identify
.initiator_port_protocols
= phy
->attached_iproto
;
203 phy
->phy
->identify
.target_port_protocols
= phy
->attached_tproto
;
204 phy
->phy
->identify
.phy_identifier
= phy_id
;
205 phy
->phy
->minimum_linkrate_hw
= dr
->hmin_linkrate
;
206 phy
->phy
->maximum_linkrate_hw
= dr
->hmax_linkrate
;
207 phy
->phy
->minimum_linkrate
= dr
->pmin_linkrate
;
208 phy
->phy
->maximum_linkrate
= dr
->pmax_linkrate
;
209 phy
->phy
->negotiated_linkrate
= phy
->linkrate
;
212 if (sas_phy_add(phy
->phy
)) {
213 sas_phy_free(phy
->phy
);
217 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
218 SAS_ADDR(dev
->sas_addr
), phy
->phy_id
,
219 phy
->routing_attr
== TABLE_ROUTING
? 'T' :
220 phy
->routing_attr
== DIRECT_ROUTING
? 'D' :
221 phy
->routing_attr
== SUBTRACTIVE_ROUTING
? 'S' : '?',
222 SAS_ADDR(phy
->attached_sas_addr
));
227 #define DISCOVER_REQ_SIZE 16
228 #define DISCOVER_RESP_SIZE 56
230 static int sas_ex_phy_discover_helper(struct domain_device
*dev
, u8
*disc_req
,
231 u8
*disc_resp
, int single
)
235 disc_req
[9] = single
;
236 for (i
= 1 ; i
< 3; i
++) {
237 struct discover_resp
*dr
;
239 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
240 disc_resp
, DISCOVER_RESP_SIZE
);
243 /* This is detecting a failure to transmit initial
244 * dev to host FIS as described in section G.5 of
246 dr
= &((struct smp_resp
*)disc_resp
)->disc
;
247 if (memcmp(dev
->sas_addr
, dr
->attached_sas_addr
,
248 SAS_ADDR_SIZE
) == 0) {
249 sas_printk("Found loopback topology, just ignore it!\n");
252 if (!(dr
->attached_dev_type
== 0 &&
253 dr
->attached_sata_dev
))
255 /* In order to generate the dev to host FIS, we
256 * send a link reset to the expander port */
257 sas_smp_phy_control(dev
, single
, PHY_FUNC_LINK_RESET
, NULL
);
258 /* Wait for the reset to trigger the negotiation */
261 sas_set_ex_phy(dev
, single
, disc_resp
);
265 static int sas_ex_phy_discover(struct domain_device
*dev
, int single
)
267 struct expander_device
*ex
= &dev
->ex_dev
;
272 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
276 disc_resp
= alloc_smp_req(DISCOVER_RESP_SIZE
);
282 disc_req
[1] = SMP_DISCOVER
;
284 if (0 <= single
&& single
< ex
->num_phys
) {
285 res
= sas_ex_phy_discover_helper(dev
, disc_req
, disc_resp
, single
);
289 for (i
= 0; i
< ex
->num_phys
; i
++) {
290 res
= sas_ex_phy_discover_helper(dev
, disc_req
,
302 static int sas_expander_discover(struct domain_device
*dev
)
304 struct expander_device
*ex
= &dev
->ex_dev
;
307 ex
->ex_phy
= kzalloc(sizeof(*ex
->ex_phy
)*ex
->num_phys
, GFP_KERNEL
);
311 res
= sas_ex_phy_discover(dev
, -1);
322 #define MAX_EXPANDER_PHYS 128
324 static void ex_assign_report_general(struct domain_device
*dev
,
325 struct smp_resp
*resp
)
327 struct report_general_resp
*rg
= &resp
->rg
;
329 dev
->ex_dev
.ex_change_count
= be16_to_cpu(rg
->change_count
);
330 dev
->ex_dev
.max_route_indexes
= be16_to_cpu(rg
->route_indexes
);
331 dev
->ex_dev
.num_phys
= min(rg
->num_phys
, (u8
)MAX_EXPANDER_PHYS
);
332 dev
->ex_dev
.conf_route_table
= rg
->conf_route_table
;
333 dev
->ex_dev
.configuring
= rg
->configuring
;
334 memcpy(dev
->ex_dev
.enclosure_logical_id
, rg
->enclosure_logical_id
, 8);
337 #define RG_REQ_SIZE 8
338 #define RG_RESP_SIZE 32
340 static int sas_ex_general(struct domain_device
*dev
)
343 struct smp_resp
*rg_resp
;
347 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
351 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
357 rg_req
[1] = SMP_REPORT_GENERAL
;
359 for (i
= 0; i
< 5; i
++) {
360 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
364 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
365 SAS_ADDR(dev
->sas_addr
), res
);
367 } else if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
368 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
369 SAS_ADDR(dev
->sas_addr
), rg_resp
->result
);
370 res
= rg_resp
->result
;
374 ex_assign_report_general(dev
, rg_resp
);
376 if (dev
->ex_dev
.configuring
) {
377 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
378 SAS_ADDR(dev
->sas_addr
));
379 schedule_timeout_interruptible(5*HZ
);
389 static void ex_assign_manuf_info(struct domain_device
*dev
, void
392 u8
*mi_resp
= _mi_resp
;
393 struct sas_rphy
*rphy
= dev
->rphy
;
394 struct sas_expander_device
*edev
= rphy_to_expander_device(rphy
);
396 memcpy(edev
->vendor_id
, mi_resp
+ 12, SAS_EXPANDER_VENDOR_ID_LEN
);
397 memcpy(edev
->product_id
, mi_resp
+ 20, SAS_EXPANDER_PRODUCT_ID_LEN
);
398 memcpy(edev
->product_rev
, mi_resp
+ 36,
399 SAS_EXPANDER_PRODUCT_REV_LEN
);
401 if (mi_resp
[8] & 1) {
402 memcpy(edev
->component_vendor_id
, mi_resp
+ 40,
403 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN
);
404 edev
->component_id
= mi_resp
[48] << 8 | mi_resp
[49];
405 edev
->component_revision_id
= mi_resp
[50];
409 #define MI_REQ_SIZE 8
410 #define MI_RESP_SIZE 64
412 static int sas_ex_manuf_info(struct domain_device
*dev
)
418 mi_req
= alloc_smp_req(MI_REQ_SIZE
);
422 mi_resp
= alloc_smp_resp(MI_RESP_SIZE
);
428 mi_req
[1] = SMP_REPORT_MANUF_INFO
;
430 res
= smp_execute_task(dev
, mi_req
, MI_REQ_SIZE
, mi_resp
,MI_RESP_SIZE
);
432 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
433 SAS_ADDR(dev
->sas_addr
), res
);
435 } else if (mi_resp
[2] != SMP_RESP_FUNC_ACC
) {
436 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
437 SAS_ADDR(dev
->sas_addr
), mi_resp
[2]);
441 ex_assign_manuf_info(dev
, mi_resp
);
448 #define PC_REQ_SIZE 44
449 #define PC_RESP_SIZE 8
451 int sas_smp_phy_control(struct domain_device
*dev
, int phy_id
,
452 enum phy_func phy_func
,
453 struct sas_phy_linkrates
*rates
)
459 pc_req
= alloc_smp_req(PC_REQ_SIZE
);
463 pc_resp
= alloc_smp_resp(PC_RESP_SIZE
);
469 pc_req
[1] = SMP_PHY_CONTROL
;
471 pc_req
[10]= phy_func
;
473 pc_req
[32] = rates
->minimum_linkrate
<< 4;
474 pc_req
[33] = rates
->maximum_linkrate
<< 4;
477 res
= smp_execute_task(dev
, pc_req
, PC_REQ_SIZE
, pc_resp
,PC_RESP_SIZE
);
484 static void sas_ex_disable_phy(struct domain_device
*dev
, int phy_id
)
486 struct expander_device
*ex
= &dev
->ex_dev
;
487 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
489 sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_DISABLE
, NULL
);
490 phy
->linkrate
= SAS_PHY_DISABLED
;
493 static void sas_ex_disable_port(struct domain_device
*dev
, u8
*sas_addr
)
495 struct expander_device
*ex
= &dev
->ex_dev
;
498 for (i
= 0; i
< ex
->num_phys
; i
++) {
499 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
501 if (phy
->phy_state
== PHY_VACANT
||
502 phy
->phy_state
== PHY_NOT_PRESENT
)
505 if (SAS_ADDR(phy
->attached_sas_addr
) == SAS_ADDR(sas_addr
))
506 sas_ex_disable_phy(dev
, i
);
510 static int sas_dev_present_in_domain(struct asd_sas_port
*port
,
513 struct domain_device
*dev
;
515 if (SAS_ADDR(port
->sas_addr
) == SAS_ADDR(sas_addr
))
517 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
518 if (SAS_ADDR(dev
->sas_addr
) == SAS_ADDR(sas_addr
))
524 #define RPEL_REQ_SIZE 16
525 #define RPEL_RESP_SIZE 32
526 int sas_smp_get_phy_events(struct sas_phy
*phy
)
531 struct sas_rphy
*rphy
= dev_to_rphy(phy
->dev
.parent
);
532 struct domain_device
*dev
= sas_find_dev_by_rphy(rphy
);
534 req
= alloc_smp_req(RPEL_REQ_SIZE
);
538 resp
= alloc_smp_resp(RPEL_RESP_SIZE
);
544 req
[1] = SMP_REPORT_PHY_ERR_LOG
;
545 req
[9] = phy
->number
;
547 res
= smp_execute_task(dev
, req
, RPEL_REQ_SIZE
,
548 resp
, RPEL_RESP_SIZE
);
553 phy
->invalid_dword_count
= scsi_to_u32(&resp
[12]);
554 phy
->running_disparity_error_count
= scsi_to_u32(&resp
[16]);
555 phy
->loss_of_dword_sync_count
= scsi_to_u32(&resp
[20]);
556 phy
->phy_reset_problem_count
= scsi_to_u32(&resp
[24]);
564 #ifdef CONFIG_SCSI_SAS_ATA
566 #define RPS_REQ_SIZE 16
567 #define RPS_RESP_SIZE 60
569 static int sas_get_report_phy_sata(struct domain_device
*dev
,
571 struct smp_resp
*rps_resp
)
574 u8
*rps_req
= alloc_smp_req(RPS_REQ_SIZE
);
575 u8
*resp
= (u8
*)rps_resp
;
580 rps_req
[1] = SMP_REPORT_PHY_SATA
;
583 res
= smp_execute_task(dev
, rps_req
, RPS_REQ_SIZE
,
584 rps_resp
, RPS_RESP_SIZE
);
586 /* 0x34 is the FIS type for the D2H fis. There's a potential
587 * standards cockup here. sas-2 explicitly specifies the FIS
588 * should be encoded so that FIS type is in resp[24].
589 * However, some expanders endian reverse this. Undo the
591 if (!res
&& resp
[27] == 0x34 && resp
[24] != 0x34) {
594 for (i
= 0; i
< 5; i
++) {
599 resp
[j
+ 0] = resp
[j
+ 3];
600 resp
[j
+ 1] = resp
[j
+ 2];
611 static void sas_ex_get_linkrate(struct domain_device
*parent
,
612 struct domain_device
*child
,
613 struct ex_phy
*parent_phy
)
615 struct expander_device
*parent_ex
= &parent
->ex_dev
;
616 struct sas_port
*port
;
621 port
= parent_phy
->port
;
623 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
624 struct ex_phy
*phy
= &parent_ex
->ex_phy
[i
];
626 if (phy
->phy_state
== PHY_VACANT
||
627 phy
->phy_state
== PHY_NOT_PRESENT
)
630 if (SAS_ADDR(phy
->attached_sas_addr
) ==
631 SAS_ADDR(child
->sas_addr
)) {
633 child
->min_linkrate
= min(parent
->min_linkrate
,
635 child
->max_linkrate
= max(parent
->max_linkrate
,
638 sas_port_add_phy(port
, phy
->phy
);
641 child
->linkrate
= min(parent_phy
->linkrate
, child
->max_linkrate
);
642 child
->pathways
= min(child
->pathways
, parent
->pathways
);
645 static struct domain_device
*sas_ex_discover_end_dev(
646 struct domain_device
*parent
, int phy_id
)
648 struct expander_device
*parent_ex
= &parent
->ex_dev
;
649 struct ex_phy
*phy
= &parent_ex
->ex_phy
[phy_id
];
650 struct domain_device
*child
= NULL
;
651 struct sas_rphy
*rphy
;
654 if (phy
->attached_sata_host
|| phy
->attached_sata_ps
)
657 child
= kzalloc(sizeof(*child
), GFP_KERNEL
);
661 child
->parent
= parent
;
662 child
->port
= parent
->port
;
663 child
->iproto
= phy
->attached_iproto
;
664 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
665 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
667 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
668 if (unlikely(!phy
->port
))
670 if (unlikely(sas_port_add(phy
->port
) != 0)) {
671 sas_port_free(phy
->port
);
675 sas_ex_get_linkrate(parent
, child
, phy
);
677 #ifdef CONFIG_SCSI_SAS_ATA
678 if ((phy
->attached_tproto
& SAS_PROTOCOL_STP
) || phy
->attached_sata_dev
) {
679 child
->dev_type
= SATA_DEV
;
680 if (phy
->attached_tproto
& SAS_PROTOCOL_STP
)
681 child
->tproto
= phy
->attached_tproto
;
682 if (phy
->attached_sata_dev
)
683 child
->tproto
|= SATA_DEV
;
684 res
= sas_get_report_phy_sata(parent
, phy_id
,
685 &child
->sata_dev
.rps_resp
);
687 SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
688 "0x%x\n", SAS_ADDR(parent
->sas_addr
),
692 memcpy(child
->frame_rcvd
, &child
->sata_dev
.rps_resp
.rps
.fis
,
693 sizeof(struct dev_to_host_fis
));
695 rphy
= sas_end_device_alloc(phy
->port
);
703 spin_lock_irq(&parent
->port
->dev_list_lock
);
704 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
705 spin_unlock_irq(&parent
->port
->dev_list_lock
);
707 res
= sas_discover_sata(child
);
709 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
710 "%016llx:0x%x returned 0x%x\n",
711 SAS_ADDR(child
->sas_addr
),
712 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
717 if (phy
->attached_tproto
& SAS_PROTOCOL_SSP
) {
718 child
->dev_type
= SAS_END_DEV
;
719 rphy
= sas_end_device_alloc(phy
->port
);
720 /* FIXME: error handling */
723 child
->tproto
= phy
->attached_tproto
;
727 sas_fill_in_rphy(child
, rphy
);
729 spin_lock_irq(&parent
->port
->dev_list_lock
);
730 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
731 spin_unlock_irq(&parent
->port
->dev_list_lock
);
733 res
= sas_discover_end_dev(child
);
735 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
736 "at %016llx:0x%x returned 0x%x\n",
737 SAS_ADDR(child
->sas_addr
),
738 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
742 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
743 phy
->attached_tproto
, SAS_ADDR(parent
->sas_addr
),
748 list_add_tail(&child
->siblings
, &parent_ex
->children
);
752 sas_rphy_free(child
->rphy
);
754 list_del(&child
->dev_list_node
);
756 sas_port_delete(phy
->port
);
763 /* See if this phy is part of a wide port */
764 static int sas_ex_join_wide_port(struct domain_device
*parent
, int phy_id
)
766 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
769 for (i
= 0; i
< parent
->ex_dev
.num_phys
; i
++) {
770 struct ex_phy
*ephy
= &parent
->ex_dev
.ex_phy
[i
];
775 if (!memcmp(phy
->attached_sas_addr
, ephy
->attached_sas_addr
,
776 SAS_ADDR_SIZE
) && ephy
->port
) {
777 sas_port_add_phy(ephy
->port
, phy
->phy
);
778 phy
->port
= ephy
->port
;
779 phy
->phy_state
= PHY_DEVICE_DISCOVERED
;
787 static struct domain_device
*sas_ex_discover_expander(
788 struct domain_device
*parent
, int phy_id
)
790 struct sas_expander_device
*parent_ex
= rphy_to_expander_device(parent
->rphy
);
791 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
792 struct domain_device
*child
= NULL
;
793 struct sas_rphy
*rphy
;
794 struct sas_expander_device
*edev
;
795 struct asd_sas_port
*port
;
798 if (phy
->routing_attr
== DIRECT_ROUTING
) {
799 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
801 SAS_ADDR(parent
->sas_addr
), phy_id
,
802 SAS_ADDR(phy
->attached_sas_addr
),
803 phy
->attached_phy_id
);
806 child
= kzalloc(sizeof(*child
), GFP_KERNEL
);
810 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
811 /* FIXME: better error handling */
812 BUG_ON(sas_port_add(phy
->port
) != 0);
815 switch (phy
->attached_dev_type
) {
817 rphy
= sas_expander_alloc(phy
->port
,
818 SAS_EDGE_EXPANDER_DEVICE
);
821 rphy
= sas_expander_alloc(phy
->port
,
822 SAS_FANOUT_EXPANDER_DEVICE
);
825 rphy
= NULL
; /* shut gcc up */
830 edev
= rphy_to_expander_device(rphy
);
831 child
->dev_type
= phy
->attached_dev_type
;
832 child
->parent
= parent
;
834 child
->iproto
= phy
->attached_iproto
;
835 child
->tproto
= phy
->attached_tproto
;
836 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
837 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
838 sas_ex_get_linkrate(parent
, child
, phy
);
839 edev
->level
= parent_ex
->level
+ 1;
840 parent
->port
->disc
.max_level
= max(parent
->port
->disc
.max_level
,
843 sas_fill_in_rphy(child
, rphy
);
846 spin_lock_irq(&parent
->port
->dev_list_lock
);
847 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
848 spin_unlock_irq(&parent
->port
->dev_list_lock
);
850 res
= sas_discover_expander(child
);
855 list_add_tail(&child
->siblings
, &parent
->ex_dev
.children
);
859 static int sas_ex_discover_dev(struct domain_device
*dev
, int phy_id
)
861 struct expander_device
*ex
= &dev
->ex_dev
;
862 struct ex_phy
*ex_phy
= &ex
->ex_phy
[phy_id
];
863 struct domain_device
*child
= NULL
;
867 if (ex_phy
->linkrate
== SAS_SATA_SPINUP_HOLD
) {
868 if (!sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_LINK_RESET
, NULL
))
869 res
= sas_ex_phy_discover(dev
, phy_id
);
874 /* Parent and domain coherency */
875 if (!dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
876 SAS_ADDR(dev
->port
->sas_addr
))) {
877 sas_add_parent_port(dev
, phy_id
);
880 if (dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
881 SAS_ADDR(dev
->parent
->sas_addr
))) {
882 sas_add_parent_port(dev
, phy_id
);
883 if (ex_phy
->routing_attr
== TABLE_ROUTING
)
884 sas_configure_phy(dev
, phy_id
, dev
->port
->sas_addr
, 1);
888 if (sas_dev_present_in_domain(dev
->port
, ex_phy
->attached_sas_addr
))
889 sas_ex_disable_port(dev
, ex_phy
->attached_sas_addr
);
891 if (ex_phy
->attached_dev_type
== NO_DEVICE
) {
892 if (ex_phy
->routing_attr
== DIRECT_ROUTING
) {
893 memset(ex_phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
894 sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
897 } else if (ex_phy
->linkrate
== SAS_LINK_RATE_UNKNOWN
)
900 if (ex_phy
->attached_dev_type
!= SAS_END_DEV
&&
901 ex_phy
->attached_dev_type
!= FANOUT_DEV
&&
902 ex_phy
->attached_dev_type
!= EDGE_DEV
) {
903 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
904 "phy 0x%x\n", ex_phy
->attached_dev_type
,
905 SAS_ADDR(dev
->sas_addr
),
910 res
= sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
912 SAS_DPRINTK("configure routing for dev %016llx "
913 "reported 0x%x. Forgotten\n",
914 SAS_ADDR(ex_phy
->attached_sas_addr
), res
);
915 sas_disable_routing(dev
, ex_phy
->attached_sas_addr
);
919 res
= sas_ex_join_wide_port(dev
, phy_id
);
921 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
922 phy_id
, SAS_ADDR(ex_phy
->attached_sas_addr
));
926 switch (ex_phy
->attached_dev_type
) {
928 child
= sas_ex_discover_end_dev(dev
, phy_id
);
931 if (SAS_ADDR(dev
->port
->disc
.fanout_sas_addr
)) {
932 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
933 "attached to ex %016llx phy 0x%x\n",
934 SAS_ADDR(ex_phy
->attached_sas_addr
),
935 ex_phy
->attached_phy_id
,
936 SAS_ADDR(dev
->sas_addr
),
938 sas_ex_disable_phy(dev
, phy_id
);
941 memcpy(dev
->port
->disc
.fanout_sas_addr
,
942 ex_phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
945 child
= sas_ex_discover_expander(dev
, phy_id
);
954 for (i
= 0; i
< ex
->num_phys
; i
++) {
955 if (ex
->ex_phy
[i
].phy_state
== PHY_VACANT
||
956 ex
->ex_phy
[i
].phy_state
== PHY_NOT_PRESENT
)
959 * Due to races, the phy might not get added to the
960 * wide port, so we add the phy to the wide port here.
962 if (SAS_ADDR(ex
->ex_phy
[i
].attached_sas_addr
) ==
963 SAS_ADDR(child
->sas_addr
)) {
964 ex
->ex_phy
[i
].phy_state
= PHY_DEVICE_DISCOVERED
;
965 res
= sas_ex_join_wide_port(dev
, i
);
967 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
968 i
, SAS_ADDR(ex
->ex_phy
[i
].attached_sas_addr
));
977 static int sas_find_sub_addr(struct domain_device
*dev
, u8
*sub_addr
)
979 struct expander_device
*ex
= &dev
->ex_dev
;
982 for (i
= 0; i
< ex
->num_phys
; i
++) {
983 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
985 if (phy
->phy_state
== PHY_VACANT
||
986 phy
->phy_state
== PHY_NOT_PRESENT
)
989 if ((phy
->attached_dev_type
== EDGE_DEV
||
990 phy
->attached_dev_type
== FANOUT_DEV
) &&
991 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
993 memcpy(sub_addr
, phy
->attached_sas_addr
,SAS_ADDR_SIZE
);
1001 static int sas_check_level_subtractive_boundary(struct domain_device
*dev
)
1003 struct expander_device
*ex
= &dev
->ex_dev
;
1004 struct domain_device
*child
;
1005 u8 sub_addr
[8] = {0, };
1007 list_for_each_entry(child
, &ex
->children
, siblings
) {
1008 if (child
->dev_type
!= EDGE_DEV
&&
1009 child
->dev_type
!= FANOUT_DEV
)
1011 if (sub_addr
[0] == 0) {
1012 sas_find_sub_addr(child
, sub_addr
);
1017 if (sas_find_sub_addr(child
, s2
) &&
1018 (SAS_ADDR(sub_addr
) != SAS_ADDR(s2
))) {
1020 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1021 "diverges from subtractive "
1022 "boundary %016llx\n",
1023 SAS_ADDR(dev
->sas_addr
),
1024 SAS_ADDR(child
->sas_addr
),
1026 SAS_ADDR(sub_addr
));
1028 sas_ex_disable_port(child
, s2
);
1035 * sas_ex_discover_devices -- discover devices attached to this expander
1036 * dev: pointer to the expander domain device
1037 * single: if you want to do a single phy, else set to -1;
1039 * Configure this expander for use with its devices and register the
1040 * devices of this expander.
1042 static int sas_ex_discover_devices(struct domain_device
*dev
, int single
)
1044 struct expander_device
*ex
= &dev
->ex_dev
;
1045 int i
= 0, end
= ex
->num_phys
;
1048 if (0 <= single
&& single
< end
) {
1053 for ( ; i
< end
; i
++) {
1054 struct ex_phy
*ex_phy
= &ex
->ex_phy
[i
];
1056 if (ex_phy
->phy_state
== PHY_VACANT
||
1057 ex_phy
->phy_state
== PHY_NOT_PRESENT
||
1058 ex_phy
->phy_state
== PHY_DEVICE_DISCOVERED
)
1061 switch (ex_phy
->linkrate
) {
1062 case SAS_PHY_DISABLED
:
1063 case SAS_PHY_RESET_PROBLEM
:
1064 case SAS_SATA_PORT_SELECTOR
:
1067 res
= sas_ex_discover_dev(dev
, i
);
1075 sas_check_level_subtractive_boundary(dev
);
1080 static int sas_check_ex_subtractive_boundary(struct domain_device
*dev
)
1082 struct expander_device
*ex
= &dev
->ex_dev
;
1084 u8
*sub_sas_addr
= NULL
;
1086 if (dev
->dev_type
!= EDGE_DEV
)
1089 for (i
= 0; i
< ex
->num_phys
; i
++) {
1090 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1092 if (phy
->phy_state
== PHY_VACANT
||
1093 phy
->phy_state
== PHY_NOT_PRESENT
)
1096 if ((phy
->attached_dev_type
== FANOUT_DEV
||
1097 phy
->attached_dev_type
== EDGE_DEV
) &&
1098 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1101 sub_sas_addr
= &phy
->attached_sas_addr
[0];
1102 else if (SAS_ADDR(sub_sas_addr
) !=
1103 SAS_ADDR(phy
->attached_sas_addr
)) {
1105 SAS_DPRINTK("ex %016llx phy 0x%x "
1106 "diverges(%016llx) on subtractive "
1107 "boundary(%016llx). Disabled\n",
1108 SAS_ADDR(dev
->sas_addr
), i
,
1109 SAS_ADDR(phy
->attached_sas_addr
),
1110 SAS_ADDR(sub_sas_addr
));
1111 sas_ex_disable_phy(dev
, i
);
1118 static void sas_print_parent_topology_bug(struct domain_device
*child
,
1119 struct ex_phy
*parent_phy
,
1120 struct ex_phy
*child_phy
)
1122 static const char ra_char
[] = {
1123 [DIRECT_ROUTING
] = 'D',
1124 [SUBTRACTIVE_ROUTING
] = 'S',
1125 [TABLE_ROUTING
] = 'T',
1127 static const char *ex_type
[] = {
1128 [EDGE_DEV
] = "edge",
1129 [FANOUT_DEV
] = "fanout",
1131 struct domain_device
*parent
= child
->parent
;
1133 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1134 "has %c:%c routing link!\n",
1136 ex_type
[parent
->dev_type
],
1137 SAS_ADDR(parent
->sas_addr
),
1140 ex_type
[child
->dev_type
],
1141 SAS_ADDR(child
->sas_addr
),
1144 ra_char
[parent_phy
->routing_attr
],
1145 ra_char
[child_phy
->routing_attr
]);
1148 static int sas_check_eeds(struct domain_device
*child
,
1149 struct ex_phy
*parent_phy
,
1150 struct ex_phy
*child_phy
)
1153 struct domain_device
*parent
= child
->parent
;
1155 if (SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
) != 0) {
1157 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1158 "phy S:0x%x, while there is a fanout ex %016llx\n",
1159 SAS_ADDR(parent
->sas_addr
),
1161 SAS_ADDR(child
->sas_addr
),
1163 SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
));
1164 } else if (SAS_ADDR(parent
->port
->disc
.eeds_a
) == 0) {
1165 memcpy(parent
->port
->disc
.eeds_a
, parent
->sas_addr
,
1167 memcpy(parent
->port
->disc
.eeds_b
, child
->sas_addr
,
1169 } else if (((SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1170 SAS_ADDR(parent
->sas_addr
)) ||
1171 (SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1172 SAS_ADDR(child
->sas_addr
)))
1174 ((SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1175 SAS_ADDR(parent
->sas_addr
)) ||
1176 (SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1177 SAS_ADDR(child
->sas_addr
))))
1181 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1182 "phy 0x%x link forms a third EEDS!\n",
1183 SAS_ADDR(parent
->sas_addr
),
1185 SAS_ADDR(child
->sas_addr
),
1192 /* Here we spill over 80 columns. It is intentional.
1194 static int sas_check_parent_topology(struct domain_device
*child
)
1196 struct expander_device
*child_ex
= &child
->ex_dev
;
1197 struct expander_device
*parent_ex
;
1204 if (child
->parent
->dev_type
!= EDGE_DEV
&&
1205 child
->parent
->dev_type
!= FANOUT_DEV
)
1208 parent_ex
= &child
->parent
->ex_dev
;
1210 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
1211 struct ex_phy
*parent_phy
= &parent_ex
->ex_phy
[i
];
1212 struct ex_phy
*child_phy
;
1214 if (parent_phy
->phy_state
== PHY_VACANT
||
1215 parent_phy
->phy_state
== PHY_NOT_PRESENT
)
1218 if (SAS_ADDR(parent_phy
->attached_sas_addr
) != SAS_ADDR(child
->sas_addr
))
1221 child_phy
= &child_ex
->ex_phy
[parent_phy
->attached_phy_id
];
1223 switch (child
->parent
->dev_type
) {
1225 if (child
->dev_type
== FANOUT_DEV
) {
1226 if (parent_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
||
1227 child_phy
->routing_attr
!= TABLE_ROUTING
) {
1228 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1231 } else if (parent_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1232 if (child_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1233 res
= sas_check_eeds(child
, parent_phy
, child_phy
);
1234 } else if (child_phy
->routing_attr
!= TABLE_ROUTING
) {
1235 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1238 } else if (parent_phy
->routing_attr
== TABLE_ROUTING
&&
1239 child_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
) {
1240 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1245 if (parent_phy
->routing_attr
!= TABLE_ROUTING
||
1246 child_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
) {
1247 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1259 #define RRI_REQ_SIZE 16
1260 #define RRI_RESP_SIZE 44
1262 static int sas_configure_present(struct domain_device
*dev
, int phy_id
,
1263 u8
*sas_addr
, int *index
, int *present
)
1266 struct expander_device
*ex
= &dev
->ex_dev
;
1267 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
1274 rri_req
= alloc_smp_req(RRI_REQ_SIZE
);
1278 rri_resp
= alloc_smp_resp(RRI_RESP_SIZE
);
1284 rri_req
[1] = SMP_REPORT_ROUTE_INFO
;
1285 rri_req
[9] = phy_id
;
1287 for (i
= 0; i
< ex
->max_route_indexes
; i
++) {
1288 *(__be16
*)(rri_req
+6) = cpu_to_be16(i
);
1289 res
= smp_execute_task(dev
, rri_req
, RRI_REQ_SIZE
, rri_resp
,
1294 if (res
== SMP_RESP_NO_INDEX
) {
1295 SAS_DPRINTK("overflow of indexes: dev %016llx "
1296 "phy 0x%x index 0x%x\n",
1297 SAS_ADDR(dev
->sas_addr
), phy_id
, i
);
1299 } else if (res
!= SMP_RESP_FUNC_ACC
) {
1300 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1301 "result 0x%x\n", __func__
,
1302 SAS_ADDR(dev
->sas_addr
), phy_id
, i
, res
);
1305 if (SAS_ADDR(sas_addr
) != 0) {
1306 if (SAS_ADDR(rri_resp
+16) == SAS_ADDR(sas_addr
)) {
1308 if ((rri_resp
[12] & 0x80) == 0x80)
1313 } else if (SAS_ADDR(rri_resp
+16) == 0) {
1318 } else if (SAS_ADDR(rri_resp
+16) == 0 &&
1319 phy
->last_da_index
< i
) {
1320 phy
->last_da_index
= i
;
1333 #define CRI_REQ_SIZE 44
1334 #define CRI_RESP_SIZE 8
1336 static int sas_configure_set(struct domain_device
*dev
, int phy_id
,
1337 u8
*sas_addr
, int index
, int include
)
1343 cri_req
= alloc_smp_req(CRI_REQ_SIZE
);
1347 cri_resp
= alloc_smp_resp(CRI_RESP_SIZE
);
1353 cri_req
[1] = SMP_CONF_ROUTE_INFO
;
1354 *(__be16
*)(cri_req
+6) = cpu_to_be16(index
);
1355 cri_req
[9] = phy_id
;
1356 if (SAS_ADDR(sas_addr
) == 0 || !include
)
1357 cri_req
[12] |= 0x80;
1358 memcpy(cri_req
+16, sas_addr
, SAS_ADDR_SIZE
);
1360 res
= smp_execute_task(dev
, cri_req
, CRI_REQ_SIZE
, cri_resp
,
1365 if (res
== SMP_RESP_NO_INDEX
) {
1366 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1368 SAS_ADDR(dev
->sas_addr
), phy_id
, index
);
1376 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
1377 u8
*sas_addr
, int include
)
1383 res
= sas_configure_present(dev
, phy_id
, sas_addr
, &index
, &present
);
1386 if (include
^ present
)
1387 return sas_configure_set(dev
, phy_id
, sas_addr
, index
,include
);
1393 * sas_configure_parent -- configure routing table of parent
1394 * parent: parent expander
1395 * child: child expander
1396 * sas_addr: SAS port identifier of device directly attached to child
1398 static int sas_configure_parent(struct domain_device
*parent
,
1399 struct domain_device
*child
,
1400 u8
*sas_addr
, int include
)
1402 struct expander_device
*ex_parent
= &parent
->ex_dev
;
1406 if (parent
->parent
) {
1407 res
= sas_configure_parent(parent
->parent
, parent
, sas_addr
,
1413 if (ex_parent
->conf_route_table
== 0) {
1414 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1415 SAS_ADDR(parent
->sas_addr
));
1419 for (i
= 0; i
< ex_parent
->num_phys
; i
++) {
1420 struct ex_phy
*phy
= &ex_parent
->ex_phy
[i
];
1422 if ((phy
->routing_attr
== TABLE_ROUTING
) &&
1423 (SAS_ADDR(phy
->attached_sas_addr
) ==
1424 SAS_ADDR(child
->sas_addr
))) {
1425 res
= sas_configure_phy(parent
, i
, sas_addr
, include
);
1435 * sas_configure_routing -- configure routing
1436 * dev: expander device
1437 * sas_addr: port identifier of device directly attached to the expander device
1439 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
)
1442 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 1);
1446 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
)
1449 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 0);
1454 * sas_discover_expander -- expander discovery
1455 * @ex: pointer to expander domain device
1457 * See comment in sas_discover_sata().
1459 static int sas_discover_expander(struct domain_device
*dev
)
1463 res
= sas_notify_lldd_dev_found(dev
);
1467 res
= sas_ex_general(dev
);
1470 res
= sas_ex_manuf_info(dev
);
1474 res
= sas_expander_discover(dev
);
1476 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1477 SAS_ADDR(dev
->sas_addr
), res
);
1481 sas_check_ex_subtractive_boundary(dev
);
1482 res
= sas_check_parent_topology(dev
);
1487 sas_notify_lldd_dev_gone(dev
);
1491 static int sas_ex_level_discovery(struct asd_sas_port
*port
, const int level
)
1494 struct domain_device
*dev
;
1496 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
1497 if (dev
->dev_type
== EDGE_DEV
||
1498 dev
->dev_type
== FANOUT_DEV
) {
1499 struct sas_expander_device
*ex
=
1500 rphy_to_expander_device(dev
->rphy
);
1502 if (level
== ex
->level
)
1503 res
= sas_ex_discover_devices(dev
, -1);
1505 res
= sas_ex_discover_devices(port
->port_dev
, -1);
1513 static int sas_ex_bfs_disc(struct asd_sas_port
*port
)
1519 level
= port
->disc
.max_level
;
1520 res
= sas_ex_level_discovery(port
, level
);
1522 } while (level
< port
->disc
.max_level
);
1527 int sas_discover_root_expander(struct domain_device
*dev
)
1530 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1532 res
= sas_rphy_add(dev
->rphy
);
1536 ex
->level
= dev
->port
->disc
.max_level
; /* 0 */
1537 res
= sas_discover_expander(dev
);
1541 sas_ex_bfs_disc(dev
->port
);
1546 sas_rphy_remove(dev
->rphy
);
1551 /* ---------- Domain revalidation ---------- */
1553 static int sas_get_phy_discover(struct domain_device
*dev
,
1554 int phy_id
, struct smp_resp
*disc_resp
)
1559 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
1563 disc_req
[1] = SMP_DISCOVER
;
1564 disc_req
[9] = phy_id
;
1566 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
1567 disc_resp
, DISCOVER_RESP_SIZE
);
1570 else if (disc_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1571 res
= disc_resp
->result
;
1579 static int sas_get_phy_change_count(struct domain_device
*dev
,
1580 int phy_id
, int *pcc
)
1583 struct smp_resp
*disc_resp
;
1585 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1589 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1591 *pcc
= disc_resp
->disc
.change_count
;
1597 static int sas_get_phy_attached_sas_addr(struct domain_device
*dev
,
1598 int phy_id
, u8
*attached_sas_addr
)
1601 struct smp_resp
*disc_resp
;
1602 struct discover_resp
*dr
;
1604 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1607 dr
= &disc_resp
->disc
;
1609 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1611 memcpy(attached_sas_addr
,disc_resp
->disc
.attached_sas_addr
,8);
1612 if (dr
->attached_dev_type
== 0)
1613 memset(attached_sas_addr
, 0, 8);
1619 static int sas_find_bcast_phy(struct domain_device
*dev
, int *phy_id
,
1620 int from_phy
, bool update
)
1622 struct expander_device
*ex
= &dev
->ex_dev
;
1626 for (i
= from_phy
; i
< ex
->num_phys
; i
++) {
1627 int phy_change_count
= 0;
1629 res
= sas_get_phy_change_count(dev
, i
, &phy_change_count
);
1632 else if (phy_change_count
!= ex
->ex_phy
[i
].phy_change_count
) {
1634 ex
->ex_phy
[i
].phy_change_count
=
1644 static int sas_get_ex_change_count(struct domain_device
*dev
, int *ecc
)
1648 struct smp_resp
*rg_resp
;
1650 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
1654 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
1660 rg_req
[1] = SMP_REPORT_GENERAL
;
1662 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
1666 if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1667 res
= rg_resp
->result
;
1671 *ecc
= be16_to_cpu(rg_resp
->rg
.change_count
);
1678 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1679 * @dev:domain device to be detect.
1680 * @src_dev: the device which originated BROADCAST(CHANGE).
1682 * Add self-configuration expander suport. Suppose two expander cascading,
1683 * when the first level expander is self-configuring, hotplug the disks in
1684 * second level expander, BROADCAST(CHANGE) will not only be originated
1685 * in the second level expander, but also be originated in the first level
1686 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1687 * expander changed count in two level expanders will all increment at least
1688 * once, but the phy which chang count has changed is the source device which
1692 static int sas_find_bcast_dev(struct domain_device
*dev
,
1693 struct domain_device
**src_dev
)
1695 struct expander_device
*ex
= &dev
->ex_dev
;
1696 int ex_change_count
= -1;
1699 struct domain_device
*ch
;
1701 res
= sas_get_ex_change_count(dev
, &ex_change_count
);
1704 if (ex_change_count
!= -1 && ex_change_count
!= ex
->ex_change_count
) {
1705 /* Just detect if this expander phys phy change count changed,
1706 * in order to determine if this expander originate BROADCAST,
1707 * and do not update phy change count field in our structure.
1709 res
= sas_find_bcast_phy(dev
, &phy_id
, 0, false);
1712 ex
->ex_change_count
= ex_change_count
;
1713 SAS_DPRINTK("Expander phy change count has changed\n");
1716 SAS_DPRINTK("Expander phys DID NOT change\n");
1718 list_for_each_entry(ch
, &ex
->children
, siblings
) {
1719 if (ch
->dev_type
== EDGE_DEV
|| ch
->dev_type
== FANOUT_DEV
) {
1720 res
= sas_find_bcast_dev(ch
, src_dev
);
1729 static void sas_unregister_ex_tree(struct domain_device
*dev
)
1731 struct expander_device
*ex
= &dev
->ex_dev
;
1732 struct domain_device
*child
, *n
;
1734 list_for_each_entry_safe(child
, n
, &ex
->children
, siblings
) {
1736 if (child
->dev_type
== EDGE_DEV
||
1737 child
->dev_type
== FANOUT_DEV
)
1738 sas_unregister_ex_tree(child
);
1740 sas_unregister_dev(child
);
1742 sas_unregister_dev(dev
);
1745 static void sas_unregister_devs_sas_addr(struct domain_device
*parent
,
1746 int phy_id
, bool last
)
1748 struct expander_device
*ex_dev
= &parent
->ex_dev
;
1749 struct ex_phy
*phy
= &ex_dev
->ex_phy
[phy_id
];
1750 struct domain_device
*child
, *n
;
1752 list_for_each_entry_safe(child
, n
,
1753 &ex_dev
->children
, siblings
) {
1754 if (SAS_ADDR(child
->sas_addr
) ==
1755 SAS_ADDR(phy
->attached_sas_addr
)) {
1757 if (child
->dev_type
== EDGE_DEV
||
1758 child
->dev_type
== FANOUT_DEV
)
1759 sas_unregister_ex_tree(child
);
1761 sas_unregister_dev(child
);
1766 sas_disable_routing(parent
, phy
->attached_sas_addr
);
1768 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
1769 sas_port_delete_phy(phy
->port
, phy
->phy
);
1770 if (phy
->port
->num_phys
== 0)
1771 sas_port_delete(phy
->port
);
1775 static int sas_discover_bfs_by_root_level(struct domain_device
*root
,
1778 struct expander_device
*ex_root
= &root
->ex_dev
;
1779 struct domain_device
*child
;
1782 list_for_each_entry(child
, &ex_root
->children
, siblings
) {
1783 if (child
->dev_type
== EDGE_DEV
||
1784 child
->dev_type
== FANOUT_DEV
) {
1785 struct sas_expander_device
*ex
=
1786 rphy_to_expander_device(child
->rphy
);
1788 if (level
> ex
->level
)
1789 res
= sas_discover_bfs_by_root_level(child
,
1791 else if (level
== ex
->level
)
1792 res
= sas_ex_discover_devices(child
, -1);
1798 static int sas_discover_bfs_by_root(struct domain_device
*dev
)
1801 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1802 int level
= ex
->level
+1;
1804 res
= sas_ex_discover_devices(dev
, -1);
1808 res
= sas_discover_bfs_by_root_level(dev
, level
);
1811 } while (level
<= dev
->port
->disc
.max_level
);
1816 static int sas_discover_new(struct domain_device
*dev
, int phy_id
)
1818 struct ex_phy
*ex_phy
= &dev
->ex_dev
.ex_phy
[phy_id
];
1819 struct domain_device
*child
;
1823 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1824 SAS_ADDR(dev
->sas_addr
), phy_id
);
1825 res
= sas_ex_phy_discover(dev
, phy_id
);
1828 /* to support the wide port inserted */
1829 for (i
= 0; i
< dev
->ex_dev
.num_phys
; i
++) {
1830 struct ex_phy
*ex_phy_temp
= &dev
->ex_dev
.ex_phy
[i
];
1833 if (SAS_ADDR(ex_phy_temp
->attached_sas_addr
) ==
1834 SAS_ADDR(ex_phy
->attached_sas_addr
)) {
1840 sas_ex_join_wide_port(dev
, phy_id
);
1843 res
= sas_ex_discover_devices(dev
, phy_id
);
1846 list_for_each_entry(child
, &dev
->ex_dev
.children
, siblings
) {
1847 if (SAS_ADDR(child
->sas_addr
) ==
1848 SAS_ADDR(ex_phy
->attached_sas_addr
)) {
1849 if (child
->dev_type
== EDGE_DEV
||
1850 child
->dev_type
== FANOUT_DEV
)
1851 res
= sas_discover_bfs_by_root(child
);
1859 static int sas_rediscover_dev(struct domain_device
*dev
, int phy_id
, bool last
)
1861 struct expander_device
*ex
= &dev
->ex_dev
;
1862 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
1863 u8 attached_sas_addr
[8];
1866 res
= sas_get_phy_attached_sas_addr(dev
, phy_id
, attached_sas_addr
);
1868 case SMP_RESP_NO_PHY
:
1869 phy
->phy_state
= PHY_NOT_PRESENT
;
1870 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
1872 case SMP_RESP_PHY_VACANT
:
1873 phy
->phy_state
= PHY_VACANT
;
1874 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
1876 case SMP_RESP_FUNC_ACC
:
1880 if (SAS_ADDR(attached_sas_addr
) == 0) {
1881 phy
->phy_state
= PHY_EMPTY
;
1882 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
1883 } else if (SAS_ADDR(attached_sas_addr
) ==
1884 SAS_ADDR(phy
->attached_sas_addr
)) {
1885 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1886 SAS_ADDR(dev
->sas_addr
), phy_id
);
1887 sas_ex_phy_discover(dev
, phy_id
);
1889 res
= sas_discover_new(dev
, phy_id
);
1895 * sas_rediscover - revalidate the domain.
1896 * @dev:domain device to be detect.
1897 * @phy_id: the phy id will be detected.
1899 * NOTE: this process _must_ quit (return) as soon as any connection
1900 * errors are encountered. Connection recovery is done elsewhere.
1901 * Discover process only interrogates devices in order to discover the
1902 * domain.For plugging out, we un-register the device only when it is
1903 * the last phy in the port, for other phys in this port, we just delete it
1904 * from the port.For inserting, we do discovery when it is the
1905 * first phy,for other phys in this port, we add it to the port to
1906 * forming the wide-port.
1908 static int sas_rediscover(struct domain_device
*dev
, const int phy_id
)
1910 struct expander_device
*ex
= &dev
->ex_dev
;
1911 struct ex_phy
*changed_phy
= &ex
->ex_phy
[phy_id
];
1914 bool last
= true; /* is this the last phy of the port */
1916 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1917 SAS_ADDR(dev
->sas_addr
), phy_id
);
1919 if (SAS_ADDR(changed_phy
->attached_sas_addr
) != 0) {
1920 for (i
= 0; i
< ex
->num_phys
; i
++) {
1921 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1925 if (SAS_ADDR(phy
->attached_sas_addr
) ==
1926 SAS_ADDR(changed_phy
->attached_sas_addr
)) {
1927 SAS_DPRINTK("phy%d part of wide port with "
1928 "phy%d\n", phy_id
, i
);
1933 res
= sas_rediscover_dev(dev
, phy_id
, last
);
1935 res
= sas_discover_new(dev
, phy_id
);
1940 * sas_revalidate_domain -- revalidate the domain
1941 * @port: port to the domain of interest
1943 * NOTE: this process _must_ quit (return) as soon as any connection
1944 * errors are encountered. Connection recovery is done elsewhere.
1945 * Discover process only interrogates devices in order to discover the
1948 int sas_ex_revalidate_domain(struct domain_device
*port_dev
)
1951 struct domain_device
*dev
= NULL
;
1953 res
= sas_find_bcast_dev(port_dev
, &dev
);
1957 struct expander_device
*ex
= &dev
->ex_dev
;
1962 res
= sas_find_bcast_phy(dev
, &phy_id
, i
, true);
1965 res
= sas_rediscover(dev
, phy_id
);
1967 } while (i
< ex
->num_phys
);
1973 int sas_smp_handler(struct Scsi_Host
*shost
, struct sas_rphy
*rphy
,
1974 struct request
*req
)
1976 struct domain_device
*dev
;
1978 struct request
*rsp
= req
->next_rq
;
1981 printk("%s: space for a smp response is missing\n",
1986 /* no rphy means no smp target support (ie aic94xx host) */
1988 return sas_smp_host_handler(shost
, req
, rsp
);
1990 type
= rphy
->identify
.device_type
;
1992 if (type
!= SAS_EDGE_EXPANDER_DEVICE
&&
1993 type
!= SAS_FANOUT_EXPANDER_DEVICE
) {
1994 printk("%s: can we send a smp request to a device?\n",
1999 dev
= sas_find_dev_by_rphy(rphy
);
2001 printk("%s: fail to find a domain_device?\n", __func__
);
2005 /* do we need to support multiple segments? */
2006 if (req
->bio
->bi_vcnt
> 1 || rsp
->bio
->bi_vcnt
> 1) {
2007 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2008 __func__
, req
->bio
->bi_vcnt
, blk_rq_bytes(req
),
2009 rsp
->bio
->bi_vcnt
, blk_rq_bytes(rsp
));
2013 ret
= smp_execute_task(dev
, bio_data(req
->bio
), blk_rq_bytes(req
),
2014 bio_data(rsp
->bio
), blk_rq_bytes(rsp
));
2016 /* positive number is the untransferred residual */
2017 rsp
->resid_len
= ret
;
2020 } else if (ret
== 0) {