sched: Remove rq->lock from the first half of ttwu()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / ipg.c
blob58cd3202b48c0860088d5f21757a3b072b94d1ea
1 /*
2 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
4 * Copyright (C) 2003, 2007 IC Plus Corp
6 * Original Author:
8 * Craig Rich
9 * Sundance Technology, Inc.
10 * www.sundanceti.com
11 * craig_rich@sundanceti.com
13 * Current Maintainer:
15 * Sorbica Shieh.
16 * http://www.icplus.com.tw
17 * sorbica@icplus.com.tw
19 * Jesse Huang
20 * http://www.icplus.com.tw
21 * jesse@icplus.com.tw
23 #include <linux/crc32.h>
24 #include <linux/ethtool.h>
25 #include <linux/gfp.h>
26 #include <linux/mii.h>
27 #include <linux/mutex.h>
29 #include <asm/div64.h>
31 #define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
32 #define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
33 #define IPG_RESET_MASK \
34 (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
35 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
36 IPG_AC_AUTO_INIT)
38 #define ipg_w32(val32, reg) iowrite32((val32), ioaddr + (reg))
39 #define ipg_w16(val16, reg) iowrite16((val16), ioaddr + (reg))
40 #define ipg_w8(val8, reg) iowrite8((val8), ioaddr + (reg))
42 #define ipg_r32(reg) ioread32(ioaddr + (reg))
43 #define ipg_r16(reg) ioread16(ioaddr + (reg))
44 #define ipg_r8(reg) ioread8(ioaddr + (reg))
46 enum {
47 netdev_io_size = 128
50 #include "ipg.h"
51 #define DRV_NAME "ipg"
53 MODULE_AUTHOR("IC Plus Corp. 2003");
54 MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
55 MODULE_LICENSE("GPL");
58 * Defaults
60 #define IPG_MAX_RXFRAME_SIZE 0x0600
61 #define IPG_RXFRAG_SIZE 0x0600
62 #define IPG_RXSUPPORT_SIZE 0x0600
63 #define IPG_IS_JUMBO false
66 * Variable record -- index by leading revision/length
67 * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
69 static unsigned short DefaultPhyParam[] = {
70 /* 11/12/03 IP1000A v1-3 rev=0x40 */
71 /*--------------------------------------------------------------------------
72 (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
73 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
74 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7, 9, 0x0700,
75 --------------------------------------------------------------------------*/
76 /* 12/17/03 IP1000A v1-4 rev=0x40 */
77 (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
78 0x0000,
79 30, 0x005e, 9, 0x0700,
80 /* 01/09/04 IP1000A v1-5 rev=0x41 */
81 (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
82 0x0000,
83 30, 0x005e, 9, 0x0700,
84 0x0000
87 static const char *ipg_brand_name[] = {
88 "IC PLUS IP1000 1000/100/10 based NIC",
89 "Sundance Technology ST2021 based NIC",
90 "Tamarack Microelectronics TC9020/9021 based NIC",
91 "D-Link NIC IP1000A"
94 static DEFINE_PCI_DEVICE_TABLE(ipg_pci_tbl) = {
95 { PCI_VDEVICE(SUNDANCE, 0x1023), 0 },
96 { PCI_VDEVICE(SUNDANCE, 0x2021), 1 },
97 { PCI_VDEVICE(DLINK, 0x9021), 2 },
98 { PCI_VDEVICE(DLINK, 0x4020), 3 },
99 { 0, }
102 MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
104 static inline void __iomem *ipg_ioaddr(struct net_device *dev)
106 struct ipg_nic_private *sp = netdev_priv(dev);
107 return sp->ioaddr;
110 #ifdef IPG_DEBUG
111 static void ipg_dump_rfdlist(struct net_device *dev)
113 struct ipg_nic_private *sp = netdev_priv(dev);
114 void __iomem *ioaddr = sp->ioaddr;
115 unsigned int i;
116 u32 offset;
118 IPG_DEBUG_MSG("_dump_rfdlist\n");
120 printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current);
121 printk(KERN_INFO "rx_dirty = %2.2x\n", sp->rx_dirty);
122 printk(KERN_INFO "RFDList start address = %16.16lx\n",
123 (unsigned long) sp->rxd_map);
124 printk(KERN_INFO "RFDListPtr register = %8.8x%8.8x\n",
125 ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
127 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
128 offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
129 printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i,
130 offset, (unsigned long) sp->rxd[i].next_desc);
131 offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
132 printk(KERN_INFO "%2.2x %4.4x RFS = %16.16lx\n", i,
133 offset, (unsigned long) sp->rxd[i].rfs);
134 offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
135 printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i,
136 offset, (unsigned long) sp->rxd[i].frag_info);
140 static void ipg_dump_tfdlist(struct net_device *dev)
142 struct ipg_nic_private *sp = netdev_priv(dev);
143 void __iomem *ioaddr = sp->ioaddr;
144 unsigned int i;
145 u32 offset;
147 IPG_DEBUG_MSG("_dump_tfdlist\n");
149 printk(KERN_INFO "tx_current = %2.2x\n", sp->tx_current);
150 printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty);
151 printk(KERN_INFO "TFDList start address = %16.16lx\n",
152 (unsigned long) sp->txd_map);
153 printk(KERN_INFO "TFDListPtr register = %8.8x%8.8x\n",
154 ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
156 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
157 offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
158 printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i,
159 offset, (unsigned long) sp->txd[i].next_desc);
161 offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
162 printk(KERN_INFO "%2.2x %4.4x TFC = %16.16lx\n", i,
163 offset, (unsigned long) sp->txd[i].tfc);
164 offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
165 printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i,
166 offset, (unsigned long) sp->txd[i].frag_info);
169 #endif
171 static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
173 ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
174 ndelay(IPG_PC_PHYCTRLWAIT_NS);
177 static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
179 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
180 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
183 static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
185 phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
187 ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
190 static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
192 ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
193 phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
196 static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity)
198 u16 bit_data;
200 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
202 bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
204 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
206 return bit_data;
210 * Read a register from the Physical Layer device located
211 * on the IPG NIC, using the IPG PHYCTRL register.
213 static int mdio_read(struct net_device *dev, int phy_id, int phy_reg)
215 void __iomem *ioaddr = ipg_ioaddr(dev);
217 * The GMII mangement frame structure for a read is as follows:
219 * |Preamble|st|op|phyad|regad|ta| data |idle|
220 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
222 * <32 1s> = 32 consecutive logic 1 values
223 * A = bit of Physical Layer device address (MSB first)
224 * R = bit of register address (MSB first)
225 * z = High impedance state
226 * D = bit of read data (MSB first)
228 * Transmission order is 'Preamble' field first, bits transmitted
229 * left to right (first to last).
231 struct {
232 u32 field;
233 unsigned int len;
234 } p[] = {
235 { GMII_PREAMBLE, 32 }, /* Preamble */
236 { GMII_ST, 2 }, /* ST */
237 { GMII_READ, 2 }, /* OP */
238 { phy_id, 5 }, /* PHYAD */
239 { phy_reg, 5 }, /* REGAD */
240 { 0x0000, 2 }, /* TA */
241 { 0x0000, 16 }, /* DATA */
242 { 0x0000, 1 } /* IDLE */
244 unsigned int i, j;
245 u8 polarity, data;
247 polarity = ipg_r8(PHY_CTRL);
248 polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
250 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
251 for (j = 0; j < 5; j++) {
252 for (i = 0; i < p[j].len; i++) {
253 /* For each variable length field, the MSB must be
254 * transmitted first. Rotate through the field bits,
255 * starting with the MSB, and move each bit into the
256 * the 1st (2^1) bit position (this is the bit position
257 * corresponding to the MgmtData bit of the PhyCtrl
258 * register for the IPG).
260 * Example: ST = 01;
262 * First write a '0' to bit 1 of the PhyCtrl
263 * register, then write a '1' to bit 1 of the
264 * PhyCtrl register.
266 * To do this, right shift the MSB of ST by the value:
267 * [field length - 1 - #ST bits already written]
268 * then left shift this result by 1.
270 data = (p[j].field >> (p[j].len - 1 - i)) << 1;
271 data &= IPG_PC_MGMTDATA;
272 data |= polarity | IPG_PC_MGMTDIR;
274 ipg_drive_phy_ctl_low_high(ioaddr, data);
278 send_three_state(ioaddr, polarity);
280 read_phy_bit(ioaddr, polarity);
283 * For a read cycle, the bits for the next two fields (TA and
284 * DATA) are driven by the PHY (the IPG reads these bits).
286 for (i = 0; i < p[6].len; i++) {
287 p[6].field |=
288 (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
291 send_three_state(ioaddr, polarity);
292 send_three_state(ioaddr, polarity);
293 send_three_state(ioaddr, polarity);
294 send_end(ioaddr, polarity);
296 /* Return the value of the DATA field. */
297 return p[6].field;
301 * Write to a register from the Physical Layer device located
302 * on the IPG NIC, using the IPG PHYCTRL register.
304 static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
306 void __iomem *ioaddr = ipg_ioaddr(dev);
308 * The GMII mangement frame structure for a read is as follows:
310 * |Preamble|st|op|phyad|regad|ta| data |idle|
311 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
313 * <32 1s> = 32 consecutive logic 1 values
314 * A = bit of Physical Layer device address (MSB first)
315 * R = bit of register address (MSB first)
316 * z = High impedance state
317 * D = bit of write data (MSB first)
319 * Transmission order is 'Preamble' field first, bits transmitted
320 * left to right (first to last).
322 struct {
323 u32 field;
324 unsigned int len;
325 } p[] = {
326 { GMII_PREAMBLE, 32 }, /* Preamble */
327 { GMII_ST, 2 }, /* ST */
328 { GMII_WRITE, 2 }, /* OP */
329 { phy_id, 5 }, /* PHYAD */
330 { phy_reg, 5 }, /* REGAD */
331 { 0x0002, 2 }, /* TA */
332 { val & 0xffff, 16 }, /* DATA */
333 { 0x0000, 1 } /* IDLE */
335 unsigned int i, j;
336 u8 polarity, data;
338 polarity = ipg_r8(PHY_CTRL);
339 polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
341 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
342 for (j = 0; j < 7; j++) {
343 for (i = 0; i < p[j].len; i++) {
344 /* For each variable length field, the MSB must be
345 * transmitted first. Rotate through the field bits,
346 * starting with the MSB, and move each bit into the
347 * the 1st (2^1) bit position (this is the bit position
348 * corresponding to the MgmtData bit of the PhyCtrl
349 * register for the IPG).
351 * Example: ST = 01;
353 * First write a '0' to bit 1 of the PhyCtrl
354 * register, then write a '1' to bit 1 of the
355 * PhyCtrl register.
357 * To do this, right shift the MSB of ST by the value:
358 * [field length - 1 - #ST bits already written]
359 * then left shift this result by 1.
361 data = (p[j].field >> (p[j].len - 1 - i)) << 1;
362 data &= IPG_PC_MGMTDATA;
363 data |= polarity | IPG_PC_MGMTDIR;
365 ipg_drive_phy_ctl_low_high(ioaddr, data);
369 /* The last cycle is a tri-state, so read from the PHY. */
370 for (j = 7; j < 8; j++) {
371 for (i = 0; i < p[j].len; i++) {
372 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
374 p[j].field |= ((ipg_r8(PHY_CTRL) &
375 IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i);
377 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
382 static void ipg_set_led_mode(struct net_device *dev)
384 struct ipg_nic_private *sp = netdev_priv(dev);
385 void __iomem *ioaddr = sp->ioaddr;
386 u32 mode;
388 mode = ipg_r32(ASIC_CTRL);
389 mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
391 if ((sp->led_mode & 0x03) > 1)
392 mode |= IPG_AC_LED_MODE_BIT_1; /* Write Asic Control Bit 29 */
394 if ((sp->led_mode & 0x01) == 1)
395 mode |= IPG_AC_LED_MODE; /* Write Asic Control Bit 14 */
397 if ((sp->led_mode & 0x08) == 8)
398 mode |= IPG_AC_LED_SPEED; /* Write Asic Control Bit 27 */
400 ipg_w32(mode, ASIC_CTRL);
403 static void ipg_set_phy_set(struct net_device *dev)
405 struct ipg_nic_private *sp = netdev_priv(dev);
406 void __iomem *ioaddr = sp->ioaddr;
407 int physet;
409 physet = ipg_r8(PHY_SET);
410 physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
411 physet |= ((sp->led_mode & 0x70) >> 4);
412 ipg_w8(physet, PHY_SET);
415 static int ipg_reset(struct net_device *dev, u32 resetflags)
417 /* Assert functional resets via the IPG AsicCtrl
418 * register as specified by the 'resetflags' input
419 * parameter.
421 void __iomem *ioaddr = ipg_ioaddr(dev);
422 unsigned int timeout_count = 0;
424 IPG_DEBUG_MSG("_reset\n");
426 ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
428 /* Delay added to account for problem with 10Mbps reset. */
429 mdelay(IPG_AC_RESETWAIT);
431 while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
432 mdelay(IPG_AC_RESETWAIT);
433 if (++timeout_count > IPG_AC_RESET_TIMEOUT)
434 return -ETIME;
436 /* Set LED Mode in Asic Control */
437 ipg_set_led_mode(dev);
439 /* Set PHYSet Register Value */
440 ipg_set_phy_set(dev);
441 return 0;
444 /* Find the GMII PHY address. */
445 static int ipg_find_phyaddr(struct net_device *dev)
447 unsigned int phyaddr, i;
449 for (i = 0; i < 32; i++) {
450 u32 status;
452 /* Search for the correct PHY address among 32 possible. */
453 phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
455 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to
456 GMII_PHY_ID1
459 status = mdio_read(dev, phyaddr, MII_BMSR);
461 if ((status != 0xFFFF) && (status != 0))
462 return phyaddr;
465 return 0x1f;
469 * Configure IPG based on result of IEEE 802.3 PHY
470 * auto-negotiation.
472 static int ipg_config_autoneg(struct net_device *dev)
474 struct ipg_nic_private *sp = netdev_priv(dev);
475 void __iomem *ioaddr = sp->ioaddr;
476 unsigned int txflowcontrol;
477 unsigned int rxflowcontrol;
478 unsigned int fullduplex;
479 u32 mac_ctrl_val;
480 u32 asicctrl;
481 u8 phyctrl;
483 IPG_DEBUG_MSG("_config_autoneg\n");
485 asicctrl = ipg_r32(ASIC_CTRL);
486 phyctrl = ipg_r8(PHY_CTRL);
487 mac_ctrl_val = ipg_r32(MAC_CTRL);
489 /* Set flags for use in resolving auto-negotiation, assuming
490 * non-1000Mbps, half duplex, no flow control.
492 fullduplex = 0;
493 txflowcontrol = 0;
494 rxflowcontrol = 0;
496 /* To accommodate a problem in 10Mbps operation,
497 * set a global flag if PHY running in 10Mbps mode.
499 sp->tenmbpsmode = 0;
501 printk(KERN_INFO "%s: Link speed = ", dev->name);
503 /* Determine actual speed of operation. */
504 switch (phyctrl & IPG_PC_LINK_SPEED) {
505 case IPG_PC_LINK_SPEED_10MBPS:
506 printk("10Mbps.\n");
507 printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n",
508 dev->name);
509 sp->tenmbpsmode = 1;
510 break;
511 case IPG_PC_LINK_SPEED_100MBPS:
512 printk("100Mbps.\n");
513 break;
514 case IPG_PC_LINK_SPEED_1000MBPS:
515 printk("1000Mbps.\n");
516 break;
517 default:
518 printk("undefined!\n");
519 return 0;
522 if (phyctrl & IPG_PC_DUPLEX_STATUS) {
523 fullduplex = 1;
524 txflowcontrol = 1;
525 rxflowcontrol = 1;
528 /* Configure full duplex, and flow control. */
529 if (fullduplex == 1) {
530 /* Configure IPG for full duplex operation. */
531 printk(KERN_INFO "%s: setting full duplex, ", dev->name);
533 mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
535 if (txflowcontrol == 1) {
536 printk("TX flow control");
537 mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
538 } else {
539 printk("no TX flow control");
540 mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
543 if (rxflowcontrol == 1) {
544 printk(", RX flow control.");
545 mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
546 } else {
547 printk(", no RX flow control.");
548 mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
551 printk("\n");
552 } else {
553 /* Configure IPG for half duplex operation. */
554 printk(KERN_INFO "%s: setting half duplex, "
555 "no TX flow control, no RX flow control.\n", dev->name);
557 mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD &
558 ~IPG_MC_TX_FLOW_CONTROL_ENABLE &
559 ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
561 ipg_w32(mac_ctrl_val, MAC_CTRL);
562 return 0;
565 /* Determine and configure multicast operation and set
566 * receive mode for IPG.
568 static void ipg_nic_set_multicast_list(struct net_device *dev)
570 void __iomem *ioaddr = ipg_ioaddr(dev);
571 struct netdev_hw_addr *ha;
572 unsigned int hashindex;
573 u32 hashtable[2];
574 u8 receivemode;
576 IPG_DEBUG_MSG("_nic_set_multicast_list\n");
578 receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
580 if (dev->flags & IFF_PROMISC) {
581 /* NIC to be configured in promiscuous mode. */
582 receivemode = IPG_RM_RECEIVEALLFRAMES;
583 } else if ((dev->flags & IFF_ALLMULTI) ||
584 ((dev->flags & IFF_MULTICAST) &&
585 (netdev_mc_count(dev) > IPG_MULTICAST_HASHTABLE_SIZE))) {
586 /* NIC to be configured to receive all multicast
587 * frames. */
588 receivemode |= IPG_RM_RECEIVEMULTICAST;
589 } else if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
590 /* NIC to be configured to receive selected
591 * multicast addresses. */
592 receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
595 /* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
596 * The IPG applies a cyclic-redundancy-check (the same CRC
597 * used to calculate the frame data FCS) to the destination
598 * address all incoming multicast frames whose destination
599 * address has the multicast bit set. The least significant
600 * 6 bits of the CRC result are used as an addressing index
601 * into the hash table. If the value of the bit addressed by
602 * this index is a 1, the frame is passed to the host system.
605 /* Clear hashtable. */
606 hashtable[0] = 0x00000000;
607 hashtable[1] = 0x00000000;
609 /* Cycle through all multicast addresses to filter. */
610 netdev_for_each_mc_addr(ha, dev) {
611 /* Calculate CRC result for each multicast address. */
612 hashindex = crc32_le(0xffffffff, ha->addr,
613 ETH_ALEN);
615 /* Use only the least significant 6 bits. */
616 hashindex = hashindex & 0x3F;
618 /* Within "hashtable", set bit number "hashindex"
619 * to a logic 1.
621 set_bit(hashindex, (void *)hashtable);
624 /* Write the value of the hashtable, to the 4, 16 bit
625 * HASHTABLE IPG registers.
627 ipg_w32(hashtable[0], HASHTABLE_0);
628 ipg_w32(hashtable[1], HASHTABLE_1);
630 ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
632 IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
635 static int ipg_io_config(struct net_device *dev)
637 struct ipg_nic_private *sp = netdev_priv(dev);
638 void __iomem *ioaddr = ipg_ioaddr(dev);
639 u32 origmacctrl;
640 u32 restoremacctrl;
642 IPG_DEBUG_MSG("_io_config\n");
644 origmacctrl = ipg_r32(MAC_CTRL);
646 restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
648 /* Based on compilation option, determine if FCS is to be
649 * stripped on receive frames by IPG.
651 if (!IPG_STRIP_FCS_ON_RX)
652 restoremacctrl |= IPG_MC_RCV_FCS;
654 /* Determine if transmitter and/or receiver are
655 * enabled so we may restore MACCTRL correctly.
657 if (origmacctrl & IPG_MC_TX_ENABLED)
658 restoremacctrl |= IPG_MC_TX_ENABLE;
660 if (origmacctrl & IPG_MC_RX_ENABLED)
661 restoremacctrl |= IPG_MC_RX_ENABLE;
663 /* Transmitter and receiver must be disabled before setting
664 * IFSSelect.
666 ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
667 IPG_MC_RSVD_MASK, MAC_CTRL);
669 /* Now that transmitter and receiver are disabled, write
670 * to IFSSelect.
672 ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
674 /* Set RECEIVEMODE register. */
675 ipg_nic_set_multicast_list(dev);
677 ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE);
679 ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE, RX_DMA_POLL_PERIOD);
680 ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
681 ipg_w8(IPG_RXDMABURSTTHRESH_VALUE, RX_DMA_BURST_THRESH);
682 ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE, TX_DMA_POLL_PERIOD);
683 ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
684 ipg_w8(IPG_TXDMABURSTTHRESH_VALUE, TX_DMA_BURST_THRESH);
685 ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
686 IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
687 IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
688 IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
689 ipg_w16(IPG_FLOWONTHRESH_VALUE, FLOW_ON_THRESH);
690 ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
692 /* IPG multi-frag frame bug workaround.
693 * Per silicon revision B3 eratta.
695 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
697 /* IPG TX poll now bug workaround.
698 * Per silicon revision B3 eratta.
700 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
702 /* IPG RX poll now bug workaround.
703 * Per silicon revision B3 eratta.
705 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
707 /* Now restore MACCTRL to original setting. */
708 ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
710 /* Disable unused RMON statistics. */
711 ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
713 /* Disable unused MIB statistics. */
714 ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
715 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
716 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
717 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
718 IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
719 IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
721 return 0;
725 * Create a receive buffer within system memory and update
726 * NIC private structure appropriately.
728 static int ipg_get_rxbuff(struct net_device *dev, int entry)
730 struct ipg_nic_private *sp = netdev_priv(dev);
731 struct ipg_rx *rxfd = sp->rxd + entry;
732 struct sk_buff *skb;
733 u64 rxfragsize;
735 IPG_DEBUG_MSG("_get_rxbuff\n");
737 skb = netdev_alloc_skb_ip_align(dev, sp->rxsupport_size);
738 if (!skb) {
739 sp->rx_buff[entry] = NULL;
740 return -ENOMEM;
743 /* Associate the receive buffer with the IPG NIC. */
744 skb->dev = dev;
746 /* Save the address of the sk_buff structure. */
747 sp->rx_buff[entry] = skb;
749 rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
750 sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
752 /* Set the RFD fragment length. */
753 rxfragsize = sp->rxfrag_size;
754 rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
756 return 0;
759 static int init_rfdlist(struct net_device *dev)
761 struct ipg_nic_private *sp = netdev_priv(dev);
762 void __iomem *ioaddr = sp->ioaddr;
763 unsigned int i;
765 IPG_DEBUG_MSG("_init_rfdlist\n");
767 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
768 struct ipg_rx *rxfd = sp->rxd + i;
770 if (sp->rx_buff[i]) {
771 pci_unmap_single(sp->pdev,
772 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
773 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
774 dev_kfree_skb_irq(sp->rx_buff[i]);
775 sp->rx_buff[i] = NULL;
778 /* Clear out the RFS field. */
779 rxfd->rfs = 0x0000000000000000;
781 if (ipg_get_rxbuff(dev, i) < 0) {
783 * A receive buffer was not ready, break the
784 * RFD list here.
786 IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");
788 /* Just in case we cannot allocate a single RFD.
789 * Should not occur.
791 if (i == 0) {
792 printk(KERN_ERR "%s: No memory available"
793 " for RFD list.\n", dev->name);
794 return -ENOMEM;
798 rxfd->next_desc = cpu_to_le64(sp->rxd_map +
799 sizeof(struct ipg_rx)*(i + 1));
801 sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
803 sp->rx_current = 0;
804 sp->rx_dirty = 0;
806 /* Write the location of the RFDList to the IPG. */
807 ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
808 ipg_w32(0x00000000, RFD_LIST_PTR_1);
810 return 0;
813 static void init_tfdlist(struct net_device *dev)
815 struct ipg_nic_private *sp = netdev_priv(dev);
816 void __iomem *ioaddr = sp->ioaddr;
817 unsigned int i;
819 IPG_DEBUG_MSG("_init_tfdlist\n");
821 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
822 struct ipg_tx *txfd = sp->txd + i;
824 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
826 if (sp->tx_buff[i]) {
827 dev_kfree_skb_irq(sp->tx_buff[i]);
828 sp->tx_buff[i] = NULL;
831 txfd->next_desc = cpu_to_le64(sp->txd_map +
832 sizeof(struct ipg_tx)*(i + 1));
834 sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
836 sp->tx_current = 0;
837 sp->tx_dirty = 0;
839 /* Write the location of the TFDList to the IPG. */
840 IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
841 (u32) sp->txd_map);
842 ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
843 ipg_w32(0x00000000, TFD_LIST_PTR_1);
845 sp->reset_current_tfd = 1;
849 * Free all transmit buffers which have already been transferred
850 * via DMA to the IPG.
852 static void ipg_nic_txfree(struct net_device *dev)
854 struct ipg_nic_private *sp = netdev_priv(dev);
855 unsigned int released, pending, dirty;
857 IPG_DEBUG_MSG("_nic_txfree\n");
859 pending = sp->tx_current - sp->tx_dirty;
860 dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
862 for (released = 0; released < pending; released++) {
863 struct sk_buff *skb = sp->tx_buff[dirty];
864 struct ipg_tx *txfd = sp->txd + dirty;
866 IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc);
868 /* Look at each TFD's TFC field beginning
869 * at the last freed TFD up to the current TFD.
870 * If the TFDDone bit is set, free the associated
871 * buffer.
873 if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
874 break;
876 /* Free the transmit buffer. */
877 if (skb) {
878 pci_unmap_single(sp->pdev,
879 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
880 skb->len, PCI_DMA_TODEVICE);
882 dev_kfree_skb_irq(skb);
884 sp->tx_buff[dirty] = NULL;
886 dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
889 sp->tx_dirty += released;
891 if (netif_queue_stopped(dev) &&
892 (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
893 netif_wake_queue(dev);
897 static void ipg_tx_timeout(struct net_device *dev)
899 struct ipg_nic_private *sp = netdev_priv(dev);
900 void __iomem *ioaddr = sp->ioaddr;
902 ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
903 IPG_AC_FIFO);
905 spin_lock_irq(&sp->lock);
907 /* Re-configure after DMA reset. */
908 if (ipg_io_config(dev) < 0) {
909 printk(KERN_INFO "%s: Error during re-configuration.\n",
910 dev->name);
913 init_tfdlist(dev);
915 spin_unlock_irq(&sp->lock);
917 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
918 MAC_CTRL);
922 * For TxComplete interrupts, free all transmit
923 * buffers which have already been transferred via DMA
924 * to the IPG.
926 static void ipg_nic_txcleanup(struct net_device *dev)
928 struct ipg_nic_private *sp = netdev_priv(dev);
929 void __iomem *ioaddr = sp->ioaddr;
930 unsigned int i;
932 IPG_DEBUG_MSG("_nic_txcleanup\n");
934 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
935 /* Reading the TXSTATUS register clears the
936 * TX_COMPLETE interrupt.
938 u32 txstatusdword = ipg_r32(TX_STATUS);
940 IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword);
942 /* Check for Transmit errors. Error bits only valid if
943 * TX_COMPLETE bit in the TXSTATUS register is a 1.
945 if (!(txstatusdword & IPG_TS_TX_COMPLETE))
946 break;
948 /* If in 10Mbps mode, indicate transmit is ready. */
949 if (sp->tenmbpsmode) {
950 netif_wake_queue(dev);
953 /* Transmit error, increment stat counters. */
954 if (txstatusdword & IPG_TS_TX_ERROR) {
955 IPG_DEBUG_MSG("Transmit error.\n");
956 sp->stats.tx_errors++;
959 /* Late collision, re-enable transmitter. */
960 if (txstatusdword & IPG_TS_LATE_COLLISION) {
961 IPG_DEBUG_MSG("Late collision on transmit.\n");
962 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
963 IPG_MC_RSVD_MASK, MAC_CTRL);
966 /* Maximum collisions, re-enable transmitter. */
967 if (txstatusdword & IPG_TS_TX_MAX_COLL) {
968 IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
969 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
970 IPG_MC_RSVD_MASK, MAC_CTRL);
973 /* Transmit underrun, reset and re-enable
974 * transmitter.
976 if (txstatusdword & IPG_TS_TX_UNDERRUN) {
977 IPG_DEBUG_MSG("Transmitter underrun.\n");
978 sp->stats.tx_fifo_errors++;
979 ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
980 IPG_AC_NETWORK | IPG_AC_FIFO);
982 /* Re-configure after DMA reset. */
983 if (ipg_io_config(dev) < 0) {
984 printk(KERN_INFO
985 "%s: Error during re-configuration.\n",
986 dev->name);
988 init_tfdlist(dev);
990 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
991 IPG_MC_RSVD_MASK, MAC_CTRL);
995 ipg_nic_txfree(dev);
998 /* Provides statistical information about the IPG NIC. */
999 static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
1001 struct ipg_nic_private *sp = netdev_priv(dev);
1002 void __iomem *ioaddr = sp->ioaddr;
1003 u16 temp1;
1004 u16 temp2;
1006 IPG_DEBUG_MSG("_nic_get_stats\n");
1008 /* Check to see if the NIC has been initialized via nic_open,
1009 * before trying to read statistic registers.
1011 if (!test_bit(__LINK_STATE_START, &dev->state))
1012 return &sp->stats;
1014 sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
1015 sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
1016 sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
1017 sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
1018 temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
1019 sp->stats.rx_errors += temp1;
1020 sp->stats.rx_missed_errors += temp1;
1021 temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
1022 ipg_r32(IPG_LATECOLLISIONS);
1023 temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
1024 sp->stats.collisions += temp1;
1025 sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
1026 sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
1027 ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
1028 sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
1030 /* detailed tx_errors */
1031 sp->stats.tx_carrier_errors += temp2;
1033 /* detailed rx_errors */
1034 sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
1035 ipg_r16(IPG_FRAMETOOLONGERRRORS);
1036 sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
1038 /* Unutilized IPG statistic registers. */
1039 ipg_r32(IPG_MCSTFRAMESRCVDOK);
1041 return &sp->stats;
1044 /* Restore used receive buffers. */
1045 static int ipg_nic_rxrestore(struct net_device *dev)
1047 struct ipg_nic_private *sp = netdev_priv(dev);
1048 const unsigned int curr = sp->rx_current;
1049 unsigned int dirty = sp->rx_dirty;
1051 IPG_DEBUG_MSG("_nic_rxrestore\n");
1053 for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
1054 unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
1056 /* rx_copybreak may poke hole here and there. */
1057 if (sp->rx_buff[entry])
1058 continue;
1060 /* Generate a new receive buffer to replace the
1061 * current buffer (which will be released by the
1062 * Linux system).
1064 if (ipg_get_rxbuff(dev, entry) < 0) {
1065 IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");
1067 break;
1070 /* Reset the RFS field. */
1071 sp->rxd[entry].rfs = 0x0000000000000000;
1073 sp->rx_dirty = dirty;
1075 return 0;
1078 /* use jumboindex and jumbosize to control jumbo frame status
1079 * initial status is jumboindex=-1 and jumbosize=0
1080 * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1081 * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1082 * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1083 * previous receiving and need to continue dumping the current one
1085 enum {
1086 NORMAL_PACKET,
1087 ERROR_PACKET
1090 enum {
1091 FRAME_NO_START_NO_END = 0,
1092 FRAME_WITH_START = 1,
1093 FRAME_WITH_END = 10,
1094 FRAME_WITH_START_WITH_END = 11
1097 static void ipg_nic_rx_free_skb(struct net_device *dev)
1099 struct ipg_nic_private *sp = netdev_priv(dev);
1100 unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1102 if (sp->rx_buff[entry]) {
1103 struct ipg_rx *rxfd = sp->rxd + entry;
1105 pci_unmap_single(sp->pdev,
1106 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1107 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1108 dev_kfree_skb_irq(sp->rx_buff[entry]);
1109 sp->rx_buff[entry] = NULL;
1113 static int ipg_nic_rx_check_frame_type(struct net_device *dev)
1115 struct ipg_nic_private *sp = netdev_priv(dev);
1116 struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
1117 int type = FRAME_NO_START_NO_END;
1119 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
1120 type += FRAME_WITH_START;
1121 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
1122 type += FRAME_WITH_END;
1123 return type;
1126 static int ipg_nic_rx_check_error(struct net_device *dev)
1128 struct ipg_nic_private *sp = netdev_priv(dev);
1129 unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1130 struct ipg_rx *rxfd = sp->rxd + entry;
1132 if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1133 (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1134 IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1135 IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
1136 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1137 (unsigned long) rxfd->rfs);
1139 /* Increment general receive error statistic. */
1140 sp->stats.rx_errors++;
1142 /* Increment detailed receive error statistics. */
1143 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1144 IPG_DEBUG_MSG("RX FIFO overrun occurred.\n");
1146 sp->stats.rx_fifo_errors++;
1149 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1150 IPG_DEBUG_MSG("RX runt occurred.\n");
1151 sp->stats.rx_length_errors++;
1154 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1155 * error count handled by a IPG statistic register.
1158 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1159 IPG_DEBUG_MSG("RX alignment error occurred.\n");
1160 sp->stats.rx_frame_errors++;
1163 /* Do nothing for IPG_RFS_RXFCSERROR, error count
1164 * handled by a IPG statistic register.
1167 /* Free the memory associated with the RX
1168 * buffer since it is erroneous and we will
1169 * not pass it to higher layer processes.
1171 if (sp->rx_buff[entry]) {
1172 pci_unmap_single(sp->pdev,
1173 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1174 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1176 dev_kfree_skb_irq(sp->rx_buff[entry]);
1177 sp->rx_buff[entry] = NULL;
1179 return ERROR_PACKET;
1181 return NORMAL_PACKET;
1184 static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
1185 struct ipg_nic_private *sp,
1186 struct ipg_rx *rxfd, unsigned entry)
1188 struct ipg_jumbo *jumbo = &sp->jumbo;
1189 struct sk_buff *skb;
1190 int framelen;
1192 if (jumbo->found_start) {
1193 dev_kfree_skb_irq(jumbo->skb);
1194 jumbo->found_start = 0;
1195 jumbo->current_size = 0;
1196 jumbo->skb = NULL;
1199 /* 1: found error, 0 no error */
1200 if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1201 return;
1203 skb = sp->rx_buff[entry];
1204 if (!skb)
1205 return;
1207 /* accept this frame and send to upper layer */
1208 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1209 if (framelen > sp->rxfrag_size)
1210 framelen = sp->rxfrag_size;
1212 skb_put(skb, framelen);
1213 skb->protocol = eth_type_trans(skb, dev);
1214 skb_checksum_none_assert(skb);
1215 netif_rx(skb);
1216 sp->rx_buff[entry] = NULL;
1219 static void ipg_nic_rx_with_start(struct net_device *dev,
1220 struct ipg_nic_private *sp,
1221 struct ipg_rx *rxfd, unsigned entry)
1223 struct ipg_jumbo *jumbo = &sp->jumbo;
1224 struct pci_dev *pdev = sp->pdev;
1225 struct sk_buff *skb;
1227 /* 1: found error, 0 no error */
1228 if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1229 return;
1231 /* accept this frame and send to upper layer */
1232 skb = sp->rx_buff[entry];
1233 if (!skb)
1234 return;
1236 if (jumbo->found_start)
1237 dev_kfree_skb_irq(jumbo->skb);
1239 pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1240 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1242 skb_put(skb, sp->rxfrag_size);
1244 jumbo->found_start = 1;
1245 jumbo->current_size = sp->rxfrag_size;
1246 jumbo->skb = skb;
1248 sp->rx_buff[entry] = NULL;
1251 static void ipg_nic_rx_with_end(struct net_device *dev,
1252 struct ipg_nic_private *sp,
1253 struct ipg_rx *rxfd, unsigned entry)
1255 struct ipg_jumbo *jumbo = &sp->jumbo;
1257 /* 1: found error, 0 no error */
1258 if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1259 struct sk_buff *skb = sp->rx_buff[entry];
1261 if (!skb)
1262 return;
1264 if (jumbo->found_start) {
1265 int framelen, endframelen;
1267 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1269 endframelen = framelen - jumbo->current_size;
1270 if (framelen > sp->rxsupport_size)
1271 dev_kfree_skb_irq(jumbo->skb);
1272 else {
1273 memcpy(skb_put(jumbo->skb, endframelen),
1274 skb->data, endframelen);
1276 jumbo->skb->protocol =
1277 eth_type_trans(jumbo->skb, dev);
1279 skb_checksum_none_assert(jumbo->skb);
1280 netif_rx(jumbo->skb);
1284 jumbo->found_start = 0;
1285 jumbo->current_size = 0;
1286 jumbo->skb = NULL;
1288 ipg_nic_rx_free_skb(dev);
1289 } else {
1290 dev_kfree_skb_irq(jumbo->skb);
1291 jumbo->found_start = 0;
1292 jumbo->current_size = 0;
1293 jumbo->skb = NULL;
1297 static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
1298 struct ipg_nic_private *sp,
1299 struct ipg_rx *rxfd, unsigned entry)
1301 struct ipg_jumbo *jumbo = &sp->jumbo;
1303 /* 1: found error, 0 no error */
1304 if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1305 struct sk_buff *skb = sp->rx_buff[entry];
1307 if (skb) {
1308 if (jumbo->found_start) {
1309 jumbo->current_size += sp->rxfrag_size;
1310 if (jumbo->current_size <= sp->rxsupport_size) {
1311 memcpy(skb_put(jumbo->skb,
1312 sp->rxfrag_size),
1313 skb->data, sp->rxfrag_size);
1316 ipg_nic_rx_free_skb(dev);
1318 } else {
1319 dev_kfree_skb_irq(jumbo->skb);
1320 jumbo->found_start = 0;
1321 jumbo->current_size = 0;
1322 jumbo->skb = NULL;
1326 static int ipg_nic_rx_jumbo(struct net_device *dev)
1328 struct ipg_nic_private *sp = netdev_priv(dev);
1329 unsigned int curr = sp->rx_current;
1330 void __iomem *ioaddr = sp->ioaddr;
1331 unsigned int i;
1333 IPG_DEBUG_MSG("_nic_rx\n");
1335 for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1336 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1337 struct ipg_rx *rxfd = sp->rxd + entry;
1339 if (!(rxfd->rfs & cpu_to_le64(IPG_RFS_RFDDONE)))
1340 break;
1342 switch (ipg_nic_rx_check_frame_type(dev)) {
1343 case FRAME_WITH_START_WITH_END:
1344 ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry);
1345 break;
1346 case FRAME_WITH_START:
1347 ipg_nic_rx_with_start(dev, sp, rxfd, entry);
1348 break;
1349 case FRAME_WITH_END:
1350 ipg_nic_rx_with_end(dev, sp, rxfd, entry);
1351 break;
1352 case FRAME_NO_START_NO_END:
1353 ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry);
1354 break;
1358 sp->rx_current = curr;
1360 if (i == IPG_MAXRFDPROCESS_COUNT) {
1361 /* There are more RFDs to process, however the
1362 * allocated amount of RFD processing time has
1363 * expired. Assert Interrupt Requested to make
1364 * sure we come back to process the remaining RFDs.
1366 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1369 ipg_nic_rxrestore(dev);
1371 return 0;
1374 static int ipg_nic_rx(struct net_device *dev)
1376 /* Transfer received Ethernet frames to higher network layers. */
1377 struct ipg_nic_private *sp = netdev_priv(dev);
1378 unsigned int curr = sp->rx_current;
1379 void __iomem *ioaddr = sp->ioaddr;
1380 struct ipg_rx *rxfd;
1381 unsigned int i;
1383 IPG_DEBUG_MSG("_nic_rx\n");
1385 #define __RFS_MASK \
1386 cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1388 for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1389 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1390 struct sk_buff *skb = sp->rx_buff[entry];
1391 unsigned int framelen;
1393 rxfd = sp->rxd + entry;
1395 if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
1396 break;
1398 /* Get received frame length. */
1399 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1401 /* Check for jumbo frame arrival with too small
1402 * RXFRAG_SIZE.
1404 if (framelen > sp->rxfrag_size) {
1405 IPG_DEBUG_MSG
1406 ("RFS FrameLen > allocated fragment size.\n");
1408 framelen = sp->rxfrag_size;
1411 if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1412 (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1413 IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1414 IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {
1416 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1417 (unsigned long int) rxfd->rfs);
1419 /* Increment general receive error statistic. */
1420 sp->stats.rx_errors++;
1422 /* Increment detailed receive error statistics. */
1423 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1424 IPG_DEBUG_MSG("RX FIFO overrun occurred.\n");
1425 sp->stats.rx_fifo_errors++;
1428 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1429 IPG_DEBUG_MSG("RX runt occurred.\n");
1430 sp->stats.rx_length_errors++;
1433 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
1434 /* Do nothing, error count handled by a IPG
1435 * statistic register.
1438 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1439 IPG_DEBUG_MSG("RX alignment error occurred.\n");
1440 sp->stats.rx_frame_errors++;
1443 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
1444 /* Do nothing, error count handled by a IPG
1445 * statistic register.
1448 /* Free the memory associated with the RX
1449 * buffer since it is erroneous and we will
1450 * not pass it to higher layer processes.
1452 if (skb) {
1453 __le64 info = rxfd->frag_info;
1455 pci_unmap_single(sp->pdev,
1456 le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
1457 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1459 dev_kfree_skb_irq(skb);
1461 } else {
1463 /* Adjust the new buffer length to accommodate the size
1464 * of the received frame.
1466 skb_put(skb, framelen);
1468 /* Set the buffer's protocol field to Ethernet. */
1469 skb->protocol = eth_type_trans(skb, dev);
1471 /* The IPG encountered an error with (or
1472 * there were no) IP/TCP/UDP checksums.
1473 * This may or may not indicate an invalid
1474 * IP/TCP/UDP frame was received. Let the
1475 * upper layer decide.
1477 skb_checksum_none_assert(skb);
1479 /* Hand off frame for higher layer processing.
1480 * The function netif_rx() releases the sk_buff
1481 * when processing completes.
1483 netif_rx(skb);
1486 /* Assure RX buffer is not reused by IPG. */
1487 sp->rx_buff[entry] = NULL;
1491 * If there are more RFDs to process and the allocated amount of RFD
1492 * processing time has expired, assert Interrupt Requested to make
1493 * sure we come back to process the remaining RFDs.
1495 if (i == IPG_MAXRFDPROCESS_COUNT)
1496 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1498 #ifdef IPG_DEBUG
1499 /* Check if the RFD list contained no receive frame data. */
1500 if (!i)
1501 sp->EmptyRFDListCount++;
1502 #endif
1503 while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
1504 !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
1505 (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
1506 unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;
1508 rxfd = sp->rxd + entry;
1510 IPG_DEBUG_MSG("Frame requires multiple RFDs.\n");
1512 /* An unexpected event, additional code needed to handle
1513 * properly. So for the time being, just disregard the
1514 * frame.
1517 /* Free the memory associated with the RX
1518 * buffer since it is erroneous and we will
1519 * not pass it to higher layer processes.
1521 if (sp->rx_buff[entry]) {
1522 pci_unmap_single(sp->pdev,
1523 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1524 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1525 dev_kfree_skb_irq(sp->rx_buff[entry]);
1528 /* Assure RX buffer is not reused by IPG. */
1529 sp->rx_buff[entry] = NULL;
1532 sp->rx_current = curr;
1534 /* Check to see if there are a minimum number of used
1535 * RFDs before restoring any (should improve performance.)
1537 if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
1538 ipg_nic_rxrestore(dev);
1540 return 0;
1543 static void ipg_reset_after_host_error(struct work_struct *work)
1545 struct ipg_nic_private *sp =
1546 container_of(work, struct ipg_nic_private, task.work);
1547 struct net_device *dev = sp->dev;
1550 * Acknowledge HostError interrupt by resetting
1551 * IPG DMA and HOST.
1553 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1555 init_rfdlist(dev);
1556 init_tfdlist(dev);
1558 if (ipg_io_config(dev) < 0) {
1559 printk(KERN_INFO "%s: Cannot recover from PCI error.\n",
1560 dev->name);
1561 schedule_delayed_work(&sp->task, HZ);
1565 static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
1567 struct net_device *dev = dev_inst;
1568 struct ipg_nic_private *sp = netdev_priv(dev);
1569 void __iomem *ioaddr = sp->ioaddr;
1570 unsigned int handled = 0;
1571 u16 status;
1573 IPG_DEBUG_MSG("_interrupt_handler\n");
1575 if (sp->is_jumbo)
1576 ipg_nic_rxrestore(dev);
1578 spin_lock(&sp->lock);
1580 /* Get interrupt source information, and acknowledge
1581 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1582 * IntRequested, MacControlFrame, LinkEvent) interrupts
1583 * if issued. Also, all IPG interrupts are disabled by
1584 * reading IntStatusAck.
1586 status = ipg_r16(INT_STATUS_ACK);
1588 IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status);
1590 /* Shared IRQ of remove event. */
1591 if (!(status & IPG_IS_RSVD_MASK))
1592 goto out_enable;
1594 handled = 1;
1596 if (unlikely(!netif_running(dev)))
1597 goto out_unlock;
1599 /* If RFDListEnd interrupt, restore all used RFDs. */
1600 if (status & IPG_IS_RFD_LIST_END) {
1601 IPG_DEBUG_MSG("RFDListEnd Interrupt.\n");
1603 /* The RFD list end indicates an RFD was encountered
1604 * with a 0 NextPtr, or with an RFDDone bit set to 1
1605 * (indicating the RFD is not read for use by the
1606 * IPG.) Try to restore all RFDs.
1608 ipg_nic_rxrestore(dev);
1610 #ifdef IPG_DEBUG
1611 /* Increment the RFDlistendCount counter. */
1612 sp->RFDlistendCount++;
1613 #endif
1616 /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1617 * IntRequested interrupt, process received frames. */
1618 if ((status & IPG_IS_RX_DMA_PRIORITY) ||
1619 (status & IPG_IS_RFD_LIST_END) ||
1620 (status & IPG_IS_RX_DMA_COMPLETE) ||
1621 (status & IPG_IS_INT_REQUESTED)) {
1622 #ifdef IPG_DEBUG
1623 /* Increment the RFD list checked counter if interrupted
1624 * only to check the RFD list. */
1625 if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
1626 IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
1627 (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
1628 IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
1629 IPG_IS_UPDATE_STATS)))
1630 sp->RFDListCheckedCount++;
1631 #endif
1633 if (sp->is_jumbo)
1634 ipg_nic_rx_jumbo(dev);
1635 else
1636 ipg_nic_rx(dev);
1639 /* If TxDMAComplete interrupt, free used TFDs. */
1640 if (status & IPG_IS_TX_DMA_COMPLETE)
1641 ipg_nic_txfree(dev);
1643 /* TxComplete interrupts indicate one of numerous actions.
1644 * Determine what action to take based on TXSTATUS register.
1646 if (status & IPG_IS_TX_COMPLETE)
1647 ipg_nic_txcleanup(dev);
1649 /* If UpdateStats interrupt, update Linux Ethernet statistics */
1650 if (status & IPG_IS_UPDATE_STATS)
1651 ipg_nic_get_stats(dev);
1653 /* If HostError interrupt, reset IPG. */
1654 if (status & IPG_IS_HOST_ERROR) {
1655 IPG_DDEBUG_MSG("HostError Interrupt\n");
1657 schedule_delayed_work(&sp->task, 0);
1660 /* If LinkEvent interrupt, resolve autonegotiation. */
1661 if (status & IPG_IS_LINK_EVENT) {
1662 if (ipg_config_autoneg(dev) < 0)
1663 printk(KERN_INFO "%s: Auto-negotiation error.\n",
1664 dev->name);
1667 /* If MACCtrlFrame interrupt, do nothing. */
1668 if (status & IPG_IS_MAC_CTRL_FRAME)
1669 IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n");
1671 /* If RxComplete interrupt, do nothing. */
1672 if (status & IPG_IS_RX_COMPLETE)
1673 IPG_DEBUG_MSG("RxComplete interrupt.\n");
1675 /* If RxEarly interrupt, do nothing. */
1676 if (status & IPG_IS_RX_EARLY)
1677 IPG_DEBUG_MSG("RxEarly interrupt.\n");
1679 out_enable:
1680 /* Re-enable IPG interrupts. */
1681 ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
1682 IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
1683 IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
1684 out_unlock:
1685 spin_unlock(&sp->lock);
1687 return IRQ_RETVAL(handled);
1690 static void ipg_rx_clear(struct ipg_nic_private *sp)
1692 unsigned int i;
1694 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
1695 if (sp->rx_buff[i]) {
1696 struct ipg_rx *rxfd = sp->rxd + i;
1698 dev_kfree_skb_irq(sp->rx_buff[i]);
1699 sp->rx_buff[i] = NULL;
1700 pci_unmap_single(sp->pdev,
1701 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1702 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1707 static void ipg_tx_clear(struct ipg_nic_private *sp)
1709 unsigned int i;
1711 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
1712 if (sp->tx_buff[i]) {
1713 struct ipg_tx *txfd = sp->txd + i;
1715 pci_unmap_single(sp->pdev,
1716 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
1717 sp->tx_buff[i]->len, PCI_DMA_TODEVICE);
1719 dev_kfree_skb_irq(sp->tx_buff[i]);
1721 sp->tx_buff[i] = NULL;
1726 static int ipg_nic_open(struct net_device *dev)
1728 struct ipg_nic_private *sp = netdev_priv(dev);
1729 void __iomem *ioaddr = sp->ioaddr;
1730 struct pci_dev *pdev = sp->pdev;
1731 int rc;
1733 IPG_DEBUG_MSG("_nic_open\n");
1735 sp->rx_buf_sz = sp->rxsupport_size;
1737 /* Check for interrupt line conflicts, and request interrupt
1738 * line for IPG.
1740 * IMPORTANT: Disable IPG interrupts prior to registering
1741 * IRQ.
1743 ipg_w16(0x0000, INT_ENABLE);
1745 /* Register the interrupt line to be used by the IPG within
1746 * the Linux system.
1748 rc = request_irq(pdev->irq, ipg_interrupt_handler, IRQF_SHARED,
1749 dev->name, dev);
1750 if (rc < 0) {
1751 printk(KERN_INFO "%s: Error when requesting interrupt.\n",
1752 dev->name);
1753 goto out;
1756 dev->irq = pdev->irq;
1758 rc = -ENOMEM;
1760 sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
1761 &sp->rxd_map, GFP_KERNEL);
1762 if (!sp->rxd)
1763 goto err_free_irq_0;
1765 sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
1766 &sp->txd_map, GFP_KERNEL);
1767 if (!sp->txd)
1768 goto err_free_rx_1;
1770 rc = init_rfdlist(dev);
1771 if (rc < 0) {
1772 printk(KERN_INFO "%s: Error during configuration.\n",
1773 dev->name);
1774 goto err_free_tx_2;
1777 init_tfdlist(dev);
1779 rc = ipg_io_config(dev);
1780 if (rc < 0) {
1781 printk(KERN_INFO "%s: Error during configuration.\n",
1782 dev->name);
1783 goto err_release_tfdlist_3;
1786 /* Resolve autonegotiation. */
1787 if (ipg_config_autoneg(dev) < 0)
1788 printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name);
1790 /* initialize JUMBO Frame control variable */
1791 sp->jumbo.found_start = 0;
1792 sp->jumbo.current_size = 0;
1793 sp->jumbo.skb = NULL;
1795 /* Enable transmit and receive operation of the IPG. */
1796 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
1797 IPG_MC_RSVD_MASK, MAC_CTRL);
1799 netif_start_queue(dev);
1800 out:
1801 return rc;
1803 err_release_tfdlist_3:
1804 ipg_tx_clear(sp);
1805 ipg_rx_clear(sp);
1806 err_free_tx_2:
1807 dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1808 err_free_rx_1:
1809 dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1810 err_free_irq_0:
1811 free_irq(pdev->irq, dev);
1812 goto out;
1815 static int ipg_nic_stop(struct net_device *dev)
1817 struct ipg_nic_private *sp = netdev_priv(dev);
1818 void __iomem *ioaddr = sp->ioaddr;
1819 struct pci_dev *pdev = sp->pdev;
1821 IPG_DEBUG_MSG("_nic_stop\n");
1823 netif_stop_queue(dev);
1825 IPG_DUMPTFDLIST(dev);
1827 do {
1828 (void) ipg_r16(INT_STATUS_ACK);
1830 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1832 synchronize_irq(pdev->irq);
1833 } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);
1835 ipg_rx_clear(sp);
1837 ipg_tx_clear(sp);
1839 pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1840 pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1842 free_irq(pdev->irq, dev);
1844 return 0;
1847 static netdev_tx_t ipg_nic_hard_start_xmit(struct sk_buff *skb,
1848 struct net_device *dev)
1850 struct ipg_nic_private *sp = netdev_priv(dev);
1851 void __iomem *ioaddr = sp->ioaddr;
1852 unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
1853 unsigned long flags;
1854 struct ipg_tx *txfd;
1856 IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1858 /* If in 10Mbps mode, stop the transmit queue so
1859 * no more transmit frames are accepted.
1861 if (sp->tenmbpsmode)
1862 netif_stop_queue(dev);
1864 if (sp->reset_current_tfd) {
1865 sp->reset_current_tfd = 0;
1866 entry = 0;
1869 txfd = sp->txd + entry;
1871 sp->tx_buff[entry] = skb;
1873 /* Clear all TFC fields, except TFDDONE. */
1874 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
1876 /* Specify the TFC field within the TFD. */
1877 txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
1878 (IPG_TFC_FRAMEID & sp->tx_current) |
1879 (IPG_TFC_FRAGCOUNT & (1 << 24)));
1881 * 16--17 (WordAlign) <- 3 (disable),
1882 * 0--15 (FrameId) <- sp->tx_current,
1883 * 24--27 (FragCount) <- 1
1886 /* Request TxComplete interrupts at an interval defined
1887 * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1888 * Request TxComplete interrupt for every frame
1889 * if in 10Mbps mode to accommodate problem with 10Mbps
1890 * processing.
1892 if (sp->tenmbpsmode)
1893 txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
1894 txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
1895 /* Based on compilation option, determine if FCS is to be
1896 * appended to transmit frame by IPG.
1898 if (!(IPG_APPEND_FCS_ON_TX))
1899 txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);
1901 /* Based on compilation option, determine if IP, TCP and/or
1902 * UDP checksums are to be added to transmit frame by IPG.
1904 if (IPG_ADD_IPCHECKSUM_ON_TX)
1905 txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);
1907 if (IPG_ADD_TCPCHECKSUM_ON_TX)
1908 txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);
1910 if (IPG_ADD_UDPCHECKSUM_ON_TX)
1911 txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);
1913 /* Based on compilation option, determine if VLAN tag info is to be
1914 * inserted into transmit frame by IPG.
1916 if (IPG_INSERT_MANUAL_VLAN_TAG) {
1917 txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
1918 ((u64) IPG_MANUAL_VLAN_VID << 32) |
1919 ((u64) IPG_MANUAL_VLAN_CFI << 44) |
1920 ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
1923 /* The fragment start location within system memory is defined
1924 * by the sk_buff structure's data field. The physical address
1925 * of this location within the system's virtual memory space
1926 * is determined using the IPG_HOST2BUS_MAP function.
1928 txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
1929 skb->len, PCI_DMA_TODEVICE));
1931 /* The length of the fragment within system memory is defined by
1932 * the sk_buff structure's len field.
1934 txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
1935 ((u64) (skb->len & 0xffff) << 48));
1937 /* Clear the TFDDone bit last to indicate the TFD is ready
1938 * for transfer to the IPG.
1940 txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);
1942 spin_lock_irqsave(&sp->lock, flags);
1944 sp->tx_current++;
1946 mmiowb();
1948 ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);
1950 if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
1951 netif_stop_queue(dev);
1953 spin_unlock_irqrestore(&sp->lock, flags);
1955 return NETDEV_TX_OK;
1958 static void ipg_set_phy_default_param(unsigned char rev,
1959 struct net_device *dev, int phy_address)
1961 unsigned short length;
1962 unsigned char revision;
1963 unsigned short *phy_param;
1964 unsigned short address, value;
1966 phy_param = &DefaultPhyParam[0];
1967 length = *phy_param & 0x00FF;
1968 revision = (unsigned char)((*phy_param) >> 8);
1969 phy_param++;
1970 while (length != 0) {
1971 if (rev == revision) {
1972 while (length > 1) {
1973 address = *phy_param;
1974 value = *(phy_param + 1);
1975 phy_param += 2;
1976 mdio_write(dev, phy_address, address, value);
1977 length -= 4;
1979 break;
1980 } else {
1981 phy_param += length / 2;
1982 length = *phy_param & 0x00FF;
1983 revision = (unsigned char)((*phy_param) >> 8);
1984 phy_param++;
1989 static int read_eeprom(struct net_device *dev, int eep_addr)
1991 void __iomem *ioaddr = ipg_ioaddr(dev);
1992 unsigned int i;
1993 int ret = 0;
1994 u16 value;
1996 value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
1997 ipg_w16(value, EEPROM_CTRL);
1999 for (i = 0; i < 1000; i++) {
2000 u16 data;
2002 mdelay(10);
2003 data = ipg_r16(EEPROM_CTRL);
2004 if (!(data & IPG_EC_EEPROM_BUSY)) {
2005 ret = ipg_r16(EEPROM_DATA);
2006 break;
2009 return ret;
2012 static void ipg_init_mii(struct net_device *dev)
2014 struct ipg_nic_private *sp = netdev_priv(dev);
2015 struct mii_if_info *mii_if = &sp->mii_if;
2016 int phyaddr;
2018 mii_if->dev = dev;
2019 mii_if->mdio_read = mdio_read;
2020 mii_if->mdio_write = mdio_write;
2021 mii_if->phy_id_mask = 0x1f;
2022 mii_if->reg_num_mask = 0x1f;
2024 mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);
2026 if (phyaddr != 0x1f) {
2027 u16 mii_phyctrl, mii_1000cr;
2029 mii_1000cr = mdio_read(dev, phyaddr, MII_CTRL1000);
2030 mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
2031 GMII_PHY_1000BASETCONTROL_PreferMaster;
2032 mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);
2034 mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);
2036 /* Set default phyparam */
2037 ipg_set_phy_default_param(sp->pdev->revision, dev, phyaddr);
2039 /* Reset PHY */
2040 mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
2041 mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);
2046 static int ipg_hw_init(struct net_device *dev)
2048 struct ipg_nic_private *sp = netdev_priv(dev);
2049 void __iomem *ioaddr = sp->ioaddr;
2050 unsigned int i;
2051 int rc;
2053 /* Read/Write and Reset EEPROM Value */
2054 /* Read LED Mode Configuration from EEPROM */
2055 sp->led_mode = read_eeprom(dev, 6);
2057 /* Reset all functions within the IPG. Do not assert
2058 * RST_OUT as not compatible with some PHYs.
2060 rc = ipg_reset(dev, IPG_RESET_MASK);
2061 if (rc < 0)
2062 goto out;
2064 ipg_init_mii(dev);
2066 /* Read MAC Address from EEPROM */
2067 for (i = 0; i < 3; i++)
2068 sp->station_addr[i] = read_eeprom(dev, 16 + i);
2070 for (i = 0; i < 3; i++)
2071 ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);
2073 /* Set station address in ethernet_device structure. */
2074 dev->dev_addr[0] = ipg_r16(STATION_ADDRESS_0) & 0x00ff;
2075 dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
2076 dev->dev_addr[2] = ipg_r16(STATION_ADDRESS_1) & 0x00ff;
2077 dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
2078 dev->dev_addr[4] = ipg_r16(STATION_ADDRESS_2) & 0x00ff;
2079 dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
2080 out:
2081 return rc;
2084 static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2086 struct ipg_nic_private *sp = netdev_priv(dev);
2087 int rc;
2089 mutex_lock(&sp->mii_mutex);
2090 rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
2091 mutex_unlock(&sp->mii_mutex);
2093 return rc;
2096 static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
2098 struct ipg_nic_private *sp = netdev_priv(dev);
2099 int err;
2101 /* Function to accommodate changes to Maximum Transfer Unit
2102 * (or MTU) of IPG NIC. Cannot use default function since
2103 * the default will not allow for MTU > 1500 bytes.
2106 IPG_DEBUG_MSG("_nic_change_mtu\n");
2109 * Check that the new MTU value is between 68 (14 byte header, 46 byte
2110 * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU.
2112 if (new_mtu < 68 || new_mtu > 10240)
2113 return -EINVAL;
2115 err = ipg_nic_stop(dev);
2116 if (err)
2117 return err;
2119 dev->mtu = new_mtu;
2121 sp->max_rxframe_size = new_mtu;
2123 sp->rxfrag_size = new_mtu;
2124 if (sp->rxfrag_size > 4088)
2125 sp->rxfrag_size = 4088;
2127 sp->rxsupport_size = sp->max_rxframe_size;
2129 if (new_mtu > 0x0600)
2130 sp->is_jumbo = true;
2131 else
2132 sp->is_jumbo = false;
2134 return ipg_nic_open(dev);
2137 static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2139 struct ipg_nic_private *sp = netdev_priv(dev);
2140 int rc;
2142 mutex_lock(&sp->mii_mutex);
2143 rc = mii_ethtool_gset(&sp->mii_if, cmd);
2144 mutex_unlock(&sp->mii_mutex);
2146 return rc;
2149 static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2151 struct ipg_nic_private *sp = netdev_priv(dev);
2152 int rc;
2154 mutex_lock(&sp->mii_mutex);
2155 rc = mii_ethtool_sset(&sp->mii_if, cmd);
2156 mutex_unlock(&sp->mii_mutex);
2158 return rc;
2161 static int ipg_nway_reset(struct net_device *dev)
2163 struct ipg_nic_private *sp = netdev_priv(dev);
2164 int rc;
2166 mutex_lock(&sp->mii_mutex);
2167 rc = mii_nway_restart(&sp->mii_if);
2168 mutex_unlock(&sp->mii_mutex);
2170 return rc;
2173 static const struct ethtool_ops ipg_ethtool_ops = {
2174 .get_settings = ipg_get_settings,
2175 .set_settings = ipg_set_settings,
2176 .nway_reset = ipg_nway_reset,
2179 static void __devexit ipg_remove(struct pci_dev *pdev)
2181 struct net_device *dev = pci_get_drvdata(pdev);
2182 struct ipg_nic_private *sp = netdev_priv(dev);
2184 IPG_DEBUG_MSG("_remove\n");
2186 /* Un-register Ethernet device. */
2187 unregister_netdev(dev);
2189 pci_iounmap(pdev, sp->ioaddr);
2191 pci_release_regions(pdev);
2193 free_netdev(dev);
2194 pci_disable_device(pdev);
2195 pci_set_drvdata(pdev, NULL);
2198 static const struct net_device_ops ipg_netdev_ops = {
2199 .ndo_open = ipg_nic_open,
2200 .ndo_stop = ipg_nic_stop,
2201 .ndo_start_xmit = ipg_nic_hard_start_xmit,
2202 .ndo_get_stats = ipg_nic_get_stats,
2203 .ndo_set_multicast_list = ipg_nic_set_multicast_list,
2204 .ndo_do_ioctl = ipg_ioctl,
2205 .ndo_tx_timeout = ipg_tx_timeout,
2206 .ndo_change_mtu = ipg_nic_change_mtu,
2207 .ndo_set_mac_address = eth_mac_addr,
2208 .ndo_validate_addr = eth_validate_addr,
2211 static int __devinit ipg_probe(struct pci_dev *pdev,
2212 const struct pci_device_id *id)
2214 unsigned int i = id->driver_data;
2215 struct ipg_nic_private *sp;
2216 struct net_device *dev;
2217 void __iomem *ioaddr;
2218 int rc;
2220 rc = pci_enable_device(pdev);
2221 if (rc < 0)
2222 goto out;
2224 printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]);
2226 pci_set_master(pdev);
2228 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
2229 if (rc < 0) {
2230 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2231 if (rc < 0) {
2232 printk(KERN_ERR "%s: DMA config failed.\n",
2233 pci_name(pdev));
2234 goto err_disable_0;
2239 * Initialize net device.
2241 dev = alloc_etherdev(sizeof(struct ipg_nic_private));
2242 if (!dev) {
2243 printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev));
2244 rc = -ENOMEM;
2245 goto err_disable_0;
2248 sp = netdev_priv(dev);
2249 spin_lock_init(&sp->lock);
2250 mutex_init(&sp->mii_mutex);
2252 sp->is_jumbo = IPG_IS_JUMBO;
2253 sp->rxfrag_size = IPG_RXFRAG_SIZE;
2254 sp->rxsupport_size = IPG_RXSUPPORT_SIZE;
2255 sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE;
2257 /* Declare IPG NIC functions for Ethernet device methods.
2259 dev->netdev_ops = &ipg_netdev_ops;
2260 SET_NETDEV_DEV(dev, &pdev->dev);
2261 SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);
2263 rc = pci_request_regions(pdev, DRV_NAME);
2264 if (rc)
2265 goto err_free_dev_1;
2267 ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
2268 if (!ioaddr) {
2269 printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev));
2270 rc = -EIO;
2271 goto err_release_regions_2;
2274 /* Save the pointer to the PCI device information. */
2275 sp->ioaddr = ioaddr;
2276 sp->pdev = pdev;
2277 sp->dev = dev;
2279 INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);
2281 pci_set_drvdata(pdev, dev);
2283 rc = ipg_hw_init(dev);
2284 if (rc < 0)
2285 goto err_unmap_3;
2287 rc = register_netdev(dev);
2288 if (rc < 0)
2289 goto err_unmap_3;
2291 printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name);
2292 out:
2293 return rc;
2295 err_unmap_3:
2296 pci_iounmap(pdev, ioaddr);
2297 err_release_regions_2:
2298 pci_release_regions(pdev);
2299 err_free_dev_1:
2300 free_netdev(dev);
2301 err_disable_0:
2302 pci_disable_device(pdev);
2303 goto out;
2306 static struct pci_driver ipg_pci_driver = {
2307 .name = IPG_DRIVER_NAME,
2308 .id_table = ipg_pci_tbl,
2309 .probe = ipg_probe,
2310 .remove = __devexit_p(ipg_remove),
2313 static int __init ipg_init_module(void)
2315 return pci_register_driver(&ipg_pci_driver);
2318 static void __exit ipg_exit_module(void)
2320 pci_unregister_driver(&ipg_pci_driver);
2323 module_init(ipg_init_module);
2324 module_exit(ipg_exit_module);