iwlwifi: update BT traffic load states correctly
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / shmem.c
blobfcedf5464eb79dba02ad485681fcc67530bdb720
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 * This file is released under the GPL.
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/percpu_counter.h>
32 #include <linux/swap.h>
34 static struct vfsmount *shm_mnt;
36 #ifdef CONFIG_SHMEM
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/security.h>
55 #include <linux/swapops.h>
56 #include <linux/mempolicy.h>
57 #include <linux/namei.h>
58 #include <linux/ctype.h>
59 #include <linux/migrate.h>
60 #include <linux/highmem.h>
61 #include <linux/seq_file.h>
62 #include <linux/magic.h>
64 #include <asm/uaccess.h>
65 #include <asm/div64.h>
66 #include <asm/pgtable.h>
69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum
74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
77 * We use / and * instead of shifts in the definitions below, so that the swap
78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
86 #define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87 #define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
89 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93 #define SHMEM_PAGEIN VM_READ
94 #define SHMEM_TRUNCATE VM_WRITE
96 /* Definition to limit shmem_truncate's steps between cond_rescheds */
97 #define LATENCY_LIMIT 64
99 /* Pretend that each entry is of this size in directory's i_size */
100 #define BOGO_DIRENT_SIZE 20
102 struct shmem_xattr {
103 struct list_head list; /* anchored by shmem_inode_info->xattr_list */
104 char *name; /* xattr name */
105 size_t size;
106 char value[0];
109 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
110 enum sgp_type {
111 SGP_READ, /* don't exceed i_size, don't allocate page */
112 SGP_CACHE, /* don't exceed i_size, may allocate page */
113 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
114 SGP_WRITE, /* may exceed i_size, may allocate page */
117 #ifdef CONFIG_TMPFS
118 static unsigned long shmem_default_max_blocks(void)
120 return totalram_pages / 2;
123 static unsigned long shmem_default_max_inodes(void)
125 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
127 #endif
129 static int shmem_getpage(struct inode *inode, unsigned long idx,
130 struct page **pagep, enum sgp_type sgp, int *type);
132 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
135 * The above definition of ENTRIES_PER_PAGE, and the use of
136 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
137 * might be reconsidered if it ever diverges from PAGE_SIZE.
139 * Mobility flags are masked out as swap vectors cannot move
141 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
142 PAGE_CACHE_SHIFT-PAGE_SHIFT);
145 static inline void shmem_dir_free(struct page *page)
147 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
150 static struct page **shmem_dir_map(struct page *page)
152 return (struct page **)kmap_atomic(page, KM_USER0);
155 static inline void shmem_dir_unmap(struct page **dir)
157 kunmap_atomic(dir, KM_USER0);
160 static swp_entry_t *shmem_swp_map(struct page *page)
162 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
165 static inline void shmem_swp_balance_unmap(void)
168 * When passing a pointer to an i_direct entry, to code which
169 * also handles indirect entries and so will shmem_swp_unmap,
170 * we must arrange for the preempt count to remain in balance.
171 * What kmap_atomic of a lowmem page does depends on config
172 * and architecture, so pretend to kmap_atomic some lowmem page.
174 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
177 static inline void shmem_swp_unmap(swp_entry_t *entry)
179 kunmap_atomic(entry, KM_USER1);
182 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
184 return sb->s_fs_info;
188 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
189 * for shared memory and for shared anonymous (/dev/zero) mappings
190 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
191 * consistent with the pre-accounting of private mappings ...
193 static inline int shmem_acct_size(unsigned long flags, loff_t size)
195 return (flags & VM_NORESERVE) ?
196 0 : security_vm_enough_memory_kern(VM_ACCT(size));
199 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
201 if (!(flags & VM_NORESERVE))
202 vm_unacct_memory(VM_ACCT(size));
206 * ... whereas tmpfs objects are accounted incrementally as
207 * pages are allocated, in order to allow huge sparse files.
208 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
209 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
211 static inline int shmem_acct_block(unsigned long flags)
213 return (flags & VM_NORESERVE) ?
214 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
217 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
219 if (flags & VM_NORESERVE)
220 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
223 static const struct super_operations shmem_ops;
224 static const struct address_space_operations shmem_aops;
225 static const struct file_operations shmem_file_operations;
226 static const struct inode_operations shmem_inode_operations;
227 static const struct inode_operations shmem_dir_inode_operations;
228 static const struct inode_operations shmem_special_inode_operations;
229 static const struct vm_operations_struct shmem_vm_ops;
231 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
232 .ra_pages = 0, /* No readahead */
233 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
236 static LIST_HEAD(shmem_swaplist);
237 static DEFINE_MUTEX(shmem_swaplist_mutex);
239 static void shmem_free_blocks(struct inode *inode, long pages)
241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242 if (sbinfo->max_blocks) {
243 percpu_counter_add(&sbinfo->used_blocks, -pages);
244 spin_lock(&inode->i_lock);
245 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
246 spin_unlock(&inode->i_lock);
250 static int shmem_reserve_inode(struct super_block *sb)
252 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
253 if (sbinfo->max_inodes) {
254 spin_lock(&sbinfo->stat_lock);
255 if (!sbinfo->free_inodes) {
256 spin_unlock(&sbinfo->stat_lock);
257 return -ENOSPC;
259 sbinfo->free_inodes--;
260 spin_unlock(&sbinfo->stat_lock);
262 return 0;
265 static void shmem_free_inode(struct super_block *sb)
267 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
268 if (sbinfo->max_inodes) {
269 spin_lock(&sbinfo->stat_lock);
270 sbinfo->free_inodes++;
271 spin_unlock(&sbinfo->stat_lock);
276 * shmem_recalc_inode - recalculate the size of an inode
277 * @inode: inode to recalc
279 * We have to calculate the free blocks since the mm can drop
280 * undirtied hole pages behind our back.
282 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
283 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
285 * It has to be called with the spinlock held.
287 static void shmem_recalc_inode(struct inode *inode)
289 struct shmem_inode_info *info = SHMEM_I(inode);
290 long freed;
292 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
293 if (freed > 0) {
294 info->alloced -= freed;
295 shmem_unacct_blocks(info->flags, freed);
296 shmem_free_blocks(inode, freed);
301 * shmem_swp_entry - find the swap vector position in the info structure
302 * @info: info structure for the inode
303 * @index: index of the page to find
304 * @page: optional page to add to the structure. Has to be preset to
305 * all zeros
307 * If there is no space allocated yet it will return NULL when
308 * page is NULL, else it will use the page for the needed block,
309 * setting it to NULL on return to indicate that it has been used.
311 * The swap vector is organized the following way:
313 * There are SHMEM_NR_DIRECT entries directly stored in the
314 * shmem_inode_info structure. So small files do not need an addional
315 * allocation.
317 * For pages with index > SHMEM_NR_DIRECT there is the pointer
318 * i_indirect which points to a page which holds in the first half
319 * doubly indirect blocks, in the second half triple indirect blocks:
321 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
322 * following layout (for SHMEM_NR_DIRECT == 16):
324 * i_indirect -> dir --> 16-19
325 * | +-> 20-23
327 * +-->dir2 --> 24-27
328 * | +-> 28-31
329 * | +-> 32-35
330 * | +-> 36-39
332 * +-->dir3 --> 40-43
333 * +-> 44-47
334 * +-> 48-51
335 * +-> 52-55
337 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
339 unsigned long offset;
340 struct page **dir;
341 struct page *subdir;
343 if (index < SHMEM_NR_DIRECT) {
344 shmem_swp_balance_unmap();
345 return info->i_direct+index;
347 if (!info->i_indirect) {
348 if (page) {
349 info->i_indirect = *page;
350 *page = NULL;
352 return NULL; /* need another page */
355 index -= SHMEM_NR_DIRECT;
356 offset = index % ENTRIES_PER_PAGE;
357 index /= ENTRIES_PER_PAGE;
358 dir = shmem_dir_map(info->i_indirect);
360 if (index >= ENTRIES_PER_PAGE/2) {
361 index -= ENTRIES_PER_PAGE/2;
362 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
363 index %= ENTRIES_PER_PAGE;
364 subdir = *dir;
365 if (!subdir) {
366 if (page) {
367 *dir = *page;
368 *page = NULL;
370 shmem_dir_unmap(dir);
371 return NULL; /* need another page */
373 shmem_dir_unmap(dir);
374 dir = shmem_dir_map(subdir);
377 dir += index;
378 subdir = *dir;
379 if (!subdir) {
380 if (!page || !(subdir = *page)) {
381 shmem_dir_unmap(dir);
382 return NULL; /* need a page */
384 *dir = subdir;
385 *page = NULL;
387 shmem_dir_unmap(dir);
388 return shmem_swp_map(subdir) + offset;
391 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
393 long incdec = value? 1: -1;
395 entry->val = value;
396 info->swapped += incdec;
397 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
398 struct page *page = kmap_atomic_to_page(entry);
399 set_page_private(page, page_private(page) + incdec);
404 * shmem_swp_alloc - get the position of the swap entry for the page.
405 * @info: info structure for the inode
406 * @index: index of the page to find
407 * @sgp: check and recheck i_size? skip allocation?
409 * If the entry does not exist, allocate it.
411 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
413 struct inode *inode = &info->vfs_inode;
414 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
415 struct page *page = NULL;
416 swp_entry_t *entry;
418 if (sgp != SGP_WRITE &&
419 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
420 return ERR_PTR(-EINVAL);
422 while (!(entry = shmem_swp_entry(info, index, &page))) {
423 if (sgp == SGP_READ)
424 return shmem_swp_map(ZERO_PAGE(0));
426 * Test used_blocks against 1 less max_blocks, since we have 1 data
427 * page (and perhaps indirect index pages) yet to allocate:
428 * a waste to allocate index if we cannot allocate data.
430 if (sbinfo->max_blocks) {
431 if (percpu_counter_compare(&sbinfo->used_blocks,
432 sbinfo->max_blocks - 1) >= 0)
433 return ERR_PTR(-ENOSPC);
434 percpu_counter_inc(&sbinfo->used_blocks);
435 spin_lock(&inode->i_lock);
436 inode->i_blocks += BLOCKS_PER_PAGE;
437 spin_unlock(&inode->i_lock);
440 spin_unlock(&info->lock);
441 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
442 spin_lock(&info->lock);
444 if (!page) {
445 shmem_free_blocks(inode, 1);
446 return ERR_PTR(-ENOMEM);
448 if (sgp != SGP_WRITE &&
449 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
450 entry = ERR_PTR(-EINVAL);
451 break;
453 if (info->next_index <= index)
454 info->next_index = index + 1;
456 if (page) {
457 /* another task gave its page, or truncated the file */
458 shmem_free_blocks(inode, 1);
459 shmem_dir_free(page);
461 if (info->next_index <= index && !IS_ERR(entry))
462 info->next_index = index + 1;
463 return entry;
467 * shmem_free_swp - free some swap entries in a directory
468 * @dir: pointer to the directory
469 * @edir: pointer after last entry of the directory
470 * @punch_lock: pointer to spinlock when needed for the holepunch case
472 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
473 spinlock_t *punch_lock)
475 spinlock_t *punch_unlock = NULL;
476 swp_entry_t *ptr;
477 int freed = 0;
479 for (ptr = dir; ptr < edir; ptr++) {
480 if (ptr->val) {
481 if (unlikely(punch_lock)) {
482 punch_unlock = punch_lock;
483 punch_lock = NULL;
484 spin_lock(punch_unlock);
485 if (!ptr->val)
486 continue;
488 free_swap_and_cache(*ptr);
489 *ptr = (swp_entry_t){0};
490 freed++;
493 if (punch_unlock)
494 spin_unlock(punch_unlock);
495 return freed;
498 static int shmem_map_and_free_swp(struct page *subdir, int offset,
499 int limit, struct page ***dir, spinlock_t *punch_lock)
501 swp_entry_t *ptr;
502 int freed = 0;
504 ptr = shmem_swp_map(subdir);
505 for (; offset < limit; offset += LATENCY_LIMIT) {
506 int size = limit - offset;
507 if (size > LATENCY_LIMIT)
508 size = LATENCY_LIMIT;
509 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
510 punch_lock);
511 if (need_resched()) {
512 shmem_swp_unmap(ptr);
513 if (*dir) {
514 shmem_dir_unmap(*dir);
515 *dir = NULL;
517 cond_resched();
518 ptr = shmem_swp_map(subdir);
521 shmem_swp_unmap(ptr);
522 return freed;
525 static void shmem_free_pages(struct list_head *next)
527 struct page *page;
528 int freed = 0;
530 do {
531 page = container_of(next, struct page, lru);
532 next = next->next;
533 shmem_dir_free(page);
534 freed++;
535 if (freed >= LATENCY_LIMIT) {
536 cond_resched();
537 freed = 0;
539 } while (next);
542 void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
544 struct shmem_inode_info *info = SHMEM_I(inode);
545 unsigned long idx;
546 unsigned long size;
547 unsigned long limit;
548 unsigned long stage;
549 unsigned long diroff;
550 struct page **dir;
551 struct page *topdir;
552 struct page *middir;
553 struct page *subdir;
554 swp_entry_t *ptr;
555 LIST_HEAD(pages_to_free);
556 long nr_pages_to_free = 0;
557 long nr_swaps_freed = 0;
558 int offset;
559 int freed;
560 int punch_hole;
561 spinlock_t *needs_lock;
562 spinlock_t *punch_lock;
563 unsigned long upper_limit;
565 truncate_inode_pages_range(inode->i_mapping, start, end);
567 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
568 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
569 if (idx >= info->next_index)
570 return;
572 spin_lock(&info->lock);
573 info->flags |= SHMEM_TRUNCATE;
574 if (likely(end == (loff_t) -1)) {
575 limit = info->next_index;
576 upper_limit = SHMEM_MAX_INDEX;
577 info->next_index = idx;
578 needs_lock = NULL;
579 punch_hole = 0;
580 } else {
581 if (end + 1 >= inode->i_size) { /* we may free a little more */
582 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
583 PAGE_CACHE_SHIFT;
584 upper_limit = SHMEM_MAX_INDEX;
585 } else {
586 limit = (end + 1) >> PAGE_CACHE_SHIFT;
587 upper_limit = limit;
589 needs_lock = &info->lock;
590 punch_hole = 1;
593 topdir = info->i_indirect;
594 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
595 info->i_indirect = NULL;
596 nr_pages_to_free++;
597 list_add(&topdir->lru, &pages_to_free);
599 spin_unlock(&info->lock);
601 if (info->swapped && idx < SHMEM_NR_DIRECT) {
602 ptr = info->i_direct;
603 size = limit;
604 if (size > SHMEM_NR_DIRECT)
605 size = SHMEM_NR_DIRECT;
606 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
610 * If there are no indirect blocks or we are punching a hole
611 * below indirect blocks, nothing to be done.
613 if (!topdir || limit <= SHMEM_NR_DIRECT)
614 goto done2;
617 * The truncation case has already dropped info->lock, and we're safe
618 * because i_size and next_index have already been lowered, preventing
619 * access beyond. But in the punch_hole case, we still need to take
620 * the lock when updating the swap directory, because there might be
621 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
622 * shmem_writepage. However, whenever we find we can remove a whole
623 * directory page (not at the misaligned start or end of the range),
624 * we first NULLify its pointer in the level above, and then have no
625 * need to take the lock when updating its contents: needs_lock and
626 * punch_lock (either pointing to info->lock or NULL) manage this.
629 upper_limit -= SHMEM_NR_DIRECT;
630 limit -= SHMEM_NR_DIRECT;
631 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
632 offset = idx % ENTRIES_PER_PAGE;
633 idx -= offset;
635 dir = shmem_dir_map(topdir);
636 stage = ENTRIES_PER_PAGEPAGE/2;
637 if (idx < ENTRIES_PER_PAGEPAGE/2) {
638 middir = topdir;
639 diroff = idx/ENTRIES_PER_PAGE;
640 } else {
641 dir += ENTRIES_PER_PAGE/2;
642 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
643 while (stage <= idx)
644 stage += ENTRIES_PER_PAGEPAGE;
645 middir = *dir;
646 if (*dir) {
647 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
648 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
649 if (!diroff && !offset && upper_limit >= stage) {
650 if (needs_lock) {
651 spin_lock(needs_lock);
652 *dir = NULL;
653 spin_unlock(needs_lock);
654 needs_lock = NULL;
655 } else
656 *dir = NULL;
657 nr_pages_to_free++;
658 list_add(&middir->lru, &pages_to_free);
660 shmem_dir_unmap(dir);
661 dir = shmem_dir_map(middir);
662 } else {
663 diroff = 0;
664 offset = 0;
665 idx = stage;
669 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
670 if (unlikely(idx == stage)) {
671 shmem_dir_unmap(dir);
672 dir = shmem_dir_map(topdir) +
673 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
674 while (!*dir) {
675 dir++;
676 idx += ENTRIES_PER_PAGEPAGE;
677 if (idx >= limit)
678 goto done1;
680 stage = idx + ENTRIES_PER_PAGEPAGE;
681 middir = *dir;
682 if (punch_hole)
683 needs_lock = &info->lock;
684 if (upper_limit >= stage) {
685 if (needs_lock) {
686 spin_lock(needs_lock);
687 *dir = NULL;
688 spin_unlock(needs_lock);
689 needs_lock = NULL;
690 } else
691 *dir = NULL;
692 nr_pages_to_free++;
693 list_add(&middir->lru, &pages_to_free);
695 shmem_dir_unmap(dir);
696 cond_resched();
697 dir = shmem_dir_map(middir);
698 diroff = 0;
700 punch_lock = needs_lock;
701 subdir = dir[diroff];
702 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
703 if (needs_lock) {
704 spin_lock(needs_lock);
705 dir[diroff] = NULL;
706 spin_unlock(needs_lock);
707 punch_lock = NULL;
708 } else
709 dir[diroff] = NULL;
710 nr_pages_to_free++;
711 list_add(&subdir->lru, &pages_to_free);
713 if (subdir && page_private(subdir) /* has swap entries */) {
714 size = limit - idx;
715 if (size > ENTRIES_PER_PAGE)
716 size = ENTRIES_PER_PAGE;
717 freed = shmem_map_and_free_swp(subdir,
718 offset, size, &dir, punch_lock);
719 if (!dir)
720 dir = shmem_dir_map(middir);
721 nr_swaps_freed += freed;
722 if (offset || punch_lock) {
723 spin_lock(&info->lock);
724 set_page_private(subdir,
725 page_private(subdir) - freed);
726 spin_unlock(&info->lock);
727 } else
728 BUG_ON(page_private(subdir) != freed);
730 offset = 0;
732 done1:
733 shmem_dir_unmap(dir);
734 done2:
735 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
737 * Call truncate_inode_pages again: racing shmem_unuse_inode
738 * may have swizzled a page in from swap since
739 * truncate_pagecache or generic_delete_inode did it, before we
740 * lowered next_index. Also, though shmem_getpage checks
741 * i_size before adding to cache, no recheck after: so fix the
742 * narrow window there too.
744 truncate_inode_pages_range(inode->i_mapping, start, end);
747 spin_lock(&info->lock);
748 info->flags &= ~SHMEM_TRUNCATE;
749 info->swapped -= nr_swaps_freed;
750 if (nr_pages_to_free)
751 shmem_free_blocks(inode, nr_pages_to_free);
752 shmem_recalc_inode(inode);
753 spin_unlock(&info->lock);
756 * Empty swap vector directory pages to be freed?
758 if (!list_empty(&pages_to_free)) {
759 pages_to_free.prev->next = NULL;
760 shmem_free_pages(pages_to_free.next);
763 EXPORT_SYMBOL_GPL(shmem_truncate_range);
765 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
767 struct inode *inode = dentry->d_inode;
768 int error;
770 error = inode_change_ok(inode, attr);
771 if (error)
772 return error;
774 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
775 loff_t oldsize = inode->i_size;
776 loff_t newsize = attr->ia_size;
777 struct page *page = NULL;
779 if (newsize < oldsize) {
781 * If truncating down to a partial page, then
782 * if that page is already allocated, hold it
783 * in memory until the truncation is over, so
784 * truncate_partial_page cannot miss it were
785 * it assigned to swap.
787 if (newsize & (PAGE_CACHE_SIZE-1)) {
788 (void) shmem_getpage(inode,
789 newsize >> PAGE_CACHE_SHIFT,
790 &page, SGP_READ, NULL);
791 if (page)
792 unlock_page(page);
795 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
796 * detect if any pages might have been added to cache
797 * after truncate_inode_pages. But we needn't bother
798 * if it's being fully truncated to zero-length: the
799 * nrpages check is efficient enough in that case.
801 if (newsize) {
802 struct shmem_inode_info *info = SHMEM_I(inode);
803 spin_lock(&info->lock);
804 info->flags &= ~SHMEM_PAGEIN;
805 spin_unlock(&info->lock);
808 if (newsize != oldsize) {
809 i_size_write(inode, newsize);
810 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
812 if (newsize < oldsize) {
813 loff_t holebegin = round_up(newsize, PAGE_SIZE);
814 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
815 shmem_truncate_range(inode, newsize, (loff_t)-1);
816 /* unmap again to remove racily COWed private pages */
817 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
819 if (page)
820 page_cache_release(page);
823 setattr_copy(inode, attr);
824 #ifdef CONFIG_TMPFS_POSIX_ACL
825 if (attr->ia_valid & ATTR_MODE)
826 error = generic_acl_chmod(inode);
827 #endif
828 return error;
831 static void shmem_evict_inode(struct inode *inode)
833 struct shmem_inode_info *info = SHMEM_I(inode);
834 struct shmem_xattr *xattr, *nxattr;
836 if (inode->i_mapping->a_ops == &shmem_aops) {
837 shmem_unacct_size(info->flags, inode->i_size);
838 inode->i_size = 0;
839 shmem_truncate_range(inode, 0, (loff_t)-1);
840 if (!list_empty(&info->swaplist)) {
841 mutex_lock(&shmem_swaplist_mutex);
842 list_del_init(&info->swaplist);
843 mutex_unlock(&shmem_swaplist_mutex);
847 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
848 kfree(xattr->name);
849 kfree(xattr);
851 BUG_ON(inode->i_blocks);
852 shmem_free_inode(inode->i_sb);
853 end_writeback(inode);
856 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
858 swp_entry_t *ptr;
860 for (ptr = dir; ptr < edir; ptr++) {
861 if (ptr->val == entry.val)
862 return ptr - dir;
864 return -1;
867 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
869 struct address_space *mapping;
870 unsigned long idx;
871 unsigned long size;
872 unsigned long limit;
873 unsigned long stage;
874 struct page **dir;
875 struct page *subdir;
876 swp_entry_t *ptr;
877 int offset;
878 int error;
880 idx = 0;
881 ptr = info->i_direct;
882 spin_lock(&info->lock);
883 if (!info->swapped) {
884 list_del_init(&info->swaplist);
885 goto lost2;
887 limit = info->next_index;
888 size = limit;
889 if (size > SHMEM_NR_DIRECT)
890 size = SHMEM_NR_DIRECT;
891 offset = shmem_find_swp(entry, ptr, ptr+size);
892 if (offset >= 0) {
893 shmem_swp_balance_unmap();
894 goto found;
896 if (!info->i_indirect)
897 goto lost2;
899 dir = shmem_dir_map(info->i_indirect);
900 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
902 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
903 if (unlikely(idx == stage)) {
904 shmem_dir_unmap(dir-1);
905 if (cond_resched_lock(&info->lock)) {
906 /* check it has not been truncated */
907 if (limit > info->next_index) {
908 limit = info->next_index;
909 if (idx >= limit)
910 goto lost2;
913 dir = shmem_dir_map(info->i_indirect) +
914 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
915 while (!*dir) {
916 dir++;
917 idx += ENTRIES_PER_PAGEPAGE;
918 if (idx >= limit)
919 goto lost1;
921 stage = idx + ENTRIES_PER_PAGEPAGE;
922 subdir = *dir;
923 shmem_dir_unmap(dir);
924 dir = shmem_dir_map(subdir);
926 subdir = *dir;
927 if (subdir && page_private(subdir)) {
928 ptr = shmem_swp_map(subdir);
929 size = limit - idx;
930 if (size > ENTRIES_PER_PAGE)
931 size = ENTRIES_PER_PAGE;
932 offset = shmem_find_swp(entry, ptr, ptr+size);
933 shmem_swp_unmap(ptr);
934 if (offset >= 0) {
935 shmem_dir_unmap(dir);
936 ptr = shmem_swp_map(subdir);
937 goto found;
941 lost1:
942 shmem_dir_unmap(dir-1);
943 lost2:
944 spin_unlock(&info->lock);
945 return 0;
946 found:
947 idx += offset;
948 ptr += offset;
951 * Move _head_ to start search for next from here.
952 * But be careful: shmem_evict_inode checks list_empty without taking
953 * mutex, and there's an instant in list_move_tail when info->swaplist
954 * would appear empty, if it were the only one on shmem_swaplist. We
955 * could avoid doing it if inode NULL; or use this minor optimization.
957 if (shmem_swaplist.next != &info->swaplist)
958 list_move_tail(&shmem_swaplist, &info->swaplist);
961 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
962 * but also to hold up shmem_evict_inode(): so inode cannot be freed
963 * beneath us (pagelock doesn't help until the page is in pagecache).
965 mapping = info->vfs_inode.i_mapping;
966 error = add_to_page_cache_locked(page, mapping, idx, GFP_NOWAIT);
967 /* which does mem_cgroup_uncharge_cache_page on error */
969 if (error == -EEXIST) {
970 struct page *filepage = find_get_page(mapping, idx);
971 error = 1;
972 if (filepage) {
974 * There might be a more uptodate page coming down
975 * from a stacked writepage: forget our swappage if so.
977 if (PageUptodate(filepage))
978 error = 0;
979 page_cache_release(filepage);
982 if (!error) {
983 delete_from_swap_cache(page);
984 set_page_dirty(page);
985 info->flags |= SHMEM_PAGEIN;
986 shmem_swp_set(info, ptr, 0);
987 swap_free(entry);
988 error = 1; /* not an error, but entry was found */
990 shmem_swp_unmap(ptr);
991 spin_unlock(&info->lock);
992 return error;
996 * shmem_unuse() search for an eventually swapped out shmem page.
998 int shmem_unuse(swp_entry_t entry, struct page *page)
1000 struct list_head *p, *next;
1001 struct shmem_inode_info *info;
1002 int found = 0;
1003 int error;
1006 * Charge page using GFP_KERNEL while we can wait, before taking
1007 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1008 * Charged back to the user (not to caller) when swap account is used.
1009 * add_to_page_cache() will be called with GFP_NOWAIT.
1011 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
1012 if (error)
1013 goto out;
1015 * Try to preload while we can wait, to not make a habit of
1016 * draining atomic reserves; but don't latch on to this cpu,
1017 * it's okay if sometimes we get rescheduled after this.
1019 error = radix_tree_preload(GFP_KERNEL);
1020 if (error)
1021 goto uncharge;
1022 radix_tree_preload_end();
1024 mutex_lock(&shmem_swaplist_mutex);
1025 list_for_each_safe(p, next, &shmem_swaplist) {
1026 info = list_entry(p, struct shmem_inode_info, swaplist);
1027 found = shmem_unuse_inode(info, entry, page);
1028 cond_resched();
1029 if (found)
1030 break;
1032 mutex_unlock(&shmem_swaplist_mutex);
1034 uncharge:
1035 if (!found)
1036 mem_cgroup_uncharge_cache_page(page);
1037 if (found < 0)
1038 error = found;
1039 out:
1040 unlock_page(page);
1041 page_cache_release(page);
1042 return error;
1046 * Move the page from the page cache to the swap cache.
1048 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1050 struct shmem_inode_info *info;
1051 swp_entry_t *entry, swap;
1052 struct address_space *mapping;
1053 unsigned long index;
1054 struct inode *inode;
1056 BUG_ON(!PageLocked(page));
1057 mapping = page->mapping;
1058 index = page->index;
1059 inode = mapping->host;
1060 info = SHMEM_I(inode);
1061 if (info->flags & VM_LOCKED)
1062 goto redirty;
1063 if (!total_swap_pages)
1064 goto redirty;
1067 * shmem_backing_dev_info's capabilities prevent regular writeback or
1068 * sync from ever calling shmem_writepage; but a stacking filesystem
1069 * may use the ->writepage of its underlying filesystem, in which case
1070 * tmpfs should write out to swap only in response to memory pressure,
1071 * and not for the writeback threads or sync. However, in those cases,
1072 * we do still want to check if there's a redundant swappage to be
1073 * discarded.
1075 if (wbc->for_reclaim)
1076 swap = get_swap_page();
1077 else
1078 swap.val = 0;
1081 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1082 * if it's not already there. Do it now because we cannot take
1083 * mutex while holding spinlock, and must do so before the page
1084 * is moved to swap cache, when its pagelock no longer protects
1085 * the inode from eviction. But don't unlock the mutex until
1086 * we've taken the spinlock, because shmem_unuse_inode() will
1087 * prune a !swapped inode from the swaplist under both locks.
1089 if (swap.val) {
1090 mutex_lock(&shmem_swaplist_mutex);
1091 if (list_empty(&info->swaplist))
1092 list_add_tail(&info->swaplist, &shmem_swaplist);
1095 spin_lock(&info->lock);
1096 if (swap.val)
1097 mutex_unlock(&shmem_swaplist_mutex);
1099 if (index >= info->next_index) {
1100 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1101 goto unlock;
1103 entry = shmem_swp_entry(info, index, NULL);
1104 if (entry->val) {
1106 * The more uptodate page coming down from a stacked
1107 * writepage should replace our old swappage.
1109 free_swap_and_cache(*entry);
1110 shmem_swp_set(info, entry, 0);
1112 shmem_recalc_inode(inode);
1114 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1115 delete_from_page_cache(page);
1116 shmem_swp_set(info, entry, swap.val);
1117 shmem_swp_unmap(entry);
1118 swap_shmem_alloc(swap);
1119 spin_unlock(&info->lock);
1120 BUG_ON(page_mapped(page));
1121 swap_writepage(page, wbc);
1122 return 0;
1125 shmem_swp_unmap(entry);
1126 unlock:
1127 spin_unlock(&info->lock);
1129 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1130 * clear SWAP_HAS_CACHE flag.
1132 swapcache_free(swap, NULL);
1133 redirty:
1134 set_page_dirty(page);
1135 if (wbc->for_reclaim)
1136 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1137 unlock_page(page);
1138 return 0;
1141 #ifdef CONFIG_NUMA
1142 #ifdef CONFIG_TMPFS
1143 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1145 char buffer[64];
1147 if (!mpol || mpol->mode == MPOL_DEFAULT)
1148 return; /* show nothing */
1150 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1152 seq_printf(seq, ",mpol=%s", buffer);
1155 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1157 struct mempolicy *mpol = NULL;
1158 if (sbinfo->mpol) {
1159 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1160 mpol = sbinfo->mpol;
1161 mpol_get(mpol);
1162 spin_unlock(&sbinfo->stat_lock);
1164 return mpol;
1166 #endif /* CONFIG_TMPFS */
1168 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1169 struct shmem_inode_info *info, unsigned long idx)
1171 struct mempolicy mpol, *spol;
1172 struct vm_area_struct pvma;
1173 struct page *page;
1175 spol = mpol_cond_copy(&mpol,
1176 mpol_shared_policy_lookup(&info->policy, idx));
1178 /* Create a pseudo vma that just contains the policy */
1179 pvma.vm_start = 0;
1180 pvma.vm_pgoff = idx;
1181 pvma.vm_ops = NULL;
1182 pvma.vm_policy = spol;
1183 page = swapin_readahead(entry, gfp, &pvma, 0);
1184 return page;
1187 static struct page *shmem_alloc_page(gfp_t gfp,
1188 struct shmem_inode_info *info, unsigned long idx)
1190 struct vm_area_struct pvma;
1192 /* Create a pseudo vma that just contains the policy */
1193 pvma.vm_start = 0;
1194 pvma.vm_pgoff = idx;
1195 pvma.vm_ops = NULL;
1196 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1199 * alloc_page_vma() will drop the shared policy reference
1201 return alloc_page_vma(gfp, &pvma, 0);
1203 #else /* !CONFIG_NUMA */
1204 #ifdef CONFIG_TMPFS
1205 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1208 #endif /* CONFIG_TMPFS */
1210 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1211 struct shmem_inode_info *info, unsigned long idx)
1213 return swapin_readahead(entry, gfp, NULL, 0);
1216 static inline struct page *shmem_alloc_page(gfp_t gfp,
1217 struct shmem_inode_info *info, unsigned long idx)
1219 return alloc_page(gfp);
1221 #endif /* CONFIG_NUMA */
1223 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1224 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1226 return NULL;
1228 #endif
1231 * shmem_getpage - either get the page from swap or allocate a new one
1233 * If we allocate a new one we do not mark it dirty. That's up to the
1234 * vm. If we swap it in we mark it dirty since we also free the swap
1235 * entry since a page cannot live in both the swap and page cache
1237 static int shmem_getpage(struct inode *inode, unsigned long idx,
1238 struct page **pagep, enum sgp_type sgp, int *type)
1240 struct address_space *mapping = inode->i_mapping;
1241 struct shmem_inode_info *info = SHMEM_I(inode);
1242 struct shmem_sb_info *sbinfo;
1243 struct page *filepage = *pagep;
1244 struct page *swappage;
1245 struct page *prealloc_page = NULL;
1246 swp_entry_t *entry;
1247 swp_entry_t swap;
1248 gfp_t gfp;
1249 int error;
1251 if (idx >= SHMEM_MAX_INDEX)
1252 return -EFBIG;
1254 if (type)
1255 *type = 0;
1258 * Normally, filepage is NULL on entry, and either found
1259 * uptodate immediately, or allocated and zeroed, or read
1260 * in under swappage, which is then assigned to filepage.
1261 * But shmem_readpage (required for splice) passes in a locked
1262 * filepage, which may be found not uptodate by other callers
1263 * too, and may need to be copied from the swappage read in.
1265 repeat:
1266 if (!filepage)
1267 filepage = find_lock_page(mapping, idx);
1268 if (filepage && PageUptodate(filepage))
1269 goto done;
1270 gfp = mapping_gfp_mask(mapping);
1271 if (!filepage) {
1273 * Try to preload while we can wait, to not make a habit of
1274 * draining atomic reserves; but don't latch on to this cpu.
1276 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1277 if (error)
1278 goto failed;
1279 radix_tree_preload_end();
1280 if (sgp != SGP_READ && !prealloc_page) {
1281 /* We don't care if this fails */
1282 prealloc_page = shmem_alloc_page(gfp, info, idx);
1283 if (prealloc_page) {
1284 if (mem_cgroup_cache_charge(prealloc_page,
1285 current->mm, GFP_KERNEL)) {
1286 page_cache_release(prealloc_page);
1287 prealloc_page = NULL;
1292 error = 0;
1294 spin_lock(&info->lock);
1295 shmem_recalc_inode(inode);
1296 entry = shmem_swp_alloc(info, idx, sgp);
1297 if (IS_ERR(entry)) {
1298 spin_unlock(&info->lock);
1299 error = PTR_ERR(entry);
1300 goto failed;
1302 swap = *entry;
1304 if (swap.val) {
1305 /* Look it up and read it in.. */
1306 swappage = lookup_swap_cache(swap);
1307 if (!swappage) {
1308 shmem_swp_unmap(entry);
1309 spin_unlock(&info->lock);
1310 /* here we actually do the io */
1311 if (type)
1312 *type |= VM_FAULT_MAJOR;
1313 swappage = shmem_swapin(swap, gfp, info, idx);
1314 if (!swappage) {
1315 spin_lock(&info->lock);
1316 entry = shmem_swp_alloc(info, idx, sgp);
1317 if (IS_ERR(entry))
1318 error = PTR_ERR(entry);
1319 else {
1320 if (entry->val == swap.val)
1321 error = -ENOMEM;
1322 shmem_swp_unmap(entry);
1324 spin_unlock(&info->lock);
1325 if (error)
1326 goto failed;
1327 goto repeat;
1329 wait_on_page_locked(swappage);
1330 page_cache_release(swappage);
1331 goto repeat;
1334 /* We have to do this with page locked to prevent races */
1335 if (!trylock_page(swappage)) {
1336 shmem_swp_unmap(entry);
1337 spin_unlock(&info->lock);
1338 wait_on_page_locked(swappage);
1339 page_cache_release(swappage);
1340 goto repeat;
1342 if (PageWriteback(swappage)) {
1343 shmem_swp_unmap(entry);
1344 spin_unlock(&info->lock);
1345 wait_on_page_writeback(swappage);
1346 unlock_page(swappage);
1347 page_cache_release(swappage);
1348 goto repeat;
1350 if (!PageUptodate(swappage)) {
1351 shmem_swp_unmap(entry);
1352 spin_unlock(&info->lock);
1353 unlock_page(swappage);
1354 page_cache_release(swappage);
1355 error = -EIO;
1356 goto failed;
1359 if (filepage) {
1360 shmem_swp_set(info, entry, 0);
1361 shmem_swp_unmap(entry);
1362 delete_from_swap_cache(swappage);
1363 spin_unlock(&info->lock);
1364 copy_highpage(filepage, swappage);
1365 unlock_page(swappage);
1366 page_cache_release(swappage);
1367 flush_dcache_page(filepage);
1368 SetPageUptodate(filepage);
1369 set_page_dirty(filepage);
1370 swap_free(swap);
1371 } else if (!(error = add_to_page_cache_locked(swappage, mapping,
1372 idx, GFP_NOWAIT))) {
1373 info->flags |= SHMEM_PAGEIN;
1374 shmem_swp_set(info, entry, 0);
1375 shmem_swp_unmap(entry);
1376 delete_from_swap_cache(swappage);
1377 spin_unlock(&info->lock);
1378 filepage = swappage;
1379 set_page_dirty(filepage);
1380 swap_free(swap);
1381 } else {
1382 shmem_swp_unmap(entry);
1383 spin_unlock(&info->lock);
1384 if (error == -ENOMEM) {
1386 * reclaim from proper memory cgroup and
1387 * call memcg's OOM if needed.
1389 error = mem_cgroup_shmem_charge_fallback(
1390 swappage,
1391 current->mm,
1392 gfp);
1393 if (error) {
1394 unlock_page(swappage);
1395 page_cache_release(swappage);
1396 goto failed;
1399 unlock_page(swappage);
1400 page_cache_release(swappage);
1401 goto repeat;
1403 } else if (sgp == SGP_READ && !filepage) {
1404 shmem_swp_unmap(entry);
1405 filepage = find_get_page(mapping, idx);
1406 if (filepage &&
1407 (!PageUptodate(filepage) || !trylock_page(filepage))) {
1408 spin_unlock(&info->lock);
1409 wait_on_page_locked(filepage);
1410 page_cache_release(filepage);
1411 filepage = NULL;
1412 goto repeat;
1414 spin_unlock(&info->lock);
1415 } else {
1416 shmem_swp_unmap(entry);
1417 sbinfo = SHMEM_SB(inode->i_sb);
1418 if (sbinfo->max_blocks) {
1419 if (percpu_counter_compare(&sbinfo->used_blocks,
1420 sbinfo->max_blocks) >= 0 ||
1421 shmem_acct_block(info->flags))
1422 goto nospace;
1423 percpu_counter_inc(&sbinfo->used_blocks);
1424 spin_lock(&inode->i_lock);
1425 inode->i_blocks += BLOCKS_PER_PAGE;
1426 spin_unlock(&inode->i_lock);
1427 } else if (shmem_acct_block(info->flags))
1428 goto nospace;
1430 if (!filepage) {
1431 int ret;
1433 if (!prealloc_page) {
1434 spin_unlock(&info->lock);
1435 filepage = shmem_alloc_page(gfp, info, idx);
1436 if (!filepage) {
1437 shmem_unacct_blocks(info->flags, 1);
1438 shmem_free_blocks(inode, 1);
1439 error = -ENOMEM;
1440 goto failed;
1442 SetPageSwapBacked(filepage);
1445 * Precharge page while we can wait, compensate
1446 * after
1448 error = mem_cgroup_cache_charge(filepage,
1449 current->mm, GFP_KERNEL);
1450 if (error) {
1451 page_cache_release(filepage);
1452 shmem_unacct_blocks(info->flags, 1);
1453 shmem_free_blocks(inode, 1);
1454 filepage = NULL;
1455 goto failed;
1458 spin_lock(&info->lock);
1459 } else {
1460 filepage = prealloc_page;
1461 prealloc_page = NULL;
1462 SetPageSwapBacked(filepage);
1465 entry = shmem_swp_alloc(info, idx, sgp);
1466 if (IS_ERR(entry))
1467 error = PTR_ERR(entry);
1468 else {
1469 swap = *entry;
1470 shmem_swp_unmap(entry);
1472 ret = error || swap.val;
1473 if (ret)
1474 mem_cgroup_uncharge_cache_page(filepage);
1475 else
1476 ret = add_to_page_cache_lru(filepage, mapping,
1477 idx, GFP_NOWAIT);
1479 * At add_to_page_cache_lru() failure, uncharge will
1480 * be done automatically.
1482 if (ret) {
1483 spin_unlock(&info->lock);
1484 page_cache_release(filepage);
1485 shmem_unacct_blocks(info->flags, 1);
1486 shmem_free_blocks(inode, 1);
1487 filepage = NULL;
1488 if (error)
1489 goto failed;
1490 goto repeat;
1492 info->flags |= SHMEM_PAGEIN;
1495 info->alloced++;
1496 spin_unlock(&info->lock);
1497 clear_highpage(filepage);
1498 flush_dcache_page(filepage);
1499 SetPageUptodate(filepage);
1500 if (sgp == SGP_DIRTY)
1501 set_page_dirty(filepage);
1503 done:
1504 *pagep = filepage;
1505 error = 0;
1506 goto out;
1508 nospace:
1510 * Perhaps the page was brought in from swap between find_lock_page
1511 * and taking info->lock? We allow for that at add_to_page_cache_lru,
1512 * but must also avoid reporting a spurious ENOSPC while working on a
1513 * full tmpfs. (When filepage has been passed in to shmem_getpage, it
1514 * is already in page cache, which prevents this race from occurring.)
1516 if (!filepage) {
1517 struct page *page = find_get_page(mapping, idx);
1518 if (page) {
1519 spin_unlock(&info->lock);
1520 page_cache_release(page);
1521 goto repeat;
1524 spin_unlock(&info->lock);
1525 error = -ENOSPC;
1526 failed:
1527 if (*pagep != filepage) {
1528 unlock_page(filepage);
1529 page_cache_release(filepage);
1531 out:
1532 if (prealloc_page) {
1533 mem_cgroup_uncharge_cache_page(prealloc_page);
1534 page_cache_release(prealloc_page);
1536 return error;
1539 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1541 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1542 int error;
1543 int ret;
1545 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1546 return VM_FAULT_SIGBUS;
1548 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1549 if (error)
1550 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1551 if (ret & VM_FAULT_MAJOR) {
1552 count_vm_event(PGMAJFAULT);
1553 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1555 return ret | VM_FAULT_LOCKED;
1558 #ifdef CONFIG_NUMA
1559 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1561 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1562 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1565 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1566 unsigned long addr)
1568 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1569 unsigned long idx;
1571 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1572 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1574 #endif
1576 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1578 struct inode *inode = file->f_path.dentry->d_inode;
1579 struct shmem_inode_info *info = SHMEM_I(inode);
1580 int retval = -ENOMEM;
1582 spin_lock(&info->lock);
1583 if (lock && !(info->flags & VM_LOCKED)) {
1584 if (!user_shm_lock(inode->i_size, user))
1585 goto out_nomem;
1586 info->flags |= VM_LOCKED;
1587 mapping_set_unevictable(file->f_mapping);
1589 if (!lock && (info->flags & VM_LOCKED) && user) {
1590 user_shm_unlock(inode->i_size, user);
1591 info->flags &= ~VM_LOCKED;
1592 mapping_clear_unevictable(file->f_mapping);
1593 scan_mapping_unevictable_pages(file->f_mapping);
1595 retval = 0;
1597 out_nomem:
1598 spin_unlock(&info->lock);
1599 return retval;
1602 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1604 file_accessed(file);
1605 vma->vm_ops = &shmem_vm_ops;
1606 vma->vm_flags |= VM_CAN_NONLINEAR;
1607 return 0;
1610 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1611 int mode, dev_t dev, unsigned long flags)
1613 struct inode *inode;
1614 struct shmem_inode_info *info;
1615 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1617 if (shmem_reserve_inode(sb))
1618 return NULL;
1620 inode = new_inode(sb);
1621 if (inode) {
1622 inode->i_ino = get_next_ino();
1623 inode_init_owner(inode, dir, mode);
1624 inode->i_blocks = 0;
1625 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1626 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1627 inode->i_generation = get_seconds();
1628 info = SHMEM_I(inode);
1629 memset(info, 0, (char *)inode - (char *)info);
1630 spin_lock_init(&info->lock);
1631 info->flags = flags & VM_NORESERVE;
1632 INIT_LIST_HEAD(&info->swaplist);
1633 INIT_LIST_HEAD(&info->xattr_list);
1634 cache_no_acl(inode);
1636 switch (mode & S_IFMT) {
1637 default:
1638 inode->i_op = &shmem_special_inode_operations;
1639 init_special_inode(inode, mode, dev);
1640 break;
1641 case S_IFREG:
1642 inode->i_mapping->a_ops = &shmem_aops;
1643 inode->i_op = &shmem_inode_operations;
1644 inode->i_fop = &shmem_file_operations;
1645 mpol_shared_policy_init(&info->policy,
1646 shmem_get_sbmpol(sbinfo));
1647 break;
1648 case S_IFDIR:
1649 inc_nlink(inode);
1650 /* Some things misbehave if size == 0 on a directory */
1651 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1652 inode->i_op = &shmem_dir_inode_operations;
1653 inode->i_fop = &simple_dir_operations;
1654 break;
1655 case S_IFLNK:
1657 * Must not load anything in the rbtree,
1658 * mpol_free_shared_policy will not be called.
1660 mpol_shared_policy_init(&info->policy, NULL);
1661 break;
1663 } else
1664 shmem_free_inode(sb);
1665 return inode;
1668 #ifdef CONFIG_TMPFS
1669 static const struct inode_operations shmem_symlink_inode_operations;
1670 static const struct inode_operations shmem_symlink_inline_operations;
1673 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1674 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1675 * below the loop driver, in the generic fashion that many filesystems support.
1677 static int shmem_readpage(struct file *file, struct page *page)
1679 struct inode *inode = page->mapping->host;
1680 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1681 unlock_page(page);
1682 return error;
1685 static int
1686 shmem_write_begin(struct file *file, struct address_space *mapping,
1687 loff_t pos, unsigned len, unsigned flags,
1688 struct page **pagep, void **fsdata)
1690 struct inode *inode = mapping->host;
1691 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1692 *pagep = NULL;
1693 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1696 static int
1697 shmem_write_end(struct file *file, struct address_space *mapping,
1698 loff_t pos, unsigned len, unsigned copied,
1699 struct page *page, void *fsdata)
1701 struct inode *inode = mapping->host;
1703 if (pos + copied > inode->i_size)
1704 i_size_write(inode, pos + copied);
1706 set_page_dirty(page);
1707 unlock_page(page);
1708 page_cache_release(page);
1710 return copied;
1713 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1715 struct inode *inode = filp->f_path.dentry->d_inode;
1716 struct address_space *mapping = inode->i_mapping;
1717 unsigned long index, offset;
1718 enum sgp_type sgp = SGP_READ;
1721 * Might this read be for a stacking filesystem? Then when reading
1722 * holes of a sparse file, we actually need to allocate those pages,
1723 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1725 if (segment_eq(get_fs(), KERNEL_DS))
1726 sgp = SGP_DIRTY;
1728 index = *ppos >> PAGE_CACHE_SHIFT;
1729 offset = *ppos & ~PAGE_CACHE_MASK;
1731 for (;;) {
1732 struct page *page = NULL;
1733 unsigned long end_index, nr, ret;
1734 loff_t i_size = i_size_read(inode);
1736 end_index = i_size >> PAGE_CACHE_SHIFT;
1737 if (index > end_index)
1738 break;
1739 if (index == end_index) {
1740 nr = i_size & ~PAGE_CACHE_MASK;
1741 if (nr <= offset)
1742 break;
1745 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1746 if (desc->error) {
1747 if (desc->error == -EINVAL)
1748 desc->error = 0;
1749 break;
1751 if (page)
1752 unlock_page(page);
1755 * We must evaluate after, since reads (unlike writes)
1756 * are called without i_mutex protection against truncate
1758 nr = PAGE_CACHE_SIZE;
1759 i_size = i_size_read(inode);
1760 end_index = i_size >> PAGE_CACHE_SHIFT;
1761 if (index == end_index) {
1762 nr = i_size & ~PAGE_CACHE_MASK;
1763 if (nr <= offset) {
1764 if (page)
1765 page_cache_release(page);
1766 break;
1769 nr -= offset;
1771 if (page) {
1773 * If users can be writing to this page using arbitrary
1774 * virtual addresses, take care about potential aliasing
1775 * before reading the page on the kernel side.
1777 if (mapping_writably_mapped(mapping))
1778 flush_dcache_page(page);
1780 * Mark the page accessed if we read the beginning.
1782 if (!offset)
1783 mark_page_accessed(page);
1784 } else {
1785 page = ZERO_PAGE(0);
1786 page_cache_get(page);
1790 * Ok, we have the page, and it's up-to-date, so
1791 * now we can copy it to user space...
1793 * The actor routine returns how many bytes were actually used..
1794 * NOTE! This may not be the same as how much of a user buffer
1795 * we filled up (we may be padding etc), so we can only update
1796 * "pos" here (the actor routine has to update the user buffer
1797 * pointers and the remaining count).
1799 ret = actor(desc, page, offset, nr);
1800 offset += ret;
1801 index += offset >> PAGE_CACHE_SHIFT;
1802 offset &= ~PAGE_CACHE_MASK;
1804 page_cache_release(page);
1805 if (ret != nr || !desc->count)
1806 break;
1808 cond_resched();
1811 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1812 file_accessed(filp);
1815 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1816 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1818 struct file *filp = iocb->ki_filp;
1819 ssize_t retval;
1820 unsigned long seg;
1821 size_t count;
1822 loff_t *ppos = &iocb->ki_pos;
1824 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1825 if (retval)
1826 return retval;
1828 for (seg = 0; seg < nr_segs; seg++) {
1829 read_descriptor_t desc;
1831 desc.written = 0;
1832 desc.arg.buf = iov[seg].iov_base;
1833 desc.count = iov[seg].iov_len;
1834 if (desc.count == 0)
1835 continue;
1836 desc.error = 0;
1837 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1838 retval += desc.written;
1839 if (desc.error) {
1840 retval = retval ?: desc.error;
1841 break;
1843 if (desc.count > 0)
1844 break;
1846 return retval;
1849 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1851 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1853 buf->f_type = TMPFS_MAGIC;
1854 buf->f_bsize = PAGE_CACHE_SIZE;
1855 buf->f_namelen = NAME_MAX;
1856 if (sbinfo->max_blocks) {
1857 buf->f_blocks = sbinfo->max_blocks;
1858 buf->f_bavail = buf->f_bfree =
1859 sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
1861 if (sbinfo->max_inodes) {
1862 buf->f_files = sbinfo->max_inodes;
1863 buf->f_ffree = sbinfo->free_inodes;
1865 /* else leave those fields 0 like simple_statfs */
1866 return 0;
1870 * File creation. Allocate an inode, and we're done..
1872 static int
1873 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1875 struct inode *inode;
1876 int error = -ENOSPC;
1878 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1879 if (inode) {
1880 error = security_inode_init_security(inode, dir,
1881 &dentry->d_name, NULL,
1882 NULL, NULL);
1883 if (error) {
1884 if (error != -EOPNOTSUPP) {
1885 iput(inode);
1886 return error;
1889 #ifdef CONFIG_TMPFS_POSIX_ACL
1890 error = generic_acl_init(inode, dir);
1891 if (error) {
1892 iput(inode);
1893 return error;
1895 #else
1896 error = 0;
1897 #endif
1898 dir->i_size += BOGO_DIRENT_SIZE;
1899 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1900 d_instantiate(dentry, inode);
1901 dget(dentry); /* Extra count - pin the dentry in core */
1903 return error;
1906 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1908 int error;
1910 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1911 return error;
1912 inc_nlink(dir);
1913 return 0;
1916 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1917 struct nameidata *nd)
1919 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1923 * Link a file..
1925 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1927 struct inode *inode = old_dentry->d_inode;
1928 int ret;
1931 * No ordinary (disk based) filesystem counts links as inodes;
1932 * but each new link needs a new dentry, pinning lowmem, and
1933 * tmpfs dentries cannot be pruned until they are unlinked.
1935 ret = shmem_reserve_inode(inode->i_sb);
1936 if (ret)
1937 goto out;
1939 dir->i_size += BOGO_DIRENT_SIZE;
1940 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1941 inc_nlink(inode);
1942 ihold(inode); /* New dentry reference */
1943 dget(dentry); /* Extra pinning count for the created dentry */
1944 d_instantiate(dentry, inode);
1945 out:
1946 return ret;
1949 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1951 struct inode *inode = dentry->d_inode;
1953 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1954 shmem_free_inode(inode->i_sb);
1956 dir->i_size -= BOGO_DIRENT_SIZE;
1957 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1958 drop_nlink(inode);
1959 dput(dentry); /* Undo the count from "create" - this does all the work */
1960 return 0;
1963 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1965 if (!simple_empty(dentry))
1966 return -ENOTEMPTY;
1968 drop_nlink(dentry->d_inode);
1969 drop_nlink(dir);
1970 return shmem_unlink(dir, dentry);
1974 * The VFS layer already does all the dentry stuff for rename,
1975 * we just have to decrement the usage count for the target if
1976 * it exists so that the VFS layer correctly free's it when it
1977 * gets overwritten.
1979 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1981 struct inode *inode = old_dentry->d_inode;
1982 int they_are_dirs = S_ISDIR(inode->i_mode);
1984 if (!simple_empty(new_dentry))
1985 return -ENOTEMPTY;
1987 if (new_dentry->d_inode) {
1988 (void) shmem_unlink(new_dir, new_dentry);
1989 if (they_are_dirs)
1990 drop_nlink(old_dir);
1991 } else if (they_are_dirs) {
1992 drop_nlink(old_dir);
1993 inc_nlink(new_dir);
1996 old_dir->i_size -= BOGO_DIRENT_SIZE;
1997 new_dir->i_size += BOGO_DIRENT_SIZE;
1998 old_dir->i_ctime = old_dir->i_mtime =
1999 new_dir->i_ctime = new_dir->i_mtime =
2000 inode->i_ctime = CURRENT_TIME;
2001 return 0;
2004 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2006 int error;
2007 int len;
2008 struct inode *inode;
2009 struct page *page = NULL;
2010 char *kaddr;
2011 struct shmem_inode_info *info;
2013 len = strlen(symname) + 1;
2014 if (len > PAGE_CACHE_SIZE)
2015 return -ENAMETOOLONG;
2017 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2018 if (!inode)
2019 return -ENOSPC;
2021 error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
2022 NULL, NULL);
2023 if (error) {
2024 if (error != -EOPNOTSUPP) {
2025 iput(inode);
2026 return error;
2028 error = 0;
2031 info = SHMEM_I(inode);
2032 inode->i_size = len-1;
2033 if (len <= SHMEM_SYMLINK_INLINE_LEN) {
2034 /* do it inline */
2035 memcpy(info->inline_symlink, symname, len);
2036 inode->i_op = &shmem_symlink_inline_operations;
2037 } else {
2038 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2039 if (error) {
2040 iput(inode);
2041 return error;
2043 inode->i_mapping->a_ops = &shmem_aops;
2044 inode->i_op = &shmem_symlink_inode_operations;
2045 kaddr = kmap_atomic(page, KM_USER0);
2046 memcpy(kaddr, symname, len);
2047 kunmap_atomic(kaddr, KM_USER0);
2048 set_page_dirty(page);
2049 unlock_page(page);
2050 page_cache_release(page);
2052 dir->i_size += BOGO_DIRENT_SIZE;
2053 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2054 d_instantiate(dentry, inode);
2055 dget(dentry);
2056 return 0;
2059 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2061 nd_set_link(nd, SHMEM_I(dentry->d_inode)->inline_symlink);
2062 return NULL;
2065 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2067 struct page *page = NULL;
2068 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2069 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2070 if (page)
2071 unlock_page(page);
2072 return page;
2075 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2077 if (!IS_ERR(nd_get_link(nd))) {
2078 struct page *page = cookie;
2079 kunmap(page);
2080 mark_page_accessed(page);
2081 page_cache_release(page);
2085 #ifdef CONFIG_TMPFS_XATTR
2087 * Superblocks without xattr inode operations may get some security.* xattr
2088 * support from the LSM "for free". As soon as we have any other xattrs
2089 * like ACLs, we also need to implement the security.* handlers at
2090 * filesystem level, though.
2093 static int shmem_xattr_get(struct dentry *dentry, const char *name,
2094 void *buffer, size_t size)
2096 struct shmem_inode_info *info;
2097 struct shmem_xattr *xattr;
2098 int ret = -ENODATA;
2100 info = SHMEM_I(dentry->d_inode);
2102 spin_lock(&info->lock);
2103 list_for_each_entry(xattr, &info->xattr_list, list) {
2104 if (strcmp(name, xattr->name))
2105 continue;
2107 ret = xattr->size;
2108 if (buffer) {
2109 if (size < xattr->size)
2110 ret = -ERANGE;
2111 else
2112 memcpy(buffer, xattr->value, xattr->size);
2114 break;
2116 spin_unlock(&info->lock);
2117 return ret;
2120 static int shmem_xattr_set(struct dentry *dentry, const char *name,
2121 const void *value, size_t size, int flags)
2123 struct inode *inode = dentry->d_inode;
2124 struct shmem_inode_info *info = SHMEM_I(inode);
2125 struct shmem_xattr *xattr;
2126 struct shmem_xattr *new_xattr = NULL;
2127 size_t len;
2128 int err = 0;
2130 /* value == NULL means remove */
2131 if (value) {
2132 /* wrap around? */
2133 len = sizeof(*new_xattr) + size;
2134 if (len <= sizeof(*new_xattr))
2135 return -ENOMEM;
2137 new_xattr = kmalloc(len, GFP_KERNEL);
2138 if (!new_xattr)
2139 return -ENOMEM;
2141 new_xattr->name = kstrdup(name, GFP_KERNEL);
2142 if (!new_xattr->name) {
2143 kfree(new_xattr);
2144 return -ENOMEM;
2147 new_xattr->size = size;
2148 memcpy(new_xattr->value, value, size);
2151 spin_lock(&info->lock);
2152 list_for_each_entry(xattr, &info->xattr_list, list) {
2153 if (!strcmp(name, xattr->name)) {
2154 if (flags & XATTR_CREATE) {
2155 xattr = new_xattr;
2156 err = -EEXIST;
2157 } else if (new_xattr) {
2158 list_replace(&xattr->list, &new_xattr->list);
2159 } else {
2160 list_del(&xattr->list);
2162 goto out;
2165 if (flags & XATTR_REPLACE) {
2166 xattr = new_xattr;
2167 err = -ENODATA;
2168 } else {
2169 list_add(&new_xattr->list, &info->xattr_list);
2170 xattr = NULL;
2172 out:
2173 spin_unlock(&info->lock);
2174 if (xattr)
2175 kfree(xattr->name);
2176 kfree(xattr);
2177 return err;
2181 static const struct xattr_handler *shmem_xattr_handlers[] = {
2182 #ifdef CONFIG_TMPFS_POSIX_ACL
2183 &generic_acl_access_handler,
2184 &generic_acl_default_handler,
2185 #endif
2186 NULL
2189 static int shmem_xattr_validate(const char *name)
2191 struct { const char *prefix; size_t len; } arr[] = {
2192 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2193 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2195 int i;
2197 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2198 size_t preflen = arr[i].len;
2199 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2200 if (!name[preflen])
2201 return -EINVAL;
2202 return 0;
2205 return -EOPNOTSUPP;
2208 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2209 void *buffer, size_t size)
2211 int err;
2214 * If this is a request for a synthetic attribute in the system.*
2215 * namespace use the generic infrastructure to resolve a handler
2216 * for it via sb->s_xattr.
2218 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2219 return generic_getxattr(dentry, name, buffer, size);
2221 err = shmem_xattr_validate(name);
2222 if (err)
2223 return err;
2225 return shmem_xattr_get(dentry, name, buffer, size);
2228 static int shmem_setxattr(struct dentry *dentry, const char *name,
2229 const void *value, size_t size, int flags)
2231 int err;
2234 * If this is a request for a synthetic attribute in the system.*
2235 * namespace use the generic infrastructure to resolve a handler
2236 * for it via sb->s_xattr.
2238 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2239 return generic_setxattr(dentry, name, value, size, flags);
2241 err = shmem_xattr_validate(name);
2242 if (err)
2243 return err;
2245 if (size == 0)
2246 value = ""; /* empty EA, do not remove */
2248 return shmem_xattr_set(dentry, name, value, size, flags);
2252 static int shmem_removexattr(struct dentry *dentry, const char *name)
2254 int err;
2257 * If this is a request for a synthetic attribute in the system.*
2258 * namespace use the generic infrastructure to resolve a handler
2259 * for it via sb->s_xattr.
2261 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2262 return generic_removexattr(dentry, name);
2264 err = shmem_xattr_validate(name);
2265 if (err)
2266 return err;
2268 return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
2271 static bool xattr_is_trusted(const char *name)
2273 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2276 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2278 bool trusted = capable(CAP_SYS_ADMIN);
2279 struct shmem_xattr *xattr;
2280 struct shmem_inode_info *info;
2281 size_t used = 0;
2283 info = SHMEM_I(dentry->d_inode);
2285 spin_lock(&info->lock);
2286 list_for_each_entry(xattr, &info->xattr_list, list) {
2287 size_t len;
2289 /* skip "trusted." attributes for unprivileged callers */
2290 if (!trusted && xattr_is_trusted(xattr->name))
2291 continue;
2293 len = strlen(xattr->name) + 1;
2294 used += len;
2295 if (buffer) {
2296 if (size < used) {
2297 used = -ERANGE;
2298 break;
2300 memcpy(buffer, xattr->name, len);
2301 buffer += len;
2304 spin_unlock(&info->lock);
2306 return used;
2308 #endif /* CONFIG_TMPFS_XATTR */
2310 static const struct inode_operations shmem_symlink_inline_operations = {
2311 .readlink = generic_readlink,
2312 .follow_link = shmem_follow_link_inline,
2313 #ifdef CONFIG_TMPFS_XATTR
2314 .setxattr = shmem_setxattr,
2315 .getxattr = shmem_getxattr,
2316 .listxattr = shmem_listxattr,
2317 .removexattr = shmem_removexattr,
2318 #endif
2321 static const struct inode_operations shmem_symlink_inode_operations = {
2322 .readlink = generic_readlink,
2323 .follow_link = shmem_follow_link,
2324 .put_link = shmem_put_link,
2325 #ifdef CONFIG_TMPFS_XATTR
2326 .setxattr = shmem_setxattr,
2327 .getxattr = shmem_getxattr,
2328 .listxattr = shmem_listxattr,
2329 .removexattr = shmem_removexattr,
2330 #endif
2333 static struct dentry *shmem_get_parent(struct dentry *child)
2335 return ERR_PTR(-ESTALE);
2338 static int shmem_match(struct inode *ino, void *vfh)
2340 __u32 *fh = vfh;
2341 __u64 inum = fh[2];
2342 inum = (inum << 32) | fh[1];
2343 return ino->i_ino == inum && fh[0] == ino->i_generation;
2346 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2347 struct fid *fid, int fh_len, int fh_type)
2349 struct inode *inode;
2350 struct dentry *dentry = NULL;
2351 u64 inum = fid->raw[2];
2352 inum = (inum << 32) | fid->raw[1];
2354 if (fh_len < 3)
2355 return NULL;
2357 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2358 shmem_match, fid->raw);
2359 if (inode) {
2360 dentry = d_find_alias(inode);
2361 iput(inode);
2364 return dentry;
2367 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2368 int connectable)
2370 struct inode *inode = dentry->d_inode;
2372 if (*len < 3) {
2373 *len = 3;
2374 return 255;
2377 if (inode_unhashed(inode)) {
2378 /* Unfortunately insert_inode_hash is not idempotent,
2379 * so as we hash inodes here rather than at creation
2380 * time, we need a lock to ensure we only try
2381 * to do it once
2383 static DEFINE_SPINLOCK(lock);
2384 spin_lock(&lock);
2385 if (inode_unhashed(inode))
2386 __insert_inode_hash(inode,
2387 inode->i_ino + inode->i_generation);
2388 spin_unlock(&lock);
2391 fh[0] = inode->i_generation;
2392 fh[1] = inode->i_ino;
2393 fh[2] = ((__u64)inode->i_ino) >> 32;
2395 *len = 3;
2396 return 1;
2399 static const struct export_operations shmem_export_ops = {
2400 .get_parent = shmem_get_parent,
2401 .encode_fh = shmem_encode_fh,
2402 .fh_to_dentry = shmem_fh_to_dentry,
2405 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2406 bool remount)
2408 char *this_char, *value, *rest;
2410 while (options != NULL) {
2411 this_char = options;
2412 for (;;) {
2414 * NUL-terminate this option: unfortunately,
2415 * mount options form a comma-separated list,
2416 * but mpol's nodelist may also contain commas.
2418 options = strchr(options, ',');
2419 if (options == NULL)
2420 break;
2421 options++;
2422 if (!isdigit(*options)) {
2423 options[-1] = '\0';
2424 break;
2427 if (!*this_char)
2428 continue;
2429 if ((value = strchr(this_char,'=')) != NULL) {
2430 *value++ = 0;
2431 } else {
2432 printk(KERN_ERR
2433 "tmpfs: No value for mount option '%s'\n",
2434 this_char);
2435 return 1;
2438 if (!strcmp(this_char,"size")) {
2439 unsigned long long size;
2440 size = memparse(value,&rest);
2441 if (*rest == '%') {
2442 size <<= PAGE_SHIFT;
2443 size *= totalram_pages;
2444 do_div(size, 100);
2445 rest++;
2447 if (*rest)
2448 goto bad_val;
2449 sbinfo->max_blocks =
2450 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2451 } else if (!strcmp(this_char,"nr_blocks")) {
2452 sbinfo->max_blocks = memparse(value, &rest);
2453 if (*rest)
2454 goto bad_val;
2455 } else if (!strcmp(this_char,"nr_inodes")) {
2456 sbinfo->max_inodes = memparse(value, &rest);
2457 if (*rest)
2458 goto bad_val;
2459 } else if (!strcmp(this_char,"mode")) {
2460 if (remount)
2461 continue;
2462 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2463 if (*rest)
2464 goto bad_val;
2465 } else if (!strcmp(this_char,"uid")) {
2466 if (remount)
2467 continue;
2468 sbinfo->uid = simple_strtoul(value, &rest, 0);
2469 if (*rest)
2470 goto bad_val;
2471 } else if (!strcmp(this_char,"gid")) {
2472 if (remount)
2473 continue;
2474 sbinfo->gid = simple_strtoul(value, &rest, 0);
2475 if (*rest)
2476 goto bad_val;
2477 } else if (!strcmp(this_char,"mpol")) {
2478 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2479 goto bad_val;
2480 } else {
2481 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2482 this_char);
2483 return 1;
2486 return 0;
2488 bad_val:
2489 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2490 value, this_char);
2491 return 1;
2495 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2497 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2498 struct shmem_sb_info config = *sbinfo;
2499 unsigned long inodes;
2500 int error = -EINVAL;
2502 if (shmem_parse_options(data, &config, true))
2503 return error;
2505 spin_lock(&sbinfo->stat_lock);
2506 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2507 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2508 goto out;
2509 if (config.max_inodes < inodes)
2510 goto out;
2512 * Those tests also disallow limited->unlimited while any are in
2513 * use, so i_blocks will always be zero when max_blocks is zero;
2514 * but we must separately disallow unlimited->limited, because
2515 * in that case we have no record of how much is already in use.
2517 if (config.max_blocks && !sbinfo->max_blocks)
2518 goto out;
2519 if (config.max_inodes && !sbinfo->max_inodes)
2520 goto out;
2522 error = 0;
2523 sbinfo->max_blocks = config.max_blocks;
2524 sbinfo->max_inodes = config.max_inodes;
2525 sbinfo->free_inodes = config.max_inodes - inodes;
2527 mpol_put(sbinfo->mpol);
2528 sbinfo->mpol = config.mpol; /* transfers initial ref */
2529 out:
2530 spin_unlock(&sbinfo->stat_lock);
2531 return error;
2534 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2536 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2538 if (sbinfo->max_blocks != shmem_default_max_blocks())
2539 seq_printf(seq, ",size=%luk",
2540 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2541 if (sbinfo->max_inodes != shmem_default_max_inodes())
2542 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2543 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2544 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2545 if (sbinfo->uid != 0)
2546 seq_printf(seq, ",uid=%u", sbinfo->uid);
2547 if (sbinfo->gid != 0)
2548 seq_printf(seq, ",gid=%u", sbinfo->gid);
2549 shmem_show_mpol(seq, sbinfo->mpol);
2550 return 0;
2552 #endif /* CONFIG_TMPFS */
2554 static void shmem_put_super(struct super_block *sb)
2556 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2558 percpu_counter_destroy(&sbinfo->used_blocks);
2559 kfree(sbinfo);
2560 sb->s_fs_info = NULL;
2563 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2565 struct inode *inode;
2566 struct dentry *root;
2567 struct shmem_sb_info *sbinfo;
2568 int err = -ENOMEM;
2570 /* Round up to L1_CACHE_BYTES to resist false sharing */
2571 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2572 L1_CACHE_BYTES), GFP_KERNEL);
2573 if (!sbinfo)
2574 return -ENOMEM;
2576 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2577 sbinfo->uid = current_fsuid();
2578 sbinfo->gid = current_fsgid();
2579 sb->s_fs_info = sbinfo;
2581 #ifdef CONFIG_TMPFS
2583 * Per default we only allow half of the physical ram per
2584 * tmpfs instance, limiting inodes to one per page of lowmem;
2585 * but the internal instance is left unlimited.
2587 if (!(sb->s_flags & MS_NOUSER)) {
2588 sbinfo->max_blocks = shmem_default_max_blocks();
2589 sbinfo->max_inodes = shmem_default_max_inodes();
2590 if (shmem_parse_options(data, sbinfo, false)) {
2591 err = -EINVAL;
2592 goto failed;
2595 sb->s_export_op = &shmem_export_ops;
2596 #else
2597 sb->s_flags |= MS_NOUSER;
2598 #endif
2600 spin_lock_init(&sbinfo->stat_lock);
2601 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2602 goto failed;
2603 sbinfo->free_inodes = sbinfo->max_inodes;
2605 sb->s_maxbytes = SHMEM_MAX_BYTES;
2606 sb->s_blocksize = PAGE_CACHE_SIZE;
2607 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2608 sb->s_magic = TMPFS_MAGIC;
2609 sb->s_op = &shmem_ops;
2610 sb->s_time_gran = 1;
2611 #ifdef CONFIG_TMPFS_XATTR
2612 sb->s_xattr = shmem_xattr_handlers;
2613 #endif
2614 #ifdef CONFIG_TMPFS_POSIX_ACL
2615 sb->s_flags |= MS_POSIXACL;
2616 #endif
2618 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2619 if (!inode)
2620 goto failed;
2621 inode->i_uid = sbinfo->uid;
2622 inode->i_gid = sbinfo->gid;
2623 root = d_alloc_root(inode);
2624 if (!root)
2625 goto failed_iput;
2626 sb->s_root = root;
2627 return 0;
2629 failed_iput:
2630 iput(inode);
2631 failed:
2632 shmem_put_super(sb);
2633 return err;
2636 static struct kmem_cache *shmem_inode_cachep;
2638 static struct inode *shmem_alloc_inode(struct super_block *sb)
2640 struct shmem_inode_info *p;
2641 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2642 if (!p)
2643 return NULL;
2644 return &p->vfs_inode;
2647 static void shmem_i_callback(struct rcu_head *head)
2649 struct inode *inode = container_of(head, struct inode, i_rcu);
2650 INIT_LIST_HEAD(&inode->i_dentry);
2651 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2654 static void shmem_destroy_inode(struct inode *inode)
2656 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2657 /* only struct inode is valid if it's an inline symlink */
2658 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2660 call_rcu(&inode->i_rcu, shmem_i_callback);
2663 static void init_once(void *foo)
2665 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2667 inode_init_once(&p->vfs_inode);
2670 static int init_inodecache(void)
2672 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2673 sizeof(struct shmem_inode_info),
2674 0, SLAB_PANIC, init_once);
2675 return 0;
2678 static void destroy_inodecache(void)
2680 kmem_cache_destroy(shmem_inode_cachep);
2683 static const struct address_space_operations shmem_aops = {
2684 .writepage = shmem_writepage,
2685 .set_page_dirty = __set_page_dirty_no_writeback,
2686 #ifdef CONFIG_TMPFS
2687 .readpage = shmem_readpage,
2688 .write_begin = shmem_write_begin,
2689 .write_end = shmem_write_end,
2690 #endif
2691 .migratepage = migrate_page,
2692 .error_remove_page = generic_error_remove_page,
2695 static const struct file_operations shmem_file_operations = {
2696 .mmap = shmem_mmap,
2697 #ifdef CONFIG_TMPFS
2698 .llseek = generic_file_llseek,
2699 .read = do_sync_read,
2700 .write = do_sync_write,
2701 .aio_read = shmem_file_aio_read,
2702 .aio_write = generic_file_aio_write,
2703 .fsync = noop_fsync,
2704 .splice_read = generic_file_splice_read,
2705 .splice_write = generic_file_splice_write,
2706 #endif
2709 static const struct inode_operations shmem_inode_operations = {
2710 .setattr = shmem_setattr,
2711 .truncate_range = shmem_truncate_range,
2712 #ifdef CONFIG_TMPFS_XATTR
2713 .setxattr = shmem_setxattr,
2714 .getxattr = shmem_getxattr,
2715 .listxattr = shmem_listxattr,
2716 .removexattr = shmem_removexattr,
2717 #endif
2718 #ifdef CONFIG_TMPFS_POSIX_ACL
2719 .check_acl = generic_check_acl,
2720 #endif
2724 static const struct inode_operations shmem_dir_inode_operations = {
2725 #ifdef CONFIG_TMPFS
2726 .create = shmem_create,
2727 .lookup = simple_lookup,
2728 .link = shmem_link,
2729 .unlink = shmem_unlink,
2730 .symlink = shmem_symlink,
2731 .mkdir = shmem_mkdir,
2732 .rmdir = shmem_rmdir,
2733 .mknod = shmem_mknod,
2734 .rename = shmem_rename,
2735 #endif
2736 #ifdef CONFIG_TMPFS_XATTR
2737 .setxattr = shmem_setxattr,
2738 .getxattr = shmem_getxattr,
2739 .listxattr = shmem_listxattr,
2740 .removexattr = shmem_removexattr,
2741 #endif
2742 #ifdef CONFIG_TMPFS_POSIX_ACL
2743 .setattr = shmem_setattr,
2744 .check_acl = generic_check_acl,
2745 #endif
2748 static const struct inode_operations shmem_special_inode_operations = {
2749 #ifdef CONFIG_TMPFS_XATTR
2750 .setxattr = shmem_setxattr,
2751 .getxattr = shmem_getxattr,
2752 .listxattr = shmem_listxattr,
2753 .removexattr = shmem_removexattr,
2754 #endif
2755 #ifdef CONFIG_TMPFS_POSIX_ACL
2756 .setattr = shmem_setattr,
2757 .check_acl = generic_check_acl,
2758 #endif
2761 static const struct super_operations shmem_ops = {
2762 .alloc_inode = shmem_alloc_inode,
2763 .destroy_inode = shmem_destroy_inode,
2764 #ifdef CONFIG_TMPFS
2765 .statfs = shmem_statfs,
2766 .remount_fs = shmem_remount_fs,
2767 .show_options = shmem_show_options,
2768 #endif
2769 .evict_inode = shmem_evict_inode,
2770 .drop_inode = generic_delete_inode,
2771 .put_super = shmem_put_super,
2774 static const struct vm_operations_struct shmem_vm_ops = {
2775 .fault = shmem_fault,
2776 #ifdef CONFIG_NUMA
2777 .set_policy = shmem_set_policy,
2778 .get_policy = shmem_get_policy,
2779 #endif
2783 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2784 int flags, const char *dev_name, void *data)
2786 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2789 static struct file_system_type tmpfs_fs_type = {
2790 .owner = THIS_MODULE,
2791 .name = "tmpfs",
2792 .mount = shmem_mount,
2793 .kill_sb = kill_litter_super,
2796 int __init init_tmpfs(void)
2798 int error;
2800 error = bdi_init(&shmem_backing_dev_info);
2801 if (error)
2802 goto out4;
2804 error = init_inodecache();
2805 if (error)
2806 goto out3;
2808 error = register_filesystem(&tmpfs_fs_type);
2809 if (error) {
2810 printk(KERN_ERR "Could not register tmpfs\n");
2811 goto out2;
2814 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2815 tmpfs_fs_type.name, NULL);
2816 if (IS_ERR(shm_mnt)) {
2817 error = PTR_ERR(shm_mnt);
2818 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2819 goto out1;
2821 return 0;
2823 out1:
2824 unregister_filesystem(&tmpfs_fs_type);
2825 out2:
2826 destroy_inodecache();
2827 out3:
2828 bdi_destroy(&shmem_backing_dev_info);
2829 out4:
2830 shm_mnt = ERR_PTR(error);
2831 return error;
2834 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2836 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2837 * @inode: the inode to be searched
2838 * @pgoff: the offset to be searched
2839 * @pagep: the pointer for the found page to be stored
2840 * @ent: the pointer for the found swap entry to be stored
2842 * If a page is found, refcount of it is incremented. Callers should handle
2843 * these refcount.
2845 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2846 struct page **pagep, swp_entry_t *ent)
2848 swp_entry_t entry = { .val = 0 }, *ptr;
2849 struct page *page = NULL;
2850 struct shmem_inode_info *info = SHMEM_I(inode);
2852 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2853 goto out;
2855 spin_lock(&info->lock);
2856 ptr = shmem_swp_entry(info, pgoff, NULL);
2857 #ifdef CONFIG_SWAP
2858 if (ptr && ptr->val) {
2859 entry.val = ptr->val;
2860 page = find_get_page(&swapper_space, entry.val);
2861 } else
2862 #endif
2863 page = find_get_page(inode->i_mapping, pgoff);
2864 if (ptr)
2865 shmem_swp_unmap(ptr);
2866 spin_unlock(&info->lock);
2867 out:
2868 *pagep = page;
2869 *ent = entry;
2871 #endif
2873 #else /* !CONFIG_SHMEM */
2876 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2878 * This is intended for small system where the benefits of the full
2879 * shmem code (swap-backed and resource-limited) are outweighed by
2880 * their complexity. On systems without swap this code should be
2881 * effectively equivalent, but much lighter weight.
2884 #include <linux/ramfs.h>
2886 static struct file_system_type tmpfs_fs_type = {
2887 .name = "tmpfs",
2888 .mount = ramfs_mount,
2889 .kill_sb = kill_litter_super,
2892 int __init init_tmpfs(void)
2894 BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2896 shm_mnt = kern_mount(&tmpfs_fs_type);
2897 BUG_ON(IS_ERR(shm_mnt));
2899 return 0;
2902 int shmem_unuse(swp_entry_t entry, struct page *page)
2904 return 0;
2907 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2909 return 0;
2912 void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
2914 truncate_inode_pages_range(inode->i_mapping, start, end);
2916 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2918 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2920 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2921 * @inode: the inode to be searched
2922 * @pgoff: the offset to be searched
2923 * @pagep: the pointer for the found page to be stored
2924 * @ent: the pointer for the found swap entry to be stored
2926 * If a page is found, refcount of it is incremented. Callers should handle
2927 * these refcount.
2929 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2930 struct page **pagep, swp_entry_t *ent)
2932 struct page *page = NULL;
2934 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2935 goto out;
2936 page = find_get_page(inode->i_mapping, pgoff);
2937 out:
2938 *pagep = page;
2939 *ent = (swp_entry_t){ .val = 0 };
2941 #endif
2943 #define shmem_vm_ops generic_file_vm_ops
2944 #define shmem_file_operations ramfs_file_operations
2945 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2946 #define shmem_acct_size(flags, size) 0
2947 #define shmem_unacct_size(flags, size) do {} while (0)
2948 #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE
2950 #endif /* CONFIG_SHMEM */
2952 /* common code */
2955 * shmem_file_setup - get an unlinked file living in tmpfs
2956 * @name: name for dentry (to be seen in /proc/<pid>/maps
2957 * @size: size to be set for the file
2958 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2960 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2962 int error;
2963 struct file *file;
2964 struct inode *inode;
2965 struct path path;
2966 struct dentry *root;
2967 struct qstr this;
2969 if (IS_ERR(shm_mnt))
2970 return (void *)shm_mnt;
2972 if (size < 0 || size > SHMEM_MAX_BYTES)
2973 return ERR_PTR(-EINVAL);
2975 if (shmem_acct_size(flags, size))
2976 return ERR_PTR(-ENOMEM);
2978 error = -ENOMEM;
2979 this.name = name;
2980 this.len = strlen(name);
2981 this.hash = 0; /* will go */
2982 root = shm_mnt->mnt_root;
2983 path.dentry = d_alloc(root, &this);
2984 if (!path.dentry)
2985 goto put_memory;
2986 path.mnt = mntget(shm_mnt);
2988 error = -ENOSPC;
2989 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2990 if (!inode)
2991 goto put_dentry;
2993 d_instantiate(path.dentry, inode);
2994 inode->i_size = size;
2995 inode->i_nlink = 0; /* It is unlinked */
2996 #ifndef CONFIG_MMU
2997 error = ramfs_nommu_expand_for_mapping(inode, size);
2998 if (error)
2999 goto put_dentry;
3000 #endif
3002 error = -ENFILE;
3003 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3004 &shmem_file_operations);
3005 if (!file)
3006 goto put_dentry;
3008 return file;
3010 put_dentry:
3011 path_put(&path);
3012 put_memory:
3013 shmem_unacct_size(flags, size);
3014 return ERR_PTR(error);
3016 EXPORT_SYMBOL_GPL(shmem_file_setup);
3019 * shmem_zero_setup - setup a shared anonymous mapping
3020 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3022 int shmem_zero_setup(struct vm_area_struct *vma)
3024 struct file *file;
3025 loff_t size = vma->vm_end - vma->vm_start;
3027 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3028 if (IS_ERR(file))
3029 return PTR_ERR(file);
3031 if (vma->vm_file)
3032 fput(vma->vm_file);
3033 vma->vm_file = file;
3034 vma->vm_ops = &shmem_vm_ops;
3035 vma->vm_flags |= VM_CAN_NONLINEAR;
3036 return 0;
3040 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3041 * @mapping: the page's address_space
3042 * @index: the page index
3043 * @gfp: the page allocator flags to use if allocating
3045 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3046 * with any new page allocations done using the specified allocation flags.
3047 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3048 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3049 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3051 * Provide a stub for those callers to start using now, then later
3052 * flesh it out to call shmem_getpage() with additional gfp mask, when
3053 * shmem_file_splice_read() is added and shmem_readpage() is removed.
3055 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3056 pgoff_t index, gfp_t gfp)
3058 return read_cache_page_gfp(mapping, index, gfp);
3060 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);