thinkpad-acpi: basic ALSA mixer support (v2)
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / virt / kvm / kvm_main.c
blobb3bcd601d27af30e93820a8924f6f88d1914ee3e
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "iodev.h"
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
45 #include <asm/processor.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
50 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
51 #include "coalesced_mmio.h"
52 #endif
54 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
55 #include <linux/pci.h>
56 #include <linux/interrupt.h>
57 #include "irq.h"
58 #endif
60 MODULE_AUTHOR("Qumranet");
61 MODULE_LICENSE("GPL");
63 DEFINE_SPINLOCK(kvm_lock);
64 LIST_HEAD(vm_list);
66 static cpumask_t cpus_hardware_enabled;
68 struct kmem_cache *kvm_vcpu_cache;
69 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
71 static __read_mostly struct preempt_ops kvm_preempt_ops;
73 struct dentry *kvm_debugfs_dir;
75 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
76 unsigned long arg);
78 bool kvm_rebooting;
80 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
81 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
82 int assigned_dev_id)
84 struct list_head *ptr;
85 struct kvm_assigned_dev_kernel *match;
87 list_for_each(ptr, head) {
88 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
89 if (match->assigned_dev_id == assigned_dev_id)
90 return match;
92 return NULL;
95 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
97 struct kvm_assigned_dev_kernel *assigned_dev;
99 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
100 interrupt_work);
102 /* This is taken to safely inject irq inside the guest. When
103 * the interrupt injection (or the ioapic code) uses a
104 * finer-grained lock, update this
106 mutex_lock(&assigned_dev->kvm->lock);
107 kvm_set_irq(assigned_dev->kvm,
108 assigned_dev->irq_source_id,
109 assigned_dev->guest_irq, 1);
110 mutex_unlock(&assigned_dev->kvm->lock);
111 kvm_put_kvm(assigned_dev->kvm);
114 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
116 struct kvm_assigned_dev_kernel *assigned_dev =
117 (struct kvm_assigned_dev_kernel *) dev_id;
119 kvm_get_kvm(assigned_dev->kvm);
120 schedule_work(&assigned_dev->interrupt_work);
121 disable_irq_nosync(irq);
122 return IRQ_HANDLED;
125 /* Ack the irq line for an assigned device */
126 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
128 struct kvm_assigned_dev_kernel *dev;
130 if (kian->gsi == -1)
131 return;
133 dev = container_of(kian, struct kvm_assigned_dev_kernel,
134 ack_notifier);
135 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
136 enable_irq(dev->host_irq);
139 static void kvm_free_assigned_device(struct kvm *kvm,
140 struct kvm_assigned_dev_kernel
141 *assigned_dev)
143 if (irqchip_in_kernel(kvm) && assigned_dev->irq_requested)
144 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
146 kvm_unregister_irq_ack_notifier(kvm, &assigned_dev->ack_notifier);
147 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
149 if (cancel_work_sync(&assigned_dev->interrupt_work))
150 /* We had pending work. That means we will have to take
151 * care of kvm_put_kvm.
153 kvm_put_kvm(kvm);
155 pci_release_regions(assigned_dev->dev);
156 pci_disable_device(assigned_dev->dev);
157 pci_dev_put(assigned_dev->dev);
159 list_del(&assigned_dev->list);
160 kfree(assigned_dev);
163 void kvm_free_all_assigned_devices(struct kvm *kvm)
165 struct list_head *ptr, *ptr2;
166 struct kvm_assigned_dev_kernel *assigned_dev;
168 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
169 assigned_dev = list_entry(ptr,
170 struct kvm_assigned_dev_kernel,
171 list);
173 kvm_free_assigned_device(kvm, assigned_dev);
177 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
178 struct kvm_assigned_irq
179 *assigned_irq)
181 int r = 0;
182 struct kvm_assigned_dev_kernel *match;
184 mutex_lock(&kvm->lock);
186 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
187 assigned_irq->assigned_dev_id);
188 if (!match) {
189 mutex_unlock(&kvm->lock);
190 return -EINVAL;
193 if (match->irq_requested) {
194 match->guest_irq = assigned_irq->guest_irq;
195 match->ack_notifier.gsi = assigned_irq->guest_irq;
196 mutex_unlock(&kvm->lock);
197 return 0;
200 INIT_WORK(&match->interrupt_work,
201 kvm_assigned_dev_interrupt_work_handler);
203 if (irqchip_in_kernel(kvm)) {
204 if (!capable(CAP_SYS_RAWIO)) {
205 r = -EPERM;
206 goto out_release;
209 if (assigned_irq->host_irq)
210 match->host_irq = assigned_irq->host_irq;
211 else
212 match->host_irq = match->dev->irq;
213 match->guest_irq = assigned_irq->guest_irq;
214 match->ack_notifier.gsi = assigned_irq->guest_irq;
215 match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
216 kvm_register_irq_ack_notifier(kvm, &match->ack_notifier);
217 r = kvm_request_irq_source_id(kvm);
218 if (r < 0)
219 goto out_release;
220 else
221 match->irq_source_id = r;
223 /* Even though this is PCI, we don't want to use shared
224 * interrupts. Sharing host devices with guest-assigned devices
225 * on the same interrupt line is not a happy situation: there
226 * are going to be long delays in accepting, acking, etc.
228 if (request_irq(match->host_irq, kvm_assigned_dev_intr, 0,
229 "kvm_assigned_device", (void *)match)) {
230 r = -EIO;
231 goto out_release;
235 match->irq_requested = true;
236 mutex_unlock(&kvm->lock);
237 return r;
238 out_release:
239 mutex_unlock(&kvm->lock);
240 kvm_free_assigned_device(kvm, match);
241 return r;
244 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
245 struct kvm_assigned_pci_dev *assigned_dev)
247 int r = 0;
248 struct kvm_assigned_dev_kernel *match;
249 struct pci_dev *dev;
251 mutex_lock(&kvm->lock);
253 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
254 assigned_dev->assigned_dev_id);
255 if (match) {
256 /* device already assigned */
257 r = -EINVAL;
258 goto out;
261 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
262 if (match == NULL) {
263 printk(KERN_INFO "%s: Couldn't allocate memory\n",
264 __func__);
265 r = -ENOMEM;
266 goto out;
268 dev = pci_get_bus_and_slot(assigned_dev->busnr,
269 assigned_dev->devfn);
270 if (!dev) {
271 printk(KERN_INFO "%s: host device not found\n", __func__);
272 r = -EINVAL;
273 goto out_free;
275 if (pci_enable_device(dev)) {
276 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
277 r = -EBUSY;
278 goto out_put;
280 r = pci_request_regions(dev, "kvm_assigned_device");
281 if (r) {
282 printk(KERN_INFO "%s: Could not get access to device regions\n",
283 __func__);
284 goto out_disable;
286 match->assigned_dev_id = assigned_dev->assigned_dev_id;
287 match->host_busnr = assigned_dev->busnr;
288 match->host_devfn = assigned_dev->devfn;
289 match->dev = dev;
291 match->kvm = kvm;
293 list_add(&match->list, &kvm->arch.assigned_dev_head);
295 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
296 r = kvm_iommu_map_guest(kvm, match);
297 if (r)
298 goto out_list_del;
301 out:
302 mutex_unlock(&kvm->lock);
303 return r;
304 out_list_del:
305 list_del(&match->list);
306 pci_release_regions(dev);
307 out_disable:
308 pci_disable_device(dev);
309 out_put:
310 pci_dev_put(dev);
311 out_free:
312 kfree(match);
313 mutex_unlock(&kvm->lock);
314 return r;
316 #endif
318 static inline int valid_vcpu(int n)
320 return likely(n >= 0 && n < KVM_MAX_VCPUS);
323 inline int kvm_is_mmio_pfn(pfn_t pfn)
325 if (pfn_valid(pfn))
326 return PageReserved(pfn_to_page(pfn));
328 return true;
332 * Switches to specified vcpu, until a matching vcpu_put()
334 void vcpu_load(struct kvm_vcpu *vcpu)
336 int cpu;
338 mutex_lock(&vcpu->mutex);
339 cpu = get_cpu();
340 preempt_notifier_register(&vcpu->preempt_notifier);
341 kvm_arch_vcpu_load(vcpu, cpu);
342 put_cpu();
345 void vcpu_put(struct kvm_vcpu *vcpu)
347 preempt_disable();
348 kvm_arch_vcpu_put(vcpu);
349 preempt_notifier_unregister(&vcpu->preempt_notifier);
350 preempt_enable();
351 mutex_unlock(&vcpu->mutex);
354 static void ack_flush(void *_completed)
358 void kvm_flush_remote_tlbs(struct kvm *kvm)
360 int i, cpu, me;
361 cpumask_t cpus;
362 struct kvm_vcpu *vcpu;
364 me = get_cpu();
365 cpus_clear(cpus);
366 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
367 vcpu = kvm->vcpus[i];
368 if (!vcpu)
369 continue;
370 if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
371 continue;
372 cpu = vcpu->cpu;
373 if (cpu != -1 && cpu != me)
374 cpu_set(cpu, cpus);
376 if (cpus_empty(cpus))
377 goto out;
378 ++kvm->stat.remote_tlb_flush;
379 smp_call_function_mask(cpus, ack_flush, NULL, 1);
380 out:
381 put_cpu();
384 void kvm_reload_remote_mmus(struct kvm *kvm)
386 int i, cpu, me;
387 cpumask_t cpus;
388 struct kvm_vcpu *vcpu;
390 me = get_cpu();
391 cpus_clear(cpus);
392 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
393 vcpu = kvm->vcpus[i];
394 if (!vcpu)
395 continue;
396 if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
397 continue;
398 cpu = vcpu->cpu;
399 if (cpu != -1 && cpu != me)
400 cpu_set(cpu, cpus);
402 if (cpus_empty(cpus))
403 goto out;
404 smp_call_function_mask(cpus, ack_flush, NULL, 1);
405 out:
406 put_cpu();
410 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
412 struct page *page;
413 int r;
415 mutex_init(&vcpu->mutex);
416 vcpu->cpu = -1;
417 vcpu->kvm = kvm;
418 vcpu->vcpu_id = id;
419 init_waitqueue_head(&vcpu->wq);
421 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
422 if (!page) {
423 r = -ENOMEM;
424 goto fail;
426 vcpu->run = page_address(page);
428 r = kvm_arch_vcpu_init(vcpu);
429 if (r < 0)
430 goto fail_free_run;
431 return 0;
433 fail_free_run:
434 free_page((unsigned long)vcpu->run);
435 fail:
436 return r;
438 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
440 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
442 kvm_arch_vcpu_uninit(vcpu);
443 free_page((unsigned long)vcpu->run);
445 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
447 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
448 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
450 return container_of(mn, struct kvm, mmu_notifier);
453 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
454 struct mm_struct *mm,
455 unsigned long address)
457 struct kvm *kvm = mmu_notifier_to_kvm(mn);
458 int need_tlb_flush;
461 * When ->invalidate_page runs, the linux pte has been zapped
462 * already but the page is still allocated until
463 * ->invalidate_page returns. So if we increase the sequence
464 * here the kvm page fault will notice if the spte can't be
465 * established because the page is going to be freed. If
466 * instead the kvm page fault establishes the spte before
467 * ->invalidate_page runs, kvm_unmap_hva will release it
468 * before returning.
470 * The sequence increase only need to be seen at spin_unlock
471 * time, and not at spin_lock time.
473 * Increasing the sequence after the spin_unlock would be
474 * unsafe because the kvm page fault could then establish the
475 * pte after kvm_unmap_hva returned, without noticing the page
476 * is going to be freed.
478 spin_lock(&kvm->mmu_lock);
479 kvm->mmu_notifier_seq++;
480 need_tlb_flush = kvm_unmap_hva(kvm, address);
481 spin_unlock(&kvm->mmu_lock);
483 /* we've to flush the tlb before the pages can be freed */
484 if (need_tlb_flush)
485 kvm_flush_remote_tlbs(kvm);
489 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
490 struct mm_struct *mm,
491 unsigned long start,
492 unsigned long end)
494 struct kvm *kvm = mmu_notifier_to_kvm(mn);
495 int need_tlb_flush = 0;
497 spin_lock(&kvm->mmu_lock);
499 * The count increase must become visible at unlock time as no
500 * spte can be established without taking the mmu_lock and
501 * count is also read inside the mmu_lock critical section.
503 kvm->mmu_notifier_count++;
504 for (; start < end; start += PAGE_SIZE)
505 need_tlb_flush |= kvm_unmap_hva(kvm, start);
506 spin_unlock(&kvm->mmu_lock);
508 /* we've to flush the tlb before the pages can be freed */
509 if (need_tlb_flush)
510 kvm_flush_remote_tlbs(kvm);
513 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
514 struct mm_struct *mm,
515 unsigned long start,
516 unsigned long end)
518 struct kvm *kvm = mmu_notifier_to_kvm(mn);
520 spin_lock(&kvm->mmu_lock);
522 * This sequence increase will notify the kvm page fault that
523 * the page that is going to be mapped in the spte could have
524 * been freed.
526 kvm->mmu_notifier_seq++;
528 * The above sequence increase must be visible before the
529 * below count decrease but both values are read by the kvm
530 * page fault under mmu_lock spinlock so we don't need to add
531 * a smb_wmb() here in between the two.
533 kvm->mmu_notifier_count--;
534 spin_unlock(&kvm->mmu_lock);
536 BUG_ON(kvm->mmu_notifier_count < 0);
539 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
540 struct mm_struct *mm,
541 unsigned long address)
543 struct kvm *kvm = mmu_notifier_to_kvm(mn);
544 int young;
546 spin_lock(&kvm->mmu_lock);
547 young = kvm_age_hva(kvm, address);
548 spin_unlock(&kvm->mmu_lock);
550 if (young)
551 kvm_flush_remote_tlbs(kvm);
553 return young;
556 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
557 struct mm_struct *mm)
559 struct kvm *kvm = mmu_notifier_to_kvm(mn);
560 kvm_arch_flush_shadow(kvm);
563 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
564 .invalidate_page = kvm_mmu_notifier_invalidate_page,
565 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
566 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
567 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
568 .release = kvm_mmu_notifier_release,
570 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
572 static struct kvm *kvm_create_vm(void)
574 struct kvm *kvm = kvm_arch_create_vm();
575 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
576 struct page *page;
577 #endif
579 if (IS_ERR(kvm))
580 goto out;
582 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
583 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
584 if (!page) {
585 kfree(kvm);
586 return ERR_PTR(-ENOMEM);
588 kvm->coalesced_mmio_ring =
589 (struct kvm_coalesced_mmio_ring *)page_address(page);
590 #endif
592 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
594 int err;
595 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
596 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
597 if (err) {
598 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
599 put_page(page);
600 #endif
601 kfree(kvm);
602 return ERR_PTR(err);
605 #endif
607 kvm->mm = current->mm;
608 atomic_inc(&kvm->mm->mm_count);
609 spin_lock_init(&kvm->mmu_lock);
610 kvm_io_bus_init(&kvm->pio_bus);
611 mutex_init(&kvm->lock);
612 kvm_io_bus_init(&kvm->mmio_bus);
613 init_rwsem(&kvm->slots_lock);
614 atomic_set(&kvm->users_count, 1);
615 spin_lock(&kvm_lock);
616 list_add(&kvm->vm_list, &vm_list);
617 spin_unlock(&kvm_lock);
618 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
619 kvm_coalesced_mmio_init(kvm);
620 #endif
621 out:
622 return kvm;
626 * Free any memory in @free but not in @dont.
628 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
629 struct kvm_memory_slot *dont)
631 if (!dont || free->rmap != dont->rmap)
632 vfree(free->rmap);
634 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
635 vfree(free->dirty_bitmap);
637 if (!dont || free->lpage_info != dont->lpage_info)
638 vfree(free->lpage_info);
640 free->npages = 0;
641 free->dirty_bitmap = NULL;
642 free->rmap = NULL;
643 free->lpage_info = NULL;
646 void kvm_free_physmem(struct kvm *kvm)
648 int i;
650 for (i = 0; i < kvm->nmemslots; ++i)
651 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
654 static void kvm_destroy_vm(struct kvm *kvm)
656 struct mm_struct *mm = kvm->mm;
658 spin_lock(&kvm_lock);
659 list_del(&kvm->vm_list);
660 spin_unlock(&kvm_lock);
661 kvm_io_bus_destroy(&kvm->pio_bus);
662 kvm_io_bus_destroy(&kvm->mmio_bus);
663 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
664 if (kvm->coalesced_mmio_ring != NULL)
665 free_page((unsigned long)kvm->coalesced_mmio_ring);
666 #endif
667 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
668 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
669 #endif
670 kvm_arch_destroy_vm(kvm);
671 mmdrop(mm);
674 void kvm_get_kvm(struct kvm *kvm)
676 atomic_inc(&kvm->users_count);
678 EXPORT_SYMBOL_GPL(kvm_get_kvm);
680 void kvm_put_kvm(struct kvm *kvm)
682 if (atomic_dec_and_test(&kvm->users_count))
683 kvm_destroy_vm(kvm);
685 EXPORT_SYMBOL_GPL(kvm_put_kvm);
688 static int kvm_vm_release(struct inode *inode, struct file *filp)
690 struct kvm *kvm = filp->private_data;
692 kvm_put_kvm(kvm);
693 return 0;
697 * Allocate some memory and give it an address in the guest physical address
698 * space.
700 * Discontiguous memory is allowed, mostly for framebuffers.
702 * Must be called holding mmap_sem for write.
704 int __kvm_set_memory_region(struct kvm *kvm,
705 struct kvm_userspace_memory_region *mem,
706 int user_alloc)
708 int r;
709 gfn_t base_gfn;
710 unsigned long npages;
711 unsigned long i;
712 struct kvm_memory_slot *memslot;
713 struct kvm_memory_slot old, new;
715 r = -EINVAL;
716 /* General sanity checks */
717 if (mem->memory_size & (PAGE_SIZE - 1))
718 goto out;
719 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
720 goto out;
721 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
722 goto out;
723 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
724 goto out;
726 memslot = &kvm->memslots[mem->slot];
727 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
728 npages = mem->memory_size >> PAGE_SHIFT;
730 if (!npages)
731 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
733 new = old = *memslot;
735 new.base_gfn = base_gfn;
736 new.npages = npages;
737 new.flags = mem->flags;
739 /* Disallow changing a memory slot's size. */
740 r = -EINVAL;
741 if (npages && old.npages && npages != old.npages)
742 goto out_free;
744 /* Check for overlaps */
745 r = -EEXIST;
746 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
747 struct kvm_memory_slot *s = &kvm->memslots[i];
749 if (s == memslot)
750 continue;
751 if (!((base_gfn + npages <= s->base_gfn) ||
752 (base_gfn >= s->base_gfn + s->npages)))
753 goto out_free;
756 /* Free page dirty bitmap if unneeded */
757 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
758 new.dirty_bitmap = NULL;
760 r = -ENOMEM;
762 /* Allocate if a slot is being created */
763 #ifndef CONFIG_S390
764 if (npages && !new.rmap) {
765 new.rmap = vmalloc(npages * sizeof(struct page *));
767 if (!new.rmap)
768 goto out_free;
770 memset(new.rmap, 0, npages * sizeof(*new.rmap));
772 new.user_alloc = user_alloc;
774 * hva_to_rmmap() serialzies with the mmu_lock and to be
775 * safe it has to ignore memslots with !user_alloc &&
776 * !userspace_addr.
778 if (user_alloc)
779 new.userspace_addr = mem->userspace_addr;
780 else
781 new.userspace_addr = 0;
783 if (npages && !new.lpage_info) {
784 int largepages = npages / KVM_PAGES_PER_HPAGE;
785 if (npages % KVM_PAGES_PER_HPAGE)
786 largepages++;
787 if (base_gfn % KVM_PAGES_PER_HPAGE)
788 largepages++;
790 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
792 if (!new.lpage_info)
793 goto out_free;
795 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
797 if (base_gfn % KVM_PAGES_PER_HPAGE)
798 new.lpage_info[0].write_count = 1;
799 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
800 new.lpage_info[largepages-1].write_count = 1;
803 /* Allocate page dirty bitmap if needed */
804 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
805 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
807 new.dirty_bitmap = vmalloc(dirty_bytes);
808 if (!new.dirty_bitmap)
809 goto out_free;
810 memset(new.dirty_bitmap, 0, dirty_bytes);
812 #endif /* not defined CONFIG_S390 */
814 if (!npages)
815 kvm_arch_flush_shadow(kvm);
817 spin_lock(&kvm->mmu_lock);
818 if (mem->slot >= kvm->nmemslots)
819 kvm->nmemslots = mem->slot + 1;
821 *memslot = new;
822 spin_unlock(&kvm->mmu_lock);
824 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
825 if (r) {
826 spin_lock(&kvm->mmu_lock);
827 *memslot = old;
828 spin_unlock(&kvm->mmu_lock);
829 goto out_free;
832 kvm_free_physmem_slot(&old, npages ? &new : NULL);
833 /* Slot deletion case: we have to update the current slot */
834 if (!npages)
835 *memslot = old;
836 #ifdef CONFIG_DMAR
837 /* map the pages in iommu page table */
838 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
839 if (r)
840 goto out;
841 #endif
842 return 0;
844 out_free:
845 kvm_free_physmem_slot(&new, &old);
846 out:
847 return r;
850 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
852 int kvm_set_memory_region(struct kvm *kvm,
853 struct kvm_userspace_memory_region *mem,
854 int user_alloc)
856 int r;
858 down_write(&kvm->slots_lock);
859 r = __kvm_set_memory_region(kvm, mem, user_alloc);
860 up_write(&kvm->slots_lock);
861 return r;
863 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
865 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
866 struct
867 kvm_userspace_memory_region *mem,
868 int user_alloc)
870 if (mem->slot >= KVM_MEMORY_SLOTS)
871 return -EINVAL;
872 return kvm_set_memory_region(kvm, mem, user_alloc);
875 int kvm_get_dirty_log(struct kvm *kvm,
876 struct kvm_dirty_log *log, int *is_dirty)
878 struct kvm_memory_slot *memslot;
879 int r, i;
880 int n;
881 unsigned long any = 0;
883 r = -EINVAL;
884 if (log->slot >= KVM_MEMORY_SLOTS)
885 goto out;
887 memslot = &kvm->memslots[log->slot];
888 r = -ENOENT;
889 if (!memslot->dirty_bitmap)
890 goto out;
892 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
894 for (i = 0; !any && i < n/sizeof(long); ++i)
895 any = memslot->dirty_bitmap[i];
897 r = -EFAULT;
898 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
899 goto out;
901 if (any)
902 *is_dirty = 1;
904 r = 0;
905 out:
906 return r;
909 int is_error_page(struct page *page)
911 return page == bad_page;
913 EXPORT_SYMBOL_GPL(is_error_page);
915 int is_error_pfn(pfn_t pfn)
917 return pfn == bad_pfn;
919 EXPORT_SYMBOL_GPL(is_error_pfn);
921 static inline unsigned long bad_hva(void)
923 return PAGE_OFFSET;
926 int kvm_is_error_hva(unsigned long addr)
928 return addr == bad_hva();
930 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
932 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
934 int i;
936 for (i = 0; i < kvm->nmemslots; ++i) {
937 struct kvm_memory_slot *memslot = &kvm->memslots[i];
939 if (gfn >= memslot->base_gfn
940 && gfn < memslot->base_gfn + memslot->npages)
941 return memslot;
943 return NULL;
945 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
947 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
949 gfn = unalias_gfn(kvm, gfn);
950 return gfn_to_memslot_unaliased(kvm, gfn);
953 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
955 int i;
957 gfn = unalias_gfn(kvm, gfn);
958 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
959 struct kvm_memory_slot *memslot = &kvm->memslots[i];
961 if (gfn >= memslot->base_gfn
962 && gfn < memslot->base_gfn + memslot->npages)
963 return 1;
965 return 0;
967 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
969 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
971 struct kvm_memory_slot *slot;
973 gfn = unalias_gfn(kvm, gfn);
974 slot = gfn_to_memslot_unaliased(kvm, gfn);
975 if (!slot)
976 return bad_hva();
977 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
979 EXPORT_SYMBOL_GPL(gfn_to_hva);
981 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
983 struct page *page[1];
984 unsigned long addr;
985 int npages;
986 pfn_t pfn;
988 might_sleep();
990 addr = gfn_to_hva(kvm, gfn);
991 if (kvm_is_error_hva(addr)) {
992 get_page(bad_page);
993 return page_to_pfn(bad_page);
996 npages = get_user_pages_fast(addr, 1, 1, page);
998 if (unlikely(npages != 1)) {
999 struct vm_area_struct *vma;
1001 down_read(&current->mm->mmap_sem);
1002 vma = find_vma(current->mm, addr);
1004 if (vma == NULL || addr < vma->vm_start ||
1005 !(vma->vm_flags & VM_PFNMAP)) {
1006 up_read(&current->mm->mmap_sem);
1007 get_page(bad_page);
1008 return page_to_pfn(bad_page);
1011 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1012 up_read(&current->mm->mmap_sem);
1013 BUG_ON(!kvm_is_mmio_pfn(pfn));
1014 } else
1015 pfn = page_to_pfn(page[0]);
1017 return pfn;
1020 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1022 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1024 pfn_t pfn;
1026 pfn = gfn_to_pfn(kvm, gfn);
1027 if (!kvm_is_mmio_pfn(pfn))
1028 return pfn_to_page(pfn);
1030 WARN_ON(kvm_is_mmio_pfn(pfn));
1032 get_page(bad_page);
1033 return bad_page;
1036 EXPORT_SYMBOL_GPL(gfn_to_page);
1038 void kvm_release_page_clean(struct page *page)
1040 kvm_release_pfn_clean(page_to_pfn(page));
1042 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1044 void kvm_release_pfn_clean(pfn_t pfn)
1046 if (!kvm_is_mmio_pfn(pfn))
1047 put_page(pfn_to_page(pfn));
1049 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1051 void kvm_release_page_dirty(struct page *page)
1053 kvm_release_pfn_dirty(page_to_pfn(page));
1055 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1057 void kvm_release_pfn_dirty(pfn_t pfn)
1059 kvm_set_pfn_dirty(pfn);
1060 kvm_release_pfn_clean(pfn);
1062 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1064 void kvm_set_page_dirty(struct page *page)
1066 kvm_set_pfn_dirty(page_to_pfn(page));
1068 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1070 void kvm_set_pfn_dirty(pfn_t pfn)
1072 if (!kvm_is_mmio_pfn(pfn)) {
1073 struct page *page = pfn_to_page(pfn);
1074 if (!PageReserved(page))
1075 SetPageDirty(page);
1078 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1080 void kvm_set_pfn_accessed(pfn_t pfn)
1082 if (!kvm_is_mmio_pfn(pfn))
1083 mark_page_accessed(pfn_to_page(pfn));
1085 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1087 void kvm_get_pfn(pfn_t pfn)
1089 if (!kvm_is_mmio_pfn(pfn))
1090 get_page(pfn_to_page(pfn));
1092 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1094 static int next_segment(unsigned long len, int offset)
1096 if (len > PAGE_SIZE - offset)
1097 return PAGE_SIZE - offset;
1098 else
1099 return len;
1102 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1103 int len)
1105 int r;
1106 unsigned long addr;
1108 addr = gfn_to_hva(kvm, gfn);
1109 if (kvm_is_error_hva(addr))
1110 return -EFAULT;
1111 r = copy_from_user(data, (void __user *)addr + offset, len);
1112 if (r)
1113 return -EFAULT;
1114 return 0;
1116 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1118 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1120 gfn_t gfn = gpa >> PAGE_SHIFT;
1121 int seg;
1122 int offset = offset_in_page(gpa);
1123 int ret;
1125 while ((seg = next_segment(len, offset)) != 0) {
1126 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1127 if (ret < 0)
1128 return ret;
1129 offset = 0;
1130 len -= seg;
1131 data += seg;
1132 ++gfn;
1134 return 0;
1136 EXPORT_SYMBOL_GPL(kvm_read_guest);
1138 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1139 unsigned long len)
1141 int r;
1142 unsigned long addr;
1143 gfn_t gfn = gpa >> PAGE_SHIFT;
1144 int offset = offset_in_page(gpa);
1146 addr = gfn_to_hva(kvm, gfn);
1147 if (kvm_is_error_hva(addr))
1148 return -EFAULT;
1149 pagefault_disable();
1150 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1151 pagefault_enable();
1152 if (r)
1153 return -EFAULT;
1154 return 0;
1156 EXPORT_SYMBOL(kvm_read_guest_atomic);
1158 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1159 int offset, int len)
1161 int r;
1162 unsigned long addr;
1164 addr = gfn_to_hva(kvm, gfn);
1165 if (kvm_is_error_hva(addr))
1166 return -EFAULT;
1167 r = copy_to_user((void __user *)addr + offset, data, len);
1168 if (r)
1169 return -EFAULT;
1170 mark_page_dirty(kvm, gfn);
1171 return 0;
1173 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1175 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1176 unsigned long len)
1178 gfn_t gfn = gpa >> PAGE_SHIFT;
1179 int seg;
1180 int offset = offset_in_page(gpa);
1181 int ret;
1183 while ((seg = next_segment(len, offset)) != 0) {
1184 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1185 if (ret < 0)
1186 return ret;
1187 offset = 0;
1188 len -= seg;
1189 data += seg;
1190 ++gfn;
1192 return 0;
1195 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1197 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1199 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1201 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1203 gfn_t gfn = gpa >> PAGE_SHIFT;
1204 int seg;
1205 int offset = offset_in_page(gpa);
1206 int ret;
1208 while ((seg = next_segment(len, offset)) != 0) {
1209 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1210 if (ret < 0)
1211 return ret;
1212 offset = 0;
1213 len -= seg;
1214 ++gfn;
1216 return 0;
1218 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1220 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1222 struct kvm_memory_slot *memslot;
1224 gfn = unalias_gfn(kvm, gfn);
1225 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1226 if (memslot && memslot->dirty_bitmap) {
1227 unsigned long rel_gfn = gfn - memslot->base_gfn;
1229 /* avoid RMW */
1230 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1231 set_bit(rel_gfn, memslot->dirty_bitmap);
1236 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1238 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1240 DEFINE_WAIT(wait);
1242 for (;;) {
1243 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1245 if (kvm_cpu_has_interrupt(vcpu) ||
1246 kvm_cpu_has_pending_timer(vcpu) ||
1247 kvm_arch_vcpu_runnable(vcpu)) {
1248 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1249 break;
1251 if (signal_pending(current))
1252 break;
1254 vcpu_put(vcpu);
1255 schedule();
1256 vcpu_load(vcpu);
1259 finish_wait(&vcpu->wq, &wait);
1262 void kvm_resched(struct kvm_vcpu *vcpu)
1264 if (!need_resched())
1265 return;
1266 cond_resched();
1268 EXPORT_SYMBOL_GPL(kvm_resched);
1270 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1272 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1273 struct page *page;
1275 if (vmf->pgoff == 0)
1276 page = virt_to_page(vcpu->run);
1277 #ifdef CONFIG_X86
1278 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1279 page = virt_to_page(vcpu->arch.pio_data);
1280 #endif
1281 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1282 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1283 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1284 #endif
1285 else
1286 return VM_FAULT_SIGBUS;
1287 get_page(page);
1288 vmf->page = page;
1289 return 0;
1292 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1293 .fault = kvm_vcpu_fault,
1296 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1298 vma->vm_ops = &kvm_vcpu_vm_ops;
1299 return 0;
1302 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1304 struct kvm_vcpu *vcpu = filp->private_data;
1306 kvm_put_kvm(vcpu->kvm);
1307 return 0;
1310 static struct file_operations kvm_vcpu_fops = {
1311 .release = kvm_vcpu_release,
1312 .unlocked_ioctl = kvm_vcpu_ioctl,
1313 .compat_ioctl = kvm_vcpu_ioctl,
1314 .mmap = kvm_vcpu_mmap,
1318 * Allocates an inode for the vcpu.
1320 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1322 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1323 if (fd < 0)
1324 kvm_put_kvm(vcpu->kvm);
1325 return fd;
1329 * Creates some virtual cpus. Good luck creating more than one.
1331 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1333 int r;
1334 struct kvm_vcpu *vcpu;
1336 if (!valid_vcpu(n))
1337 return -EINVAL;
1339 vcpu = kvm_arch_vcpu_create(kvm, n);
1340 if (IS_ERR(vcpu))
1341 return PTR_ERR(vcpu);
1343 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1345 r = kvm_arch_vcpu_setup(vcpu);
1346 if (r)
1347 return r;
1349 mutex_lock(&kvm->lock);
1350 if (kvm->vcpus[n]) {
1351 r = -EEXIST;
1352 goto vcpu_destroy;
1354 kvm->vcpus[n] = vcpu;
1355 mutex_unlock(&kvm->lock);
1357 /* Now it's all set up, let userspace reach it */
1358 kvm_get_kvm(kvm);
1359 r = create_vcpu_fd(vcpu);
1360 if (r < 0)
1361 goto unlink;
1362 return r;
1364 unlink:
1365 mutex_lock(&kvm->lock);
1366 kvm->vcpus[n] = NULL;
1367 vcpu_destroy:
1368 mutex_unlock(&kvm->lock);
1369 kvm_arch_vcpu_destroy(vcpu);
1370 return r;
1373 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1375 if (sigset) {
1376 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1377 vcpu->sigset_active = 1;
1378 vcpu->sigset = *sigset;
1379 } else
1380 vcpu->sigset_active = 0;
1381 return 0;
1384 static long kvm_vcpu_ioctl(struct file *filp,
1385 unsigned int ioctl, unsigned long arg)
1387 struct kvm_vcpu *vcpu = filp->private_data;
1388 void __user *argp = (void __user *)arg;
1389 int r;
1390 struct kvm_fpu *fpu = NULL;
1391 struct kvm_sregs *kvm_sregs = NULL;
1393 if (vcpu->kvm->mm != current->mm)
1394 return -EIO;
1395 switch (ioctl) {
1396 case KVM_RUN:
1397 r = -EINVAL;
1398 if (arg)
1399 goto out;
1400 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1401 break;
1402 case KVM_GET_REGS: {
1403 struct kvm_regs *kvm_regs;
1405 r = -ENOMEM;
1406 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1407 if (!kvm_regs)
1408 goto out;
1409 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1410 if (r)
1411 goto out_free1;
1412 r = -EFAULT;
1413 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1414 goto out_free1;
1415 r = 0;
1416 out_free1:
1417 kfree(kvm_regs);
1418 break;
1420 case KVM_SET_REGS: {
1421 struct kvm_regs *kvm_regs;
1423 r = -ENOMEM;
1424 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1425 if (!kvm_regs)
1426 goto out;
1427 r = -EFAULT;
1428 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1429 goto out_free2;
1430 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1431 if (r)
1432 goto out_free2;
1433 r = 0;
1434 out_free2:
1435 kfree(kvm_regs);
1436 break;
1438 case KVM_GET_SREGS: {
1439 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1440 r = -ENOMEM;
1441 if (!kvm_sregs)
1442 goto out;
1443 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1444 if (r)
1445 goto out;
1446 r = -EFAULT;
1447 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1448 goto out;
1449 r = 0;
1450 break;
1452 case KVM_SET_SREGS: {
1453 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1454 r = -ENOMEM;
1455 if (!kvm_sregs)
1456 goto out;
1457 r = -EFAULT;
1458 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1459 goto out;
1460 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1461 if (r)
1462 goto out;
1463 r = 0;
1464 break;
1466 case KVM_GET_MP_STATE: {
1467 struct kvm_mp_state mp_state;
1469 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1470 if (r)
1471 goto out;
1472 r = -EFAULT;
1473 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1474 goto out;
1475 r = 0;
1476 break;
1478 case KVM_SET_MP_STATE: {
1479 struct kvm_mp_state mp_state;
1481 r = -EFAULT;
1482 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1483 goto out;
1484 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1485 if (r)
1486 goto out;
1487 r = 0;
1488 break;
1490 case KVM_TRANSLATE: {
1491 struct kvm_translation tr;
1493 r = -EFAULT;
1494 if (copy_from_user(&tr, argp, sizeof tr))
1495 goto out;
1496 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1497 if (r)
1498 goto out;
1499 r = -EFAULT;
1500 if (copy_to_user(argp, &tr, sizeof tr))
1501 goto out;
1502 r = 0;
1503 break;
1505 case KVM_DEBUG_GUEST: {
1506 struct kvm_debug_guest dbg;
1508 r = -EFAULT;
1509 if (copy_from_user(&dbg, argp, sizeof dbg))
1510 goto out;
1511 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
1512 if (r)
1513 goto out;
1514 r = 0;
1515 break;
1517 case KVM_SET_SIGNAL_MASK: {
1518 struct kvm_signal_mask __user *sigmask_arg = argp;
1519 struct kvm_signal_mask kvm_sigmask;
1520 sigset_t sigset, *p;
1522 p = NULL;
1523 if (argp) {
1524 r = -EFAULT;
1525 if (copy_from_user(&kvm_sigmask, argp,
1526 sizeof kvm_sigmask))
1527 goto out;
1528 r = -EINVAL;
1529 if (kvm_sigmask.len != sizeof sigset)
1530 goto out;
1531 r = -EFAULT;
1532 if (copy_from_user(&sigset, sigmask_arg->sigset,
1533 sizeof sigset))
1534 goto out;
1535 p = &sigset;
1537 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1538 break;
1540 case KVM_GET_FPU: {
1541 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1542 r = -ENOMEM;
1543 if (!fpu)
1544 goto out;
1545 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1546 if (r)
1547 goto out;
1548 r = -EFAULT;
1549 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1550 goto out;
1551 r = 0;
1552 break;
1554 case KVM_SET_FPU: {
1555 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1556 r = -ENOMEM;
1557 if (!fpu)
1558 goto out;
1559 r = -EFAULT;
1560 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1561 goto out;
1562 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1563 if (r)
1564 goto out;
1565 r = 0;
1566 break;
1568 default:
1569 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1571 out:
1572 kfree(fpu);
1573 kfree(kvm_sregs);
1574 return r;
1577 static long kvm_vm_ioctl(struct file *filp,
1578 unsigned int ioctl, unsigned long arg)
1580 struct kvm *kvm = filp->private_data;
1581 void __user *argp = (void __user *)arg;
1582 int r;
1584 if (kvm->mm != current->mm)
1585 return -EIO;
1586 switch (ioctl) {
1587 case KVM_CREATE_VCPU:
1588 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1589 if (r < 0)
1590 goto out;
1591 break;
1592 case KVM_SET_USER_MEMORY_REGION: {
1593 struct kvm_userspace_memory_region kvm_userspace_mem;
1595 r = -EFAULT;
1596 if (copy_from_user(&kvm_userspace_mem, argp,
1597 sizeof kvm_userspace_mem))
1598 goto out;
1600 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1601 if (r)
1602 goto out;
1603 break;
1605 case KVM_GET_DIRTY_LOG: {
1606 struct kvm_dirty_log log;
1608 r = -EFAULT;
1609 if (copy_from_user(&log, argp, sizeof log))
1610 goto out;
1611 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1612 if (r)
1613 goto out;
1614 break;
1616 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1617 case KVM_REGISTER_COALESCED_MMIO: {
1618 struct kvm_coalesced_mmio_zone zone;
1619 r = -EFAULT;
1620 if (copy_from_user(&zone, argp, sizeof zone))
1621 goto out;
1622 r = -ENXIO;
1623 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1624 if (r)
1625 goto out;
1626 r = 0;
1627 break;
1629 case KVM_UNREGISTER_COALESCED_MMIO: {
1630 struct kvm_coalesced_mmio_zone zone;
1631 r = -EFAULT;
1632 if (copy_from_user(&zone, argp, sizeof zone))
1633 goto out;
1634 r = -ENXIO;
1635 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1636 if (r)
1637 goto out;
1638 r = 0;
1639 break;
1641 #endif
1642 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1643 case KVM_ASSIGN_PCI_DEVICE: {
1644 struct kvm_assigned_pci_dev assigned_dev;
1646 r = -EFAULT;
1647 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1648 goto out;
1649 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
1650 if (r)
1651 goto out;
1652 break;
1654 case KVM_ASSIGN_IRQ: {
1655 struct kvm_assigned_irq assigned_irq;
1657 r = -EFAULT;
1658 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
1659 goto out;
1660 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
1661 if (r)
1662 goto out;
1663 break;
1665 #endif
1666 default:
1667 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1669 out:
1670 return r;
1673 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1675 struct page *page[1];
1676 unsigned long addr;
1677 int npages;
1678 gfn_t gfn = vmf->pgoff;
1679 struct kvm *kvm = vma->vm_file->private_data;
1681 addr = gfn_to_hva(kvm, gfn);
1682 if (kvm_is_error_hva(addr))
1683 return VM_FAULT_SIGBUS;
1685 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1686 NULL);
1687 if (unlikely(npages != 1))
1688 return VM_FAULT_SIGBUS;
1690 vmf->page = page[0];
1691 return 0;
1694 static struct vm_operations_struct kvm_vm_vm_ops = {
1695 .fault = kvm_vm_fault,
1698 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1700 vma->vm_ops = &kvm_vm_vm_ops;
1701 return 0;
1704 static struct file_operations kvm_vm_fops = {
1705 .release = kvm_vm_release,
1706 .unlocked_ioctl = kvm_vm_ioctl,
1707 .compat_ioctl = kvm_vm_ioctl,
1708 .mmap = kvm_vm_mmap,
1711 static int kvm_dev_ioctl_create_vm(void)
1713 int fd;
1714 struct kvm *kvm;
1716 kvm = kvm_create_vm();
1717 if (IS_ERR(kvm))
1718 return PTR_ERR(kvm);
1719 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
1720 if (fd < 0)
1721 kvm_put_kvm(kvm);
1723 return fd;
1726 static long kvm_dev_ioctl_check_extension_generic(long arg)
1728 switch (arg) {
1729 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1730 return 1;
1731 default:
1732 break;
1734 return kvm_dev_ioctl_check_extension(arg);
1737 static long kvm_dev_ioctl(struct file *filp,
1738 unsigned int ioctl, unsigned long arg)
1740 long r = -EINVAL;
1742 switch (ioctl) {
1743 case KVM_GET_API_VERSION:
1744 r = -EINVAL;
1745 if (arg)
1746 goto out;
1747 r = KVM_API_VERSION;
1748 break;
1749 case KVM_CREATE_VM:
1750 r = -EINVAL;
1751 if (arg)
1752 goto out;
1753 r = kvm_dev_ioctl_create_vm();
1754 break;
1755 case KVM_CHECK_EXTENSION:
1756 r = kvm_dev_ioctl_check_extension_generic(arg);
1757 break;
1758 case KVM_GET_VCPU_MMAP_SIZE:
1759 r = -EINVAL;
1760 if (arg)
1761 goto out;
1762 r = PAGE_SIZE; /* struct kvm_run */
1763 #ifdef CONFIG_X86
1764 r += PAGE_SIZE; /* pio data page */
1765 #endif
1766 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1767 r += PAGE_SIZE; /* coalesced mmio ring page */
1768 #endif
1769 break;
1770 case KVM_TRACE_ENABLE:
1771 case KVM_TRACE_PAUSE:
1772 case KVM_TRACE_DISABLE:
1773 r = kvm_trace_ioctl(ioctl, arg);
1774 break;
1775 default:
1776 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1778 out:
1779 return r;
1782 static struct file_operations kvm_chardev_ops = {
1783 .unlocked_ioctl = kvm_dev_ioctl,
1784 .compat_ioctl = kvm_dev_ioctl,
1787 static struct miscdevice kvm_dev = {
1788 KVM_MINOR,
1789 "kvm",
1790 &kvm_chardev_ops,
1793 static void hardware_enable(void *junk)
1795 int cpu = raw_smp_processor_id();
1797 if (cpu_isset(cpu, cpus_hardware_enabled))
1798 return;
1799 cpu_set(cpu, cpus_hardware_enabled);
1800 kvm_arch_hardware_enable(NULL);
1803 static void hardware_disable(void *junk)
1805 int cpu = raw_smp_processor_id();
1807 if (!cpu_isset(cpu, cpus_hardware_enabled))
1808 return;
1809 cpu_clear(cpu, cpus_hardware_enabled);
1810 kvm_arch_hardware_disable(NULL);
1813 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1814 void *v)
1816 int cpu = (long)v;
1818 val &= ~CPU_TASKS_FROZEN;
1819 switch (val) {
1820 case CPU_DYING:
1821 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1822 cpu);
1823 hardware_disable(NULL);
1824 break;
1825 case CPU_UP_CANCELED:
1826 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1827 cpu);
1828 smp_call_function_single(cpu, hardware_disable, NULL, 1);
1829 break;
1830 case CPU_ONLINE:
1831 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1832 cpu);
1833 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1834 break;
1836 return NOTIFY_OK;
1840 asmlinkage void kvm_handle_fault_on_reboot(void)
1842 if (kvm_rebooting)
1843 /* spin while reset goes on */
1844 while (true)
1846 /* Fault while not rebooting. We want the trace. */
1847 BUG();
1849 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1851 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1852 void *v)
1854 if (val == SYS_RESTART) {
1856 * Some (well, at least mine) BIOSes hang on reboot if
1857 * in vmx root mode.
1859 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1860 kvm_rebooting = true;
1861 on_each_cpu(hardware_disable, NULL, 1);
1863 return NOTIFY_OK;
1866 static struct notifier_block kvm_reboot_notifier = {
1867 .notifier_call = kvm_reboot,
1868 .priority = 0,
1871 void kvm_io_bus_init(struct kvm_io_bus *bus)
1873 memset(bus, 0, sizeof(*bus));
1876 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1878 int i;
1880 for (i = 0; i < bus->dev_count; i++) {
1881 struct kvm_io_device *pos = bus->devs[i];
1883 kvm_iodevice_destructor(pos);
1887 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
1888 gpa_t addr, int len, int is_write)
1890 int i;
1892 for (i = 0; i < bus->dev_count; i++) {
1893 struct kvm_io_device *pos = bus->devs[i];
1895 if (pos->in_range(pos, addr, len, is_write))
1896 return pos;
1899 return NULL;
1902 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
1904 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
1906 bus->devs[bus->dev_count++] = dev;
1909 static struct notifier_block kvm_cpu_notifier = {
1910 .notifier_call = kvm_cpu_hotplug,
1911 .priority = 20, /* must be > scheduler priority */
1914 static int vm_stat_get(void *_offset, u64 *val)
1916 unsigned offset = (long)_offset;
1917 struct kvm *kvm;
1919 *val = 0;
1920 spin_lock(&kvm_lock);
1921 list_for_each_entry(kvm, &vm_list, vm_list)
1922 *val += *(u32 *)((void *)kvm + offset);
1923 spin_unlock(&kvm_lock);
1924 return 0;
1927 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
1929 static int vcpu_stat_get(void *_offset, u64 *val)
1931 unsigned offset = (long)_offset;
1932 struct kvm *kvm;
1933 struct kvm_vcpu *vcpu;
1934 int i;
1936 *val = 0;
1937 spin_lock(&kvm_lock);
1938 list_for_each_entry(kvm, &vm_list, vm_list)
1939 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
1940 vcpu = kvm->vcpus[i];
1941 if (vcpu)
1942 *val += *(u32 *)((void *)vcpu + offset);
1944 spin_unlock(&kvm_lock);
1945 return 0;
1948 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
1950 static struct file_operations *stat_fops[] = {
1951 [KVM_STAT_VCPU] = &vcpu_stat_fops,
1952 [KVM_STAT_VM] = &vm_stat_fops,
1955 static void kvm_init_debug(void)
1957 struct kvm_stats_debugfs_item *p;
1959 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
1960 for (p = debugfs_entries; p->name; ++p)
1961 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
1962 (void *)(long)p->offset,
1963 stat_fops[p->kind]);
1966 static void kvm_exit_debug(void)
1968 struct kvm_stats_debugfs_item *p;
1970 for (p = debugfs_entries; p->name; ++p)
1971 debugfs_remove(p->dentry);
1972 debugfs_remove(kvm_debugfs_dir);
1975 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
1977 hardware_disable(NULL);
1978 return 0;
1981 static int kvm_resume(struct sys_device *dev)
1983 hardware_enable(NULL);
1984 return 0;
1987 static struct sysdev_class kvm_sysdev_class = {
1988 .name = "kvm",
1989 .suspend = kvm_suspend,
1990 .resume = kvm_resume,
1993 static struct sys_device kvm_sysdev = {
1994 .id = 0,
1995 .cls = &kvm_sysdev_class,
1998 struct page *bad_page;
1999 pfn_t bad_pfn;
2001 static inline
2002 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2004 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2007 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2009 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2011 kvm_arch_vcpu_load(vcpu, cpu);
2014 static void kvm_sched_out(struct preempt_notifier *pn,
2015 struct task_struct *next)
2017 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2019 kvm_arch_vcpu_put(vcpu);
2022 int kvm_init(void *opaque, unsigned int vcpu_size,
2023 struct module *module)
2025 int r;
2026 int cpu;
2028 kvm_init_debug();
2030 r = kvm_arch_init(opaque);
2031 if (r)
2032 goto out_fail;
2034 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2036 if (bad_page == NULL) {
2037 r = -ENOMEM;
2038 goto out;
2041 bad_pfn = page_to_pfn(bad_page);
2043 r = kvm_arch_hardware_setup();
2044 if (r < 0)
2045 goto out_free_0;
2047 for_each_online_cpu(cpu) {
2048 smp_call_function_single(cpu,
2049 kvm_arch_check_processor_compat,
2050 &r, 1);
2051 if (r < 0)
2052 goto out_free_1;
2055 on_each_cpu(hardware_enable, NULL, 1);
2056 r = register_cpu_notifier(&kvm_cpu_notifier);
2057 if (r)
2058 goto out_free_2;
2059 register_reboot_notifier(&kvm_reboot_notifier);
2061 r = sysdev_class_register(&kvm_sysdev_class);
2062 if (r)
2063 goto out_free_3;
2065 r = sysdev_register(&kvm_sysdev);
2066 if (r)
2067 goto out_free_4;
2069 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2070 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2071 __alignof__(struct kvm_vcpu),
2072 0, NULL);
2073 if (!kvm_vcpu_cache) {
2074 r = -ENOMEM;
2075 goto out_free_5;
2078 kvm_chardev_ops.owner = module;
2079 kvm_vm_fops.owner = module;
2080 kvm_vcpu_fops.owner = module;
2082 r = misc_register(&kvm_dev);
2083 if (r) {
2084 printk(KERN_ERR "kvm: misc device register failed\n");
2085 goto out_free;
2088 kvm_preempt_ops.sched_in = kvm_sched_in;
2089 kvm_preempt_ops.sched_out = kvm_sched_out;
2091 return 0;
2093 out_free:
2094 kmem_cache_destroy(kvm_vcpu_cache);
2095 out_free_5:
2096 sysdev_unregister(&kvm_sysdev);
2097 out_free_4:
2098 sysdev_class_unregister(&kvm_sysdev_class);
2099 out_free_3:
2100 unregister_reboot_notifier(&kvm_reboot_notifier);
2101 unregister_cpu_notifier(&kvm_cpu_notifier);
2102 out_free_2:
2103 on_each_cpu(hardware_disable, NULL, 1);
2104 out_free_1:
2105 kvm_arch_hardware_unsetup();
2106 out_free_0:
2107 __free_page(bad_page);
2108 out:
2109 kvm_arch_exit();
2110 kvm_exit_debug();
2111 out_fail:
2112 return r;
2114 EXPORT_SYMBOL_GPL(kvm_init);
2116 void kvm_exit(void)
2118 kvm_trace_cleanup();
2119 misc_deregister(&kvm_dev);
2120 kmem_cache_destroy(kvm_vcpu_cache);
2121 sysdev_unregister(&kvm_sysdev);
2122 sysdev_class_unregister(&kvm_sysdev_class);
2123 unregister_reboot_notifier(&kvm_reboot_notifier);
2124 unregister_cpu_notifier(&kvm_cpu_notifier);
2125 on_each_cpu(hardware_disable, NULL, 1);
2126 kvm_arch_hardware_unsetup();
2127 kvm_arch_exit();
2128 kvm_exit_debug();
2129 __free_page(bad_page);
2131 EXPORT_SYMBOL_GPL(kvm_exit);