[MMC] sdhci truncated pointer fix
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / char / istallion.c
blobef20c1fc9c4c121cf51d7102096cfb55f3fd5227
1 /*****************************************************************************/
3 /*
4 * istallion.c -- stallion intelligent multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /*****************************************************************************/
29 #include <linux/config.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/tty.h>
34 #include <linux/tty_flip.h>
35 #include <linux/serial.h>
36 #include <linux/cdk.h>
37 #include <linux/comstats.h>
38 #include <linux/istallion.h>
39 #include <linux/ioport.h>
40 #include <linux/delay.h>
41 #include <linux/init.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/device.h>
44 #include <linux/wait.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
49 #ifdef CONFIG_PCI
50 #include <linux/pci.h>
51 #endif
53 /*****************************************************************************/
56 * Define different board types. Not all of the following board types
57 * are supported by this driver. But I will use the standard "assigned"
58 * board numbers. Currently supported boards are abbreviated as:
59 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
60 * STAL = Stallion.
62 #define BRD_UNKNOWN 0
63 #define BRD_STALLION 1
64 #define BRD_BRUMBY4 2
65 #define BRD_ONBOARD2 3
66 #define BRD_ONBOARD 4
67 #define BRD_BRUMBY8 5
68 #define BRD_BRUMBY16 6
69 #define BRD_ONBOARDE 7
70 #define BRD_ONBOARD32 9
71 #define BRD_ONBOARD2_32 10
72 #define BRD_ONBOARDRS 11
73 #define BRD_EASYIO 20
74 #define BRD_ECH 21
75 #define BRD_ECHMC 22
76 #define BRD_ECP 23
77 #define BRD_ECPE 24
78 #define BRD_ECPMC 25
79 #define BRD_ECHPCI 26
80 #define BRD_ECH64PCI 27
81 #define BRD_EASYIOPCI 28
82 #define BRD_ECPPCI 29
84 #define BRD_BRUMBY BRD_BRUMBY4
87 * Define a configuration structure to hold the board configuration.
88 * Need to set this up in the code (for now) with the boards that are
89 * to be configured into the system. This is what needs to be modified
90 * when adding/removing/modifying boards. Each line entry in the
91 * stli_brdconf[] array is a board. Each line contains io/irq/memory
92 * ranges for that board (as well as what type of board it is).
93 * Some examples:
94 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
95 * This line will configure an EasyConnection 8/64 at io address 2a0,
96 * and shared memory address of cc000. Multiple EasyConnection 8/64
97 * boards can share the same shared memory address space. No interrupt
98 * is required for this board type.
99 * Another example:
100 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
101 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
102 * shared memory address of 0x80000000 (2 GByte). Multiple
103 * EasyConnection 8/64 EISA boards can share the same shared memory
104 * address space. No interrupt is required for this board type.
105 * Another example:
106 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
107 * This line will configure an ONboard (ISA type) at io address 240,
108 * and shared memory address of d0000. Multiple ONboards can share
109 * the same shared memory address space. No interrupt required.
110 * Another example:
111 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
112 * This line will configure a Brumby board (any number of ports!) at
113 * io address 360 and shared memory address of c8000. All Brumby boards
114 * configured into a system must have their own separate io and memory
115 * addresses. No interrupt is required.
116 * Another example:
117 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
118 * This line will configure an original Stallion board at io address 330
119 * and shared memory address d0000 (this would only be valid for a "V4.0"
120 * or Rev.O Stallion board). All Stallion boards configured into the
121 * system must have their own separate io and memory addresses. No
122 * interrupt is required.
125 typedef struct {
126 int brdtype;
127 int ioaddr1;
128 int ioaddr2;
129 unsigned long memaddr;
130 int irq;
131 int irqtype;
132 } stlconf_t;
134 static stlconf_t stli_brdconf[] = {
135 /*{ BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },*/
138 static int stli_nrbrds = ARRAY_SIZE(stli_brdconf);
141 * There is some experimental EISA board detection code in this driver.
142 * By default it is disabled, but for those that want to try it out,
143 * then set the define below to be 1.
145 #define STLI_EISAPROBE 0
147 /*****************************************************************************/
150 * Define some important driver characteristics. Device major numbers
151 * allocated as per Linux Device Registry.
153 #ifndef STL_SIOMEMMAJOR
154 #define STL_SIOMEMMAJOR 28
155 #endif
156 #ifndef STL_SERIALMAJOR
157 #define STL_SERIALMAJOR 24
158 #endif
159 #ifndef STL_CALLOUTMAJOR
160 #define STL_CALLOUTMAJOR 25
161 #endif
163 /*****************************************************************************/
166 * Define our local driver identity first. Set up stuff to deal with
167 * all the local structures required by a serial tty driver.
169 static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
170 static char *stli_drvname = "istallion";
171 static char *stli_drvversion = "5.6.0";
172 static char *stli_serialname = "ttyE";
174 static struct tty_driver *stli_serial;
177 * We will need to allocate a temporary write buffer for chars that
178 * come direct from user space. The problem is that a copy from user
179 * space might cause a page fault (typically on a system that is
180 * swapping!). All ports will share one buffer - since if the system
181 * is already swapping a shared buffer won't make things any worse.
183 static char *stli_tmpwritebuf;
185 #define STLI_TXBUFSIZE 4096
188 * Use a fast local buffer for cooked characters. Typically a whole
189 * bunch of cooked characters come in for a port, 1 at a time. So we
190 * save those up into a local buffer, then write out the whole lot
191 * with a large memcpy. Just use 1 buffer for all ports, since its
192 * use it is only need for short periods of time by each port.
194 static char *stli_txcookbuf;
195 static int stli_txcooksize;
196 static int stli_txcookrealsize;
197 static struct tty_struct *stli_txcooktty;
200 * Define a local default termios struct. All ports will be created
201 * with this termios initially. Basically all it defines is a raw port
202 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
204 static struct termios stli_deftermios = {
205 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
206 .c_cc = INIT_C_CC,
210 * Define global stats structures. Not used often, and can be
211 * re-used for each stats call.
213 static comstats_t stli_comstats;
214 static combrd_t stli_brdstats;
215 static asystats_t stli_cdkstats;
216 static stlibrd_t stli_dummybrd;
217 static stliport_t stli_dummyport;
219 /*****************************************************************************/
221 static stlibrd_t *stli_brds[STL_MAXBRDS];
223 static int stli_shared;
226 * Per board state flags. Used with the state field of the board struct.
227 * Not really much here... All we need to do is keep track of whether
228 * the board has been detected, and whether it is actually running a slave
229 * or not.
231 #define BST_FOUND 0x1
232 #define BST_STARTED 0x2
235 * Define the set of port state flags. These are marked for internal
236 * state purposes only, usually to do with the state of communications
237 * with the slave. Most of them need to be updated atomically, so always
238 * use the bit setting operations (unless protected by cli/sti).
240 #define ST_INITIALIZING 1
241 #define ST_OPENING 2
242 #define ST_CLOSING 3
243 #define ST_CMDING 4
244 #define ST_TXBUSY 5
245 #define ST_RXING 6
246 #define ST_DOFLUSHRX 7
247 #define ST_DOFLUSHTX 8
248 #define ST_DOSIGS 9
249 #define ST_RXSTOP 10
250 #define ST_GETSIGS 11
253 * Define an array of board names as printable strings. Handy for
254 * referencing boards when printing trace and stuff.
256 static char *stli_brdnames[] = {
257 "Unknown",
258 "Stallion",
259 "Brumby",
260 "ONboard-MC",
261 "ONboard",
262 "Brumby",
263 "Brumby",
264 "ONboard-EI",
265 (char *) NULL,
266 "ONboard",
267 "ONboard-MC",
268 "ONboard-MC",
269 (char *) NULL,
270 (char *) NULL,
271 (char *) NULL,
272 (char *) NULL,
273 (char *) NULL,
274 (char *) NULL,
275 (char *) NULL,
276 (char *) NULL,
277 "EasyIO",
278 "EC8/32-AT",
279 "EC8/32-MC",
280 "EC8/64-AT",
281 "EC8/64-EI",
282 "EC8/64-MC",
283 "EC8/32-PCI",
284 "EC8/64-PCI",
285 "EasyIO-PCI",
286 "EC/RA-PCI",
289 /*****************************************************************************/
291 #ifdef MODULE
293 * Define some string labels for arguments passed from the module
294 * load line. These allow for easy board definitions, and easy
295 * modification of the io, memory and irq resoucres.
298 static char *board0[8];
299 static char *board1[8];
300 static char *board2[8];
301 static char *board3[8];
303 static char **stli_brdsp[] = {
304 (char **) &board0,
305 (char **) &board1,
306 (char **) &board2,
307 (char **) &board3
311 * Define a set of common board names, and types. This is used to
312 * parse any module arguments.
315 typedef struct stlibrdtype {
316 char *name;
317 int type;
318 } stlibrdtype_t;
320 static stlibrdtype_t stli_brdstr[] = {
321 { "stallion", BRD_STALLION },
322 { "1", BRD_STALLION },
323 { "brumby", BRD_BRUMBY },
324 { "brumby4", BRD_BRUMBY },
325 { "brumby/4", BRD_BRUMBY },
326 { "brumby-4", BRD_BRUMBY },
327 { "brumby8", BRD_BRUMBY },
328 { "brumby/8", BRD_BRUMBY },
329 { "brumby-8", BRD_BRUMBY },
330 { "brumby16", BRD_BRUMBY },
331 { "brumby/16", BRD_BRUMBY },
332 { "brumby-16", BRD_BRUMBY },
333 { "2", BRD_BRUMBY },
334 { "onboard2", BRD_ONBOARD2 },
335 { "onboard-2", BRD_ONBOARD2 },
336 { "onboard/2", BRD_ONBOARD2 },
337 { "onboard-mc", BRD_ONBOARD2 },
338 { "onboard/mc", BRD_ONBOARD2 },
339 { "onboard-mca", BRD_ONBOARD2 },
340 { "onboard/mca", BRD_ONBOARD2 },
341 { "3", BRD_ONBOARD2 },
342 { "onboard", BRD_ONBOARD },
343 { "onboardat", BRD_ONBOARD },
344 { "4", BRD_ONBOARD },
345 { "onboarde", BRD_ONBOARDE },
346 { "onboard-e", BRD_ONBOARDE },
347 { "onboard/e", BRD_ONBOARDE },
348 { "onboard-ei", BRD_ONBOARDE },
349 { "onboard/ei", BRD_ONBOARDE },
350 { "7", BRD_ONBOARDE },
351 { "ecp", BRD_ECP },
352 { "ecpat", BRD_ECP },
353 { "ec8/64", BRD_ECP },
354 { "ec8/64-at", BRD_ECP },
355 { "ec8/64-isa", BRD_ECP },
356 { "23", BRD_ECP },
357 { "ecpe", BRD_ECPE },
358 { "ecpei", BRD_ECPE },
359 { "ec8/64-e", BRD_ECPE },
360 { "ec8/64-ei", BRD_ECPE },
361 { "24", BRD_ECPE },
362 { "ecpmc", BRD_ECPMC },
363 { "ec8/64-mc", BRD_ECPMC },
364 { "ec8/64-mca", BRD_ECPMC },
365 { "25", BRD_ECPMC },
366 { "ecppci", BRD_ECPPCI },
367 { "ec/ra", BRD_ECPPCI },
368 { "ec/ra-pc", BRD_ECPPCI },
369 { "ec/ra-pci", BRD_ECPPCI },
370 { "29", BRD_ECPPCI },
374 * Define the module agruments.
376 MODULE_AUTHOR("Greg Ungerer");
377 MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
378 MODULE_LICENSE("GPL");
381 module_param_array(board0, charp, NULL, 0);
382 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
383 module_param_array(board1, charp, NULL, 0);
384 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
385 module_param_array(board2, charp, NULL, 0);
386 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
387 module_param_array(board3, charp, NULL, 0);
388 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
390 #endif
393 * Set up a default memory address table for EISA board probing.
394 * The default addresses are all bellow 1Mbyte, which has to be the
395 * case anyway. They should be safe, since we only read values from
396 * them, and interrupts are disabled while we do it. If the higher
397 * memory support is compiled in then we also try probing around
398 * the 1Gb, 2Gb and 3Gb areas as well...
400 static unsigned long stli_eisamemprobeaddrs[] = {
401 0xc0000, 0xd0000, 0xe0000, 0xf0000,
402 0x80000000, 0x80010000, 0x80020000, 0x80030000,
403 0x40000000, 0x40010000, 0x40020000, 0x40030000,
404 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
405 0xff000000, 0xff010000, 0xff020000, 0xff030000,
408 static int stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);
411 * Define the Stallion PCI vendor and device IDs.
413 #ifdef CONFIG_PCI
414 #ifndef PCI_VENDOR_ID_STALLION
415 #define PCI_VENDOR_ID_STALLION 0x124d
416 #endif
417 #ifndef PCI_DEVICE_ID_ECRA
418 #define PCI_DEVICE_ID_ECRA 0x0004
419 #endif
421 static struct pci_device_id istallion_pci_tbl[] = {
422 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
423 { 0 }
425 MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
427 #endif /* CONFIG_PCI */
429 /*****************************************************************************/
432 * Hardware configuration info for ECP boards. These defines apply
433 * to the directly accessible io ports of the ECP. There is a set of
434 * defines for each ECP board type, ISA, EISA, MCA and PCI.
436 #define ECP_IOSIZE 4
438 #define ECP_MEMSIZE (128 * 1024)
439 #define ECP_PCIMEMSIZE (256 * 1024)
441 #define ECP_ATPAGESIZE (4 * 1024)
442 #define ECP_MCPAGESIZE (4 * 1024)
443 #define ECP_EIPAGESIZE (64 * 1024)
444 #define ECP_PCIPAGESIZE (64 * 1024)
446 #define STL_EISAID 0x8c4e
449 * Important defines for the ISA class of ECP board.
451 #define ECP_ATIREG 0
452 #define ECP_ATCONFR 1
453 #define ECP_ATMEMAR 2
454 #define ECP_ATMEMPR 3
455 #define ECP_ATSTOP 0x1
456 #define ECP_ATINTENAB 0x10
457 #define ECP_ATENABLE 0x20
458 #define ECP_ATDISABLE 0x00
459 #define ECP_ATADDRMASK 0x3f000
460 #define ECP_ATADDRSHFT 12
463 * Important defines for the EISA class of ECP board.
465 #define ECP_EIIREG 0
466 #define ECP_EIMEMARL 1
467 #define ECP_EICONFR 2
468 #define ECP_EIMEMARH 3
469 #define ECP_EIENABLE 0x1
470 #define ECP_EIDISABLE 0x0
471 #define ECP_EISTOP 0x4
472 #define ECP_EIEDGE 0x00
473 #define ECP_EILEVEL 0x80
474 #define ECP_EIADDRMASKL 0x00ff0000
475 #define ECP_EIADDRSHFTL 16
476 #define ECP_EIADDRMASKH 0xff000000
477 #define ECP_EIADDRSHFTH 24
478 #define ECP_EIBRDENAB 0xc84
480 #define ECP_EISAID 0x4
483 * Important defines for the Micro-channel class of ECP board.
484 * (It has a lot in common with the ISA boards.)
486 #define ECP_MCIREG 0
487 #define ECP_MCCONFR 1
488 #define ECP_MCSTOP 0x20
489 #define ECP_MCENABLE 0x80
490 #define ECP_MCDISABLE 0x00
493 * Important defines for the PCI class of ECP board.
494 * (It has a lot in common with the other ECP boards.)
496 #define ECP_PCIIREG 0
497 #define ECP_PCICONFR 1
498 #define ECP_PCISTOP 0x01
501 * Hardware configuration info for ONboard and Brumby boards. These
502 * defines apply to the directly accessible io ports of these boards.
504 #define ONB_IOSIZE 16
505 #define ONB_MEMSIZE (64 * 1024)
506 #define ONB_ATPAGESIZE (64 * 1024)
507 #define ONB_MCPAGESIZE (64 * 1024)
508 #define ONB_EIMEMSIZE (128 * 1024)
509 #define ONB_EIPAGESIZE (64 * 1024)
512 * Important defines for the ISA class of ONboard board.
514 #define ONB_ATIREG 0
515 #define ONB_ATMEMAR 1
516 #define ONB_ATCONFR 2
517 #define ONB_ATSTOP 0x4
518 #define ONB_ATENABLE 0x01
519 #define ONB_ATDISABLE 0x00
520 #define ONB_ATADDRMASK 0xff0000
521 #define ONB_ATADDRSHFT 16
523 #define ONB_MEMENABLO 0
524 #define ONB_MEMENABHI 0x02
527 * Important defines for the EISA class of ONboard board.
529 #define ONB_EIIREG 0
530 #define ONB_EIMEMARL 1
531 #define ONB_EICONFR 2
532 #define ONB_EIMEMARH 3
533 #define ONB_EIENABLE 0x1
534 #define ONB_EIDISABLE 0x0
535 #define ONB_EISTOP 0x4
536 #define ONB_EIEDGE 0x00
537 #define ONB_EILEVEL 0x80
538 #define ONB_EIADDRMASKL 0x00ff0000
539 #define ONB_EIADDRSHFTL 16
540 #define ONB_EIADDRMASKH 0xff000000
541 #define ONB_EIADDRSHFTH 24
542 #define ONB_EIBRDENAB 0xc84
544 #define ONB_EISAID 0x1
547 * Important defines for the Brumby boards. They are pretty simple,
548 * there is not much that is programmably configurable.
550 #define BBY_IOSIZE 16
551 #define BBY_MEMSIZE (64 * 1024)
552 #define BBY_PAGESIZE (16 * 1024)
554 #define BBY_ATIREG 0
555 #define BBY_ATCONFR 1
556 #define BBY_ATSTOP 0x4
559 * Important defines for the Stallion boards. They are pretty simple,
560 * there is not much that is programmably configurable.
562 #define STAL_IOSIZE 16
563 #define STAL_MEMSIZE (64 * 1024)
564 #define STAL_PAGESIZE (64 * 1024)
567 * Define the set of status register values for EasyConnection panels.
568 * The signature will return with the status value for each panel. From
569 * this we can determine what is attached to the board - before we have
570 * actually down loaded any code to it.
572 #define ECH_PNLSTATUS 2
573 #define ECH_PNL16PORT 0x20
574 #define ECH_PNLIDMASK 0x07
575 #define ECH_PNLXPID 0x40
576 #define ECH_PNLINTRPEND 0x80
579 * Define some macros to do things to the board. Even those these boards
580 * are somewhat related there is often significantly different ways of
581 * doing some operation on it (like enable, paging, reset, etc). So each
582 * board class has a set of functions which do the commonly required
583 * operations. The macros below basically just call these functions,
584 * generally checking for a NULL function - which means that the board
585 * needs nothing done to it to achieve this operation!
587 #define EBRDINIT(brdp) \
588 if (brdp->init != NULL) \
589 (* brdp->init)(brdp)
591 #define EBRDENABLE(brdp) \
592 if (brdp->enable != NULL) \
593 (* brdp->enable)(brdp);
595 #define EBRDDISABLE(brdp) \
596 if (brdp->disable != NULL) \
597 (* brdp->disable)(brdp);
599 #define EBRDINTR(brdp) \
600 if (brdp->intr != NULL) \
601 (* brdp->intr)(brdp);
603 #define EBRDRESET(brdp) \
604 if (brdp->reset != NULL) \
605 (* brdp->reset)(brdp);
607 #define EBRDGETMEMPTR(brdp,offset) \
608 (* brdp->getmemptr)(brdp, offset, __LINE__)
611 * Define the maximal baud rate, and the default baud base for ports.
613 #define STL_MAXBAUD 460800
614 #define STL_BAUDBASE 115200
615 #define STL_CLOSEDELAY (5 * HZ / 10)
617 /*****************************************************************************/
620 * Define macros to extract a brd or port number from a minor number.
622 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
623 #define MINOR2PORT(min) ((min) & 0x3f)
626 * Define a baud rate table that converts termios baud rate selector
627 * into the actual baud rate value. All baud rate calculations are based
628 * on the actual baud rate required.
630 static unsigned int stli_baudrates[] = {
631 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
632 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
635 /*****************************************************************************/
638 * Define some handy local macros...
640 #undef MIN
641 #define MIN(a,b) (((a) <= (b)) ? (a) : (b))
643 #undef TOLOWER
644 #define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
646 /*****************************************************************************/
649 * Prototype all functions in this driver!
652 #ifdef MODULE
653 static void stli_argbrds(void);
654 static int stli_parsebrd(stlconf_t *confp, char **argp);
656 static unsigned long stli_atol(char *str);
657 #endif
659 int stli_init(void);
660 static int stli_open(struct tty_struct *tty, struct file *filp);
661 static void stli_close(struct tty_struct *tty, struct file *filp);
662 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
663 static void stli_putchar(struct tty_struct *tty, unsigned char ch);
664 static void stli_flushchars(struct tty_struct *tty);
665 static int stli_writeroom(struct tty_struct *tty);
666 static int stli_charsinbuffer(struct tty_struct *tty);
667 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
668 static void stli_settermios(struct tty_struct *tty, struct termios *old);
669 static void stli_throttle(struct tty_struct *tty);
670 static void stli_unthrottle(struct tty_struct *tty);
671 static void stli_stop(struct tty_struct *tty);
672 static void stli_start(struct tty_struct *tty);
673 static void stli_flushbuffer(struct tty_struct *tty);
674 static void stli_breakctl(struct tty_struct *tty, int state);
675 static void stli_waituntilsent(struct tty_struct *tty, int timeout);
676 static void stli_sendxchar(struct tty_struct *tty, char ch);
677 static void stli_hangup(struct tty_struct *tty);
678 static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos);
680 static int stli_brdinit(stlibrd_t *brdp);
681 static int stli_startbrd(stlibrd_t *brdp);
682 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
683 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
684 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
685 static void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp);
686 static void stli_poll(unsigned long arg);
687 static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp);
688 static int stli_initopen(stlibrd_t *brdp, stliport_t *portp);
689 static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
690 static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
691 static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp);
692 static void stli_dohangup(void *arg);
693 static int stli_setport(stliport_t *portp);
694 static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
695 static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
696 static void stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp);
697 static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp);
698 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
699 static long stli_mktiocm(unsigned long sigvalue);
700 static void stli_read(stlibrd_t *brdp, stliport_t *portp);
701 static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp);
702 static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp);
703 static int stli_getbrdstats(combrd_t __user *bp);
704 static int stli_getportstats(stliport_t *portp, comstats_t __user *cp);
705 static int stli_portcmdstats(stliport_t *portp);
706 static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp);
707 static int stli_getportstruct(stliport_t __user *arg);
708 static int stli_getbrdstruct(stlibrd_t __user *arg);
709 static stlibrd_t *stli_allocbrd(void);
711 static void stli_ecpinit(stlibrd_t *brdp);
712 static void stli_ecpenable(stlibrd_t *brdp);
713 static void stli_ecpdisable(stlibrd_t *brdp);
714 static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
715 static void stli_ecpreset(stlibrd_t *brdp);
716 static void stli_ecpintr(stlibrd_t *brdp);
717 static void stli_ecpeiinit(stlibrd_t *brdp);
718 static void stli_ecpeienable(stlibrd_t *brdp);
719 static void stli_ecpeidisable(stlibrd_t *brdp);
720 static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
721 static void stli_ecpeireset(stlibrd_t *brdp);
722 static void stli_ecpmcenable(stlibrd_t *brdp);
723 static void stli_ecpmcdisable(stlibrd_t *brdp);
724 static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
725 static void stli_ecpmcreset(stlibrd_t *brdp);
726 static void stli_ecppciinit(stlibrd_t *brdp);
727 static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
728 static void stli_ecppcireset(stlibrd_t *brdp);
730 static void stli_onbinit(stlibrd_t *brdp);
731 static void stli_onbenable(stlibrd_t *brdp);
732 static void stli_onbdisable(stlibrd_t *brdp);
733 static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
734 static void stli_onbreset(stlibrd_t *brdp);
735 static void stli_onbeinit(stlibrd_t *brdp);
736 static void stli_onbeenable(stlibrd_t *brdp);
737 static void stli_onbedisable(stlibrd_t *brdp);
738 static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
739 static void stli_onbereset(stlibrd_t *brdp);
740 static void stli_bbyinit(stlibrd_t *brdp);
741 static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
742 static void stli_bbyreset(stlibrd_t *brdp);
743 static void stli_stalinit(stlibrd_t *brdp);
744 static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
745 static void stli_stalreset(stlibrd_t *brdp);
747 static stliport_t *stli_getport(int brdnr, int panelnr, int portnr);
749 static int stli_initecp(stlibrd_t *brdp);
750 static int stli_initonb(stlibrd_t *brdp);
751 static int stli_eisamemprobe(stlibrd_t *brdp);
752 static int stli_initports(stlibrd_t *brdp);
754 #ifdef CONFIG_PCI
755 static int stli_initpcibrd(int brdtype, struct pci_dev *devp);
756 #endif
758 /*****************************************************************************/
761 * Define the driver info for a user level shared memory device. This
762 * device will work sort of like the /dev/kmem device - except that it
763 * will give access to the shared memory on the Stallion intelligent
764 * board. This is also a very useful debugging tool.
766 static struct file_operations stli_fsiomem = {
767 .owner = THIS_MODULE,
768 .read = stli_memread,
769 .write = stli_memwrite,
770 .ioctl = stli_memioctl,
773 /*****************************************************************************/
776 * Define a timer_list entry for our poll routine. The slave board
777 * is polled every so often to see if anything needs doing. This is
778 * much cheaper on host cpu than using interrupts. It turns out to
779 * not increase character latency by much either...
781 static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
783 static int stli_timeron;
786 * Define the calculation for the timeout routine.
788 #define STLI_TIMEOUT (jiffies + 1)
790 /*****************************************************************************/
792 static struct class *istallion_class;
794 #ifdef MODULE
797 * Loadable module initialization stuff.
800 static int __init istallion_module_init(void)
802 unsigned long flags;
804 #ifdef DEBUG
805 printk("init_module()\n");
806 #endif
808 save_flags(flags);
809 cli();
810 stli_init();
811 restore_flags(flags);
813 return(0);
816 /*****************************************************************************/
818 static void __exit istallion_module_exit(void)
820 stlibrd_t *brdp;
821 stliport_t *portp;
822 unsigned long flags;
823 int i, j;
825 #ifdef DEBUG
826 printk("cleanup_module()\n");
827 #endif
829 printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
830 stli_drvversion);
832 save_flags(flags);
833 cli();
836 * Free up all allocated resources used by the ports. This includes
837 * memory and interrupts.
839 if (stli_timeron) {
840 stli_timeron = 0;
841 del_timer(&stli_timerlist);
844 i = tty_unregister_driver(stli_serial);
845 if (i) {
846 printk("STALLION: failed to un-register tty driver, "
847 "errno=%d\n", -i);
848 restore_flags(flags);
849 return;
851 put_tty_driver(stli_serial);
852 for (i = 0; i < 4; i++) {
853 devfs_remove("staliomem/%d", i);
854 class_device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, i));
856 devfs_remove("staliomem");
857 class_destroy(istallion_class);
858 if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
859 printk("STALLION: failed to un-register serial memory device, "
860 "errno=%d\n", -i);
862 kfree(stli_tmpwritebuf);
863 kfree(stli_txcookbuf);
865 for (i = 0; (i < stli_nrbrds); i++) {
866 if ((brdp = stli_brds[i]) == (stlibrd_t *) NULL)
867 continue;
868 for (j = 0; (j < STL_MAXPORTS); j++) {
869 portp = brdp->ports[j];
870 if (portp != (stliport_t *) NULL) {
871 if (portp->tty != (struct tty_struct *) NULL)
872 tty_hangup(portp->tty);
873 kfree(portp);
877 iounmap(brdp->membase);
878 if (brdp->iosize > 0)
879 release_region(brdp->iobase, brdp->iosize);
880 kfree(brdp);
881 stli_brds[i] = (stlibrd_t *) NULL;
884 restore_flags(flags);
887 module_init(istallion_module_init);
888 module_exit(istallion_module_exit);
890 /*****************************************************************************/
893 * Check for any arguments passed in on the module load command line.
896 static void stli_argbrds(void)
898 stlconf_t conf;
899 stlibrd_t *brdp;
900 int i;
902 #ifdef DEBUG
903 printk("stli_argbrds()\n");
904 #endif
906 for (i = stli_nrbrds; i < ARRAY_SIZE(stli_brdsp); i++) {
907 memset(&conf, 0, sizeof(conf));
908 if (stli_parsebrd(&conf, stli_brdsp[i]) == 0)
909 continue;
910 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
911 continue;
912 stli_nrbrds = i + 1;
913 brdp->brdnr = i;
914 brdp->brdtype = conf.brdtype;
915 brdp->iobase = conf.ioaddr1;
916 brdp->memaddr = conf.memaddr;
917 stli_brdinit(brdp);
921 /*****************************************************************************/
924 * Convert an ascii string number into an unsigned long.
927 static unsigned long stli_atol(char *str)
929 unsigned long val;
930 int base, c;
931 char *sp;
933 val = 0;
934 sp = str;
935 if ((*sp == '0') && (*(sp+1) == 'x')) {
936 base = 16;
937 sp += 2;
938 } else if (*sp == '0') {
939 base = 8;
940 sp++;
941 } else {
942 base = 10;
945 for (; (*sp != 0); sp++) {
946 c = (*sp > '9') ? (TOLOWER(*sp) - 'a' + 10) : (*sp - '0');
947 if ((c < 0) || (c >= base)) {
948 printk("STALLION: invalid argument %s\n", str);
949 val = 0;
950 break;
952 val = (val * base) + c;
954 return(val);
957 /*****************************************************************************/
960 * Parse the supplied argument string, into the board conf struct.
963 static int stli_parsebrd(stlconf_t *confp, char **argp)
965 char *sp;
966 int i;
968 #ifdef DEBUG
969 printk("stli_parsebrd(confp=%x,argp=%x)\n", (int) confp, (int) argp);
970 #endif
972 if ((argp[0] == (char *) NULL) || (*argp[0] == 0))
973 return(0);
975 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
976 *sp = TOLOWER(*sp);
978 for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
979 if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
980 break;
982 if (i == ARRAY_SIZE(stli_brdstr)) {
983 printk("STALLION: unknown board name, %s?\n", argp[0]);
984 return 0;
987 confp->brdtype = stli_brdstr[i].type;
988 if ((argp[1] != (char *) NULL) && (*argp[1] != 0))
989 confp->ioaddr1 = stli_atol(argp[1]);
990 if ((argp[2] != (char *) NULL) && (*argp[2] != 0))
991 confp->memaddr = stli_atol(argp[2]);
992 return(1);
995 #endif
997 /*****************************************************************************/
999 static int stli_open(struct tty_struct *tty, struct file *filp)
1001 stlibrd_t *brdp;
1002 stliport_t *portp;
1003 unsigned int minordev;
1004 int brdnr, portnr, rc;
1006 #ifdef DEBUG
1007 printk("stli_open(tty=%x,filp=%x): device=%s\n", (int) tty,
1008 (int) filp, tty->name);
1009 #endif
1011 minordev = tty->index;
1012 brdnr = MINOR2BRD(minordev);
1013 if (brdnr >= stli_nrbrds)
1014 return(-ENODEV);
1015 brdp = stli_brds[brdnr];
1016 if (brdp == (stlibrd_t *) NULL)
1017 return(-ENODEV);
1018 if ((brdp->state & BST_STARTED) == 0)
1019 return(-ENODEV);
1020 portnr = MINOR2PORT(minordev);
1021 if ((portnr < 0) || (portnr > brdp->nrports))
1022 return(-ENODEV);
1024 portp = brdp->ports[portnr];
1025 if (portp == (stliport_t *) NULL)
1026 return(-ENODEV);
1027 if (portp->devnr < 1)
1028 return(-ENODEV);
1032 * Check if this port is in the middle of closing. If so then wait
1033 * until it is closed then return error status based on flag settings.
1034 * The sleep here does not need interrupt protection since the wakeup
1035 * for it is done with the same context.
1037 if (portp->flags & ASYNC_CLOSING) {
1038 interruptible_sleep_on(&portp->close_wait);
1039 if (portp->flags & ASYNC_HUP_NOTIFY)
1040 return(-EAGAIN);
1041 return(-ERESTARTSYS);
1045 * On the first open of the device setup the port hardware, and
1046 * initialize the per port data structure. Since initializing the port
1047 * requires several commands to the board we will need to wait for any
1048 * other open that is already initializing the port.
1050 portp->tty = tty;
1051 tty->driver_data = portp;
1052 portp->refcount++;
1054 wait_event_interruptible(portp->raw_wait,
1055 !test_bit(ST_INITIALIZING, &portp->state));
1056 if (signal_pending(current))
1057 return(-ERESTARTSYS);
1059 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
1060 set_bit(ST_INITIALIZING, &portp->state);
1061 if ((rc = stli_initopen(brdp, portp)) >= 0) {
1062 portp->flags |= ASYNC_INITIALIZED;
1063 clear_bit(TTY_IO_ERROR, &tty->flags);
1065 clear_bit(ST_INITIALIZING, &portp->state);
1066 wake_up_interruptible(&portp->raw_wait);
1067 if (rc < 0)
1068 return(rc);
1072 * Check if this port is in the middle of closing. If so then wait
1073 * until it is closed then return error status, based on flag settings.
1074 * The sleep here does not need interrupt protection since the wakeup
1075 * for it is done with the same context.
1077 if (portp->flags & ASYNC_CLOSING) {
1078 interruptible_sleep_on(&portp->close_wait);
1079 if (portp->flags & ASYNC_HUP_NOTIFY)
1080 return(-EAGAIN);
1081 return(-ERESTARTSYS);
1085 * Based on type of open being done check if it can overlap with any
1086 * previous opens still in effect. If we are a normal serial device
1087 * then also we might have to wait for carrier.
1089 if (!(filp->f_flags & O_NONBLOCK)) {
1090 if ((rc = stli_waitcarrier(brdp, portp, filp)) != 0)
1091 return(rc);
1093 portp->flags |= ASYNC_NORMAL_ACTIVE;
1094 return(0);
1097 /*****************************************************************************/
1099 static void stli_close(struct tty_struct *tty, struct file *filp)
1101 stlibrd_t *brdp;
1102 stliport_t *portp;
1103 unsigned long flags;
1105 #ifdef DEBUG
1106 printk("stli_close(tty=%x,filp=%x)\n", (int) tty, (int) filp);
1107 #endif
1109 portp = tty->driver_data;
1110 if (portp == (stliport_t *) NULL)
1111 return;
1113 save_flags(flags);
1114 cli();
1115 if (tty_hung_up_p(filp)) {
1116 restore_flags(flags);
1117 return;
1119 if ((tty->count == 1) && (portp->refcount != 1))
1120 portp->refcount = 1;
1121 if (portp->refcount-- > 1) {
1122 restore_flags(flags);
1123 return;
1126 portp->flags |= ASYNC_CLOSING;
1129 * May want to wait for data to drain before closing. The BUSY flag
1130 * keeps track of whether we are still transmitting or not. It is
1131 * updated by messages from the slave - indicating when all chars
1132 * really have drained.
1134 if (tty == stli_txcooktty)
1135 stli_flushchars(tty);
1136 tty->closing = 1;
1137 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
1138 tty_wait_until_sent(tty, portp->closing_wait);
1140 portp->flags &= ~ASYNC_INITIALIZED;
1141 brdp = stli_brds[portp->brdnr];
1142 stli_rawclose(brdp, portp, 0, 0);
1143 if (tty->termios->c_cflag & HUPCL) {
1144 stli_mkasysigs(&portp->asig, 0, 0);
1145 if (test_bit(ST_CMDING, &portp->state))
1146 set_bit(ST_DOSIGS, &portp->state);
1147 else
1148 stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig,
1149 sizeof(asysigs_t), 0);
1151 clear_bit(ST_TXBUSY, &portp->state);
1152 clear_bit(ST_RXSTOP, &portp->state);
1153 set_bit(TTY_IO_ERROR, &tty->flags);
1154 if (tty->ldisc.flush_buffer)
1155 (tty->ldisc.flush_buffer)(tty);
1156 set_bit(ST_DOFLUSHRX, &portp->state);
1157 stli_flushbuffer(tty);
1159 tty->closing = 0;
1160 portp->tty = (struct tty_struct *) NULL;
1162 if (portp->openwaitcnt) {
1163 if (portp->close_delay)
1164 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
1165 wake_up_interruptible(&portp->open_wait);
1168 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
1169 wake_up_interruptible(&portp->close_wait);
1170 restore_flags(flags);
1173 /*****************************************************************************/
1176 * Carry out first open operations on a port. This involves a number of
1177 * commands to be sent to the slave. We need to open the port, set the
1178 * notification events, set the initial port settings, get and set the
1179 * initial signal values. We sleep and wait in between each one. But
1180 * this still all happens pretty quickly.
1183 static int stli_initopen(stlibrd_t *brdp, stliport_t *portp)
1185 struct tty_struct *tty;
1186 asynotify_t nt;
1187 asyport_t aport;
1188 int rc;
1190 #ifdef DEBUG
1191 printk("stli_initopen(brdp=%x,portp=%x)\n", (int) brdp, (int) portp);
1192 #endif
1194 if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
1195 return(rc);
1197 memset(&nt, 0, sizeof(asynotify_t));
1198 nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
1199 nt.signal = SG_DCD;
1200 if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
1201 sizeof(asynotify_t), 0)) < 0)
1202 return(rc);
1204 tty = portp->tty;
1205 if (tty == (struct tty_struct *) NULL)
1206 return(-ENODEV);
1207 stli_mkasyport(portp, &aport, tty->termios);
1208 if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
1209 sizeof(asyport_t), 0)) < 0)
1210 return(rc);
1212 set_bit(ST_GETSIGS, &portp->state);
1213 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
1214 sizeof(asysigs_t), 1)) < 0)
1215 return(rc);
1216 if (test_and_clear_bit(ST_GETSIGS, &portp->state))
1217 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
1218 stli_mkasysigs(&portp->asig, 1, 1);
1219 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1220 sizeof(asysigs_t), 0)) < 0)
1221 return(rc);
1223 return(0);
1226 /*****************************************************************************/
1229 * Send an open message to the slave. This will sleep waiting for the
1230 * acknowledgement, so must have user context. We need to co-ordinate
1231 * with close events here, since we don't want open and close events
1232 * to overlap.
1235 static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
1237 volatile cdkhdr_t *hdrp;
1238 volatile cdkctrl_t *cp;
1239 volatile unsigned char *bits;
1240 unsigned long flags;
1241 int rc;
1243 #ifdef DEBUG
1244 printk("stli_rawopen(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1245 (int) brdp, (int) portp, (int) arg, wait);
1246 #endif
1249 * Send a message to the slave to open this port.
1251 save_flags(flags);
1252 cli();
1255 * Slave is already closing this port. This can happen if a hangup
1256 * occurs on this port. So we must wait until it is complete. The
1257 * order of opens and closes may not be preserved across shared
1258 * memory, so we must wait until it is complete.
1260 wait_event_interruptible(portp->raw_wait,
1261 !test_bit(ST_CLOSING, &portp->state));
1262 if (signal_pending(current)) {
1263 restore_flags(flags);
1264 return -ERESTARTSYS;
1268 * Everything is ready now, so write the open message into shared
1269 * memory. Once the message is in set the service bits to say that
1270 * this port wants service.
1272 EBRDENABLE(brdp);
1273 cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1274 cp->openarg = arg;
1275 cp->open = 1;
1276 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1277 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1278 portp->portidx;
1279 *bits |= portp->portbit;
1280 EBRDDISABLE(brdp);
1282 if (wait == 0) {
1283 restore_flags(flags);
1284 return(0);
1288 * Slave is in action, so now we must wait for the open acknowledgment
1289 * to come back.
1291 rc = 0;
1292 set_bit(ST_OPENING, &portp->state);
1293 wait_event_interruptible(portp->raw_wait,
1294 !test_bit(ST_OPENING, &portp->state));
1295 if (signal_pending(current))
1296 rc = -ERESTARTSYS;
1297 restore_flags(flags);
1299 if ((rc == 0) && (portp->rc != 0))
1300 rc = -EIO;
1301 return(rc);
1304 /*****************************************************************************/
1307 * Send a close message to the slave. Normally this will sleep waiting
1308 * for the acknowledgement, but if wait parameter is 0 it will not. If
1309 * wait is true then must have user context (to sleep).
1312 static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
1314 volatile cdkhdr_t *hdrp;
1315 volatile cdkctrl_t *cp;
1316 volatile unsigned char *bits;
1317 unsigned long flags;
1318 int rc;
1320 #ifdef DEBUG
1321 printk("stli_rawclose(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1322 (int) brdp, (int) portp, (int) arg, wait);
1323 #endif
1325 save_flags(flags);
1326 cli();
1329 * Slave is already closing this port. This can happen if a hangup
1330 * occurs on this port.
1332 if (wait) {
1333 wait_event_interruptible(portp->raw_wait,
1334 !test_bit(ST_CLOSING, &portp->state));
1335 if (signal_pending(current)) {
1336 restore_flags(flags);
1337 return -ERESTARTSYS;
1342 * Write the close command into shared memory.
1344 EBRDENABLE(brdp);
1345 cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1346 cp->closearg = arg;
1347 cp->close = 1;
1348 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1349 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1350 portp->portidx;
1351 *bits |= portp->portbit;
1352 EBRDDISABLE(brdp);
1354 set_bit(ST_CLOSING, &portp->state);
1355 if (wait == 0) {
1356 restore_flags(flags);
1357 return(0);
1361 * Slave is in action, so now we must wait for the open acknowledgment
1362 * to come back.
1364 rc = 0;
1365 wait_event_interruptible(portp->raw_wait,
1366 !test_bit(ST_CLOSING, &portp->state));
1367 if (signal_pending(current))
1368 rc = -ERESTARTSYS;
1369 restore_flags(flags);
1371 if ((rc == 0) && (portp->rc != 0))
1372 rc = -EIO;
1373 return(rc);
1376 /*****************************************************************************/
1379 * Send a command to the slave and wait for the response. This must
1380 * have user context (it sleeps). This routine is generic in that it
1381 * can send any type of command. Its purpose is to wait for that command
1382 * to complete (as opposed to initiating the command then returning).
1385 static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
1387 unsigned long flags;
1389 #ifdef DEBUG
1390 printk("stli_cmdwait(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
1391 "copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
1392 (int) arg, size, copyback);
1393 #endif
1395 save_flags(flags);
1396 cli();
1397 wait_event_interruptible(portp->raw_wait,
1398 !test_bit(ST_CMDING, &portp->state));
1399 if (signal_pending(current)) {
1400 restore_flags(flags);
1401 return -ERESTARTSYS;
1404 stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1406 wait_event_interruptible(portp->raw_wait,
1407 !test_bit(ST_CMDING, &portp->state));
1408 if (signal_pending(current)) {
1409 restore_flags(flags);
1410 return -ERESTARTSYS;
1412 restore_flags(flags);
1414 if (portp->rc != 0)
1415 return(-EIO);
1416 return(0);
1419 /*****************************************************************************/
1422 * Send the termios settings for this port to the slave. This sleeps
1423 * waiting for the command to complete - so must have user context.
1426 static int stli_setport(stliport_t *portp)
1428 stlibrd_t *brdp;
1429 asyport_t aport;
1431 #ifdef DEBUG
1432 printk("stli_setport(portp=%x)\n", (int) portp);
1433 #endif
1435 if (portp == (stliport_t *) NULL)
1436 return(-ENODEV);
1437 if (portp->tty == (struct tty_struct *) NULL)
1438 return(-ENODEV);
1439 if ((portp->brdnr < 0) && (portp->brdnr >= stli_nrbrds))
1440 return(-ENODEV);
1441 brdp = stli_brds[portp->brdnr];
1442 if (brdp == (stlibrd_t *) NULL)
1443 return(-ENODEV);
1445 stli_mkasyport(portp, &aport, portp->tty->termios);
1446 return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1449 /*****************************************************************************/
1452 * Possibly need to wait for carrier (DCD signal) to come high. Say
1453 * maybe because if we are clocal then we don't need to wait...
1456 static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp)
1458 unsigned long flags;
1459 int rc, doclocal;
1461 #ifdef DEBUG
1462 printk("stli_waitcarrier(brdp=%x,portp=%x,filp=%x)\n",
1463 (int) brdp, (int) portp, (int) filp);
1464 #endif
1466 rc = 0;
1467 doclocal = 0;
1469 if (portp->tty->termios->c_cflag & CLOCAL)
1470 doclocal++;
1472 save_flags(flags);
1473 cli();
1474 portp->openwaitcnt++;
1475 if (! tty_hung_up_p(filp))
1476 portp->refcount--;
1478 for (;;) {
1479 stli_mkasysigs(&portp->asig, 1, 1);
1480 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS,
1481 &portp->asig, sizeof(asysigs_t), 0)) < 0)
1482 break;
1483 if (tty_hung_up_p(filp) ||
1484 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
1485 if (portp->flags & ASYNC_HUP_NOTIFY)
1486 rc = -EBUSY;
1487 else
1488 rc = -ERESTARTSYS;
1489 break;
1491 if (((portp->flags & ASYNC_CLOSING) == 0) &&
1492 (doclocal || (portp->sigs & TIOCM_CD))) {
1493 break;
1495 if (signal_pending(current)) {
1496 rc = -ERESTARTSYS;
1497 break;
1499 interruptible_sleep_on(&portp->open_wait);
1502 if (! tty_hung_up_p(filp))
1503 portp->refcount++;
1504 portp->openwaitcnt--;
1505 restore_flags(flags);
1507 return(rc);
1510 /*****************************************************************************/
1513 * Write routine. Take the data and put it in the shared memory ring
1514 * queue. If port is not already sending chars then need to mark the
1515 * service bits for this port.
1518 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1520 volatile cdkasy_t *ap;
1521 volatile cdkhdr_t *hdrp;
1522 volatile unsigned char *bits;
1523 unsigned char *shbuf, *chbuf;
1524 stliport_t *portp;
1525 stlibrd_t *brdp;
1526 unsigned int len, stlen, head, tail, size;
1527 unsigned long flags;
1529 #ifdef DEBUG
1530 printk("stli_write(tty=%x,buf=%x,count=%d)\n",
1531 (int) tty, (int) buf, count);
1532 #endif
1534 if ((tty == (struct tty_struct *) NULL) ||
1535 (stli_tmpwritebuf == (char *) NULL))
1536 return(0);
1537 if (tty == stli_txcooktty)
1538 stli_flushchars(tty);
1539 portp = tty->driver_data;
1540 if (portp == (stliport_t *) NULL)
1541 return(0);
1542 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1543 return(0);
1544 brdp = stli_brds[portp->brdnr];
1545 if (brdp == (stlibrd_t *) NULL)
1546 return(0);
1547 chbuf = (unsigned char *) buf;
1550 * All data is now local, shove as much as possible into shared memory.
1552 save_flags(flags);
1553 cli();
1554 EBRDENABLE(brdp);
1555 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1556 head = (unsigned int) ap->txq.head;
1557 tail = (unsigned int) ap->txq.tail;
1558 if (tail != ((unsigned int) ap->txq.tail))
1559 tail = (unsigned int) ap->txq.tail;
1560 size = portp->txsize;
1561 if (head >= tail) {
1562 len = size - (head - tail) - 1;
1563 stlen = size - head;
1564 } else {
1565 len = tail - head - 1;
1566 stlen = len;
1569 len = MIN(len, count);
1570 count = 0;
1571 shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
1573 while (len > 0) {
1574 stlen = MIN(len, stlen);
1575 memcpy((shbuf + head), chbuf, stlen);
1576 chbuf += stlen;
1577 len -= stlen;
1578 count += stlen;
1579 head += stlen;
1580 if (head >= size) {
1581 head = 0;
1582 stlen = tail;
1586 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1587 ap->txq.head = head;
1588 if (test_bit(ST_TXBUSY, &portp->state)) {
1589 if (ap->changed.data & DT_TXEMPTY)
1590 ap->changed.data &= ~DT_TXEMPTY;
1592 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1593 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1594 portp->portidx;
1595 *bits |= portp->portbit;
1596 set_bit(ST_TXBUSY, &portp->state);
1597 EBRDDISABLE(brdp);
1599 restore_flags(flags);
1601 return(count);
1604 /*****************************************************************************/
1607 * Output a single character. We put it into a temporary local buffer
1608 * (for speed) then write out that buffer when the flushchars routine
1609 * is called. There is a safety catch here so that if some other port
1610 * writes chars before the current buffer has been, then we write them
1611 * first them do the new ports.
1614 static void stli_putchar(struct tty_struct *tty, unsigned char ch)
1616 #ifdef DEBUG
1617 printk("stli_putchar(tty=%x,ch=%x)\n", (int) tty, (int) ch);
1618 #endif
1620 if (tty == (struct tty_struct *) NULL)
1621 return;
1622 if (tty != stli_txcooktty) {
1623 if (stli_txcooktty != (struct tty_struct *) NULL)
1624 stli_flushchars(stli_txcooktty);
1625 stli_txcooktty = tty;
1628 stli_txcookbuf[stli_txcooksize++] = ch;
1631 /*****************************************************************************/
1634 * Transfer characters from the local TX cooking buffer to the board.
1635 * We sort of ignore the tty that gets passed in here. We rely on the
1636 * info stored with the TX cook buffer to tell us which port to flush
1637 * the data on. In any case we clean out the TX cook buffer, for re-use
1638 * by someone else.
1641 static void stli_flushchars(struct tty_struct *tty)
1643 volatile cdkhdr_t *hdrp;
1644 volatile unsigned char *bits;
1645 volatile cdkasy_t *ap;
1646 struct tty_struct *cooktty;
1647 stliport_t *portp;
1648 stlibrd_t *brdp;
1649 unsigned int len, stlen, head, tail, size, count, cooksize;
1650 unsigned char *buf, *shbuf;
1651 unsigned long flags;
1653 #ifdef DEBUG
1654 printk("stli_flushchars(tty=%x)\n", (int) tty);
1655 #endif
1657 cooksize = stli_txcooksize;
1658 cooktty = stli_txcooktty;
1659 stli_txcooksize = 0;
1660 stli_txcookrealsize = 0;
1661 stli_txcooktty = (struct tty_struct *) NULL;
1663 if (tty == (struct tty_struct *) NULL)
1664 return;
1665 if (cooktty == (struct tty_struct *) NULL)
1666 return;
1667 if (tty != cooktty)
1668 tty = cooktty;
1669 if (cooksize == 0)
1670 return;
1672 portp = tty->driver_data;
1673 if (portp == (stliport_t *) NULL)
1674 return;
1675 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1676 return;
1677 brdp = stli_brds[portp->brdnr];
1678 if (brdp == (stlibrd_t *) NULL)
1679 return;
1681 save_flags(flags);
1682 cli();
1683 EBRDENABLE(brdp);
1685 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1686 head = (unsigned int) ap->txq.head;
1687 tail = (unsigned int) ap->txq.tail;
1688 if (tail != ((unsigned int) ap->txq.tail))
1689 tail = (unsigned int) ap->txq.tail;
1690 size = portp->txsize;
1691 if (head >= tail) {
1692 len = size - (head - tail) - 1;
1693 stlen = size - head;
1694 } else {
1695 len = tail - head - 1;
1696 stlen = len;
1699 len = MIN(len, cooksize);
1700 count = 0;
1701 shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
1702 buf = stli_txcookbuf;
1704 while (len > 0) {
1705 stlen = MIN(len, stlen);
1706 memcpy((shbuf + head), buf, stlen);
1707 buf += stlen;
1708 len -= stlen;
1709 count += stlen;
1710 head += stlen;
1711 if (head >= size) {
1712 head = 0;
1713 stlen = tail;
1717 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1718 ap->txq.head = head;
1720 if (test_bit(ST_TXBUSY, &portp->state)) {
1721 if (ap->changed.data & DT_TXEMPTY)
1722 ap->changed.data &= ~DT_TXEMPTY;
1724 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1725 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1726 portp->portidx;
1727 *bits |= portp->portbit;
1728 set_bit(ST_TXBUSY, &portp->state);
1730 EBRDDISABLE(brdp);
1731 restore_flags(flags);
1734 /*****************************************************************************/
1736 static int stli_writeroom(struct tty_struct *tty)
1738 volatile cdkasyrq_t *rp;
1739 stliport_t *portp;
1740 stlibrd_t *brdp;
1741 unsigned int head, tail, len;
1742 unsigned long flags;
1744 #ifdef DEBUG
1745 printk("stli_writeroom(tty=%x)\n", (int) tty);
1746 #endif
1748 if (tty == (struct tty_struct *) NULL)
1749 return(0);
1750 if (tty == stli_txcooktty) {
1751 if (stli_txcookrealsize != 0) {
1752 len = stli_txcookrealsize - stli_txcooksize;
1753 return(len);
1757 portp = tty->driver_data;
1758 if (portp == (stliport_t *) NULL)
1759 return(0);
1760 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1761 return(0);
1762 brdp = stli_brds[portp->brdnr];
1763 if (brdp == (stlibrd_t *) NULL)
1764 return(0);
1766 save_flags(flags);
1767 cli();
1768 EBRDENABLE(brdp);
1769 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1770 head = (unsigned int) rp->head;
1771 tail = (unsigned int) rp->tail;
1772 if (tail != ((unsigned int) rp->tail))
1773 tail = (unsigned int) rp->tail;
1774 len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1775 len--;
1776 EBRDDISABLE(brdp);
1777 restore_flags(flags);
1779 if (tty == stli_txcooktty) {
1780 stli_txcookrealsize = len;
1781 len -= stli_txcooksize;
1783 return(len);
1786 /*****************************************************************************/
1789 * Return the number of characters in the transmit buffer. Normally we
1790 * will return the number of chars in the shared memory ring queue.
1791 * We need to kludge around the case where the shared memory buffer is
1792 * empty but not all characters have drained yet, for this case just
1793 * return that there is 1 character in the buffer!
1796 static int stli_charsinbuffer(struct tty_struct *tty)
1798 volatile cdkasyrq_t *rp;
1799 stliport_t *portp;
1800 stlibrd_t *brdp;
1801 unsigned int head, tail, len;
1802 unsigned long flags;
1804 #ifdef DEBUG
1805 printk("stli_charsinbuffer(tty=%x)\n", (int) tty);
1806 #endif
1808 if (tty == (struct tty_struct *) NULL)
1809 return(0);
1810 if (tty == stli_txcooktty)
1811 stli_flushchars(tty);
1812 portp = tty->driver_data;
1813 if (portp == (stliport_t *) NULL)
1814 return(0);
1815 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1816 return(0);
1817 brdp = stli_brds[portp->brdnr];
1818 if (brdp == (stlibrd_t *) NULL)
1819 return(0);
1821 save_flags(flags);
1822 cli();
1823 EBRDENABLE(brdp);
1824 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1825 head = (unsigned int) rp->head;
1826 tail = (unsigned int) rp->tail;
1827 if (tail != ((unsigned int) rp->tail))
1828 tail = (unsigned int) rp->tail;
1829 len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1830 if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1831 len = 1;
1832 EBRDDISABLE(brdp);
1833 restore_flags(flags);
1835 return(len);
1838 /*****************************************************************************/
1841 * Generate the serial struct info.
1844 static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp)
1846 struct serial_struct sio;
1847 stlibrd_t *brdp;
1849 #ifdef DEBUG
1850 printk("stli_getserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
1851 #endif
1853 memset(&sio, 0, sizeof(struct serial_struct));
1854 sio.type = PORT_UNKNOWN;
1855 sio.line = portp->portnr;
1856 sio.irq = 0;
1857 sio.flags = portp->flags;
1858 sio.baud_base = portp->baud_base;
1859 sio.close_delay = portp->close_delay;
1860 sio.closing_wait = portp->closing_wait;
1861 sio.custom_divisor = portp->custom_divisor;
1862 sio.xmit_fifo_size = 0;
1863 sio.hub6 = 0;
1865 brdp = stli_brds[portp->brdnr];
1866 if (brdp != (stlibrd_t *) NULL)
1867 sio.port = brdp->iobase;
1869 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1870 -EFAULT : 0;
1873 /*****************************************************************************/
1876 * Set port according to the serial struct info.
1877 * At this point we do not do any auto-configure stuff, so we will
1878 * just quietly ignore any requests to change irq, etc.
1881 static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp)
1883 struct serial_struct sio;
1884 int rc;
1886 #ifdef DEBUG
1887 printk("stli_setserial(portp=%p,sp=%p)\n", portp, sp);
1888 #endif
1890 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1891 return -EFAULT;
1892 if (!capable(CAP_SYS_ADMIN)) {
1893 if ((sio.baud_base != portp->baud_base) ||
1894 (sio.close_delay != portp->close_delay) ||
1895 ((sio.flags & ~ASYNC_USR_MASK) !=
1896 (portp->flags & ~ASYNC_USR_MASK)))
1897 return(-EPERM);
1900 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1901 (sio.flags & ASYNC_USR_MASK);
1902 portp->baud_base = sio.baud_base;
1903 portp->close_delay = sio.close_delay;
1904 portp->closing_wait = sio.closing_wait;
1905 portp->custom_divisor = sio.custom_divisor;
1907 if ((rc = stli_setport(portp)) < 0)
1908 return(rc);
1909 return(0);
1912 /*****************************************************************************/
1914 static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1916 stliport_t *portp = tty->driver_data;
1917 stlibrd_t *brdp;
1918 int rc;
1920 if (portp == (stliport_t *) NULL)
1921 return(-ENODEV);
1922 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1923 return(0);
1924 brdp = stli_brds[portp->brdnr];
1925 if (brdp == (stlibrd_t *) NULL)
1926 return(0);
1927 if (tty->flags & (1 << TTY_IO_ERROR))
1928 return(-EIO);
1930 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1931 &portp->asig, sizeof(asysigs_t), 1)) < 0)
1932 return(rc);
1934 return stli_mktiocm(portp->asig.sigvalue);
1937 static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1938 unsigned int set, unsigned int clear)
1940 stliport_t *portp = tty->driver_data;
1941 stlibrd_t *brdp;
1942 int rts = -1, dtr = -1;
1944 if (portp == (stliport_t *) NULL)
1945 return(-ENODEV);
1946 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1947 return(0);
1948 brdp = stli_brds[portp->brdnr];
1949 if (brdp == (stlibrd_t *) NULL)
1950 return(0);
1951 if (tty->flags & (1 << TTY_IO_ERROR))
1952 return(-EIO);
1954 if (set & TIOCM_RTS)
1955 rts = 1;
1956 if (set & TIOCM_DTR)
1957 dtr = 1;
1958 if (clear & TIOCM_RTS)
1959 rts = 0;
1960 if (clear & TIOCM_DTR)
1961 dtr = 0;
1963 stli_mkasysigs(&portp->asig, dtr, rts);
1965 return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1966 sizeof(asysigs_t), 0);
1969 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1971 stliport_t *portp;
1972 stlibrd_t *brdp;
1973 unsigned int ival;
1974 int rc;
1975 void __user *argp = (void __user *)arg;
1977 #ifdef DEBUG
1978 printk("stli_ioctl(tty=%x,file=%x,cmd=%x,arg=%x)\n",
1979 (int) tty, (int) file, cmd, (int) arg);
1980 #endif
1982 if (tty == (struct tty_struct *) NULL)
1983 return(-ENODEV);
1984 portp = tty->driver_data;
1985 if (portp == (stliport_t *) NULL)
1986 return(-ENODEV);
1987 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1988 return(0);
1989 brdp = stli_brds[portp->brdnr];
1990 if (brdp == (stlibrd_t *) NULL)
1991 return(0);
1993 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1994 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1995 if (tty->flags & (1 << TTY_IO_ERROR))
1996 return(-EIO);
1999 rc = 0;
2001 switch (cmd) {
2002 case TIOCGSOFTCAR:
2003 rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
2004 (unsigned __user *) arg);
2005 break;
2006 case TIOCSSOFTCAR:
2007 if ((rc = get_user(ival, (unsigned __user *) arg)) == 0)
2008 tty->termios->c_cflag =
2009 (tty->termios->c_cflag & ~CLOCAL) |
2010 (ival ? CLOCAL : 0);
2011 break;
2012 case TIOCGSERIAL:
2013 rc = stli_getserial(portp, argp);
2014 break;
2015 case TIOCSSERIAL:
2016 rc = stli_setserial(portp, argp);
2017 break;
2018 case STL_GETPFLAG:
2019 rc = put_user(portp->pflag, (unsigned __user *)argp);
2020 break;
2021 case STL_SETPFLAG:
2022 if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
2023 stli_setport(portp);
2024 break;
2025 case COM_GETPORTSTATS:
2026 rc = stli_getportstats(portp, argp);
2027 break;
2028 case COM_CLRPORTSTATS:
2029 rc = stli_clrportstats(portp, argp);
2030 break;
2031 case TIOCSERCONFIG:
2032 case TIOCSERGWILD:
2033 case TIOCSERSWILD:
2034 case TIOCSERGETLSR:
2035 case TIOCSERGSTRUCT:
2036 case TIOCSERGETMULTI:
2037 case TIOCSERSETMULTI:
2038 default:
2039 rc = -ENOIOCTLCMD;
2040 break;
2043 return(rc);
2046 /*****************************************************************************/
2049 * This routine assumes that we have user context and can sleep.
2050 * Looks like it is true for the current ttys implementation..!!
2053 static void stli_settermios(struct tty_struct *tty, struct termios *old)
2055 stliport_t *portp;
2056 stlibrd_t *brdp;
2057 struct termios *tiosp;
2058 asyport_t aport;
2060 #ifdef DEBUG
2061 printk("stli_settermios(tty=%x,old=%x)\n", (int) tty, (int) old);
2062 #endif
2064 if (tty == (struct tty_struct *) NULL)
2065 return;
2066 portp = tty->driver_data;
2067 if (portp == (stliport_t *) NULL)
2068 return;
2069 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2070 return;
2071 brdp = stli_brds[portp->brdnr];
2072 if (brdp == (stlibrd_t *) NULL)
2073 return;
2075 tiosp = tty->termios;
2076 if ((tiosp->c_cflag == old->c_cflag) &&
2077 (tiosp->c_iflag == old->c_iflag))
2078 return;
2080 stli_mkasyport(portp, &aport, tiosp);
2081 stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
2082 stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
2083 stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
2084 sizeof(asysigs_t), 0);
2085 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
2086 tty->hw_stopped = 0;
2087 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
2088 wake_up_interruptible(&portp->open_wait);
2091 /*****************************************************************************/
2094 * Attempt to flow control who ever is sending us data. We won't really
2095 * do any flow control action here. We can't directly, and even if we
2096 * wanted to we would have to send a command to the slave. The slave
2097 * knows how to flow control, and will do so when its buffers reach its
2098 * internal high water marks. So what we will do is set a local state
2099 * bit that will stop us sending any RX data up from the poll routine
2100 * (which is the place where RX data from the slave is handled).
2103 static void stli_throttle(struct tty_struct *tty)
2105 stliport_t *portp;
2107 #ifdef DEBUG
2108 printk("stli_throttle(tty=%x)\n", (int) tty);
2109 #endif
2111 if (tty == (struct tty_struct *) NULL)
2112 return;
2113 portp = tty->driver_data;
2114 if (portp == (stliport_t *) NULL)
2115 return;
2117 set_bit(ST_RXSTOP, &portp->state);
2120 /*****************************************************************************/
2123 * Unflow control the device sending us data... That means that all
2124 * we have to do is clear the RXSTOP state bit. The next poll call
2125 * will then be able to pass the RX data back up.
2128 static void stli_unthrottle(struct tty_struct *tty)
2130 stliport_t *portp;
2132 #ifdef DEBUG
2133 printk("stli_unthrottle(tty=%x)\n", (int) tty);
2134 #endif
2136 if (tty == (struct tty_struct *) NULL)
2137 return;
2138 portp = tty->driver_data;
2139 if (portp == (stliport_t *) NULL)
2140 return;
2142 clear_bit(ST_RXSTOP, &portp->state);
2145 /*****************************************************************************/
2148 * Stop the transmitter. Basically to do this we will just turn TX
2149 * interrupts off.
2152 static void stli_stop(struct tty_struct *tty)
2154 stlibrd_t *brdp;
2155 stliport_t *portp;
2156 asyctrl_t actrl;
2158 #ifdef DEBUG
2159 printk("stli_stop(tty=%x)\n", (int) tty);
2160 #endif
2162 if (tty == (struct tty_struct *) NULL)
2163 return;
2164 portp = tty->driver_data;
2165 if (portp == (stliport_t *) NULL)
2166 return;
2167 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2168 return;
2169 brdp = stli_brds[portp->brdnr];
2170 if (brdp == (stlibrd_t *) NULL)
2171 return;
2173 memset(&actrl, 0, sizeof(asyctrl_t));
2174 actrl.txctrl = CT_STOPFLOW;
2175 #if 0
2176 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2177 #endif
2180 /*****************************************************************************/
2183 * Start the transmitter again. Just turn TX interrupts back on.
2186 static void stli_start(struct tty_struct *tty)
2188 stliport_t *portp;
2189 stlibrd_t *brdp;
2190 asyctrl_t actrl;
2192 #ifdef DEBUG
2193 printk("stli_start(tty=%x)\n", (int) tty);
2194 #endif
2196 if (tty == (struct tty_struct *) NULL)
2197 return;
2198 portp = tty->driver_data;
2199 if (portp == (stliport_t *) NULL)
2200 return;
2201 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2202 return;
2203 brdp = stli_brds[portp->brdnr];
2204 if (brdp == (stlibrd_t *) NULL)
2205 return;
2207 memset(&actrl, 0, sizeof(asyctrl_t));
2208 actrl.txctrl = CT_STARTFLOW;
2209 #if 0
2210 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2211 #endif
2214 /*****************************************************************************/
2217 * Scheduler called hang up routine. This is called from the scheduler,
2218 * not direct from the driver "poll" routine. We can't call it there
2219 * since the real local hangup code will enable/disable the board and
2220 * other things that we can't do while handling the poll. Much easier
2221 * to deal with it some time later (don't really care when, hangups
2222 * aren't that time critical).
2225 static void stli_dohangup(void *arg)
2227 stliport_t *portp;
2229 #ifdef DEBUG
2230 printk(KERN_DEBUG "stli_dohangup(portp=%x)\n", (int) arg);
2231 #endif
2234 * FIXME: There's a module removal race here: tty_hangup
2235 * calls schedule_work which will call into this
2236 * driver later.
2238 portp = (stliport_t *) arg;
2239 if (portp != (stliport_t *) NULL) {
2240 if (portp->tty != (struct tty_struct *) NULL) {
2241 tty_hangup(portp->tty);
2246 /*****************************************************************************/
2249 * Hangup this port. This is pretty much like closing the port, only
2250 * a little more brutal. No waiting for data to drain. Shutdown the
2251 * port and maybe drop signals. This is rather tricky really. We want
2252 * to close the port as well.
2255 static void stli_hangup(struct tty_struct *tty)
2257 stliport_t *portp;
2258 stlibrd_t *brdp;
2259 unsigned long flags;
2261 #ifdef DEBUG
2262 printk(KERN_DEBUG "stli_hangup(tty=%x)\n", (int) tty);
2263 #endif
2265 if (tty == (struct tty_struct *) NULL)
2266 return;
2267 portp = tty->driver_data;
2268 if (portp == (stliport_t *) NULL)
2269 return;
2270 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2271 return;
2272 brdp = stli_brds[portp->brdnr];
2273 if (brdp == (stlibrd_t *) NULL)
2274 return;
2276 portp->flags &= ~ASYNC_INITIALIZED;
2278 save_flags(flags);
2279 cli();
2280 if (! test_bit(ST_CLOSING, &portp->state))
2281 stli_rawclose(brdp, portp, 0, 0);
2282 if (tty->termios->c_cflag & HUPCL) {
2283 stli_mkasysigs(&portp->asig, 0, 0);
2284 if (test_bit(ST_CMDING, &portp->state)) {
2285 set_bit(ST_DOSIGS, &portp->state);
2286 set_bit(ST_DOFLUSHTX, &portp->state);
2287 set_bit(ST_DOFLUSHRX, &portp->state);
2288 } else {
2289 stli_sendcmd(brdp, portp, A_SETSIGNALSF,
2290 &portp->asig, sizeof(asysigs_t), 0);
2293 restore_flags(flags);
2295 clear_bit(ST_TXBUSY, &portp->state);
2296 clear_bit(ST_RXSTOP, &portp->state);
2297 set_bit(TTY_IO_ERROR, &tty->flags);
2298 portp->tty = (struct tty_struct *) NULL;
2299 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
2300 portp->refcount = 0;
2301 wake_up_interruptible(&portp->open_wait);
2304 /*****************************************************************************/
2307 * Flush characters from the lower buffer. We may not have user context
2308 * so we cannot sleep waiting for it to complete. Also we need to check
2309 * if there is chars for this port in the TX cook buffer, and flush them
2310 * as well.
2313 static void stli_flushbuffer(struct tty_struct *tty)
2315 stliport_t *portp;
2316 stlibrd_t *brdp;
2317 unsigned long ftype, flags;
2319 #ifdef DEBUG
2320 printk(KERN_DEBUG "stli_flushbuffer(tty=%x)\n", (int) tty);
2321 #endif
2323 if (tty == (struct tty_struct *) NULL)
2324 return;
2325 portp = tty->driver_data;
2326 if (portp == (stliport_t *) NULL)
2327 return;
2328 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2329 return;
2330 brdp = stli_brds[portp->brdnr];
2331 if (brdp == (stlibrd_t *) NULL)
2332 return;
2334 save_flags(flags);
2335 cli();
2336 if (tty == stli_txcooktty) {
2337 stli_txcooktty = (struct tty_struct *) NULL;
2338 stli_txcooksize = 0;
2339 stli_txcookrealsize = 0;
2341 if (test_bit(ST_CMDING, &portp->state)) {
2342 set_bit(ST_DOFLUSHTX, &portp->state);
2343 } else {
2344 ftype = FLUSHTX;
2345 if (test_bit(ST_DOFLUSHRX, &portp->state)) {
2346 ftype |= FLUSHRX;
2347 clear_bit(ST_DOFLUSHRX, &portp->state);
2349 stli_sendcmd(brdp, portp, A_FLUSH, &ftype,
2350 sizeof(unsigned long), 0);
2352 restore_flags(flags);
2354 wake_up_interruptible(&tty->write_wait);
2355 if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
2356 tty->ldisc.write_wakeup)
2357 (tty->ldisc.write_wakeup)(tty);
2360 /*****************************************************************************/
2362 static void stli_breakctl(struct tty_struct *tty, int state)
2364 stlibrd_t *brdp;
2365 stliport_t *portp;
2366 long arg;
2367 /* long savestate, savetime; */
2369 #ifdef DEBUG
2370 printk(KERN_DEBUG "stli_breakctl(tty=%x,state=%d)\n", (int) tty, state);
2371 #endif
2373 if (tty == (struct tty_struct *) NULL)
2374 return;
2375 portp = tty->driver_data;
2376 if (portp == (stliport_t *) NULL)
2377 return;
2378 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2379 return;
2380 brdp = stli_brds[portp->brdnr];
2381 if (brdp == (stlibrd_t *) NULL)
2382 return;
2385 * Due to a bug in the tty send_break() code we need to preserve
2386 * the current process state and timeout...
2387 savetime = current->timeout;
2388 savestate = current->state;
2391 arg = (state == -1) ? BREAKON : BREAKOFF;
2392 stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
2396 current->timeout = savetime;
2397 current->state = savestate;
2401 /*****************************************************************************/
2403 static void stli_waituntilsent(struct tty_struct *tty, int timeout)
2405 stliport_t *portp;
2406 unsigned long tend;
2408 #ifdef DEBUG
2409 printk(KERN_DEBUG "stli_waituntilsent(tty=%x,timeout=%x)\n", (int) tty, timeout);
2410 #endif
2412 if (tty == (struct tty_struct *) NULL)
2413 return;
2414 portp = tty->driver_data;
2415 if (portp == (stliport_t *) NULL)
2416 return;
2418 if (timeout == 0)
2419 timeout = HZ;
2420 tend = jiffies + timeout;
2422 while (test_bit(ST_TXBUSY, &portp->state)) {
2423 if (signal_pending(current))
2424 break;
2425 msleep_interruptible(20);
2426 if (time_after_eq(jiffies, tend))
2427 break;
2431 /*****************************************************************************/
2433 static void stli_sendxchar(struct tty_struct *tty, char ch)
2435 stlibrd_t *brdp;
2436 stliport_t *portp;
2437 asyctrl_t actrl;
2439 #ifdef DEBUG
2440 printk(KERN_DEBUG "stli_sendxchar(tty=%x,ch=%x)\n", (int) tty, ch);
2441 #endif
2443 if (tty == (struct tty_struct *) NULL)
2444 return;
2445 portp = tty->driver_data;
2446 if (portp == (stliport_t *) NULL)
2447 return;
2448 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2449 return;
2450 brdp = stli_brds[portp->brdnr];
2451 if (brdp == (stlibrd_t *) NULL)
2452 return;
2454 memset(&actrl, 0, sizeof(asyctrl_t));
2455 if (ch == STOP_CHAR(tty)) {
2456 actrl.rxctrl = CT_STOPFLOW;
2457 } else if (ch == START_CHAR(tty)) {
2458 actrl.rxctrl = CT_STARTFLOW;
2459 } else {
2460 actrl.txctrl = CT_SENDCHR;
2461 actrl.tximdch = ch;
2464 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2467 /*****************************************************************************/
2469 #define MAXLINE 80
2472 * Format info for a specified port. The line is deliberately limited
2473 * to 80 characters. (If it is too long it will be truncated, if too
2474 * short then padded with spaces).
2477 static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos)
2479 char *sp, *uart;
2480 int rc, cnt;
2482 rc = stli_portcmdstats(portp);
2484 uart = "UNKNOWN";
2485 if (brdp->state & BST_STARTED) {
2486 switch (stli_comstats.hwid) {
2487 case 0: uart = "2681"; break;
2488 case 1: uart = "SC26198"; break;
2489 default: uart = "CD1400"; break;
2493 sp = pos;
2494 sp += sprintf(sp, "%d: uart:%s ", portnr, uart);
2496 if ((brdp->state & BST_STARTED) && (rc >= 0)) {
2497 sp += sprintf(sp, "tx:%d rx:%d", (int) stli_comstats.txtotal,
2498 (int) stli_comstats.rxtotal);
2500 if (stli_comstats.rxframing)
2501 sp += sprintf(sp, " fe:%d",
2502 (int) stli_comstats.rxframing);
2503 if (stli_comstats.rxparity)
2504 sp += sprintf(sp, " pe:%d",
2505 (int) stli_comstats.rxparity);
2506 if (stli_comstats.rxbreaks)
2507 sp += sprintf(sp, " brk:%d",
2508 (int) stli_comstats.rxbreaks);
2509 if (stli_comstats.rxoverrun)
2510 sp += sprintf(sp, " oe:%d",
2511 (int) stli_comstats.rxoverrun);
2513 cnt = sprintf(sp, "%s%s%s%s%s ",
2514 (stli_comstats.signals & TIOCM_RTS) ? "|RTS" : "",
2515 (stli_comstats.signals & TIOCM_CTS) ? "|CTS" : "",
2516 (stli_comstats.signals & TIOCM_DTR) ? "|DTR" : "",
2517 (stli_comstats.signals & TIOCM_CD) ? "|DCD" : "",
2518 (stli_comstats.signals & TIOCM_DSR) ? "|DSR" : "");
2519 *sp = ' ';
2520 sp += cnt;
2523 for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
2524 *sp++ = ' ';
2525 if (cnt >= MAXLINE)
2526 pos[(MAXLINE - 2)] = '+';
2527 pos[(MAXLINE - 1)] = '\n';
2529 return(MAXLINE);
2532 /*****************************************************************************/
2535 * Port info, read from the /proc file system.
2538 static int stli_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
2540 stlibrd_t *brdp;
2541 stliport_t *portp;
2542 int brdnr, portnr, totalport;
2543 int curoff, maxoff;
2544 char *pos;
2546 #ifdef DEBUG
2547 printk(KERN_DEBUG "stli_readproc(page=%x,start=%x,off=%x,count=%d,eof=%x,"
2548 "data=%x\n", (int) page, (int) start, (int) off, count,
2549 (int) eof, (int) data);
2550 #endif
2552 pos = page;
2553 totalport = 0;
2554 curoff = 0;
2556 if (off == 0) {
2557 pos += sprintf(pos, "%s: version %s", stli_drvtitle,
2558 stli_drvversion);
2559 while (pos < (page + MAXLINE - 1))
2560 *pos++ = ' ';
2561 *pos++ = '\n';
2563 curoff = MAXLINE;
2566 * We scan through for each board, panel and port. The offset is
2567 * calculated on the fly, and irrelevant ports are skipped.
2569 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2570 brdp = stli_brds[brdnr];
2571 if (brdp == (stlibrd_t *) NULL)
2572 continue;
2573 if (brdp->state == 0)
2574 continue;
2576 maxoff = curoff + (brdp->nrports * MAXLINE);
2577 if (off >= maxoff) {
2578 curoff = maxoff;
2579 continue;
2582 totalport = brdnr * STL_MAXPORTS;
2583 for (portnr = 0; (portnr < brdp->nrports); portnr++,
2584 totalport++) {
2585 portp = brdp->ports[portnr];
2586 if (portp == (stliport_t *) NULL)
2587 continue;
2588 if (off >= (curoff += MAXLINE))
2589 continue;
2590 if ((pos - page + MAXLINE) > count)
2591 goto stli_readdone;
2592 pos += stli_portinfo(brdp, portp, totalport, pos);
2596 *eof = 1;
2598 stli_readdone:
2599 *start = page;
2600 return(pos - page);
2603 /*****************************************************************************/
2606 * Generic send command routine. This will send a message to the slave,
2607 * of the specified type with the specified argument. Must be very
2608 * careful of data that will be copied out from shared memory -
2609 * containing command results. The command completion is all done from
2610 * a poll routine that does not have user context. Therefore you cannot
2611 * copy back directly into user space, or to the kernel stack of a
2612 * process. This routine does not sleep, so can be called from anywhere.
2615 static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
2617 volatile cdkhdr_t *hdrp;
2618 volatile cdkctrl_t *cp;
2619 volatile unsigned char *bits;
2620 unsigned long flags;
2622 #ifdef DEBUG
2623 printk(KERN_DEBUG "stli_sendcmd(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
2624 "copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
2625 (int) arg, size, copyback);
2626 #endif
2628 save_flags(flags);
2629 cli();
2631 if (test_bit(ST_CMDING, &portp->state)) {
2632 printk(KERN_ERR "STALLION: command already busy, cmd=%x!\n",
2633 (int) cmd);
2634 restore_flags(flags);
2635 return;
2638 EBRDENABLE(brdp);
2639 cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
2640 if (size > 0) {
2641 memcpy((void *) &(cp->args[0]), arg, size);
2642 if (copyback) {
2643 portp->argp = arg;
2644 portp->argsize = size;
2647 cp->status = 0;
2648 cp->cmd = cmd;
2649 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2650 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
2651 portp->portidx;
2652 *bits |= portp->portbit;
2653 set_bit(ST_CMDING, &portp->state);
2654 EBRDDISABLE(brdp);
2655 restore_flags(flags);
2658 /*****************************************************************************/
2661 * Read data from shared memory. This assumes that the shared memory
2662 * is enabled and that interrupts are off. Basically we just empty out
2663 * the shared memory buffer into the tty buffer. Must be careful to
2664 * handle the case where we fill up the tty buffer, but still have
2665 * more chars to unload.
2668 static void stli_read(stlibrd_t *brdp, stliport_t *portp)
2670 volatile cdkasyrq_t *rp;
2671 volatile char *shbuf;
2672 struct tty_struct *tty;
2673 unsigned int head, tail, size;
2674 unsigned int len, stlen;
2676 #ifdef DEBUG
2677 printk(KERN_DEBUG "stli_read(brdp=%x,portp=%d)\n",
2678 (int) brdp, (int) portp);
2679 #endif
2681 if (test_bit(ST_RXSTOP, &portp->state))
2682 return;
2683 tty = portp->tty;
2684 if (tty == (struct tty_struct *) NULL)
2685 return;
2687 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2688 head = (unsigned int) rp->head;
2689 if (head != ((unsigned int) rp->head))
2690 head = (unsigned int) rp->head;
2691 tail = (unsigned int) rp->tail;
2692 size = portp->rxsize;
2693 if (head >= tail) {
2694 len = head - tail;
2695 stlen = len;
2696 } else {
2697 len = size - (tail - head);
2698 stlen = size - tail;
2701 len = tty_buffer_request_room(tty, len);
2702 /* FIXME : iomap ? */
2703 shbuf = (volatile char *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2705 while (len > 0) {
2706 stlen = MIN(len, stlen);
2707 tty_insert_flip_string(tty, (char *)(shbuf + tail), stlen);
2708 len -= stlen;
2709 tail += stlen;
2710 if (tail >= size) {
2711 tail = 0;
2712 stlen = head;
2715 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2716 rp->tail = tail;
2718 if (head != tail)
2719 set_bit(ST_RXING, &portp->state);
2721 tty_schedule_flip(tty);
2724 /*****************************************************************************/
2727 * Set up and carry out any delayed commands. There is only a small set
2728 * of slave commands that can be done "off-level". So it is not too
2729 * difficult to deal with them here.
2732 static void stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp)
2734 int cmd;
2736 if (test_bit(ST_DOSIGS, &portp->state)) {
2737 if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2738 test_bit(ST_DOFLUSHRX, &portp->state))
2739 cmd = A_SETSIGNALSF;
2740 else if (test_bit(ST_DOFLUSHTX, &portp->state))
2741 cmd = A_SETSIGNALSFTX;
2742 else if (test_bit(ST_DOFLUSHRX, &portp->state))
2743 cmd = A_SETSIGNALSFRX;
2744 else
2745 cmd = A_SETSIGNALS;
2746 clear_bit(ST_DOFLUSHTX, &portp->state);
2747 clear_bit(ST_DOFLUSHRX, &portp->state);
2748 clear_bit(ST_DOSIGS, &portp->state);
2749 memcpy((void *) &(cp->args[0]), (void *) &portp->asig,
2750 sizeof(asysigs_t));
2751 cp->status = 0;
2752 cp->cmd = cmd;
2753 set_bit(ST_CMDING, &portp->state);
2754 } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2755 test_bit(ST_DOFLUSHRX, &portp->state)) {
2756 cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2757 cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2758 clear_bit(ST_DOFLUSHTX, &portp->state);
2759 clear_bit(ST_DOFLUSHRX, &portp->state);
2760 memcpy((void *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2761 cp->status = 0;
2762 cp->cmd = A_FLUSH;
2763 set_bit(ST_CMDING, &portp->state);
2767 /*****************************************************************************/
2770 * Host command service checking. This handles commands or messages
2771 * coming from the slave to the host. Must have board shared memory
2772 * enabled and interrupts off when called. Notice that by servicing the
2773 * read data last we don't need to change the shared memory pointer
2774 * during processing (which is a slow IO operation).
2775 * Return value indicates if this port is still awaiting actions from
2776 * the slave (like open, command, or even TX data being sent). If 0
2777 * then port is still busy, otherwise no longer busy.
2780 static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp)
2782 volatile cdkasy_t *ap;
2783 volatile cdkctrl_t *cp;
2784 struct tty_struct *tty;
2785 asynotify_t nt;
2786 unsigned long oldsigs;
2787 int rc, donerx;
2789 #ifdef DEBUG
2790 printk(KERN_DEBUG "stli_hostcmd(brdp=%x,channr=%d)\n",
2791 (int) brdp, channr);
2792 #endif
2794 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
2795 cp = &ap->ctrl;
2798 * Check if we are waiting for an open completion message.
2800 if (test_bit(ST_OPENING, &portp->state)) {
2801 rc = (int) cp->openarg;
2802 if ((cp->open == 0) && (rc != 0)) {
2803 if (rc > 0)
2804 rc--;
2805 cp->openarg = 0;
2806 portp->rc = rc;
2807 clear_bit(ST_OPENING, &portp->state);
2808 wake_up_interruptible(&portp->raw_wait);
2813 * Check if we are waiting for a close completion message.
2815 if (test_bit(ST_CLOSING, &portp->state)) {
2816 rc = (int) cp->closearg;
2817 if ((cp->close == 0) && (rc != 0)) {
2818 if (rc > 0)
2819 rc--;
2820 cp->closearg = 0;
2821 portp->rc = rc;
2822 clear_bit(ST_CLOSING, &portp->state);
2823 wake_up_interruptible(&portp->raw_wait);
2828 * Check if we are waiting for a command completion message. We may
2829 * need to copy out the command results associated with this command.
2831 if (test_bit(ST_CMDING, &portp->state)) {
2832 rc = cp->status;
2833 if ((cp->cmd == 0) && (rc != 0)) {
2834 if (rc > 0)
2835 rc--;
2836 if (portp->argp != (void *) NULL) {
2837 memcpy(portp->argp, (void *) &(cp->args[0]),
2838 portp->argsize);
2839 portp->argp = (void *) NULL;
2841 cp->status = 0;
2842 portp->rc = rc;
2843 clear_bit(ST_CMDING, &portp->state);
2844 stli_dodelaycmd(portp, cp);
2845 wake_up_interruptible(&portp->raw_wait);
2850 * Check for any notification messages ready. This includes lots of
2851 * different types of events - RX chars ready, RX break received,
2852 * TX data low or empty in the slave, modem signals changed state.
2854 donerx = 0;
2856 if (ap->notify) {
2857 nt = ap->changed;
2858 ap->notify = 0;
2859 tty = portp->tty;
2861 if (nt.signal & SG_DCD) {
2862 oldsigs = portp->sigs;
2863 portp->sigs = stli_mktiocm(nt.sigvalue);
2864 clear_bit(ST_GETSIGS, &portp->state);
2865 if ((portp->sigs & TIOCM_CD) &&
2866 ((oldsigs & TIOCM_CD) == 0))
2867 wake_up_interruptible(&portp->open_wait);
2868 if ((oldsigs & TIOCM_CD) &&
2869 ((portp->sigs & TIOCM_CD) == 0)) {
2870 if (portp->flags & ASYNC_CHECK_CD) {
2871 if (tty)
2872 schedule_work(&portp->tqhangup);
2877 if (nt.data & DT_TXEMPTY)
2878 clear_bit(ST_TXBUSY, &portp->state);
2879 if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2880 if (tty != (struct tty_struct *) NULL) {
2881 if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
2882 tty->ldisc.write_wakeup) {
2883 (tty->ldisc.write_wakeup)(tty);
2884 EBRDENABLE(brdp);
2886 wake_up_interruptible(&tty->write_wait);
2890 if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2891 if (tty != (struct tty_struct *) NULL) {
2892 tty_insert_flip_char(tty, 0, TTY_BREAK);
2893 if (portp->flags & ASYNC_SAK) {
2894 do_SAK(tty);
2895 EBRDENABLE(brdp);
2897 tty_schedule_flip(tty);
2901 if (nt.data & DT_RXBUSY) {
2902 donerx++;
2903 stli_read(brdp, portp);
2908 * It might seem odd that we are checking for more RX chars here.
2909 * But, we need to handle the case where the tty buffer was previously
2910 * filled, but we had more characters to pass up. The slave will not
2911 * send any more RX notify messages until the RX buffer has been emptied.
2912 * But it will leave the service bits on (since the buffer is not empty).
2913 * So from here we can try to process more RX chars.
2915 if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2916 clear_bit(ST_RXING, &portp->state);
2917 stli_read(brdp, portp);
2920 return((test_bit(ST_OPENING, &portp->state) ||
2921 test_bit(ST_CLOSING, &portp->state) ||
2922 test_bit(ST_CMDING, &portp->state) ||
2923 test_bit(ST_TXBUSY, &portp->state) ||
2924 test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2927 /*****************************************************************************/
2930 * Service all ports on a particular board. Assumes that the boards
2931 * shared memory is enabled, and that the page pointer is pointed
2932 * at the cdk header structure.
2935 static void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp)
2937 stliport_t *portp;
2938 unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2939 unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2940 unsigned char *slavep;
2941 int bitpos, bitat, bitsize;
2942 int channr, nrdevs, slavebitchange;
2944 bitsize = brdp->bitsize;
2945 nrdevs = brdp->nrdevs;
2948 * Check if slave wants any service. Basically we try to do as
2949 * little work as possible here. There are 2 levels of service
2950 * bits. So if there is nothing to do we bail early. We check
2951 * 8 service bits at a time in the inner loop, so we can bypass
2952 * the lot if none of them want service.
2954 memcpy(&hostbits[0], (((unsigned char *) hdrp) + brdp->hostoffset),
2955 bitsize);
2957 memset(&slavebits[0], 0, bitsize);
2958 slavebitchange = 0;
2960 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2961 if (hostbits[bitpos] == 0)
2962 continue;
2963 channr = bitpos * 8;
2964 for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2965 if (hostbits[bitpos] & bitat) {
2966 portp = brdp->ports[(channr - 1)];
2967 if (stli_hostcmd(brdp, portp)) {
2968 slavebitchange++;
2969 slavebits[bitpos] |= bitat;
2976 * If any of the ports are no longer busy then update them in the
2977 * slave request bits. We need to do this after, since a host port
2978 * service may initiate more slave requests.
2980 if (slavebitchange) {
2981 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2982 slavep = ((unsigned char *) hdrp) + brdp->slaveoffset;
2983 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2984 if (slavebits[bitpos])
2985 slavep[bitpos] &= ~slavebits[bitpos];
2990 /*****************************************************************************/
2993 * Driver poll routine. This routine polls the boards in use and passes
2994 * messages back up to host when necessary. This is actually very
2995 * CPU efficient, since we will always have the kernel poll clock, it
2996 * adds only a few cycles when idle (since board service can be
2997 * determined very easily), but when loaded generates no interrupts
2998 * (with their expensive associated context change).
3001 static void stli_poll(unsigned long arg)
3003 volatile cdkhdr_t *hdrp;
3004 stlibrd_t *brdp;
3005 int brdnr;
3007 stli_timerlist.expires = STLI_TIMEOUT;
3008 add_timer(&stli_timerlist);
3011 * Check each board and do any servicing required.
3013 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
3014 brdp = stli_brds[brdnr];
3015 if (brdp == (stlibrd_t *) NULL)
3016 continue;
3017 if ((brdp->state & BST_STARTED) == 0)
3018 continue;
3020 EBRDENABLE(brdp);
3021 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3022 if (hdrp->hostreq)
3023 stli_brdpoll(brdp, hdrp);
3024 EBRDDISABLE(brdp);
3028 /*****************************************************************************/
3031 * Translate the termios settings into the port setting structure of
3032 * the slave.
3035 static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp)
3037 #ifdef DEBUG
3038 printk(KERN_DEBUG "stli_mkasyport(portp=%x,pp=%x,tiosp=%d)\n",
3039 (int) portp, (int) pp, (int) tiosp);
3040 #endif
3042 memset(pp, 0, sizeof(asyport_t));
3045 * Start of by setting the baud, char size, parity and stop bit info.
3047 pp->baudout = tiosp->c_cflag & CBAUD;
3048 if (pp->baudout & CBAUDEX) {
3049 pp->baudout &= ~CBAUDEX;
3050 if ((pp->baudout < 1) || (pp->baudout > 4))
3051 tiosp->c_cflag &= ~CBAUDEX;
3052 else
3053 pp->baudout += 15;
3055 pp->baudout = stli_baudrates[pp->baudout];
3056 if ((tiosp->c_cflag & CBAUD) == B38400) {
3057 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3058 pp->baudout = 57600;
3059 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3060 pp->baudout = 115200;
3061 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3062 pp->baudout = 230400;
3063 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3064 pp->baudout = 460800;
3065 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3066 pp->baudout = (portp->baud_base / portp->custom_divisor);
3068 if (pp->baudout > STL_MAXBAUD)
3069 pp->baudout = STL_MAXBAUD;
3070 pp->baudin = pp->baudout;
3072 switch (tiosp->c_cflag & CSIZE) {
3073 case CS5:
3074 pp->csize = 5;
3075 break;
3076 case CS6:
3077 pp->csize = 6;
3078 break;
3079 case CS7:
3080 pp->csize = 7;
3081 break;
3082 default:
3083 pp->csize = 8;
3084 break;
3087 if (tiosp->c_cflag & CSTOPB)
3088 pp->stopbs = PT_STOP2;
3089 else
3090 pp->stopbs = PT_STOP1;
3092 if (tiosp->c_cflag & PARENB) {
3093 if (tiosp->c_cflag & PARODD)
3094 pp->parity = PT_ODDPARITY;
3095 else
3096 pp->parity = PT_EVENPARITY;
3097 } else {
3098 pp->parity = PT_NOPARITY;
3102 * Set up any flow control options enabled.
3104 if (tiosp->c_iflag & IXON) {
3105 pp->flow |= F_IXON;
3106 if (tiosp->c_iflag & IXANY)
3107 pp->flow |= F_IXANY;
3109 if (tiosp->c_cflag & CRTSCTS)
3110 pp->flow |= (F_RTSFLOW | F_CTSFLOW);
3112 pp->startin = tiosp->c_cc[VSTART];
3113 pp->stopin = tiosp->c_cc[VSTOP];
3114 pp->startout = tiosp->c_cc[VSTART];
3115 pp->stopout = tiosp->c_cc[VSTOP];
3118 * Set up the RX char marking mask with those RX error types we must
3119 * catch. We can get the slave to help us out a little here, it will
3120 * ignore parity errors and breaks for us, and mark parity errors in
3121 * the data stream.
3123 if (tiosp->c_iflag & IGNPAR)
3124 pp->iflag |= FI_IGNRXERRS;
3125 if (tiosp->c_iflag & IGNBRK)
3126 pp->iflag |= FI_IGNBREAK;
3128 portp->rxmarkmsk = 0;
3129 if (tiosp->c_iflag & (INPCK | PARMRK))
3130 pp->iflag |= FI_1MARKRXERRS;
3131 if (tiosp->c_iflag & BRKINT)
3132 portp->rxmarkmsk |= BRKINT;
3135 * Set up clocal processing as required.
3137 if (tiosp->c_cflag & CLOCAL)
3138 portp->flags &= ~ASYNC_CHECK_CD;
3139 else
3140 portp->flags |= ASYNC_CHECK_CD;
3143 * Transfer any persistent flags into the asyport structure.
3145 pp->pflag = (portp->pflag & 0xffff);
3146 pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
3147 pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
3148 pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
3151 /*****************************************************************************/
3154 * Construct a slave signals structure for setting the DTR and RTS
3155 * signals as specified.
3158 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
3160 #ifdef DEBUG
3161 printk(KERN_DEBUG "stli_mkasysigs(sp=%x,dtr=%d,rts=%d)\n",
3162 (int) sp, dtr, rts);
3163 #endif
3165 memset(sp, 0, sizeof(asysigs_t));
3166 if (dtr >= 0) {
3167 sp->signal |= SG_DTR;
3168 sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
3170 if (rts >= 0) {
3171 sp->signal |= SG_RTS;
3172 sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
3176 /*****************************************************************************/
3179 * Convert the signals returned from the slave into a local TIOCM type
3180 * signals value. We keep them locally in TIOCM format.
3183 static long stli_mktiocm(unsigned long sigvalue)
3185 long tiocm;
3187 #ifdef DEBUG
3188 printk(KERN_DEBUG "stli_mktiocm(sigvalue=%x)\n", (int) sigvalue);
3189 #endif
3191 tiocm = 0;
3192 tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
3193 tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
3194 tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
3195 tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
3196 tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
3197 tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
3198 return(tiocm);
3201 /*****************************************************************************/
3204 * All panels and ports actually attached have been worked out. All
3205 * we need to do here is set up the appropriate per port data structures.
3208 static int stli_initports(stlibrd_t *brdp)
3210 stliport_t *portp;
3211 int i, panelnr, panelport;
3213 #ifdef DEBUG
3214 printk(KERN_DEBUG "stli_initports(brdp=%x)\n", (int) brdp);
3215 #endif
3217 for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
3218 portp = kzalloc(sizeof(stliport_t), GFP_KERNEL);
3219 if (!portp) {
3220 printk("STALLION: failed to allocate port structure\n");
3221 continue;
3224 portp->magic = STLI_PORTMAGIC;
3225 portp->portnr = i;
3226 portp->brdnr = brdp->brdnr;
3227 portp->panelnr = panelnr;
3228 portp->baud_base = STL_BAUDBASE;
3229 portp->close_delay = STL_CLOSEDELAY;
3230 portp->closing_wait = 30 * HZ;
3231 INIT_WORK(&portp->tqhangup, stli_dohangup, portp);
3232 init_waitqueue_head(&portp->open_wait);
3233 init_waitqueue_head(&portp->close_wait);
3234 init_waitqueue_head(&portp->raw_wait);
3235 panelport++;
3236 if (panelport >= brdp->panels[panelnr]) {
3237 panelport = 0;
3238 panelnr++;
3240 brdp->ports[i] = portp;
3243 return(0);
3246 /*****************************************************************************/
3249 * All the following routines are board specific hardware operations.
3252 static void stli_ecpinit(stlibrd_t *brdp)
3254 unsigned long memconf;
3256 #ifdef DEBUG
3257 printk(KERN_DEBUG "stli_ecpinit(brdp=%d)\n", (int) brdp);
3258 #endif
3260 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
3261 udelay(10);
3262 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3263 udelay(100);
3265 memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
3266 outb(memconf, (brdp->iobase + ECP_ATMEMAR));
3269 /*****************************************************************************/
3271 static void stli_ecpenable(stlibrd_t *brdp)
3273 #ifdef DEBUG
3274 printk(KERN_DEBUG "stli_ecpenable(brdp=%x)\n", (int) brdp);
3275 #endif
3276 outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
3279 /*****************************************************************************/
3281 static void stli_ecpdisable(stlibrd_t *brdp)
3283 #ifdef DEBUG
3284 printk(KERN_DEBUG "stli_ecpdisable(brdp=%x)\n", (int) brdp);
3285 #endif
3286 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3289 /*****************************************************************************/
3291 static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3293 void *ptr;
3294 unsigned char val;
3296 #ifdef DEBUG
3297 printk(KERN_DEBUG "stli_ecpgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3298 (int) offset);
3299 #endif
3301 if (offset > brdp->memsize) {
3302 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3303 "range at line=%d(%d), brd=%d\n",
3304 (int) offset, line, __LINE__, brdp->brdnr);
3305 ptr = NULL;
3306 val = 0;
3307 } else {
3308 ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
3309 val = (unsigned char) (offset / ECP_ATPAGESIZE);
3311 outb(val, (brdp->iobase + ECP_ATMEMPR));
3312 return(ptr);
3315 /*****************************************************************************/
3317 static void stli_ecpreset(stlibrd_t *brdp)
3319 #ifdef DEBUG
3320 printk(KERN_DEBUG "stli_ecpreset(brdp=%x)\n", (int) brdp);
3321 #endif
3323 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
3324 udelay(10);
3325 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3326 udelay(500);
3329 /*****************************************************************************/
3331 static void stli_ecpintr(stlibrd_t *brdp)
3333 #ifdef DEBUG
3334 printk(KERN_DEBUG "stli_ecpintr(brdp=%x)\n", (int) brdp);
3335 #endif
3336 outb(0x1, brdp->iobase);
3339 /*****************************************************************************/
3342 * The following set of functions act on ECP EISA boards.
3345 static void stli_ecpeiinit(stlibrd_t *brdp)
3347 unsigned long memconf;
3349 #ifdef DEBUG
3350 printk(KERN_DEBUG "stli_ecpeiinit(brdp=%x)\n", (int) brdp);
3351 #endif
3353 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3354 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3355 udelay(10);
3356 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3357 udelay(500);
3359 memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
3360 outb(memconf, (brdp->iobase + ECP_EIMEMARL));
3361 memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
3362 outb(memconf, (brdp->iobase + ECP_EIMEMARH));
3365 /*****************************************************************************/
3367 static void stli_ecpeienable(stlibrd_t *brdp)
3369 outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
3372 /*****************************************************************************/
3374 static void stli_ecpeidisable(stlibrd_t *brdp)
3376 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3379 /*****************************************************************************/
3381 static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3383 void *ptr;
3384 unsigned char val;
3386 #ifdef DEBUG
3387 printk(KERN_DEBUG "stli_ecpeigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3388 (int) brdp, (int) offset, line);
3389 #endif
3391 if (offset > brdp->memsize) {
3392 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3393 "range at line=%d(%d), brd=%d\n",
3394 (int) offset, line, __LINE__, brdp->brdnr);
3395 ptr = NULL;
3396 val = 0;
3397 } else {
3398 ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
3399 if (offset < ECP_EIPAGESIZE)
3400 val = ECP_EIENABLE;
3401 else
3402 val = ECP_EIENABLE | 0x40;
3404 outb(val, (brdp->iobase + ECP_EICONFR));
3405 return(ptr);
3408 /*****************************************************************************/
3410 static void stli_ecpeireset(stlibrd_t *brdp)
3412 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3413 udelay(10);
3414 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3415 udelay(500);
3418 /*****************************************************************************/
3421 * The following set of functions act on ECP MCA boards.
3424 static void stli_ecpmcenable(stlibrd_t *brdp)
3426 outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
3429 /*****************************************************************************/
3431 static void stli_ecpmcdisable(stlibrd_t *brdp)
3433 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3436 /*****************************************************************************/
3438 static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3440 void *ptr;
3441 unsigned char val;
3443 if (offset > brdp->memsize) {
3444 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3445 "range at line=%d(%d), brd=%d\n",
3446 (int) offset, line, __LINE__, brdp->brdnr);
3447 ptr = NULL;
3448 val = 0;
3449 } else {
3450 ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
3451 val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
3453 outb(val, (brdp->iobase + ECP_MCCONFR));
3454 return(ptr);
3457 /*****************************************************************************/
3459 static void stli_ecpmcreset(stlibrd_t *brdp)
3461 outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
3462 udelay(10);
3463 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3464 udelay(500);
3467 /*****************************************************************************/
3470 * The following set of functions act on ECP PCI boards.
3473 static void stli_ecppciinit(stlibrd_t *brdp)
3475 #ifdef DEBUG
3476 printk(KERN_DEBUG "stli_ecppciinit(brdp=%x)\n", (int) brdp);
3477 #endif
3479 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3480 udelay(10);
3481 outb(0, (brdp->iobase + ECP_PCICONFR));
3482 udelay(500);
3485 /*****************************************************************************/
3487 static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3489 void *ptr;
3490 unsigned char val;
3492 #ifdef DEBUG
3493 printk(KERN_DEBUG "stli_ecppcigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3494 (int) brdp, (int) offset, line);
3495 #endif
3497 if (offset > brdp->memsize) {
3498 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3499 "range at line=%d(%d), board=%d\n",
3500 (int) offset, line, __LINE__, brdp->brdnr);
3501 ptr = NULL;
3502 val = 0;
3503 } else {
3504 ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
3505 val = (offset / ECP_PCIPAGESIZE) << 1;
3507 outb(val, (brdp->iobase + ECP_PCICONFR));
3508 return(ptr);
3511 /*****************************************************************************/
3513 static void stli_ecppcireset(stlibrd_t *brdp)
3515 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3516 udelay(10);
3517 outb(0, (brdp->iobase + ECP_PCICONFR));
3518 udelay(500);
3521 /*****************************************************************************/
3524 * The following routines act on ONboards.
3527 static void stli_onbinit(stlibrd_t *brdp)
3529 unsigned long memconf;
3531 #ifdef DEBUG
3532 printk(KERN_DEBUG "stli_onbinit(brdp=%d)\n", (int) brdp);
3533 #endif
3535 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3536 udelay(10);
3537 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3538 mdelay(1000);
3540 memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
3541 outb(memconf, (brdp->iobase + ONB_ATMEMAR));
3542 outb(0x1, brdp->iobase);
3543 mdelay(1);
3546 /*****************************************************************************/
3548 static void stli_onbenable(stlibrd_t *brdp)
3550 #ifdef DEBUG
3551 printk(KERN_DEBUG "stli_onbenable(brdp=%x)\n", (int) brdp);
3552 #endif
3553 outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
3556 /*****************************************************************************/
3558 static void stli_onbdisable(stlibrd_t *brdp)
3560 #ifdef DEBUG
3561 printk(KERN_DEBUG "stli_onbdisable(brdp=%x)\n", (int) brdp);
3562 #endif
3563 outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
3566 /*****************************************************************************/
3568 static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3570 void *ptr;
3572 #ifdef DEBUG
3573 printk(KERN_DEBUG "stli_onbgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3574 (int) offset);
3575 #endif
3577 if (offset > brdp->memsize) {
3578 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3579 "range at line=%d(%d), brd=%d\n",
3580 (int) offset, line, __LINE__, brdp->brdnr);
3581 ptr = NULL;
3582 } else {
3583 ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
3585 return(ptr);
3588 /*****************************************************************************/
3590 static void stli_onbreset(stlibrd_t *brdp)
3593 #ifdef DEBUG
3594 printk(KERN_DEBUG "stli_onbreset(brdp=%x)\n", (int) brdp);
3595 #endif
3597 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3598 udelay(10);
3599 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3600 mdelay(1000);
3603 /*****************************************************************************/
3606 * The following routines act on ONboard EISA.
3609 static void stli_onbeinit(stlibrd_t *brdp)
3611 unsigned long memconf;
3613 #ifdef DEBUG
3614 printk(KERN_DEBUG "stli_onbeinit(brdp=%d)\n", (int) brdp);
3615 #endif
3617 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3618 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3619 udelay(10);
3620 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3621 mdelay(1000);
3623 memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
3624 outb(memconf, (brdp->iobase + ONB_EIMEMARL));
3625 memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
3626 outb(memconf, (brdp->iobase + ONB_EIMEMARH));
3627 outb(0x1, brdp->iobase);
3628 mdelay(1);
3631 /*****************************************************************************/
3633 static void stli_onbeenable(stlibrd_t *brdp)
3635 #ifdef DEBUG
3636 printk(KERN_DEBUG "stli_onbeenable(brdp=%x)\n", (int) brdp);
3637 #endif
3638 outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
3641 /*****************************************************************************/
3643 static void stli_onbedisable(stlibrd_t *brdp)
3645 #ifdef DEBUG
3646 printk(KERN_DEBUG "stli_onbedisable(brdp=%x)\n", (int) brdp);
3647 #endif
3648 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3651 /*****************************************************************************/
3653 static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3655 void *ptr;
3656 unsigned char val;
3658 #ifdef DEBUG
3659 printk(KERN_DEBUG "stli_onbegetmemptr(brdp=%x,offset=%x,line=%d)\n",
3660 (int) brdp, (int) offset, line);
3661 #endif
3663 if (offset > brdp->memsize) {
3664 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3665 "range at line=%d(%d), brd=%d\n",
3666 (int) offset, line, __LINE__, brdp->brdnr);
3667 ptr = NULL;
3668 val = 0;
3669 } else {
3670 ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
3671 if (offset < ONB_EIPAGESIZE)
3672 val = ONB_EIENABLE;
3673 else
3674 val = ONB_EIENABLE | 0x40;
3676 outb(val, (brdp->iobase + ONB_EICONFR));
3677 return(ptr);
3680 /*****************************************************************************/
3682 static void stli_onbereset(stlibrd_t *brdp)
3685 #ifdef DEBUG
3686 printk(KERN_ERR "stli_onbereset(brdp=%x)\n", (int) brdp);
3687 #endif
3689 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3690 udelay(10);
3691 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3692 mdelay(1000);
3695 /*****************************************************************************/
3698 * The following routines act on Brumby boards.
3701 static void stli_bbyinit(stlibrd_t *brdp)
3704 #ifdef DEBUG
3705 printk(KERN_ERR "stli_bbyinit(brdp=%d)\n", (int) brdp);
3706 #endif
3708 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3709 udelay(10);
3710 outb(0, (brdp->iobase + BBY_ATCONFR));
3711 mdelay(1000);
3712 outb(0x1, brdp->iobase);
3713 mdelay(1);
3716 /*****************************************************************************/
3718 static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3720 void *ptr;
3721 unsigned char val;
3723 #ifdef DEBUG
3724 printk(KERN_ERR "stli_bbygetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3725 (int) offset);
3726 #endif
3728 if (offset > brdp->memsize) {
3729 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3730 "range at line=%d(%d), brd=%d\n",
3731 (int) offset, line, __LINE__, brdp->brdnr);
3732 ptr = NULL;
3733 val = 0;
3734 } else {
3735 ptr = brdp->membase + (offset % BBY_PAGESIZE);
3736 val = (unsigned char) (offset / BBY_PAGESIZE);
3738 outb(val, (brdp->iobase + BBY_ATCONFR));
3739 return(ptr);
3742 /*****************************************************************************/
3744 static void stli_bbyreset(stlibrd_t *brdp)
3747 #ifdef DEBUG
3748 printk(KERN_DEBUG "stli_bbyreset(brdp=%x)\n", (int) brdp);
3749 #endif
3751 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3752 udelay(10);
3753 outb(0, (brdp->iobase + BBY_ATCONFR));
3754 mdelay(1000);
3757 /*****************************************************************************/
3760 * The following routines act on original old Stallion boards.
3763 static void stli_stalinit(stlibrd_t *brdp)
3766 #ifdef DEBUG
3767 printk(KERN_DEBUG "stli_stalinit(brdp=%d)\n", (int) brdp);
3768 #endif
3770 outb(0x1, brdp->iobase);
3771 mdelay(1000);
3774 /*****************************************************************************/
3776 static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3778 void *ptr;
3780 #ifdef DEBUG
3781 printk(KERN_DEBUG "stli_stalgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3782 (int) offset);
3783 #endif
3785 if (offset > brdp->memsize) {
3786 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3787 "range at line=%d(%d), brd=%d\n",
3788 (int) offset, line, __LINE__, brdp->brdnr);
3789 ptr = NULL;
3790 } else {
3791 ptr = brdp->membase + (offset % STAL_PAGESIZE);
3793 return(ptr);
3796 /*****************************************************************************/
3798 static void stli_stalreset(stlibrd_t *brdp)
3800 volatile unsigned long *vecp;
3802 #ifdef DEBUG
3803 printk(KERN_DEBUG "stli_stalreset(brdp=%x)\n", (int) brdp);
3804 #endif
3806 vecp = (volatile unsigned long *) (brdp->membase + 0x30);
3807 *vecp = 0xffff0000;
3808 outb(0, brdp->iobase);
3809 mdelay(1000);
3812 /*****************************************************************************/
3815 * Try to find an ECP board and initialize it. This handles only ECP
3816 * board types.
3819 static int stli_initecp(stlibrd_t *brdp)
3821 cdkecpsig_t sig;
3822 cdkecpsig_t *sigsp;
3823 unsigned int status, nxtid;
3824 char *name;
3825 int panelnr, nrports;
3827 #ifdef DEBUG
3828 printk(KERN_DEBUG "stli_initecp(brdp=%x)\n", (int) brdp);
3829 #endif
3831 if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
3832 return -EIO;
3834 if ((brdp->iobase == 0) || (brdp->memaddr == 0))
3836 release_region(brdp->iobase, brdp->iosize);
3837 return(-ENODEV);
3840 brdp->iosize = ECP_IOSIZE;
3843 * Based on the specific board type setup the common vars to access
3844 * and enable shared memory. Set all board specific information now
3845 * as well.
3847 switch (brdp->brdtype) {
3848 case BRD_ECP:
3849 brdp->membase = (void *) brdp->memaddr;
3850 brdp->memsize = ECP_MEMSIZE;
3851 brdp->pagesize = ECP_ATPAGESIZE;
3852 brdp->init = stli_ecpinit;
3853 brdp->enable = stli_ecpenable;
3854 brdp->reenable = stli_ecpenable;
3855 brdp->disable = stli_ecpdisable;
3856 brdp->getmemptr = stli_ecpgetmemptr;
3857 brdp->intr = stli_ecpintr;
3858 brdp->reset = stli_ecpreset;
3859 name = "serial(EC8/64)";
3860 break;
3862 case BRD_ECPE:
3863 brdp->membase = (void *) brdp->memaddr;
3864 brdp->memsize = ECP_MEMSIZE;
3865 brdp->pagesize = ECP_EIPAGESIZE;
3866 brdp->init = stli_ecpeiinit;
3867 brdp->enable = stli_ecpeienable;
3868 brdp->reenable = stli_ecpeienable;
3869 brdp->disable = stli_ecpeidisable;
3870 brdp->getmemptr = stli_ecpeigetmemptr;
3871 brdp->intr = stli_ecpintr;
3872 brdp->reset = stli_ecpeireset;
3873 name = "serial(EC8/64-EI)";
3874 break;
3876 case BRD_ECPMC:
3877 brdp->membase = (void *) brdp->memaddr;
3878 brdp->memsize = ECP_MEMSIZE;
3879 brdp->pagesize = ECP_MCPAGESIZE;
3880 brdp->init = NULL;
3881 brdp->enable = stli_ecpmcenable;
3882 brdp->reenable = stli_ecpmcenable;
3883 brdp->disable = stli_ecpmcdisable;
3884 brdp->getmemptr = stli_ecpmcgetmemptr;
3885 brdp->intr = stli_ecpintr;
3886 brdp->reset = stli_ecpmcreset;
3887 name = "serial(EC8/64-MCA)";
3888 break;
3890 case BRD_ECPPCI:
3891 brdp->membase = (void *) brdp->memaddr;
3892 brdp->memsize = ECP_PCIMEMSIZE;
3893 brdp->pagesize = ECP_PCIPAGESIZE;
3894 brdp->init = stli_ecppciinit;
3895 brdp->enable = NULL;
3896 brdp->reenable = NULL;
3897 brdp->disable = NULL;
3898 brdp->getmemptr = stli_ecppcigetmemptr;
3899 brdp->intr = stli_ecpintr;
3900 brdp->reset = stli_ecppcireset;
3901 name = "serial(EC/RA-PCI)";
3902 break;
3904 default:
3905 release_region(brdp->iobase, brdp->iosize);
3906 return(-EINVAL);
3910 * The per-board operations structure is all set up, so now let's go
3911 * and get the board operational. Firstly initialize board configuration
3912 * registers. Set the memory mapping info so we can get at the boards
3913 * shared memory.
3915 EBRDINIT(brdp);
3917 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
3918 if (brdp->membase == (void *) NULL)
3920 release_region(brdp->iobase, brdp->iosize);
3921 return(-ENOMEM);
3925 * Now that all specific code is set up, enable the shared memory and
3926 * look for the a signature area that will tell us exactly what board
3927 * this is, and what it is connected to it.
3929 EBRDENABLE(brdp);
3930 sigsp = (cdkecpsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3931 memcpy(&sig, sigsp, sizeof(cdkecpsig_t));
3932 EBRDDISABLE(brdp);
3934 #if 0
3935 printk("%s(%d): sig-> magic=%x rom=%x panel=%x,%x,%x,%x,%x,%x,%x,%x\n",
3936 __FILE__, __LINE__, (int) sig.magic, sig.romver, sig.panelid[0],
3937 (int) sig.panelid[1], (int) sig.panelid[2],
3938 (int) sig.panelid[3], (int) sig.panelid[4],
3939 (int) sig.panelid[5], (int) sig.panelid[6],
3940 (int) sig.panelid[7]);
3941 #endif
3943 if (sig.magic != ECP_MAGIC)
3945 release_region(brdp->iobase, brdp->iosize);
3946 return(-ENODEV);
3950 * Scan through the signature looking at the panels connected to the
3951 * board. Calculate the total number of ports as we go.
3953 for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3954 status = sig.panelid[nxtid];
3955 if ((status & ECH_PNLIDMASK) != nxtid)
3956 break;
3958 brdp->panelids[panelnr] = status;
3959 nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3960 if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3961 nxtid++;
3962 brdp->panels[panelnr] = nrports;
3963 brdp->nrports += nrports;
3964 nxtid++;
3965 brdp->nrpanels++;
3969 brdp->state |= BST_FOUND;
3970 return(0);
3973 /*****************************************************************************/
3976 * Try to find an ONboard, Brumby or Stallion board and initialize it.
3977 * This handles only these board types.
3980 static int stli_initonb(stlibrd_t *brdp)
3982 cdkonbsig_t sig;
3983 cdkonbsig_t *sigsp;
3984 char *name;
3985 int i;
3987 #ifdef DEBUG
3988 printk(KERN_DEBUG "stli_initonb(brdp=%x)\n", (int) brdp);
3989 #endif
3992 * Do a basic sanity check on the IO and memory addresses.
3994 if ((brdp->iobase == 0) || (brdp->memaddr == 0))
3995 return(-ENODEV);
3997 brdp->iosize = ONB_IOSIZE;
3999 if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
4000 return -EIO;
4003 * Based on the specific board type setup the common vars to access
4004 * and enable shared memory. Set all board specific information now
4005 * as well.
4007 switch (brdp->brdtype) {
4008 case BRD_ONBOARD:
4009 case BRD_ONBOARD32:
4010 case BRD_ONBOARD2:
4011 case BRD_ONBOARD2_32:
4012 case BRD_ONBOARDRS:
4013 brdp->membase = (void *) brdp->memaddr;
4014 brdp->memsize = ONB_MEMSIZE;
4015 brdp->pagesize = ONB_ATPAGESIZE;
4016 brdp->init = stli_onbinit;
4017 brdp->enable = stli_onbenable;
4018 brdp->reenable = stli_onbenable;
4019 brdp->disable = stli_onbdisable;
4020 brdp->getmemptr = stli_onbgetmemptr;
4021 brdp->intr = stli_ecpintr;
4022 brdp->reset = stli_onbreset;
4023 if (brdp->memaddr > 0x100000)
4024 brdp->enabval = ONB_MEMENABHI;
4025 else
4026 brdp->enabval = ONB_MEMENABLO;
4027 name = "serial(ONBoard)";
4028 break;
4030 case BRD_ONBOARDE:
4031 brdp->membase = (void *) brdp->memaddr;
4032 brdp->memsize = ONB_EIMEMSIZE;
4033 brdp->pagesize = ONB_EIPAGESIZE;
4034 brdp->init = stli_onbeinit;
4035 brdp->enable = stli_onbeenable;
4036 brdp->reenable = stli_onbeenable;
4037 brdp->disable = stli_onbedisable;
4038 brdp->getmemptr = stli_onbegetmemptr;
4039 brdp->intr = stli_ecpintr;
4040 brdp->reset = stli_onbereset;
4041 name = "serial(ONBoard/E)";
4042 break;
4044 case BRD_BRUMBY4:
4045 case BRD_BRUMBY8:
4046 case BRD_BRUMBY16:
4047 brdp->membase = (void *) brdp->memaddr;
4048 brdp->memsize = BBY_MEMSIZE;
4049 brdp->pagesize = BBY_PAGESIZE;
4050 brdp->init = stli_bbyinit;
4051 brdp->enable = NULL;
4052 brdp->reenable = NULL;
4053 brdp->disable = NULL;
4054 brdp->getmemptr = stli_bbygetmemptr;
4055 brdp->intr = stli_ecpintr;
4056 brdp->reset = stli_bbyreset;
4057 name = "serial(Brumby)";
4058 break;
4060 case BRD_STALLION:
4061 brdp->membase = (void *) brdp->memaddr;
4062 brdp->memsize = STAL_MEMSIZE;
4063 brdp->pagesize = STAL_PAGESIZE;
4064 brdp->init = stli_stalinit;
4065 brdp->enable = NULL;
4066 brdp->reenable = NULL;
4067 brdp->disable = NULL;
4068 brdp->getmemptr = stli_stalgetmemptr;
4069 brdp->intr = stli_ecpintr;
4070 brdp->reset = stli_stalreset;
4071 name = "serial(Stallion)";
4072 break;
4074 default:
4075 release_region(brdp->iobase, brdp->iosize);
4076 return(-EINVAL);
4080 * The per-board operations structure is all set up, so now let's go
4081 * and get the board operational. Firstly initialize board configuration
4082 * registers. Set the memory mapping info so we can get at the boards
4083 * shared memory.
4085 EBRDINIT(brdp);
4087 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
4088 if (brdp->membase == (void *) NULL)
4090 release_region(brdp->iobase, brdp->iosize);
4091 return(-ENOMEM);
4095 * Now that all specific code is set up, enable the shared memory and
4096 * look for the a signature area that will tell us exactly what board
4097 * this is, and how many ports.
4099 EBRDENABLE(brdp);
4100 sigsp = (cdkonbsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
4101 memcpy(&sig, sigsp, sizeof(cdkonbsig_t));
4102 EBRDDISABLE(brdp);
4104 #if 0
4105 printk("%s(%d): sig-> magic=%x:%x:%x:%x romver=%x amask=%x:%x:%x\n",
4106 __FILE__, __LINE__, sig.magic0, sig.magic1, sig.magic2,
4107 sig.magic3, sig.romver, sig.amask0, sig.amask1, sig.amask2);
4108 #endif
4110 if ((sig.magic0 != ONB_MAGIC0) || (sig.magic1 != ONB_MAGIC1) ||
4111 (sig.magic2 != ONB_MAGIC2) || (sig.magic3 != ONB_MAGIC3))
4113 release_region(brdp->iobase, brdp->iosize);
4114 return(-ENODEV);
4118 * Scan through the signature alive mask and calculate how many ports
4119 * there are on this board.
4121 brdp->nrpanels = 1;
4122 if (sig.amask1) {
4123 brdp->nrports = 32;
4124 } else {
4125 for (i = 0; (i < 16); i++) {
4126 if (((sig.amask0 << i) & 0x8000) == 0)
4127 break;
4129 brdp->nrports = i;
4131 brdp->panels[0] = brdp->nrports;
4134 brdp->state |= BST_FOUND;
4135 return(0);
4138 /*****************************************************************************/
4141 * Start up a running board. This routine is only called after the
4142 * code has been down loaded to the board and is operational. It will
4143 * read in the memory map, and get the show on the road...
4146 static int stli_startbrd(stlibrd_t *brdp)
4148 volatile cdkhdr_t *hdrp;
4149 volatile cdkmem_t *memp;
4150 volatile cdkasy_t *ap;
4151 unsigned long flags;
4152 stliport_t *portp;
4153 int portnr, nrdevs, i, rc;
4155 #ifdef DEBUG
4156 printk(KERN_DEBUG "stli_startbrd(brdp=%x)\n", (int) brdp);
4157 #endif
4159 rc = 0;
4161 save_flags(flags);
4162 cli();
4163 EBRDENABLE(brdp);
4164 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
4165 nrdevs = hdrp->nrdevs;
4167 #if 0
4168 printk("%s(%d): CDK version %d.%d.%d --> "
4169 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
4170 __FILE__, __LINE__, hdrp->ver_release, hdrp->ver_modification,
4171 hdrp->ver_fix, nrdevs, (int) hdrp->memp, (int) hdrp->hostp,
4172 (int) hdrp->slavep);
4173 #endif
4175 if (nrdevs < (brdp->nrports + 1)) {
4176 printk(KERN_ERR "STALLION: slave failed to allocate memory for "
4177 "all devices, devices=%d\n", nrdevs);
4178 brdp->nrports = nrdevs - 1;
4180 brdp->nrdevs = nrdevs;
4181 brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
4182 brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
4183 brdp->bitsize = (nrdevs + 7) / 8;
4184 memp = (volatile cdkmem_t *) hdrp->memp;
4185 if (((unsigned long) memp) > brdp->memsize) {
4186 printk(KERN_ERR "STALLION: corrupted shared memory region?\n");
4187 rc = -EIO;
4188 goto stli_donestartup;
4190 memp = (volatile cdkmem_t *) EBRDGETMEMPTR(brdp, (unsigned long) memp);
4191 if (memp->dtype != TYP_ASYNCTRL) {
4192 printk(KERN_ERR "STALLION: no slave control device found\n");
4193 goto stli_donestartup;
4195 memp++;
4198 * Cycle through memory allocation of each port. We are guaranteed to
4199 * have all ports inside the first page of slave window, so no need to
4200 * change pages while reading memory map.
4202 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
4203 if (memp->dtype != TYP_ASYNC)
4204 break;
4205 portp = brdp->ports[portnr];
4206 if (portp == (stliport_t *) NULL)
4207 break;
4208 portp->devnr = i;
4209 portp->addr = memp->offset;
4210 portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
4211 portp->portidx = (unsigned char) (i / 8);
4212 portp->portbit = (unsigned char) (0x1 << (i % 8));
4215 hdrp->slavereq = 0xff;
4218 * For each port setup a local copy of the RX and TX buffer offsets
4219 * and sizes. We do this separate from the above, because we need to
4220 * move the shared memory page...
4222 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
4223 portp = brdp->ports[portnr];
4224 if (portp == (stliport_t *) NULL)
4225 break;
4226 if (portp->addr == 0)
4227 break;
4228 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
4229 if (ap != (volatile cdkasy_t *) NULL) {
4230 portp->rxsize = ap->rxq.size;
4231 portp->txsize = ap->txq.size;
4232 portp->rxoffset = ap->rxq.offset;
4233 portp->txoffset = ap->txq.offset;
4237 stli_donestartup:
4238 EBRDDISABLE(brdp);
4239 restore_flags(flags);
4241 if (rc == 0)
4242 brdp->state |= BST_STARTED;
4244 if (! stli_timeron) {
4245 stli_timeron++;
4246 stli_timerlist.expires = STLI_TIMEOUT;
4247 add_timer(&stli_timerlist);
4250 return(rc);
4253 /*****************************************************************************/
4256 * Probe and initialize the specified board.
4259 static int __init stli_brdinit(stlibrd_t *brdp)
4261 #ifdef DEBUG
4262 printk(KERN_DEBUG "stli_brdinit(brdp=%x)\n", (int) brdp);
4263 #endif
4265 stli_brds[brdp->brdnr] = brdp;
4267 switch (brdp->brdtype) {
4268 case BRD_ECP:
4269 case BRD_ECPE:
4270 case BRD_ECPMC:
4271 case BRD_ECPPCI:
4272 stli_initecp(brdp);
4273 break;
4274 case BRD_ONBOARD:
4275 case BRD_ONBOARDE:
4276 case BRD_ONBOARD2:
4277 case BRD_ONBOARD32:
4278 case BRD_ONBOARD2_32:
4279 case BRD_ONBOARDRS:
4280 case BRD_BRUMBY4:
4281 case BRD_BRUMBY8:
4282 case BRD_BRUMBY16:
4283 case BRD_STALLION:
4284 stli_initonb(brdp);
4285 break;
4286 case BRD_EASYIO:
4287 case BRD_ECH:
4288 case BRD_ECHMC:
4289 case BRD_ECHPCI:
4290 printk(KERN_ERR "STALLION: %s board type not supported in "
4291 "this driver\n", stli_brdnames[brdp->brdtype]);
4292 return(ENODEV);
4293 default:
4294 printk(KERN_ERR "STALLION: board=%d is unknown board "
4295 "type=%d\n", brdp->brdnr, brdp->brdtype);
4296 return(ENODEV);
4299 if ((brdp->state & BST_FOUND) == 0) {
4300 printk(KERN_ERR "STALLION: %s board not found, board=%d "
4301 "io=%x mem=%x\n",
4302 stli_brdnames[brdp->brdtype], brdp->brdnr,
4303 brdp->iobase, (int) brdp->memaddr);
4304 return(ENODEV);
4307 stli_initports(brdp);
4308 printk(KERN_INFO "STALLION: %s found, board=%d io=%x mem=%x "
4309 "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
4310 brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
4311 brdp->nrpanels, brdp->nrports);
4312 return(0);
4315 /*****************************************************************************/
4318 * Probe around trying to find where the EISA boards shared memory
4319 * might be. This is a bit if hack, but it is the best we can do.
4322 static int stli_eisamemprobe(stlibrd_t *brdp)
4324 cdkecpsig_t ecpsig, *ecpsigp;
4325 cdkonbsig_t onbsig, *onbsigp;
4326 int i, foundit;
4328 #ifdef DEBUG
4329 printk(KERN_DEBUG "stli_eisamemprobe(brdp=%x)\n", (int) brdp);
4330 #endif
4333 * First up we reset the board, to get it into a known state. There
4334 * is only 2 board types here we need to worry about. Don;t use the
4335 * standard board init routine here, it programs up the shared
4336 * memory address, and we don't know it yet...
4338 if (brdp->brdtype == BRD_ECPE) {
4339 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
4340 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
4341 udelay(10);
4342 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
4343 udelay(500);
4344 stli_ecpeienable(brdp);
4345 } else if (brdp->brdtype == BRD_ONBOARDE) {
4346 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
4347 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
4348 udelay(10);
4349 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
4350 mdelay(100);
4351 outb(0x1, brdp->iobase);
4352 mdelay(1);
4353 stli_onbeenable(brdp);
4354 } else {
4355 return(-ENODEV);
4358 foundit = 0;
4359 brdp->memsize = ECP_MEMSIZE;
4362 * Board shared memory is enabled, so now we have a poke around and
4363 * see if we can find it.
4365 for (i = 0; (i < stli_eisamempsize); i++) {
4366 brdp->memaddr = stli_eisamemprobeaddrs[i];
4367 brdp->membase = (void *) brdp->memaddr;
4368 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
4369 if (brdp->membase == (void *) NULL)
4370 continue;
4372 if (brdp->brdtype == BRD_ECPE) {
4373 ecpsigp = (cdkecpsig_t *) stli_ecpeigetmemptr(brdp,
4374 CDK_SIGADDR, __LINE__);
4375 memcpy(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
4376 if (ecpsig.magic == ECP_MAGIC)
4377 foundit = 1;
4378 } else {
4379 onbsigp = (cdkonbsig_t *) stli_onbegetmemptr(brdp,
4380 CDK_SIGADDR, __LINE__);
4381 memcpy(&onbsig, onbsigp, sizeof(cdkonbsig_t));
4382 if ((onbsig.magic0 == ONB_MAGIC0) &&
4383 (onbsig.magic1 == ONB_MAGIC1) &&
4384 (onbsig.magic2 == ONB_MAGIC2) &&
4385 (onbsig.magic3 == ONB_MAGIC3))
4386 foundit = 1;
4389 iounmap(brdp->membase);
4390 if (foundit)
4391 break;
4395 * Regardless of whether we found the shared memory or not we must
4396 * disable the region. After that return success or failure.
4398 if (brdp->brdtype == BRD_ECPE)
4399 stli_ecpeidisable(brdp);
4400 else
4401 stli_onbedisable(brdp);
4403 if (! foundit) {
4404 brdp->memaddr = 0;
4405 brdp->membase = NULL;
4406 printk(KERN_ERR "STALLION: failed to probe shared memory "
4407 "region for %s in EISA slot=%d\n",
4408 stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
4409 return(-ENODEV);
4411 return(0);
4414 static int stli_getbrdnr(void)
4416 int i;
4418 for (i = 0; i < STL_MAXBRDS; i++) {
4419 if (!stli_brds[i]) {
4420 if (i >= stli_nrbrds)
4421 stli_nrbrds = i + 1;
4422 return i;
4425 return -1;
4428 /*****************************************************************************/
4431 * Probe around and try to find any EISA boards in system. The biggest
4432 * problem here is finding out what memory address is associated with
4433 * an EISA board after it is found. The registers of the ECPE and
4434 * ONboardE are not readable - so we can't read them from there. We
4435 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
4436 * actually have any way to find out the real value. The best we can
4437 * do is go probing around in the usual places hoping we can find it.
4440 static int stli_findeisabrds(void)
4442 stlibrd_t *brdp;
4443 unsigned int iobase, eid;
4444 int i;
4446 #ifdef DEBUG
4447 printk(KERN_DEBUG "stli_findeisabrds()\n");
4448 #endif
4451 * Firstly check if this is an EISA system. Do this by probing for
4452 * the system board EISA ID. If this is not an EISA system then
4453 * don't bother going any further!
4455 outb(0xff, 0xc80);
4456 if (inb(0xc80) == 0xff)
4457 return(0);
4460 * Looks like an EISA system, so go searching for EISA boards.
4462 for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
4463 outb(0xff, (iobase + 0xc80));
4464 eid = inb(iobase + 0xc80);
4465 eid |= inb(iobase + 0xc81) << 8;
4466 if (eid != STL_EISAID)
4467 continue;
4470 * We have found a board. Need to check if this board was
4471 * statically configured already (just in case!).
4473 for (i = 0; (i < STL_MAXBRDS); i++) {
4474 brdp = stli_brds[i];
4475 if (brdp == (stlibrd_t *) NULL)
4476 continue;
4477 if (brdp->iobase == iobase)
4478 break;
4480 if (i < STL_MAXBRDS)
4481 continue;
4484 * We have found a Stallion board and it is not configured already.
4485 * Allocate a board structure and initialize it.
4487 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4488 return(-ENOMEM);
4489 if ((brdp->brdnr = stli_getbrdnr()) < 0)
4490 return(-ENOMEM);
4491 eid = inb(iobase + 0xc82);
4492 if (eid == ECP_EISAID)
4493 brdp->brdtype = BRD_ECPE;
4494 else if (eid == ONB_EISAID)
4495 brdp->brdtype = BRD_ONBOARDE;
4496 else
4497 brdp->brdtype = BRD_UNKNOWN;
4498 brdp->iobase = iobase;
4499 outb(0x1, (iobase + 0xc84));
4500 if (stli_eisamemprobe(brdp))
4501 outb(0, (iobase + 0xc84));
4502 stli_brdinit(brdp);
4505 return(0);
4508 /*****************************************************************************/
4511 * Find the next available board number that is free.
4514 /*****************************************************************************/
4516 #ifdef CONFIG_PCI
4519 * We have a Stallion board. Allocate a board structure and
4520 * initialize it. Read its IO and MEMORY resources from PCI
4521 * configuration space.
4524 static int stli_initpcibrd(int brdtype, struct pci_dev *devp)
4526 stlibrd_t *brdp;
4528 #ifdef DEBUG
4529 printk(KERN_DEBUG "stli_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n",
4530 brdtype, dev->bus->number, dev->devfn);
4531 #endif
4533 if (pci_enable_device(devp))
4534 return(-EIO);
4535 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4536 return(-ENOMEM);
4537 if ((brdp->brdnr = stli_getbrdnr()) < 0) {
4538 printk(KERN_INFO "STALLION: too many boards found, "
4539 "maximum supported %d\n", STL_MAXBRDS);
4540 return(0);
4542 brdp->brdtype = brdtype;
4544 #ifdef DEBUG
4545 printk(KERN_DEBUG "%s(%d): BAR[]=%lx,%lx,%lx,%lx\n", __FILE__, __LINE__,
4546 pci_resource_start(devp, 0),
4547 pci_resource_start(devp, 1),
4548 pci_resource_start(devp, 2),
4549 pci_resource_start(devp, 3));
4550 #endif
4553 * We have all resources from the board, so lets setup the actual
4554 * board structure now.
4556 brdp->iobase = pci_resource_start(devp, 3);
4557 brdp->memaddr = pci_resource_start(devp, 2);
4558 stli_brdinit(brdp);
4560 return(0);
4563 /*****************************************************************************/
4566 * Find all Stallion PCI boards that might be installed. Initialize each
4567 * one as it is found.
4570 static int stli_findpcibrds(void)
4572 struct pci_dev *dev = NULL;
4573 int rc;
4575 #ifdef DEBUG
4576 printk("stli_findpcibrds()\n");
4577 #endif
4579 while ((dev = pci_find_device(PCI_VENDOR_ID_STALLION,
4580 PCI_DEVICE_ID_ECRA, dev))) {
4581 if ((rc = stli_initpcibrd(BRD_ECPPCI, dev)))
4582 return(rc);
4585 return(0);
4588 #endif
4590 /*****************************************************************************/
4593 * Allocate a new board structure. Fill out the basic info in it.
4596 static stlibrd_t *stli_allocbrd(void)
4598 stlibrd_t *brdp;
4600 brdp = kzalloc(sizeof(stlibrd_t), GFP_KERNEL);
4601 if (!brdp) {
4602 printk(KERN_ERR "STALLION: failed to allocate memory "
4603 "(size=%d)\n", sizeof(stlibrd_t));
4604 return NULL;
4607 brdp->magic = STLI_BOARDMAGIC;
4608 return(brdp);
4611 /*****************************************************************************/
4614 * Scan through all the boards in the configuration and see what we
4615 * can find.
4618 static int stli_initbrds(void)
4620 stlibrd_t *brdp, *nxtbrdp;
4621 stlconf_t *confp;
4622 int i, j;
4624 #ifdef DEBUG
4625 printk(KERN_DEBUG "stli_initbrds()\n");
4626 #endif
4628 if (stli_nrbrds > STL_MAXBRDS) {
4629 printk(KERN_INFO "STALLION: too many boards in configuration "
4630 "table, truncating to %d\n", STL_MAXBRDS);
4631 stli_nrbrds = STL_MAXBRDS;
4635 * Firstly scan the list of static boards configured. Allocate
4636 * resources and initialize the boards as found. If this is a
4637 * module then let the module args override static configuration.
4639 for (i = 0; (i < stli_nrbrds); i++) {
4640 confp = &stli_brdconf[i];
4641 #ifdef MODULE
4642 stli_parsebrd(confp, stli_brdsp[i]);
4643 #endif
4644 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4645 return(-ENOMEM);
4646 brdp->brdnr = i;
4647 brdp->brdtype = confp->brdtype;
4648 brdp->iobase = confp->ioaddr1;
4649 brdp->memaddr = confp->memaddr;
4650 stli_brdinit(brdp);
4654 * Static configuration table done, so now use dynamic methods to
4655 * see if any more boards should be configured.
4657 #ifdef MODULE
4658 stli_argbrds();
4659 #endif
4660 if (STLI_EISAPROBE)
4661 stli_findeisabrds();
4662 #ifdef CONFIG_PCI
4663 stli_findpcibrds();
4664 #endif
4667 * All found boards are initialized. Now for a little optimization, if
4668 * no boards are sharing the "shared memory" regions then we can just
4669 * leave them all enabled. This is in fact the usual case.
4671 stli_shared = 0;
4672 if (stli_nrbrds > 1) {
4673 for (i = 0; (i < stli_nrbrds); i++) {
4674 brdp = stli_brds[i];
4675 if (brdp == (stlibrd_t *) NULL)
4676 continue;
4677 for (j = i + 1; (j < stli_nrbrds); j++) {
4678 nxtbrdp = stli_brds[j];
4679 if (nxtbrdp == (stlibrd_t *) NULL)
4680 continue;
4681 if ((brdp->membase >= nxtbrdp->membase) &&
4682 (brdp->membase <= (nxtbrdp->membase +
4683 nxtbrdp->memsize - 1))) {
4684 stli_shared++;
4685 break;
4691 if (stli_shared == 0) {
4692 for (i = 0; (i < stli_nrbrds); i++) {
4693 brdp = stli_brds[i];
4694 if (brdp == (stlibrd_t *) NULL)
4695 continue;
4696 if (brdp->state & BST_FOUND) {
4697 EBRDENABLE(brdp);
4698 brdp->enable = NULL;
4699 brdp->disable = NULL;
4704 return(0);
4707 /*****************************************************************************/
4710 * Code to handle an "staliomem" read operation. This device is the
4711 * contents of the board shared memory. It is used for down loading
4712 * the slave image (and debugging :-)
4715 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
4717 unsigned long flags;
4718 void *memptr;
4719 stlibrd_t *brdp;
4720 int brdnr, size, n;
4722 #ifdef DEBUG
4723 printk(KERN_DEBUG "stli_memread(fp=%x,buf=%x,count=%x,offp=%x)\n",
4724 (int) fp, (int) buf, count, (int) offp);
4725 #endif
4727 brdnr = iminor(fp->f_dentry->d_inode);
4728 if (brdnr >= stli_nrbrds)
4729 return(-ENODEV);
4730 brdp = stli_brds[brdnr];
4731 if (brdp == (stlibrd_t *) NULL)
4732 return(-ENODEV);
4733 if (brdp->state == 0)
4734 return(-ENODEV);
4735 if (fp->f_pos >= brdp->memsize)
4736 return(0);
4738 size = MIN(count, (brdp->memsize - fp->f_pos));
4740 save_flags(flags);
4741 cli();
4742 EBRDENABLE(brdp);
4743 while (size > 0) {
4744 memptr = (void *) EBRDGETMEMPTR(brdp, fp->f_pos);
4745 n = MIN(size, (brdp->pagesize - (((unsigned long) fp->f_pos) % brdp->pagesize)));
4746 if (copy_to_user(buf, memptr, n)) {
4747 count = -EFAULT;
4748 goto out;
4750 fp->f_pos += n;
4751 buf += n;
4752 size -= n;
4754 out:
4755 EBRDDISABLE(brdp);
4756 restore_flags(flags);
4758 return(count);
4761 /*****************************************************************************/
4764 * Code to handle an "staliomem" write operation. This device is the
4765 * contents of the board shared memory. It is used for down loading
4766 * the slave image (and debugging :-)
4769 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
4771 unsigned long flags;
4772 void *memptr;
4773 stlibrd_t *brdp;
4774 char __user *chbuf;
4775 int brdnr, size, n;
4777 #ifdef DEBUG
4778 printk(KERN_DEBUG "stli_memwrite(fp=%x,buf=%x,count=%x,offp=%x)\n",
4779 (int) fp, (int) buf, count, (int) offp);
4780 #endif
4782 brdnr = iminor(fp->f_dentry->d_inode);
4783 if (brdnr >= stli_nrbrds)
4784 return(-ENODEV);
4785 brdp = stli_brds[brdnr];
4786 if (brdp == (stlibrd_t *) NULL)
4787 return(-ENODEV);
4788 if (brdp->state == 0)
4789 return(-ENODEV);
4790 if (fp->f_pos >= brdp->memsize)
4791 return(0);
4793 chbuf = (char __user *) buf;
4794 size = MIN(count, (brdp->memsize - fp->f_pos));
4796 save_flags(flags);
4797 cli();
4798 EBRDENABLE(brdp);
4799 while (size > 0) {
4800 memptr = (void *) EBRDGETMEMPTR(brdp, fp->f_pos);
4801 n = MIN(size, (brdp->pagesize - (((unsigned long) fp->f_pos) % brdp->pagesize)));
4802 if (copy_from_user(memptr, chbuf, n)) {
4803 count = -EFAULT;
4804 goto out;
4806 fp->f_pos += n;
4807 chbuf += n;
4808 size -= n;
4810 out:
4811 EBRDDISABLE(brdp);
4812 restore_flags(flags);
4814 return(count);
4817 /*****************************************************************************/
4820 * Return the board stats structure to user app.
4823 static int stli_getbrdstats(combrd_t __user *bp)
4825 stlibrd_t *brdp;
4826 int i;
4828 if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4829 return -EFAULT;
4830 if (stli_brdstats.brd >= STL_MAXBRDS)
4831 return(-ENODEV);
4832 brdp = stli_brds[stli_brdstats.brd];
4833 if (brdp == (stlibrd_t *) NULL)
4834 return(-ENODEV);
4836 memset(&stli_brdstats, 0, sizeof(combrd_t));
4837 stli_brdstats.brd = brdp->brdnr;
4838 stli_brdstats.type = brdp->brdtype;
4839 stli_brdstats.hwid = 0;
4840 stli_brdstats.state = brdp->state;
4841 stli_brdstats.ioaddr = brdp->iobase;
4842 stli_brdstats.memaddr = brdp->memaddr;
4843 stli_brdstats.nrpanels = brdp->nrpanels;
4844 stli_brdstats.nrports = brdp->nrports;
4845 for (i = 0; (i < brdp->nrpanels); i++) {
4846 stli_brdstats.panels[i].panel = i;
4847 stli_brdstats.panels[i].hwid = brdp->panelids[i];
4848 stli_brdstats.panels[i].nrports = brdp->panels[i];
4851 if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4852 return -EFAULT;
4853 return(0);
4856 /*****************************************************************************/
4859 * Resolve the referenced port number into a port struct pointer.
4862 static stliport_t *stli_getport(int brdnr, int panelnr, int portnr)
4864 stlibrd_t *brdp;
4865 int i;
4867 if ((brdnr < 0) || (brdnr >= STL_MAXBRDS))
4868 return((stliport_t *) NULL);
4869 brdp = stli_brds[brdnr];
4870 if (brdp == (stlibrd_t *) NULL)
4871 return((stliport_t *) NULL);
4872 for (i = 0; (i < panelnr); i++)
4873 portnr += brdp->panels[i];
4874 if ((portnr < 0) || (portnr >= brdp->nrports))
4875 return((stliport_t *) NULL);
4876 return(brdp->ports[portnr]);
4879 /*****************************************************************************/
4882 * Return the port stats structure to user app. A NULL port struct
4883 * pointer passed in means that we need to find out from the app
4884 * what port to get stats for (used through board control device).
4887 static int stli_portcmdstats(stliport_t *portp)
4889 unsigned long flags;
4890 stlibrd_t *brdp;
4891 int rc;
4893 memset(&stli_comstats, 0, sizeof(comstats_t));
4895 if (portp == (stliport_t *) NULL)
4896 return(-ENODEV);
4897 brdp = stli_brds[portp->brdnr];
4898 if (brdp == (stlibrd_t *) NULL)
4899 return(-ENODEV);
4901 if (brdp->state & BST_STARTED) {
4902 if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4903 &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
4904 return(rc);
4905 } else {
4906 memset(&stli_cdkstats, 0, sizeof(asystats_t));
4909 stli_comstats.brd = portp->brdnr;
4910 stli_comstats.panel = portp->panelnr;
4911 stli_comstats.port = portp->portnr;
4912 stli_comstats.state = portp->state;
4913 stli_comstats.flags = portp->flags;
4915 save_flags(flags);
4916 cli();
4917 if (portp->tty != (struct tty_struct *) NULL) {
4918 if (portp->tty->driver_data == portp) {
4919 stli_comstats.ttystate = portp->tty->flags;
4920 stli_comstats.rxbuffered = -1 /*portp->tty->flip.count*/;
4921 if (portp->tty->termios != (struct termios *) NULL) {
4922 stli_comstats.cflags = portp->tty->termios->c_cflag;
4923 stli_comstats.iflags = portp->tty->termios->c_iflag;
4924 stli_comstats.oflags = portp->tty->termios->c_oflag;
4925 stli_comstats.lflags = portp->tty->termios->c_lflag;
4929 restore_flags(flags);
4931 stli_comstats.txtotal = stli_cdkstats.txchars;
4932 stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4933 stli_comstats.txbuffered = stli_cdkstats.txringq;
4934 stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4935 stli_comstats.rxoverrun = stli_cdkstats.overruns;
4936 stli_comstats.rxparity = stli_cdkstats.parity;
4937 stli_comstats.rxframing = stli_cdkstats.framing;
4938 stli_comstats.rxlost = stli_cdkstats.ringover;
4939 stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4940 stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4941 stli_comstats.txxon = stli_cdkstats.txstart;
4942 stli_comstats.txxoff = stli_cdkstats.txstop;
4943 stli_comstats.rxxon = stli_cdkstats.rxstart;
4944 stli_comstats.rxxoff = stli_cdkstats.rxstop;
4945 stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4946 stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4947 stli_comstats.modem = stli_cdkstats.dcdcnt;
4948 stli_comstats.hwid = stli_cdkstats.hwid;
4949 stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4951 return(0);
4954 /*****************************************************************************/
4957 * Return the port stats structure to user app. A NULL port struct
4958 * pointer passed in means that we need to find out from the app
4959 * what port to get stats for (used through board control device).
4962 static int stli_getportstats(stliport_t *portp, comstats_t __user *cp)
4964 stlibrd_t *brdp;
4965 int rc;
4967 if (!portp) {
4968 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4969 return -EFAULT;
4970 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4971 stli_comstats.port);
4972 if (!portp)
4973 return -ENODEV;
4976 brdp = stli_brds[portp->brdnr];
4977 if (!brdp)
4978 return -ENODEV;
4980 if ((rc = stli_portcmdstats(portp)) < 0)
4981 return rc;
4983 return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
4984 -EFAULT : 0;
4987 /*****************************************************************************/
4990 * Clear the port stats structure. We also return it zeroed out...
4993 static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp)
4995 stlibrd_t *brdp;
4996 int rc;
4998 if (!portp) {
4999 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
5000 return -EFAULT;
5001 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
5002 stli_comstats.port);
5003 if (!portp)
5004 return -ENODEV;
5007 brdp = stli_brds[portp->brdnr];
5008 if (!brdp)
5009 return -ENODEV;
5011 if (brdp->state & BST_STARTED) {
5012 if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
5013 return rc;
5016 memset(&stli_comstats, 0, sizeof(comstats_t));
5017 stli_comstats.brd = portp->brdnr;
5018 stli_comstats.panel = portp->panelnr;
5019 stli_comstats.port = portp->portnr;
5021 if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
5022 return -EFAULT;
5023 return 0;
5026 /*****************************************************************************/
5029 * Return the entire driver ports structure to a user app.
5032 static int stli_getportstruct(stliport_t __user *arg)
5034 stliport_t *portp;
5036 if (copy_from_user(&stli_dummyport, arg, sizeof(stliport_t)))
5037 return -EFAULT;
5038 portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
5039 stli_dummyport.portnr);
5040 if (!portp)
5041 return -ENODEV;
5042 if (copy_to_user(arg, portp, sizeof(stliport_t)))
5043 return -EFAULT;
5044 return 0;
5047 /*****************************************************************************/
5050 * Return the entire driver board structure to a user app.
5053 static int stli_getbrdstruct(stlibrd_t __user *arg)
5055 stlibrd_t *brdp;
5057 if (copy_from_user(&stli_dummybrd, arg, sizeof(stlibrd_t)))
5058 return -EFAULT;
5059 if ((stli_dummybrd.brdnr < 0) || (stli_dummybrd.brdnr >= STL_MAXBRDS))
5060 return -ENODEV;
5061 brdp = stli_brds[stli_dummybrd.brdnr];
5062 if (!brdp)
5063 return -ENODEV;
5064 if (copy_to_user(arg, brdp, sizeof(stlibrd_t)))
5065 return -EFAULT;
5066 return 0;
5069 /*****************************************************************************/
5072 * The "staliomem" device is also required to do some special operations on
5073 * the board. We need to be able to send an interrupt to the board,
5074 * reset it, and start/stop it.
5077 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
5079 stlibrd_t *brdp;
5080 int brdnr, rc, done;
5081 void __user *argp = (void __user *)arg;
5083 #ifdef DEBUG
5084 printk(KERN_DEBUG "stli_memioctl(ip=%x,fp=%x,cmd=%x,arg=%x)\n",
5085 (int) ip, (int) fp, cmd, (int) arg);
5086 #endif
5089 * First up handle the board independent ioctls.
5091 done = 0;
5092 rc = 0;
5094 switch (cmd) {
5095 case COM_GETPORTSTATS:
5096 rc = stli_getportstats(NULL, argp);
5097 done++;
5098 break;
5099 case COM_CLRPORTSTATS:
5100 rc = stli_clrportstats(NULL, argp);
5101 done++;
5102 break;
5103 case COM_GETBRDSTATS:
5104 rc = stli_getbrdstats(argp);
5105 done++;
5106 break;
5107 case COM_READPORT:
5108 rc = stli_getportstruct(argp);
5109 done++;
5110 break;
5111 case COM_READBOARD:
5112 rc = stli_getbrdstruct(argp);
5113 done++;
5114 break;
5117 if (done)
5118 return(rc);
5121 * Now handle the board specific ioctls. These all depend on the
5122 * minor number of the device they were called from.
5124 brdnr = iminor(ip);
5125 if (brdnr >= STL_MAXBRDS)
5126 return(-ENODEV);
5127 brdp = stli_brds[brdnr];
5128 if (!brdp)
5129 return(-ENODEV);
5130 if (brdp->state == 0)
5131 return(-ENODEV);
5133 switch (cmd) {
5134 case STL_BINTR:
5135 EBRDINTR(brdp);
5136 break;
5137 case STL_BSTART:
5138 rc = stli_startbrd(brdp);
5139 break;
5140 case STL_BSTOP:
5141 brdp->state &= ~BST_STARTED;
5142 break;
5143 case STL_BRESET:
5144 brdp->state &= ~BST_STARTED;
5145 EBRDRESET(brdp);
5146 if (stli_shared == 0) {
5147 if (brdp->reenable != NULL)
5148 (* brdp->reenable)(brdp);
5150 break;
5151 default:
5152 rc = -ENOIOCTLCMD;
5153 break;
5156 return(rc);
5159 static struct tty_operations stli_ops = {
5160 .open = stli_open,
5161 .close = stli_close,
5162 .write = stli_write,
5163 .put_char = stli_putchar,
5164 .flush_chars = stli_flushchars,
5165 .write_room = stli_writeroom,
5166 .chars_in_buffer = stli_charsinbuffer,
5167 .ioctl = stli_ioctl,
5168 .set_termios = stli_settermios,
5169 .throttle = stli_throttle,
5170 .unthrottle = stli_unthrottle,
5171 .stop = stli_stop,
5172 .start = stli_start,
5173 .hangup = stli_hangup,
5174 .flush_buffer = stli_flushbuffer,
5175 .break_ctl = stli_breakctl,
5176 .wait_until_sent = stli_waituntilsent,
5177 .send_xchar = stli_sendxchar,
5178 .read_proc = stli_readproc,
5179 .tiocmget = stli_tiocmget,
5180 .tiocmset = stli_tiocmset,
5183 /*****************************************************************************/
5185 int __init stli_init(void)
5187 int i;
5188 printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
5190 stli_initbrds();
5192 stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
5193 if (!stli_serial)
5194 return -ENOMEM;
5197 * Allocate a temporary write buffer.
5199 stli_tmpwritebuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL);
5200 if (!stli_tmpwritebuf)
5201 printk(KERN_ERR "STALLION: failed to allocate memory "
5202 "(size=%d)\n", STLI_TXBUFSIZE);
5203 stli_txcookbuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL);
5204 if (!stli_txcookbuf)
5205 printk(KERN_ERR "STALLION: failed to allocate memory "
5206 "(size=%d)\n", STLI_TXBUFSIZE);
5209 * Set up a character driver for the shared memory region. We need this
5210 * to down load the slave code image. Also it is a useful debugging tool.
5212 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem))
5213 printk(KERN_ERR "STALLION: failed to register serial memory "
5214 "device\n");
5216 devfs_mk_dir("staliomem");
5217 istallion_class = class_create(THIS_MODULE, "staliomem");
5218 for (i = 0; i < 4; i++) {
5219 devfs_mk_cdev(MKDEV(STL_SIOMEMMAJOR, i),
5220 S_IFCHR | S_IRUSR | S_IWUSR,
5221 "staliomem/%d", i);
5222 class_device_create(istallion_class, NULL,
5223 MKDEV(STL_SIOMEMMAJOR, i),
5224 NULL, "staliomem%d", i);
5228 * Set up the tty driver structure and register us as a driver.
5230 stli_serial->owner = THIS_MODULE;
5231 stli_serial->driver_name = stli_drvname;
5232 stli_serial->name = stli_serialname;
5233 stli_serial->major = STL_SERIALMAJOR;
5234 stli_serial->minor_start = 0;
5235 stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
5236 stli_serial->subtype = SERIAL_TYPE_NORMAL;
5237 stli_serial->init_termios = stli_deftermios;
5238 stli_serial->flags = TTY_DRIVER_REAL_RAW;
5239 tty_set_operations(stli_serial, &stli_ops);
5241 if (tty_register_driver(stli_serial)) {
5242 put_tty_driver(stli_serial);
5243 printk(KERN_ERR "STALLION: failed to register serial driver\n");
5244 return -EBUSY;
5246 return(0);
5249 /*****************************************************************************/