1 /*****************************************************************************/
4 * istallion.c -- stallion intelligent multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /*****************************************************************************/
29 #include <linux/config.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/tty.h>
34 #include <linux/tty_flip.h>
35 #include <linux/serial.h>
36 #include <linux/cdk.h>
37 #include <linux/comstats.h>
38 #include <linux/istallion.h>
39 #include <linux/ioport.h>
40 #include <linux/delay.h>
41 #include <linux/init.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/device.h>
44 #include <linux/wait.h>
47 #include <asm/uaccess.h>
50 #include <linux/pci.h>
53 /*****************************************************************************/
56 * Define different board types. Not all of the following board types
57 * are supported by this driver. But I will use the standard "assigned"
58 * board numbers. Currently supported boards are abbreviated as:
59 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
63 #define BRD_STALLION 1
65 #define BRD_ONBOARD2 3
68 #define BRD_BRUMBY16 6
69 #define BRD_ONBOARDE 7
70 #define BRD_ONBOARD32 9
71 #define BRD_ONBOARD2_32 10
72 #define BRD_ONBOARDRS 11
80 #define BRD_ECH64PCI 27
81 #define BRD_EASYIOPCI 28
84 #define BRD_BRUMBY BRD_BRUMBY4
87 * Define a configuration structure to hold the board configuration.
88 * Need to set this up in the code (for now) with the boards that are
89 * to be configured into the system. This is what needs to be modified
90 * when adding/removing/modifying boards. Each line entry in the
91 * stli_brdconf[] array is a board. Each line contains io/irq/memory
92 * ranges for that board (as well as what type of board it is).
94 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
95 * This line will configure an EasyConnection 8/64 at io address 2a0,
96 * and shared memory address of cc000. Multiple EasyConnection 8/64
97 * boards can share the same shared memory address space. No interrupt
98 * is required for this board type.
100 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
101 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
102 * shared memory address of 0x80000000 (2 GByte). Multiple
103 * EasyConnection 8/64 EISA boards can share the same shared memory
104 * address space. No interrupt is required for this board type.
106 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
107 * This line will configure an ONboard (ISA type) at io address 240,
108 * and shared memory address of d0000. Multiple ONboards can share
109 * the same shared memory address space. No interrupt required.
111 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
112 * This line will configure a Brumby board (any number of ports!) at
113 * io address 360 and shared memory address of c8000. All Brumby boards
114 * configured into a system must have their own separate io and memory
115 * addresses. No interrupt is required.
117 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
118 * This line will configure an original Stallion board at io address 330
119 * and shared memory address d0000 (this would only be valid for a "V4.0"
120 * or Rev.O Stallion board). All Stallion boards configured into the
121 * system must have their own separate io and memory addresses. No
122 * interrupt is required.
129 unsigned long memaddr
;
134 static stlconf_t stli_brdconf
[] = {
135 /*{ BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },*/
138 static int stli_nrbrds
= ARRAY_SIZE(stli_brdconf
);
141 * There is some experimental EISA board detection code in this driver.
142 * By default it is disabled, but for those that want to try it out,
143 * then set the define below to be 1.
145 #define STLI_EISAPROBE 0
147 /*****************************************************************************/
150 * Define some important driver characteristics. Device major numbers
151 * allocated as per Linux Device Registry.
153 #ifndef STL_SIOMEMMAJOR
154 #define STL_SIOMEMMAJOR 28
156 #ifndef STL_SERIALMAJOR
157 #define STL_SERIALMAJOR 24
159 #ifndef STL_CALLOUTMAJOR
160 #define STL_CALLOUTMAJOR 25
163 /*****************************************************************************/
166 * Define our local driver identity first. Set up stuff to deal with
167 * all the local structures required by a serial tty driver.
169 static char *stli_drvtitle
= "Stallion Intelligent Multiport Serial Driver";
170 static char *stli_drvname
= "istallion";
171 static char *stli_drvversion
= "5.6.0";
172 static char *stli_serialname
= "ttyE";
174 static struct tty_driver
*stli_serial
;
177 * We will need to allocate a temporary write buffer for chars that
178 * come direct from user space. The problem is that a copy from user
179 * space might cause a page fault (typically on a system that is
180 * swapping!). All ports will share one buffer - since if the system
181 * is already swapping a shared buffer won't make things any worse.
183 static char *stli_tmpwritebuf
;
185 #define STLI_TXBUFSIZE 4096
188 * Use a fast local buffer for cooked characters. Typically a whole
189 * bunch of cooked characters come in for a port, 1 at a time. So we
190 * save those up into a local buffer, then write out the whole lot
191 * with a large memcpy. Just use 1 buffer for all ports, since its
192 * use it is only need for short periods of time by each port.
194 static char *stli_txcookbuf
;
195 static int stli_txcooksize
;
196 static int stli_txcookrealsize
;
197 static struct tty_struct
*stli_txcooktty
;
200 * Define a local default termios struct. All ports will be created
201 * with this termios initially. Basically all it defines is a raw port
202 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
204 static struct termios stli_deftermios
= {
205 .c_cflag
= (B9600
| CS8
| CREAD
| HUPCL
| CLOCAL
),
210 * Define global stats structures. Not used often, and can be
211 * re-used for each stats call.
213 static comstats_t stli_comstats
;
214 static combrd_t stli_brdstats
;
215 static asystats_t stli_cdkstats
;
216 static stlibrd_t stli_dummybrd
;
217 static stliport_t stli_dummyport
;
219 /*****************************************************************************/
221 static stlibrd_t
*stli_brds
[STL_MAXBRDS
];
223 static int stli_shared
;
226 * Per board state flags. Used with the state field of the board struct.
227 * Not really much here... All we need to do is keep track of whether
228 * the board has been detected, and whether it is actually running a slave
231 #define BST_FOUND 0x1
232 #define BST_STARTED 0x2
235 * Define the set of port state flags. These are marked for internal
236 * state purposes only, usually to do with the state of communications
237 * with the slave. Most of them need to be updated atomically, so always
238 * use the bit setting operations (unless protected by cli/sti).
240 #define ST_INITIALIZING 1
246 #define ST_DOFLUSHRX 7
247 #define ST_DOFLUSHTX 8
250 #define ST_GETSIGS 11
253 * Define an array of board names as printable strings. Handy for
254 * referencing boards when printing trace and stuff.
256 static char *stli_brdnames
[] = {
289 /*****************************************************************************/
293 * Define some string labels for arguments passed from the module
294 * load line. These allow for easy board definitions, and easy
295 * modification of the io, memory and irq resoucres.
298 static char *board0
[8];
299 static char *board1
[8];
300 static char *board2
[8];
301 static char *board3
[8];
303 static char **stli_brdsp
[] = {
311 * Define a set of common board names, and types. This is used to
312 * parse any module arguments.
315 typedef struct stlibrdtype
{
320 static stlibrdtype_t stli_brdstr
[] = {
321 { "stallion", BRD_STALLION
},
322 { "1", BRD_STALLION
},
323 { "brumby", BRD_BRUMBY
},
324 { "brumby4", BRD_BRUMBY
},
325 { "brumby/4", BRD_BRUMBY
},
326 { "brumby-4", BRD_BRUMBY
},
327 { "brumby8", BRD_BRUMBY
},
328 { "brumby/8", BRD_BRUMBY
},
329 { "brumby-8", BRD_BRUMBY
},
330 { "brumby16", BRD_BRUMBY
},
331 { "brumby/16", BRD_BRUMBY
},
332 { "brumby-16", BRD_BRUMBY
},
334 { "onboard2", BRD_ONBOARD2
},
335 { "onboard-2", BRD_ONBOARD2
},
336 { "onboard/2", BRD_ONBOARD2
},
337 { "onboard-mc", BRD_ONBOARD2
},
338 { "onboard/mc", BRD_ONBOARD2
},
339 { "onboard-mca", BRD_ONBOARD2
},
340 { "onboard/mca", BRD_ONBOARD2
},
341 { "3", BRD_ONBOARD2
},
342 { "onboard", BRD_ONBOARD
},
343 { "onboardat", BRD_ONBOARD
},
344 { "4", BRD_ONBOARD
},
345 { "onboarde", BRD_ONBOARDE
},
346 { "onboard-e", BRD_ONBOARDE
},
347 { "onboard/e", BRD_ONBOARDE
},
348 { "onboard-ei", BRD_ONBOARDE
},
349 { "onboard/ei", BRD_ONBOARDE
},
350 { "7", BRD_ONBOARDE
},
352 { "ecpat", BRD_ECP
},
353 { "ec8/64", BRD_ECP
},
354 { "ec8/64-at", BRD_ECP
},
355 { "ec8/64-isa", BRD_ECP
},
357 { "ecpe", BRD_ECPE
},
358 { "ecpei", BRD_ECPE
},
359 { "ec8/64-e", BRD_ECPE
},
360 { "ec8/64-ei", BRD_ECPE
},
362 { "ecpmc", BRD_ECPMC
},
363 { "ec8/64-mc", BRD_ECPMC
},
364 { "ec8/64-mca", BRD_ECPMC
},
366 { "ecppci", BRD_ECPPCI
},
367 { "ec/ra", BRD_ECPPCI
},
368 { "ec/ra-pc", BRD_ECPPCI
},
369 { "ec/ra-pci", BRD_ECPPCI
},
370 { "29", BRD_ECPPCI
},
374 * Define the module agruments.
376 MODULE_AUTHOR("Greg Ungerer");
377 MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
378 MODULE_LICENSE("GPL");
381 module_param_array(board0
, charp
, NULL
, 0);
382 MODULE_PARM_DESC(board0
, "Board 0 config -> name[,ioaddr[,memaddr]");
383 module_param_array(board1
, charp
, NULL
, 0);
384 MODULE_PARM_DESC(board1
, "Board 1 config -> name[,ioaddr[,memaddr]");
385 module_param_array(board2
, charp
, NULL
, 0);
386 MODULE_PARM_DESC(board2
, "Board 2 config -> name[,ioaddr[,memaddr]");
387 module_param_array(board3
, charp
, NULL
, 0);
388 MODULE_PARM_DESC(board3
, "Board 3 config -> name[,ioaddr[,memaddr]");
393 * Set up a default memory address table for EISA board probing.
394 * The default addresses are all bellow 1Mbyte, which has to be the
395 * case anyway. They should be safe, since we only read values from
396 * them, and interrupts are disabled while we do it. If the higher
397 * memory support is compiled in then we also try probing around
398 * the 1Gb, 2Gb and 3Gb areas as well...
400 static unsigned long stli_eisamemprobeaddrs
[] = {
401 0xc0000, 0xd0000, 0xe0000, 0xf0000,
402 0x80000000, 0x80010000, 0x80020000, 0x80030000,
403 0x40000000, 0x40010000, 0x40020000, 0x40030000,
404 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
405 0xff000000, 0xff010000, 0xff020000, 0xff030000,
408 static int stli_eisamempsize
= ARRAY_SIZE(stli_eisamemprobeaddrs
);
411 * Define the Stallion PCI vendor and device IDs.
414 #ifndef PCI_VENDOR_ID_STALLION
415 #define PCI_VENDOR_ID_STALLION 0x124d
417 #ifndef PCI_DEVICE_ID_ECRA
418 #define PCI_DEVICE_ID_ECRA 0x0004
421 static struct pci_device_id istallion_pci_tbl
[] = {
422 { PCI_VENDOR_ID_STALLION
, PCI_DEVICE_ID_ECRA
, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0 },
425 MODULE_DEVICE_TABLE(pci
, istallion_pci_tbl
);
427 #endif /* CONFIG_PCI */
429 /*****************************************************************************/
432 * Hardware configuration info for ECP boards. These defines apply
433 * to the directly accessible io ports of the ECP. There is a set of
434 * defines for each ECP board type, ISA, EISA, MCA and PCI.
438 #define ECP_MEMSIZE (128 * 1024)
439 #define ECP_PCIMEMSIZE (256 * 1024)
441 #define ECP_ATPAGESIZE (4 * 1024)
442 #define ECP_MCPAGESIZE (4 * 1024)
443 #define ECP_EIPAGESIZE (64 * 1024)
444 #define ECP_PCIPAGESIZE (64 * 1024)
446 #define STL_EISAID 0x8c4e
449 * Important defines for the ISA class of ECP board.
452 #define ECP_ATCONFR 1
453 #define ECP_ATMEMAR 2
454 #define ECP_ATMEMPR 3
455 #define ECP_ATSTOP 0x1
456 #define ECP_ATINTENAB 0x10
457 #define ECP_ATENABLE 0x20
458 #define ECP_ATDISABLE 0x00
459 #define ECP_ATADDRMASK 0x3f000
460 #define ECP_ATADDRSHFT 12
463 * Important defines for the EISA class of ECP board.
466 #define ECP_EIMEMARL 1
467 #define ECP_EICONFR 2
468 #define ECP_EIMEMARH 3
469 #define ECP_EIENABLE 0x1
470 #define ECP_EIDISABLE 0x0
471 #define ECP_EISTOP 0x4
472 #define ECP_EIEDGE 0x00
473 #define ECP_EILEVEL 0x80
474 #define ECP_EIADDRMASKL 0x00ff0000
475 #define ECP_EIADDRSHFTL 16
476 #define ECP_EIADDRMASKH 0xff000000
477 #define ECP_EIADDRSHFTH 24
478 #define ECP_EIBRDENAB 0xc84
480 #define ECP_EISAID 0x4
483 * Important defines for the Micro-channel class of ECP board.
484 * (It has a lot in common with the ISA boards.)
487 #define ECP_MCCONFR 1
488 #define ECP_MCSTOP 0x20
489 #define ECP_MCENABLE 0x80
490 #define ECP_MCDISABLE 0x00
493 * Important defines for the PCI class of ECP board.
494 * (It has a lot in common with the other ECP boards.)
496 #define ECP_PCIIREG 0
497 #define ECP_PCICONFR 1
498 #define ECP_PCISTOP 0x01
501 * Hardware configuration info for ONboard and Brumby boards. These
502 * defines apply to the directly accessible io ports of these boards.
504 #define ONB_IOSIZE 16
505 #define ONB_MEMSIZE (64 * 1024)
506 #define ONB_ATPAGESIZE (64 * 1024)
507 #define ONB_MCPAGESIZE (64 * 1024)
508 #define ONB_EIMEMSIZE (128 * 1024)
509 #define ONB_EIPAGESIZE (64 * 1024)
512 * Important defines for the ISA class of ONboard board.
515 #define ONB_ATMEMAR 1
516 #define ONB_ATCONFR 2
517 #define ONB_ATSTOP 0x4
518 #define ONB_ATENABLE 0x01
519 #define ONB_ATDISABLE 0x00
520 #define ONB_ATADDRMASK 0xff0000
521 #define ONB_ATADDRSHFT 16
523 #define ONB_MEMENABLO 0
524 #define ONB_MEMENABHI 0x02
527 * Important defines for the EISA class of ONboard board.
530 #define ONB_EIMEMARL 1
531 #define ONB_EICONFR 2
532 #define ONB_EIMEMARH 3
533 #define ONB_EIENABLE 0x1
534 #define ONB_EIDISABLE 0x0
535 #define ONB_EISTOP 0x4
536 #define ONB_EIEDGE 0x00
537 #define ONB_EILEVEL 0x80
538 #define ONB_EIADDRMASKL 0x00ff0000
539 #define ONB_EIADDRSHFTL 16
540 #define ONB_EIADDRMASKH 0xff000000
541 #define ONB_EIADDRSHFTH 24
542 #define ONB_EIBRDENAB 0xc84
544 #define ONB_EISAID 0x1
547 * Important defines for the Brumby boards. They are pretty simple,
548 * there is not much that is programmably configurable.
550 #define BBY_IOSIZE 16
551 #define BBY_MEMSIZE (64 * 1024)
552 #define BBY_PAGESIZE (16 * 1024)
555 #define BBY_ATCONFR 1
556 #define BBY_ATSTOP 0x4
559 * Important defines for the Stallion boards. They are pretty simple,
560 * there is not much that is programmably configurable.
562 #define STAL_IOSIZE 16
563 #define STAL_MEMSIZE (64 * 1024)
564 #define STAL_PAGESIZE (64 * 1024)
567 * Define the set of status register values for EasyConnection panels.
568 * The signature will return with the status value for each panel. From
569 * this we can determine what is attached to the board - before we have
570 * actually down loaded any code to it.
572 #define ECH_PNLSTATUS 2
573 #define ECH_PNL16PORT 0x20
574 #define ECH_PNLIDMASK 0x07
575 #define ECH_PNLXPID 0x40
576 #define ECH_PNLINTRPEND 0x80
579 * Define some macros to do things to the board. Even those these boards
580 * are somewhat related there is often significantly different ways of
581 * doing some operation on it (like enable, paging, reset, etc). So each
582 * board class has a set of functions which do the commonly required
583 * operations. The macros below basically just call these functions,
584 * generally checking for a NULL function - which means that the board
585 * needs nothing done to it to achieve this operation!
587 #define EBRDINIT(brdp) \
588 if (brdp->init != NULL) \
591 #define EBRDENABLE(brdp) \
592 if (brdp->enable != NULL) \
593 (* brdp->enable)(brdp);
595 #define EBRDDISABLE(brdp) \
596 if (brdp->disable != NULL) \
597 (* brdp->disable)(brdp);
599 #define EBRDINTR(brdp) \
600 if (brdp->intr != NULL) \
601 (* brdp->intr)(brdp);
603 #define EBRDRESET(brdp) \
604 if (brdp->reset != NULL) \
605 (* brdp->reset)(brdp);
607 #define EBRDGETMEMPTR(brdp,offset) \
608 (* brdp->getmemptr)(brdp, offset, __LINE__)
611 * Define the maximal baud rate, and the default baud base for ports.
613 #define STL_MAXBAUD 460800
614 #define STL_BAUDBASE 115200
615 #define STL_CLOSEDELAY (5 * HZ / 10)
617 /*****************************************************************************/
620 * Define macros to extract a brd or port number from a minor number.
622 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
623 #define MINOR2PORT(min) ((min) & 0x3f)
626 * Define a baud rate table that converts termios baud rate selector
627 * into the actual baud rate value. All baud rate calculations are based
628 * on the actual baud rate required.
630 static unsigned int stli_baudrates
[] = {
631 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
632 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
635 /*****************************************************************************/
638 * Define some handy local macros...
641 #define MIN(a,b) (((a) <= (b)) ? (a) : (b))
644 #define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
646 /*****************************************************************************/
649 * Prototype all functions in this driver!
653 static void stli_argbrds(void);
654 static int stli_parsebrd(stlconf_t
*confp
, char **argp
);
656 static unsigned long stli_atol(char *str
);
660 static int stli_open(struct tty_struct
*tty
, struct file
*filp
);
661 static void stli_close(struct tty_struct
*tty
, struct file
*filp
);
662 static int stli_write(struct tty_struct
*tty
, const unsigned char *buf
, int count
);
663 static void stli_putchar(struct tty_struct
*tty
, unsigned char ch
);
664 static void stli_flushchars(struct tty_struct
*tty
);
665 static int stli_writeroom(struct tty_struct
*tty
);
666 static int stli_charsinbuffer(struct tty_struct
*tty
);
667 static int stli_ioctl(struct tty_struct
*tty
, struct file
*file
, unsigned int cmd
, unsigned long arg
);
668 static void stli_settermios(struct tty_struct
*tty
, struct termios
*old
);
669 static void stli_throttle(struct tty_struct
*tty
);
670 static void stli_unthrottle(struct tty_struct
*tty
);
671 static void stli_stop(struct tty_struct
*tty
);
672 static void stli_start(struct tty_struct
*tty
);
673 static void stli_flushbuffer(struct tty_struct
*tty
);
674 static void stli_breakctl(struct tty_struct
*tty
, int state
);
675 static void stli_waituntilsent(struct tty_struct
*tty
, int timeout
);
676 static void stli_sendxchar(struct tty_struct
*tty
, char ch
);
677 static void stli_hangup(struct tty_struct
*tty
);
678 static int stli_portinfo(stlibrd_t
*brdp
, stliport_t
*portp
, int portnr
, char *pos
);
680 static int stli_brdinit(stlibrd_t
*brdp
);
681 static int stli_startbrd(stlibrd_t
*brdp
);
682 static ssize_t
stli_memread(struct file
*fp
, char __user
*buf
, size_t count
, loff_t
*offp
);
683 static ssize_t
stli_memwrite(struct file
*fp
, const char __user
*buf
, size_t count
, loff_t
*offp
);
684 static int stli_memioctl(struct inode
*ip
, struct file
*fp
, unsigned int cmd
, unsigned long arg
);
685 static void stli_brdpoll(stlibrd_t
*brdp
, volatile cdkhdr_t
*hdrp
);
686 static void stli_poll(unsigned long arg
);
687 static int stli_hostcmd(stlibrd_t
*brdp
, stliport_t
*portp
);
688 static int stli_initopen(stlibrd_t
*brdp
, stliport_t
*portp
);
689 static int stli_rawopen(stlibrd_t
*brdp
, stliport_t
*portp
, unsigned long arg
, int wait
);
690 static int stli_rawclose(stlibrd_t
*brdp
, stliport_t
*portp
, unsigned long arg
, int wait
);
691 static int stli_waitcarrier(stlibrd_t
*brdp
, stliport_t
*portp
, struct file
*filp
);
692 static void stli_dohangup(void *arg
);
693 static int stli_setport(stliport_t
*portp
);
694 static int stli_cmdwait(stlibrd_t
*brdp
, stliport_t
*portp
, unsigned long cmd
, void *arg
, int size
, int copyback
);
695 static void stli_sendcmd(stlibrd_t
*brdp
, stliport_t
*portp
, unsigned long cmd
, void *arg
, int size
, int copyback
);
696 static void stli_dodelaycmd(stliport_t
*portp
, volatile cdkctrl_t
*cp
);
697 static void stli_mkasyport(stliport_t
*portp
, asyport_t
*pp
, struct termios
*tiosp
);
698 static void stli_mkasysigs(asysigs_t
*sp
, int dtr
, int rts
);
699 static long stli_mktiocm(unsigned long sigvalue
);
700 static void stli_read(stlibrd_t
*brdp
, stliport_t
*portp
);
701 static int stli_getserial(stliport_t
*portp
, struct serial_struct __user
*sp
);
702 static int stli_setserial(stliport_t
*portp
, struct serial_struct __user
*sp
);
703 static int stli_getbrdstats(combrd_t __user
*bp
);
704 static int stli_getportstats(stliport_t
*portp
, comstats_t __user
*cp
);
705 static int stli_portcmdstats(stliport_t
*portp
);
706 static int stli_clrportstats(stliport_t
*portp
, comstats_t __user
*cp
);
707 static int stli_getportstruct(stliport_t __user
*arg
);
708 static int stli_getbrdstruct(stlibrd_t __user
*arg
);
709 static stlibrd_t
*stli_allocbrd(void);
711 static void stli_ecpinit(stlibrd_t
*brdp
);
712 static void stli_ecpenable(stlibrd_t
*brdp
);
713 static void stli_ecpdisable(stlibrd_t
*brdp
);
714 static char *stli_ecpgetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
);
715 static void stli_ecpreset(stlibrd_t
*brdp
);
716 static void stli_ecpintr(stlibrd_t
*brdp
);
717 static void stli_ecpeiinit(stlibrd_t
*brdp
);
718 static void stli_ecpeienable(stlibrd_t
*brdp
);
719 static void stli_ecpeidisable(stlibrd_t
*brdp
);
720 static char *stli_ecpeigetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
);
721 static void stli_ecpeireset(stlibrd_t
*brdp
);
722 static void stli_ecpmcenable(stlibrd_t
*brdp
);
723 static void stli_ecpmcdisable(stlibrd_t
*brdp
);
724 static char *stli_ecpmcgetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
);
725 static void stli_ecpmcreset(stlibrd_t
*brdp
);
726 static void stli_ecppciinit(stlibrd_t
*brdp
);
727 static char *stli_ecppcigetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
);
728 static void stli_ecppcireset(stlibrd_t
*brdp
);
730 static void stli_onbinit(stlibrd_t
*brdp
);
731 static void stli_onbenable(stlibrd_t
*brdp
);
732 static void stli_onbdisable(stlibrd_t
*brdp
);
733 static char *stli_onbgetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
);
734 static void stli_onbreset(stlibrd_t
*brdp
);
735 static void stli_onbeinit(stlibrd_t
*brdp
);
736 static void stli_onbeenable(stlibrd_t
*brdp
);
737 static void stli_onbedisable(stlibrd_t
*brdp
);
738 static char *stli_onbegetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
);
739 static void stli_onbereset(stlibrd_t
*brdp
);
740 static void stli_bbyinit(stlibrd_t
*brdp
);
741 static char *stli_bbygetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
);
742 static void stli_bbyreset(stlibrd_t
*brdp
);
743 static void stli_stalinit(stlibrd_t
*brdp
);
744 static char *stli_stalgetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
);
745 static void stli_stalreset(stlibrd_t
*brdp
);
747 static stliport_t
*stli_getport(int brdnr
, int panelnr
, int portnr
);
749 static int stli_initecp(stlibrd_t
*brdp
);
750 static int stli_initonb(stlibrd_t
*brdp
);
751 static int stli_eisamemprobe(stlibrd_t
*brdp
);
752 static int stli_initports(stlibrd_t
*brdp
);
755 static int stli_initpcibrd(int brdtype
, struct pci_dev
*devp
);
758 /*****************************************************************************/
761 * Define the driver info for a user level shared memory device. This
762 * device will work sort of like the /dev/kmem device - except that it
763 * will give access to the shared memory on the Stallion intelligent
764 * board. This is also a very useful debugging tool.
766 static struct file_operations stli_fsiomem
= {
767 .owner
= THIS_MODULE
,
768 .read
= stli_memread
,
769 .write
= stli_memwrite
,
770 .ioctl
= stli_memioctl
,
773 /*****************************************************************************/
776 * Define a timer_list entry for our poll routine. The slave board
777 * is polled every so often to see if anything needs doing. This is
778 * much cheaper on host cpu than using interrupts. It turns out to
779 * not increase character latency by much either...
781 static DEFINE_TIMER(stli_timerlist
, stli_poll
, 0, 0);
783 static int stli_timeron
;
786 * Define the calculation for the timeout routine.
788 #define STLI_TIMEOUT (jiffies + 1)
790 /*****************************************************************************/
792 static struct class *istallion_class
;
797 * Loadable module initialization stuff.
800 static int __init
istallion_module_init(void)
805 printk("init_module()\n");
811 restore_flags(flags
);
816 /*****************************************************************************/
818 static void __exit
istallion_module_exit(void)
826 printk("cleanup_module()\n");
829 printk(KERN_INFO
"Unloading %s: version %s\n", stli_drvtitle
,
836 * Free up all allocated resources used by the ports. This includes
837 * memory and interrupts.
841 del_timer(&stli_timerlist
);
844 i
= tty_unregister_driver(stli_serial
);
846 printk("STALLION: failed to un-register tty driver, "
848 restore_flags(flags
);
851 put_tty_driver(stli_serial
);
852 for (i
= 0; i
< 4; i
++) {
853 devfs_remove("staliomem/%d", i
);
854 class_device_destroy(istallion_class
, MKDEV(STL_SIOMEMMAJOR
, i
));
856 devfs_remove("staliomem");
857 class_destroy(istallion_class
);
858 if ((i
= unregister_chrdev(STL_SIOMEMMAJOR
, "staliomem")))
859 printk("STALLION: failed to un-register serial memory device, "
862 kfree(stli_tmpwritebuf
);
863 kfree(stli_txcookbuf
);
865 for (i
= 0; (i
< stli_nrbrds
); i
++) {
866 if ((brdp
= stli_brds
[i
]) == (stlibrd_t
*) NULL
)
868 for (j
= 0; (j
< STL_MAXPORTS
); j
++) {
869 portp
= brdp
->ports
[j
];
870 if (portp
!= (stliport_t
*) NULL
) {
871 if (portp
->tty
!= (struct tty_struct
*) NULL
)
872 tty_hangup(portp
->tty
);
877 iounmap(brdp
->membase
);
878 if (brdp
->iosize
> 0)
879 release_region(brdp
->iobase
, brdp
->iosize
);
881 stli_brds
[i
] = (stlibrd_t
*) NULL
;
884 restore_flags(flags
);
887 module_init(istallion_module_init
);
888 module_exit(istallion_module_exit
);
890 /*****************************************************************************/
893 * Check for any arguments passed in on the module load command line.
896 static void stli_argbrds(void)
903 printk("stli_argbrds()\n");
906 for (i
= stli_nrbrds
; i
< ARRAY_SIZE(stli_brdsp
); i
++) {
907 memset(&conf
, 0, sizeof(conf
));
908 if (stli_parsebrd(&conf
, stli_brdsp
[i
]) == 0)
910 if ((brdp
= stli_allocbrd()) == (stlibrd_t
*) NULL
)
914 brdp
->brdtype
= conf
.brdtype
;
915 brdp
->iobase
= conf
.ioaddr1
;
916 brdp
->memaddr
= conf
.memaddr
;
921 /*****************************************************************************/
924 * Convert an ascii string number into an unsigned long.
927 static unsigned long stli_atol(char *str
)
935 if ((*sp
== '0') && (*(sp
+1) == 'x')) {
938 } else if (*sp
== '0') {
945 for (; (*sp
!= 0); sp
++) {
946 c
= (*sp
> '9') ? (TOLOWER(*sp
) - 'a' + 10) : (*sp
- '0');
947 if ((c
< 0) || (c
>= base
)) {
948 printk("STALLION: invalid argument %s\n", str
);
952 val
= (val
* base
) + c
;
957 /*****************************************************************************/
960 * Parse the supplied argument string, into the board conf struct.
963 static int stli_parsebrd(stlconf_t
*confp
, char **argp
)
969 printk("stli_parsebrd(confp=%x,argp=%x)\n", (int) confp
, (int) argp
);
972 if ((argp
[0] == (char *) NULL
) || (*argp
[0] == 0))
975 for (sp
= argp
[0], i
= 0; ((*sp
!= 0) && (i
< 25)); sp
++, i
++)
978 for (i
= 0; i
< ARRAY_SIZE(stli_brdstr
); i
++) {
979 if (strcmp(stli_brdstr
[i
].name
, argp
[0]) == 0)
982 if (i
== ARRAY_SIZE(stli_brdstr
)) {
983 printk("STALLION: unknown board name, %s?\n", argp
[0]);
987 confp
->brdtype
= stli_brdstr
[i
].type
;
988 if ((argp
[1] != (char *) NULL
) && (*argp
[1] != 0))
989 confp
->ioaddr1
= stli_atol(argp
[1]);
990 if ((argp
[2] != (char *) NULL
) && (*argp
[2] != 0))
991 confp
->memaddr
= stli_atol(argp
[2]);
997 /*****************************************************************************/
999 static int stli_open(struct tty_struct
*tty
, struct file
*filp
)
1003 unsigned int minordev
;
1004 int brdnr
, portnr
, rc
;
1007 printk("stli_open(tty=%x,filp=%x): device=%s\n", (int) tty
,
1008 (int) filp
, tty
->name
);
1011 minordev
= tty
->index
;
1012 brdnr
= MINOR2BRD(minordev
);
1013 if (brdnr
>= stli_nrbrds
)
1015 brdp
= stli_brds
[brdnr
];
1016 if (brdp
== (stlibrd_t
*) NULL
)
1018 if ((brdp
->state
& BST_STARTED
) == 0)
1020 portnr
= MINOR2PORT(minordev
);
1021 if ((portnr
< 0) || (portnr
> brdp
->nrports
))
1024 portp
= brdp
->ports
[portnr
];
1025 if (portp
== (stliport_t
*) NULL
)
1027 if (portp
->devnr
< 1)
1032 * Check if this port is in the middle of closing. If so then wait
1033 * until it is closed then return error status based on flag settings.
1034 * The sleep here does not need interrupt protection since the wakeup
1035 * for it is done with the same context.
1037 if (portp
->flags
& ASYNC_CLOSING
) {
1038 interruptible_sleep_on(&portp
->close_wait
);
1039 if (portp
->flags
& ASYNC_HUP_NOTIFY
)
1041 return(-ERESTARTSYS
);
1045 * On the first open of the device setup the port hardware, and
1046 * initialize the per port data structure. Since initializing the port
1047 * requires several commands to the board we will need to wait for any
1048 * other open that is already initializing the port.
1051 tty
->driver_data
= portp
;
1054 wait_event_interruptible(portp
->raw_wait
,
1055 !test_bit(ST_INITIALIZING
, &portp
->state
));
1056 if (signal_pending(current
))
1057 return(-ERESTARTSYS
);
1059 if ((portp
->flags
& ASYNC_INITIALIZED
) == 0) {
1060 set_bit(ST_INITIALIZING
, &portp
->state
);
1061 if ((rc
= stli_initopen(brdp
, portp
)) >= 0) {
1062 portp
->flags
|= ASYNC_INITIALIZED
;
1063 clear_bit(TTY_IO_ERROR
, &tty
->flags
);
1065 clear_bit(ST_INITIALIZING
, &portp
->state
);
1066 wake_up_interruptible(&portp
->raw_wait
);
1072 * Check if this port is in the middle of closing. If so then wait
1073 * until it is closed then return error status, based on flag settings.
1074 * The sleep here does not need interrupt protection since the wakeup
1075 * for it is done with the same context.
1077 if (portp
->flags
& ASYNC_CLOSING
) {
1078 interruptible_sleep_on(&portp
->close_wait
);
1079 if (portp
->flags
& ASYNC_HUP_NOTIFY
)
1081 return(-ERESTARTSYS
);
1085 * Based on type of open being done check if it can overlap with any
1086 * previous opens still in effect. If we are a normal serial device
1087 * then also we might have to wait for carrier.
1089 if (!(filp
->f_flags
& O_NONBLOCK
)) {
1090 if ((rc
= stli_waitcarrier(brdp
, portp
, filp
)) != 0)
1093 portp
->flags
|= ASYNC_NORMAL_ACTIVE
;
1097 /*****************************************************************************/
1099 static void stli_close(struct tty_struct
*tty
, struct file
*filp
)
1103 unsigned long flags
;
1106 printk("stli_close(tty=%x,filp=%x)\n", (int) tty
, (int) filp
);
1109 portp
= tty
->driver_data
;
1110 if (portp
== (stliport_t
*) NULL
)
1115 if (tty_hung_up_p(filp
)) {
1116 restore_flags(flags
);
1119 if ((tty
->count
== 1) && (portp
->refcount
!= 1))
1120 portp
->refcount
= 1;
1121 if (portp
->refcount
-- > 1) {
1122 restore_flags(flags
);
1126 portp
->flags
|= ASYNC_CLOSING
;
1129 * May want to wait for data to drain before closing. The BUSY flag
1130 * keeps track of whether we are still transmitting or not. It is
1131 * updated by messages from the slave - indicating when all chars
1132 * really have drained.
1134 if (tty
== stli_txcooktty
)
1135 stli_flushchars(tty
);
1137 if (portp
->closing_wait
!= ASYNC_CLOSING_WAIT_NONE
)
1138 tty_wait_until_sent(tty
, portp
->closing_wait
);
1140 portp
->flags
&= ~ASYNC_INITIALIZED
;
1141 brdp
= stli_brds
[portp
->brdnr
];
1142 stli_rawclose(brdp
, portp
, 0, 0);
1143 if (tty
->termios
->c_cflag
& HUPCL
) {
1144 stli_mkasysigs(&portp
->asig
, 0, 0);
1145 if (test_bit(ST_CMDING
, &portp
->state
))
1146 set_bit(ST_DOSIGS
, &portp
->state
);
1148 stli_sendcmd(brdp
, portp
, A_SETSIGNALS
, &portp
->asig
,
1149 sizeof(asysigs_t
), 0);
1151 clear_bit(ST_TXBUSY
, &portp
->state
);
1152 clear_bit(ST_RXSTOP
, &portp
->state
);
1153 set_bit(TTY_IO_ERROR
, &tty
->flags
);
1154 if (tty
->ldisc
.flush_buffer
)
1155 (tty
->ldisc
.flush_buffer
)(tty
);
1156 set_bit(ST_DOFLUSHRX
, &portp
->state
);
1157 stli_flushbuffer(tty
);
1160 portp
->tty
= (struct tty_struct
*) NULL
;
1162 if (portp
->openwaitcnt
) {
1163 if (portp
->close_delay
)
1164 msleep_interruptible(jiffies_to_msecs(portp
->close_delay
));
1165 wake_up_interruptible(&portp
->open_wait
);
1168 portp
->flags
&= ~(ASYNC_NORMAL_ACTIVE
|ASYNC_CLOSING
);
1169 wake_up_interruptible(&portp
->close_wait
);
1170 restore_flags(flags
);
1173 /*****************************************************************************/
1176 * Carry out first open operations on a port. This involves a number of
1177 * commands to be sent to the slave. We need to open the port, set the
1178 * notification events, set the initial port settings, get and set the
1179 * initial signal values. We sleep and wait in between each one. But
1180 * this still all happens pretty quickly.
1183 static int stli_initopen(stlibrd_t
*brdp
, stliport_t
*portp
)
1185 struct tty_struct
*tty
;
1191 printk("stli_initopen(brdp=%x,portp=%x)\n", (int) brdp
, (int) portp
);
1194 if ((rc
= stli_rawopen(brdp
, portp
, 0, 1)) < 0)
1197 memset(&nt
, 0, sizeof(asynotify_t
));
1198 nt
.data
= (DT_TXLOW
| DT_TXEMPTY
| DT_RXBUSY
| DT_RXBREAK
);
1200 if ((rc
= stli_cmdwait(brdp
, portp
, A_SETNOTIFY
, &nt
,
1201 sizeof(asynotify_t
), 0)) < 0)
1205 if (tty
== (struct tty_struct
*) NULL
)
1207 stli_mkasyport(portp
, &aport
, tty
->termios
);
1208 if ((rc
= stli_cmdwait(brdp
, portp
, A_SETPORT
, &aport
,
1209 sizeof(asyport_t
), 0)) < 0)
1212 set_bit(ST_GETSIGS
, &portp
->state
);
1213 if ((rc
= stli_cmdwait(brdp
, portp
, A_GETSIGNALS
, &portp
->asig
,
1214 sizeof(asysigs_t
), 1)) < 0)
1216 if (test_and_clear_bit(ST_GETSIGS
, &portp
->state
))
1217 portp
->sigs
= stli_mktiocm(portp
->asig
.sigvalue
);
1218 stli_mkasysigs(&portp
->asig
, 1, 1);
1219 if ((rc
= stli_cmdwait(brdp
, portp
, A_SETSIGNALS
, &portp
->asig
,
1220 sizeof(asysigs_t
), 0)) < 0)
1226 /*****************************************************************************/
1229 * Send an open message to the slave. This will sleep waiting for the
1230 * acknowledgement, so must have user context. We need to co-ordinate
1231 * with close events here, since we don't want open and close events
1235 static int stli_rawopen(stlibrd_t
*brdp
, stliport_t
*portp
, unsigned long arg
, int wait
)
1237 volatile cdkhdr_t
*hdrp
;
1238 volatile cdkctrl_t
*cp
;
1239 volatile unsigned char *bits
;
1240 unsigned long flags
;
1244 printk("stli_rawopen(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1245 (int) brdp
, (int) portp
, (int) arg
, wait
);
1249 * Send a message to the slave to open this port.
1255 * Slave is already closing this port. This can happen if a hangup
1256 * occurs on this port. So we must wait until it is complete. The
1257 * order of opens and closes may not be preserved across shared
1258 * memory, so we must wait until it is complete.
1260 wait_event_interruptible(portp
->raw_wait
,
1261 !test_bit(ST_CLOSING
, &portp
->state
));
1262 if (signal_pending(current
)) {
1263 restore_flags(flags
);
1264 return -ERESTARTSYS
;
1268 * Everything is ready now, so write the open message into shared
1269 * memory. Once the message is in set the service bits to say that
1270 * this port wants service.
1273 cp
= &((volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->ctrl
;
1276 hdrp
= (volatile cdkhdr_t
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
1277 bits
= ((volatile unsigned char *) hdrp
) + brdp
->slaveoffset
+
1279 *bits
|= portp
->portbit
;
1283 restore_flags(flags
);
1288 * Slave is in action, so now we must wait for the open acknowledgment
1292 set_bit(ST_OPENING
, &portp
->state
);
1293 wait_event_interruptible(portp
->raw_wait
,
1294 !test_bit(ST_OPENING
, &portp
->state
));
1295 if (signal_pending(current
))
1297 restore_flags(flags
);
1299 if ((rc
== 0) && (portp
->rc
!= 0))
1304 /*****************************************************************************/
1307 * Send a close message to the slave. Normally this will sleep waiting
1308 * for the acknowledgement, but if wait parameter is 0 it will not. If
1309 * wait is true then must have user context (to sleep).
1312 static int stli_rawclose(stlibrd_t
*brdp
, stliport_t
*portp
, unsigned long arg
, int wait
)
1314 volatile cdkhdr_t
*hdrp
;
1315 volatile cdkctrl_t
*cp
;
1316 volatile unsigned char *bits
;
1317 unsigned long flags
;
1321 printk("stli_rawclose(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1322 (int) brdp
, (int) portp
, (int) arg
, wait
);
1329 * Slave is already closing this port. This can happen if a hangup
1330 * occurs on this port.
1333 wait_event_interruptible(portp
->raw_wait
,
1334 !test_bit(ST_CLOSING
, &portp
->state
));
1335 if (signal_pending(current
)) {
1336 restore_flags(flags
);
1337 return -ERESTARTSYS
;
1342 * Write the close command into shared memory.
1345 cp
= &((volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->ctrl
;
1348 hdrp
= (volatile cdkhdr_t
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
1349 bits
= ((volatile unsigned char *) hdrp
) + brdp
->slaveoffset
+
1351 *bits
|= portp
->portbit
;
1354 set_bit(ST_CLOSING
, &portp
->state
);
1356 restore_flags(flags
);
1361 * Slave is in action, so now we must wait for the open acknowledgment
1365 wait_event_interruptible(portp
->raw_wait
,
1366 !test_bit(ST_CLOSING
, &portp
->state
));
1367 if (signal_pending(current
))
1369 restore_flags(flags
);
1371 if ((rc
== 0) && (portp
->rc
!= 0))
1376 /*****************************************************************************/
1379 * Send a command to the slave and wait for the response. This must
1380 * have user context (it sleeps). This routine is generic in that it
1381 * can send any type of command. Its purpose is to wait for that command
1382 * to complete (as opposed to initiating the command then returning).
1385 static int stli_cmdwait(stlibrd_t
*brdp
, stliport_t
*portp
, unsigned long cmd
, void *arg
, int size
, int copyback
)
1387 unsigned long flags
;
1390 printk("stli_cmdwait(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
1391 "copyback=%d)\n", (int) brdp
, (int) portp
, (int) cmd
,
1392 (int) arg
, size
, copyback
);
1397 wait_event_interruptible(portp
->raw_wait
,
1398 !test_bit(ST_CMDING
, &portp
->state
));
1399 if (signal_pending(current
)) {
1400 restore_flags(flags
);
1401 return -ERESTARTSYS
;
1404 stli_sendcmd(brdp
, portp
, cmd
, arg
, size
, copyback
);
1406 wait_event_interruptible(portp
->raw_wait
,
1407 !test_bit(ST_CMDING
, &portp
->state
));
1408 if (signal_pending(current
)) {
1409 restore_flags(flags
);
1410 return -ERESTARTSYS
;
1412 restore_flags(flags
);
1419 /*****************************************************************************/
1422 * Send the termios settings for this port to the slave. This sleeps
1423 * waiting for the command to complete - so must have user context.
1426 static int stli_setport(stliport_t
*portp
)
1432 printk("stli_setport(portp=%x)\n", (int) portp
);
1435 if (portp
== (stliport_t
*) NULL
)
1437 if (portp
->tty
== (struct tty_struct
*) NULL
)
1439 if ((portp
->brdnr
< 0) && (portp
->brdnr
>= stli_nrbrds
))
1441 brdp
= stli_brds
[portp
->brdnr
];
1442 if (brdp
== (stlibrd_t
*) NULL
)
1445 stli_mkasyport(portp
, &aport
, portp
->tty
->termios
);
1446 return(stli_cmdwait(brdp
, portp
, A_SETPORT
, &aport
, sizeof(asyport_t
), 0));
1449 /*****************************************************************************/
1452 * Possibly need to wait for carrier (DCD signal) to come high. Say
1453 * maybe because if we are clocal then we don't need to wait...
1456 static int stli_waitcarrier(stlibrd_t
*brdp
, stliport_t
*portp
, struct file
*filp
)
1458 unsigned long flags
;
1462 printk("stli_waitcarrier(brdp=%x,portp=%x,filp=%x)\n",
1463 (int) brdp
, (int) portp
, (int) filp
);
1469 if (portp
->tty
->termios
->c_cflag
& CLOCAL
)
1474 portp
->openwaitcnt
++;
1475 if (! tty_hung_up_p(filp
))
1479 stli_mkasysigs(&portp
->asig
, 1, 1);
1480 if ((rc
= stli_cmdwait(brdp
, portp
, A_SETSIGNALS
,
1481 &portp
->asig
, sizeof(asysigs_t
), 0)) < 0)
1483 if (tty_hung_up_p(filp
) ||
1484 ((portp
->flags
& ASYNC_INITIALIZED
) == 0)) {
1485 if (portp
->flags
& ASYNC_HUP_NOTIFY
)
1491 if (((portp
->flags
& ASYNC_CLOSING
) == 0) &&
1492 (doclocal
|| (portp
->sigs
& TIOCM_CD
))) {
1495 if (signal_pending(current
)) {
1499 interruptible_sleep_on(&portp
->open_wait
);
1502 if (! tty_hung_up_p(filp
))
1504 portp
->openwaitcnt
--;
1505 restore_flags(flags
);
1510 /*****************************************************************************/
1513 * Write routine. Take the data and put it in the shared memory ring
1514 * queue. If port is not already sending chars then need to mark the
1515 * service bits for this port.
1518 static int stli_write(struct tty_struct
*tty
, const unsigned char *buf
, int count
)
1520 volatile cdkasy_t
*ap
;
1521 volatile cdkhdr_t
*hdrp
;
1522 volatile unsigned char *bits
;
1523 unsigned char *shbuf
, *chbuf
;
1526 unsigned int len
, stlen
, head
, tail
, size
;
1527 unsigned long flags
;
1530 printk("stli_write(tty=%x,buf=%x,count=%d)\n",
1531 (int) tty
, (int) buf
, count
);
1534 if ((tty
== (struct tty_struct
*) NULL
) ||
1535 (stli_tmpwritebuf
== (char *) NULL
))
1537 if (tty
== stli_txcooktty
)
1538 stli_flushchars(tty
);
1539 portp
= tty
->driver_data
;
1540 if (portp
== (stliport_t
*) NULL
)
1542 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
1544 brdp
= stli_brds
[portp
->brdnr
];
1545 if (brdp
== (stlibrd_t
*) NULL
)
1547 chbuf
= (unsigned char *) buf
;
1550 * All data is now local, shove as much as possible into shared memory.
1555 ap
= (volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
);
1556 head
= (unsigned int) ap
->txq
.head
;
1557 tail
= (unsigned int) ap
->txq
.tail
;
1558 if (tail
!= ((unsigned int) ap
->txq
.tail
))
1559 tail
= (unsigned int) ap
->txq
.tail
;
1560 size
= portp
->txsize
;
1562 len
= size
- (head
- tail
) - 1;
1563 stlen
= size
- head
;
1565 len
= tail
- head
- 1;
1569 len
= MIN(len
, count
);
1571 shbuf
= (char *) EBRDGETMEMPTR(brdp
, portp
->txoffset
);
1574 stlen
= MIN(len
, stlen
);
1575 memcpy((shbuf
+ head
), chbuf
, stlen
);
1586 ap
= (volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
);
1587 ap
->txq
.head
= head
;
1588 if (test_bit(ST_TXBUSY
, &portp
->state
)) {
1589 if (ap
->changed
.data
& DT_TXEMPTY
)
1590 ap
->changed
.data
&= ~DT_TXEMPTY
;
1592 hdrp
= (volatile cdkhdr_t
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
1593 bits
= ((volatile unsigned char *) hdrp
) + brdp
->slaveoffset
+
1595 *bits
|= portp
->portbit
;
1596 set_bit(ST_TXBUSY
, &portp
->state
);
1599 restore_flags(flags
);
1604 /*****************************************************************************/
1607 * Output a single character. We put it into a temporary local buffer
1608 * (for speed) then write out that buffer when the flushchars routine
1609 * is called. There is a safety catch here so that if some other port
1610 * writes chars before the current buffer has been, then we write them
1611 * first them do the new ports.
1614 static void stli_putchar(struct tty_struct
*tty
, unsigned char ch
)
1617 printk("stli_putchar(tty=%x,ch=%x)\n", (int) tty
, (int) ch
);
1620 if (tty
== (struct tty_struct
*) NULL
)
1622 if (tty
!= stli_txcooktty
) {
1623 if (stli_txcooktty
!= (struct tty_struct
*) NULL
)
1624 stli_flushchars(stli_txcooktty
);
1625 stli_txcooktty
= tty
;
1628 stli_txcookbuf
[stli_txcooksize
++] = ch
;
1631 /*****************************************************************************/
1634 * Transfer characters from the local TX cooking buffer to the board.
1635 * We sort of ignore the tty that gets passed in here. We rely on the
1636 * info stored with the TX cook buffer to tell us which port to flush
1637 * the data on. In any case we clean out the TX cook buffer, for re-use
1641 static void stli_flushchars(struct tty_struct
*tty
)
1643 volatile cdkhdr_t
*hdrp
;
1644 volatile unsigned char *bits
;
1645 volatile cdkasy_t
*ap
;
1646 struct tty_struct
*cooktty
;
1649 unsigned int len
, stlen
, head
, tail
, size
, count
, cooksize
;
1650 unsigned char *buf
, *shbuf
;
1651 unsigned long flags
;
1654 printk("stli_flushchars(tty=%x)\n", (int) tty
);
1657 cooksize
= stli_txcooksize
;
1658 cooktty
= stli_txcooktty
;
1659 stli_txcooksize
= 0;
1660 stli_txcookrealsize
= 0;
1661 stli_txcooktty
= (struct tty_struct
*) NULL
;
1663 if (tty
== (struct tty_struct
*) NULL
)
1665 if (cooktty
== (struct tty_struct
*) NULL
)
1672 portp
= tty
->driver_data
;
1673 if (portp
== (stliport_t
*) NULL
)
1675 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
1677 brdp
= stli_brds
[portp
->brdnr
];
1678 if (brdp
== (stlibrd_t
*) NULL
)
1685 ap
= (volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
);
1686 head
= (unsigned int) ap
->txq
.head
;
1687 tail
= (unsigned int) ap
->txq
.tail
;
1688 if (tail
!= ((unsigned int) ap
->txq
.tail
))
1689 tail
= (unsigned int) ap
->txq
.tail
;
1690 size
= portp
->txsize
;
1692 len
= size
- (head
- tail
) - 1;
1693 stlen
= size
- head
;
1695 len
= tail
- head
- 1;
1699 len
= MIN(len
, cooksize
);
1701 shbuf
= (char *) EBRDGETMEMPTR(brdp
, portp
->txoffset
);
1702 buf
= stli_txcookbuf
;
1705 stlen
= MIN(len
, stlen
);
1706 memcpy((shbuf
+ head
), buf
, stlen
);
1717 ap
= (volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
);
1718 ap
->txq
.head
= head
;
1720 if (test_bit(ST_TXBUSY
, &portp
->state
)) {
1721 if (ap
->changed
.data
& DT_TXEMPTY
)
1722 ap
->changed
.data
&= ~DT_TXEMPTY
;
1724 hdrp
= (volatile cdkhdr_t
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
1725 bits
= ((volatile unsigned char *) hdrp
) + brdp
->slaveoffset
+
1727 *bits
|= portp
->portbit
;
1728 set_bit(ST_TXBUSY
, &portp
->state
);
1731 restore_flags(flags
);
1734 /*****************************************************************************/
1736 static int stli_writeroom(struct tty_struct
*tty
)
1738 volatile cdkasyrq_t
*rp
;
1741 unsigned int head
, tail
, len
;
1742 unsigned long flags
;
1745 printk("stli_writeroom(tty=%x)\n", (int) tty
);
1748 if (tty
== (struct tty_struct
*) NULL
)
1750 if (tty
== stli_txcooktty
) {
1751 if (stli_txcookrealsize
!= 0) {
1752 len
= stli_txcookrealsize
- stli_txcooksize
;
1757 portp
= tty
->driver_data
;
1758 if (portp
== (stliport_t
*) NULL
)
1760 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
1762 brdp
= stli_brds
[portp
->brdnr
];
1763 if (brdp
== (stlibrd_t
*) NULL
)
1769 rp
= &((volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->txq
;
1770 head
= (unsigned int) rp
->head
;
1771 tail
= (unsigned int) rp
->tail
;
1772 if (tail
!= ((unsigned int) rp
->tail
))
1773 tail
= (unsigned int) rp
->tail
;
1774 len
= (head
>= tail
) ? (portp
->txsize
- (head
- tail
)) : (tail
- head
);
1777 restore_flags(flags
);
1779 if (tty
== stli_txcooktty
) {
1780 stli_txcookrealsize
= len
;
1781 len
-= stli_txcooksize
;
1786 /*****************************************************************************/
1789 * Return the number of characters in the transmit buffer. Normally we
1790 * will return the number of chars in the shared memory ring queue.
1791 * We need to kludge around the case where the shared memory buffer is
1792 * empty but not all characters have drained yet, for this case just
1793 * return that there is 1 character in the buffer!
1796 static int stli_charsinbuffer(struct tty_struct
*tty
)
1798 volatile cdkasyrq_t
*rp
;
1801 unsigned int head
, tail
, len
;
1802 unsigned long flags
;
1805 printk("stli_charsinbuffer(tty=%x)\n", (int) tty
);
1808 if (tty
== (struct tty_struct
*) NULL
)
1810 if (tty
== stli_txcooktty
)
1811 stli_flushchars(tty
);
1812 portp
= tty
->driver_data
;
1813 if (portp
== (stliport_t
*) NULL
)
1815 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
1817 brdp
= stli_brds
[portp
->brdnr
];
1818 if (brdp
== (stlibrd_t
*) NULL
)
1824 rp
= &((volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->txq
;
1825 head
= (unsigned int) rp
->head
;
1826 tail
= (unsigned int) rp
->tail
;
1827 if (tail
!= ((unsigned int) rp
->tail
))
1828 tail
= (unsigned int) rp
->tail
;
1829 len
= (head
>= tail
) ? (head
- tail
) : (portp
->txsize
- (tail
- head
));
1830 if ((len
== 0) && test_bit(ST_TXBUSY
, &portp
->state
))
1833 restore_flags(flags
);
1838 /*****************************************************************************/
1841 * Generate the serial struct info.
1844 static int stli_getserial(stliport_t
*portp
, struct serial_struct __user
*sp
)
1846 struct serial_struct sio
;
1850 printk("stli_getserial(portp=%x,sp=%x)\n", (int) portp
, (int) sp
);
1853 memset(&sio
, 0, sizeof(struct serial_struct
));
1854 sio
.type
= PORT_UNKNOWN
;
1855 sio
.line
= portp
->portnr
;
1857 sio
.flags
= portp
->flags
;
1858 sio
.baud_base
= portp
->baud_base
;
1859 sio
.close_delay
= portp
->close_delay
;
1860 sio
.closing_wait
= portp
->closing_wait
;
1861 sio
.custom_divisor
= portp
->custom_divisor
;
1862 sio
.xmit_fifo_size
= 0;
1865 brdp
= stli_brds
[portp
->brdnr
];
1866 if (brdp
!= (stlibrd_t
*) NULL
)
1867 sio
.port
= brdp
->iobase
;
1869 return copy_to_user(sp
, &sio
, sizeof(struct serial_struct
)) ?
1873 /*****************************************************************************/
1876 * Set port according to the serial struct info.
1877 * At this point we do not do any auto-configure stuff, so we will
1878 * just quietly ignore any requests to change irq, etc.
1881 static int stli_setserial(stliport_t
*portp
, struct serial_struct __user
*sp
)
1883 struct serial_struct sio
;
1887 printk("stli_setserial(portp=%p,sp=%p)\n", portp
, sp
);
1890 if (copy_from_user(&sio
, sp
, sizeof(struct serial_struct
)))
1892 if (!capable(CAP_SYS_ADMIN
)) {
1893 if ((sio
.baud_base
!= portp
->baud_base
) ||
1894 (sio
.close_delay
!= portp
->close_delay
) ||
1895 ((sio
.flags
& ~ASYNC_USR_MASK
) !=
1896 (portp
->flags
& ~ASYNC_USR_MASK
)))
1900 portp
->flags
= (portp
->flags
& ~ASYNC_USR_MASK
) |
1901 (sio
.flags
& ASYNC_USR_MASK
);
1902 portp
->baud_base
= sio
.baud_base
;
1903 portp
->close_delay
= sio
.close_delay
;
1904 portp
->closing_wait
= sio
.closing_wait
;
1905 portp
->custom_divisor
= sio
.custom_divisor
;
1907 if ((rc
= stli_setport(portp
)) < 0)
1912 /*****************************************************************************/
1914 static int stli_tiocmget(struct tty_struct
*tty
, struct file
*file
)
1916 stliport_t
*portp
= tty
->driver_data
;
1920 if (portp
== (stliport_t
*) NULL
)
1922 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
1924 brdp
= stli_brds
[portp
->brdnr
];
1925 if (brdp
== (stlibrd_t
*) NULL
)
1927 if (tty
->flags
& (1 << TTY_IO_ERROR
))
1930 if ((rc
= stli_cmdwait(brdp
, portp
, A_GETSIGNALS
,
1931 &portp
->asig
, sizeof(asysigs_t
), 1)) < 0)
1934 return stli_mktiocm(portp
->asig
.sigvalue
);
1937 static int stli_tiocmset(struct tty_struct
*tty
, struct file
*file
,
1938 unsigned int set
, unsigned int clear
)
1940 stliport_t
*portp
= tty
->driver_data
;
1942 int rts
= -1, dtr
= -1;
1944 if (portp
== (stliport_t
*) NULL
)
1946 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
1948 brdp
= stli_brds
[portp
->brdnr
];
1949 if (brdp
== (stlibrd_t
*) NULL
)
1951 if (tty
->flags
& (1 << TTY_IO_ERROR
))
1954 if (set
& TIOCM_RTS
)
1956 if (set
& TIOCM_DTR
)
1958 if (clear
& TIOCM_RTS
)
1960 if (clear
& TIOCM_DTR
)
1963 stli_mkasysigs(&portp
->asig
, dtr
, rts
);
1965 return stli_cmdwait(brdp
, portp
, A_SETSIGNALS
, &portp
->asig
,
1966 sizeof(asysigs_t
), 0);
1969 static int stli_ioctl(struct tty_struct
*tty
, struct file
*file
, unsigned int cmd
, unsigned long arg
)
1975 void __user
*argp
= (void __user
*)arg
;
1978 printk("stli_ioctl(tty=%x,file=%x,cmd=%x,arg=%x)\n",
1979 (int) tty
, (int) file
, cmd
, (int) arg
);
1982 if (tty
== (struct tty_struct
*) NULL
)
1984 portp
= tty
->driver_data
;
1985 if (portp
== (stliport_t
*) NULL
)
1987 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
1989 brdp
= stli_brds
[portp
->brdnr
];
1990 if (brdp
== (stlibrd_t
*) NULL
)
1993 if ((cmd
!= TIOCGSERIAL
) && (cmd
!= TIOCSSERIAL
) &&
1994 (cmd
!= COM_GETPORTSTATS
) && (cmd
!= COM_CLRPORTSTATS
)) {
1995 if (tty
->flags
& (1 << TTY_IO_ERROR
))
2003 rc
= put_user(((tty
->termios
->c_cflag
& CLOCAL
) ? 1 : 0),
2004 (unsigned __user
*) arg
);
2007 if ((rc
= get_user(ival
, (unsigned __user
*) arg
)) == 0)
2008 tty
->termios
->c_cflag
=
2009 (tty
->termios
->c_cflag
& ~CLOCAL
) |
2010 (ival
? CLOCAL
: 0);
2013 rc
= stli_getserial(portp
, argp
);
2016 rc
= stli_setserial(portp
, argp
);
2019 rc
= put_user(portp
->pflag
, (unsigned __user
*)argp
);
2022 if ((rc
= get_user(portp
->pflag
, (unsigned __user
*)argp
)) == 0)
2023 stli_setport(portp
);
2025 case COM_GETPORTSTATS
:
2026 rc
= stli_getportstats(portp
, argp
);
2028 case COM_CLRPORTSTATS
:
2029 rc
= stli_clrportstats(portp
, argp
);
2035 case TIOCSERGSTRUCT
:
2036 case TIOCSERGETMULTI
:
2037 case TIOCSERSETMULTI
:
2046 /*****************************************************************************/
2049 * This routine assumes that we have user context and can sleep.
2050 * Looks like it is true for the current ttys implementation..!!
2053 static void stli_settermios(struct tty_struct
*tty
, struct termios
*old
)
2057 struct termios
*tiosp
;
2061 printk("stli_settermios(tty=%x,old=%x)\n", (int) tty
, (int) old
);
2064 if (tty
== (struct tty_struct
*) NULL
)
2066 portp
= tty
->driver_data
;
2067 if (portp
== (stliport_t
*) NULL
)
2069 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
2071 brdp
= stli_brds
[portp
->brdnr
];
2072 if (brdp
== (stlibrd_t
*) NULL
)
2075 tiosp
= tty
->termios
;
2076 if ((tiosp
->c_cflag
== old
->c_cflag
) &&
2077 (tiosp
->c_iflag
== old
->c_iflag
))
2080 stli_mkasyport(portp
, &aport
, tiosp
);
2081 stli_cmdwait(brdp
, portp
, A_SETPORT
, &aport
, sizeof(asyport_t
), 0);
2082 stli_mkasysigs(&portp
->asig
, ((tiosp
->c_cflag
& CBAUD
) ? 1 : 0), -1);
2083 stli_cmdwait(brdp
, portp
, A_SETSIGNALS
, &portp
->asig
,
2084 sizeof(asysigs_t
), 0);
2085 if ((old
->c_cflag
& CRTSCTS
) && ((tiosp
->c_cflag
& CRTSCTS
) == 0))
2086 tty
->hw_stopped
= 0;
2087 if (((old
->c_cflag
& CLOCAL
) == 0) && (tiosp
->c_cflag
& CLOCAL
))
2088 wake_up_interruptible(&portp
->open_wait
);
2091 /*****************************************************************************/
2094 * Attempt to flow control who ever is sending us data. We won't really
2095 * do any flow control action here. We can't directly, and even if we
2096 * wanted to we would have to send a command to the slave. The slave
2097 * knows how to flow control, and will do so when its buffers reach its
2098 * internal high water marks. So what we will do is set a local state
2099 * bit that will stop us sending any RX data up from the poll routine
2100 * (which is the place where RX data from the slave is handled).
2103 static void stli_throttle(struct tty_struct
*tty
)
2108 printk("stli_throttle(tty=%x)\n", (int) tty
);
2111 if (tty
== (struct tty_struct
*) NULL
)
2113 portp
= tty
->driver_data
;
2114 if (portp
== (stliport_t
*) NULL
)
2117 set_bit(ST_RXSTOP
, &portp
->state
);
2120 /*****************************************************************************/
2123 * Unflow control the device sending us data... That means that all
2124 * we have to do is clear the RXSTOP state bit. The next poll call
2125 * will then be able to pass the RX data back up.
2128 static void stli_unthrottle(struct tty_struct
*tty
)
2133 printk("stli_unthrottle(tty=%x)\n", (int) tty
);
2136 if (tty
== (struct tty_struct
*) NULL
)
2138 portp
= tty
->driver_data
;
2139 if (portp
== (stliport_t
*) NULL
)
2142 clear_bit(ST_RXSTOP
, &portp
->state
);
2145 /*****************************************************************************/
2148 * Stop the transmitter. Basically to do this we will just turn TX
2152 static void stli_stop(struct tty_struct
*tty
)
2159 printk("stli_stop(tty=%x)\n", (int) tty
);
2162 if (tty
== (struct tty_struct
*) NULL
)
2164 portp
= tty
->driver_data
;
2165 if (portp
== (stliport_t
*) NULL
)
2167 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
2169 brdp
= stli_brds
[portp
->brdnr
];
2170 if (brdp
== (stlibrd_t
*) NULL
)
2173 memset(&actrl
, 0, sizeof(asyctrl_t
));
2174 actrl
.txctrl
= CT_STOPFLOW
;
2176 stli_cmdwait(brdp
, portp
, A_PORTCTRL
, &actrl
, sizeof(asyctrl_t
), 0);
2180 /*****************************************************************************/
2183 * Start the transmitter again. Just turn TX interrupts back on.
2186 static void stli_start(struct tty_struct
*tty
)
2193 printk("stli_start(tty=%x)\n", (int) tty
);
2196 if (tty
== (struct tty_struct
*) NULL
)
2198 portp
= tty
->driver_data
;
2199 if (portp
== (stliport_t
*) NULL
)
2201 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
2203 brdp
= stli_brds
[portp
->brdnr
];
2204 if (brdp
== (stlibrd_t
*) NULL
)
2207 memset(&actrl
, 0, sizeof(asyctrl_t
));
2208 actrl
.txctrl
= CT_STARTFLOW
;
2210 stli_cmdwait(brdp
, portp
, A_PORTCTRL
, &actrl
, sizeof(asyctrl_t
), 0);
2214 /*****************************************************************************/
2217 * Scheduler called hang up routine. This is called from the scheduler,
2218 * not direct from the driver "poll" routine. We can't call it there
2219 * since the real local hangup code will enable/disable the board and
2220 * other things that we can't do while handling the poll. Much easier
2221 * to deal with it some time later (don't really care when, hangups
2222 * aren't that time critical).
2225 static void stli_dohangup(void *arg
)
2230 printk(KERN_DEBUG
"stli_dohangup(portp=%x)\n", (int) arg
);
2234 * FIXME: There's a module removal race here: tty_hangup
2235 * calls schedule_work which will call into this
2238 portp
= (stliport_t
*) arg
;
2239 if (portp
!= (stliport_t
*) NULL
) {
2240 if (portp
->tty
!= (struct tty_struct
*) NULL
) {
2241 tty_hangup(portp
->tty
);
2246 /*****************************************************************************/
2249 * Hangup this port. This is pretty much like closing the port, only
2250 * a little more brutal. No waiting for data to drain. Shutdown the
2251 * port and maybe drop signals. This is rather tricky really. We want
2252 * to close the port as well.
2255 static void stli_hangup(struct tty_struct
*tty
)
2259 unsigned long flags
;
2262 printk(KERN_DEBUG
"stli_hangup(tty=%x)\n", (int) tty
);
2265 if (tty
== (struct tty_struct
*) NULL
)
2267 portp
= tty
->driver_data
;
2268 if (portp
== (stliport_t
*) NULL
)
2270 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
2272 brdp
= stli_brds
[portp
->brdnr
];
2273 if (brdp
== (stlibrd_t
*) NULL
)
2276 portp
->flags
&= ~ASYNC_INITIALIZED
;
2280 if (! test_bit(ST_CLOSING
, &portp
->state
))
2281 stli_rawclose(brdp
, portp
, 0, 0);
2282 if (tty
->termios
->c_cflag
& HUPCL
) {
2283 stli_mkasysigs(&portp
->asig
, 0, 0);
2284 if (test_bit(ST_CMDING
, &portp
->state
)) {
2285 set_bit(ST_DOSIGS
, &portp
->state
);
2286 set_bit(ST_DOFLUSHTX
, &portp
->state
);
2287 set_bit(ST_DOFLUSHRX
, &portp
->state
);
2289 stli_sendcmd(brdp
, portp
, A_SETSIGNALSF
,
2290 &portp
->asig
, sizeof(asysigs_t
), 0);
2293 restore_flags(flags
);
2295 clear_bit(ST_TXBUSY
, &portp
->state
);
2296 clear_bit(ST_RXSTOP
, &portp
->state
);
2297 set_bit(TTY_IO_ERROR
, &tty
->flags
);
2298 portp
->tty
= (struct tty_struct
*) NULL
;
2299 portp
->flags
&= ~ASYNC_NORMAL_ACTIVE
;
2300 portp
->refcount
= 0;
2301 wake_up_interruptible(&portp
->open_wait
);
2304 /*****************************************************************************/
2307 * Flush characters from the lower buffer. We may not have user context
2308 * so we cannot sleep waiting for it to complete. Also we need to check
2309 * if there is chars for this port in the TX cook buffer, and flush them
2313 static void stli_flushbuffer(struct tty_struct
*tty
)
2317 unsigned long ftype
, flags
;
2320 printk(KERN_DEBUG
"stli_flushbuffer(tty=%x)\n", (int) tty
);
2323 if (tty
== (struct tty_struct
*) NULL
)
2325 portp
= tty
->driver_data
;
2326 if (portp
== (stliport_t
*) NULL
)
2328 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
2330 brdp
= stli_brds
[portp
->brdnr
];
2331 if (brdp
== (stlibrd_t
*) NULL
)
2336 if (tty
== stli_txcooktty
) {
2337 stli_txcooktty
= (struct tty_struct
*) NULL
;
2338 stli_txcooksize
= 0;
2339 stli_txcookrealsize
= 0;
2341 if (test_bit(ST_CMDING
, &portp
->state
)) {
2342 set_bit(ST_DOFLUSHTX
, &portp
->state
);
2345 if (test_bit(ST_DOFLUSHRX
, &portp
->state
)) {
2347 clear_bit(ST_DOFLUSHRX
, &portp
->state
);
2349 stli_sendcmd(brdp
, portp
, A_FLUSH
, &ftype
,
2350 sizeof(unsigned long), 0);
2352 restore_flags(flags
);
2354 wake_up_interruptible(&tty
->write_wait
);
2355 if ((tty
->flags
& (1 << TTY_DO_WRITE_WAKEUP
)) &&
2356 tty
->ldisc
.write_wakeup
)
2357 (tty
->ldisc
.write_wakeup
)(tty
);
2360 /*****************************************************************************/
2362 static void stli_breakctl(struct tty_struct
*tty
, int state
)
2367 /* long savestate, savetime; */
2370 printk(KERN_DEBUG
"stli_breakctl(tty=%x,state=%d)\n", (int) tty
, state
);
2373 if (tty
== (struct tty_struct
*) NULL
)
2375 portp
= tty
->driver_data
;
2376 if (portp
== (stliport_t
*) NULL
)
2378 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
2380 brdp
= stli_brds
[portp
->brdnr
];
2381 if (brdp
== (stlibrd_t
*) NULL
)
2385 * Due to a bug in the tty send_break() code we need to preserve
2386 * the current process state and timeout...
2387 savetime = current->timeout;
2388 savestate = current->state;
2391 arg
= (state
== -1) ? BREAKON
: BREAKOFF
;
2392 stli_cmdwait(brdp
, portp
, A_BREAK
, &arg
, sizeof(long), 0);
2396 current->timeout = savetime;
2397 current->state = savestate;
2401 /*****************************************************************************/
2403 static void stli_waituntilsent(struct tty_struct
*tty
, int timeout
)
2409 printk(KERN_DEBUG
"stli_waituntilsent(tty=%x,timeout=%x)\n", (int) tty
, timeout
);
2412 if (tty
== (struct tty_struct
*) NULL
)
2414 portp
= tty
->driver_data
;
2415 if (portp
== (stliport_t
*) NULL
)
2420 tend
= jiffies
+ timeout
;
2422 while (test_bit(ST_TXBUSY
, &portp
->state
)) {
2423 if (signal_pending(current
))
2425 msleep_interruptible(20);
2426 if (time_after_eq(jiffies
, tend
))
2431 /*****************************************************************************/
2433 static void stli_sendxchar(struct tty_struct
*tty
, char ch
)
2440 printk(KERN_DEBUG
"stli_sendxchar(tty=%x,ch=%x)\n", (int) tty
, ch
);
2443 if (tty
== (struct tty_struct
*) NULL
)
2445 portp
= tty
->driver_data
;
2446 if (portp
== (stliport_t
*) NULL
)
2448 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
2450 brdp
= stli_brds
[portp
->brdnr
];
2451 if (brdp
== (stlibrd_t
*) NULL
)
2454 memset(&actrl
, 0, sizeof(asyctrl_t
));
2455 if (ch
== STOP_CHAR(tty
)) {
2456 actrl
.rxctrl
= CT_STOPFLOW
;
2457 } else if (ch
== START_CHAR(tty
)) {
2458 actrl
.rxctrl
= CT_STARTFLOW
;
2460 actrl
.txctrl
= CT_SENDCHR
;
2464 stli_cmdwait(brdp
, portp
, A_PORTCTRL
, &actrl
, sizeof(asyctrl_t
), 0);
2467 /*****************************************************************************/
2472 * Format info for a specified port. The line is deliberately limited
2473 * to 80 characters. (If it is too long it will be truncated, if too
2474 * short then padded with spaces).
2477 static int stli_portinfo(stlibrd_t
*brdp
, stliport_t
*portp
, int portnr
, char *pos
)
2482 rc
= stli_portcmdstats(portp
);
2485 if (brdp
->state
& BST_STARTED
) {
2486 switch (stli_comstats
.hwid
) {
2487 case 0: uart
= "2681"; break;
2488 case 1: uart
= "SC26198"; break;
2489 default: uart
= "CD1400"; break;
2494 sp
+= sprintf(sp
, "%d: uart:%s ", portnr
, uart
);
2496 if ((brdp
->state
& BST_STARTED
) && (rc
>= 0)) {
2497 sp
+= sprintf(sp
, "tx:%d rx:%d", (int) stli_comstats
.txtotal
,
2498 (int) stli_comstats
.rxtotal
);
2500 if (stli_comstats
.rxframing
)
2501 sp
+= sprintf(sp
, " fe:%d",
2502 (int) stli_comstats
.rxframing
);
2503 if (stli_comstats
.rxparity
)
2504 sp
+= sprintf(sp
, " pe:%d",
2505 (int) stli_comstats
.rxparity
);
2506 if (stli_comstats
.rxbreaks
)
2507 sp
+= sprintf(sp
, " brk:%d",
2508 (int) stli_comstats
.rxbreaks
);
2509 if (stli_comstats
.rxoverrun
)
2510 sp
+= sprintf(sp
, " oe:%d",
2511 (int) stli_comstats
.rxoverrun
);
2513 cnt
= sprintf(sp
, "%s%s%s%s%s ",
2514 (stli_comstats
.signals
& TIOCM_RTS
) ? "|RTS" : "",
2515 (stli_comstats
.signals
& TIOCM_CTS
) ? "|CTS" : "",
2516 (stli_comstats
.signals
& TIOCM_DTR
) ? "|DTR" : "",
2517 (stli_comstats
.signals
& TIOCM_CD
) ? "|DCD" : "",
2518 (stli_comstats
.signals
& TIOCM_DSR
) ? "|DSR" : "");
2523 for (cnt
= (sp
- pos
); (cnt
< (MAXLINE
- 1)); cnt
++)
2526 pos
[(MAXLINE
- 2)] = '+';
2527 pos
[(MAXLINE
- 1)] = '\n';
2532 /*****************************************************************************/
2535 * Port info, read from the /proc file system.
2538 static int stli_readproc(char *page
, char **start
, off_t off
, int count
, int *eof
, void *data
)
2542 int brdnr
, portnr
, totalport
;
2547 printk(KERN_DEBUG
"stli_readproc(page=%x,start=%x,off=%x,count=%d,eof=%x,"
2548 "data=%x\n", (int) page
, (int) start
, (int) off
, count
,
2549 (int) eof
, (int) data
);
2557 pos
+= sprintf(pos
, "%s: version %s", stli_drvtitle
,
2559 while (pos
< (page
+ MAXLINE
- 1))
2566 * We scan through for each board, panel and port. The offset is
2567 * calculated on the fly, and irrelevant ports are skipped.
2569 for (brdnr
= 0; (brdnr
< stli_nrbrds
); brdnr
++) {
2570 brdp
= stli_brds
[brdnr
];
2571 if (brdp
== (stlibrd_t
*) NULL
)
2573 if (brdp
->state
== 0)
2576 maxoff
= curoff
+ (brdp
->nrports
* MAXLINE
);
2577 if (off
>= maxoff
) {
2582 totalport
= brdnr
* STL_MAXPORTS
;
2583 for (portnr
= 0; (portnr
< brdp
->nrports
); portnr
++,
2585 portp
= brdp
->ports
[portnr
];
2586 if (portp
== (stliport_t
*) NULL
)
2588 if (off
>= (curoff
+= MAXLINE
))
2590 if ((pos
- page
+ MAXLINE
) > count
)
2592 pos
+= stli_portinfo(brdp
, portp
, totalport
, pos
);
2603 /*****************************************************************************/
2606 * Generic send command routine. This will send a message to the slave,
2607 * of the specified type with the specified argument. Must be very
2608 * careful of data that will be copied out from shared memory -
2609 * containing command results. The command completion is all done from
2610 * a poll routine that does not have user context. Therefore you cannot
2611 * copy back directly into user space, or to the kernel stack of a
2612 * process. This routine does not sleep, so can be called from anywhere.
2615 static void stli_sendcmd(stlibrd_t
*brdp
, stliport_t
*portp
, unsigned long cmd
, void *arg
, int size
, int copyback
)
2617 volatile cdkhdr_t
*hdrp
;
2618 volatile cdkctrl_t
*cp
;
2619 volatile unsigned char *bits
;
2620 unsigned long flags
;
2623 printk(KERN_DEBUG
"stli_sendcmd(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
2624 "copyback=%d)\n", (int) brdp
, (int) portp
, (int) cmd
,
2625 (int) arg
, size
, copyback
);
2631 if (test_bit(ST_CMDING
, &portp
->state
)) {
2632 printk(KERN_ERR
"STALLION: command already busy, cmd=%x!\n",
2634 restore_flags(flags
);
2639 cp
= &((volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->ctrl
;
2641 memcpy((void *) &(cp
->args
[0]), arg
, size
);
2644 portp
->argsize
= size
;
2649 hdrp
= (volatile cdkhdr_t
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
2650 bits
= ((volatile unsigned char *) hdrp
) + brdp
->slaveoffset
+
2652 *bits
|= portp
->portbit
;
2653 set_bit(ST_CMDING
, &portp
->state
);
2655 restore_flags(flags
);
2658 /*****************************************************************************/
2661 * Read data from shared memory. This assumes that the shared memory
2662 * is enabled and that interrupts are off. Basically we just empty out
2663 * the shared memory buffer into the tty buffer. Must be careful to
2664 * handle the case where we fill up the tty buffer, but still have
2665 * more chars to unload.
2668 static void stli_read(stlibrd_t
*brdp
, stliport_t
*portp
)
2670 volatile cdkasyrq_t
*rp
;
2671 volatile char *shbuf
;
2672 struct tty_struct
*tty
;
2673 unsigned int head
, tail
, size
;
2674 unsigned int len
, stlen
;
2677 printk(KERN_DEBUG
"stli_read(brdp=%x,portp=%d)\n",
2678 (int) brdp
, (int) portp
);
2681 if (test_bit(ST_RXSTOP
, &portp
->state
))
2684 if (tty
== (struct tty_struct
*) NULL
)
2687 rp
= &((volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->rxq
;
2688 head
= (unsigned int) rp
->head
;
2689 if (head
!= ((unsigned int) rp
->head
))
2690 head
= (unsigned int) rp
->head
;
2691 tail
= (unsigned int) rp
->tail
;
2692 size
= portp
->rxsize
;
2697 len
= size
- (tail
- head
);
2698 stlen
= size
- tail
;
2701 len
= tty_buffer_request_room(tty
, len
);
2702 /* FIXME : iomap ? */
2703 shbuf
= (volatile char *) EBRDGETMEMPTR(brdp
, portp
->rxoffset
);
2706 stlen
= MIN(len
, stlen
);
2707 tty_insert_flip_string(tty
, (char *)(shbuf
+ tail
), stlen
);
2715 rp
= &((volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->rxq
;
2719 set_bit(ST_RXING
, &portp
->state
);
2721 tty_schedule_flip(tty
);
2724 /*****************************************************************************/
2727 * Set up and carry out any delayed commands. There is only a small set
2728 * of slave commands that can be done "off-level". So it is not too
2729 * difficult to deal with them here.
2732 static void stli_dodelaycmd(stliport_t
*portp
, volatile cdkctrl_t
*cp
)
2736 if (test_bit(ST_DOSIGS
, &portp
->state
)) {
2737 if (test_bit(ST_DOFLUSHTX
, &portp
->state
) &&
2738 test_bit(ST_DOFLUSHRX
, &portp
->state
))
2739 cmd
= A_SETSIGNALSF
;
2740 else if (test_bit(ST_DOFLUSHTX
, &portp
->state
))
2741 cmd
= A_SETSIGNALSFTX
;
2742 else if (test_bit(ST_DOFLUSHRX
, &portp
->state
))
2743 cmd
= A_SETSIGNALSFRX
;
2746 clear_bit(ST_DOFLUSHTX
, &portp
->state
);
2747 clear_bit(ST_DOFLUSHRX
, &portp
->state
);
2748 clear_bit(ST_DOSIGS
, &portp
->state
);
2749 memcpy((void *) &(cp
->args
[0]), (void *) &portp
->asig
,
2753 set_bit(ST_CMDING
, &portp
->state
);
2754 } else if (test_bit(ST_DOFLUSHTX
, &portp
->state
) ||
2755 test_bit(ST_DOFLUSHRX
, &portp
->state
)) {
2756 cmd
= ((test_bit(ST_DOFLUSHTX
, &portp
->state
)) ? FLUSHTX
: 0);
2757 cmd
|= ((test_bit(ST_DOFLUSHRX
, &portp
->state
)) ? FLUSHRX
: 0);
2758 clear_bit(ST_DOFLUSHTX
, &portp
->state
);
2759 clear_bit(ST_DOFLUSHRX
, &portp
->state
);
2760 memcpy((void *) &(cp
->args
[0]), (void *) &cmd
, sizeof(int));
2763 set_bit(ST_CMDING
, &portp
->state
);
2767 /*****************************************************************************/
2770 * Host command service checking. This handles commands or messages
2771 * coming from the slave to the host. Must have board shared memory
2772 * enabled and interrupts off when called. Notice that by servicing the
2773 * read data last we don't need to change the shared memory pointer
2774 * during processing (which is a slow IO operation).
2775 * Return value indicates if this port is still awaiting actions from
2776 * the slave (like open, command, or even TX data being sent). If 0
2777 * then port is still busy, otherwise no longer busy.
2780 static int stli_hostcmd(stlibrd_t
*brdp
, stliport_t
*portp
)
2782 volatile cdkasy_t
*ap
;
2783 volatile cdkctrl_t
*cp
;
2784 struct tty_struct
*tty
;
2786 unsigned long oldsigs
;
2790 printk(KERN_DEBUG
"stli_hostcmd(brdp=%x,channr=%d)\n",
2791 (int) brdp
, channr
);
2794 ap
= (volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
);
2798 * Check if we are waiting for an open completion message.
2800 if (test_bit(ST_OPENING
, &portp
->state
)) {
2801 rc
= (int) cp
->openarg
;
2802 if ((cp
->open
== 0) && (rc
!= 0)) {
2807 clear_bit(ST_OPENING
, &portp
->state
);
2808 wake_up_interruptible(&portp
->raw_wait
);
2813 * Check if we are waiting for a close completion message.
2815 if (test_bit(ST_CLOSING
, &portp
->state
)) {
2816 rc
= (int) cp
->closearg
;
2817 if ((cp
->close
== 0) && (rc
!= 0)) {
2822 clear_bit(ST_CLOSING
, &portp
->state
);
2823 wake_up_interruptible(&portp
->raw_wait
);
2828 * Check if we are waiting for a command completion message. We may
2829 * need to copy out the command results associated with this command.
2831 if (test_bit(ST_CMDING
, &portp
->state
)) {
2833 if ((cp
->cmd
== 0) && (rc
!= 0)) {
2836 if (portp
->argp
!= (void *) NULL
) {
2837 memcpy(portp
->argp
, (void *) &(cp
->args
[0]),
2839 portp
->argp
= (void *) NULL
;
2843 clear_bit(ST_CMDING
, &portp
->state
);
2844 stli_dodelaycmd(portp
, cp
);
2845 wake_up_interruptible(&portp
->raw_wait
);
2850 * Check for any notification messages ready. This includes lots of
2851 * different types of events - RX chars ready, RX break received,
2852 * TX data low or empty in the slave, modem signals changed state.
2861 if (nt
.signal
& SG_DCD
) {
2862 oldsigs
= portp
->sigs
;
2863 portp
->sigs
= stli_mktiocm(nt
.sigvalue
);
2864 clear_bit(ST_GETSIGS
, &portp
->state
);
2865 if ((portp
->sigs
& TIOCM_CD
) &&
2866 ((oldsigs
& TIOCM_CD
) == 0))
2867 wake_up_interruptible(&portp
->open_wait
);
2868 if ((oldsigs
& TIOCM_CD
) &&
2869 ((portp
->sigs
& TIOCM_CD
) == 0)) {
2870 if (portp
->flags
& ASYNC_CHECK_CD
) {
2872 schedule_work(&portp
->tqhangup
);
2877 if (nt
.data
& DT_TXEMPTY
)
2878 clear_bit(ST_TXBUSY
, &portp
->state
);
2879 if (nt
.data
& (DT_TXEMPTY
| DT_TXLOW
)) {
2880 if (tty
!= (struct tty_struct
*) NULL
) {
2881 if ((tty
->flags
& (1 << TTY_DO_WRITE_WAKEUP
)) &&
2882 tty
->ldisc
.write_wakeup
) {
2883 (tty
->ldisc
.write_wakeup
)(tty
);
2886 wake_up_interruptible(&tty
->write_wait
);
2890 if ((nt
.data
& DT_RXBREAK
) && (portp
->rxmarkmsk
& BRKINT
)) {
2891 if (tty
!= (struct tty_struct
*) NULL
) {
2892 tty_insert_flip_char(tty
, 0, TTY_BREAK
);
2893 if (portp
->flags
& ASYNC_SAK
) {
2897 tty_schedule_flip(tty
);
2901 if (nt
.data
& DT_RXBUSY
) {
2903 stli_read(brdp
, portp
);
2908 * It might seem odd that we are checking for more RX chars here.
2909 * But, we need to handle the case where the tty buffer was previously
2910 * filled, but we had more characters to pass up. The slave will not
2911 * send any more RX notify messages until the RX buffer has been emptied.
2912 * But it will leave the service bits on (since the buffer is not empty).
2913 * So from here we can try to process more RX chars.
2915 if ((!donerx
) && test_bit(ST_RXING
, &portp
->state
)) {
2916 clear_bit(ST_RXING
, &portp
->state
);
2917 stli_read(brdp
, portp
);
2920 return((test_bit(ST_OPENING
, &portp
->state
) ||
2921 test_bit(ST_CLOSING
, &portp
->state
) ||
2922 test_bit(ST_CMDING
, &portp
->state
) ||
2923 test_bit(ST_TXBUSY
, &portp
->state
) ||
2924 test_bit(ST_RXING
, &portp
->state
)) ? 0 : 1);
2927 /*****************************************************************************/
2930 * Service all ports on a particular board. Assumes that the boards
2931 * shared memory is enabled, and that the page pointer is pointed
2932 * at the cdk header structure.
2935 static void stli_brdpoll(stlibrd_t
*brdp
, volatile cdkhdr_t
*hdrp
)
2938 unsigned char hostbits
[(STL_MAXCHANS
/ 8) + 1];
2939 unsigned char slavebits
[(STL_MAXCHANS
/ 8) + 1];
2940 unsigned char *slavep
;
2941 int bitpos
, bitat
, bitsize
;
2942 int channr
, nrdevs
, slavebitchange
;
2944 bitsize
= brdp
->bitsize
;
2945 nrdevs
= brdp
->nrdevs
;
2948 * Check if slave wants any service. Basically we try to do as
2949 * little work as possible here. There are 2 levels of service
2950 * bits. So if there is nothing to do we bail early. We check
2951 * 8 service bits at a time in the inner loop, so we can bypass
2952 * the lot if none of them want service.
2954 memcpy(&hostbits
[0], (((unsigned char *) hdrp
) + brdp
->hostoffset
),
2957 memset(&slavebits
[0], 0, bitsize
);
2960 for (bitpos
= 0; (bitpos
< bitsize
); bitpos
++) {
2961 if (hostbits
[bitpos
] == 0)
2963 channr
= bitpos
* 8;
2964 for (bitat
= 0x1; (channr
< nrdevs
); channr
++, bitat
<<= 1) {
2965 if (hostbits
[bitpos
] & bitat
) {
2966 portp
= brdp
->ports
[(channr
- 1)];
2967 if (stli_hostcmd(brdp
, portp
)) {
2969 slavebits
[bitpos
] |= bitat
;
2976 * If any of the ports are no longer busy then update them in the
2977 * slave request bits. We need to do this after, since a host port
2978 * service may initiate more slave requests.
2980 if (slavebitchange
) {
2981 hdrp
= (volatile cdkhdr_t
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
2982 slavep
= ((unsigned char *) hdrp
) + brdp
->slaveoffset
;
2983 for (bitpos
= 0; (bitpos
< bitsize
); bitpos
++) {
2984 if (slavebits
[bitpos
])
2985 slavep
[bitpos
] &= ~slavebits
[bitpos
];
2990 /*****************************************************************************/
2993 * Driver poll routine. This routine polls the boards in use and passes
2994 * messages back up to host when necessary. This is actually very
2995 * CPU efficient, since we will always have the kernel poll clock, it
2996 * adds only a few cycles when idle (since board service can be
2997 * determined very easily), but when loaded generates no interrupts
2998 * (with their expensive associated context change).
3001 static void stli_poll(unsigned long arg
)
3003 volatile cdkhdr_t
*hdrp
;
3007 stli_timerlist
.expires
= STLI_TIMEOUT
;
3008 add_timer(&stli_timerlist
);
3011 * Check each board and do any servicing required.
3013 for (brdnr
= 0; (brdnr
< stli_nrbrds
); brdnr
++) {
3014 brdp
= stli_brds
[brdnr
];
3015 if (brdp
== (stlibrd_t
*) NULL
)
3017 if ((brdp
->state
& BST_STARTED
) == 0)
3021 hdrp
= (volatile cdkhdr_t
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
3023 stli_brdpoll(brdp
, hdrp
);
3028 /*****************************************************************************/
3031 * Translate the termios settings into the port setting structure of
3035 static void stli_mkasyport(stliport_t
*portp
, asyport_t
*pp
, struct termios
*tiosp
)
3038 printk(KERN_DEBUG
"stli_mkasyport(portp=%x,pp=%x,tiosp=%d)\n",
3039 (int) portp
, (int) pp
, (int) tiosp
);
3042 memset(pp
, 0, sizeof(asyport_t
));
3045 * Start of by setting the baud, char size, parity and stop bit info.
3047 pp
->baudout
= tiosp
->c_cflag
& CBAUD
;
3048 if (pp
->baudout
& CBAUDEX
) {
3049 pp
->baudout
&= ~CBAUDEX
;
3050 if ((pp
->baudout
< 1) || (pp
->baudout
> 4))
3051 tiosp
->c_cflag
&= ~CBAUDEX
;
3055 pp
->baudout
= stli_baudrates
[pp
->baudout
];
3056 if ((tiosp
->c_cflag
& CBAUD
) == B38400
) {
3057 if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_HI
)
3058 pp
->baudout
= 57600;
3059 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_VHI
)
3060 pp
->baudout
= 115200;
3061 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_SHI
)
3062 pp
->baudout
= 230400;
3063 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_WARP
)
3064 pp
->baudout
= 460800;
3065 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_CUST
)
3066 pp
->baudout
= (portp
->baud_base
/ portp
->custom_divisor
);
3068 if (pp
->baudout
> STL_MAXBAUD
)
3069 pp
->baudout
= STL_MAXBAUD
;
3070 pp
->baudin
= pp
->baudout
;
3072 switch (tiosp
->c_cflag
& CSIZE
) {
3087 if (tiosp
->c_cflag
& CSTOPB
)
3088 pp
->stopbs
= PT_STOP2
;
3090 pp
->stopbs
= PT_STOP1
;
3092 if (tiosp
->c_cflag
& PARENB
) {
3093 if (tiosp
->c_cflag
& PARODD
)
3094 pp
->parity
= PT_ODDPARITY
;
3096 pp
->parity
= PT_EVENPARITY
;
3098 pp
->parity
= PT_NOPARITY
;
3102 * Set up any flow control options enabled.
3104 if (tiosp
->c_iflag
& IXON
) {
3106 if (tiosp
->c_iflag
& IXANY
)
3107 pp
->flow
|= F_IXANY
;
3109 if (tiosp
->c_cflag
& CRTSCTS
)
3110 pp
->flow
|= (F_RTSFLOW
| F_CTSFLOW
);
3112 pp
->startin
= tiosp
->c_cc
[VSTART
];
3113 pp
->stopin
= tiosp
->c_cc
[VSTOP
];
3114 pp
->startout
= tiosp
->c_cc
[VSTART
];
3115 pp
->stopout
= tiosp
->c_cc
[VSTOP
];
3118 * Set up the RX char marking mask with those RX error types we must
3119 * catch. We can get the slave to help us out a little here, it will
3120 * ignore parity errors and breaks for us, and mark parity errors in
3123 if (tiosp
->c_iflag
& IGNPAR
)
3124 pp
->iflag
|= FI_IGNRXERRS
;
3125 if (tiosp
->c_iflag
& IGNBRK
)
3126 pp
->iflag
|= FI_IGNBREAK
;
3128 portp
->rxmarkmsk
= 0;
3129 if (tiosp
->c_iflag
& (INPCK
| PARMRK
))
3130 pp
->iflag
|= FI_1MARKRXERRS
;
3131 if (tiosp
->c_iflag
& BRKINT
)
3132 portp
->rxmarkmsk
|= BRKINT
;
3135 * Set up clocal processing as required.
3137 if (tiosp
->c_cflag
& CLOCAL
)
3138 portp
->flags
&= ~ASYNC_CHECK_CD
;
3140 portp
->flags
|= ASYNC_CHECK_CD
;
3143 * Transfer any persistent flags into the asyport structure.
3145 pp
->pflag
= (portp
->pflag
& 0xffff);
3146 pp
->vmin
= (portp
->pflag
& P_RXIMIN
) ? 1 : 0;
3147 pp
->vtime
= (portp
->pflag
& P_RXITIME
) ? 1 : 0;
3148 pp
->cc
[1] = (portp
->pflag
& P_RXTHOLD
) ? 1 : 0;
3151 /*****************************************************************************/
3154 * Construct a slave signals structure for setting the DTR and RTS
3155 * signals as specified.
3158 static void stli_mkasysigs(asysigs_t
*sp
, int dtr
, int rts
)
3161 printk(KERN_DEBUG
"stli_mkasysigs(sp=%x,dtr=%d,rts=%d)\n",
3162 (int) sp
, dtr
, rts
);
3165 memset(sp
, 0, sizeof(asysigs_t
));
3167 sp
->signal
|= SG_DTR
;
3168 sp
->sigvalue
|= ((dtr
> 0) ? SG_DTR
: 0);
3171 sp
->signal
|= SG_RTS
;
3172 sp
->sigvalue
|= ((rts
> 0) ? SG_RTS
: 0);
3176 /*****************************************************************************/
3179 * Convert the signals returned from the slave into a local TIOCM type
3180 * signals value. We keep them locally in TIOCM format.
3183 static long stli_mktiocm(unsigned long sigvalue
)
3188 printk(KERN_DEBUG
"stli_mktiocm(sigvalue=%x)\n", (int) sigvalue
);
3192 tiocm
|= ((sigvalue
& SG_DCD
) ? TIOCM_CD
: 0);
3193 tiocm
|= ((sigvalue
& SG_CTS
) ? TIOCM_CTS
: 0);
3194 tiocm
|= ((sigvalue
& SG_RI
) ? TIOCM_RI
: 0);
3195 tiocm
|= ((sigvalue
& SG_DSR
) ? TIOCM_DSR
: 0);
3196 tiocm
|= ((sigvalue
& SG_DTR
) ? TIOCM_DTR
: 0);
3197 tiocm
|= ((sigvalue
& SG_RTS
) ? TIOCM_RTS
: 0);
3201 /*****************************************************************************/
3204 * All panels and ports actually attached have been worked out. All
3205 * we need to do here is set up the appropriate per port data structures.
3208 static int stli_initports(stlibrd_t
*brdp
)
3211 int i
, panelnr
, panelport
;
3214 printk(KERN_DEBUG
"stli_initports(brdp=%x)\n", (int) brdp
);
3217 for (i
= 0, panelnr
= 0, panelport
= 0; (i
< brdp
->nrports
); i
++) {
3218 portp
= kzalloc(sizeof(stliport_t
), GFP_KERNEL
);
3220 printk("STALLION: failed to allocate port structure\n");
3224 portp
->magic
= STLI_PORTMAGIC
;
3226 portp
->brdnr
= brdp
->brdnr
;
3227 portp
->panelnr
= panelnr
;
3228 portp
->baud_base
= STL_BAUDBASE
;
3229 portp
->close_delay
= STL_CLOSEDELAY
;
3230 portp
->closing_wait
= 30 * HZ
;
3231 INIT_WORK(&portp
->tqhangup
, stli_dohangup
, portp
);
3232 init_waitqueue_head(&portp
->open_wait
);
3233 init_waitqueue_head(&portp
->close_wait
);
3234 init_waitqueue_head(&portp
->raw_wait
);
3236 if (panelport
>= brdp
->panels
[panelnr
]) {
3240 brdp
->ports
[i
] = portp
;
3246 /*****************************************************************************/
3249 * All the following routines are board specific hardware operations.
3252 static void stli_ecpinit(stlibrd_t
*brdp
)
3254 unsigned long memconf
;
3257 printk(KERN_DEBUG
"stli_ecpinit(brdp=%d)\n", (int) brdp
);
3260 outb(ECP_ATSTOP
, (brdp
->iobase
+ ECP_ATCONFR
));
3262 outb(ECP_ATDISABLE
, (brdp
->iobase
+ ECP_ATCONFR
));
3265 memconf
= (brdp
->memaddr
& ECP_ATADDRMASK
) >> ECP_ATADDRSHFT
;
3266 outb(memconf
, (brdp
->iobase
+ ECP_ATMEMAR
));
3269 /*****************************************************************************/
3271 static void stli_ecpenable(stlibrd_t
*brdp
)
3274 printk(KERN_DEBUG
"stli_ecpenable(brdp=%x)\n", (int) brdp
);
3276 outb(ECP_ATENABLE
, (brdp
->iobase
+ ECP_ATCONFR
));
3279 /*****************************************************************************/
3281 static void stli_ecpdisable(stlibrd_t
*brdp
)
3284 printk(KERN_DEBUG
"stli_ecpdisable(brdp=%x)\n", (int) brdp
);
3286 outb(ECP_ATDISABLE
, (brdp
->iobase
+ ECP_ATCONFR
));
3289 /*****************************************************************************/
3291 static char *stli_ecpgetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
)
3297 printk(KERN_DEBUG
"stli_ecpgetmemptr(brdp=%x,offset=%x)\n", (int) brdp
,
3301 if (offset
> brdp
->memsize
) {
3302 printk(KERN_ERR
"STALLION: shared memory pointer=%x out of "
3303 "range at line=%d(%d), brd=%d\n",
3304 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
3308 ptr
= brdp
->membase
+ (offset
% ECP_ATPAGESIZE
);
3309 val
= (unsigned char) (offset
/ ECP_ATPAGESIZE
);
3311 outb(val
, (brdp
->iobase
+ ECP_ATMEMPR
));
3315 /*****************************************************************************/
3317 static void stli_ecpreset(stlibrd_t
*brdp
)
3320 printk(KERN_DEBUG
"stli_ecpreset(brdp=%x)\n", (int) brdp
);
3323 outb(ECP_ATSTOP
, (brdp
->iobase
+ ECP_ATCONFR
));
3325 outb(ECP_ATDISABLE
, (brdp
->iobase
+ ECP_ATCONFR
));
3329 /*****************************************************************************/
3331 static void stli_ecpintr(stlibrd_t
*brdp
)
3334 printk(KERN_DEBUG
"stli_ecpintr(brdp=%x)\n", (int) brdp
);
3336 outb(0x1, brdp
->iobase
);
3339 /*****************************************************************************/
3342 * The following set of functions act on ECP EISA boards.
3345 static void stli_ecpeiinit(stlibrd_t
*brdp
)
3347 unsigned long memconf
;
3350 printk(KERN_DEBUG
"stli_ecpeiinit(brdp=%x)\n", (int) brdp
);
3353 outb(0x1, (brdp
->iobase
+ ECP_EIBRDENAB
));
3354 outb(ECP_EISTOP
, (brdp
->iobase
+ ECP_EICONFR
));
3356 outb(ECP_EIDISABLE
, (brdp
->iobase
+ ECP_EICONFR
));
3359 memconf
= (brdp
->memaddr
& ECP_EIADDRMASKL
) >> ECP_EIADDRSHFTL
;
3360 outb(memconf
, (brdp
->iobase
+ ECP_EIMEMARL
));
3361 memconf
= (brdp
->memaddr
& ECP_EIADDRMASKH
) >> ECP_EIADDRSHFTH
;
3362 outb(memconf
, (brdp
->iobase
+ ECP_EIMEMARH
));
3365 /*****************************************************************************/
3367 static void stli_ecpeienable(stlibrd_t
*brdp
)
3369 outb(ECP_EIENABLE
, (brdp
->iobase
+ ECP_EICONFR
));
3372 /*****************************************************************************/
3374 static void stli_ecpeidisable(stlibrd_t
*brdp
)
3376 outb(ECP_EIDISABLE
, (brdp
->iobase
+ ECP_EICONFR
));
3379 /*****************************************************************************/
3381 static char *stli_ecpeigetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
)
3387 printk(KERN_DEBUG
"stli_ecpeigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3388 (int) brdp
, (int) offset
, line
);
3391 if (offset
> brdp
->memsize
) {
3392 printk(KERN_ERR
"STALLION: shared memory pointer=%x out of "
3393 "range at line=%d(%d), brd=%d\n",
3394 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
3398 ptr
= brdp
->membase
+ (offset
% ECP_EIPAGESIZE
);
3399 if (offset
< ECP_EIPAGESIZE
)
3402 val
= ECP_EIENABLE
| 0x40;
3404 outb(val
, (brdp
->iobase
+ ECP_EICONFR
));
3408 /*****************************************************************************/
3410 static void stli_ecpeireset(stlibrd_t
*brdp
)
3412 outb(ECP_EISTOP
, (brdp
->iobase
+ ECP_EICONFR
));
3414 outb(ECP_EIDISABLE
, (brdp
->iobase
+ ECP_EICONFR
));
3418 /*****************************************************************************/
3421 * The following set of functions act on ECP MCA boards.
3424 static void stli_ecpmcenable(stlibrd_t
*brdp
)
3426 outb(ECP_MCENABLE
, (brdp
->iobase
+ ECP_MCCONFR
));
3429 /*****************************************************************************/
3431 static void stli_ecpmcdisable(stlibrd_t
*brdp
)
3433 outb(ECP_MCDISABLE
, (brdp
->iobase
+ ECP_MCCONFR
));
3436 /*****************************************************************************/
3438 static char *stli_ecpmcgetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
)
3443 if (offset
> brdp
->memsize
) {
3444 printk(KERN_ERR
"STALLION: shared memory pointer=%x out of "
3445 "range at line=%d(%d), brd=%d\n",
3446 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
3450 ptr
= brdp
->membase
+ (offset
% ECP_MCPAGESIZE
);
3451 val
= ((unsigned char) (offset
/ ECP_MCPAGESIZE
)) | ECP_MCENABLE
;
3453 outb(val
, (brdp
->iobase
+ ECP_MCCONFR
));
3457 /*****************************************************************************/
3459 static void stli_ecpmcreset(stlibrd_t
*brdp
)
3461 outb(ECP_MCSTOP
, (brdp
->iobase
+ ECP_MCCONFR
));
3463 outb(ECP_MCDISABLE
, (brdp
->iobase
+ ECP_MCCONFR
));
3467 /*****************************************************************************/
3470 * The following set of functions act on ECP PCI boards.
3473 static void stli_ecppciinit(stlibrd_t
*brdp
)
3476 printk(KERN_DEBUG
"stli_ecppciinit(brdp=%x)\n", (int) brdp
);
3479 outb(ECP_PCISTOP
, (brdp
->iobase
+ ECP_PCICONFR
));
3481 outb(0, (brdp
->iobase
+ ECP_PCICONFR
));
3485 /*****************************************************************************/
3487 static char *stli_ecppcigetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
)
3493 printk(KERN_DEBUG
"stli_ecppcigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3494 (int) brdp
, (int) offset
, line
);
3497 if (offset
> brdp
->memsize
) {
3498 printk(KERN_ERR
"STALLION: shared memory pointer=%x out of "
3499 "range at line=%d(%d), board=%d\n",
3500 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
3504 ptr
= brdp
->membase
+ (offset
% ECP_PCIPAGESIZE
);
3505 val
= (offset
/ ECP_PCIPAGESIZE
) << 1;
3507 outb(val
, (brdp
->iobase
+ ECP_PCICONFR
));
3511 /*****************************************************************************/
3513 static void stli_ecppcireset(stlibrd_t
*brdp
)
3515 outb(ECP_PCISTOP
, (brdp
->iobase
+ ECP_PCICONFR
));
3517 outb(0, (brdp
->iobase
+ ECP_PCICONFR
));
3521 /*****************************************************************************/
3524 * The following routines act on ONboards.
3527 static void stli_onbinit(stlibrd_t
*brdp
)
3529 unsigned long memconf
;
3532 printk(KERN_DEBUG
"stli_onbinit(brdp=%d)\n", (int) brdp
);
3535 outb(ONB_ATSTOP
, (brdp
->iobase
+ ONB_ATCONFR
));
3537 outb(ONB_ATDISABLE
, (brdp
->iobase
+ ONB_ATCONFR
));
3540 memconf
= (brdp
->memaddr
& ONB_ATADDRMASK
) >> ONB_ATADDRSHFT
;
3541 outb(memconf
, (brdp
->iobase
+ ONB_ATMEMAR
));
3542 outb(0x1, brdp
->iobase
);
3546 /*****************************************************************************/
3548 static void stli_onbenable(stlibrd_t
*brdp
)
3551 printk(KERN_DEBUG
"stli_onbenable(brdp=%x)\n", (int) brdp
);
3553 outb((brdp
->enabval
| ONB_ATENABLE
), (brdp
->iobase
+ ONB_ATCONFR
));
3556 /*****************************************************************************/
3558 static void stli_onbdisable(stlibrd_t
*brdp
)
3561 printk(KERN_DEBUG
"stli_onbdisable(brdp=%x)\n", (int) brdp
);
3563 outb((brdp
->enabval
| ONB_ATDISABLE
), (brdp
->iobase
+ ONB_ATCONFR
));
3566 /*****************************************************************************/
3568 static char *stli_onbgetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
)
3573 printk(KERN_DEBUG
"stli_onbgetmemptr(brdp=%x,offset=%x)\n", (int) brdp
,
3577 if (offset
> brdp
->memsize
) {
3578 printk(KERN_ERR
"STALLION: shared memory pointer=%x out of "
3579 "range at line=%d(%d), brd=%d\n",
3580 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
3583 ptr
= brdp
->membase
+ (offset
% ONB_ATPAGESIZE
);
3588 /*****************************************************************************/
3590 static void stli_onbreset(stlibrd_t
*brdp
)
3594 printk(KERN_DEBUG
"stli_onbreset(brdp=%x)\n", (int) brdp
);
3597 outb(ONB_ATSTOP
, (brdp
->iobase
+ ONB_ATCONFR
));
3599 outb(ONB_ATDISABLE
, (brdp
->iobase
+ ONB_ATCONFR
));
3603 /*****************************************************************************/
3606 * The following routines act on ONboard EISA.
3609 static void stli_onbeinit(stlibrd_t
*brdp
)
3611 unsigned long memconf
;
3614 printk(KERN_DEBUG
"stli_onbeinit(brdp=%d)\n", (int) brdp
);
3617 outb(0x1, (brdp
->iobase
+ ONB_EIBRDENAB
));
3618 outb(ONB_EISTOP
, (brdp
->iobase
+ ONB_EICONFR
));
3620 outb(ONB_EIDISABLE
, (brdp
->iobase
+ ONB_EICONFR
));
3623 memconf
= (brdp
->memaddr
& ONB_EIADDRMASKL
) >> ONB_EIADDRSHFTL
;
3624 outb(memconf
, (brdp
->iobase
+ ONB_EIMEMARL
));
3625 memconf
= (brdp
->memaddr
& ONB_EIADDRMASKH
) >> ONB_EIADDRSHFTH
;
3626 outb(memconf
, (brdp
->iobase
+ ONB_EIMEMARH
));
3627 outb(0x1, brdp
->iobase
);
3631 /*****************************************************************************/
3633 static void stli_onbeenable(stlibrd_t
*brdp
)
3636 printk(KERN_DEBUG
"stli_onbeenable(brdp=%x)\n", (int) brdp
);
3638 outb(ONB_EIENABLE
, (brdp
->iobase
+ ONB_EICONFR
));
3641 /*****************************************************************************/
3643 static void stli_onbedisable(stlibrd_t
*brdp
)
3646 printk(KERN_DEBUG
"stli_onbedisable(brdp=%x)\n", (int) brdp
);
3648 outb(ONB_EIDISABLE
, (brdp
->iobase
+ ONB_EICONFR
));
3651 /*****************************************************************************/
3653 static char *stli_onbegetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
)
3659 printk(KERN_DEBUG
"stli_onbegetmemptr(brdp=%x,offset=%x,line=%d)\n",
3660 (int) brdp
, (int) offset
, line
);
3663 if (offset
> brdp
->memsize
) {
3664 printk(KERN_ERR
"STALLION: shared memory pointer=%x out of "
3665 "range at line=%d(%d), brd=%d\n",
3666 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
3670 ptr
= brdp
->membase
+ (offset
% ONB_EIPAGESIZE
);
3671 if (offset
< ONB_EIPAGESIZE
)
3674 val
= ONB_EIENABLE
| 0x40;
3676 outb(val
, (brdp
->iobase
+ ONB_EICONFR
));
3680 /*****************************************************************************/
3682 static void stli_onbereset(stlibrd_t
*brdp
)
3686 printk(KERN_ERR
"stli_onbereset(brdp=%x)\n", (int) brdp
);
3689 outb(ONB_EISTOP
, (brdp
->iobase
+ ONB_EICONFR
));
3691 outb(ONB_EIDISABLE
, (brdp
->iobase
+ ONB_EICONFR
));
3695 /*****************************************************************************/
3698 * The following routines act on Brumby boards.
3701 static void stli_bbyinit(stlibrd_t
*brdp
)
3705 printk(KERN_ERR
"stli_bbyinit(brdp=%d)\n", (int) brdp
);
3708 outb(BBY_ATSTOP
, (brdp
->iobase
+ BBY_ATCONFR
));
3710 outb(0, (brdp
->iobase
+ BBY_ATCONFR
));
3712 outb(0x1, brdp
->iobase
);
3716 /*****************************************************************************/
3718 static char *stli_bbygetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
)
3724 printk(KERN_ERR
"stli_bbygetmemptr(brdp=%x,offset=%x)\n", (int) brdp
,
3728 if (offset
> brdp
->memsize
) {
3729 printk(KERN_ERR
"STALLION: shared memory pointer=%x out of "
3730 "range at line=%d(%d), brd=%d\n",
3731 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
3735 ptr
= brdp
->membase
+ (offset
% BBY_PAGESIZE
);
3736 val
= (unsigned char) (offset
/ BBY_PAGESIZE
);
3738 outb(val
, (brdp
->iobase
+ BBY_ATCONFR
));
3742 /*****************************************************************************/
3744 static void stli_bbyreset(stlibrd_t
*brdp
)
3748 printk(KERN_DEBUG
"stli_bbyreset(brdp=%x)\n", (int) brdp
);
3751 outb(BBY_ATSTOP
, (brdp
->iobase
+ BBY_ATCONFR
));
3753 outb(0, (brdp
->iobase
+ BBY_ATCONFR
));
3757 /*****************************************************************************/
3760 * The following routines act on original old Stallion boards.
3763 static void stli_stalinit(stlibrd_t
*brdp
)
3767 printk(KERN_DEBUG
"stli_stalinit(brdp=%d)\n", (int) brdp
);
3770 outb(0x1, brdp
->iobase
);
3774 /*****************************************************************************/
3776 static char *stli_stalgetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
)
3781 printk(KERN_DEBUG
"stli_stalgetmemptr(brdp=%x,offset=%x)\n", (int) brdp
,
3785 if (offset
> brdp
->memsize
) {
3786 printk(KERN_ERR
"STALLION: shared memory pointer=%x out of "
3787 "range at line=%d(%d), brd=%d\n",
3788 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
3791 ptr
= brdp
->membase
+ (offset
% STAL_PAGESIZE
);
3796 /*****************************************************************************/
3798 static void stli_stalreset(stlibrd_t
*brdp
)
3800 volatile unsigned long *vecp
;
3803 printk(KERN_DEBUG
"stli_stalreset(brdp=%x)\n", (int) brdp
);
3806 vecp
= (volatile unsigned long *) (brdp
->membase
+ 0x30);
3808 outb(0, brdp
->iobase
);
3812 /*****************************************************************************/
3815 * Try to find an ECP board and initialize it. This handles only ECP
3819 static int stli_initecp(stlibrd_t
*brdp
)
3823 unsigned int status
, nxtid
;
3825 int panelnr
, nrports
;
3828 printk(KERN_DEBUG
"stli_initecp(brdp=%x)\n", (int) brdp
);
3831 if (!request_region(brdp
->iobase
, brdp
->iosize
, "istallion"))
3834 if ((brdp
->iobase
== 0) || (brdp
->memaddr
== 0))
3836 release_region(brdp
->iobase
, brdp
->iosize
);
3840 brdp
->iosize
= ECP_IOSIZE
;
3843 * Based on the specific board type setup the common vars to access
3844 * and enable shared memory. Set all board specific information now
3847 switch (brdp
->brdtype
) {
3849 brdp
->membase
= (void *) brdp
->memaddr
;
3850 brdp
->memsize
= ECP_MEMSIZE
;
3851 brdp
->pagesize
= ECP_ATPAGESIZE
;
3852 brdp
->init
= stli_ecpinit
;
3853 brdp
->enable
= stli_ecpenable
;
3854 brdp
->reenable
= stli_ecpenable
;
3855 brdp
->disable
= stli_ecpdisable
;
3856 brdp
->getmemptr
= stli_ecpgetmemptr
;
3857 brdp
->intr
= stli_ecpintr
;
3858 brdp
->reset
= stli_ecpreset
;
3859 name
= "serial(EC8/64)";
3863 brdp
->membase
= (void *) brdp
->memaddr
;
3864 brdp
->memsize
= ECP_MEMSIZE
;
3865 brdp
->pagesize
= ECP_EIPAGESIZE
;
3866 brdp
->init
= stli_ecpeiinit
;
3867 brdp
->enable
= stli_ecpeienable
;
3868 brdp
->reenable
= stli_ecpeienable
;
3869 brdp
->disable
= stli_ecpeidisable
;
3870 brdp
->getmemptr
= stli_ecpeigetmemptr
;
3871 brdp
->intr
= stli_ecpintr
;
3872 brdp
->reset
= stli_ecpeireset
;
3873 name
= "serial(EC8/64-EI)";
3877 brdp
->membase
= (void *) brdp
->memaddr
;
3878 brdp
->memsize
= ECP_MEMSIZE
;
3879 brdp
->pagesize
= ECP_MCPAGESIZE
;
3881 brdp
->enable
= stli_ecpmcenable
;
3882 brdp
->reenable
= stli_ecpmcenable
;
3883 brdp
->disable
= stli_ecpmcdisable
;
3884 brdp
->getmemptr
= stli_ecpmcgetmemptr
;
3885 brdp
->intr
= stli_ecpintr
;
3886 brdp
->reset
= stli_ecpmcreset
;
3887 name
= "serial(EC8/64-MCA)";
3891 brdp
->membase
= (void *) brdp
->memaddr
;
3892 brdp
->memsize
= ECP_PCIMEMSIZE
;
3893 brdp
->pagesize
= ECP_PCIPAGESIZE
;
3894 brdp
->init
= stli_ecppciinit
;
3895 brdp
->enable
= NULL
;
3896 brdp
->reenable
= NULL
;
3897 brdp
->disable
= NULL
;
3898 brdp
->getmemptr
= stli_ecppcigetmemptr
;
3899 brdp
->intr
= stli_ecpintr
;
3900 brdp
->reset
= stli_ecppcireset
;
3901 name
= "serial(EC/RA-PCI)";
3905 release_region(brdp
->iobase
, brdp
->iosize
);
3910 * The per-board operations structure is all set up, so now let's go
3911 * and get the board operational. Firstly initialize board configuration
3912 * registers. Set the memory mapping info so we can get at the boards
3917 brdp
->membase
= ioremap(brdp
->memaddr
, brdp
->memsize
);
3918 if (brdp
->membase
== (void *) NULL
)
3920 release_region(brdp
->iobase
, brdp
->iosize
);
3925 * Now that all specific code is set up, enable the shared memory and
3926 * look for the a signature area that will tell us exactly what board
3927 * this is, and what it is connected to it.
3930 sigsp
= (cdkecpsig_t
*) EBRDGETMEMPTR(brdp
, CDK_SIGADDR
);
3931 memcpy(&sig
, sigsp
, sizeof(cdkecpsig_t
));
3935 printk("%s(%d): sig-> magic=%x rom=%x panel=%x,%x,%x,%x,%x,%x,%x,%x\n",
3936 __FILE__
, __LINE__
, (int) sig
.magic
, sig
.romver
, sig
.panelid
[0],
3937 (int) sig
.panelid
[1], (int) sig
.panelid
[2],
3938 (int) sig
.panelid
[3], (int) sig
.panelid
[4],
3939 (int) sig
.panelid
[5], (int) sig
.panelid
[6],
3940 (int) sig
.panelid
[7]);
3943 if (sig
.magic
!= ECP_MAGIC
)
3945 release_region(brdp
->iobase
, brdp
->iosize
);
3950 * Scan through the signature looking at the panels connected to the
3951 * board. Calculate the total number of ports as we go.
3953 for (panelnr
= 0, nxtid
= 0; (panelnr
< STL_MAXPANELS
); panelnr
++) {
3954 status
= sig
.panelid
[nxtid
];
3955 if ((status
& ECH_PNLIDMASK
) != nxtid
)
3958 brdp
->panelids
[panelnr
] = status
;
3959 nrports
= (status
& ECH_PNL16PORT
) ? 16 : 8;
3960 if ((nrports
== 16) && ((status
& ECH_PNLXPID
) == 0))
3962 brdp
->panels
[panelnr
] = nrports
;
3963 brdp
->nrports
+= nrports
;
3969 brdp
->state
|= BST_FOUND
;
3973 /*****************************************************************************/
3976 * Try to find an ONboard, Brumby or Stallion board and initialize it.
3977 * This handles only these board types.
3980 static int stli_initonb(stlibrd_t
*brdp
)
3988 printk(KERN_DEBUG
"stli_initonb(brdp=%x)\n", (int) brdp
);
3992 * Do a basic sanity check on the IO and memory addresses.
3994 if ((brdp
->iobase
== 0) || (brdp
->memaddr
== 0))
3997 brdp
->iosize
= ONB_IOSIZE
;
3999 if (!request_region(brdp
->iobase
, brdp
->iosize
, "istallion"))
4003 * Based on the specific board type setup the common vars to access
4004 * and enable shared memory. Set all board specific information now
4007 switch (brdp
->brdtype
) {
4011 case BRD_ONBOARD2_32
:
4013 brdp
->membase
= (void *) brdp
->memaddr
;
4014 brdp
->memsize
= ONB_MEMSIZE
;
4015 brdp
->pagesize
= ONB_ATPAGESIZE
;
4016 brdp
->init
= stli_onbinit
;
4017 brdp
->enable
= stli_onbenable
;
4018 brdp
->reenable
= stli_onbenable
;
4019 brdp
->disable
= stli_onbdisable
;
4020 brdp
->getmemptr
= stli_onbgetmemptr
;
4021 brdp
->intr
= stli_ecpintr
;
4022 brdp
->reset
= stli_onbreset
;
4023 if (brdp
->memaddr
> 0x100000)
4024 brdp
->enabval
= ONB_MEMENABHI
;
4026 brdp
->enabval
= ONB_MEMENABLO
;
4027 name
= "serial(ONBoard)";
4031 brdp
->membase
= (void *) brdp
->memaddr
;
4032 brdp
->memsize
= ONB_EIMEMSIZE
;
4033 brdp
->pagesize
= ONB_EIPAGESIZE
;
4034 brdp
->init
= stli_onbeinit
;
4035 brdp
->enable
= stli_onbeenable
;
4036 brdp
->reenable
= stli_onbeenable
;
4037 brdp
->disable
= stli_onbedisable
;
4038 brdp
->getmemptr
= stli_onbegetmemptr
;
4039 brdp
->intr
= stli_ecpintr
;
4040 brdp
->reset
= stli_onbereset
;
4041 name
= "serial(ONBoard/E)";
4047 brdp
->membase
= (void *) brdp
->memaddr
;
4048 brdp
->memsize
= BBY_MEMSIZE
;
4049 brdp
->pagesize
= BBY_PAGESIZE
;
4050 brdp
->init
= stli_bbyinit
;
4051 brdp
->enable
= NULL
;
4052 brdp
->reenable
= NULL
;
4053 brdp
->disable
= NULL
;
4054 brdp
->getmemptr
= stli_bbygetmemptr
;
4055 brdp
->intr
= stli_ecpintr
;
4056 brdp
->reset
= stli_bbyreset
;
4057 name
= "serial(Brumby)";
4061 brdp
->membase
= (void *) brdp
->memaddr
;
4062 brdp
->memsize
= STAL_MEMSIZE
;
4063 brdp
->pagesize
= STAL_PAGESIZE
;
4064 brdp
->init
= stli_stalinit
;
4065 brdp
->enable
= NULL
;
4066 brdp
->reenable
= NULL
;
4067 brdp
->disable
= NULL
;
4068 brdp
->getmemptr
= stli_stalgetmemptr
;
4069 brdp
->intr
= stli_ecpintr
;
4070 brdp
->reset
= stli_stalreset
;
4071 name
= "serial(Stallion)";
4075 release_region(brdp
->iobase
, brdp
->iosize
);
4080 * The per-board operations structure is all set up, so now let's go
4081 * and get the board operational. Firstly initialize board configuration
4082 * registers. Set the memory mapping info so we can get at the boards
4087 brdp
->membase
= ioremap(brdp
->memaddr
, brdp
->memsize
);
4088 if (brdp
->membase
== (void *) NULL
)
4090 release_region(brdp
->iobase
, brdp
->iosize
);
4095 * Now that all specific code is set up, enable the shared memory and
4096 * look for the a signature area that will tell us exactly what board
4097 * this is, and how many ports.
4100 sigsp
= (cdkonbsig_t
*) EBRDGETMEMPTR(brdp
, CDK_SIGADDR
);
4101 memcpy(&sig
, sigsp
, sizeof(cdkonbsig_t
));
4105 printk("%s(%d): sig-> magic=%x:%x:%x:%x romver=%x amask=%x:%x:%x\n",
4106 __FILE__
, __LINE__
, sig
.magic0
, sig
.magic1
, sig
.magic2
,
4107 sig
.magic3
, sig
.romver
, sig
.amask0
, sig
.amask1
, sig
.amask2
);
4110 if ((sig
.magic0
!= ONB_MAGIC0
) || (sig
.magic1
!= ONB_MAGIC1
) ||
4111 (sig
.magic2
!= ONB_MAGIC2
) || (sig
.magic3
!= ONB_MAGIC3
))
4113 release_region(brdp
->iobase
, brdp
->iosize
);
4118 * Scan through the signature alive mask and calculate how many ports
4119 * there are on this board.
4125 for (i
= 0; (i
< 16); i
++) {
4126 if (((sig
.amask0
<< i
) & 0x8000) == 0)
4131 brdp
->panels
[0] = brdp
->nrports
;
4134 brdp
->state
|= BST_FOUND
;
4138 /*****************************************************************************/
4141 * Start up a running board. This routine is only called after the
4142 * code has been down loaded to the board and is operational. It will
4143 * read in the memory map, and get the show on the road...
4146 static int stli_startbrd(stlibrd_t
*brdp
)
4148 volatile cdkhdr_t
*hdrp
;
4149 volatile cdkmem_t
*memp
;
4150 volatile cdkasy_t
*ap
;
4151 unsigned long flags
;
4153 int portnr
, nrdevs
, i
, rc
;
4156 printk(KERN_DEBUG
"stli_startbrd(brdp=%x)\n", (int) brdp
);
4164 hdrp
= (volatile cdkhdr_t
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
4165 nrdevs
= hdrp
->nrdevs
;
4168 printk("%s(%d): CDK version %d.%d.%d --> "
4169 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
4170 __FILE__
, __LINE__
, hdrp
->ver_release
, hdrp
->ver_modification
,
4171 hdrp
->ver_fix
, nrdevs
, (int) hdrp
->memp
, (int) hdrp
->hostp
,
4172 (int) hdrp
->slavep
);
4175 if (nrdevs
< (brdp
->nrports
+ 1)) {
4176 printk(KERN_ERR
"STALLION: slave failed to allocate memory for "
4177 "all devices, devices=%d\n", nrdevs
);
4178 brdp
->nrports
= nrdevs
- 1;
4180 brdp
->nrdevs
= nrdevs
;
4181 brdp
->hostoffset
= hdrp
->hostp
- CDK_CDKADDR
;
4182 brdp
->slaveoffset
= hdrp
->slavep
- CDK_CDKADDR
;
4183 brdp
->bitsize
= (nrdevs
+ 7) / 8;
4184 memp
= (volatile cdkmem_t
*) hdrp
->memp
;
4185 if (((unsigned long) memp
) > brdp
->memsize
) {
4186 printk(KERN_ERR
"STALLION: corrupted shared memory region?\n");
4188 goto stli_donestartup
;
4190 memp
= (volatile cdkmem_t
*) EBRDGETMEMPTR(brdp
, (unsigned long) memp
);
4191 if (memp
->dtype
!= TYP_ASYNCTRL
) {
4192 printk(KERN_ERR
"STALLION: no slave control device found\n");
4193 goto stli_donestartup
;
4198 * Cycle through memory allocation of each port. We are guaranteed to
4199 * have all ports inside the first page of slave window, so no need to
4200 * change pages while reading memory map.
4202 for (i
= 1, portnr
= 0; (i
< nrdevs
); i
++, portnr
++, memp
++) {
4203 if (memp
->dtype
!= TYP_ASYNC
)
4205 portp
= brdp
->ports
[portnr
];
4206 if (portp
== (stliport_t
*) NULL
)
4209 portp
->addr
= memp
->offset
;
4210 portp
->reqbit
= (unsigned char) (0x1 << (i
* 8 / nrdevs
));
4211 portp
->portidx
= (unsigned char) (i
/ 8);
4212 portp
->portbit
= (unsigned char) (0x1 << (i
% 8));
4215 hdrp
->slavereq
= 0xff;
4218 * For each port setup a local copy of the RX and TX buffer offsets
4219 * and sizes. We do this separate from the above, because we need to
4220 * move the shared memory page...
4222 for (i
= 1, portnr
= 0; (i
< nrdevs
); i
++, portnr
++) {
4223 portp
= brdp
->ports
[portnr
];
4224 if (portp
== (stliport_t
*) NULL
)
4226 if (portp
->addr
== 0)
4228 ap
= (volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
);
4229 if (ap
!= (volatile cdkasy_t
*) NULL
) {
4230 portp
->rxsize
= ap
->rxq
.size
;
4231 portp
->txsize
= ap
->txq
.size
;
4232 portp
->rxoffset
= ap
->rxq
.offset
;
4233 portp
->txoffset
= ap
->txq
.offset
;
4239 restore_flags(flags
);
4242 brdp
->state
|= BST_STARTED
;
4244 if (! stli_timeron
) {
4246 stli_timerlist
.expires
= STLI_TIMEOUT
;
4247 add_timer(&stli_timerlist
);
4253 /*****************************************************************************/
4256 * Probe and initialize the specified board.
4259 static int __init
stli_brdinit(stlibrd_t
*brdp
)
4262 printk(KERN_DEBUG
"stli_brdinit(brdp=%x)\n", (int) brdp
);
4265 stli_brds
[brdp
->brdnr
] = brdp
;
4267 switch (brdp
->brdtype
) {
4278 case BRD_ONBOARD2_32
:
4290 printk(KERN_ERR
"STALLION: %s board type not supported in "
4291 "this driver\n", stli_brdnames
[brdp
->brdtype
]);
4294 printk(KERN_ERR
"STALLION: board=%d is unknown board "
4295 "type=%d\n", brdp
->brdnr
, brdp
->brdtype
);
4299 if ((brdp
->state
& BST_FOUND
) == 0) {
4300 printk(KERN_ERR
"STALLION: %s board not found, board=%d "
4302 stli_brdnames
[brdp
->brdtype
], brdp
->brdnr
,
4303 brdp
->iobase
, (int) brdp
->memaddr
);
4307 stli_initports(brdp
);
4308 printk(KERN_INFO
"STALLION: %s found, board=%d io=%x mem=%x "
4309 "nrpanels=%d nrports=%d\n", stli_brdnames
[brdp
->brdtype
],
4310 brdp
->brdnr
, brdp
->iobase
, (int) brdp
->memaddr
,
4311 brdp
->nrpanels
, brdp
->nrports
);
4315 /*****************************************************************************/
4318 * Probe around trying to find where the EISA boards shared memory
4319 * might be. This is a bit if hack, but it is the best we can do.
4322 static int stli_eisamemprobe(stlibrd_t
*brdp
)
4324 cdkecpsig_t ecpsig
, *ecpsigp
;
4325 cdkonbsig_t onbsig
, *onbsigp
;
4329 printk(KERN_DEBUG
"stli_eisamemprobe(brdp=%x)\n", (int) brdp
);
4333 * First up we reset the board, to get it into a known state. There
4334 * is only 2 board types here we need to worry about. Don;t use the
4335 * standard board init routine here, it programs up the shared
4336 * memory address, and we don't know it yet...
4338 if (brdp
->brdtype
== BRD_ECPE
) {
4339 outb(0x1, (brdp
->iobase
+ ECP_EIBRDENAB
));
4340 outb(ECP_EISTOP
, (brdp
->iobase
+ ECP_EICONFR
));
4342 outb(ECP_EIDISABLE
, (brdp
->iobase
+ ECP_EICONFR
));
4344 stli_ecpeienable(brdp
);
4345 } else if (brdp
->brdtype
== BRD_ONBOARDE
) {
4346 outb(0x1, (brdp
->iobase
+ ONB_EIBRDENAB
));
4347 outb(ONB_EISTOP
, (brdp
->iobase
+ ONB_EICONFR
));
4349 outb(ONB_EIDISABLE
, (brdp
->iobase
+ ONB_EICONFR
));
4351 outb(0x1, brdp
->iobase
);
4353 stli_onbeenable(brdp
);
4359 brdp
->memsize
= ECP_MEMSIZE
;
4362 * Board shared memory is enabled, so now we have a poke around and
4363 * see if we can find it.
4365 for (i
= 0; (i
< stli_eisamempsize
); i
++) {
4366 brdp
->memaddr
= stli_eisamemprobeaddrs
[i
];
4367 brdp
->membase
= (void *) brdp
->memaddr
;
4368 brdp
->membase
= ioremap(brdp
->memaddr
, brdp
->memsize
);
4369 if (brdp
->membase
== (void *) NULL
)
4372 if (brdp
->brdtype
== BRD_ECPE
) {
4373 ecpsigp
= (cdkecpsig_t
*) stli_ecpeigetmemptr(brdp
,
4374 CDK_SIGADDR
, __LINE__
);
4375 memcpy(&ecpsig
, ecpsigp
, sizeof(cdkecpsig_t
));
4376 if (ecpsig
.magic
== ECP_MAGIC
)
4379 onbsigp
= (cdkonbsig_t
*) stli_onbegetmemptr(brdp
,
4380 CDK_SIGADDR
, __LINE__
);
4381 memcpy(&onbsig
, onbsigp
, sizeof(cdkonbsig_t
));
4382 if ((onbsig
.magic0
== ONB_MAGIC0
) &&
4383 (onbsig
.magic1
== ONB_MAGIC1
) &&
4384 (onbsig
.magic2
== ONB_MAGIC2
) &&
4385 (onbsig
.magic3
== ONB_MAGIC3
))
4389 iounmap(brdp
->membase
);
4395 * Regardless of whether we found the shared memory or not we must
4396 * disable the region. After that return success or failure.
4398 if (brdp
->brdtype
== BRD_ECPE
)
4399 stli_ecpeidisable(brdp
);
4401 stli_onbedisable(brdp
);
4405 brdp
->membase
= NULL
;
4406 printk(KERN_ERR
"STALLION: failed to probe shared memory "
4407 "region for %s in EISA slot=%d\n",
4408 stli_brdnames
[brdp
->brdtype
], (brdp
->iobase
>> 12));
4414 static int stli_getbrdnr(void)
4418 for (i
= 0; i
< STL_MAXBRDS
; i
++) {
4419 if (!stli_brds
[i
]) {
4420 if (i
>= stli_nrbrds
)
4421 stli_nrbrds
= i
+ 1;
4428 /*****************************************************************************/
4431 * Probe around and try to find any EISA boards in system. The biggest
4432 * problem here is finding out what memory address is associated with
4433 * an EISA board after it is found. The registers of the ECPE and
4434 * ONboardE are not readable - so we can't read them from there. We
4435 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
4436 * actually have any way to find out the real value. The best we can
4437 * do is go probing around in the usual places hoping we can find it.
4440 static int stli_findeisabrds(void)
4443 unsigned int iobase
, eid
;
4447 printk(KERN_DEBUG
"stli_findeisabrds()\n");
4451 * Firstly check if this is an EISA system. Do this by probing for
4452 * the system board EISA ID. If this is not an EISA system then
4453 * don't bother going any further!
4456 if (inb(0xc80) == 0xff)
4460 * Looks like an EISA system, so go searching for EISA boards.
4462 for (iobase
= 0x1000; (iobase
<= 0xc000); iobase
+= 0x1000) {
4463 outb(0xff, (iobase
+ 0xc80));
4464 eid
= inb(iobase
+ 0xc80);
4465 eid
|= inb(iobase
+ 0xc81) << 8;
4466 if (eid
!= STL_EISAID
)
4470 * We have found a board. Need to check if this board was
4471 * statically configured already (just in case!).
4473 for (i
= 0; (i
< STL_MAXBRDS
); i
++) {
4474 brdp
= stli_brds
[i
];
4475 if (brdp
== (stlibrd_t
*) NULL
)
4477 if (brdp
->iobase
== iobase
)
4480 if (i
< STL_MAXBRDS
)
4484 * We have found a Stallion board and it is not configured already.
4485 * Allocate a board structure and initialize it.
4487 if ((brdp
= stli_allocbrd()) == (stlibrd_t
*) NULL
)
4489 if ((brdp
->brdnr
= stli_getbrdnr()) < 0)
4491 eid
= inb(iobase
+ 0xc82);
4492 if (eid
== ECP_EISAID
)
4493 brdp
->brdtype
= BRD_ECPE
;
4494 else if (eid
== ONB_EISAID
)
4495 brdp
->brdtype
= BRD_ONBOARDE
;
4497 brdp
->brdtype
= BRD_UNKNOWN
;
4498 brdp
->iobase
= iobase
;
4499 outb(0x1, (iobase
+ 0xc84));
4500 if (stli_eisamemprobe(brdp
))
4501 outb(0, (iobase
+ 0xc84));
4508 /*****************************************************************************/
4511 * Find the next available board number that is free.
4514 /*****************************************************************************/
4519 * We have a Stallion board. Allocate a board structure and
4520 * initialize it. Read its IO and MEMORY resources from PCI
4521 * configuration space.
4524 static int stli_initpcibrd(int brdtype
, struct pci_dev
*devp
)
4529 printk(KERN_DEBUG
"stli_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n",
4530 brdtype
, dev
->bus
->number
, dev
->devfn
);
4533 if (pci_enable_device(devp
))
4535 if ((brdp
= stli_allocbrd()) == (stlibrd_t
*) NULL
)
4537 if ((brdp
->brdnr
= stli_getbrdnr()) < 0) {
4538 printk(KERN_INFO
"STALLION: too many boards found, "
4539 "maximum supported %d\n", STL_MAXBRDS
);
4542 brdp
->brdtype
= brdtype
;
4545 printk(KERN_DEBUG
"%s(%d): BAR[]=%lx,%lx,%lx,%lx\n", __FILE__
, __LINE__
,
4546 pci_resource_start(devp
, 0),
4547 pci_resource_start(devp
, 1),
4548 pci_resource_start(devp
, 2),
4549 pci_resource_start(devp
, 3));
4553 * We have all resources from the board, so lets setup the actual
4554 * board structure now.
4556 brdp
->iobase
= pci_resource_start(devp
, 3);
4557 brdp
->memaddr
= pci_resource_start(devp
, 2);
4563 /*****************************************************************************/
4566 * Find all Stallion PCI boards that might be installed. Initialize each
4567 * one as it is found.
4570 static int stli_findpcibrds(void)
4572 struct pci_dev
*dev
= NULL
;
4576 printk("stli_findpcibrds()\n");
4579 while ((dev
= pci_find_device(PCI_VENDOR_ID_STALLION
,
4580 PCI_DEVICE_ID_ECRA
, dev
))) {
4581 if ((rc
= stli_initpcibrd(BRD_ECPPCI
, dev
)))
4590 /*****************************************************************************/
4593 * Allocate a new board structure. Fill out the basic info in it.
4596 static stlibrd_t
*stli_allocbrd(void)
4600 brdp
= kzalloc(sizeof(stlibrd_t
), GFP_KERNEL
);
4602 printk(KERN_ERR
"STALLION: failed to allocate memory "
4603 "(size=%d)\n", sizeof(stlibrd_t
));
4607 brdp
->magic
= STLI_BOARDMAGIC
;
4611 /*****************************************************************************/
4614 * Scan through all the boards in the configuration and see what we
4618 static int stli_initbrds(void)
4620 stlibrd_t
*brdp
, *nxtbrdp
;
4625 printk(KERN_DEBUG
"stli_initbrds()\n");
4628 if (stli_nrbrds
> STL_MAXBRDS
) {
4629 printk(KERN_INFO
"STALLION: too many boards in configuration "
4630 "table, truncating to %d\n", STL_MAXBRDS
);
4631 stli_nrbrds
= STL_MAXBRDS
;
4635 * Firstly scan the list of static boards configured. Allocate
4636 * resources and initialize the boards as found. If this is a
4637 * module then let the module args override static configuration.
4639 for (i
= 0; (i
< stli_nrbrds
); i
++) {
4640 confp
= &stli_brdconf
[i
];
4642 stli_parsebrd(confp
, stli_brdsp
[i
]);
4644 if ((brdp
= stli_allocbrd()) == (stlibrd_t
*) NULL
)
4647 brdp
->brdtype
= confp
->brdtype
;
4648 brdp
->iobase
= confp
->ioaddr1
;
4649 brdp
->memaddr
= confp
->memaddr
;
4654 * Static configuration table done, so now use dynamic methods to
4655 * see if any more boards should be configured.
4661 stli_findeisabrds();
4667 * All found boards are initialized. Now for a little optimization, if
4668 * no boards are sharing the "shared memory" regions then we can just
4669 * leave them all enabled. This is in fact the usual case.
4672 if (stli_nrbrds
> 1) {
4673 for (i
= 0; (i
< stli_nrbrds
); i
++) {
4674 brdp
= stli_brds
[i
];
4675 if (brdp
== (stlibrd_t
*) NULL
)
4677 for (j
= i
+ 1; (j
< stli_nrbrds
); j
++) {
4678 nxtbrdp
= stli_brds
[j
];
4679 if (nxtbrdp
== (stlibrd_t
*) NULL
)
4681 if ((brdp
->membase
>= nxtbrdp
->membase
) &&
4682 (brdp
->membase
<= (nxtbrdp
->membase
+
4683 nxtbrdp
->memsize
- 1))) {
4691 if (stli_shared
== 0) {
4692 for (i
= 0; (i
< stli_nrbrds
); i
++) {
4693 brdp
= stli_brds
[i
];
4694 if (brdp
== (stlibrd_t
*) NULL
)
4696 if (brdp
->state
& BST_FOUND
) {
4698 brdp
->enable
= NULL
;
4699 brdp
->disable
= NULL
;
4707 /*****************************************************************************/
4710 * Code to handle an "staliomem" read operation. This device is the
4711 * contents of the board shared memory. It is used for down loading
4712 * the slave image (and debugging :-)
4715 static ssize_t
stli_memread(struct file
*fp
, char __user
*buf
, size_t count
, loff_t
*offp
)
4717 unsigned long flags
;
4723 printk(KERN_DEBUG
"stli_memread(fp=%x,buf=%x,count=%x,offp=%x)\n",
4724 (int) fp
, (int) buf
, count
, (int) offp
);
4727 brdnr
= iminor(fp
->f_dentry
->d_inode
);
4728 if (brdnr
>= stli_nrbrds
)
4730 brdp
= stli_brds
[brdnr
];
4731 if (brdp
== (stlibrd_t
*) NULL
)
4733 if (brdp
->state
== 0)
4735 if (fp
->f_pos
>= brdp
->memsize
)
4738 size
= MIN(count
, (brdp
->memsize
- fp
->f_pos
));
4744 memptr
= (void *) EBRDGETMEMPTR(brdp
, fp
->f_pos
);
4745 n
= MIN(size
, (brdp
->pagesize
- (((unsigned long) fp
->f_pos
) % brdp
->pagesize
)));
4746 if (copy_to_user(buf
, memptr
, n
)) {
4756 restore_flags(flags
);
4761 /*****************************************************************************/
4764 * Code to handle an "staliomem" write operation. This device is the
4765 * contents of the board shared memory. It is used for down loading
4766 * the slave image (and debugging :-)
4769 static ssize_t
stli_memwrite(struct file
*fp
, const char __user
*buf
, size_t count
, loff_t
*offp
)
4771 unsigned long flags
;
4778 printk(KERN_DEBUG
"stli_memwrite(fp=%x,buf=%x,count=%x,offp=%x)\n",
4779 (int) fp
, (int) buf
, count
, (int) offp
);
4782 brdnr
= iminor(fp
->f_dentry
->d_inode
);
4783 if (brdnr
>= stli_nrbrds
)
4785 brdp
= stli_brds
[brdnr
];
4786 if (brdp
== (stlibrd_t
*) NULL
)
4788 if (brdp
->state
== 0)
4790 if (fp
->f_pos
>= brdp
->memsize
)
4793 chbuf
= (char __user
*) buf
;
4794 size
= MIN(count
, (brdp
->memsize
- fp
->f_pos
));
4800 memptr
= (void *) EBRDGETMEMPTR(brdp
, fp
->f_pos
);
4801 n
= MIN(size
, (brdp
->pagesize
- (((unsigned long) fp
->f_pos
) % brdp
->pagesize
)));
4802 if (copy_from_user(memptr
, chbuf
, n
)) {
4812 restore_flags(flags
);
4817 /*****************************************************************************/
4820 * Return the board stats structure to user app.
4823 static int stli_getbrdstats(combrd_t __user
*bp
)
4828 if (copy_from_user(&stli_brdstats
, bp
, sizeof(combrd_t
)))
4830 if (stli_brdstats
.brd
>= STL_MAXBRDS
)
4832 brdp
= stli_brds
[stli_brdstats
.brd
];
4833 if (brdp
== (stlibrd_t
*) NULL
)
4836 memset(&stli_brdstats
, 0, sizeof(combrd_t
));
4837 stli_brdstats
.brd
= brdp
->brdnr
;
4838 stli_brdstats
.type
= brdp
->brdtype
;
4839 stli_brdstats
.hwid
= 0;
4840 stli_brdstats
.state
= brdp
->state
;
4841 stli_brdstats
.ioaddr
= brdp
->iobase
;
4842 stli_brdstats
.memaddr
= brdp
->memaddr
;
4843 stli_brdstats
.nrpanels
= brdp
->nrpanels
;
4844 stli_brdstats
.nrports
= brdp
->nrports
;
4845 for (i
= 0; (i
< brdp
->nrpanels
); i
++) {
4846 stli_brdstats
.panels
[i
].panel
= i
;
4847 stli_brdstats
.panels
[i
].hwid
= brdp
->panelids
[i
];
4848 stli_brdstats
.panels
[i
].nrports
= brdp
->panels
[i
];
4851 if (copy_to_user(bp
, &stli_brdstats
, sizeof(combrd_t
)))
4856 /*****************************************************************************/
4859 * Resolve the referenced port number into a port struct pointer.
4862 static stliport_t
*stli_getport(int brdnr
, int panelnr
, int portnr
)
4867 if ((brdnr
< 0) || (brdnr
>= STL_MAXBRDS
))
4868 return((stliport_t
*) NULL
);
4869 brdp
= stli_brds
[brdnr
];
4870 if (brdp
== (stlibrd_t
*) NULL
)
4871 return((stliport_t
*) NULL
);
4872 for (i
= 0; (i
< panelnr
); i
++)
4873 portnr
+= brdp
->panels
[i
];
4874 if ((portnr
< 0) || (portnr
>= brdp
->nrports
))
4875 return((stliport_t
*) NULL
);
4876 return(brdp
->ports
[portnr
]);
4879 /*****************************************************************************/
4882 * Return the port stats structure to user app. A NULL port struct
4883 * pointer passed in means that we need to find out from the app
4884 * what port to get stats for (used through board control device).
4887 static int stli_portcmdstats(stliport_t
*portp
)
4889 unsigned long flags
;
4893 memset(&stli_comstats
, 0, sizeof(comstats_t
));
4895 if (portp
== (stliport_t
*) NULL
)
4897 brdp
= stli_brds
[portp
->brdnr
];
4898 if (brdp
== (stlibrd_t
*) NULL
)
4901 if (brdp
->state
& BST_STARTED
) {
4902 if ((rc
= stli_cmdwait(brdp
, portp
, A_GETSTATS
,
4903 &stli_cdkstats
, sizeof(asystats_t
), 1)) < 0)
4906 memset(&stli_cdkstats
, 0, sizeof(asystats_t
));
4909 stli_comstats
.brd
= portp
->brdnr
;
4910 stli_comstats
.panel
= portp
->panelnr
;
4911 stli_comstats
.port
= portp
->portnr
;
4912 stli_comstats
.state
= portp
->state
;
4913 stli_comstats
.flags
= portp
->flags
;
4917 if (portp
->tty
!= (struct tty_struct
*) NULL
) {
4918 if (portp
->tty
->driver_data
== portp
) {
4919 stli_comstats
.ttystate
= portp
->tty
->flags
;
4920 stli_comstats
.rxbuffered
= -1 /*portp->tty->flip.count*/;
4921 if (portp
->tty
->termios
!= (struct termios
*) NULL
) {
4922 stli_comstats
.cflags
= portp
->tty
->termios
->c_cflag
;
4923 stli_comstats
.iflags
= portp
->tty
->termios
->c_iflag
;
4924 stli_comstats
.oflags
= portp
->tty
->termios
->c_oflag
;
4925 stli_comstats
.lflags
= portp
->tty
->termios
->c_lflag
;
4929 restore_flags(flags
);
4931 stli_comstats
.txtotal
= stli_cdkstats
.txchars
;
4932 stli_comstats
.rxtotal
= stli_cdkstats
.rxchars
+ stli_cdkstats
.ringover
;
4933 stli_comstats
.txbuffered
= stli_cdkstats
.txringq
;
4934 stli_comstats
.rxbuffered
+= stli_cdkstats
.rxringq
;
4935 stli_comstats
.rxoverrun
= stli_cdkstats
.overruns
;
4936 stli_comstats
.rxparity
= stli_cdkstats
.parity
;
4937 stli_comstats
.rxframing
= stli_cdkstats
.framing
;
4938 stli_comstats
.rxlost
= stli_cdkstats
.ringover
;
4939 stli_comstats
.rxbreaks
= stli_cdkstats
.rxbreaks
;
4940 stli_comstats
.txbreaks
= stli_cdkstats
.txbreaks
;
4941 stli_comstats
.txxon
= stli_cdkstats
.txstart
;
4942 stli_comstats
.txxoff
= stli_cdkstats
.txstop
;
4943 stli_comstats
.rxxon
= stli_cdkstats
.rxstart
;
4944 stli_comstats
.rxxoff
= stli_cdkstats
.rxstop
;
4945 stli_comstats
.rxrtsoff
= stli_cdkstats
.rtscnt
/ 2;
4946 stli_comstats
.rxrtson
= stli_cdkstats
.rtscnt
- stli_comstats
.rxrtsoff
;
4947 stli_comstats
.modem
= stli_cdkstats
.dcdcnt
;
4948 stli_comstats
.hwid
= stli_cdkstats
.hwid
;
4949 stli_comstats
.signals
= stli_mktiocm(stli_cdkstats
.signals
);
4954 /*****************************************************************************/
4957 * Return the port stats structure to user app. A NULL port struct
4958 * pointer passed in means that we need to find out from the app
4959 * what port to get stats for (used through board control device).
4962 static int stli_getportstats(stliport_t
*portp
, comstats_t __user
*cp
)
4968 if (copy_from_user(&stli_comstats
, cp
, sizeof(comstats_t
)))
4970 portp
= stli_getport(stli_comstats
.brd
, stli_comstats
.panel
,
4971 stli_comstats
.port
);
4976 brdp
= stli_brds
[portp
->brdnr
];
4980 if ((rc
= stli_portcmdstats(portp
)) < 0)
4983 return copy_to_user(cp
, &stli_comstats
, sizeof(comstats_t
)) ?
4987 /*****************************************************************************/
4990 * Clear the port stats structure. We also return it zeroed out...
4993 static int stli_clrportstats(stliport_t
*portp
, comstats_t __user
*cp
)
4999 if (copy_from_user(&stli_comstats
, cp
, sizeof(comstats_t
)))
5001 portp
= stli_getport(stli_comstats
.brd
, stli_comstats
.panel
,
5002 stli_comstats
.port
);
5007 brdp
= stli_brds
[portp
->brdnr
];
5011 if (brdp
->state
& BST_STARTED
) {
5012 if ((rc
= stli_cmdwait(brdp
, portp
, A_CLEARSTATS
, NULL
, 0, 0)) < 0)
5016 memset(&stli_comstats
, 0, sizeof(comstats_t
));
5017 stli_comstats
.brd
= portp
->brdnr
;
5018 stli_comstats
.panel
= portp
->panelnr
;
5019 stli_comstats
.port
= portp
->portnr
;
5021 if (copy_to_user(cp
, &stli_comstats
, sizeof(comstats_t
)))
5026 /*****************************************************************************/
5029 * Return the entire driver ports structure to a user app.
5032 static int stli_getportstruct(stliport_t __user
*arg
)
5036 if (copy_from_user(&stli_dummyport
, arg
, sizeof(stliport_t
)))
5038 portp
= stli_getport(stli_dummyport
.brdnr
, stli_dummyport
.panelnr
,
5039 stli_dummyport
.portnr
);
5042 if (copy_to_user(arg
, portp
, sizeof(stliport_t
)))
5047 /*****************************************************************************/
5050 * Return the entire driver board structure to a user app.
5053 static int stli_getbrdstruct(stlibrd_t __user
*arg
)
5057 if (copy_from_user(&stli_dummybrd
, arg
, sizeof(stlibrd_t
)))
5059 if ((stli_dummybrd
.brdnr
< 0) || (stli_dummybrd
.brdnr
>= STL_MAXBRDS
))
5061 brdp
= stli_brds
[stli_dummybrd
.brdnr
];
5064 if (copy_to_user(arg
, brdp
, sizeof(stlibrd_t
)))
5069 /*****************************************************************************/
5072 * The "staliomem" device is also required to do some special operations on
5073 * the board. We need to be able to send an interrupt to the board,
5074 * reset it, and start/stop it.
5077 static int stli_memioctl(struct inode
*ip
, struct file
*fp
, unsigned int cmd
, unsigned long arg
)
5080 int brdnr
, rc
, done
;
5081 void __user
*argp
= (void __user
*)arg
;
5084 printk(KERN_DEBUG
"stli_memioctl(ip=%x,fp=%x,cmd=%x,arg=%x)\n",
5085 (int) ip
, (int) fp
, cmd
, (int) arg
);
5089 * First up handle the board independent ioctls.
5095 case COM_GETPORTSTATS
:
5096 rc
= stli_getportstats(NULL
, argp
);
5099 case COM_CLRPORTSTATS
:
5100 rc
= stli_clrportstats(NULL
, argp
);
5103 case COM_GETBRDSTATS
:
5104 rc
= stli_getbrdstats(argp
);
5108 rc
= stli_getportstruct(argp
);
5112 rc
= stli_getbrdstruct(argp
);
5121 * Now handle the board specific ioctls. These all depend on the
5122 * minor number of the device they were called from.
5125 if (brdnr
>= STL_MAXBRDS
)
5127 brdp
= stli_brds
[brdnr
];
5130 if (brdp
->state
== 0)
5138 rc
= stli_startbrd(brdp
);
5141 brdp
->state
&= ~BST_STARTED
;
5144 brdp
->state
&= ~BST_STARTED
;
5146 if (stli_shared
== 0) {
5147 if (brdp
->reenable
!= NULL
)
5148 (* brdp
->reenable
)(brdp
);
5159 static struct tty_operations stli_ops
= {
5161 .close
= stli_close
,
5162 .write
= stli_write
,
5163 .put_char
= stli_putchar
,
5164 .flush_chars
= stli_flushchars
,
5165 .write_room
= stli_writeroom
,
5166 .chars_in_buffer
= stli_charsinbuffer
,
5167 .ioctl
= stli_ioctl
,
5168 .set_termios
= stli_settermios
,
5169 .throttle
= stli_throttle
,
5170 .unthrottle
= stli_unthrottle
,
5172 .start
= stli_start
,
5173 .hangup
= stli_hangup
,
5174 .flush_buffer
= stli_flushbuffer
,
5175 .break_ctl
= stli_breakctl
,
5176 .wait_until_sent
= stli_waituntilsent
,
5177 .send_xchar
= stli_sendxchar
,
5178 .read_proc
= stli_readproc
,
5179 .tiocmget
= stli_tiocmget
,
5180 .tiocmset
= stli_tiocmset
,
5183 /*****************************************************************************/
5185 int __init
stli_init(void)
5188 printk(KERN_INFO
"%s: version %s\n", stli_drvtitle
, stli_drvversion
);
5192 stli_serial
= alloc_tty_driver(STL_MAXBRDS
* STL_MAXPORTS
);
5197 * Allocate a temporary write buffer.
5199 stli_tmpwritebuf
= kmalloc(STLI_TXBUFSIZE
, GFP_KERNEL
);
5200 if (!stli_tmpwritebuf
)
5201 printk(KERN_ERR
"STALLION: failed to allocate memory "
5202 "(size=%d)\n", STLI_TXBUFSIZE
);
5203 stli_txcookbuf
= kmalloc(STLI_TXBUFSIZE
, GFP_KERNEL
);
5204 if (!stli_txcookbuf
)
5205 printk(KERN_ERR
"STALLION: failed to allocate memory "
5206 "(size=%d)\n", STLI_TXBUFSIZE
);
5209 * Set up a character driver for the shared memory region. We need this
5210 * to down load the slave code image. Also it is a useful debugging tool.
5212 if (register_chrdev(STL_SIOMEMMAJOR
, "staliomem", &stli_fsiomem
))
5213 printk(KERN_ERR
"STALLION: failed to register serial memory "
5216 devfs_mk_dir("staliomem");
5217 istallion_class
= class_create(THIS_MODULE
, "staliomem");
5218 for (i
= 0; i
< 4; i
++) {
5219 devfs_mk_cdev(MKDEV(STL_SIOMEMMAJOR
, i
),
5220 S_IFCHR
| S_IRUSR
| S_IWUSR
,
5222 class_device_create(istallion_class
, NULL
,
5223 MKDEV(STL_SIOMEMMAJOR
, i
),
5224 NULL
, "staliomem%d", i
);
5228 * Set up the tty driver structure and register us as a driver.
5230 stli_serial
->owner
= THIS_MODULE
;
5231 stli_serial
->driver_name
= stli_drvname
;
5232 stli_serial
->name
= stli_serialname
;
5233 stli_serial
->major
= STL_SERIALMAJOR
;
5234 stli_serial
->minor_start
= 0;
5235 stli_serial
->type
= TTY_DRIVER_TYPE_SERIAL
;
5236 stli_serial
->subtype
= SERIAL_TYPE_NORMAL
;
5237 stli_serial
->init_termios
= stli_deftermios
;
5238 stli_serial
->flags
= TTY_DRIVER_REAL_RAW
;
5239 tty_set_operations(stli_serial
, &stli_ops
);
5241 if (tty_register_driver(stli_serial
)) {
5242 put_tty_driver(stli_serial
);
5243 printk(KERN_ERR
"STALLION: failed to register serial driver\n");
5249 /*****************************************************************************/