Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/kyle/parisc-2.6
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / crypto / ixp4xx_crypto.c
blob0d662213c06693fc16b0f95cf0eaac7252798a1f
1 /*
2 * Intel IXP4xx NPE-C crypto driver
4 * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of version 2 of the GNU General Public License
8 * as published by the Free Software Foundation.
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/gfp.h>
22 #include <crypto/ctr.h>
23 #include <crypto/des.h>
24 #include <crypto/aes.h>
25 #include <crypto/sha.h>
26 #include <crypto/algapi.h>
27 #include <crypto/aead.h>
28 #include <crypto/authenc.h>
29 #include <crypto/scatterwalk.h>
31 #include <mach/npe.h>
32 #include <mach/qmgr.h>
34 #define MAX_KEYLEN 32
36 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
37 #define NPE_CTX_LEN 80
38 #define AES_BLOCK128 16
40 #define NPE_OP_HASH_VERIFY 0x01
41 #define NPE_OP_CCM_ENABLE 0x04
42 #define NPE_OP_CRYPT_ENABLE 0x08
43 #define NPE_OP_HASH_ENABLE 0x10
44 #define NPE_OP_NOT_IN_PLACE 0x20
45 #define NPE_OP_HMAC_DISABLE 0x40
46 #define NPE_OP_CRYPT_ENCRYPT 0x80
48 #define NPE_OP_CCM_GEN_MIC 0xcc
49 #define NPE_OP_HASH_GEN_ICV 0x50
50 #define NPE_OP_ENC_GEN_KEY 0xc9
52 #define MOD_ECB 0x0000
53 #define MOD_CTR 0x1000
54 #define MOD_CBC_ENC 0x2000
55 #define MOD_CBC_DEC 0x3000
56 #define MOD_CCM_ENC 0x4000
57 #define MOD_CCM_DEC 0x5000
59 #define KEYLEN_128 4
60 #define KEYLEN_192 6
61 #define KEYLEN_256 8
63 #define CIPH_DECR 0x0000
64 #define CIPH_ENCR 0x0400
66 #define MOD_DES 0x0000
67 #define MOD_TDEA2 0x0100
68 #define MOD_3DES 0x0200
69 #define MOD_AES 0x0800
70 #define MOD_AES128 (0x0800 | KEYLEN_128)
71 #define MOD_AES192 (0x0900 | KEYLEN_192)
72 #define MOD_AES256 (0x0a00 | KEYLEN_256)
74 #define MAX_IVLEN 16
75 #define NPE_ID 2 /* NPE C */
76 #define NPE_QLEN 16
77 /* Space for registering when the first
78 * NPE_QLEN crypt_ctl are busy */
79 #define NPE_QLEN_TOTAL 64
81 #define SEND_QID 29
82 #define RECV_QID 30
84 #define CTL_FLAG_UNUSED 0x0000
85 #define CTL_FLAG_USED 0x1000
86 #define CTL_FLAG_PERFORM_ABLK 0x0001
87 #define CTL_FLAG_GEN_ICV 0x0002
88 #define CTL_FLAG_GEN_REVAES 0x0004
89 #define CTL_FLAG_PERFORM_AEAD 0x0008
90 #define CTL_FLAG_MASK 0x000f
92 #define HMAC_IPAD_VALUE 0x36
93 #define HMAC_OPAD_VALUE 0x5C
94 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
96 #define MD5_DIGEST_SIZE 16
98 struct buffer_desc {
99 u32 phys_next;
100 #ifdef __ARMEB__
101 u16 buf_len;
102 u16 pkt_len;
103 #else
104 u16 pkt_len;
105 u16 buf_len;
106 #endif
107 u32 phys_addr;
108 u32 __reserved[4];
109 struct buffer_desc *next;
110 enum dma_data_direction dir;
113 struct crypt_ctl {
114 #ifdef __ARMEB__
115 u8 mode; /* NPE_OP_* operation mode */
116 u8 init_len;
117 u16 reserved;
118 #else
119 u16 reserved;
120 u8 init_len;
121 u8 mode; /* NPE_OP_* operation mode */
122 #endif
123 u8 iv[MAX_IVLEN]; /* IV for CBC mode or CTR IV for CTR mode */
124 u32 icv_rev_aes; /* icv or rev aes */
125 u32 src_buf;
126 u32 dst_buf;
127 #ifdef __ARMEB__
128 u16 auth_offs; /* Authentication start offset */
129 u16 auth_len; /* Authentication data length */
130 u16 crypt_offs; /* Cryption start offset */
131 u16 crypt_len; /* Cryption data length */
132 #else
133 u16 auth_len; /* Authentication data length */
134 u16 auth_offs; /* Authentication start offset */
135 u16 crypt_len; /* Cryption data length */
136 u16 crypt_offs; /* Cryption start offset */
137 #endif
138 u32 aadAddr; /* Additional Auth Data Addr for CCM mode */
139 u32 crypto_ctx; /* NPE Crypto Param structure address */
141 /* Used by Host: 4*4 bytes*/
142 unsigned ctl_flags;
143 union {
144 struct ablkcipher_request *ablk_req;
145 struct aead_request *aead_req;
146 struct crypto_tfm *tfm;
147 } data;
148 struct buffer_desc *regist_buf;
149 u8 *regist_ptr;
152 struct ablk_ctx {
153 struct buffer_desc *src;
154 struct buffer_desc *dst;
157 struct aead_ctx {
158 struct buffer_desc *buffer;
159 struct scatterlist ivlist;
160 /* used when the hmac is not on one sg entry */
161 u8 *hmac_virt;
162 int encrypt;
165 struct ix_hash_algo {
166 u32 cfgword;
167 unsigned char *icv;
170 struct ix_sa_dir {
171 unsigned char *npe_ctx;
172 dma_addr_t npe_ctx_phys;
173 int npe_ctx_idx;
174 u8 npe_mode;
177 struct ixp_ctx {
178 struct ix_sa_dir encrypt;
179 struct ix_sa_dir decrypt;
180 int authkey_len;
181 u8 authkey[MAX_KEYLEN];
182 int enckey_len;
183 u8 enckey[MAX_KEYLEN];
184 u8 salt[MAX_IVLEN];
185 u8 nonce[CTR_RFC3686_NONCE_SIZE];
186 unsigned salted;
187 atomic_t configuring;
188 struct completion completion;
191 struct ixp_alg {
192 struct crypto_alg crypto;
193 const struct ix_hash_algo *hash;
194 u32 cfg_enc;
195 u32 cfg_dec;
197 int registered;
200 static const struct ix_hash_algo hash_alg_md5 = {
201 .cfgword = 0xAA010004,
202 .icv = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
203 "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
205 static const struct ix_hash_algo hash_alg_sha1 = {
206 .cfgword = 0x00000005,
207 .icv = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
208 "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
211 static struct npe *npe_c;
212 static struct dma_pool *buffer_pool = NULL;
213 static struct dma_pool *ctx_pool = NULL;
215 static struct crypt_ctl *crypt_virt = NULL;
216 static dma_addr_t crypt_phys;
218 static int support_aes = 1;
220 static void dev_release(struct device *dev)
222 return;
225 #define DRIVER_NAME "ixp4xx_crypto"
226 static struct platform_device pseudo_dev = {
227 .name = DRIVER_NAME,
228 .id = 0,
229 .num_resources = 0,
230 .dev = {
231 .coherent_dma_mask = DMA_BIT_MASK(32),
232 .release = dev_release,
236 static struct device *dev = &pseudo_dev.dev;
238 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
240 return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
243 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
245 return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
248 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
250 return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
253 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
255 return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
258 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
260 return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
263 static int setup_crypt_desc(void)
265 BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
266 crypt_virt = dma_alloc_coherent(dev,
267 NPE_QLEN * sizeof(struct crypt_ctl),
268 &crypt_phys, GFP_KERNEL);
269 if (!crypt_virt)
270 return -ENOMEM;
271 memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
272 return 0;
275 static spinlock_t desc_lock;
276 static struct crypt_ctl *get_crypt_desc(void)
278 int i;
279 static int idx = 0;
280 unsigned long flags;
282 spin_lock_irqsave(&desc_lock, flags);
284 if (unlikely(!crypt_virt))
285 setup_crypt_desc();
286 if (unlikely(!crypt_virt)) {
287 spin_unlock_irqrestore(&desc_lock, flags);
288 return NULL;
290 i = idx;
291 if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
292 if (++idx >= NPE_QLEN)
293 idx = 0;
294 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
295 spin_unlock_irqrestore(&desc_lock, flags);
296 return crypt_virt +i;
297 } else {
298 spin_unlock_irqrestore(&desc_lock, flags);
299 return NULL;
303 static spinlock_t emerg_lock;
304 static struct crypt_ctl *get_crypt_desc_emerg(void)
306 int i;
307 static int idx = NPE_QLEN;
308 struct crypt_ctl *desc;
309 unsigned long flags;
311 desc = get_crypt_desc();
312 if (desc)
313 return desc;
314 if (unlikely(!crypt_virt))
315 return NULL;
317 spin_lock_irqsave(&emerg_lock, flags);
318 i = idx;
319 if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
320 if (++idx >= NPE_QLEN_TOTAL)
321 idx = NPE_QLEN;
322 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
323 spin_unlock_irqrestore(&emerg_lock, flags);
324 return crypt_virt +i;
325 } else {
326 spin_unlock_irqrestore(&emerg_lock, flags);
327 return NULL;
331 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
333 while (buf) {
334 struct buffer_desc *buf1;
335 u32 phys1;
337 buf1 = buf->next;
338 phys1 = buf->phys_next;
339 dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
340 dma_pool_free(buffer_pool, buf, phys);
341 buf = buf1;
342 phys = phys1;
346 static struct tasklet_struct crypto_done_tasklet;
348 static void finish_scattered_hmac(struct crypt_ctl *crypt)
350 struct aead_request *req = crypt->data.aead_req;
351 struct aead_ctx *req_ctx = aead_request_ctx(req);
352 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
353 int authsize = crypto_aead_authsize(tfm);
354 int decryptlen = req->cryptlen - authsize;
356 if (req_ctx->encrypt) {
357 scatterwalk_map_and_copy(req_ctx->hmac_virt,
358 req->src, decryptlen, authsize, 1);
360 dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
363 static void one_packet(dma_addr_t phys)
365 struct crypt_ctl *crypt;
366 struct ixp_ctx *ctx;
367 int failed;
369 failed = phys & 0x1 ? -EBADMSG : 0;
370 phys &= ~0x3;
371 crypt = crypt_phys2virt(phys);
373 switch (crypt->ctl_flags & CTL_FLAG_MASK) {
374 case CTL_FLAG_PERFORM_AEAD: {
375 struct aead_request *req = crypt->data.aead_req;
376 struct aead_ctx *req_ctx = aead_request_ctx(req);
378 free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
379 if (req_ctx->hmac_virt) {
380 finish_scattered_hmac(crypt);
382 req->base.complete(&req->base, failed);
383 break;
385 case CTL_FLAG_PERFORM_ABLK: {
386 struct ablkcipher_request *req = crypt->data.ablk_req;
387 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
389 if (req_ctx->dst) {
390 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
392 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
393 req->base.complete(&req->base, failed);
394 break;
396 case CTL_FLAG_GEN_ICV:
397 ctx = crypto_tfm_ctx(crypt->data.tfm);
398 dma_pool_free(ctx_pool, crypt->regist_ptr,
399 crypt->regist_buf->phys_addr);
400 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
401 if (atomic_dec_and_test(&ctx->configuring))
402 complete(&ctx->completion);
403 break;
404 case CTL_FLAG_GEN_REVAES:
405 ctx = crypto_tfm_ctx(crypt->data.tfm);
406 *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
407 if (atomic_dec_and_test(&ctx->configuring))
408 complete(&ctx->completion);
409 break;
410 default:
411 BUG();
413 crypt->ctl_flags = CTL_FLAG_UNUSED;
416 static void irqhandler(void *_unused)
418 tasklet_schedule(&crypto_done_tasklet);
421 static void crypto_done_action(unsigned long arg)
423 int i;
425 for(i=0; i<4; i++) {
426 dma_addr_t phys = qmgr_get_entry(RECV_QID);
427 if (!phys)
428 return;
429 one_packet(phys);
431 tasklet_schedule(&crypto_done_tasklet);
434 static int init_ixp_crypto(void)
436 int ret = -ENODEV;
437 u32 msg[2] = { 0, 0 };
439 if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
440 IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
441 printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
442 return ret;
444 npe_c = npe_request(NPE_ID);
445 if (!npe_c)
446 return ret;
448 if (!npe_running(npe_c)) {
449 ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
450 if (ret) {
451 return ret;
453 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
454 goto npe_error;
455 } else {
456 if (npe_send_message(npe_c, msg, "STATUS_MSG"))
457 goto npe_error;
459 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
460 goto npe_error;
463 switch ((msg[1]>>16) & 0xff) {
464 case 3:
465 printk(KERN_WARNING "Firmware of %s lacks AES support\n",
466 npe_name(npe_c));
467 support_aes = 0;
468 break;
469 case 4:
470 case 5:
471 support_aes = 1;
472 break;
473 default:
474 printk(KERN_ERR "Firmware of %s lacks crypto support\n",
475 npe_name(npe_c));
476 return -ENODEV;
478 /* buffer_pool will also be used to sometimes store the hmac,
479 * so assure it is large enough
481 BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
482 buffer_pool = dma_pool_create("buffer", dev,
483 sizeof(struct buffer_desc), 32, 0);
484 ret = -ENOMEM;
485 if (!buffer_pool) {
486 goto err;
488 ctx_pool = dma_pool_create("context", dev,
489 NPE_CTX_LEN, 16, 0);
490 if (!ctx_pool) {
491 goto err;
493 ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
494 "ixp_crypto:out", NULL);
495 if (ret)
496 goto err;
497 ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
498 "ixp_crypto:in", NULL);
499 if (ret) {
500 qmgr_release_queue(SEND_QID);
501 goto err;
503 qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
504 tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
506 qmgr_enable_irq(RECV_QID);
507 return 0;
509 npe_error:
510 printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
511 ret = -EIO;
512 err:
513 if (ctx_pool)
514 dma_pool_destroy(ctx_pool);
515 if (buffer_pool)
516 dma_pool_destroy(buffer_pool);
517 npe_release(npe_c);
518 return ret;
521 static void release_ixp_crypto(void)
523 qmgr_disable_irq(RECV_QID);
524 tasklet_kill(&crypto_done_tasklet);
526 qmgr_release_queue(SEND_QID);
527 qmgr_release_queue(RECV_QID);
529 dma_pool_destroy(ctx_pool);
530 dma_pool_destroy(buffer_pool);
532 npe_release(npe_c);
534 if (crypt_virt) {
535 dma_free_coherent(dev,
536 NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
537 crypt_virt, crypt_phys);
539 return;
542 static void reset_sa_dir(struct ix_sa_dir *dir)
544 memset(dir->npe_ctx, 0, NPE_CTX_LEN);
545 dir->npe_ctx_idx = 0;
546 dir->npe_mode = 0;
549 static int init_sa_dir(struct ix_sa_dir *dir)
551 dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
552 if (!dir->npe_ctx) {
553 return -ENOMEM;
555 reset_sa_dir(dir);
556 return 0;
559 static void free_sa_dir(struct ix_sa_dir *dir)
561 memset(dir->npe_ctx, 0, NPE_CTX_LEN);
562 dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
565 static int init_tfm(struct crypto_tfm *tfm)
567 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
568 int ret;
570 atomic_set(&ctx->configuring, 0);
571 ret = init_sa_dir(&ctx->encrypt);
572 if (ret)
573 return ret;
574 ret = init_sa_dir(&ctx->decrypt);
575 if (ret) {
576 free_sa_dir(&ctx->encrypt);
578 return ret;
581 static int init_tfm_ablk(struct crypto_tfm *tfm)
583 tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
584 return init_tfm(tfm);
587 static int init_tfm_aead(struct crypto_tfm *tfm)
589 tfm->crt_aead.reqsize = sizeof(struct aead_ctx);
590 return init_tfm(tfm);
593 static void exit_tfm(struct crypto_tfm *tfm)
595 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
596 free_sa_dir(&ctx->encrypt);
597 free_sa_dir(&ctx->decrypt);
600 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
601 int init_len, u32 ctx_addr, const u8 *key, int key_len)
603 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
604 struct crypt_ctl *crypt;
605 struct buffer_desc *buf;
606 int i;
607 u8 *pad;
608 u32 pad_phys, buf_phys;
610 BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
611 pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
612 if (!pad)
613 return -ENOMEM;
614 buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
615 if (!buf) {
616 dma_pool_free(ctx_pool, pad, pad_phys);
617 return -ENOMEM;
619 crypt = get_crypt_desc_emerg();
620 if (!crypt) {
621 dma_pool_free(ctx_pool, pad, pad_phys);
622 dma_pool_free(buffer_pool, buf, buf_phys);
623 return -EAGAIN;
626 memcpy(pad, key, key_len);
627 memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
628 for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
629 pad[i] ^= xpad;
632 crypt->data.tfm = tfm;
633 crypt->regist_ptr = pad;
634 crypt->regist_buf = buf;
636 crypt->auth_offs = 0;
637 crypt->auth_len = HMAC_PAD_BLOCKLEN;
638 crypt->crypto_ctx = ctx_addr;
639 crypt->src_buf = buf_phys;
640 crypt->icv_rev_aes = target;
641 crypt->mode = NPE_OP_HASH_GEN_ICV;
642 crypt->init_len = init_len;
643 crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
645 buf->next = 0;
646 buf->buf_len = HMAC_PAD_BLOCKLEN;
647 buf->pkt_len = 0;
648 buf->phys_addr = pad_phys;
650 atomic_inc(&ctx->configuring);
651 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
652 BUG_ON(qmgr_stat_overflow(SEND_QID));
653 return 0;
656 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
657 const u8 *key, int key_len, unsigned digest_len)
659 u32 itarget, otarget, npe_ctx_addr;
660 unsigned char *cinfo;
661 int init_len, ret = 0;
662 u32 cfgword;
663 struct ix_sa_dir *dir;
664 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
665 const struct ix_hash_algo *algo;
667 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
668 cinfo = dir->npe_ctx + dir->npe_ctx_idx;
669 algo = ix_hash(tfm);
671 /* write cfg word to cryptinfo */
672 cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
673 #ifndef __ARMEB__
674 cfgword ^= 0xAA000000; /* change the "byte swap" flags */
675 #endif
676 *(u32*)cinfo = cpu_to_be32(cfgword);
677 cinfo += sizeof(cfgword);
679 /* write ICV to cryptinfo */
680 memcpy(cinfo, algo->icv, digest_len);
681 cinfo += digest_len;
683 itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
684 + sizeof(algo->cfgword);
685 otarget = itarget + digest_len;
686 init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
687 npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
689 dir->npe_ctx_idx += init_len;
690 dir->npe_mode |= NPE_OP_HASH_ENABLE;
692 if (!encrypt)
693 dir->npe_mode |= NPE_OP_HASH_VERIFY;
695 ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
696 init_len, npe_ctx_addr, key, key_len);
697 if (ret)
698 return ret;
699 return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
700 init_len, npe_ctx_addr, key, key_len);
703 static int gen_rev_aes_key(struct crypto_tfm *tfm)
705 struct crypt_ctl *crypt;
706 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
707 struct ix_sa_dir *dir = &ctx->decrypt;
709 crypt = get_crypt_desc_emerg();
710 if (!crypt) {
711 return -EAGAIN;
713 *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
715 crypt->data.tfm = tfm;
716 crypt->crypt_offs = 0;
717 crypt->crypt_len = AES_BLOCK128;
718 crypt->src_buf = 0;
719 crypt->crypto_ctx = dir->npe_ctx_phys;
720 crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
721 crypt->mode = NPE_OP_ENC_GEN_KEY;
722 crypt->init_len = dir->npe_ctx_idx;
723 crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
725 atomic_inc(&ctx->configuring);
726 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
727 BUG_ON(qmgr_stat_overflow(SEND_QID));
728 return 0;
731 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
732 const u8 *key, int key_len)
734 u8 *cinfo;
735 u32 cipher_cfg;
736 u32 keylen_cfg = 0;
737 struct ix_sa_dir *dir;
738 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
739 u32 *flags = &tfm->crt_flags;
741 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
742 cinfo = dir->npe_ctx;
744 if (encrypt) {
745 cipher_cfg = cipher_cfg_enc(tfm);
746 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
747 } else {
748 cipher_cfg = cipher_cfg_dec(tfm);
750 if (cipher_cfg & MOD_AES) {
751 switch (key_len) {
752 case 16: keylen_cfg = MOD_AES128 | KEYLEN_128; break;
753 case 24: keylen_cfg = MOD_AES192 | KEYLEN_192; break;
754 case 32: keylen_cfg = MOD_AES256 | KEYLEN_256; break;
755 default:
756 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
757 return -EINVAL;
759 cipher_cfg |= keylen_cfg;
760 } else if (cipher_cfg & MOD_3DES) {
761 const u32 *K = (const u32 *)key;
762 if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
763 !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
765 *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
766 return -EINVAL;
768 } else {
769 u32 tmp[DES_EXPKEY_WORDS];
770 if (des_ekey(tmp, key) == 0) {
771 *flags |= CRYPTO_TFM_RES_WEAK_KEY;
774 /* write cfg word to cryptinfo */
775 *(u32*)cinfo = cpu_to_be32(cipher_cfg);
776 cinfo += sizeof(cipher_cfg);
778 /* write cipher key to cryptinfo */
779 memcpy(cinfo, key, key_len);
780 /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
781 if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
782 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
783 key_len = DES3_EDE_KEY_SIZE;
785 dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
786 dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
787 if ((cipher_cfg & MOD_AES) && !encrypt) {
788 return gen_rev_aes_key(tfm);
790 return 0;
793 static struct buffer_desc *chainup_buffers(struct device *dev,
794 struct scatterlist *sg, unsigned nbytes,
795 struct buffer_desc *buf, gfp_t flags,
796 enum dma_data_direction dir)
798 for (;nbytes > 0; sg = scatterwalk_sg_next(sg)) {
799 unsigned len = min(nbytes, sg->length);
800 struct buffer_desc *next_buf;
801 u32 next_buf_phys;
802 void *ptr;
804 nbytes -= len;
805 ptr = page_address(sg_page(sg)) + sg->offset;
806 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
807 if (!next_buf) {
808 buf = NULL;
809 break;
811 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
812 buf->next = next_buf;
813 buf->phys_next = next_buf_phys;
814 buf = next_buf;
816 buf->phys_addr = sg_dma_address(sg);
817 buf->buf_len = len;
818 buf->dir = dir;
820 buf->next = NULL;
821 buf->phys_next = 0;
822 return buf;
825 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
826 unsigned int key_len)
828 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
829 u32 *flags = &tfm->base.crt_flags;
830 int ret;
832 init_completion(&ctx->completion);
833 atomic_inc(&ctx->configuring);
835 reset_sa_dir(&ctx->encrypt);
836 reset_sa_dir(&ctx->decrypt);
838 ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
839 ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
841 ret = setup_cipher(&tfm->base, 0, key, key_len);
842 if (ret)
843 goto out;
844 ret = setup_cipher(&tfm->base, 1, key, key_len);
845 if (ret)
846 goto out;
848 if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
849 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
850 ret = -EINVAL;
851 } else {
852 *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
855 out:
856 if (!atomic_dec_and_test(&ctx->configuring))
857 wait_for_completion(&ctx->completion);
858 return ret;
861 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
862 unsigned int key_len)
864 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
866 /* the nonce is stored in bytes at end of key */
867 if (key_len < CTR_RFC3686_NONCE_SIZE)
868 return -EINVAL;
870 memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
871 CTR_RFC3686_NONCE_SIZE);
873 key_len -= CTR_RFC3686_NONCE_SIZE;
874 return ablk_setkey(tfm, key, key_len);
877 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
879 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
880 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
881 unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
882 struct ix_sa_dir *dir;
883 struct crypt_ctl *crypt;
884 unsigned int nbytes = req->nbytes;
885 enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
886 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
887 struct buffer_desc src_hook;
888 gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
889 GFP_KERNEL : GFP_ATOMIC;
891 if (qmgr_stat_full(SEND_QID))
892 return -EAGAIN;
893 if (atomic_read(&ctx->configuring))
894 return -EAGAIN;
896 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
898 crypt = get_crypt_desc();
899 if (!crypt)
900 return -ENOMEM;
902 crypt->data.ablk_req = req;
903 crypt->crypto_ctx = dir->npe_ctx_phys;
904 crypt->mode = dir->npe_mode;
905 crypt->init_len = dir->npe_ctx_idx;
907 crypt->crypt_offs = 0;
908 crypt->crypt_len = nbytes;
910 BUG_ON(ivsize && !req->info);
911 memcpy(crypt->iv, req->info, ivsize);
912 if (req->src != req->dst) {
913 struct buffer_desc dst_hook;
914 crypt->mode |= NPE_OP_NOT_IN_PLACE;
915 /* This was never tested by Intel
916 * for more than one dst buffer, I think. */
917 BUG_ON(req->dst->length < nbytes);
918 req_ctx->dst = NULL;
919 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
920 flags, DMA_FROM_DEVICE))
921 goto free_buf_dest;
922 src_direction = DMA_TO_DEVICE;
923 req_ctx->dst = dst_hook.next;
924 crypt->dst_buf = dst_hook.phys_next;
925 } else {
926 req_ctx->dst = NULL;
928 req_ctx->src = NULL;
929 if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
930 flags, src_direction))
931 goto free_buf_src;
933 req_ctx->src = src_hook.next;
934 crypt->src_buf = src_hook.phys_next;
935 crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
936 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
937 BUG_ON(qmgr_stat_overflow(SEND_QID));
938 return -EINPROGRESS;
940 free_buf_src:
941 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
942 free_buf_dest:
943 if (req->src != req->dst) {
944 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
946 crypt->ctl_flags = CTL_FLAG_UNUSED;
947 return -ENOMEM;
950 static int ablk_encrypt(struct ablkcipher_request *req)
952 return ablk_perform(req, 1);
955 static int ablk_decrypt(struct ablkcipher_request *req)
957 return ablk_perform(req, 0);
960 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
962 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
963 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
964 u8 iv[CTR_RFC3686_BLOCK_SIZE];
965 u8 *info = req->info;
966 int ret;
968 /* set up counter block */
969 memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
970 memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
972 /* initialize counter portion of counter block */
973 *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
974 cpu_to_be32(1);
976 req->info = iv;
977 ret = ablk_perform(req, 1);
978 req->info = info;
979 return ret;
982 static int hmac_inconsistent(struct scatterlist *sg, unsigned start,
983 unsigned int nbytes)
985 int offset = 0;
987 if (!nbytes)
988 return 0;
990 for (;;) {
991 if (start < offset + sg->length)
992 break;
994 offset += sg->length;
995 sg = scatterwalk_sg_next(sg);
997 return (start + nbytes > offset + sg->length);
1000 static int aead_perform(struct aead_request *req, int encrypt,
1001 int cryptoffset, int eff_cryptlen, u8 *iv)
1003 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1004 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1005 unsigned ivsize = crypto_aead_ivsize(tfm);
1006 unsigned authsize = crypto_aead_authsize(tfm);
1007 struct ix_sa_dir *dir;
1008 struct crypt_ctl *crypt;
1009 unsigned int cryptlen;
1010 struct buffer_desc *buf, src_hook;
1011 struct aead_ctx *req_ctx = aead_request_ctx(req);
1012 gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1013 GFP_KERNEL : GFP_ATOMIC;
1015 if (qmgr_stat_full(SEND_QID))
1016 return -EAGAIN;
1017 if (atomic_read(&ctx->configuring))
1018 return -EAGAIN;
1020 if (encrypt) {
1021 dir = &ctx->encrypt;
1022 cryptlen = req->cryptlen;
1023 } else {
1024 dir = &ctx->decrypt;
1025 /* req->cryptlen includes the authsize when decrypting */
1026 cryptlen = req->cryptlen -authsize;
1027 eff_cryptlen -= authsize;
1029 crypt = get_crypt_desc();
1030 if (!crypt)
1031 return -ENOMEM;
1033 crypt->data.aead_req = req;
1034 crypt->crypto_ctx = dir->npe_ctx_phys;
1035 crypt->mode = dir->npe_mode;
1036 crypt->init_len = dir->npe_ctx_idx;
1038 crypt->crypt_offs = cryptoffset;
1039 crypt->crypt_len = eff_cryptlen;
1041 crypt->auth_offs = 0;
1042 crypt->auth_len = req->assoclen + ivsize + cryptlen;
1043 BUG_ON(ivsize && !req->iv);
1044 memcpy(crypt->iv, req->iv, ivsize);
1046 if (req->src != req->dst) {
1047 BUG(); /* -ENOTSUP because of my lazyness */
1050 /* ASSOC data */
1051 buf = chainup_buffers(dev, req->assoc, req->assoclen, &src_hook,
1052 flags, DMA_TO_DEVICE);
1053 req_ctx->buffer = src_hook.next;
1054 crypt->src_buf = src_hook.phys_next;
1055 if (!buf)
1056 goto out;
1057 /* IV */
1058 sg_init_table(&req_ctx->ivlist, 1);
1059 sg_set_buf(&req_ctx->ivlist, iv, ivsize);
1060 buf = chainup_buffers(dev, &req_ctx->ivlist, ivsize, buf, flags,
1061 DMA_BIDIRECTIONAL);
1062 if (!buf)
1063 goto free_chain;
1064 if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) {
1065 /* The 12 hmac bytes are scattered,
1066 * we need to copy them into a safe buffer */
1067 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1068 &crypt->icv_rev_aes);
1069 if (unlikely(!req_ctx->hmac_virt))
1070 goto free_chain;
1071 if (!encrypt) {
1072 scatterwalk_map_and_copy(req_ctx->hmac_virt,
1073 req->src, cryptlen, authsize, 0);
1075 req_ctx->encrypt = encrypt;
1076 } else {
1077 req_ctx->hmac_virt = NULL;
1079 /* Crypt */
1080 buf = chainup_buffers(dev, req->src, cryptlen + authsize, buf, flags,
1081 DMA_BIDIRECTIONAL);
1082 if (!buf)
1083 goto free_hmac_virt;
1084 if (!req_ctx->hmac_virt) {
1085 crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize;
1088 crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1089 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1090 BUG_ON(qmgr_stat_overflow(SEND_QID));
1091 return -EINPROGRESS;
1092 free_hmac_virt:
1093 if (req_ctx->hmac_virt) {
1094 dma_pool_free(buffer_pool, req_ctx->hmac_virt,
1095 crypt->icv_rev_aes);
1097 free_chain:
1098 free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
1099 out:
1100 crypt->ctl_flags = CTL_FLAG_UNUSED;
1101 return -ENOMEM;
1104 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1106 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1107 u32 *flags = &tfm->base.crt_flags;
1108 unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize;
1109 int ret;
1111 if (!ctx->enckey_len && !ctx->authkey_len)
1112 return 0;
1113 init_completion(&ctx->completion);
1114 atomic_inc(&ctx->configuring);
1116 reset_sa_dir(&ctx->encrypt);
1117 reset_sa_dir(&ctx->decrypt);
1119 ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1120 if (ret)
1121 goto out;
1122 ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1123 if (ret)
1124 goto out;
1125 ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1126 ctx->authkey_len, digest_len);
1127 if (ret)
1128 goto out;
1129 ret = setup_auth(&tfm->base, 1, authsize, ctx->authkey,
1130 ctx->authkey_len, digest_len);
1131 if (ret)
1132 goto out;
1134 if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1135 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1136 ret = -EINVAL;
1137 goto out;
1138 } else {
1139 *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1142 out:
1143 if (!atomic_dec_and_test(&ctx->configuring))
1144 wait_for_completion(&ctx->completion);
1145 return ret;
1148 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1150 int max = crypto_aead_alg(tfm)->maxauthsize >> 2;
1152 if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1153 return -EINVAL;
1154 return aead_setup(tfm, authsize);
1157 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1158 unsigned int keylen)
1160 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1161 struct rtattr *rta = (struct rtattr *)key;
1162 struct crypto_authenc_key_param *param;
1164 if (!RTA_OK(rta, keylen))
1165 goto badkey;
1166 if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
1167 goto badkey;
1168 if (RTA_PAYLOAD(rta) < sizeof(*param))
1169 goto badkey;
1171 param = RTA_DATA(rta);
1172 ctx->enckey_len = be32_to_cpu(param->enckeylen);
1174 key += RTA_ALIGN(rta->rta_len);
1175 keylen -= RTA_ALIGN(rta->rta_len);
1177 if (keylen < ctx->enckey_len)
1178 goto badkey;
1180 ctx->authkey_len = keylen - ctx->enckey_len;
1181 memcpy(ctx->enckey, key + ctx->authkey_len, ctx->enckey_len);
1182 memcpy(ctx->authkey, key, ctx->authkey_len);
1184 return aead_setup(tfm, crypto_aead_authsize(tfm));
1185 badkey:
1186 ctx->enckey_len = 0;
1187 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1188 return -EINVAL;
1191 static int aead_encrypt(struct aead_request *req)
1193 unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1194 return aead_perform(req, 1, req->assoclen + ivsize,
1195 req->cryptlen, req->iv);
1198 static int aead_decrypt(struct aead_request *req)
1200 unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1201 return aead_perform(req, 0, req->assoclen + ivsize,
1202 req->cryptlen, req->iv);
1205 static int aead_givencrypt(struct aead_givcrypt_request *req)
1207 struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
1208 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1209 unsigned len, ivsize = crypto_aead_ivsize(tfm);
1210 __be64 seq;
1212 /* copied from eseqiv.c */
1213 if (!ctx->salted) {
1214 get_random_bytes(ctx->salt, ivsize);
1215 ctx->salted = 1;
1217 memcpy(req->areq.iv, ctx->salt, ivsize);
1218 len = ivsize;
1219 if (ivsize > sizeof(u64)) {
1220 memset(req->giv, 0, ivsize - sizeof(u64));
1221 len = sizeof(u64);
1223 seq = cpu_to_be64(req->seq);
1224 memcpy(req->giv + ivsize - len, &seq, len);
1225 return aead_perform(&req->areq, 1, req->areq.assoclen,
1226 req->areq.cryptlen +ivsize, req->giv);
1229 static struct ixp_alg ixp4xx_algos[] = {
1231 .crypto = {
1232 .cra_name = "cbc(des)",
1233 .cra_blocksize = DES_BLOCK_SIZE,
1234 .cra_u = { .ablkcipher = {
1235 .min_keysize = DES_KEY_SIZE,
1236 .max_keysize = DES_KEY_SIZE,
1237 .ivsize = DES_BLOCK_SIZE,
1238 .geniv = "eseqiv",
1242 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1243 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1245 }, {
1246 .crypto = {
1247 .cra_name = "ecb(des)",
1248 .cra_blocksize = DES_BLOCK_SIZE,
1249 .cra_u = { .ablkcipher = {
1250 .min_keysize = DES_KEY_SIZE,
1251 .max_keysize = DES_KEY_SIZE,
1255 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1256 .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1257 }, {
1258 .crypto = {
1259 .cra_name = "cbc(des3_ede)",
1260 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1261 .cra_u = { .ablkcipher = {
1262 .min_keysize = DES3_EDE_KEY_SIZE,
1263 .max_keysize = DES3_EDE_KEY_SIZE,
1264 .ivsize = DES3_EDE_BLOCK_SIZE,
1265 .geniv = "eseqiv",
1269 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1270 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1271 }, {
1272 .crypto = {
1273 .cra_name = "ecb(des3_ede)",
1274 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1275 .cra_u = { .ablkcipher = {
1276 .min_keysize = DES3_EDE_KEY_SIZE,
1277 .max_keysize = DES3_EDE_KEY_SIZE,
1281 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1282 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1283 }, {
1284 .crypto = {
1285 .cra_name = "cbc(aes)",
1286 .cra_blocksize = AES_BLOCK_SIZE,
1287 .cra_u = { .ablkcipher = {
1288 .min_keysize = AES_MIN_KEY_SIZE,
1289 .max_keysize = AES_MAX_KEY_SIZE,
1290 .ivsize = AES_BLOCK_SIZE,
1291 .geniv = "eseqiv",
1295 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1296 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1297 }, {
1298 .crypto = {
1299 .cra_name = "ecb(aes)",
1300 .cra_blocksize = AES_BLOCK_SIZE,
1301 .cra_u = { .ablkcipher = {
1302 .min_keysize = AES_MIN_KEY_SIZE,
1303 .max_keysize = AES_MAX_KEY_SIZE,
1307 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1308 .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1309 }, {
1310 .crypto = {
1311 .cra_name = "ctr(aes)",
1312 .cra_blocksize = AES_BLOCK_SIZE,
1313 .cra_u = { .ablkcipher = {
1314 .min_keysize = AES_MIN_KEY_SIZE,
1315 .max_keysize = AES_MAX_KEY_SIZE,
1316 .ivsize = AES_BLOCK_SIZE,
1317 .geniv = "eseqiv",
1321 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1322 .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1323 }, {
1324 .crypto = {
1325 .cra_name = "rfc3686(ctr(aes))",
1326 .cra_blocksize = AES_BLOCK_SIZE,
1327 .cra_u = { .ablkcipher = {
1328 .min_keysize = AES_MIN_KEY_SIZE,
1329 .max_keysize = AES_MAX_KEY_SIZE,
1330 .ivsize = AES_BLOCK_SIZE,
1331 .geniv = "eseqiv",
1332 .setkey = ablk_rfc3686_setkey,
1333 .encrypt = ablk_rfc3686_crypt,
1334 .decrypt = ablk_rfc3686_crypt }
1337 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1338 .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1339 }, {
1340 .crypto = {
1341 .cra_name = "authenc(hmac(md5),cbc(des))",
1342 .cra_blocksize = DES_BLOCK_SIZE,
1343 .cra_u = { .aead = {
1344 .ivsize = DES_BLOCK_SIZE,
1345 .maxauthsize = MD5_DIGEST_SIZE,
1349 .hash = &hash_alg_md5,
1350 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1351 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1352 }, {
1353 .crypto = {
1354 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1355 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1356 .cra_u = { .aead = {
1357 .ivsize = DES3_EDE_BLOCK_SIZE,
1358 .maxauthsize = MD5_DIGEST_SIZE,
1362 .hash = &hash_alg_md5,
1363 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1364 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1365 }, {
1366 .crypto = {
1367 .cra_name = "authenc(hmac(sha1),cbc(des))",
1368 .cra_blocksize = DES_BLOCK_SIZE,
1369 .cra_u = { .aead = {
1370 .ivsize = DES_BLOCK_SIZE,
1371 .maxauthsize = SHA1_DIGEST_SIZE,
1375 .hash = &hash_alg_sha1,
1376 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1377 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1378 }, {
1379 .crypto = {
1380 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1381 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1382 .cra_u = { .aead = {
1383 .ivsize = DES3_EDE_BLOCK_SIZE,
1384 .maxauthsize = SHA1_DIGEST_SIZE,
1388 .hash = &hash_alg_sha1,
1389 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1390 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1391 }, {
1392 .crypto = {
1393 .cra_name = "authenc(hmac(md5),cbc(aes))",
1394 .cra_blocksize = AES_BLOCK_SIZE,
1395 .cra_u = { .aead = {
1396 .ivsize = AES_BLOCK_SIZE,
1397 .maxauthsize = MD5_DIGEST_SIZE,
1401 .hash = &hash_alg_md5,
1402 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1403 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1404 }, {
1405 .crypto = {
1406 .cra_name = "authenc(hmac(sha1),cbc(aes))",
1407 .cra_blocksize = AES_BLOCK_SIZE,
1408 .cra_u = { .aead = {
1409 .ivsize = AES_BLOCK_SIZE,
1410 .maxauthsize = SHA1_DIGEST_SIZE,
1414 .hash = &hash_alg_sha1,
1415 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1416 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1417 } };
1419 #define IXP_POSTFIX "-ixp4xx"
1420 static int __init ixp_module_init(void)
1422 int num = ARRAY_SIZE(ixp4xx_algos);
1423 int i,err ;
1425 if (platform_device_register(&pseudo_dev))
1426 return -ENODEV;
1428 spin_lock_init(&desc_lock);
1429 spin_lock_init(&emerg_lock);
1431 err = init_ixp_crypto();
1432 if (err) {
1433 platform_device_unregister(&pseudo_dev);
1434 return err;
1436 for (i=0; i< num; i++) {
1437 struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1439 if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1440 "%s"IXP_POSTFIX, cra->cra_name) >=
1441 CRYPTO_MAX_ALG_NAME)
1443 continue;
1445 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1446 continue;
1448 if (!ixp4xx_algos[i].hash) {
1449 /* block ciphers */
1450 cra->cra_type = &crypto_ablkcipher_type;
1451 cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1452 CRYPTO_ALG_ASYNC;
1453 if (!cra->cra_ablkcipher.setkey)
1454 cra->cra_ablkcipher.setkey = ablk_setkey;
1455 if (!cra->cra_ablkcipher.encrypt)
1456 cra->cra_ablkcipher.encrypt = ablk_encrypt;
1457 if (!cra->cra_ablkcipher.decrypt)
1458 cra->cra_ablkcipher.decrypt = ablk_decrypt;
1459 cra->cra_init = init_tfm_ablk;
1460 } else {
1461 /* authenc */
1462 cra->cra_type = &crypto_aead_type;
1463 cra->cra_flags = CRYPTO_ALG_TYPE_AEAD |
1464 CRYPTO_ALG_ASYNC;
1465 cra->cra_aead.setkey = aead_setkey;
1466 cra->cra_aead.setauthsize = aead_setauthsize;
1467 cra->cra_aead.encrypt = aead_encrypt;
1468 cra->cra_aead.decrypt = aead_decrypt;
1469 cra->cra_aead.givencrypt = aead_givencrypt;
1470 cra->cra_init = init_tfm_aead;
1472 cra->cra_ctxsize = sizeof(struct ixp_ctx);
1473 cra->cra_module = THIS_MODULE;
1474 cra->cra_alignmask = 3;
1475 cra->cra_priority = 300;
1476 cra->cra_exit = exit_tfm;
1477 if (crypto_register_alg(cra))
1478 printk(KERN_ERR "Failed to register '%s'\n",
1479 cra->cra_name);
1480 else
1481 ixp4xx_algos[i].registered = 1;
1483 return 0;
1486 static void __exit ixp_module_exit(void)
1488 int num = ARRAY_SIZE(ixp4xx_algos);
1489 int i;
1491 for (i=0; i< num; i++) {
1492 if (ixp4xx_algos[i].registered)
1493 crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1495 release_ixp_crypto();
1496 platform_device_unregister(&pseudo_dev);
1499 module_init(ixp_module_init);
1500 module_exit(ixp_module_exit);
1502 MODULE_LICENSE("GPL");
1503 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1504 MODULE_DESCRIPTION("IXP4xx hardware crypto");