memcg: modify accounting function for supporting THP better
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memcontrol.c
blob6d59a2bd520a0fba52a47a1ceb7558252eb07ba7
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
53 #include <asm/uaccess.h>
55 #include <trace/events/vmscan.h>
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
72 #else
73 #define do_swap_account (0)
74 #endif
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
87 * Statistics for memory cgroup.
89 enum mem_cgroup_stat_index {
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
96 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
98 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
104 MEM_CGROUP_STAT_NSTATS,
107 struct mem_cgroup_stat_cpu {
108 s64 count[MEM_CGROUP_STAT_NSTATS];
112 * per-zone information in memory controller.
114 struct mem_cgroup_per_zone {
116 * spin_lock to protect the per cgroup LRU
118 struct list_head lists[NR_LRU_LISTS];
119 unsigned long count[NR_LRU_LISTS];
121 struct zone_reclaim_stat reclaim_stat;
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
126 struct mem_cgroup *mem; /* Back pointer, we cannot */
127 /* use container_of */
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
132 struct mem_cgroup_per_node {
133 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
136 struct mem_cgroup_lru_info {
137 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
145 struct mem_cgroup_tree_per_zone {
146 struct rb_root rb_root;
147 spinlock_t lock;
150 struct mem_cgroup_tree_per_node {
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
154 struct mem_cgroup_tree {
155 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
160 struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 u64 threshold;
165 /* For threshold */
166 struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below usage. */
168 int current_threshold;
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[0];
175 struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
183 struct mem_cgroup_threshold_ary *spare;
186 /* for OOM */
187 struct mem_cgroup_eventfd_list {
188 struct list_head list;
189 struct eventfd_ctx *eventfd;
192 static void mem_cgroup_threshold(struct mem_cgroup *mem);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
206 struct mem_cgroup {
207 struct cgroup_subsys_state css;
209 * the counter to account for memory usage
211 struct res_counter res;
213 * the counter to account for mem+swap usage.
215 struct res_counter memsw;
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
220 struct mem_cgroup_lru_info info;
223 protect against reclaim related member.
225 spinlock_t reclaim_param_lock;
228 * While reclaiming in a hierarchy, we cache the last child we
229 * reclaimed from.
231 int last_scanned_child;
233 * Should the accounting and control be hierarchical, per subtree?
235 bool use_hierarchy;
236 atomic_t oom_lock;
237 atomic_t refcnt;
239 unsigned int swappiness;
240 /* OOM-Killer disable */
241 int oom_kill_disable;
243 /* set when res.limit == memsw.limit */
244 bool memsw_is_minimum;
246 /* protect arrays of thresholds */
247 struct mutex thresholds_lock;
249 /* thresholds for memory usage. RCU-protected */
250 struct mem_cgroup_thresholds thresholds;
252 /* thresholds for mem+swap usage. RCU-protected */
253 struct mem_cgroup_thresholds memsw_thresholds;
255 /* For oom notifier event fd */
256 struct list_head oom_notify;
259 * Should we move charges of a task when a task is moved into this
260 * mem_cgroup ? And what type of charges should we move ?
262 unsigned long move_charge_at_immigrate;
264 * percpu counter.
266 struct mem_cgroup_stat_cpu *stat;
268 * used when a cpu is offlined or other synchronizations
269 * See mem_cgroup_read_stat().
271 struct mem_cgroup_stat_cpu nocpu_base;
272 spinlock_t pcp_counter_lock;
275 /* Stuffs for move charges at task migration. */
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
280 enum move_type {
281 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
282 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
283 NR_MOVE_TYPE,
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct {
288 spinlock_t lock; /* for from, to */
289 struct mem_cgroup *from;
290 struct mem_cgroup *to;
291 unsigned long precharge;
292 unsigned long moved_charge;
293 unsigned long moved_swap;
294 struct task_struct *moving_task; /* a task moving charges */
295 wait_queue_head_t waitq; /* a waitq for other context */
296 } mc = {
297 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
301 static bool move_anon(void)
303 return test_bit(MOVE_CHARGE_TYPE_ANON,
304 &mc.to->move_charge_at_immigrate);
307 static bool move_file(void)
309 return test_bit(MOVE_CHARGE_TYPE_FILE,
310 &mc.to->move_charge_at_immigrate);
314 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315 * limit reclaim to prevent infinite loops, if they ever occur.
317 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
318 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
320 enum charge_type {
321 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322 MEM_CGROUP_CHARGE_TYPE_MAPPED,
323 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
324 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
325 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
326 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
327 NR_CHARGE_TYPE,
330 /* only for here (for easy reading.) */
331 #define PCGF_CACHE (1UL << PCG_CACHE)
332 #define PCGF_USED (1UL << PCG_USED)
333 #define PCGF_LOCK (1UL << PCG_LOCK)
334 /* Not used, but added here for completeness */
335 #define PCGF_ACCT (1UL << PCG_ACCT)
337 /* for encoding cft->private value on file */
338 #define _MEM (0)
339 #define _MEMSWAP (1)
340 #define _OOM_TYPE (2)
341 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
342 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
343 #define MEMFILE_ATTR(val) ((val) & 0xffff)
344 /* Used for OOM nofiier */
345 #define OOM_CONTROL (0)
348 * Reclaim flags for mem_cgroup_hierarchical_reclaim
350 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
351 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
352 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
353 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
355 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
357 static void mem_cgroup_get(struct mem_cgroup *mem);
358 static void mem_cgroup_put(struct mem_cgroup *mem);
359 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360 static void drain_all_stock_async(void);
362 static struct mem_cgroup_per_zone *
363 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
365 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
368 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
370 return &mem->css;
373 static struct mem_cgroup_per_zone *
374 page_cgroup_zoneinfo(struct page_cgroup *pc)
376 struct mem_cgroup *mem = pc->mem_cgroup;
377 int nid = page_cgroup_nid(pc);
378 int zid = page_cgroup_zid(pc);
380 if (!mem)
381 return NULL;
383 return mem_cgroup_zoneinfo(mem, nid, zid);
386 static struct mem_cgroup_tree_per_zone *
387 soft_limit_tree_node_zone(int nid, int zid)
389 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
392 static struct mem_cgroup_tree_per_zone *
393 soft_limit_tree_from_page(struct page *page)
395 int nid = page_to_nid(page);
396 int zid = page_zonenum(page);
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
401 static void
402 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
403 struct mem_cgroup_per_zone *mz,
404 struct mem_cgroup_tree_per_zone *mctz,
405 unsigned long long new_usage_in_excess)
407 struct rb_node **p = &mctz->rb_root.rb_node;
408 struct rb_node *parent = NULL;
409 struct mem_cgroup_per_zone *mz_node;
411 if (mz->on_tree)
412 return;
414 mz->usage_in_excess = new_usage_in_excess;
415 if (!mz->usage_in_excess)
416 return;
417 while (*p) {
418 parent = *p;
419 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
420 tree_node);
421 if (mz->usage_in_excess < mz_node->usage_in_excess)
422 p = &(*p)->rb_left;
424 * We can't avoid mem cgroups that are over their soft
425 * limit by the same amount
427 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
428 p = &(*p)->rb_right;
430 rb_link_node(&mz->tree_node, parent, p);
431 rb_insert_color(&mz->tree_node, &mctz->rb_root);
432 mz->on_tree = true;
435 static void
436 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
437 struct mem_cgroup_per_zone *mz,
438 struct mem_cgroup_tree_per_zone *mctz)
440 if (!mz->on_tree)
441 return;
442 rb_erase(&mz->tree_node, &mctz->rb_root);
443 mz->on_tree = false;
446 static void
447 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
448 struct mem_cgroup_per_zone *mz,
449 struct mem_cgroup_tree_per_zone *mctz)
451 spin_lock(&mctz->lock);
452 __mem_cgroup_remove_exceeded(mem, mz, mctz);
453 spin_unlock(&mctz->lock);
457 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
459 unsigned long long excess;
460 struct mem_cgroup_per_zone *mz;
461 struct mem_cgroup_tree_per_zone *mctz;
462 int nid = page_to_nid(page);
463 int zid = page_zonenum(page);
464 mctz = soft_limit_tree_from_page(page);
467 * Necessary to update all ancestors when hierarchy is used.
468 * because their event counter is not touched.
470 for (; mem; mem = parent_mem_cgroup(mem)) {
471 mz = mem_cgroup_zoneinfo(mem, nid, zid);
472 excess = res_counter_soft_limit_excess(&mem->res);
474 * We have to update the tree if mz is on RB-tree or
475 * mem is over its softlimit.
477 if (excess || mz->on_tree) {
478 spin_lock(&mctz->lock);
479 /* if on-tree, remove it */
480 if (mz->on_tree)
481 __mem_cgroup_remove_exceeded(mem, mz, mctz);
483 * Insert again. mz->usage_in_excess will be updated.
484 * If excess is 0, no tree ops.
486 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
487 spin_unlock(&mctz->lock);
492 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
494 int node, zone;
495 struct mem_cgroup_per_zone *mz;
496 struct mem_cgroup_tree_per_zone *mctz;
498 for_each_node_state(node, N_POSSIBLE) {
499 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
500 mz = mem_cgroup_zoneinfo(mem, node, zone);
501 mctz = soft_limit_tree_node_zone(node, zone);
502 mem_cgroup_remove_exceeded(mem, mz, mctz);
507 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
509 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
512 static struct mem_cgroup_per_zone *
513 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
515 struct rb_node *rightmost = NULL;
516 struct mem_cgroup_per_zone *mz;
518 retry:
519 mz = NULL;
520 rightmost = rb_last(&mctz->rb_root);
521 if (!rightmost)
522 goto done; /* Nothing to reclaim from */
524 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
526 * Remove the node now but someone else can add it back,
527 * we will to add it back at the end of reclaim to its correct
528 * position in the tree.
530 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
531 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
532 !css_tryget(&mz->mem->css))
533 goto retry;
534 done:
535 return mz;
538 static struct mem_cgroup_per_zone *
539 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
541 struct mem_cgroup_per_zone *mz;
543 spin_lock(&mctz->lock);
544 mz = __mem_cgroup_largest_soft_limit_node(mctz);
545 spin_unlock(&mctz->lock);
546 return mz;
550 * Implementation Note: reading percpu statistics for memcg.
552 * Both of vmstat[] and percpu_counter has threshold and do periodic
553 * synchronization to implement "quick" read. There are trade-off between
554 * reading cost and precision of value. Then, we may have a chance to implement
555 * a periodic synchronizion of counter in memcg's counter.
557 * But this _read() function is used for user interface now. The user accounts
558 * memory usage by memory cgroup and he _always_ requires exact value because
559 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560 * have to visit all online cpus and make sum. So, for now, unnecessary
561 * synchronization is not implemented. (just implemented for cpu hotplug)
563 * If there are kernel internal actions which can make use of some not-exact
564 * value, and reading all cpu value can be performance bottleneck in some
565 * common workload, threashold and synchonization as vmstat[] should be
566 * implemented.
568 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
569 enum mem_cgroup_stat_index idx)
571 int cpu;
572 s64 val = 0;
574 get_online_cpus();
575 for_each_online_cpu(cpu)
576 val += per_cpu(mem->stat->count[idx], cpu);
577 #ifdef CONFIG_HOTPLUG_CPU
578 spin_lock(&mem->pcp_counter_lock);
579 val += mem->nocpu_base.count[idx];
580 spin_unlock(&mem->pcp_counter_lock);
581 #endif
582 put_online_cpus();
583 return val;
586 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
588 s64 ret;
590 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
591 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
592 return ret;
595 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
596 bool charge)
598 int val = (charge) ? 1 : -1;
599 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
602 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
603 bool file, int nr_pages)
605 preempt_disable();
607 if (file)
608 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
609 else
610 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
612 /* pagein of a big page is an event. So, ignore page size */
613 if (nr_pages > 0)
614 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
615 else
616 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
618 __this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
620 preempt_enable();
623 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
624 enum lru_list idx)
626 int nid, zid;
627 struct mem_cgroup_per_zone *mz;
628 u64 total = 0;
630 for_each_online_node(nid)
631 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
632 mz = mem_cgroup_zoneinfo(mem, nid, zid);
633 total += MEM_CGROUP_ZSTAT(mz, idx);
635 return total;
638 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
640 s64 val;
642 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
644 return !(val & ((1 << event_mask_shift) - 1));
648 * Check events in order.
651 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
653 /* threshold event is triggered in finer grain than soft limit */
654 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
655 mem_cgroup_threshold(mem);
656 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
657 mem_cgroup_update_tree(mem, page);
661 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
663 return container_of(cgroup_subsys_state(cont,
664 mem_cgroup_subsys_id), struct mem_cgroup,
665 css);
668 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
671 * mm_update_next_owner() may clear mm->owner to NULL
672 * if it races with swapoff, page migration, etc.
673 * So this can be called with p == NULL.
675 if (unlikely(!p))
676 return NULL;
678 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
679 struct mem_cgroup, css);
682 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
684 struct mem_cgroup *mem = NULL;
686 if (!mm)
687 return NULL;
689 * Because we have no locks, mm->owner's may be being moved to other
690 * cgroup. We use css_tryget() here even if this looks
691 * pessimistic (rather than adding locks here).
693 rcu_read_lock();
694 do {
695 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
696 if (unlikely(!mem))
697 break;
698 } while (!css_tryget(&mem->css));
699 rcu_read_unlock();
700 return mem;
703 /* The caller has to guarantee "mem" exists before calling this */
704 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
706 struct cgroup_subsys_state *css;
707 int found;
709 if (!mem) /* ROOT cgroup has the smallest ID */
710 return root_mem_cgroup; /*css_put/get against root is ignored*/
711 if (!mem->use_hierarchy) {
712 if (css_tryget(&mem->css))
713 return mem;
714 return NULL;
716 rcu_read_lock();
718 * searching a memory cgroup which has the smallest ID under given
719 * ROOT cgroup. (ID >= 1)
721 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
722 if (css && css_tryget(css))
723 mem = container_of(css, struct mem_cgroup, css);
724 else
725 mem = NULL;
726 rcu_read_unlock();
727 return mem;
730 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
731 struct mem_cgroup *root,
732 bool cond)
734 int nextid = css_id(&iter->css) + 1;
735 int found;
736 int hierarchy_used;
737 struct cgroup_subsys_state *css;
739 hierarchy_used = iter->use_hierarchy;
741 css_put(&iter->css);
742 /* If no ROOT, walk all, ignore hierarchy */
743 if (!cond || (root && !hierarchy_used))
744 return NULL;
746 if (!root)
747 root = root_mem_cgroup;
749 do {
750 iter = NULL;
751 rcu_read_lock();
753 css = css_get_next(&mem_cgroup_subsys, nextid,
754 &root->css, &found);
755 if (css && css_tryget(css))
756 iter = container_of(css, struct mem_cgroup, css);
757 rcu_read_unlock();
758 /* If css is NULL, no more cgroups will be found */
759 nextid = found + 1;
760 } while (css && !iter);
762 return iter;
765 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
766 * be careful that "break" loop is not allowed. We have reference count.
767 * Instead of that modify "cond" to be false and "continue" to exit the loop.
769 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
770 for (iter = mem_cgroup_start_loop(root);\
771 iter != NULL;\
772 iter = mem_cgroup_get_next(iter, root, cond))
774 #define for_each_mem_cgroup_tree(iter, root) \
775 for_each_mem_cgroup_tree_cond(iter, root, true)
777 #define for_each_mem_cgroup_all(iter) \
778 for_each_mem_cgroup_tree_cond(iter, NULL, true)
781 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
783 return (mem == root_mem_cgroup);
787 * Following LRU functions are allowed to be used without PCG_LOCK.
788 * Operations are called by routine of global LRU independently from memcg.
789 * What we have to take care of here is validness of pc->mem_cgroup.
791 * Changes to pc->mem_cgroup happens when
792 * 1. charge
793 * 2. moving account
794 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
795 * It is added to LRU before charge.
796 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
797 * When moving account, the page is not on LRU. It's isolated.
800 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
802 struct page_cgroup *pc;
803 struct mem_cgroup_per_zone *mz;
805 if (mem_cgroup_disabled())
806 return;
807 pc = lookup_page_cgroup(page);
808 /* can happen while we handle swapcache. */
809 if (!TestClearPageCgroupAcctLRU(pc))
810 return;
811 VM_BUG_ON(!pc->mem_cgroup);
813 * We don't check PCG_USED bit. It's cleared when the "page" is finally
814 * removed from global LRU.
816 mz = page_cgroup_zoneinfo(pc);
817 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
818 if (mem_cgroup_is_root(pc->mem_cgroup))
819 return;
820 VM_BUG_ON(list_empty(&pc->lru));
821 list_del_init(&pc->lru);
824 void mem_cgroup_del_lru(struct page *page)
826 mem_cgroup_del_lru_list(page, page_lru(page));
829 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
831 struct mem_cgroup_per_zone *mz;
832 struct page_cgroup *pc;
834 if (mem_cgroup_disabled())
835 return;
837 pc = lookup_page_cgroup(page);
839 * Used bit is set without atomic ops but after smp_wmb().
840 * For making pc->mem_cgroup visible, insert smp_rmb() here.
842 smp_rmb();
843 /* unused or root page is not rotated. */
844 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
845 return;
846 mz = page_cgroup_zoneinfo(pc);
847 list_move(&pc->lru, &mz->lists[lru]);
850 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
852 struct page_cgroup *pc;
853 struct mem_cgroup_per_zone *mz;
855 if (mem_cgroup_disabled())
856 return;
857 pc = lookup_page_cgroup(page);
858 VM_BUG_ON(PageCgroupAcctLRU(pc));
860 * Used bit is set without atomic ops but after smp_wmb().
861 * For making pc->mem_cgroup visible, insert smp_rmb() here.
863 smp_rmb();
864 if (!PageCgroupUsed(pc))
865 return;
867 mz = page_cgroup_zoneinfo(pc);
868 MEM_CGROUP_ZSTAT(mz, lru) += 1;
869 SetPageCgroupAcctLRU(pc);
870 if (mem_cgroup_is_root(pc->mem_cgroup))
871 return;
872 list_add(&pc->lru, &mz->lists[lru]);
876 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
877 * lru because the page may.be reused after it's fully uncharged (because of
878 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
879 * it again. This function is only used to charge SwapCache. It's done under
880 * lock_page and expected that zone->lru_lock is never held.
882 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
884 unsigned long flags;
885 struct zone *zone = page_zone(page);
886 struct page_cgroup *pc = lookup_page_cgroup(page);
888 spin_lock_irqsave(&zone->lru_lock, flags);
890 * Forget old LRU when this page_cgroup is *not* used. This Used bit
891 * is guarded by lock_page() because the page is SwapCache.
893 if (!PageCgroupUsed(pc))
894 mem_cgroup_del_lru_list(page, page_lru(page));
895 spin_unlock_irqrestore(&zone->lru_lock, flags);
898 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
900 unsigned long flags;
901 struct zone *zone = page_zone(page);
902 struct page_cgroup *pc = lookup_page_cgroup(page);
904 spin_lock_irqsave(&zone->lru_lock, flags);
905 /* link when the page is linked to LRU but page_cgroup isn't */
906 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
907 mem_cgroup_add_lru_list(page, page_lru(page));
908 spin_unlock_irqrestore(&zone->lru_lock, flags);
912 void mem_cgroup_move_lists(struct page *page,
913 enum lru_list from, enum lru_list to)
915 if (mem_cgroup_disabled())
916 return;
917 mem_cgroup_del_lru_list(page, from);
918 mem_cgroup_add_lru_list(page, to);
921 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
923 int ret;
924 struct mem_cgroup *curr = NULL;
925 struct task_struct *p;
927 p = find_lock_task_mm(task);
928 if (!p)
929 return 0;
930 curr = try_get_mem_cgroup_from_mm(p->mm);
931 task_unlock(p);
932 if (!curr)
933 return 0;
935 * We should check use_hierarchy of "mem" not "curr". Because checking
936 * use_hierarchy of "curr" here make this function true if hierarchy is
937 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
938 * hierarchy(even if use_hierarchy is disabled in "mem").
940 if (mem->use_hierarchy)
941 ret = css_is_ancestor(&curr->css, &mem->css);
942 else
943 ret = (curr == mem);
944 css_put(&curr->css);
945 return ret;
948 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
950 unsigned long active;
951 unsigned long inactive;
952 unsigned long gb;
953 unsigned long inactive_ratio;
955 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
956 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
958 gb = (inactive + active) >> (30 - PAGE_SHIFT);
959 if (gb)
960 inactive_ratio = int_sqrt(10 * gb);
961 else
962 inactive_ratio = 1;
964 if (present_pages) {
965 present_pages[0] = inactive;
966 present_pages[1] = active;
969 return inactive_ratio;
972 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
974 unsigned long active;
975 unsigned long inactive;
976 unsigned long present_pages[2];
977 unsigned long inactive_ratio;
979 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
981 inactive = present_pages[0];
982 active = present_pages[1];
984 if (inactive * inactive_ratio < active)
985 return 1;
987 return 0;
990 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
992 unsigned long active;
993 unsigned long inactive;
995 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
996 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
998 return (active > inactive);
1001 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1002 struct zone *zone,
1003 enum lru_list lru)
1005 int nid = zone_to_nid(zone);
1006 int zid = zone_idx(zone);
1007 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1009 return MEM_CGROUP_ZSTAT(mz, lru);
1012 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1013 struct zone *zone)
1015 int nid = zone_to_nid(zone);
1016 int zid = zone_idx(zone);
1017 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1019 return &mz->reclaim_stat;
1022 struct zone_reclaim_stat *
1023 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1025 struct page_cgroup *pc;
1026 struct mem_cgroup_per_zone *mz;
1028 if (mem_cgroup_disabled())
1029 return NULL;
1031 pc = lookup_page_cgroup(page);
1033 * Used bit is set without atomic ops but after smp_wmb().
1034 * For making pc->mem_cgroup visible, insert smp_rmb() here.
1036 smp_rmb();
1037 if (!PageCgroupUsed(pc))
1038 return NULL;
1040 mz = page_cgroup_zoneinfo(pc);
1041 if (!mz)
1042 return NULL;
1044 return &mz->reclaim_stat;
1047 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1048 struct list_head *dst,
1049 unsigned long *scanned, int order,
1050 int mode, struct zone *z,
1051 struct mem_cgroup *mem_cont,
1052 int active, int file)
1054 unsigned long nr_taken = 0;
1055 struct page *page;
1056 unsigned long scan;
1057 LIST_HEAD(pc_list);
1058 struct list_head *src;
1059 struct page_cgroup *pc, *tmp;
1060 int nid = zone_to_nid(z);
1061 int zid = zone_idx(z);
1062 struct mem_cgroup_per_zone *mz;
1063 int lru = LRU_FILE * file + active;
1064 int ret;
1066 BUG_ON(!mem_cont);
1067 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1068 src = &mz->lists[lru];
1070 scan = 0;
1071 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1072 if (scan >= nr_to_scan)
1073 break;
1075 page = pc->page;
1076 if (unlikely(!PageCgroupUsed(pc)))
1077 continue;
1078 if (unlikely(!PageLRU(page)))
1079 continue;
1081 scan++;
1082 ret = __isolate_lru_page(page, mode, file);
1083 switch (ret) {
1084 case 0:
1085 list_move(&page->lru, dst);
1086 mem_cgroup_del_lru(page);
1087 nr_taken += hpage_nr_pages(page);
1088 break;
1089 case -EBUSY:
1090 /* we don't affect global LRU but rotate in our LRU */
1091 mem_cgroup_rotate_lru_list(page, page_lru(page));
1092 break;
1093 default:
1094 break;
1098 *scanned = scan;
1100 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1101 0, 0, 0, mode);
1103 return nr_taken;
1106 #define mem_cgroup_from_res_counter(counter, member) \
1107 container_of(counter, struct mem_cgroup, member)
1109 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1111 if (do_swap_account) {
1112 if (res_counter_check_under_limit(&mem->res) &&
1113 res_counter_check_under_limit(&mem->memsw))
1114 return true;
1115 } else
1116 if (res_counter_check_under_limit(&mem->res))
1117 return true;
1118 return false;
1121 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1123 struct cgroup *cgrp = memcg->css.cgroup;
1124 unsigned int swappiness;
1126 /* root ? */
1127 if (cgrp->parent == NULL)
1128 return vm_swappiness;
1130 spin_lock(&memcg->reclaim_param_lock);
1131 swappiness = memcg->swappiness;
1132 spin_unlock(&memcg->reclaim_param_lock);
1134 return swappiness;
1137 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1139 int cpu;
1141 get_online_cpus();
1142 spin_lock(&mem->pcp_counter_lock);
1143 for_each_online_cpu(cpu)
1144 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1145 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1146 spin_unlock(&mem->pcp_counter_lock);
1147 put_online_cpus();
1149 synchronize_rcu();
1152 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1154 int cpu;
1156 if (!mem)
1157 return;
1158 get_online_cpus();
1159 spin_lock(&mem->pcp_counter_lock);
1160 for_each_online_cpu(cpu)
1161 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1162 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1163 spin_unlock(&mem->pcp_counter_lock);
1164 put_online_cpus();
1167 * 2 routines for checking "mem" is under move_account() or not.
1169 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1170 * for avoiding race in accounting. If true,
1171 * pc->mem_cgroup may be overwritten.
1173 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1174 * under hierarchy of moving cgroups. This is for
1175 * waiting at hith-memory prressure caused by "move".
1178 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1180 VM_BUG_ON(!rcu_read_lock_held());
1181 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1184 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1186 struct mem_cgroup *from;
1187 struct mem_cgroup *to;
1188 bool ret = false;
1190 * Unlike task_move routines, we access mc.to, mc.from not under
1191 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1193 spin_lock(&mc.lock);
1194 from = mc.from;
1195 to = mc.to;
1196 if (!from)
1197 goto unlock;
1198 if (from == mem || to == mem
1199 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1200 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1201 ret = true;
1202 unlock:
1203 spin_unlock(&mc.lock);
1204 return ret;
1207 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1209 if (mc.moving_task && current != mc.moving_task) {
1210 if (mem_cgroup_under_move(mem)) {
1211 DEFINE_WAIT(wait);
1212 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1213 /* moving charge context might have finished. */
1214 if (mc.moving_task)
1215 schedule();
1216 finish_wait(&mc.waitq, &wait);
1217 return true;
1220 return false;
1224 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1225 * @memcg: The memory cgroup that went over limit
1226 * @p: Task that is going to be killed
1228 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1229 * enabled
1231 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1233 struct cgroup *task_cgrp;
1234 struct cgroup *mem_cgrp;
1236 * Need a buffer in BSS, can't rely on allocations. The code relies
1237 * on the assumption that OOM is serialized for memory controller.
1238 * If this assumption is broken, revisit this code.
1240 static char memcg_name[PATH_MAX];
1241 int ret;
1243 if (!memcg || !p)
1244 return;
1247 rcu_read_lock();
1249 mem_cgrp = memcg->css.cgroup;
1250 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1252 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1253 if (ret < 0) {
1255 * Unfortunately, we are unable to convert to a useful name
1256 * But we'll still print out the usage information
1258 rcu_read_unlock();
1259 goto done;
1261 rcu_read_unlock();
1263 printk(KERN_INFO "Task in %s killed", memcg_name);
1265 rcu_read_lock();
1266 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1267 if (ret < 0) {
1268 rcu_read_unlock();
1269 goto done;
1271 rcu_read_unlock();
1274 * Continues from above, so we don't need an KERN_ level
1276 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1277 done:
1279 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1280 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1281 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1282 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1283 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1284 "failcnt %llu\n",
1285 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1286 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1287 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1291 * This function returns the number of memcg under hierarchy tree. Returns
1292 * 1(self count) if no children.
1294 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1296 int num = 0;
1297 struct mem_cgroup *iter;
1299 for_each_mem_cgroup_tree(iter, mem)
1300 num++;
1301 return num;
1305 * Return the memory (and swap, if configured) limit for a memcg.
1307 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1309 u64 limit;
1310 u64 memsw;
1312 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1313 limit += total_swap_pages << PAGE_SHIFT;
1315 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1317 * If memsw is finite and limits the amount of swap space available
1318 * to this memcg, return that limit.
1320 return min(limit, memsw);
1324 * Visit the first child (need not be the first child as per the ordering
1325 * of the cgroup list, since we track last_scanned_child) of @mem and use
1326 * that to reclaim free pages from.
1328 static struct mem_cgroup *
1329 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1331 struct mem_cgroup *ret = NULL;
1332 struct cgroup_subsys_state *css;
1333 int nextid, found;
1335 if (!root_mem->use_hierarchy) {
1336 css_get(&root_mem->css);
1337 ret = root_mem;
1340 while (!ret) {
1341 rcu_read_lock();
1342 nextid = root_mem->last_scanned_child + 1;
1343 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1344 &found);
1345 if (css && css_tryget(css))
1346 ret = container_of(css, struct mem_cgroup, css);
1348 rcu_read_unlock();
1349 /* Updates scanning parameter */
1350 spin_lock(&root_mem->reclaim_param_lock);
1351 if (!css) {
1352 /* this means start scan from ID:1 */
1353 root_mem->last_scanned_child = 0;
1354 } else
1355 root_mem->last_scanned_child = found;
1356 spin_unlock(&root_mem->reclaim_param_lock);
1359 return ret;
1363 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1364 * we reclaimed from, so that we don't end up penalizing one child extensively
1365 * based on its position in the children list.
1367 * root_mem is the original ancestor that we've been reclaim from.
1369 * We give up and return to the caller when we visit root_mem twice.
1370 * (other groups can be removed while we're walking....)
1372 * If shrink==true, for avoiding to free too much, this returns immedieately.
1374 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1375 struct zone *zone,
1376 gfp_t gfp_mask,
1377 unsigned long reclaim_options)
1379 struct mem_cgroup *victim;
1380 int ret, total = 0;
1381 int loop = 0;
1382 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1383 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1384 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1385 unsigned long excess = mem_cgroup_get_excess(root_mem);
1387 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1388 if (root_mem->memsw_is_minimum)
1389 noswap = true;
1391 while (1) {
1392 victim = mem_cgroup_select_victim(root_mem);
1393 if (victim == root_mem) {
1394 loop++;
1395 if (loop >= 1)
1396 drain_all_stock_async();
1397 if (loop >= 2) {
1399 * If we have not been able to reclaim
1400 * anything, it might because there are
1401 * no reclaimable pages under this hierarchy
1403 if (!check_soft || !total) {
1404 css_put(&victim->css);
1405 break;
1408 * We want to do more targetted reclaim.
1409 * excess >> 2 is not to excessive so as to
1410 * reclaim too much, nor too less that we keep
1411 * coming back to reclaim from this cgroup
1413 if (total >= (excess >> 2) ||
1414 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1415 css_put(&victim->css);
1416 break;
1420 if (!mem_cgroup_local_usage(victim)) {
1421 /* this cgroup's local usage == 0 */
1422 css_put(&victim->css);
1423 continue;
1425 /* we use swappiness of local cgroup */
1426 if (check_soft)
1427 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1428 noswap, get_swappiness(victim), zone);
1429 else
1430 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1431 noswap, get_swappiness(victim));
1432 css_put(&victim->css);
1434 * At shrinking usage, we can't check we should stop here or
1435 * reclaim more. It's depends on callers. last_scanned_child
1436 * will work enough for keeping fairness under tree.
1438 if (shrink)
1439 return ret;
1440 total += ret;
1441 if (check_soft) {
1442 if (res_counter_check_under_soft_limit(&root_mem->res))
1443 return total;
1444 } else if (mem_cgroup_check_under_limit(root_mem))
1445 return 1 + total;
1447 return total;
1451 * Check OOM-Killer is already running under our hierarchy.
1452 * If someone is running, return false.
1454 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1456 int x, lock_count = 0;
1457 struct mem_cgroup *iter;
1459 for_each_mem_cgroup_tree(iter, mem) {
1460 x = atomic_inc_return(&iter->oom_lock);
1461 lock_count = max(x, lock_count);
1464 if (lock_count == 1)
1465 return true;
1466 return false;
1469 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1471 struct mem_cgroup *iter;
1474 * When a new child is created while the hierarchy is under oom,
1475 * mem_cgroup_oom_lock() may not be called. We have to use
1476 * atomic_add_unless() here.
1478 for_each_mem_cgroup_tree(iter, mem)
1479 atomic_add_unless(&iter->oom_lock, -1, 0);
1480 return 0;
1484 static DEFINE_MUTEX(memcg_oom_mutex);
1485 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1487 struct oom_wait_info {
1488 struct mem_cgroup *mem;
1489 wait_queue_t wait;
1492 static int memcg_oom_wake_function(wait_queue_t *wait,
1493 unsigned mode, int sync, void *arg)
1495 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1496 struct oom_wait_info *oom_wait_info;
1498 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1500 if (oom_wait_info->mem == wake_mem)
1501 goto wakeup;
1502 /* if no hierarchy, no match */
1503 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1504 return 0;
1506 * Both of oom_wait_info->mem and wake_mem are stable under us.
1507 * Then we can use css_is_ancestor without taking care of RCU.
1509 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1510 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1511 return 0;
1513 wakeup:
1514 return autoremove_wake_function(wait, mode, sync, arg);
1517 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1519 /* for filtering, pass "mem" as argument. */
1520 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1523 static void memcg_oom_recover(struct mem_cgroup *mem)
1525 if (mem && atomic_read(&mem->oom_lock))
1526 memcg_wakeup_oom(mem);
1530 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1532 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1534 struct oom_wait_info owait;
1535 bool locked, need_to_kill;
1537 owait.mem = mem;
1538 owait.wait.flags = 0;
1539 owait.wait.func = memcg_oom_wake_function;
1540 owait.wait.private = current;
1541 INIT_LIST_HEAD(&owait.wait.task_list);
1542 need_to_kill = true;
1543 /* At first, try to OOM lock hierarchy under mem.*/
1544 mutex_lock(&memcg_oom_mutex);
1545 locked = mem_cgroup_oom_lock(mem);
1547 * Even if signal_pending(), we can't quit charge() loop without
1548 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1549 * under OOM is always welcomed, use TASK_KILLABLE here.
1551 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1552 if (!locked || mem->oom_kill_disable)
1553 need_to_kill = false;
1554 if (locked)
1555 mem_cgroup_oom_notify(mem);
1556 mutex_unlock(&memcg_oom_mutex);
1558 if (need_to_kill) {
1559 finish_wait(&memcg_oom_waitq, &owait.wait);
1560 mem_cgroup_out_of_memory(mem, mask);
1561 } else {
1562 schedule();
1563 finish_wait(&memcg_oom_waitq, &owait.wait);
1565 mutex_lock(&memcg_oom_mutex);
1566 mem_cgroup_oom_unlock(mem);
1567 memcg_wakeup_oom(mem);
1568 mutex_unlock(&memcg_oom_mutex);
1570 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1571 return false;
1572 /* Give chance to dying process */
1573 schedule_timeout(1);
1574 return true;
1578 * Currently used to update mapped file statistics, but the routine can be
1579 * generalized to update other statistics as well.
1581 * Notes: Race condition
1583 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1584 * it tends to be costly. But considering some conditions, we doesn't need
1585 * to do so _always_.
1587 * Considering "charge", lock_page_cgroup() is not required because all
1588 * file-stat operations happen after a page is attached to radix-tree. There
1589 * are no race with "charge".
1591 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1592 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1593 * if there are race with "uncharge". Statistics itself is properly handled
1594 * by flags.
1596 * Considering "move", this is an only case we see a race. To make the race
1597 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1598 * possibility of race condition. If there is, we take a lock.
1601 void mem_cgroup_update_page_stat(struct page *page,
1602 enum mem_cgroup_page_stat_item idx, int val)
1604 struct mem_cgroup *mem;
1605 struct page_cgroup *pc = lookup_page_cgroup(page);
1606 bool need_unlock = false;
1607 unsigned long uninitialized_var(flags);
1609 if (unlikely(!pc))
1610 return;
1612 rcu_read_lock();
1613 mem = pc->mem_cgroup;
1614 if (unlikely(!mem || !PageCgroupUsed(pc)))
1615 goto out;
1616 /* pc->mem_cgroup is unstable ? */
1617 if (unlikely(mem_cgroup_stealed(mem))) {
1618 /* take a lock against to access pc->mem_cgroup */
1619 move_lock_page_cgroup(pc, &flags);
1620 need_unlock = true;
1621 mem = pc->mem_cgroup;
1622 if (!mem || !PageCgroupUsed(pc))
1623 goto out;
1626 switch (idx) {
1627 case MEMCG_NR_FILE_MAPPED:
1628 if (val > 0)
1629 SetPageCgroupFileMapped(pc);
1630 else if (!page_mapped(page))
1631 ClearPageCgroupFileMapped(pc);
1632 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1633 break;
1634 default:
1635 BUG();
1638 this_cpu_add(mem->stat->count[idx], val);
1640 out:
1641 if (unlikely(need_unlock))
1642 move_unlock_page_cgroup(pc, &flags);
1643 rcu_read_unlock();
1644 return;
1646 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1649 * size of first charge trial. "32" comes from vmscan.c's magic value.
1650 * TODO: maybe necessary to use big numbers in big irons.
1652 #define CHARGE_SIZE (32 * PAGE_SIZE)
1653 struct memcg_stock_pcp {
1654 struct mem_cgroup *cached; /* this never be root cgroup */
1655 int charge;
1656 struct work_struct work;
1658 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1659 static atomic_t memcg_drain_count;
1662 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1663 * from local stock and true is returned. If the stock is 0 or charges from a
1664 * cgroup which is not current target, returns false. This stock will be
1665 * refilled.
1667 static bool consume_stock(struct mem_cgroup *mem)
1669 struct memcg_stock_pcp *stock;
1670 bool ret = true;
1672 stock = &get_cpu_var(memcg_stock);
1673 if (mem == stock->cached && stock->charge)
1674 stock->charge -= PAGE_SIZE;
1675 else /* need to call res_counter_charge */
1676 ret = false;
1677 put_cpu_var(memcg_stock);
1678 return ret;
1682 * Returns stocks cached in percpu to res_counter and reset cached information.
1684 static void drain_stock(struct memcg_stock_pcp *stock)
1686 struct mem_cgroup *old = stock->cached;
1688 if (stock->charge) {
1689 res_counter_uncharge(&old->res, stock->charge);
1690 if (do_swap_account)
1691 res_counter_uncharge(&old->memsw, stock->charge);
1693 stock->cached = NULL;
1694 stock->charge = 0;
1698 * This must be called under preempt disabled or must be called by
1699 * a thread which is pinned to local cpu.
1701 static void drain_local_stock(struct work_struct *dummy)
1703 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1704 drain_stock(stock);
1708 * Cache charges(val) which is from res_counter, to local per_cpu area.
1709 * This will be consumed by consume_stock() function, later.
1711 static void refill_stock(struct mem_cgroup *mem, int val)
1713 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1715 if (stock->cached != mem) { /* reset if necessary */
1716 drain_stock(stock);
1717 stock->cached = mem;
1719 stock->charge += val;
1720 put_cpu_var(memcg_stock);
1724 * Tries to drain stocked charges in other cpus. This function is asynchronous
1725 * and just put a work per cpu for draining localy on each cpu. Caller can
1726 * expects some charges will be back to res_counter later but cannot wait for
1727 * it.
1729 static void drain_all_stock_async(void)
1731 int cpu;
1732 /* This function is for scheduling "drain" in asynchronous way.
1733 * The result of "drain" is not directly handled by callers. Then,
1734 * if someone is calling drain, we don't have to call drain more.
1735 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1736 * there is a race. We just do loose check here.
1738 if (atomic_read(&memcg_drain_count))
1739 return;
1740 /* Notify other cpus that system-wide "drain" is running */
1741 atomic_inc(&memcg_drain_count);
1742 get_online_cpus();
1743 for_each_online_cpu(cpu) {
1744 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1745 schedule_work_on(cpu, &stock->work);
1747 put_online_cpus();
1748 atomic_dec(&memcg_drain_count);
1749 /* We don't wait for flush_work */
1752 /* This is a synchronous drain interface. */
1753 static void drain_all_stock_sync(void)
1755 /* called when force_empty is called */
1756 atomic_inc(&memcg_drain_count);
1757 schedule_on_each_cpu(drain_local_stock);
1758 atomic_dec(&memcg_drain_count);
1762 * This function drains percpu counter value from DEAD cpu and
1763 * move it to local cpu. Note that this function can be preempted.
1765 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1767 int i;
1769 spin_lock(&mem->pcp_counter_lock);
1770 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1771 s64 x = per_cpu(mem->stat->count[i], cpu);
1773 per_cpu(mem->stat->count[i], cpu) = 0;
1774 mem->nocpu_base.count[i] += x;
1776 /* need to clear ON_MOVE value, works as a kind of lock. */
1777 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1778 spin_unlock(&mem->pcp_counter_lock);
1781 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1783 int idx = MEM_CGROUP_ON_MOVE;
1785 spin_lock(&mem->pcp_counter_lock);
1786 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1787 spin_unlock(&mem->pcp_counter_lock);
1790 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1791 unsigned long action,
1792 void *hcpu)
1794 int cpu = (unsigned long)hcpu;
1795 struct memcg_stock_pcp *stock;
1796 struct mem_cgroup *iter;
1798 if ((action == CPU_ONLINE)) {
1799 for_each_mem_cgroup_all(iter)
1800 synchronize_mem_cgroup_on_move(iter, cpu);
1801 return NOTIFY_OK;
1804 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1805 return NOTIFY_OK;
1807 for_each_mem_cgroup_all(iter)
1808 mem_cgroup_drain_pcp_counter(iter, cpu);
1810 stock = &per_cpu(memcg_stock, cpu);
1811 drain_stock(stock);
1812 return NOTIFY_OK;
1816 /* See __mem_cgroup_try_charge() for details */
1817 enum {
1818 CHARGE_OK, /* success */
1819 CHARGE_RETRY, /* need to retry but retry is not bad */
1820 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1821 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1822 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1825 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1826 int csize, bool oom_check)
1828 struct mem_cgroup *mem_over_limit;
1829 struct res_counter *fail_res;
1830 unsigned long flags = 0;
1831 int ret;
1833 ret = res_counter_charge(&mem->res, csize, &fail_res);
1835 if (likely(!ret)) {
1836 if (!do_swap_account)
1837 return CHARGE_OK;
1838 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1839 if (likely(!ret))
1840 return CHARGE_OK;
1842 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1843 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1844 } else
1845 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1847 if (csize > PAGE_SIZE) /* change csize and retry */
1848 return CHARGE_RETRY;
1850 if (!(gfp_mask & __GFP_WAIT))
1851 return CHARGE_WOULDBLOCK;
1853 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1854 gfp_mask, flags);
1856 * try_to_free_mem_cgroup_pages() might not give us a full
1857 * picture of reclaim. Some pages are reclaimed and might be
1858 * moved to swap cache or just unmapped from the cgroup.
1859 * Check the limit again to see if the reclaim reduced the
1860 * current usage of the cgroup before giving up
1862 if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1863 return CHARGE_RETRY;
1866 * At task move, charge accounts can be doubly counted. So, it's
1867 * better to wait until the end of task_move if something is going on.
1869 if (mem_cgroup_wait_acct_move(mem_over_limit))
1870 return CHARGE_RETRY;
1872 /* If we don't need to call oom-killer at el, return immediately */
1873 if (!oom_check)
1874 return CHARGE_NOMEM;
1875 /* check OOM */
1876 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1877 return CHARGE_OOM_DIE;
1879 return CHARGE_RETRY;
1883 * Unlike exported interface, "oom" parameter is added. if oom==true,
1884 * oom-killer can be invoked.
1886 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1887 gfp_t gfp_mask,
1888 struct mem_cgroup **memcg, bool oom,
1889 int page_size)
1891 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1892 struct mem_cgroup *mem = NULL;
1893 int ret;
1894 int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1897 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1898 * in system level. So, allow to go ahead dying process in addition to
1899 * MEMDIE process.
1901 if (unlikely(test_thread_flag(TIF_MEMDIE)
1902 || fatal_signal_pending(current)))
1903 goto bypass;
1906 * We always charge the cgroup the mm_struct belongs to.
1907 * The mm_struct's mem_cgroup changes on task migration if the
1908 * thread group leader migrates. It's possible that mm is not
1909 * set, if so charge the init_mm (happens for pagecache usage).
1911 if (!*memcg && !mm)
1912 goto bypass;
1913 again:
1914 if (*memcg) { /* css should be a valid one */
1915 mem = *memcg;
1916 VM_BUG_ON(css_is_removed(&mem->css));
1917 if (mem_cgroup_is_root(mem))
1918 goto done;
1919 if (page_size == PAGE_SIZE && consume_stock(mem))
1920 goto done;
1921 css_get(&mem->css);
1922 } else {
1923 struct task_struct *p;
1925 rcu_read_lock();
1926 p = rcu_dereference(mm->owner);
1928 * Because we don't have task_lock(), "p" can exit.
1929 * In that case, "mem" can point to root or p can be NULL with
1930 * race with swapoff. Then, we have small risk of mis-accouning.
1931 * But such kind of mis-account by race always happens because
1932 * we don't have cgroup_mutex(). It's overkill and we allo that
1933 * small race, here.
1934 * (*) swapoff at el will charge against mm-struct not against
1935 * task-struct. So, mm->owner can be NULL.
1937 mem = mem_cgroup_from_task(p);
1938 if (!mem || mem_cgroup_is_root(mem)) {
1939 rcu_read_unlock();
1940 goto done;
1942 if (page_size == PAGE_SIZE && consume_stock(mem)) {
1944 * It seems dagerous to access memcg without css_get().
1945 * But considering how consume_stok works, it's not
1946 * necessary. If consume_stock success, some charges
1947 * from this memcg are cached on this cpu. So, we
1948 * don't need to call css_get()/css_tryget() before
1949 * calling consume_stock().
1951 rcu_read_unlock();
1952 goto done;
1954 /* after here, we may be blocked. we need to get refcnt */
1955 if (!css_tryget(&mem->css)) {
1956 rcu_read_unlock();
1957 goto again;
1959 rcu_read_unlock();
1962 do {
1963 bool oom_check;
1965 /* If killed, bypass charge */
1966 if (fatal_signal_pending(current)) {
1967 css_put(&mem->css);
1968 goto bypass;
1971 oom_check = false;
1972 if (oom && !nr_oom_retries) {
1973 oom_check = true;
1974 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1977 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1979 switch (ret) {
1980 case CHARGE_OK:
1981 break;
1982 case CHARGE_RETRY: /* not in OOM situation but retry */
1983 csize = page_size;
1984 css_put(&mem->css);
1985 mem = NULL;
1986 goto again;
1987 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
1988 css_put(&mem->css);
1989 goto nomem;
1990 case CHARGE_NOMEM: /* OOM routine works */
1991 if (!oom) {
1992 css_put(&mem->css);
1993 goto nomem;
1995 /* If oom, we never return -ENOMEM */
1996 nr_oom_retries--;
1997 break;
1998 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
1999 css_put(&mem->css);
2000 goto bypass;
2002 } while (ret != CHARGE_OK);
2004 if (csize > page_size)
2005 refill_stock(mem, csize - page_size);
2006 css_put(&mem->css);
2007 done:
2008 *memcg = mem;
2009 return 0;
2010 nomem:
2011 *memcg = NULL;
2012 return -ENOMEM;
2013 bypass:
2014 *memcg = NULL;
2015 return 0;
2019 * Somemtimes we have to undo a charge we got by try_charge().
2020 * This function is for that and do uncharge, put css's refcnt.
2021 * gotten by try_charge().
2023 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2024 unsigned long count)
2026 if (!mem_cgroup_is_root(mem)) {
2027 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2028 if (do_swap_account)
2029 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2033 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2034 int page_size)
2036 __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2040 * A helper function to get mem_cgroup from ID. must be called under
2041 * rcu_read_lock(). The caller must check css_is_removed() or some if
2042 * it's concern. (dropping refcnt from swap can be called against removed
2043 * memcg.)
2045 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2047 struct cgroup_subsys_state *css;
2049 /* ID 0 is unused ID */
2050 if (!id)
2051 return NULL;
2052 css = css_lookup(&mem_cgroup_subsys, id);
2053 if (!css)
2054 return NULL;
2055 return container_of(css, struct mem_cgroup, css);
2058 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2060 struct mem_cgroup *mem = NULL;
2061 struct page_cgroup *pc;
2062 unsigned short id;
2063 swp_entry_t ent;
2065 VM_BUG_ON(!PageLocked(page));
2067 pc = lookup_page_cgroup(page);
2068 lock_page_cgroup(pc);
2069 if (PageCgroupUsed(pc)) {
2070 mem = pc->mem_cgroup;
2071 if (mem && !css_tryget(&mem->css))
2072 mem = NULL;
2073 } else if (PageSwapCache(page)) {
2074 ent.val = page_private(page);
2075 id = lookup_swap_cgroup(ent);
2076 rcu_read_lock();
2077 mem = mem_cgroup_lookup(id);
2078 if (mem && !css_tryget(&mem->css))
2079 mem = NULL;
2080 rcu_read_unlock();
2082 unlock_page_cgroup(pc);
2083 return mem;
2087 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
2088 * USED state. If already USED, uncharge and return.
2090 static void ____mem_cgroup_commit_charge(struct mem_cgroup *mem,
2091 struct page_cgroup *pc,
2092 enum charge_type ctype)
2094 pc->mem_cgroup = mem;
2096 * We access a page_cgroup asynchronously without lock_page_cgroup().
2097 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2098 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2099 * before USED bit, we need memory barrier here.
2100 * See mem_cgroup_add_lru_list(), etc.
2102 smp_wmb();
2103 switch (ctype) {
2104 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2105 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2106 SetPageCgroupCache(pc);
2107 SetPageCgroupUsed(pc);
2108 break;
2109 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2110 ClearPageCgroupCache(pc);
2111 SetPageCgroupUsed(pc);
2112 break;
2113 default:
2114 break;
2117 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), 1);
2120 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2121 struct page_cgroup *pc,
2122 enum charge_type ctype,
2123 int page_size)
2125 int i;
2126 int count = page_size >> PAGE_SHIFT;
2128 /* try_charge() can return NULL to *memcg, taking care of it. */
2129 if (!mem)
2130 return;
2132 lock_page_cgroup(pc);
2133 if (unlikely(PageCgroupUsed(pc))) {
2134 unlock_page_cgroup(pc);
2135 mem_cgroup_cancel_charge(mem, page_size);
2136 return;
2140 * we don't need page_cgroup_lock about tail pages, becase they are not
2141 * accessed by any other context at this point.
2143 for (i = 0; i < count; i++)
2144 ____mem_cgroup_commit_charge(mem, pc + i, ctype);
2146 unlock_page_cgroup(pc);
2148 * "charge_statistics" updated event counter. Then, check it.
2149 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2150 * if they exceeds softlimit.
2152 memcg_check_events(mem, pc->page);
2156 * __mem_cgroup_move_account - move account of the page
2157 * @pc: page_cgroup of the page.
2158 * @from: mem_cgroup which the page is moved from.
2159 * @to: mem_cgroup which the page is moved to. @from != @to.
2160 * @uncharge: whether we should call uncharge and css_put against @from.
2162 * The caller must confirm following.
2163 * - page is not on LRU (isolate_page() is useful.)
2164 * - the pc is locked, used, and ->mem_cgroup points to @from.
2166 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2167 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2168 * true, this function does "uncharge" from old cgroup, but it doesn't if
2169 * @uncharge is false, so a caller should do "uncharge".
2172 static void __mem_cgroup_move_account(struct page_cgroup *pc,
2173 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2175 VM_BUG_ON(from == to);
2176 VM_BUG_ON(PageLRU(pc->page));
2177 VM_BUG_ON(!page_is_cgroup_locked(pc));
2178 VM_BUG_ON(!PageCgroupUsed(pc));
2179 VM_BUG_ON(pc->mem_cgroup != from);
2181 if (PageCgroupFileMapped(pc)) {
2182 /* Update mapped_file data for mem_cgroup */
2183 preempt_disable();
2184 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2185 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2186 preempt_enable();
2188 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -1);
2189 if (uncharge)
2190 /* This is not "cancel", but cancel_charge does all we need. */
2191 mem_cgroup_cancel_charge(from, PAGE_SIZE);
2193 /* caller should have done css_get */
2194 pc->mem_cgroup = to;
2195 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), 1);
2197 * We charges against "to" which may not have any tasks. Then, "to"
2198 * can be under rmdir(). But in current implementation, caller of
2199 * this function is just force_empty() and move charge, so it's
2200 * garanteed that "to" is never removed. So, we don't check rmdir
2201 * status here.
2206 * check whether the @pc is valid for moving account and call
2207 * __mem_cgroup_move_account()
2209 static int mem_cgroup_move_account(struct page_cgroup *pc,
2210 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2212 int ret = -EINVAL;
2213 unsigned long flags;
2215 lock_page_cgroup(pc);
2216 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2217 move_lock_page_cgroup(pc, &flags);
2218 __mem_cgroup_move_account(pc, from, to, uncharge);
2219 move_unlock_page_cgroup(pc, &flags);
2220 ret = 0;
2222 unlock_page_cgroup(pc);
2224 * check events
2226 memcg_check_events(to, pc->page);
2227 memcg_check_events(from, pc->page);
2228 return ret;
2232 * move charges to its parent.
2235 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2236 struct mem_cgroup *child,
2237 gfp_t gfp_mask)
2239 struct page *page = pc->page;
2240 struct cgroup *cg = child->css.cgroup;
2241 struct cgroup *pcg = cg->parent;
2242 struct mem_cgroup *parent;
2243 int ret;
2245 /* Is ROOT ? */
2246 if (!pcg)
2247 return -EINVAL;
2249 ret = -EBUSY;
2250 if (!get_page_unless_zero(page))
2251 goto out;
2252 if (isolate_lru_page(page))
2253 goto put;
2255 parent = mem_cgroup_from_cont(pcg);
2256 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false,
2257 PAGE_SIZE);
2258 if (ret || !parent)
2259 goto put_back;
2261 ret = mem_cgroup_move_account(pc, child, parent, true);
2262 if (ret)
2263 mem_cgroup_cancel_charge(parent, PAGE_SIZE);
2264 put_back:
2265 putback_lru_page(page);
2266 put:
2267 put_page(page);
2268 out:
2269 return ret;
2273 * Charge the memory controller for page usage.
2274 * Return
2275 * 0 if the charge was successful
2276 * < 0 if the cgroup is over its limit
2278 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2279 gfp_t gfp_mask, enum charge_type ctype)
2281 struct mem_cgroup *mem = NULL;
2282 struct page_cgroup *pc;
2283 int ret;
2284 int page_size = PAGE_SIZE;
2286 if (PageTransHuge(page)) {
2287 page_size <<= compound_order(page);
2288 VM_BUG_ON(!PageTransHuge(page));
2291 pc = lookup_page_cgroup(page);
2292 /* can happen at boot */
2293 if (unlikely(!pc))
2294 return 0;
2295 prefetchw(pc);
2297 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
2298 if (ret || !mem)
2299 return ret;
2301 __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2302 return 0;
2305 int mem_cgroup_newpage_charge(struct page *page,
2306 struct mm_struct *mm, gfp_t gfp_mask)
2308 if (mem_cgroup_disabled())
2309 return 0;
2311 * If already mapped, we don't have to account.
2312 * If page cache, page->mapping has address_space.
2313 * But page->mapping may have out-of-use anon_vma pointer,
2314 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2315 * is NULL.
2317 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2318 return 0;
2319 if (unlikely(!mm))
2320 mm = &init_mm;
2321 return mem_cgroup_charge_common(page, mm, gfp_mask,
2322 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2325 static void
2326 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2327 enum charge_type ctype);
2329 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2330 gfp_t gfp_mask)
2332 int ret;
2334 if (mem_cgroup_disabled())
2335 return 0;
2336 if (PageCompound(page))
2337 return 0;
2339 * Corner case handling. This is called from add_to_page_cache()
2340 * in usual. But some FS (shmem) precharges this page before calling it
2341 * and call add_to_page_cache() with GFP_NOWAIT.
2343 * For GFP_NOWAIT case, the page may be pre-charged before calling
2344 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2345 * charge twice. (It works but has to pay a bit larger cost.)
2346 * And when the page is SwapCache, it should take swap information
2347 * into account. This is under lock_page() now.
2349 if (!(gfp_mask & __GFP_WAIT)) {
2350 struct page_cgroup *pc;
2352 pc = lookup_page_cgroup(page);
2353 if (!pc)
2354 return 0;
2355 lock_page_cgroup(pc);
2356 if (PageCgroupUsed(pc)) {
2357 unlock_page_cgroup(pc);
2358 return 0;
2360 unlock_page_cgroup(pc);
2363 if (unlikely(!mm))
2364 mm = &init_mm;
2366 if (page_is_file_cache(page))
2367 return mem_cgroup_charge_common(page, mm, gfp_mask,
2368 MEM_CGROUP_CHARGE_TYPE_CACHE);
2370 /* shmem */
2371 if (PageSwapCache(page)) {
2372 struct mem_cgroup *mem = NULL;
2374 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2375 if (!ret)
2376 __mem_cgroup_commit_charge_swapin(page, mem,
2377 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2378 } else
2379 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2380 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2382 return ret;
2386 * While swap-in, try_charge -> commit or cancel, the page is locked.
2387 * And when try_charge() successfully returns, one refcnt to memcg without
2388 * struct page_cgroup is acquired. This refcnt will be consumed by
2389 * "commit()" or removed by "cancel()"
2391 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2392 struct page *page,
2393 gfp_t mask, struct mem_cgroup **ptr)
2395 struct mem_cgroup *mem;
2396 int ret;
2398 if (mem_cgroup_disabled())
2399 return 0;
2401 if (!do_swap_account)
2402 goto charge_cur_mm;
2404 * A racing thread's fault, or swapoff, may have already updated
2405 * the pte, and even removed page from swap cache: in those cases
2406 * do_swap_page()'s pte_same() test will fail; but there's also a
2407 * KSM case which does need to charge the page.
2409 if (!PageSwapCache(page))
2410 goto charge_cur_mm;
2411 mem = try_get_mem_cgroup_from_page(page);
2412 if (!mem)
2413 goto charge_cur_mm;
2414 *ptr = mem;
2415 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2416 css_put(&mem->css);
2417 return ret;
2418 charge_cur_mm:
2419 if (unlikely(!mm))
2420 mm = &init_mm;
2421 return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2424 static void
2425 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2426 enum charge_type ctype)
2428 struct page_cgroup *pc;
2430 if (mem_cgroup_disabled())
2431 return;
2432 if (!ptr)
2433 return;
2434 cgroup_exclude_rmdir(&ptr->css);
2435 pc = lookup_page_cgroup(page);
2436 mem_cgroup_lru_del_before_commit_swapcache(page);
2437 __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2438 mem_cgroup_lru_add_after_commit_swapcache(page);
2440 * Now swap is on-memory. This means this page may be
2441 * counted both as mem and swap....double count.
2442 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2443 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2444 * may call delete_from_swap_cache() before reach here.
2446 if (do_swap_account && PageSwapCache(page)) {
2447 swp_entry_t ent = {.val = page_private(page)};
2448 unsigned short id;
2449 struct mem_cgroup *memcg;
2451 id = swap_cgroup_record(ent, 0);
2452 rcu_read_lock();
2453 memcg = mem_cgroup_lookup(id);
2454 if (memcg) {
2456 * This recorded memcg can be obsolete one. So, avoid
2457 * calling css_tryget
2459 if (!mem_cgroup_is_root(memcg))
2460 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2461 mem_cgroup_swap_statistics(memcg, false);
2462 mem_cgroup_put(memcg);
2464 rcu_read_unlock();
2467 * At swapin, we may charge account against cgroup which has no tasks.
2468 * So, rmdir()->pre_destroy() can be called while we do this charge.
2469 * In that case, we need to call pre_destroy() again. check it here.
2471 cgroup_release_and_wakeup_rmdir(&ptr->css);
2474 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2476 __mem_cgroup_commit_charge_swapin(page, ptr,
2477 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2480 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2482 if (mem_cgroup_disabled())
2483 return;
2484 if (!mem)
2485 return;
2486 mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2489 static void
2490 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2491 int page_size)
2493 struct memcg_batch_info *batch = NULL;
2494 bool uncharge_memsw = true;
2495 /* If swapout, usage of swap doesn't decrease */
2496 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2497 uncharge_memsw = false;
2499 batch = &current->memcg_batch;
2501 * In usual, we do css_get() when we remember memcg pointer.
2502 * But in this case, we keep res->usage until end of a series of
2503 * uncharges. Then, it's ok to ignore memcg's refcnt.
2505 if (!batch->memcg)
2506 batch->memcg = mem;
2508 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2509 * In those cases, all pages freed continously can be expected to be in
2510 * the same cgroup and we have chance to coalesce uncharges.
2511 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2512 * because we want to do uncharge as soon as possible.
2515 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2516 goto direct_uncharge;
2518 if (page_size != PAGE_SIZE)
2519 goto direct_uncharge;
2522 * In typical case, batch->memcg == mem. This means we can
2523 * merge a series of uncharges to an uncharge of res_counter.
2524 * If not, we uncharge res_counter ony by one.
2526 if (batch->memcg != mem)
2527 goto direct_uncharge;
2528 /* remember freed charge and uncharge it later */
2529 batch->bytes += PAGE_SIZE;
2530 if (uncharge_memsw)
2531 batch->memsw_bytes += PAGE_SIZE;
2532 return;
2533 direct_uncharge:
2534 res_counter_uncharge(&mem->res, page_size);
2535 if (uncharge_memsw)
2536 res_counter_uncharge(&mem->memsw, page_size);
2537 if (unlikely(batch->memcg != mem))
2538 memcg_oom_recover(mem);
2539 return;
2543 * uncharge if !page_mapped(page)
2545 static struct mem_cgroup *
2546 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2548 int i;
2549 int count;
2550 struct page_cgroup *pc;
2551 struct mem_cgroup *mem = NULL;
2552 int page_size = PAGE_SIZE;
2554 if (mem_cgroup_disabled())
2555 return NULL;
2557 if (PageSwapCache(page))
2558 return NULL;
2560 if (PageTransHuge(page)) {
2561 page_size <<= compound_order(page);
2562 VM_BUG_ON(!PageTransHuge(page));
2565 count = page_size >> PAGE_SHIFT;
2567 * Check if our page_cgroup is valid
2569 pc = lookup_page_cgroup(page);
2570 if (unlikely(!pc || !PageCgroupUsed(pc)))
2571 return NULL;
2573 lock_page_cgroup(pc);
2575 mem = pc->mem_cgroup;
2577 if (!PageCgroupUsed(pc))
2578 goto unlock_out;
2580 switch (ctype) {
2581 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2582 case MEM_CGROUP_CHARGE_TYPE_DROP:
2583 /* See mem_cgroup_prepare_migration() */
2584 if (page_mapped(page) || PageCgroupMigration(pc))
2585 goto unlock_out;
2586 break;
2587 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2588 if (!PageAnon(page)) { /* Shared memory */
2589 if (page->mapping && !page_is_file_cache(page))
2590 goto unlock_out;
2591 } else if (page_mapped(page)) /* Anon */
2592 goto unlock_out;
2593 break;
2594 default:
2595 break;
2598 for (i = 0; i < count; i++)
2599 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -1);
2601 ClearPageCgroupUsed(pc);
2603 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2604 * freed from LRU. This is safe because uncharged page is expected not
2605 * to be reused (freed soon). Exception is SwapCache, it's handled by
2606 * special functions.
2609 unlock_page_cgroup(pc);
2611 * even after unlock, we have mem->res.usage here and this memcg
2612 * will never be freed.
2614 memcg_check_events(mem, page);
2615 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2616 mem_cgroup_swap_statistics(mem, true);
2617 mem_cgroup_get(mem);
2619 if (!mem_cgroup_is_root(mem))
2620 __do_uncharge(mem, ctype, page_size);
2622 return mem;
2624 unlock_out:
2625 unlock_page_cgroup(pc);
2626 return NULL;
2629 void mem_cgroup_uncharge_page(struct page *page)
2631 /* early check. */
2632 if (page_mapped(page))
2633 return;
2634 if (page->mapping && !PageAnon(page))
2635 return;
2636 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2639 void mem_cgroup_uncharge_cache_page(struct page *page)
2641 VM_BUG_ON(page_mapped(page));
2642 VM_BUG_ON(page->mapping);
2643 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2647 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2648 * In that cases, pages are freed continuously and we can expect pages
2649 * are in the same memcg. All these calls itself limits the number of
2650 * pages freed at once, then uncharge_start/end() is called properly.
2651 * This may be called prural(2) times in a context,
2654 void mem_cgroup_uncharge_start(void)
2656 current->memcg_batch.do_batch++;
2657 /* We can do nest. */
2658 if (current->memcg_batch.do_batch == 1) {
2659 current->memcg_batch.memcg = NULL;
2660 current->memcg_batch.bytes = 0;
2661 current->memcg_batch.memsw_bytes = 0;
2665 void mem_cgroup_uncharge_end(void)
2667 struct memcg_batch_info *batch = &current->memcg_batch;
2669 if (!batch->do_batch)
2670 return;
2672 batch->do_batch--;
2673 if (batch->do_batch) /* If stacked, do nothing. */
2674 return;
2676 if (!batch->memcg)
2677 return;
2679 * This "batch->memcg" is valid without any css_get/put etc...
2680 * bacause we hide charges behind us.
2682 if (batch->bytes)
2683 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2684 if (batch->memsw_bytes)
2685 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2686 memcg_oom_recover(batch->memcg);
2687 /* forget this pointer (for sanity check) */
2688 batch->memcg = NULL;
2691 #ifdef CONFIG_SWAP
2693 * called after __delete_from_swap_cache() and drop "page" account.
2694 * memcg information is recorded to swap_cgroup of "ent"
2696 void
2697 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2699 struct mem_cgroup *memcg;
2700 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2702 if (!swapout) /* this was a swap cache but the swap is unused ! */
2703 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2705 memcg = __mem_cgroup_uncharge_common(page, ctype);
2708 * record memcg information, if swapout && memcg != NULL,
2709 * mem_cgroup_get() was called in uncharge().
2711 if (do_swap_account && swapout && memcg)
2712 swap_cgroup_record(ent, css_id(&memcg->css));
2714 #endif
2716 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2718 * called from swap_entry_free(). remove record in swap_cgroup and
2719 * uncharge "memsw" account.
2721 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2723 struct mem_cgroup *memcg;
2724 unsigned short id;
2726 if (!do_swap_account)
2727 return;
2729 id = swap_cgroup_record(ent, 0);
2730 rcu_read_lock();
2731 memcg = mem_cgroup_lookup(id);
2732 if (memcg) {
2734 * We uncharge this because swap is freed.
2735 * This memcg can be obsolete one. We avoid calling css_tryget
2737 if (!mem_cgroup_is_root(memcg))
2738 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2739 mem_cgroup_swap_statistics(memcg, false);
2740 mem_cgroup_put(memcg);
2742 rcu_read_unlock();
2746 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2747 * @entry: swap entry to be moved
2748 * @from: mem_cgroup which the entry is moved from
2749 * @to: mem_cgroup which the entry is moved to
2750 * @need_fixup: whether we should fixup res_counters and refcounts.
2752 * It succeeds only when the swap_cgroup's record for this entry is the same
2753 * as the mem_cgroup's id of @from.
2755 * Returns 0 on success, -EINVAL on failure.
2757 * The caller must have charged to @to, IOW, called res_counter_charge() about
2758 * both res and memsw, and called css_get().
2760 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2761 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2763 unsigned short old_id, new_id;
2765 old_id = css_id(&from->css);
2766 new_id = css_id(&to->css);
2768 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2769 mem_cgroup_swap_statistics(from, false);
2770 mem_cgroup_swap_statistics(to, true);
2772 * This function is only called from task migration context now.
2773 * It postpones res_counter and refcount handling till the end
2774 * of task migration(mem_cgroup_clear_mc()) for performance
2775 * improvement. But we cannot postpone mem_cgroup_get(to)
2776 * because if the process that has been moved to @to does
2777 * swap-in, the refcount of @to might be decreased to 0.
2779 mem_cgroup_get(to);
2780 if (need_fixup) {
2781 if (!mem_cgroup_is_root(from))
2782 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2783 mem_cgroup_put(from);
2785 * we charged both to->res and to->memsw, so we should
2786 * uncharge to->res.
2788 if (!mem_cgroup_is_root(to))
2789 res_counter_uncharge(&to->res, PAGE_SIZE);
2791 return 0;
2793 return -EINVAL;
2795 #else
2796 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2797 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2799 return -EINVAL;
2801 #endif
2804 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2805 * page belongs to.
2807 int mem_cgroup_prepare_migration(struct page *page,
2808 struct page *newpage, struct mem_cgroup **ptr)
2810 struct page_cgroup *pc;
2811 struct mem_cgroup *mem = NULL;
2812 enum charge_type ctype;
2813 int ret = 0;
2815 VM_BUG_ON(PageTransHuge(page));
2816 if (mem_cgroup_disabled())
2817 return 0;
2819 pc = lookup_page_cgroup(page);
2820 lock_page_cgroup(pc);
2821 if (PageCgroupUsed(pc)) {
2822 mem = pc->mem_cgroup;
2823 css_get(&mem->css);
2825 * At migrating an anonymous page, its mapcount goes down
2826 * to 0 and uncharge() will be called. But, even if it's fully
2827 * unmapped, migration may fail and this page has to be
2828 * charged again. We set MIGRATION flag here and delay uncharge
2829 * until end_migration() is called
2831 * Corner Case Thinking
2832 * A)
2833 * When the old page was mapped as Anon and it's unmap-and-freed
2834 * while migration was ongoing.
2835 * If unmap finds the old page, uncharge() of it will be delayed
2836 * until end_migration(). If unmap finds a new page, it's
2837 * uncharged when it make mapcount to be 1->0. If unmap code
2838 * finds swap_migration_entry, the new page will not be mapped
2839 * and end_migration() will find it(mapcount==0).
2841 * B)
2842 * When the old page was mapped but migraion fails, the kernel
2843 * remaps it. A charge for it is kept by MIGRATION flag even
2844 * if mapcount goes down to 0. We can do remap successfully
2845 * without charging it again.
2847 * C)
2848 * The "old" page is under lock_page() until the end of
2849 * migration, so, the old page itself will not be swapped-out.
2850 * If the new page is swapped out before end_migraton, our
2851 * hook to usual swap-out path will catch the event.
2853 if (PageAnon(page))
2854 SetPageCgroupMigration(pc);
2856 unlock_page_cgroup(pc);
2858 * If the page is not charged at this point,
2859 * we return here.
2861 if (!mem)
2862 return 0;
2864 *ptr = mem;
2865 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
2866 css_put(&mem->css);/* drop extra refcnt */
2867 if (ret || *ptr == NULL) {
2868 if (PageAnon(page)) {
2869 lock_page_cgroup(pc);
2870 ClearPageCgroupMigration(pc);
2871 unlock_page_cgroup(pc);
2873 * The old page may be fully unmapped while we kept it.
2875 mem_cgroup_uncharge_page(page);
2877 return -ENOMEM;
2880 * We charge new page before it's used/mapped. So, even if unlock_page()
2881 * is called before end_migration, we can catch all events on this new
2882 * page. In the case new page is migrated but not remapped, new page's
2883 * mapcount will be finally 0 and we call uncharge in end_migration().
2885 pc = lookup_page_cgroup(newpage);
2886 if (PageAnon(page))
2887 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2888 else if (page_is_file_cache(page))
2889 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2890 else
2891 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2892 __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2893 return ret;
2896 /* remove redundant charge if migration failed*/
2897 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2898 struct page *oldpage, struct page *newpage, bool migration_ok)
2900 struct page *used, *unused;
2901 struct page_cgroup *pc;
2903 if (!mem)
2904 return;
2905 /* blocks rmdir() */
2906 cgroup_exclude_rmdir(&mem->css);
2907 if (!migration_ok) {
2908 used = oldpage;
2909 unused = newpage;
2910 } else {
2911 used = newpage;
2912 unused = oldpage;
2915 * We disallowed uncharge of pages under migration because mapcount
2916 * of the page goes down to zero, temporarly.
2917 * Clear the flag and check the page should be charged.
2919 pc = lookup_page_cgroup(oldpage);
2920 lock_page_cgroup(pc);
2921 ClearPageCgroupMigration(pc);
2922 unlock_page_cgroup(pc);
2924 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2927 * If a page is a file cache, radix-tree replacement is very atomic
2928 * and we can skip this check. When it was an Anon page, its mapcount
2929 * goes down to 0. But because we added MIGRATION flage, it's not
2930 * uncharged yet. There are several case but page->mapcount check
2931 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2932 * check. (see prepare_charge() also)
2934 if (PageAnon(used))
2935 mem_cgroup_uncharge_page(used);
2937 * At migration, we may charge account against cgroup which has no
2938 * tasks.
2939 * So, rmdir()->pre_destroy() can be called while we do this charge.
2940 * In that case, we need to call pre_destroy() again. check it here.
2942 cgroup_release_and_wakeup_rmdir(&mem->css);
2946 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2947 * Calling hierarchical_reclaim is not enough because we should update
2948 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2949 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2950 * not from the memcg which this page would be charged to.
2951 * try_charge_swapin does all of these works properly.
2953 int mem_cgroup_shmem_charge_fallback(struct page *page,
2954 struct mm_struct *mm,
2955 gfp_t gfp_mask)
2957 struct mem_cgroup *mem = NULL;
2958 int ret;
2960 if (mem_cgroup_disabled())
2961 return 0;
2963 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2964 if (!ret)
2965 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2967 return ret;
2970 static DEFINE_MUTEX(set_limit_mutex);
2972 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2973 unsigned long long val)
2975 int retry_count;
2976 u64 memswlimit, memlimit;
2977 int ret = 0;
2978 int children = mem_cgroup_count_children(memcg);
2979 u64 curusage, oldusage;
2980 int enlarge;
2983 * For keeping hierarchical_reclaim simple, how long we should retry
2984 * is depends on callers. We set our retry-count to be function
2985 * of # of children which we should visit in this loop.
2987 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2989 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2991 enlarge = 0;
2992 while (retry_count) {
2993 if (signal_pending(current)) {
2994 ret = -EINTR;
2995 break;
2998 * Rather than hide all in some function, I do this in
2999 * open coded manner. You see what this really does.
3000 * We have to guarantee mem->res.limit < mem->memsw.limit.
3002 mutex_lock(&set_limit_mutex);
3003 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3004 if (memswlimit < val) {
3005 ret = -EINVAL;
3006 mutex_unlock(&set_limit_mutex);
3007 break;
3010 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3011 if (memlimit < val)
3012 enlarge = 1;
3014 ret = res_counter_set_limit(&memcg->res, val);
3015 if (!ret) {
3016 if (memswlimit == val)
3017 memcg->memsw_is_minimum = true;
3018 else
3019 memcg->memsw_is_minimum = false;
3021 mutex_unlock(&set_limit_mutex);
3023 if (!ret)
3024 break;
3026 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3027 MEM_CGROUP_RECLAIM_SHRINK);
3028 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3029 /* Usage is reduced ? */
3030 if (curusage >= oldusage)
3031 retry_count--;
3032 else
3033 oldusage = curusage;
3035 if (!ret && enlarge)
3036 memcg_oom_recover(memcg);
3038 return ret;
3041 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3042 unsigned long long val)
3044 int retry_count;
3045 u64 memlimit, memswlimit, oldusage, curusage;
3046 int children = mem_cgroup_count_children(memcg);
3047 int ret = -EBUSY;
3048 int enlarge = 0;
3050 /* see mem_cgroup_resize_res_limit */
3051 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3052 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3053 while (retry_count) {
3054 if (signal_pending(current)) {
3055 ret = -EINTR;
3056 break;
3059 * Rather than hide all in some function, I do this in
3060 * open coded manner. You see what this really does.
3061 * We have to guarantee mem->res.limit < mem->memsw.limit.
3063 mutex_lock(&set_limit_mutex);
3064 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3065 if (memlimit > val) {
3066 ret = -EINVAL;
3067 mutex_unlock(&set_limit_mutex);
3068 break;
3070 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3071 if (memswlimit < val)
3072 enlarge = 1;
3073 ret = res_counter_set_limit(&memcg->memsw, val);
3074 if (!ret) {
3075 if (memlimit == val)
3076 memcg->memsw_is_minimum = true;
3077 else
3078 memcg->memsw_is_minimum = false;
3080 mutex_unlock(&set_limit_mutex);
3082 if (!ret)
3083 break;
3085 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3086 MEM_CGROUP_RECLAIM_NOSWAP |
3087 MEM_CGROUP_RECLAIM_SHRINK);
3088 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3089 /* Usage is reduced ? */
3090 if (curusage >= oldusage)
3091 retry_count--;
3092 else
3093 oldusage = curusage;
3095 if (!ret && enlarge)
3096 memcg_oom_recover(memcg);
3097 return ret;
3100 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3101 gfp_t gfp_mask)
3103 unsigned long nr_reclaimed = 0;
3104 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3105 unsigned long reclaimed;
3106 int loop = 0;
3107 struct mem_cgroup_tree_per_zone *mctz;
3108 unsigned long long excess;
3110 if (order > 0)
3111 return 0;
3113 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3115 * This loop can run a while, specially if mem_cgroup's continuously
3116 * keep exceeding their soft limit and putting the system under
3117 * pressure
3119 do {
3120 if (next_mz)
3121 mz = next_mz;
3122 else
3123 mz = mem_cgroup_largest_soft_limit_node(mctz);
3124 if (!mz)
3125 break;
3127 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3128 gfp_mask,
3129 MEM_CGROUP_RECLAIM_SOFT);
3130 nr_reclaimed += reclaimed;
3131 spin_lock(&mctz->lock);
3134 * If we failed to reclaim anything from this memory cgroup
3135 * it is time to move on to the next cgroup
3137 next_mz = NULL;
3138 if (!reclaimed) {
3139 do {
3141 * Loop until we find yet another one.
3143 * By the time we get the soft_limit lock
3144 * again, someone might have aded the
3145 * group back on the RB tree. Iterate to
3146 * make sure we get a different mem.
3147 * mem_cgroup_largest_soft_limit_node returns
3148 * NULL if no other cgroup is present on
3149 * the tree
3151 next_mz =
3152 __mem_cgroup_largest_soft_limit_node(mctz);
3153 if (next_mz == mz) {
3154 css_put(&next_mz->mem->css);
3155 next_mz = NULL;
3156 } else /* next_mz == NULL or other memcg */
3157 break;
3158 } while (1);
3160 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3161 excess = res_counter_soft_limit_excess(&mz->mem->res);
3163 * One school of thought says that we should not add
3164 * back the node to the tree if reclaim returns 0.
3165 * But our reclaim could return 0, simply because due
3166 * to priority we are exposing a smaller subset of
3167 * memory to reclaim from. Consider this as a longer
3168 * term TODO.
3170 /* If excess == 0, no tree ops */
3171 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3172 spin_unlock(&mctz->lock);
3173 css_put(&mz->mem->css);
3174 loop++;
3176 * Could not reclaim anything and there are no more
3177 * mem cgroups to try or we seem to be looping without
3178 * reclaiming anything.
3180 if (!nr_reclaimed &&
3181 (next_mz == NULL ||
3182 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3183 break;
3184 } while (!nr_reclaimed);
3185 if (next_mz)
3186 css_put(&next_mz->mem->css);
3187 return nr_reclaimed;
3191 * This routine traverse page_cgroup in given list and drop them all.
3192 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3194 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3195 int node, int zid, enum lru_list lru)
3197 struct zone *zone;
3198 struct mem_cgroup_per_zone *mz;
3199 struct page_cgroup *pc, *busy;
3200 unsigned long flags, loop;
3201 struct list_head *list;
3202 int ret = 0;
3204 zone = &NODE_DATA(node)->node_zones[zid];
3205 mz = mem_cgroup_zoneinfo(mem, node, zid);
3206 list = &mz->lists[lru];
3208 loop = MEM_CGROUP_ZSTAT(mz, lru);
3209 /* give some margin against EBUSY etc...*/
3210 loop += 256;
3211 busy = NULL;
3212 while (loop--) {
3213 ret = 0;
3214 spin_lock_irqsave(&zone->lru_lock, flags);
3215 if (list_empty(list)) {
3216 spin_unlock_irqrestore(&zone->lru_lock, flags);
3217 break;
3219 pc = list_entry(list->prev, struct page_cgroup, lru);
3220 if (busy == pc) {
3221 list_move(&pc->lru, list);
3222 busy = NULL;
3223 spin_unlock_irqrestore(&zone->lru_lock, flags);
3224 continue;
3226 spin_unlock_irqrestore(&zone->lru_lock, flags);
3228 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3229 if (ret == -ENOMEM)
3230 break;
3232 if (ret == -EBUSY || ret == -EINVAL) {
3233 /* found lock contention or "pc" is obsolete. */
3234 busy = pc;
3235 cond_resched();
3236 } else
3237 busy = NULL;
3240 if (!ret && !list_empty(list))
3241 return -EBUSY;
3242 return ret;
3246 * make mem_cgroup's charge to be 0 if there is no task.
3247 * This enables deleting this mem_cgroup.
3249 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3251 int ret;
3252 int node, zid, shrink;
3253 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3254 struct cgroup *cgrp = mem->css.cgroup;
3256 css_get(&mem->css);
3258 shrink = 0;
3259 /* should free all ? */
3260 if (free_all)
3261 goto try_to_free;
3262 move_account:
3263 do {
3264 ret = -EBUSY;
3265 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3266 goto out;
3267 ret = -EINTR;
3268 if (signal_pending(current))
3269 goto out;
3270 /* This is for making all *used* pages to be on LRU. */
3271 lru_add_drain_all();
3272 drain_all_stock_sync();
3273 ret = 0;
3274 mem_cgroup_start_move(mem);
3275 for_each_node_state(node, N_HIGH_MEMORY) {
3276 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3277 enum lru_list l;
3278 for_each_lru(l) {
3279 ret = mem_cgroup_force_empty_list(mem,
3280 node, zid, l);
3281 if (ret)
3282 break;
3285 if (ret)
3286 break;
3288 mem_cgroup_end_move(mem);
3289 memcg_oom_recover(mem);
3290 /* it seems parent cgroup doesn't have enough mem */
3291 if (ret == -ENOMEM)
3292 goto try_to_free;
3293 cond_resched();
3294 /* "ret" should also be checked to ensure all lists are empty. */
3295 } while (mem->res.usage > 0 || ret);
3296 out:
3297 css_put(&mem->css);
3298 return ret;
3300 try_to_free:
3301 /* returns EBUSY if there is a task or if we come here twice. */
3302 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3303 ret = -EBUSY;
3304 goto out;
3306 /* we call try-to-free pages for make this cgroup empty */
3307 lru_add_drain_all();
3308 /* try to free all pages in this cgroup */
3309 shrink = 1;
3310 while (nr_retries && mem->res.usage > 0) {
3311 int progress;
3313 if (signal_pending(current)) {
3314 ret = -EINTR;
3315 goto out;
3317 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3318 false, get_swappiness(mem));
3319 if (!progress) {
3320 nr_retries--;
3321 /* maybe some writeback is necessary */
3322 congestion_wait(BLK_RW_ASYNC, HZ/10);
3326 lru_add_drain();
3327 /* try move_account...there may be some *locked* pages. */
3328 goto move_account;
3331 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3333 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3337 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3339 return mem_cgroup_from_cont(cont)->use_hierarchy;
3342 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3343 u64 val)
3345 int retval = 0;
3346 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3347 struct cgroup *parent = cont->parent;
3348 struct mem_cgroup *parent_mem = NULL;
3350 if (parent)
3351 parent_mem = mem_cgroup_from_cont(parent);
3353 cgroup_lock();
3355 * If parent's use_hierarchy is set, we can't make any modifications
3356 * in the child subtrees. If it is unset, then the change can
3357 * occur, provided the current cgroup has no children.
3359 * For the root cgroup, parent_mem is NULL, we allow value to be
3360 * set if there are no children.
3362 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3363 (val == 1 || val == 0)) {
3364 if (list_empty(&cont->children))
3365 mem->use_hierarchy = val;
3366 else
3367 retval = -EBUSY;
3368 } else
3369 retval = -EINVAL;
3370 cgroup_unlock();
3372 return retval;
3376 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3377 enum mem_cgroup_stat_index idx)
3379 struct mem_cgroup *iter;
3380 s64 val = 0;
3382 /* each per cpu's value can be minus.Then, use s64 */
3383 for_each_mem_cgroup_tree(iter, mem)
3384 val += mem_cgroup_read_stat(iter, idx);
3386 if (val < 0) /* race ? */
3387 val = 0;
3388 return val;
3391 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3393 u64 val;
3395 if (!mem_cgroup_is_root(mem)) {
3396 if (!swap)
3397 return res_counter_read_u64(&mem->res, RES_USAGE);
3398 else
3399 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3402 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3403 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3405 if (swap)
3406 val += mem_cgroup_get_recursive_idx_stat(mem,
3407 MEM_CGROUP_STAT_SWAPOUT);
3409 return val << PAGE_SHIFT;
3412 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3414 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3415 u64 val;
3416 int type, name;
3418 type = MEMFILE_TYPE(cft->private);
3419 name = MEMFILE_ATTR(cft->private);
3420 switch (type) {
3421 case _MEM:
3422 if (name == RES_USAGE)
3423 val = mem_cgroup_usage(mem, false);
3424 else
3425 val = res_counter_read_u64(&mem->res, name);
3426 break;
3427 case _MEMSWAP:
3428 if (name == RES_USAGE)
3429 val = mem_cgroup_usage(mem, true);
3430 else
3431 val = res_counter_read_u64(&mem->memsw, name);
3432 break;
3433 default:
3434 BUG();
3435 break;
3437 return val;
3440 * The user of this function is...
3441 * RES_LIMIT.
3443 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3444 const char *buffer)
3446 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3447 int type, name;
3448 unsigned long long val;
3449 int ret;
3451 type = MEMFILE_TYPE(cft->private);
3452 name = MEMFILE_ATTR(cft->private);
3453 switch (name) {
3454 case RES_LIMIT:
3455 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3456 ret = -EINVAL;
3457 break;
3459 /* This function does all necessary parse...reuse it */
3460 ret = res_counter_memparse_write_strategy(buffer, &val);
3461 if (ret)
3462 break;
3463 if (type == _MEM)
3464 ret = mem_cgroup_resize_limit(memcg, val);
3465 else
3466 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3467 break;
3468 case RES_SOFT_LIMIT:
3469 ret = res_counter_memparse_write_strategy(buffer, &val);
3470 if (ret)
3471 break;
3473 * For memsw, soft limits are hard to implement in terms
3474 * of semantics, for now, we support soft limits for
3475 * control without swap
3477 if (type == _MEM)
3478 ret = res_counter_set_soft_limit(&memcg->res, val);
3479 else
3480 ret = -EINVAL;
3481 break;
3482 default:
3483 ret = -EINVAL; /* should be BUG() ? */
3484 break;
3486 return ret;
3489 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3490 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3492 struct cgroup *cgroup;
3493 unsigned long long min_limit, min_memsw_limit, tmp;
3495 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3496 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3497 cgroup = memcg->css.cgroup;
3498 if (!memcg->use_hierarchy)
3499 goto out;
3501 while (cgroup->parent) {
3502 cgroup = cgroup->parent;
3503 memcg = mem_cgroup_from_cont(cgroup);
3504 if (!memcg->use_hierarchy)
3505 break;
3506 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3507 min_limit = min(min_limit, tmp);
3508 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3509 min_memsw_limit = min(min_memsw_limit, tmp);
3511 out:
3512 *mem_limit = min_limit;
3513 *memsw_limit = min_memsw_limit;
3514 return;
3517 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3519 struct mem_cgroup *mem;
3520 int type, name;
3522 mem = mem_cgroup_from_cont(cont);
3523 type = MEMFILE_TYPE(event);
3524 name = MEMFILE_ATTR(event);
3525 switch (name) {
3526 case RES_MAX_USAGE:
3527 if (type == _MEM)
3528 res_counter_reset_max(&mem->res);
3529 else
3530 res_counter_reset_max(&mem->memsw);
3531 break;
3532 case RES_FAILCNT:
3533 if (type == _MEM)
3534 res_counter_reset_failcnt(&mem->res);
3535 else
3536 res_counter_reset_failcnt(&mem->memsw);
3537 break;
3540 return 0;
3543 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3544 struct cftype *cft)
3546 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3549 #ifdef CONFIG_MMU
3550 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3551 struct cftype *cft, u64 val)
3553 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3555 if (val >= (1 << NR_MOVE_TYPE))
3556 return -EINVAL;
3558 * We check this value several times in both in can_attach() and
3559 * attach(), so we need cgroup lock to prevent this value from being
3560 * inconsistent.
3562 cgroup_lock();
3563 mem->move_charge_at_immigrate = val;
3564 cgroup_unlock();
3566 return 0;
3568 #else
3569 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3570 struct cftype *cft, u64 val)
3572 return -ENOSYS;
3574 #endif
3577 /* For read statistics */
3578 enum {
3579 MCS_CACHE,
3580 MCS_RSS,
3581 MCS_FILE_MAPPED,
3582 MCS_PGPGIN,
3583 MCS_PGPGOUT,
3584 MCS_SWAP,
3585 MCS_INACTIVE_ANON,
3586 MCS_ACTIVE_ANON,
3587 MCS_INACTIVE_FILE,
3588 MCS_ACTIVE_FILE,
3589 MCS_UNEVICTABLE,
3590 NR_MCS_STAT,
3593 struct mcs_total_stat {
3594 s64 stat[NR_MCS_STAT];
3597 struct {
3598 char *local_name;
3599 char *total_name;
3600 } memcg_stat_strings[NR_MCS_STAT] = {
3601 {"cache", "total_cache"},
3602 {"rss", "total_rss"},
3603 {"mapped_file", "total_mapped_file"},
3604 {"pgpgin", "total_pgpgin"},
3605 {"pgpgout", "total_pgpgout"},
3606 {"swap", "total_swap"},
3607 {"inactive_anon", "total_inactive_anon"},
3608 {"active_anon", "total_active_anon"},
3609 {"inactive_file", "total_inactive_file"},
3610 {"active_file", "total_active_file"},
3611 {"unevictable", "total_unevictable"}
3615 static void
3616 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3618 s64 val;
3620 /* per cpu stat */
3621 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3622 s->stat[MCS_CACHE] += val * PAGE_SIZE;
3623 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3624 s->stat[MCS_RSS] += val * PAGE_SIZE;
3625 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3626 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3627 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3628 s->stat[MCS_PGPGIN] += val;
3629 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3630 s->stat[MCS_PGPGOUT] += val;
3631 if (do_swap_account) {
3632 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3633 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3636 /* per zone stat */
3637 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3638 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3639 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3640 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3641 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3642 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3643 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3644 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3645 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3646 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3649 static void
3650 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3652 struct mem_cgroup *iter;
3654 for_each_mem_cgroup_tree(iter, mem)
3655 mem_cgroup_get_local_stat(iter, s);
3658 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3659 struct cgroup_map_cb *cb)
3661 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3662 struct mcs_total_stat mystat;
3663 int i;
3665 memset(&mystat, 0, sizeof(mystat));
3666 mem_cgroup_get_local_stat(mem_cont, &mystat);
3668 for (i = 0; i < NR_MCS_STAT; i++) {
3669 if (i == MCS_SWAP && !do_swap_account)
3670 continue;
3671 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3674 /* Hierarchical information */
3676 unsigned long long limit, memsw_limit;
3677 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3678 cb->fill(cb, "hierarchical_memory_limit", limit);
3679 if (do_swap_account)
3680 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3683 memset(&mystat, 0, sizeof(mystat));
3684 mem_cgroup_get_total_stat(mem_cont, &mystat);
3685 for (i = 0; i < NR_MCS_STAT; i++) {
3686 if (i == MCS_SWAP && !do_swap_account)
3687 continue;
3688 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3691 #ifdef CONFIG_DEBUG_VM
3692 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3695 int nid, zid;
3696 struct mem_cgroup_per_zone *mz;
3697 unsigned long recent_rotated[2] = {0, 0};
3698 unsigned long recent_scanned[2] = {0, 0};
3700 for_each_online_node(nid)
3701 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3702 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3704 recent_rotated[0] +=
3705 mz->reclaim_stat.recent_rotated[0];
3706 recent_rotated[1] +=
3707 mz->reclaim_stat.recent_rotated[1];
3708 recent_scanned[0] +=
3709 mz->reclaim_stat.recent_scanned[0];
3710 recent_scanned[1] +=
3711 mz->reclaim_stat.recent_scanned[1];
3713 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3714 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3715 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3716 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3718 #endif
3720 return 0;
3723 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3725 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3727 return get_swappiness(memcg);
3730 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3731 u64 val)
3733 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3734 struct mem_cgroup *parent;
3736 if (val > 100)
3737 return -EINVAL;
3739 if (cgrp->parent == NULL)
3740 return -EINVAL;
3742 parent = mem_cgroup_from_cont(cgrp->parent);
3744 cgroup_lock();
3746 /* If under hierarchy, only empty-root can set this value */
3747 if ((parent->use_hierarchy) ||
3748 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3749 cgroup_unlock();
3750 return -EINVAL;
3753 spin_lock(&memcg->reclaim_param_lock);
3754 memcg->swappiness = val;
3755 spin_unlock(&memcg->reclaim_param_lock);
3757 cgroup_unlock();
3759 return 0;
3762 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3764 struct mem_cgroup_threshold_ary *t;
3765 u64 usage;
3766 int i;
3768 rcu_read_lock();
3769 if (!swap)
3770 t = rcu_dereference(memcg->thresholds.primary);
3771 else
3772 t = rcu_dereference(memcg->memsw_thresholds.primary);
3774 if (!t)
3775 goto unlock;
3777 usage = mem_cgroup_usage(memcg, swap);
3780 * current_threshold points to threshold just below usage.
3781 * If it's not true, a threshold was crossed after last
3782 * call of __mem_cgroup_threshold().
3784 i = t->current_threshold;
3787 * Iterate backward over array of thresholds starting from
3788 * current_threshold and check if a threshold is crossed.
3789 * If none of thresholds below usage is crossed, we read
3790 * only one element of the array here.
3792 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3793 eventfd_signal(t->entries[i].eventfd, 1);
3795 /* i = current_threshold + 1 */
3796 i++;
3799 * Iterate forward over array of thresholds starting from
3800 * current_threshold+1 and check if a threshold is crossed.
3801 * If none of thresholds above usage is crossed, we read
3802 * only one element of the array here.
3804 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3805 eventfd_signal(t->entries[i].eventfd, 1);
3807 /* Update current_threshold */
3808 t->current_threshold = i - 1;
3809 unlock:
3810 rcu_read_unlock();
3813 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3815 while (memcg) {
3816 __mem_cgroup_threshold(memcg, false);
3817 if (do_swap_account)
3818 __mem_cgroup_threshold(memcg, true);
3820 memcg = parent_mem_cgroup(memcg);
3824 static int compare_thresholds(const void *a, const void *b)
3826 const struct mem_cgroup_threshold *_a = a;
3827 const struct mem_cgroup_threshold *_b = b;
3829 return _a->threshold - _b->threshold;
3832 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3834 struct mem_cgroup_eventfd_list *ev;
3836 list_for_each_entry(ev, &mem->oom_notify, list)
3837 eventfd_signal(ev->eventfd, 1);
3838 return 0;
3841 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3843 struct mem_cgroup *iter;
3845 for_each_mem_cgroup_tree(iter, mem)
3846 mem_cgroup_oom_notify_cb(iter);
3849 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3850 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3852 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3853 struct mem_cgroup_thresholds *thresholds;
3854 struct mem_cgroup_threshold_ary *new;
3855 int type = MEMFILE_TYPE(cft->private);
3856 u64 threshold, usage;
3857 int i, size, ret;
3859 ret = res_counter_memparse_write_strategy(args, &threshold);
3860 if (ret)
3861 return ret;
3863 mutex_lock(&memcg->thresholds_lock);
3865 if (type == _MEM)
3866 thresholds = &memcg->thresholds;
3867 else if (type == _MEMSWAP)
3868 thresholds = &memcg->memsw_thresholds;
3869 else
3870 BUG();
3872 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3874 /* Check if a threshold crossed before adding a new one */
3875 if (thresholds->primary)
3876 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3878 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3880 /* Allocate memory for new array of thresholds */
3881 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3882 GFP_KERNEL);
3883 if (!new) {
3884 ret = -ENOMEM;
3885 goto unlock;
3887 new->size = size;
3889 /* Copy thresholds (if any) to new array */
3890 if (thresholds->primary) {
3891 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3892 sizeof(struct mem_cgroup_threshold));
3895 /* Add new threshold */
3896 new->entries[size - 1].eventfd = eventfd;
3897 new->entries[size - 1].threshold = threshold;
3899 /* Sort thresholds. Registering of new threshold isn't time-critical */
3900 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3901 compare_thresholds, NULL);
3903 /* Find current threshold */
3904 new->current_threshold = -1;
3905 for (i = 0; i < size; i++) {
3906 if (new->entries[i].threshold < usage) {
3908 * new->current_threshold will not be used until
3909 * rcu_assign_pointer(), so it's safe to increment
3910 * it here.
3912 ++new->current_threshold;
3916 /* Free old spare buffer and save old primary buffer as spare */
3917 kfree(thresholds->spare);
3918 thresholds->spare = thresholds->primary;
3920 rcu_assign_pointer(thresholds->primary, new);
3922 /* To be sure that nobody uses thresholds */
3923 synchronize_rcu();
3925 unlock:
3926 mutex_unlock(&memcg->thresholds_lock);
3928 return ret;
3931 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3932 struct cftype *cft, struct eventfd_ctx *eventfd)
3934 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3935 struct mem_cgroup_thresholds *thresholds;
3936 struct mem_cgroup_threshold_ary *new;
3937 int type = MEMFILE_TYPE(cft->private);
3938 u64 usage;
3939 int i, j, size;
3941 mutex_lock(&memcg->thresholds_lock);
3942 if (type == _MEM)
3943 thresholds = &memcg->thresholds;
3944 else if (type == _MEMSWAP)
3945 thresholds = &memcg->memsw_thresholds;
3946 else
3947 BUG();
3950 * Something went wrong if we trying to unregister a threshold
3951 * if we don't have thresholds
3953 BUG_ON(!thresholds);
3955 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3957 /* Check if a threshold crossed before removing */
3958 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3960 /* Calculate new number of threshold */
3961 size = 0;
3962 for (i = 0; i < thresholds->primary->size; i++) {
3963 if (thresholds->primary->entries[i].eventfd != eventfd)
3964 size++;
3967 new = thresholds->spare;
3969 /* Set thresholds array to NULL if we don't have thresholds */
3970 if (!size) {
3971 kfree(new);
3972 new = NULL;
3973 goto swap_buffers;
3976 new->size = size;
3978 /* Copy thresholds and find current threshold */
3979 new->current_threshold = -1;
3980 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3981 if (thresholds->primary->entries[i].eventfd == eventfd)
3982 continue;
3984 new->entries[j] = thresholds->primary->entries[i];
3985 if (new->entries[j].threshold < usage) {
3987 * new->current_threshold will not be used
3988 * until rcu_assign_pointer(), so it's safe to increment
3989 * it here.
3991 ++new->current_threshold;
3993 j++;
3996 swap_buffers:
3997 /* Swap primary and spare array */
3998 thresholds->spare = thresholds->primary;
3999 rcu_assign_pointer(thresholds->primary, new);
4001 /* To be sure that nobody uses thresholds */
4002 synchronize_rcu();
4004 mutex_unlock(&memcg->thresholds_lock);
4007 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4008 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4010 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4011 struct mem_cgroup_eventfd_list *event;
4012 int type = MEMFILE_TYPE(cft->private);
4014 BUG_ON(type != _OOM_TYPE);
4015 event = kmalloc(sizeof(*event), GFP_KERNEL);
4016 if (!event)
4017 return -ENOMEM;
4019 mutex_lock(&memcg_oom_mutex);
4021 event->eventfd = eventfd;
4022 list_add(&event->list, &memcg->oom_notify);
4024 /* already in OOM ? */
4025 if (atomic_read(&memcg->oom_lock))
4026 eventfd_signal(eventfd, 1);
4027 mutex_unlock(&memcg_oom_mutex);
4029 return 0;
4032 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4033 struct cftype *cft, struct eventfd_ctx *eventfd)
4035 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4036 struct mem_cgroup_eventfd_list *ev, *tmp;
4037 int type = MEMFILE_TYPE(cft->private);
4039 BUG_ON(type != _OOM_TYPE);
4041 mutex_lock(&memcg_oom_mutex);
4043 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4044 if (ev->eventfd == eventfd) {
4045 list_del(&ev->list);
4046 kfree(ev);
4050 mutex_unlock(&memcg_oom_mutex);
4053 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4054 struct cftype *cft, struct cgroup_map_cb *cb)
4056 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4058 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4060 if (atomic_read(&mem->oom_lock))
4061 cb->fill(cb, "under_oom", 1);
4062 else
4063 cb->fill(cb, "under_oom", 0);
4064 return 0;
4067 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4068 struct cftype *cft, u64 val)
4070 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4071 struct mem_cgroup *parent;
4073 /* cannot set to root cgroup and only 0 and 1 are allowed */
4074 if (!cgrp->parent || !((val == 0) || (val == 1)))
4075 return -EINVAL;
4077 parent = mem_cgroup_from_cont(cgrp->parent);
4079 cgroup_lock();
4080 /* oom-kill-disable is a flag for subhierarchy. */
4081 if ((parent->use_hierarchy) ||
4082 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4083 cgroup_unlock();
4084 return -EINVAL;
4086 mem->oom_kill_disable = val;
4087 if (!val)
4088 memcg_oom_recover(mem);
4089 cgroup_unlock();
4090 return 0;
4093 static struct cftype mem_cgroup_files[] = {
4095 .name = "usage_in_bytes",
4096 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4097 .read_u64 = mem_cgroup_read,
4098 .register_event = mem_cgroup_usage_register_event,
4099 .unregister_event = mem_cgroup_usage_unregister_event,
4102 .name = "max_usage_in_bytes",
4103 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4104 .trigger = mem_cgroup_reset,
4105 .read_u64 = mem_cgroup_read,
4108 .name = "limit_in_bytes",
4109 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4110 .write_string = mem_cgroup_write,
4111 .read_u64 = mem_cgroup_read,
4114 .name = "soft_limit_in_bytes",
4115 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4116 .write_string = mem_cgroup_write,
4117 .read_u64 = mem_cgroup_read,
4120 .name = "failcnt",
4121 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4122 .trigger = mem_cgroup_reset,
4123 .read_u64 = mem_cgroup_read,
4126 .name = "stat",
4127 .read_map = mem_control_stat_show,
4130 .name = "force_empty",
4131 .trigger = mem_cgroup_force_empty_write,
4134 .name = "use_hierarchy",
4135 .write_u64 = mem_cgroup_hierarchy_write,
4136 .read_u64 = mem_cgroup_hierarchy_read,
4139 .name = "swappiness",
4140 .read_u64 = mem_cgroup_swappiness_read,
4141 .write_u64 = mem_cgroup_swappiness_write,
4144 .name = "move_charge_at_immigrate",
4145 .read_u64 = mem_cgroup_move_charge_read,
4146 .write_u64 = mem_cgroup_move_charge_write,
4149 .name = "oom_control",
4150 .read_map = mem_cgroup_oom_control_read,
4151 .write_u64 = mem_cgroup_oom_control_write,
4152 .register_event = mem_cgroup_oom_register_event,
4153 .unregister_event = mem_cgroup_oom_unregister_event,
4154 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4158 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4159 static struct cftype memsw_cgroup_files[] = {
4161 .name = "memsw.usage_in_bytes",
4162 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4163 .read_u64 = mem_cgroup_read,
4164 .register_event = mem_cgroup_usage_register_event,
4165 .unregister_event = mem_cgroup_usage_unregister_event,
4168 .name = "memsw.max_usage_in_bytes",
4169 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4170 .trigger = mem_cgroup_reset,
4171 .read_u64 = mem_cgroup_read,
4174 .name = "memsw.limit_in_bytes",
4175 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4176 .write_string = mem_cgroup_write,
4177 .read_u64 = mem_cgroup_read,
4180 .name = "memsw.failcnt",
4181 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4182 .trigger = mem_cgroup_reset,
4183 .read_u64 = mem_cgroup_read,
4187 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4189 if (!do_swap_account)
4190 return 0;
4191 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4192 ARRAY_SIZE(memsw_cgroup_files));
4194 #else
4195 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4197 return 0;
4199 #endif
4201 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4203 struct mem_cgroup_per_node *pn;
4204 struct mem_cgroup_per_zone *mz;
4205 enum lru_list l;
4206 int zone, tmp = node;
4208 * This routine is called against possible nodes.
4209 * But it's BUG to call kmalloc() against offline node.
4211 * TODO: this routine can waste much memory for nodes which will
4212 * never be onlined. It's better to use memory hotplug callback
4213 * function.
4215 if (!node_state(node, N_NORMAL_MEMORY))
4216 tmp = -1;
4217 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4218 if (!pn)
4219 return 1;
4221 mem->info.nodeinfo[node] = pn;
4222 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4223 mz = &pn->zoneinfo[zone];
4224 for_each_lru(l)
4225 INIT_LIST_HEAD(&mz->lists[l]);
4226 mz->usage_in_excess = 0;
4227 mz->on_tree = false;
4228 mz->mem = mem;
4230 return 0;
4233 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4235 kfree(mem->info.nodeinfo[node]);
4238 static struct mem_cgroup *mem_cgroup_alloc(void)
4240 struct mem_cgroup *mem;
4241 int size = sizeof(struct mem_cgroup);
4243 /* Can be very big if MAX_NUMNODES is very big */
4244 if (size < PAGE_SIZE)
4245 mem = kzalloc(size, GFP_KERNEL);
4246 else
4247 mem = vzalloc(size);
4249 if (!mem)
4250 return NULL;
4252 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4253 if (!mem->stat)
4254 goto out_free;
4255 spin_lock_init(&mem->pcp_counter_lock);
4256 return mem;
4258 out_free:
4259 if (size < PAGE_SIZE)
4260 kfree(mem);
4261 else
4262 vfree(mem);
4263 return NULL;
4267 * At destroying mem_cgroup, references from swap_cgroup can remain.
4268 * (scanning all at force_empty is too costly...)
4270 * Instead of clearing all references at force_empty, we remember
4271 * the number of reference from swap_cgroup and free mem_cgroup when
4272 * it goes down to 0.
4274 * Removal of cgroup itself succeeds regardless of refs from swap.
4277 static void __mem_cgroup_free(struct mem_cgroup *mem)
4279 int node;
4281 mem_cgroup_remove_from_trees(mem);
4282 free_css_id(&mem_cgroup_subsys, &mem->css);
4284 for_each_node_state(node, N_POSSIBLE)
4285 free_mem_cgroup_per_zone_info(mem, node);
4287 free_percpu(mem->stat);
4288 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4289 kfree(mem);
4290 else
4291 vfree(mem);
4294 static void mem_cgroup_get(struct mem_cgroup *mem)
4296 atomic_inc(&mem->refcnt);
4299 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4301 if (atomic_sub_and_test(count, &mem->refcnt)) {
4302 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4303 __mem_cgroup_free(mem);
4304 if (parent)
4305 mem_cgroup_put(parent);
4309 static void mem_cgroup_put(struct mem_cgroup *mem)
4311 __mem_cgroup_put(mem, 1);
4315 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4317 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4319 if (!mem->res.parent)
4320 return NULL;
4321 return mem_cgroup_from_res_counter(mem->res.parent, res);
4324 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4325 static void __init enable_swap_cgroup(void)
4327 if (!mem_cgroup_disabled() && really_do_swap_account)
4328 do_swap_account = 1;
4330 #else
4331 static void __init enable_swap_cgroup(void)
4334 #endif
4336 static int mem_cgroup_soft_limit_tree_init(void)
4338 struct mem_cgroup_tree_per_node *rtpn;
4339 struct mem_cgroup_tree_per_zone *rtpz;
4340 int tmp, node, zone;
4342 for_each_node_state(node, N_POSSIBLE) {
4343 tmp = node;
4344 if (!node_state(node, N_NORMAL_MEMORY))
4345 tmp = -1;
4346 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4347 if (!rtpn)
4348 return 1;
4350 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4352 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4353 rtpz = &rtpn->rb_tree_per_zone[zone];
4354 rtpz->rb_root = RB_ROOT;
4355 spin_lock_init(&rtpz->lock);
4358 return 0;
4361 static struct cgroup_subsys_state * __ref
4362 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4364 struct mem_cgroup *mem, *parent;
4365 long error = -ENOMEM;
4366 int node;
4368 mem = mem_cgroup_alloc();
4369 if (!mem)
4370 return ERR_PTR(error);
4372 for_each_node_state(node, N_POSSIBLE)
4373 if (alloc_mem_cgroup_per_zone_info(mem, node))
4374 goto free_out;
4376 /* root ? */
4377 if (cont->parent == NULL) {
4378 int cpu;
4379 enable_swap_cgroup();
4380 parent = NULL;
4381 root_mem_cgroup = mem;
4382 if (mem_cgroup_soft_limit_tree_init())
4383 goto free_out;
4384 for_each_possible_cpu(cpu) {
4385 struct memcg_stock_pcp *stock =
4386 &per_cpu(memcg_stock, cpu);
4387 INIT_WORK(&stock->work, drain_local_stock);
4389 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4390 } else {
4391 parent = mem_cgroup_from_cont(cont->parent);
4392 mem->use_hierarchy = parent->use_hierarchy;
4393 mem->oom_kill_disable = parent->oom_kill_disable;
4396 if (parent && parent->use_hierarchy) {
4397 res_counter_init(&mem->res, &parent->res);
4398 res_counter_init(&mem->memsw, &parent->memsw);
4400 * We increment refcnt of the parent to ensure that we can
4401 * safely access it on res_counter_charge/uncharge.
4402 * This refcnt will be decremented when freeing this
4403 * mem_cgroup(see mem_cgroup_put).
4405 mem_cgroup_get(parent);
4406 } else {
4407 res_counter_init(&mem->res, NULL);
4408 res_counter_init(&mem->memsw, NULL);
4410 mem->last_scanned_child = 0;
4411 spin_lock_init(&mem->reclaim_param_lock);
4412 INIT_LIST_HEAD(&mem->oom_notify);
4414 if (parent)
4415 mem->swappiness = get_swappiness(parent);
4416 atomic_set(&mem->refcnt, 1);
4417 mem->move_charge_at_immigrate = 0;
4418 mutex_init(&mem->thresholds_lock);
4419 return &mem->css;
4420 free_out:
4421 __mem_cgroup_free(mem);
4422 root_mem_cgroup = NULL;
4423 return ERR_PTR(error);
4426 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4427 struct cgroup *cont)
4429 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4431 return mem_cgroup_force_empty(mem, false);
4434 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4435 struct cgroup *cont)
4437 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4439 mem_cgroup_put(mem);
4442 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4443 struct cgroup *cont)
4445 int ret;
4447 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4448 ARRAY_SIZE(mem_cgroup_files));
4450 if (!ret)
4451 ret = register_memsw_files(cont, ss);
4452 return ret;
4455 #ifdef CONFIG_MMU
4456 /* Handlers for move charge at task migration. */
4457 #define PRECHARGE_COUNT_AT_ONCE 256
4458 static int mem_cgroup_do_precharge(unsigned long count)
4460 int ret = 0;
4461 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4462 struct mem_cgroup *mem = mc.to;
4464 if (mem_cgroup_is_root(mem)) {
4465 mc.precharge += count;
4466 /* we don't need css_get for root */
4467 return ret;
4469 /* try to charge at once */
4470 if (count > 1) {
4471 struct res_counter *dummy;
4473 * "mem" cannot be under rmdir() because we've already checked
4474 * by cgroup_lock_live_cgroup() that it is not removed and we
4475 * are still under the same cgroup_mutex. So we can postpone
4476 * css_get().
4478 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4479 goto one_by_one;
4480 if (do_swap_account && res_counter_charge(&mem->memsw,
4481 PAGE_SIZE * count, &dummy)) {
4482 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4483 goto one_by_one;
4485 mc.precharge += count;
4486 return ret;
4488 one_by_one:
4489 /* fall back to one by one charge */
4490 while (count--) {
4491 if (signal_pending(current)) {
4492 ret = -EINTR;
4493 break;
4495 if (!batch_count--) {
4496 batch_count = PRECHARGE_COUNT_AT_ONCE;
4497 cond_resched();
4499 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4500 PAGE_SIZE);
4501 if (ret || !mem)
4502 /* mem_cgroup_clear_mc() will do uncharge later */
4503 return -ENOMEM;
4504 mc.precharge++;
4506 return ret;
4510 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4511 * @vma: the vma the pte to be checked belongs
4512 * @addr: the address corresponding to the pte to be checked
4513 * @ptent: the pte to be checked
4514 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4516 * Returns
4517 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4518 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4519 * move charge. if @target is not NULL, the page is stored in target->page
4520 * with extra refcnt got(Callers should handle it).
4521 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4522 * target for charge migration. if @target is not NULL, the entry is stored
4523 * in target->ent.
4525 * Called with pte lock held.
4527 union mc_target {
4528 struct page *page;
4529 swp_entry_t ent;
4532 enum mc_target_type {
4533 MC_TARGET_NONE, /* not used */
4534 MC_TARGET_PAGE,
4535 MC_TARGET_SWAP,
4538 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4539 unsigned long addr, pte_t ptent)
4541 struct page *page = vm_normal_page(vma, addr, ptent);
4543 if (!page || !page_mapped(page))
4544 return NULL;
4545 if (PageAnon(page)) {
4546 /* we don't move shared anon */
4547 if (!move_anon() || page_mapcount(page) > 2)
4548 return NULL;
4549 } else if (!move_file())
4550 /* we ignore mapcount for file pages */
4551 return NULL;
4552 if (!get_page_unless_zero(page))
4553 return NULL;
4555 return page;
4558 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4559 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4561 int usage_count;
4562 struct page *page = NULL;
4563 swp_entry_t ent = pte_to_swp_entry(ptent);
4565 if (!move_anon() || non_swap_entry(ent))
4566 return NULL;
4567 usage_count = mem_cgroup_count_swap_user(ent, &page);
4568 if (usage_count > 1) { /* we don't move shared anon */
4569 if (page)
4570 put_page(page);
4571 return NULL;
4573 if (do_swap_account)
4574 entry->val = ent.val;
4576 return page;
4579 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4580 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4582 struct page *page = NULL;
4583 struct inode *inode;
4584 struct address_space *mapping;
4585 pgoff_t pgoff;
4587 if (!vma->vm_file) /* anonymous vma */
4588 return NULL;
4589 if (!move_file())
4590 return NULL;
4592 inode = vma->vm_file->f_path.dentry->d_inode;
4593 mapping = vma->vm_file->f_mapping;
4594 if (pte_none(ptent))
4595 pgoff = linear_page_index(vma, addr);
4596 else /* pte_file(ptent) is true */
4597 pgoff = pte_to_pgoff(ptent);
4599 /* page is moved even if it's not RSS of this task(page-faulted). */
4600 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4601 page = find_get_page(mapping, pgoff);
4602 } else { /* shmem/tmpfs file. we should take account of swap too. */
4603 swp_entry_t ent;
4604 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4605 if (do_swap_account)
4606 entry->val = ent.val;
4609 return page;
4612 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4613 unsigned long addr, pte_t ptent, union mc_target *target)
4615 struct page *page = NULL;
4616 struct page_cgroup *pc;
4617 int ret = 0;
4618 swp_entry_t ent = { .val = 0 };
4620 if (pte_present(ptent))
4621 page = mc_handle_present_pte(vma, addr, ptent);
4622 else if (is_swap_pte(ptent))
4623 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4624 else if (pte_none(ptent) || pte_file(ptent))
4625 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4627 if (!page && !ent.val)
4628 return 0;
4629 if (page) {
4630 pc = lookup_page_cgroup(page);
4632 * Do only loose check w/o page_cgroup lock.
4633 * mem_cgroup_move_account() checks the pc is valid or not under
4634 * the lock.
4636 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4637 ret = MC_TARGET_PAGE;
4638 if (target)
4639 target->page = page;
4641 if (!ret || !target)
4642 put_page(page);
4644 /* There is a swap entry and a page doesn't exist or isn't charged */
4645 if (ent.val && !ret &&
4646 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4647 ret = MC_TARGET_SWAP;
4648 if (target)
4649 target->ent = ent;
4651 return ret;
4654 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4655 unsigned long addr, unsigned long end,
4656 struct mm_walk *walk)
4658 struct vm_area_struct *vma = walk->private;
4659 pte_t *pte;
4660 spinlock_t *ptl;
4662 VM_BUG_ON(pmd_trans_huge(*pmd));
4663 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4664 for (; addr != end; pte++, addr += PAGE_SIZE)
4665 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4666 mc.precharge++; /* increment precharge temporarily */
4667 pte_unmap_unlock(pte - 1, ptl);
4668 cond_resched();
4670 return 0;
4673 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4675 unsigned long precharge;
4676 struct vm_area_struct *vma;
4678 down_read(&mm->mmap_sem);
4679 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4680 struct mm_walk mem_cgroup_count_precharge_walk = {
4681 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4682 .mm = mm,
4683 .private = vma,
4685 if (is_vm_hugetlb_page(vma))
4686 continue;
4687 walk_page_range(vma->vm_start, vma->vm_end,
4688 &mem_cgroup_count_precharge_walk);
4690 up_read(&mm->mmap_sem);
4692 precharge = mc.precharge;
4693 mc.precharge = 0;
4695 return precharge;
4698 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4700 unsigned long precharge = mem_cgroup_count_precharge(mm);
4702 VM_BUG_ON(mc.moving_task);
4703 mc.moving_task = current;
4704 return mem_cgroup_do_precharge(precharge);
4707 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4708 static void __mem_cgroup_clear_mc(void)
4710 struct mem_cgroup *from = mc.from;
4711 struct mem_cgroup *to = mc.to;
4713 /* we must uncharge all the leftover precharges from mc.to */
4714 if (mc.precharge) {
4715 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4716 mc.precharge = 0;
4719 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4720 * we must uncharge here.
4722 if (mc.moved_charge) {
4723 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4724 mc.moved_charge = 0;
4726 /* we must fixup refcnts and charges */
4727 if (mc.moved_swap) {
4728 /* uncharge swap account from the old cgroup */
4729 if (!mem_cgroup_is_root(mc.from))
4730 res_counter_uncharge(&mc.from->memsw,
4731 PAGE_SIZE * mc.moved_swap);
4732 __mem_cgroup_put(mc.from, mc.moved_swap);
4734 if (!mem_cgroup_is_root(mc.to)) {
4736 * we charged both to->res and to->memsw, so we should
4737 * uncharge to->res.
4739 res_counter_uncharge(&mc.to->res,
4740 PAGE_SIZE * mc.moved_swap);
4742 /* we've already done mem_cgroup_get(mc.to) */
4743 mc.moved_swap = 0;
4745 memcg_oom_recover(from);
4746 memcg_oom_recover(to);
4747 wake_up_all(&mc.waitq);
4750 static void mem_cgroup_clear_mc(void)
4752 struct mem_cgroup *from = mc.from;
4755 * we must clear moving_task before waking up waiters at the end of
4756 * task migration.
4758 mc.moving_task = NULL;
4759 __mem_cgroup_clear_mc();
4760 spin_lock(&mc.lock);
4761 mc.from = NULL;
4762 mc.to = NULL;
4763 spin_unlock(&mc.lock);
4764 mem_cgroup_end_move(from);
4767 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4768 struct cgroup *cgroup,
4769 struct task_struct *p,
4770 bool threadgroup)
4772 int ret = 0;
4773 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4775 if (mem->move_charge_at_immigrate) {
4776 struct mm_struct *mm;
4777 struct mem_cgroup *from = mem_cgroup_from_task(p);
4779 VM_BUG_ON(from == mem);
4781 mm = get_task_mm(p);
4782 if (!mm)
4783 return 0;
4784 /* We move charges only when we move a owner of the mm */
4785 if (mm->owner == p) {
4786 VM_BUG_ON(mc.from);
4787 VM_BUG_ON(mc.to);
4788 VM_BUG_ON(mc.precharge);
4789 VM_BUG_ON(mc.moved_charge);
4790 VM_BUG_ON(mc.moved_swap);
4791 mem_cgroup_start_move(from);
4792 spin_lock(&mc.lock);
4793 mc.from = from;
4794 mc.to = mem;
4795 spin_unlock(&mc.lock);
4796 /* We set mc.moving_task later */
4798 ret = mem_cgroup_precharge_mc(mm);
4799 if (ret)
4800 mem_cgroup_clear_mc();
4802 mmput(mm);
4804 return ret;
4807 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4808 struct cgroup *cgroup,
4809 struct task_struct *p,
4810 bool threadgroup)
4812 mem_cgroup_clear_mc();
4815 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4816 unsigned long addr, unsigned long end,
4817 struct mm_walk *walk)
4819 int ret = 0;
4820 struct vm_area_struct *vma = walk->private;
4821 pte_t *pte;
4822 spinlock_t *ptl;
4824 retry:
4825 VM_BUG_ON(pmd_trans_huge(*pmd));
4826 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4827 for (; addr != end; addr += PAGE_SIZE) {
4828 pte_t ptent = *(pte++);
4829 union mc_target target;
4830 int type;
4831 struct page *page;
4832 struct page_cgroup *pc;
4833 swp_entry_t ent;
4835 if (!mc.precharge)
4836 break;
4838 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4839 switch (type) {
4840 case MC_TARGET_PAGE:
4841 page = target.page;
4842 if (isolate_lru_page(page))
4843 goto put;
4844 pc = lookup_page_cgroup(page);
4845 if (!mem_cgroup_move_account(pc,
4846 mc.from, mc.to, false)) {
4847 mc.precharge--;
4848 /* we uncharge from mc.from later. */
4849 mc.moved_charge++;
4851 putback_lru_page(page);
4852 put: /* is_target_pte_for_mc() gets the page */
4853 put_page(page);
4854 break;
4855 case MC_TARGET_SWAP:
4856 ent = target.ent;
4857 if (!mem_cgroup_move_swap_account(ent,
4858 mc.from, mc.to, false)) {
4859 mc.precharge--;
4860 /* we fixup refcnts and charges later. */
4861 mc.moved_swap++;
4863 break;
4864 default:
4865 break;
4868 pte_unmap_unlock(pte - 1, ptl);
4869 cond_resched();
4871 if (addr != end) {
4873 * We have consumed all precharges we got in can_attach().
4874 * We try charge one by one, but don't do any additional
4875 * charges to mc.to if we have failed in charge once in attach()
4876 * phase.
4878 ret = mem_cgroup_do_precharge(1);
4879 if (!ret)
4880 goto retry;
4883 return ret;
4886 static void mem_cgroup_move_charge(struct mm_struct *mm)
4888 struct vm_area_struct *vma;
4890 lru_add_drain_all();
4891 retry:
4892 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4894 * Someone who are holding the mmap_sem might be waiting in
4895 * waitq. So we cancel all extra charges, wake up all waiters,
4896 * and retry. Because we cancel precharges, we might not be able
4897 * to move enough charges, but moving charge is a best-effort
4898 * feature anyway, so it wouldn't be a big problem.
4900 __mem_cgroup_clear_mc();
4901 cond_resched();
4902 goto retry;
4904 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4905 int ret;
4906 struct mm_walk mem_cgroup_move_charge_walk = {
4907 .pmd_entry = mem_cgroup_move_charge_pte_range,
4908 .mm = mm,
4909 .private = vma,
4911 if (is_vm_hugetlb_page(vma))
4912 continue;
4913 ret = walk_page_range(vma->vm_start, vma->vm_end,
4914 &mem_cgroup_move_charge_walk);
4915 if (ret)
4917 * means we have consumed all precharges and failed in
4918 * doing additional charge. Just abandon here.
4920 break;
4922 up_read(&mm->mmap_sem);
4925 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4926 struct cgroup *cont,
4927 struct cgroup *old_cont,
4928 struct task_struct *p,
4929 bool threadgroup)
4931 struct mm_struct *mm;
4933 if (!mc.to)
4934 /* no need to move charge */
4935 return;
4937 mm = get_task_mm(p);
4938 if (mm) {
4939 mem_cgroup_move_charge(mm);
4940 mmput(mm);
4942 mem_cgroup_clear_mc();
4944 #else /* !CONFIG_MMU */
4945 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4946 struct cgroup *cgroup,
4947 struct task_struct *p,
4948 bool threadgroup)
4950 return 0;
4952 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4953 struct cgroup *cgroup,
4954 struct task_struct *p,
4955 bool threadgroup)
4958 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4959 struct cgroup *cont,
4960 struct cgroup *old_cont,
4961 struct task_struct *p,
4962 bool threadgroup)
4965 #endif
4967 struct cgroup_subsys mem_cgroup_subsys = {
4968 .name = "memory",
4969 .subsys_id = mem_cgroup_subsys_id,
4970 .create = mem_cgroup_create,
4971 .pre_destroy = mem_cgroup_pre_destroy,
4972 .destroy = mem_cgroup_destroy,
4973 .populate = mem_cgroup_populate,
4974 .can_attach = mem_cgroup_can_attach,
4975 .cancel_attach = mem_cgroup_cancel_attach,
4976 .attach = mem_cgroup_move_task,
4977 .early_init = 0,
4978 .use_id = 1,
4981 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4982 static int __init enable_swap_account(char *s)
4984 /* consider enabled if no parameter or 1 is given */
4985 if (!s || !strcmp(s, "1"))
4986 really_do_swap_account = 1;
4987 else if (!strcmp(s, "0"))
4988 really_do_swap_account = 0;
4989 return 1;
4991 __setup("swapaccount", enable_swap_account);
4993 static int __init disable_swap_account(char *s)
4995 enable_swap_account("0");
4996 return 1;
4998 __setup("noswapaccount", disable_swap_account);
4999 #endif