2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
21 #include <linux/sched.h>
23 #include <linux/file.h>
25 #include <linux/mman.h>
26 #include <linux/slab.h>
27 #include <linux/timer.h>
28 #include <linux/aio.h>
29 #include <linux/highmem.h>
30 #include <linux/workqueue.h>
31 #include <linux/security.h>
33 #include <asm/kmap_types.h>
34 #include <asm/uaccess.h>
35 #include <asm/mmu_context.h>
38 #define dprintk printk
40 #define dprintk(x...) do { ; } while (0)
43 /*------ sysctl variables----*/
44 atomic_t aio_nr
= ATOMIC_INIT(0); /* current system wide number of aio requests */
45 unsigned aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
46 /*----end sysctl variables---*/
48 static kmem_cache_t
*kiocb_cachep
;
49 static kmem_cache_t
*kioctx_cachep
;
51 static struct workqueue_struct
*aio_wq
;
53 /* Used for rare fput completion. */
54 static void aio_fput_routine(void *);
55 static DECLARE_WORK(fput_work
, aio_fput_routine
, NULL
);
57 static DEFINE_SPINLOCK(fput_lock
);
58 static LIST_HEAD(fput_head
);
60 static void aio_kick_handler(void *);
63 * Creates the slab caches used by the aio routines, panic on
64 * failure as this is done early during the boot sequence.
66 static int __init
aio_setup(void)
68 kiocb_cachep
= kmem_cache_create("kiocb", sizeof(struct kiocb
),
69 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
70 kioctx_cachep
= kmem_cache_create("kioctx", sizeof(struct kioctx
),
71 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
73 aio_wq
= create_workqueue("aio");
75 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page
));
80 static void aio_free_ring(struct kioctx
*ctx
)
82 struct aio_ring_info
*info
= &ctx
->ring_info
;
85 for (i
=0; i
<info
->nr_pages
; i
++)
86 put_page(info
->ring_pages
[i
]);
88 if (info
->mmap_size
) {
89 down_write(&ctx
->mm
->mmap_sem
);
90 do_munmap(ctx
->mm
, info
->mmap_base
, info
->mmap_size
);
91 up_write(&ctx
->mm
->mmap_sem
);
94 if (info
->ring_pages
&& info
->ring_pages
!= info
->internal_pages
)
95 kfree(info
->ring_pages
);
96 info
->ring_pages
= NULL
;
100 static int aio_setup_ring(struct kioctx
*ctx
)
102 struct aio_ring
*ring
;
103 struct aio_ring_info
*info
= &ctx
->ring_info
;
104 unsigned nr_events
= ctx
->max_reqs
;
108 /* Compensate for the ring buffer's head/tail overlap entry */
109 nr_events
+= 2; /* 1 is required, 2 for good luck */
111 size
= sizeof(struct aio_ring
);
112 size
+= sizeof(struct io_event
) * nr_events
;
113 nr_pages
= (size
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
118 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
)) / sizeof(struct io_event
);
121 info
->ring_pages
= info
->internal_pages
;
122 if (nr_pages
> AIO_RING_PAGES
) {
123 info
->ring_pages
= kmalloc(sizeof(struct page
*) * nr_pages
, GFP_KERNEL
);
124 if (!info
->ring_pages
)
126 memset(info
->ring_pages
, 0, sizeof(struct page
*) * nr_pages
);
129 info
->mmap_size
= nr_pages
* PAGE_SIZE
;
130 dprintk("attempting mmap of %lu bytes\n", info
->mmap_size
);
131 down_write(&ctx
->mm
->mmap_sem
);
132 info
->mmap_base
= do_mmap(NULL
, 0, info
->mmap_size
,
133 PROT_READ
|PROT_WRITE
, MAP_ANON
|MAP_PRIVATE
,
135 if (IS_ERR((void *)info
->mmap_base
)) {
136 up_write(&ctx
->mm
->mmap_sem
);
137 printk("mmap err: %ld\n", -info
->mmap_base
);
143 dprintk("mmap address: 0x%08lx\n", info
->mmap_base
);
144 info
->nr_pages
= get_user_pages(current
, ctx
->mm
,
145 info
->mmap_base
, nr_pages
,
146 1, 0, info
->ring_pages
, NULL
);
147 up_write(&ctx
->mm
->mmap_sem
);
149 if (unlikely(info
->nr_pages
!= nr_pages
)) {
154 ctx
->user_id
= info
->mmap_base
;
156 info
->nr
= nr_events
; /* trusted copy */
158 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
159 ring
->nr
= nr_events
; /* user copy */
160 ring
->id
= ctx
->user_id
;
161 ring
->head
= ring
->tail
= 0;
162 ring
->magic
= AIO_RING_MAGIC
;
163 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
164 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
165 ring
->header_length
= sizeof(struct aio_ring
);
166 kunmap_atomic(ring
, KM_USER0
);
172 /* aio_ring_event: returns a pointer to the event at the given index from
173 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
175 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
176 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
177 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
179 #define aio_ring_event(info, nr, km) ({ \
180 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
181 struct io_event *__event; \
182 __event = kmap_atomic( \
183 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
184 __event += pos % AIO_EVENTS_PER_PAGE; \
188 #define put_aio_ring_event(event, km) do { \
189 struct io_event *__event = (event); \
191 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
195 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
197 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
199 struct mm_struct
*mm
;
202 /* Prevent overflows */
203 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
204 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
205 pr_debug("ENOMEM: nr_events too high\n");
206 return ERR_PTR(-EINVAL
);
209 if (nr_events
> aio_max_nr
)
210 return ERR_PTR(-EAGAIN
);
212 ctx
= kmem_cache_alloc(kioctx_cachep
, GFP_KERNEL
);
214 return ERR_PTR(-ENOMEM
);
216 memset(ctx
, 0, sizeof(*ctx
));
217 ctx
->max_reqs
= nr_events
;
218 mm
= ctx
->mm
= current
->mm
;
219 atomic_inc(&mm
->mm_count
);
221 atomic_set(&ctx
->users
, 1);
222 spin_lock_init(&ctx
->ctx_lock
);
223 spin_lock_init(&ctx
->ring_info
.ring_lock
);
224 init_waitqueue_head(&ctx
->wait
);
226 INIT_LIST_HEAD(&ctx
->active_reqs
);
227 INIT_LIST_HEAD(&ctx
->run_list
);
228 INIT_WORK(&ctx
->wq
, aio_kick_handler
, ctx
);
230 if (aio_setup_ring(ctx
) < 0)
233 /* limit the number of system wide aios */
234 atomic_add(ctx
->max_reqs
, &aio_nr
); /* undone by __put_ioctx */
235 if (unlikely(atomic_read(&aio_nr
) > aio_max_nr
))
238 /* now link into global list. kludge. FIXME */
239 write_lock(&mm
->ioctx_list_lock
);
240 ctx
->next
= mm
->ioctx_list
;
241 mm
->ioctx_list
= ctx
;
242 write_unlock(&mm
->ioctx_list_lock
);
244 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
245 ctx
, ctx
->user_id
, current
->mm
, ctx
->ring_info
.nr
);
249 atomic_sub(ctx
->max_reqs
, &aio_nr
);
250 ctx
->max_reqs
= 0; /* prevent __put_ioctx from sub'ing aio_nr */
252 return ERR_PTR(-EAGAIN
);
256 kmem_cache_free(kioctx_cachep
, ctx
);
257 ctx
= ERR_PTR(-ENOMEM
);
259 dprintk("aio: error allocating ioctx %p\n", ctx
);
264 * Cancels all outstanding aio requests on an aio context. Used
265 * when the processes owning a context have all exited to encourage
266 * the rapid destruction of the kioctx.
268 static void aio_cancel_all(struct kioctx
*ctx
)
270 int (*cancel
)(struct kiocb
*, struct io_event
*);
272 spin_lock_irq(&ctx
->ctx_lock
);
274 while (!list_empty(&ctx
->active_reqs
)) {
275 struct list_head
*pos
= ctx
->active_reqs
.next
;
276 struct kiocb
*iocb
= list_kiocb(pos
);
277 list_del_init(&iocb
->ki_list
);
278 cancel
= iocb
->ki_cancel
;
279 kiocbSetCancelled(iocb
);
282 spin_unlock_irq(&ctx
->ctx_lock
);
284 spin_lock_irq(&ctx
->ctx_lock
);
287 spin_unlock_irq(&ctx
->ctx_lock
);
290 static void wait_for_all_aios(struct kioctx
*ctx
)
292 struct task_struct
*tsk
= current
;
293 DECLARE_WAITQUEUE(wait
, tsk
);
295 if (!ctx
->reqs_active
)
298 add_wait_queue(&ctx
->wait
, &wait
);
299 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
300 while (ctx
->reqs_active
) {
302 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
304 __set_task_state(tsk
, TASK_RUNNING
);
305 remove_wait_queue(&ctx
->wait
, &wait
);
308 /* wait_on_sync_kiocb:
309 * Waits on the given sync kiocb to complete.
311 ssize_t fastcall
wait_on_sync_kiocb(struct kiocb
*iocb
)
313 while (iocb
->ki_users
) {
314 set_current_state(TASK_UNINTERRUPTIBLE
);
319 __set_current_state(TASK_RUNNING
);
320 return iocb
->ki_user_data
;
323 /* exit_aio: called when the last user of mm goes away. At this point,
324 * there is no way for any new requests to be submited or any of the
325 * io_* syscalls to be called on the context. However, there may be
326 * outstanding requests which hold references to the context; as they
327 * go away, they will call put_ioctx and release any pinned memory
328 * associated with the request (held via struct page * references).
330 void fastcall
exit_aio(struct mm_struct
*mm
)
332 struct kioctx
*ctx
= mm
->ioctx_list
;
333 mm
->ioctx_list
= NULL
;
335 struct kioctx
*next
= ctx
->next
;
339 wait_for_all_aios(ctx
);
341 * this is an overkill, but ensures we don't leave
342 * the ctx on the aio_wq
344 flush_workqueue(aio_wq
);
346 if (1 != atomic_read(&ctx
->users
))
348 "exit_aio:ioctx still alive: %d %d %d\n",
349 atomic_read(&ctx
->users
), ctx
->dead
,
357 * Called when the last user of an aio context has gone away,
358 * and the struct needs to be freed.
360 void fastcall
__put_ioctx(struct kioctx
*ctx
)
362 unsigned nr_events
= ctx
->max_reqs
;
364 if (unlikely(ctx
->reqs_active
))
367 cancel_delayed_work(&ctx
->wq
);
368 flush_workqueue(aio_wq
);
372 pr_debug("__put_ioctx: freeing %p\n", ctx
);
373 kmem_cache_free(kioctx_cachep
, ctx
);
375 atomic_sub(nr_events
, &aio_nr
);
379 * Allocate a slot for an aio request. Increments the users count
380 * of the kioctx so that the kioctx stays around until all requests are
381 * complete. Returns NULL if no requests are free.
383 * Returns with kiocb->users set to 2. The io submit code path holds
384 * an extra reference while submitting the i/o.
385 * This prevents races between the aio code path referencing the
386 * req (after submitting it) and aio_complete() freeing the req.
388 static struct kiocb
*FASTCALL(__aio_get_req(struct kioctx
*ctx
));
389 static struct kiocb fastcall
*__aio_get_req(struct kioctx
*ctx
)
391 struct kiocb
*req
= NULL
;
392 struct aio_ring
*ring
;
395 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
399 req
->ki_flags
= 1 << KIF_LOCKED
;
403 req
->ki_cancel
= NULL
;
404 req
->ki_retry
= NULL
;
407 INIT_LIST_HEAD(&req
->ki_run_list
);
409 /* Check if the completion queue has enough free space to
410 * accept an event from this io.
412 spin_lock_irq(&ctx
->ctx_lock
);
413 ring
= kmap_atomic(ctx
->ring_info
.ring_pages
[0], KM_USER0
);
414 if (ctx
->reqs_active
< aio_ring_avail(&ctx
->ring_info
, ring
)) {
415 list_add(&req
->ki_list
, &ctx
->active_reqs
);
420 kunmap_atomic(ring
, KM_USER0
);
421 spin_unlock_irq(&ctx
->ctx_lock
);
424 kmem_cache_free(kiocb_cachep
, req
);
431 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
)
434 /* Handle a potential starvation case -- should be exceedingly rare as
435 * requests will be stuck on fput_head only if the aio_fput_routine is
436 * delayed and the requests were the last user of the struct file.
438 req
= __aio_get_req(ctx
);
439 if (unlikely(NULL
== req
)) {
440 aio_fput_routine(NULL
);
441 req
= __aio_get_req(ctx
);
446 static inline void really_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
450 kmem_cache_free(kiocb_cachep
, req
);
453 if (unlikely(!ctx
->reqs_active
&& ctx
->dead
))
457 static void aio_fput_routine(void *data
)
459 spin_lock_irq(&fput_lock
);
460 while (likely(!list_empty(&fput_head
))) {
461 struct kiocb
*req
= list_kiocb(fput_head
.next
);
462 struct kioctx
*ctx
= req
->ki_ctx
;
464 list_del(&req
->ki_list
);
465 spin_unlock_irq(&fput_lock
);
467 /* Complete the fput */
468 __fput(req
->ki_filp
);
470 /* Link the iocb into the context's free list */
471 spin_lock_irq(&ctx
->ctx_lock
);
472 really_put_req(ctx
, req
);
473 spin_unlock_irq(&ctx
->ctx_lock
);
476 spin_lock_irq(&fput_lock
);
478 spin_unlock_irq(&fput_lock
);
482 * Returns true if this put was the last user of the request.
484 static int __aio_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
486 dprintk(KERN_DEBUG
"aio_put(%p): f_count=%d\n",
487 req
, atomic_read(&req
->ki_filp
->f_count
));
490 if (unlikely(req
->ki_users
< 0))
492 if (likely(req
->ki_users
))
494 list_del(&req
->ki_list
); /* remove from active_reqs */
495 req
->ki_cancel
= NULL
;
496 req
->ki_retry
= NULL
;
498 /* Must be done under the lock to serialise against cancellation.
499 * Call this aio_fput as it duplicates fput via the fput_work.
501 if (unlikely(atomic_dec_and_test(&req
->ki_filp
->f_count
))) {
503 spin_lock(&fput_lock
);
504 list_add(&req
->ki_list
, &fput_head
);
505 spin_unlock(&fput_lock
);
506 queue_work(aio_wq
, &fput_work
);
508 really_put_req(ctx
, req
);
513 * Returns true if this put was the last user of the kiocb,
514 * false if the request is still in use.
516 int fastcall
aio_put_req(struct kiocb
*req
)
518 struct kioctx
*ctx
= req
->ki_ctx
;
520 spin_lock_irq(&ctx
->ctx_lock
);
521 ret
= __aio_put_req(ctx
, req
);
522 spin_unlock_irq(&ctx
->ctx_lock
);
528 /* Lookup an ioctx id. ioctx_list is lockless for reads.
529 * FIXME: this is O(n) and is only suitable for development.
531 struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
533 struct kioctx
*ioctx
;
534 struct mm_struct
*mm
;
537 read_lock(&mm
->ioctx_list_lock
);
538 for (ioctx
= mm
->ioctx_list
; ioctx
; ioctx
= ioctx
->next
)
539 if (likely(ioctx
->user_id
== ctx_id
&& !ioctx
->dead
)) {
543 read_unlock(&mm
->ioctx_list_lock
);
550 * Makes the calling kernel thread take on the specified
552 * Called by the retry thread execute retries within the
553 * iocb issuer's mm context, so that copy_from/to_user
554 * operations work seamlessly for aio.
555 * (Note: this routine is intended to be called only
556 * from a kernel thread context)
558 static void use_mm(struct mm_struct
*mm
)
560 struct mm_struct
*active_mm
;
561 struct task_struct
*tsk
= current
;
564 tsk
->flags
|= PF_BORROWED_MM
;
565 active_mm
= tsk
->active_mm
;
566 atomic_inc(&mm
->mm_count
);
569 activate_mm(active_mm
, mm
);
577 * Reverses the effect of use_mm, i.e. releases the
578 * specified mm context which was earlier taken on
579 * by the calling kernel thread
580 * (Note: this routine is intended to be called only
581 * from a kernel thread context)
583 * Comments: Called with ctx->ctx_lock held. This nests
584 * task_lock instead ctx_lock.
586 static void unuse_mm(struct mm_struct
*mm
)
588 struct task_struct
*tsk
= current
;
591 tsk
->flags
&= ~PF_BORROWED_MM
;
593 /* active_mm is still 'mm' */
594 enter_lazy_tlb(mm
, tsk
);
599 * Queue up a kiocb to be retried. Assumes that the kiocb
600 * has already been marked as kicked, and places it on
601 * the retry run list for the corresponding ioctx, if it
602 * isn't already queued. Returns 1 if it actually queued
603 * the kiocb (to tell the caller to activate the work
604 * queue to process it), or 0, if it found that it was
607 * Should be called with the spin lock iocb->ki_ctx->ctx_lock
610 static inline int __queue_kicked_iocb(struct kiocb
*iocb
)
612 struct kioctx
*ctx
= iocb
->ki_ctx
;
614 if (list_empty(&iocb
->ki_run_list
)) {
615 list_add_tail(&iocb
->ki_run_list
,
623 * This is the core aio execution routine. It is
624 * invoked both for initial i/o submission and
625 * subsequent retries via the aio_kick_handler.
626 * Expects to be invoked with iocb->ki_ctx->lock
627 * already held. The lock is released and reaquired
628 * as needed during processing.
630 * Calls the iocb retry method (already setup for the
631 * iocb on initial submission) for operation specific
632 * handling, but takes care of most of common retry
633 * execution details for a given iocb. The retry method
634 * needs to be non-blocking as far as possible, to avoid
635 * holding up other iocbs waiting to be serviced by the
636 * retry kernel thread.
638 * The trickier parts in this code have to do with
639 * ensuring that only one retry instance is in progress
640 * for a given iocb at any time. Providing that guarantee
641 * simplifies the coding of individual aio operations as
642 * it avoids various potential races.
644 static ssize_t
aio_run_iocb(struct kiocb
*iocb
)
646 struct kioctx
*ctx
= iocb
->ki_ctx
;
647 ssize_t (*retry
)(struct kiocb
*);
650 if (iocb
->ki_retried
++ > 1024*1024) {
651 printk("Maximal retry count. Bytes done %Zd\n",
652 iocb
->ki_nbytes
- iocb
->ki_left
);
656 if (!(iocb
->ki_retried
& 0xff)) {
657 pr_debug("%ld retry: %d of %d\n", iocb
->ki_retried
,
658 iocb
->ki_nbytes
- iocb
->ki_left
, iocb
->ki_nbytes
);
661 if (!(retry
= iocb
->ki_retry
)) {
662 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
667 * We don't want the next retry iteration for this
668 * operation to start until this one has returned and
669 * updated the iocb state. However, wait_queue functions
670 * can trigger a kick_iocb from interrupt context in the
671 * meantime, indicating that data is available for the next
672 * iteration. We want to remember that and enable the
673 * next retry iteration _after_ we are through with
676 * So, in order to be able to register a "kick", but
677 * prevent it from being queued now, we clear the kick
678 * flag, but make the kick code *think* that the iocb is
679 * still on the run list until we are actually done.
680 * When we are done with this iteration, we check if
681 * the iocb was kicked in the meantime and if so, queue
685 kiocbClearKicked(iocb
);
688 * This is so that aio_complete knows it doesn't need to
689 * pull the iocb off the run list (We can't just call
690 * INIT_LIST_HEAD because we don't want a kick_iocb to
691 * queue this on the run list yet)
693 iocb
->ki_run_list
.next
= iocb
->ki_run_list
.prev
= NULL
;
694 spin_unlock_irq(&ctx
->ctx_lock
);
696 /* Quit retrying if the i/o has been cancelled */
697 if (kiocbIsCancelled(iocb
)) {
699 aio_complete(iocb
, ret
, 0);
700 /* must not access the iocb after this */
705 * Now we are all set to call the retry method in async
706 * context. By setting this thread's io_wait context
707 * to point to the wait queue entry inside the currently
708 * running iocb for the duration of the retry, we ensure
709 * that async notification wakeups are queued by the
710 * operation instead of blocking waits, and when notified,
711 * cause the iocb to be kicked for continuation (through
712 * the aio_wake_function callback).
714 BUG_ON(current
->io_wait
!= NULL
);
715 current
->io_wait
= &iocb
->ki_wait
;
717 current
->io_wait
= NULL
;
719 if (-EIOCBRETRY
!= ret
) {
720 if (-EIOCBQUEUED
!= ret
) {
721 BUG_ON(!list_empty(&iocb
->ki_wait
.task_list
));
722 aio_complete(iocb
, ret
, 0);
723 /* must not access the iocb after this */
727 * Issue an additional retry to avoid waiting forever if
728 * no waits were queued (e.g. in case of a short read).
730 if (list_empty(&iocb
->ki_wait
.task_list
))
731 kiocbSetKicked(iocb
);
734 spin_lock_irq(&ctx
->ctx_lock
);
736 if (-EIOCBRETRY
== ret
) {
738 * OK, now that we are done with this iteration
739 * and know that there is more left to go,
740 * this is where we let go so that a subsequent
741 * "kick" can start the next iteration
744 /* will make __queue_kicked_iocb succeed from here on */
745 INIT_LIST_HEAD(&iocb
->ki_run_list
);
746 /* we must queue the next iteration ourselves, if it
747 * has already been kicked */
748 if (kiocbIsKicked(iocb
)) {
749 __queue_kicked_iocb(iocb
);
757 * Process all pending retries queued on the ioctx
759 * Assumes it is operating within the aio issuer's mm
760 * context. Expects to be called with ctx->ctx_lock held
762 static int __aio_run_iocbs(struct kioctx
*ctx
)
767 list_splice_init(&ctx
->run_list
, &run_list
);
768 while (!list_empty(&run_list
)) {
769 iocb
= list_entry(run_list
.next
, struct kiocb
,
771 list_del(&iocb
->ki_run_list
);
773 * Hold an extra reference while retrying i/o.
775 iocb
->ki_users
++; /* grab extra reference */
777 if (__aio_put_req(ctx
, iocb
)) /* drop extra ref */
780 if (!list_empty(&ctx
->run_list
))
785 static void aio_queue_work(struct kioctx
* ctx
)
787 unsigned long timeout
;
789 * if someone is waiting, get the work started right
790 * away, otherwise, use a longer delay
793 if (waitqueue_active(&ctx
->wait
))
797 queue_delayed_work(aio_wq
, &ctx
->wq
, timeout
);
803 * Process all pending retries queued on the ioctx
805 * Assumes it is operating within the aio issuer's mm
808 static inline void aio_run_iocbs(struct kioctx
*ctx
)
812 spin_lock_irq(&ctx
->ctx_lock
);
814 requeue
= __aio_run_iocbs(ctx
);
815 spin_unlock_irq(&ctx
->ctx_lock
);
821 * just like aio_run_iocbs, but keeps running them until
822 * the list stays empty
824 static inline void aio_run_all_iocbs(struct kioctx
*ctx
)
826 spin_lock_irq(&ctx
->ctx_lock
);
827 while (__aio_run_iocbs(ctx
))
829 spin_unlock_irq(&ctx
->ctx_lock
);
834 * Work queue handler triggered to process pending
835 * retries on an ioctx. Takes on the aio issuer's
836 * mm context before running the iocbs, so that
837 * copy_xxx_user operates on the issuer's address
839 * Run on aiod's context.
841 static void aio_kick_handler(void *data
)
843 struct kioctx
*ctx
= data
;
844 mm_segment_t oldfs
= get_fs();
849 spin_lock_irq(&ctx
->ctx_lock
);
850 requeue
=__aio_run_iocbs(ctx
);
852 spin_unlock_irq(&ctx
->ctx_lock
);
855 * we're in a worker thread already, don't use queue_delayed_work,
858 queue_work(aio_wq
, &ctx
->wq
);
863 * Called by kick_iocb to queue the kiocb for retry
864 * and if required activate the aio work queue to process
867 static void queue_kicked_iocb(struct kiocb
*iocb
)
869 struct kioctx
*ctx
= iocb
->ki_ctx
;
873 WARN_ON((!list_empty(&iocb
->ki_wait
.task_list
)));
875 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
876 run
= __queue_kicked_iocb(iocb
);
877 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
884 * Called typically from a wait queue callback context
885 * (aio_wake_function) to trigger a retry of the iocb.
886 * The retry is usually executed by aio workqueue
887 * threads (See aio_kick_handler).
889 void fastcall
kick_iocb(struct kiocb
*iocb
)
891 /* sync iocbs are easy: they can only ever be executing from a
893 if (is_sync_kiocb(iocb
)) {
894 kiocbSetKicked(iocb
);
895 wake_up_process(iocb
->ki_obj
.tsk
);
899 /* If its already kicked we shouldn't queue it again */
900 if (!kiocbTryKick(iocb
)) {
901 queue_kicked_iocb(iocb
);
904 EXPORT_SYMBOL(kick_iocb
);
907 * Called when the io request on the given iocb is complete.
908 * Returns true if this is the last user of the request. The
909 * only other user of the request can be the cancellation code.
911 int fastcall
aio_complete(struct kiocb
*iocb
, long res
, long res2
)
913 struct kioctx
*ctx
= iocb
->ki_ctx
;
914 struct aio_ring_info
*info
;
915 struct aio_ring
*ring
;
916 struct io_event
*event
;
921 /* Special case handling for sync iocbs: events go directly
922 * into the iocb for fast handling. Note that this will not
923 * work if we allow sync kiocbs to be cancelled. in which
924 * case the usage count checks will have to move under ctx_lock
927 if (is_sync_kiocb(iocb
)) {
930 iocb
->ki_user_data
= res
;
931 if (iocb
->ki_users
== 1) {
935 spin_lock_irq(&ctx
->ctx_lock
);
937 ret
= (0 == iocb
->ki_users
);
938 spin_unlock_irq(&ctx
->ctx_lock
);
940 /* sync iocbs put the task here for us */
941 wake_up_process(iocb
->ki_obj
.tsk
);
945 info
= &ctx
->ring_info
;
947 /* add a completion event to the ring buffer.
948 * must be done holding ctx->ctx_lock to prevent
949 * other code from messing with the tail
950 * pointer since we might be called from irq
953 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
955 if (iocb
->ki_run_list
.prev
&& !list_empty(&iocb
->ki_run_list
))
956 list_del_init(&iocb
->ki_run_list
);
959 * cancelled requests don't get events, userland was given one
960 * when the event got cancelled.
962 if (kiocbIsCancelled(iocb
))
965 ring
= kmap_atomic(info
->ring_pages
[0], KM_IRQ1
);
968 event
= aio_ring_event(info
, tail
, KM_IRQ0
);
969 if (++tail
>= info
->nr
)
972 event
->obj
= (u64
)(unsigned long)iocb
->ki_obj
.user
;
973 event
->data
= iocb
->ki_user_data
;
977 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
978 ctx
, tail
, iocb
, iocb
->ki_obj
.user
, iocb
->ki_user_data
,
981 /* after flagging the request as done, we
982 * must never even look at it again
984 smp_wmb(); /* make event visible before updating tail */
989 put_aio_ring_event(event
, KM_IRQ0
);
990 kunmap_atomic(ring
, KM_IRQ1
);
992 pr_debug("added to ring %p at [%lu]\n", iocb
, tail
);
994 pr_debug("%ld retries: %d of %d\n", iocb
->ki_retried
,
995 iocb
->ki_nbytes
- iocb
->ki_left
, iocb
->ki_nbytes
);
997 /* everything turned out well, dispose of the aiocb. */
998 ret
= __aio_put_req(ctx
, iocb
);
1000 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1002 if (waitqueue_active(&ctx
->wait
))
1003 wake_up(&ctx
->wait
);
1012 * Pull an event off of the ioctx's event ring. Returns the number of
1013 * events fetched (0 or 1 ;-)
1014 * FIXME: make this use cmpxchg.
1015 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1017 static int aio_read_evt(struct kioctx
*ioctx
, struct io_event
*ent
)
1019 struct aio_ring_info
*info
= &ioctx
->ring_info
;
1020 struct aio_ring
*ring
;
1024 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
1025 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1026 (unsigned long)ring
->head
, (unsigned long)ring
->tail
,
1027 (unsigned long)ring
->nr
);
1029 if (ring
->head
== ring
->tail
)
1032 spin_lock(&info
->ring_lock
);
1034 head
= ring
->head
% info
->nr
;
1035 if (head
!= ring
->tail
) {
1036 struct io_event
*evp
= aio_ring_event(info
, head
, KM_USER1
);
1038 head
= (head
+ 1) % info
->nr
;
1039 smp_mb(); /* finish reading the event before updatng the head */
1042 put_aio_ring_event(evp
, KM_USER1
);
1044 spin_unlock(&info
->ring_lock
);
1047 kunmap_atomic(ring
, KM_USER0
);
1048 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret
,
1049 (unsigned long)ring
->head
, (unsigned long)ring
->tail
);
1053 struct aio_timeout
{
1054 struct timer_list timer
;
1056 struct task_struct
*p
;
1059 static void timeout_func(unsigned long data
)
1061 struct aio_timeout
*to
= (struct aio_timeout
*)data
;
1064 wake_up_process(to
->p
);
1067 static inline void init_timeout(struct aio_timeout
*to
)
1069 init_timer(&to
->timer
);
1070 to
->timer
.data
= (unsigned long)to
;
1071 to
->timer
.function
= timeout_func
;
1076 static inline void set_timeout(long start_jiffies
, struct aio_timeout
*to
,
1077 const struct timespec
*ts
)
1079 to
->timer
.expires
= start_jiffies
+ timespec_to_jiffies(ts
);
1080 if (time_after(to
->timer
.expires
, jiffies
))
1081 add_timer(&to
->timer
);
1086 static inline void clear_timeout(struct aio_timeout
*to
)
1088 del_singleshot_timer_sync(&to
->timer
);
1091 static int read_events(struct kioctx
*ctx
,
1092 long min_nr
, long nr
,
1093 struct io_event __user
*event
,
1094 struct timespec __user
*timeout
)
1096 long start_jiffies
= jiffies
;
1097 struct task_struct
*tsk
= current
;
1098 DECLARE_WAITQUEUE(wait
, tsk
);
1101 struct io_event ent
;
1102 struct aio_timeout to
;
1105 /* needed to zero any padding within an entry (there shouldn't be
1106 * any, but C is fun!
1108 memset(&ent
, 0, sizeof(ent
));
1111 while (likely(i
< nr
)) {
1112 ret
= aio_read_evt(ctx
, &ent
);
1113 if (unlikely(ret
<= 0))
1116 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1117 ent
.data
, ent
.obj
, ent
.res
, ent
.res2
);
1119 /* Could we split the check in two? */
1121 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1122 dprintk("aio: lost an event due to EFAULT.\n");
1127 /* Good, event copied to userland, update counts. */
1139 /* racey check, but it gets redone */
1140 if (!retry
&& unlikely(!list_empty(&ctx
->run_list
))) {
1142 aio_run_all_iocbs(ctx
);
1150 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1153 set_timeout(start_jiffies
, &to
, &ts
);
1156 while (likely(i
< nr
)) {
1157 add_wait_queue_exclusive(&ctx
->wait
, &wait
);
1159 set_task_state(tsk
, TASK_INTERRUPTIBLE
);
1160 ret
= aio_read_evt(ctx
, &ent
);
1166 if (to
.timed_out
) /* Only check after read evt */
1169 if (signal_pending(tsk
)) {
1173 /*ret = aio_read_evt(ctx, &ent);*/
1176 set_task_state(tsk
, TASK_RUNNING
);
1177 remove_wait_queue(&ctx
->wait
, &wait
);
1179 if (unlikely(ret
<= 0))
1183 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1184 dprintk("aio: lost an event due to EFAULT.\n");
1188 /* Good, event copied to userland, update counts. */
1199 /* Take an ioctx and remove it from the list of ioctx's. Protects
1200 * against races with itself via ->dead.
1202 static void io_destroy(struct kioctx
*ioctx
)
1204 struct mm_struct
*mm
= current
->mm
;
1205 struct kioctx
**tmp
;
1208 /* delete the entry from the list is someone else hasn't already */
1209 write_lock(&mm
->ioctx_list_lock
);
1210 was_dead
= ioctx
->dead
;
1212 for (tmp
= &mm
->ioctx_list
; *tmp
&& *tmp
!= ioctx
;
1213 tmp
= &(*tmp
)->next
)
1217 write_unlock(&mm
->ioctx_list_lock
);
1219 dprintk("aio_release(%p)\n", ioctx
);
1220 if (likely(!was_dead
))
1221 put_ioctx(ioctx
); /* twice for the list */
1223 aio_cancel_all(ioctx
);
1224 wait_for_all_aios(ioctx
);
1225 put_ioctx(ioctx
); /* once for the lookup */
1229 * Create an aio_context capable of receiving at least nr_events.
1230 * ctxp must not point to an aio_context that already exists, and
1231 * must be initialized to 0 prior to the call. On successful
1232 * creation of the aio_context, *ctxp is filled in with the resulting
1233 * handle. May fail with -EINVAL if *ctxp is not initialized,
1234 * if the specified nr_events exceeds internal limits. May fail
1235 * with -EAGAIN if the specified nr_events exceeds the user's limit
1236 * of available events. May fail with -ENOMEM if insufficient kernel
1237 * resources are available. May fail with -EFAULT if an invalid
1238 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1241 asmlinkage
long sys_io_setup(unsigned nr_events
, aio_context_t __user
*ctxp
)
1243 struct kioctx
*ioctx
= NULL
;
1247 ret
= get_user(ctx
, ctxp
);
1252 if (unlikely(ctx
|| (int)nr_events
<= 0)) {
1253 pr_debug("EINVAL: io_setup: ctx or nr_events > max\n");
1257 ioctx
= ioctx_alloc(nr_events
);
1258 ret
= PTR_ERR(ioctx
);
1259 if (!IS_ERR(ioctx
)) {
1260 ret
= put_user(ioctx
->user_id
, ctxp
);
1264 get_ioctx(ioctx
); /* io_destroy() expects us to hold a ref */
1273 * Destroy the aio_context specified. May cancel any outstanding
1274 * AIOs and block on completion. Will fail with -ENOSYS if not
1275 * implemented. May fail with -EFAULT if the context pointed to
1278 asmlinkage
long sys_io_destroy(aio_context_t ctx
)
1280 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1281 if (likely(NULL
!= ioctx
)) {
1285 pr_debug("EINVAL: io_destroy: invalid context id\n");
1290 * Default retry method for aio_read (also used for first time submit)
1291 * Responsible for updating iocb state as retries progress
1293 static ssize_t
aio_pread(struct kiocb
*iocb
)
1295 struct file
*file
= iocb
->ki_filp
;
1296 struct address_space
*mapping
= file
->f_mapping
;
1297 struct inode
*inode
= mapping
->host
;
1300 ret
= file
->f_op
->aio_read(iocb
, iocb
->ki_buf
,
1301 iocb
->ki_left
, iocb
->ki_pos
);
1304 * Can't just depend on iocb->ki_left to determine
1305 * whether we are done. This may have been a short read.
1308 iocb
->ki_buf
+= ret
;
1309 iocb
->ki_left
-= ret
;
1311 * For pipes and sockets we return once we have
1312 * some data; for regular files we retry till we
1313 * complete the entire read or find that we can't
1314 * read any more data (e.g short reads).
1316 if (!S_ISFIFO(inode
->i_mode
) && !S_ISSOCK(inode
->i_mode
))
1320 /* This means we must have transferred all that we could */
1321 /* No need to retry anymore */
1322 if ((ret
== 0) || (iocb
->ki_left
== 0))
1323 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1329 * Default retry method for aio_write (also used for first time submit)
1330 * Responsible for updating iocb state as retries progress
1332 static ssize_t
aio_pwrite(struct kiocb
*iocb
)
1334 struct file
*file
= iocb
->ki_filp
;
1337 ret
= file
->f_op
->aio_write(iocb
, iocb
->ki_buf
,
1338 iocb
->ki_left
, iocb
->ki_pos
);
1341 iocb
->ki_buf
+= ret
;
1342 iocb
->ki_left
-= ret
;
1347 /* This means we must have transferred all that we could */
1348 /* No need to retry anymore */
1349 if ((ret
== 0) || (iocb
->ki_left
== 0))
1350 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1355 static ssize_t
aio_fdsync(struct kiocb
*iocb
)
1357 struct file
*file
= iocb
->ki_filp
;
1358 ssize_t ret
= -EINVAL
;
1360 if (file
->f_op
->aio_fsync
)
1361 ret
= file
->f_op
->aio_fsync(iocb
, 1);
1365 static ssize_t
aio_fsync(struct kiocb
*iocb
)
1367 struct file
*file
= iocb
->ki_filp
;
1368 ssize_t ret
= -EINVAL
;
1370 if (file
->f_op
->aio_fsync
)
1371 ret
= file
->f_op
->aio_fsync(iocb
, 0);
1377 * Performs the initial checks and aio retry method
1378 * setup for the kiocb at the time of io submission.
1380 static ssize_t
aio_setup_iocb(struct kiocb
*kiocb
)
1382 struct file
*file
= kiocb
->ki_filp
;
1385 switch (kiocb
->ki_opcode
) {
1386 case IOCB_CMD_PREAD
:
1388 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1391 if (unlikely(!access_ok(VERIFY_WRITE
, kiocb
->ki_buf
,
1395 if (file
->f_op
->aio_read
)
1396 kiocb
->ki_retry
= aio_pread
;
1398 case IOCB_CMD_PWRITE
:
1400 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1403 if (unlikely(!access_ok(VERIFY_READ
, kiocb
->ki_buf
,
1407 if (file
->f_op
->aio_write
)
1408 kiocb
->ki_retry
= aio_pwrite
;
1410 case IOCB_CMD_FDSYNC
:
1412 if (file
->f_op
->aio_fsync
)
1413 kiocb
->ki_retry
= aio_fdsync
;
1415 case IOCB_CMD_FSYNC
:
1417 if (file
->f_op
->aio_fsync
)
1418 kiocb
->ki_retry
= aio_fsync
;
1421 dprintk("EINVAL: io_submit: no operation provided\n");
1425 if (!kiocb
->ki_retry
)
1432 * aio_wake_function:
1433 * wait queue callback function for aio notification,
1434 * Simply triggers a retry of the operation via kick_iocb.
1436 * This callback is specified in the wait queue entry in
1437 * a kiocb (current->io_wait points to this wait queue
1438 * entry when an aio operation executes; it is used
1439 * instead of a synchronous wait when an i/o blocking
1440 * condition is encountered during aio).
1443 * This routine is executed with the wait queue lock held.
1444 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1445 * the ioctx lock inside the wait queue lock. This is safe
1446 * because this callback isn't used for wait queues which
1447 * are nested inside ioctx lock (i.e. ctx->wait)
1449 static int aio_wake_function(wait_queue_t
*wait
, unsigned mode
,
1450 int sync
, void *key
)
1452 struct kiocb
*iocb
= container_of(wait
, struct kiocb
, ki_wait
);
1454 list_del_init(&wait
->task_list
);
1459 int fastcall
io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1466 /* enforce forwards compatibility on users */
1467 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
||
1468 iocb
->aio_reserved3
)) {
1469 pr_debug("EINVAL: io_submit: reserve field set\n");
1473 /* prevent overflows */
1475 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1476 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1477 ((ssize_t
)iocb
->aio_nbytes
< 0)
1479 pr_debug("EINVAL: io_submit: overflow check\n");
1483 file
= fget(iocb
->aio_fildes
);
1484 if (unlikely(!file
))
1487 req
= aio_get_req(ctx
); /* returns with 2 references to req */
1488 if (unlikely(!req
)) {
1493 req
->ki_filp
= file
;
1494 ret
= put_user(req
->ki_key
, &user_iocb
->aio_key
);
1495 if (unlikely(ret
)) {
1496 dprintk("EFAULT: aio_key\n");
1500 req
->ki_obj
.user
= user_iocb
;
1501 req
->ki_user_data
= iocb
->aio_data
;
1502 req
->ki_pos
= iocb
->aio_offset
;
1504 req
->ki_buf
= (char __user
*)(unsigned long)iocb
->aio_buf
;
1505 req
->ki_left
= req
->ki_nbytes
= iocb
->aio_nbytes
;
1506 req
->ki_opcode
= iocb
->aio_lio_opcode
;
1507 init_waitqueue_func_entry(&req
->ki_wait
, aio_wake_function
);
1508 INIT_LIST_HEAD(&req
->ki_wait
.task_list
);
1509 req
->ki_retried
= 0;
1511 ret
= aio_setup_iocb(req
);
1516 spin_lock_irq(&ctx
->ctx_lock
);
1517 if (likely(list_empty(&ctx
->run_list
))) {
1520 list_add_tail(&req
->ki_run_list
, &ctx
->run_list
);
1521 /* drain the run list */
1522 while (__aio_run_iocbs(ctx
))
1525 spin_unlock_irq(&ctx
->ctx_lock
);
1526 aio_put_req(req
); /* drop extra ref to req */
1530 aio_put_req(req
); /* drop extra ref to req */
1531 aio_put_req(req
); /* drop i/o ref to req */
1536 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1537 * the number of iocbs queued. May return -EINVAL if the aio_context
1538 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1539 * *iocbpp[0] is not properly initialized, if the operation specified
1540 * is invalid for the file descriptor in the iocb. May fail with
1541 * -EFAULT if any of the data structures point to invalid data. May
1542 * fail with -EBADF if the file descriptor specified in the first
1543 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1544 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1545 * fail with -ENOSYS if not implemented.
1547 asmlinkage
long sys_io_submit(aio_context_t ctx_id
, long nr
,
1548 struct iocb __user
* __user
*iocbpp
)
1554 if (unlikely(nr
< 0))
1557 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1560 ctx
= lookup_ioctx(ctx_id
);
1561 if (unlikely(!ctx
)) {
1562 pr_debug("EINVAL: io_submit: invalid context id\n");
1567 * AKPM: should this return a partial result if some of the IOs were
1568 * successfully submitted?
1570 for (i
=0; i
<nr
; i
++) {
1571 struct iocb __user
*user_iocb
;
1574 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1579 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1584 ret
= io_submit_one(ctx
, user_iocb
, &tmp
);
1594 * Finds a given iocb for cancellation.
1595 * MUST be called with ctx->ctx_lock held.
1597 static struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
,
1600 struct list_head
*pos
;
1601 /* TODO: use a hash or array, this sucks. */
1602 list_for_each(pos
, &ctx
->active_reqs
) {
1603 struct kiocb
*kiocb
= list_kiocb(pos
);
1604 if (kiocb
->ki_obj
.user
== iocb
&& kiocb
->ki_key
== key
)
1611 * Attempts to cancel an iocb previously passed to io_submit. If
1612 * the operation is successfully cancelled, the resulting event is
1613 * copied into the memory pointed to by result without being placed
1614 * into the completion queue and 0 is returned. May fail with
1615 * -EFAULT if any of the data structures pointed to are invalid.
1616 * May fail with -EINVAL if aio_context specified by ctx_id is
1617 * invalid. May fail with -EAGAIN if the iocb specified was not
1618 * cancelled. Will fail with -ENOSYS if not implemented.
1620 asmlinkage
long sys_io_cancel(aio_context_t ctx_id
, struct iocb __user
*iocb
,
1621 struct io_event __user
*result
)
1623 int (*cancel
)(struct kiocb
*iocb
, struct io_event
*res
);
1625 struct kiocb
*kiocb
;
1629 ret
= get_user(key
, &iocb
->aio_key
);
1633 ctx
= lookup_ioctx(ctx_id
);
1637 spin_lock_irq(&ctx
->ctx_lock
);
1639 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1640 if (kiocb
&& kiocb
->ki_cancel
) {
1641 cancel
= kiocb
->ki_cancel
;
1643 kiocbSetCancelled(kiocb
);
1646 spin_unlock_irq(&ctx
->ctx_lock
);
1648 if (NULL
!= cancel
) {
1649 struct io_event tmp
;
1650 pr_debug("calling cancel\n");
1651 memset(&tmp
, 0, sizeof(tmp
));
1652 tmp
.obj
= (u64
)(unsigned long)kiocb
->ki_obj
.user
;
1653 tmp
.data
= kiocb
->ki_user_data
;
1654 ret
= cancel(kiocb
, &tmp
);
1656 /* Cancellation succeeded -- copy the result
1657 * into the user's buffer.
1659 if (copy_to_user(result
, &tmp
, sizeof(tmp
)))
1663 printk(KERN_DEBUG
"iocb has no cancel operation\n");
1671 * Attempts to read at least min_nr events and up to nr events from
1672 * the completion queue for the aio_context specified by ctx_id. May
1673 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1674 * if nr is out of range, if when is out of range. May fail with
1675 * -EFAULT if any of the memory specified to is invalid. May return
1676 * 0 or < min_nr if no events are available and the timeout specified
1677 * by when has elapsed, where when == NULL specifies an infinite
1678 * timeout. Note that the timeout pointed to by when is relative and
1679 * will be updated if not NULL and the operation blocks. Will fail
1680 * with -ENOSYS if not implemented.
1682 asmlinkage
long sys_io_getevents(aio_context_t ctx_id
,
1685 struct io_event __user
*events
,
1686 struct timespec __user
*timeout
)
1688 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1691 if (likely(ioctx
)) {
1692 if (likely(min_nr
<= nr
&& min_nr
>= 0 && nr
>= 0))
1693 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1700 __initcall(aio_setup
);
1702 EXPORT_SYMBOL(aio_complete
);
1703 EXPORT_SYMBOL(aio_put_req
);
1704 EXPORT_SYMBOL(wait_on_sync_kiocb
);