2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
34 #include <asm/irq_regs.h>
37 * Each CPU has a list of per CPU events:
39 static DEFINE_PER_CPU(struct perf_cpu_context
, perf_cpu_context
);
41 int perf_max_events __read_mostly
= 1;
42 static int perf_reserved_percpu __read_mostly
;
43 static int perf_overcommit __read_mostly
= 1;
45 static atomic_t nr_events __read_mostly
;
46 static atomic_t nr_mmap_events __read_mostly
;
47 static atomic_t nr_comm_events __read_mostly
;
48 static atomic_t nr_task_events __read_mostly
;
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
57 int sysctl_perf_event_paranoid __read_mostly
= 1;
59 int sysctl_perf_event_mlock __read_mostly
= 512; /* 'free' kb per user */
62 * max perf event sample rate
64 int sysctl_perf_event_sample_rate __read_mostly
= 100000;
66 static atomic64_t perf_event_id
;
69 * Lock for (sysadmin-configurable) event reservations:
71 static DEFINE_SPINLOCK(perf_resource_lock
);
74 * Architecture provided APIs - weak aliases:
76 extern __weak
const struct pmu
*hw_perf_event_init(struct perf_event
*event
)
81 void __weak
hw_perf_disable(void) { barrier(); }
82 void __weak
hw_perf_enable(void) { barrier(); }
85 hw_perf_group_sched_in(struct perf_event
*group_leader
,
86 struct perf_cpu_context
*cpuctx
,
87 struct perf_event_context
*ctx
)
92 void __weak
perf_event_print_debug(void) { }
94 static DEFINE_PER_CPU(int, perf_disable_count
);
96 void perf_disable(void)
98 if (!__get_cpu_var(perf_disable_count
)++)
102 void perf_enable(void)
104 if (!--__get_cpu_var(perf_disable_count
))
108 static void get_ctx(struct perf_event_context
*ctx
)
110 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
113 static void free_ctx(struct rcu_head
*head
)
115 struct perf_event_context
*ctx
;
117 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
121 static void put_ctx(struct perf_event_context
*ctx
)
123 if (atomic_dec_and_test(&ctx
->refcount
)) {
125 put_ctx(ctx
->parent_ctx
);
127 put_task_struct(ctx
->task
);
128 call_rcu(&ctx
->rcu_head
, free_ctx
);
132 static void unclone_ctx(struct perf_event_context
*ctx
)
134 if (ctx
->parent_ctx
) {
135 put_ctx(ctx
->parent_ctx
);
136 ctx
->parent_ctx
= NULL
;
141 * If we inherit events we want to return the parent event id
144 static u64
primary_event_id(struct perf_event
*event
)
149 id
= event
->parent
->id
;
155 * Get the perf_event_context for a task and lock it.
156 * This has to cope with with the fact that until it is locked,
157 * the context could get moved to another task.
159 static struct perf_event_context
*
160 perf_lock_task_context(struct task_struct
*task
, unsigned long *flags
)
162 struct perf_event_context
*ctx
;
166 ctx
= rcu_dereference(task
->perf_event_ctxp
);
169 * If this context is a clone of another, it might
170 * get swapped for another underneath us by
171 * perf_event_task_sched_out, though the
172 * rcu_read_lock() protects us from any context
173 * getting freed. Lock the context and check if it
174 * got swapped before we could get the lock, and retry
175 * if so. If we locked the right context, then it
176 * can't get swapped on us any more.
178 raw_spin_lock_irqsave(&ctx
->lock
, *flags
);
179 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
)) {
180 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
184 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
185 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
194 * Get the context for a task and increment its pin_count so it
195 * can't get swapped to another task. This also increments its
196 * reference count so that the context can't get freed.
198 static struct perf_event_context
*perf_pin_task_context(struct task_struct
*task
)
200 struct perf_event_context
*ctx
;
203 ctx
= perf_lock_task_context(task
, &flags
);
206 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
211 static void perf_unpin_context(struct perf_event_context
*ctx
)
215 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
217 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
221 static inline u64
perf_clock(void)
223 return cpu_clock(raw_smp_processor_id());
227 * Update the record of the current time in a context.
229 static void update_context_time(struct perf_event_context
*ctx
)
231 u64 now
= perf_clock();
233 ctx
->time
+= now
- ctx
->timestamp
;
234 ctx
->timestamp
= now
;
238 * Update the total_time_enabled and total_time_running fields for a event.
240 static void update_event_times(struct perf_event
*event
)
242 struct perf_event_context
*ctx
= event
->ctx
;
245 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
246 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
252 run_end
= event
->tstamp_stopped
;
254 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
256 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
257 run_end
= event
->tstamp_stopped
;
261 event
->total_time_running
= run_end
- event
->tstamp_running
;
264 static struct list_head
*
265 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
267 if (event
->attr
.pinned
)
268 return &ctx
->pinned_groups
;
270 return &ctx
->flexible_groups
;
274 * Add a event from the lists for its context.
275 * Must be called with ctx->mutex and ctx->lock held.
278 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
280 struct perf_event
*group_leader
= event
->group_leader
;
283 * Depending on whether it is a standalone or sibling event,
284 * add it straight to the context's event list, or to the group
285 * leader's sibling list:
287 if (group_leader
== event
) {
288 struct list_head
*list
;
290 if (is_software_event(event
))
291 event
->group_flags
|= PERF_GROUP_SOFTWARE
;
293 list
= ctx_group_list(event
, ctx
);
294 list_add_tail(&event
->group_entry
, list
);
296 if (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
&&
297 !is_software_event(event
))
298 group_leader
->group_flags
&= ~PERF_GROUP_SOFTWARE
;
300 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
301 group_leader
->nr_siblings
++;
304 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
306 if (event
->attr
.inherit_stat
)
311 * Remove a event from the lists for its context.
312 * Must be called with ctx->mutex and ctx->lock held.
315 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
317 struct perf_event
*sibling
, *tmp
;
319 if (list_empty(&event
->group_entry
))
322 if (event
->attr
.inherit_stat
)
325 list_del_init(&event
->group_entry
);
326 list_del_rcu(&event
->event_entry
);
328 if (event
->group_leader
!= event
)
329 event
->group_leader
->nr_siblings
--;
331 update_event_times(event
);
334 * If event was in error state, then keep it
335 * that way, otherwise bogus counts will be
336 * returned on read(). The only way to get out
337 * of error state is by explicit re-enabling
340 if (event
->state
> PERF_EVENT_STATE_OFF
)
341 event
->state
= PERF_EVENT_STATE_OFF
;
344 * If this was a group event with sibling events then
345 * upgrade the siblings to singleton events by adding them
346 * to the context list directly:
348 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
349 struct list_head
*list
;
351 list
= ctx_group_list(event
, ctx
);
352 list_move_tail(&sibling
->group_entry
, list
);
353 sibling
->group_leader
= sibling
;
355 /* Inherit group flags from the previous leader */
356 sibling
->group_flags
= event
->group_flags
;
361 event_sched_out(struct perf_event
*event
,
362 struct perf_cpu_context
*cpuctx
,
363 struct perf_event_context
*ctx
)
365 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
368 event
->state
= PERF_EVENT_STATE_INACTIVE
;
369 if (event
->pending_disable
) {
370 event
->pending_disable
= 0;
371 event
->state
= PERF_EVENT_STATE_OFF
;
373 event
->tstamp_stopped
= ctx
->time
;
374 event
->pmu
->disable(event
);
377 if (!is_software_event(event
))
378 cpuctx
->active_oncpu
--;
380 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
381 cpuctx
->exclusive
= 0;
385 group_sched_out(struct perf_event
*group_event
,
386 struct perf_cpu_context
*cpuctx
,
387 struct perf_event_context
*ctx
)
389 struct perf_event
*event
;
391 if (group_event
->state
!= PERF_EVENT_STATE_ACTIVE
)
394 event_sched_out(group_event
, cpuctx
, ctx
);
397 * Schedule out siblings (if any):
399 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
400 event_sched_out(event
, cpuctx
, ctx
);
402 if (group_event
->attr
.exclusive
)
403 cpuctx
->exclusive
= 0;
407 * Cross CPU call to remove a performance event
409 * We disable the event on the hardware level first. After that we
410 * remove it from the context list.
412 static void __perf_event_remove_from_context(void *info
)
414 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
415 struct perf_event
*event
= info
;
416 struct perf_event_context
*ctx
= event
->ctx
;
419 * If this is a task context, we need to check whether it is
420 * the current task context of this cpu. If not it has been
421 * scheduled out before the smp call arrived.
423 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
426 raw_spin_lock(&ctx
->lock
);
428 * Protect the list operation against NMI by disabling the
429 * events on a global level.
433 event_sched_out(event
, cpuctx
, ctx
);
435 list_del_event(event
, ctx
);
439 * Allow more per task events with respect to the
442 cpuctx
->max_pertask
=
443 min(perf_max_events
- ctx
->nr_events
,
444 perf_max_events
- perf_reserved_percpu
);
448 raw_spin_unlock(&ctx
->lock
);
453 * Remove the event from a task's (or a CPU's) list of events.
455 * Must be called with ctx->mutex held.
457 * CPU events are removed with a smp call. For task events we only
458 * call when the task is on a CPU.
460 * If event->ctx is a cloned context, callers must make sure that
461 * every task struct that event->ctx->task could possibly point to
462 * remains valid. This is OK when called from perf_release since
463 * that only calls us on the top-level context, which can't be a clone.
464 * When called from perf_event_exit_task, it's OK because the
465 * context has been detached from its task.
467 static void perf_event_remove_from_context(struct perf_event
*event
)
469 struct perf_event_context
*ctx
= event
->ctx
;
470 struct task_struct
*task
= ctx
->task
;
474 * Per cpu events are removed via an smp call and
475 * the removal is always successful.
477 smp_call_function_single(event
->cpu
,
478 __perf_event_remove_from_context
,
484 task_oncpu_function_call(task
, __perf_event_remove_from_context
,
487 raw_spin_lock_irq(&ctx
->lock
);
489 * If the context is active we need to retry the smp call.
491 if (ctx
->nr_active
&& !list_empty(&event
->group_entry
)) {
492 raw_spin_unlock_irq(&ctx
->lock
);
497 * The lock prevents that this context is scheduled in so we
498 * can remove the event safely, if the call above did not
501 if (!list_empty(&event
->group_entry
))
502 list_del_event(event
, ctx
);
503 raw_spin_unlock_irq(&ctx
->lock
);
507 * Update total_time_enabled and total_time_running for all events in a group.
509 static void update_group_times(struct perf_event
*leader
)
511 struct perf_event
*event
;
513 update_event_times(leader
);
514 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
515 update_event_times(event
);
519 * Cross CPU call to disable a performance event
521 static void __perf_event_disable(void *info
)
523 struct perf_event
*event
= info
;
524 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
525 struct perf_event_context
*ctx
= event
->ctx
;
528 * If this is a per-task event, need to check whether this
529 * event's task is the current task on this cpu.
531 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
534 raw_spin_lock(&ctx
->lock
);
537 * If the event is on, turn it off.
538 * If it is in error state, leave it in error state.
540 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
541 update_context_time(ctx
);
542 update_group_times(event
);
543 if (event
== event
->group_leader
)
544 group_sched_out(event
, cpuctx
, ctx
);
546 event_sched_out(event
, cpuctx
, ctx
);
547 event
->state
= PERF_EVENT_STATE_OFF
;
550 raw_spin_unlock(&ctx
->lock
);
556 * If event->ctx is a cloned context, callers must make sure that
557 * every task struct that event->ctx->task could possibly point to
558 * remains valid. This condition is satisifed when called through
559 * perf_event_for_each_child or perf_event_for_each because they
560 * hold the top-level event's child_mutex, so any descendant that
561 * goes to exit will block in sync_child_event.
562 * When called from perf_pending_event it's OK because event->ctx
563 * is the current context on this CPU and preemption is disabled,
564 * hence we can't get into perf_event_task_sched_out for this context.
566 void perf_event_disable(struct perf_event
*event
)
568 struct perf_event_context
*ctx
= event
->ctx
;
569 struct task_struct
*task
= ctx
->task
;
573 * Disable the event on the cpu that it's on
575 smp_call_function_single(event
->cpu
, __perf_event_disable
,
581 task_oncpu_function_call(task
, __perf_event_disable
, event
);
583 raw_spin_lock_irq(&ctx
->lock
);
585 * If the event is still active, we need to retry the cross-call.
587 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
588 raw_spin_unlock_irq(&ctx
->lock
);
593 * Since we have the lock this context can't be scheduled
594 * in, so we can change the state safely.
596 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
597 update_group_times(event
);
598 event
->state
= PERF_EVENT_STATE_OFF
;
601 raw_spin_unlock_irq(&ctx
->lock
);
605 event_sched_in(struct perf_event
*event
,
606 struct perf_cpu_context
*cpuctx
,
607 struct perf_event_context
*ctx
)
609 if (event
->state
<= PERF_EVENT_STATE_OFF
)
612 event
->state
= PERF_EVENT_STATE_ACTIVE
;
613 event
->oncpu
= smp_processor_id();
615 * The new state must be visible before we turn it on in the hardware:
619 if (event
->pmu
->enable(event
)) {
620 event
->state
= PERF_EVENT_STATE_INACTIVE
;
625 event
->tstamp_running
+= ctx
->time
- event
->tstamp_stopped
;
627 if (!is_software_event(event
))
628 cpuctx
->active_oncpu
++;
631 if (event
->attr
.exclusive
)
632 cpuctx
->exclusive
= 1;
638 group_sched_in(struct perf_event
*group_event
,
639 struct perf_cpu_context
*cpuctx
,
640 struct perf_event_context
*ctx
)
642 struct perf_event
*event
, *partial_group
;
645 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
648 ret
= hw_perf_group_sched_in(group_event
, cpuctx
, ctx
);
650 return ret
< 0 ? ret
: 0;
652 if (event_sched_in(group_event
, cpuctx
, ctx
))
656 * Schedule in siblings as one group (if any):
658 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
659 if (event_sched_in(event
, cpuctx
, ctx
)) {
660 partial_group
= event
;
669 * Groups can be scheduled in as one unit only, so undo any
670 * partial group before returning:
672 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
673 if (event
== partial_group
)
675 event_sched_out(event
, cpuctx
, ctx
);
677 event_sched_out(group_event
, cpuctx
, ctx
);
683 * Work out whether we can put this event group on the CPU now.
685 static int group_can_go_on(struct perf_event
*event
,
686 struct perf_cpu_context
*cpuctx
,
690 * Groups consisting entirely of software events can always go on.
692 if (event
->group_flags
& PERF_GROUP_SOFTWARE
)
695 * If an exclusive group is already on, no other hardware
698 if (cpuctx
->exclusive
)
701 * If this group is exclusive and there are already
702 * events on the CPU, it can't go on.
704 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
707 * Otherwise, try to add it if all previous groups were able
713 static void add_event_to_ctx(struct perf_event
*event
,
714 struct perf_event_context
*ctx
)
716 list_add_event(event
, ctx
);
717 event
->tstamp_enabled
= ctx
->time
;
718 event
->tstamp_running
= ctx
->time
;
719 event
->tstamp_stopped
= ctx
->time
;
723 * Cross CPU call to install and enable a performance event
725 * Must be called with ctx->mutex held
727 static void __perf_install_in_context(void *info
)
729 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
730 struct perf_event
*event
= info
;
731 struct perf_event_context
*ctx
= event
->ctx
;
732 struct perf_event
*leader
= event
->group_leader
;
736 * If this is a task context, we need to check whether it is
737 * the current task context of this cpu. If not it has been
738 * scheduled out before the smp call arrived.
739 * Or possibly this is the right context but it isn't
740 * on this cpu because it had no events.
742 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
743 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
745 cpuctx
->task_ctx
= ctx
;
748 raw_spin_lock(&ctx
->lock
);
750 update_context_time(ctx
);
753 * Protect the list operation against NMI by disabling the
754 * events on a global level. NOP for non NMI based events.
758 add_event_to_ctx(event
, ctx
);
760 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
764 * Don't put the event on if it is disabled or if
765 * it is in a group and the group isn't on.
767 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
||
768 (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
))
772 * An exclusive event can't go on if there are already active
773 * hardware events, and no hardware event can go on if there
774 * is already an exclusive event on.
776 if (!group_can_go_on(event
, cpuctx
, 1))
779 err
= event_sched_in(event
, cpuctx
, ctx
);
783 * This event couldn't go on. If it is in a group
784 * then we have to pull the whole group off.
785 * If the event group is pinned then put it in error state.
788 group_sched_out(leader
, cpuctx
, ctx
);
789 if (leader
->attr
.pinned
) {
790 update_group_times(leader
);
791 leader
->state
= PERF_EVENT_STATE_ERROR
;
795 if (!err
&& !ctx
->task
&& cpuctx
->max_pertask
)
796 cpuctx
->max_pertask
--;
801 raw_spin_unlock(&ctx
->lock
);
805 * Attach a performance event to a context
807 * First we add the event to the list with the hardware enable bit
808 * in event->hw_config cleared.
810 * If the event is attached to a task which is on a CPU we use a smp
811 * call to enable it in the task context. The task might have been
812 * scheduled away, but we check this in the smp call again.
814 * Must be called with ctx->mutex held.
817 perf_install_in_context(struct perf_event_context
*ctx
,
818 struct perf_event
*event
,
821 struct task_struct
*task
= ctx
->task
;
825 * Per cpu events are installed via an smp call and
826 * the install is always successful.
828 smp_call_function_single(cpu
, __perf_install_in_context
,
834 task_oncpu_function_call(task
, __perf_install_in_context
,
837 raw_spin_lock_irq(&ctx
->lock
);
839 * we need to retry the smp call.
841 if (ctx
->is_active
&& list_empty(&event
->group_entry
)) {
842 raw_spin_unlock_irq(&ctx
->lock
);
847 * The lock prevents that this context is scheduled in so we
848 * can add the event safely, if it the call above did not
851 if (list_empty(&event
->group_entry
))
852 add_event_to_ctx(event
, ctx
);
853 raw_spin_unlock_irq(&ctx
->lock
);
857 * Put a event into inactive state and update time fields.
858 * Enabling the leader of a group effectively enables all
859 * the group members that aren't explicitly disabled, so we
860 * have to update their ->tstamp_enabled also.
861 * Note: this works for group members as well as group leaders
862 * since the non-leader members' sibling_lists will be empty.
864 static void __perf_event_mark_enabled(struct perf_event
*event
,
865 struct perf_event_context
*ctx
)
867 struct perf_event
*sub
;
869 event
->state
= PERF_EVENT_STATE_INACTIVE
;
870 event
->tstamp_enabled
= ctx
->time
- event
->total_time_enabled
;
871 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
)
872 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
873 sub
->tstamp_enabled
=
874 ctx
->time
- sub
->total_time_enabled
;
878 * Cross CPU call to enable a performance event
880 static void __perf_event_enable(void *info
)
882 struct perf_event
*event
= info
;
883 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
884 struct perf_event_context
*ctx
= event
->ctx
;
885 struct perf_event
*leader
= event
->group_leader
;
889 * If this is a per-task event, need to check whether this
890 * event's task is the current task on this cpu.
892 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
893 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
895 cpuctx
->task_ctx
= ctx
;
898 raw_spin_lock(&ctx
->lock
);
900 update_context_time(ctx
);
902 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
904 __perf_event_mark_enabled(event
, ctx
);
906 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
910 * If the event is in a group and isn't the group leader,
911 * then don't put it on unless the group is on.
913 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
916 if (!group_can_go_on(event
, cpuctx
, 1)) {
921 err
= group_sched_in(event
, cpuctx
, ctx
);
923 err
= event_sched_in(event
, cpuctx
, ctx
);
929 * If this event can't go on and it's part of a
930 * group, then the whole group has to come off.
933 group_sched_out(leader
, cpuctx
, ctx
);
934 if (leader
->attr
.pinned
) {
935 update_group_times(leader
);
936 leader
->state
= PERF_EVENT_STATE_ERROR
;
941 raw_spin_unlock(&ctx
->lock
);
947 * If event->ctx is a cloned context, callers must make sure that
948 * every task struct that event->ctx->task could possibly point to
949 * remains valid. This condition is satisfied when called through
950 * perf_event_for_each_child or perf_event_for_each as described
951 * for perf_event_disable.
953 void perf_event_enable(struct perf_event
*event
)
955 struct perf_event_context
*ctx
= event
->ctx
;
956 struct task_struct
*task
= ctx
->task
;
960 * Enable the event on the cpu that it's on
962 smp_call_function_single(event
->cpu
, __perf_event_enable
,
967 raw_spin_lock_irq(&ctx
->lock
);
968 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
972 * If the event is in error state, clear that first.
973 * That way, if we see the event in error state below, we
974 * know that it has gone back into error state, as distinct
975 * from the task having been scheduled away before the
976 * cross-call arrived.
978 if (event
->state
== PERF_EVENT_STATE_ERROR
)
979 event
->state
= PERF_EVENT_STATE_OFF
;
982 raw_spin_unlock_irq(&ctx
->lock
);
983 task_oncpu_function_call(task
, __perf_event_enable
, event
);
985 raw_spin_lock_irq(&ctx
->lock
);
988 * If the context is active and the event is still off,
989 * we need to retry the cross-call.
991 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
)
995 * Since we have the lock this context can't be scheduled
996 * in, so we can change the state safely.
998 if (event
->state
== PERF_EVENT_STATE_OFF
)
999 __perf_event_mark_enabled(event
, ctx
);
1002 raw_spin_unlock_irq(&ctx
->lock
);
1005 static int perf_event_refresh(struct perf_event
*event
, int refresh
)
1008 * not supported on inherited events
1010 if (event
->attr
.inherit
)
1013 atomic_add(refresh
, &event
->event_limit
);
1014 perf_event_enable(event
);
1020 EVENT_FLEXIBLE
= 0x1,
1022 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
1025 static void ctx_sched_out(struct perf_event_context
*ctx
,
1026 struct perf_cpu_context
*cpuctx
,
1027 enum event_type_t event_type
)
1029 struct perf_event
*event
;
1031 raw_spin_lock(&ctx
->lock
);
1033 if (likely(!ctx
->nr_events
))
1035 update_context_time(ctx
);
1038 if (!ctx
->nr_active
)
1041 if (event_type
& EVENT_PINNED
)
1042 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
1043 group_sched_out(event
, cpuctx
, ctx
);
1045 if (event_type
& EVENT_FLEXIBLE
)
1046 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
1047 group_sched_out(event
, cpuctx
, ctx
);
1052 raw_spin_unlock(&ctx
->lock
);
1056 * Test whether two contexts are equivalent, i.e. whether they
1057 * have both been cloned from the same version of the same context
1058 * and they both have the same number of enabled events.
1059 * If the number of enabled events is the same, then the set
1060 * of enabled events should be the same, because these are both
1061 * inherited contexts, therefore we can't access individual events
1062 * in them directly with an fd; we can only enable/disable all
1063 * events via prctl, or enable/disable all events in a family
1064 * via ioctl, which will have the same effect on both contexts.
1066 static int context_equiv(struct perf_event_context
*ctx1
,
1067 struct perf_event_context
*ctx2
)
1069 return ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
1070 && ctx1
->parent_gen
== ctx2
->parent_gen
1071 && !ctx1
->pin_count
&& !ctx2
->pin_count
;
1074 static void __perf_event_sync_stat(struct perf_event
*event
,
1075 struct perf_event
*next_event
)
1079 if (!event
->attr
.inherit_stat
)
1083 * Update the event value, we cannot use perf_event_read()
1084 * because we're in the middle of a context switch and have IRQs
1085 * disabled, which upsets smp_call_function_single(), however
1086 * we know the event must be on the current CPU, therefore we
1087 * don't need to use it.
1089 switch (event
->state
) {
1090 case PERF_EVENT_STATE_ACTIVE
:
1091 event
->pmu
->read(event
);
1094 case PERF_EVENT_STATE_INACTIVE
:
1095 update_event_times(event
);
1103 * In order to keep per-task stats reliable we need to flip the event
1104 * values when we flip the contexts.
1106 value
= atomic64_read(&next_event
->count
);
1107 value
= atomic64_xchg(&event
->count
, value
);
1108 atomic64_set(&next_event
->count
, value
);
1110 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
1111 swap(event
->total_time_running
, next_event
->total_time_running
);
1114 * Since we swizzled the values, update the user visible data too.
1116 perf_event_update_userpage(event
);
1117 perf_event_update_userpage(next_event
);
1120 #define list_next_entry(pos, member) \
1121 list_entry(pos->member.next, typeof(*pos), member)
1123 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
1124 struct perf_event_context
*next_ctx
)
1126 struct perf_event
*event
, *next_event
;
1131 update_context_time(ctx
);
1133 event
= list_first_entry(&ctx
->event_list
,
1134 struct perf_event
, event_entry
);
1136 next_event
= list_first_entry(&next_ctx
->event_list
,
1137 struct perf_event
, event_entry
);
1139 while (&event
->event_entry
!= &ctx
->event_list
&&
1140 &next_event
->event_entry
!= &next_ctx
->event_list
) {
1142 __perf_event_sync_stat(event
, next_event
);
1144 event
= list_next_entry(event
, event_entry
);
1145 next_event
= list_next_entry(next_event
, event_entry
);
1150 * Called from scheduler to remove the events of the current task,
1151 * with interrupts disabled.
1153 * We stop each event and update the event value in event->count.
1155 * This does not protect us against NMI, but disable()
1156 * sets the disabled bit in the control field of event _before_
1157 * accessing the event control register. If a NMI hits, then it will
1158 * not restart the event.
1160 void perf_event_task_sched_out(struct task_struct
*task
,
1161 struct task_struct
*next
)
1163 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1164 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1165 struct perf_event_context
*next_ctx
;
1166 struct perf_event_context
*parent
;
1167 struct pt_regs
*regs
;
1170 regs
= task_pt_regs(task
);
1171 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES
, 1, 1, regs
, 0);
1173 if (likely(!ctx
|| !cpuctx
->task_ctx
))
1177 parent
= rcu_dereference(ctx
->parent_ctx
);
1178 next_ctx
= next
->perf_event_ctxp
;
1179 if (parent
&& next_ctx
&&
1180 rcu_dereference(next_ctx
->parent_ctx
) == parent
) {
1182 * Looks like the two contexts are clones, so we might be
1183 * able to optimize the context switch. We lock both
1184 * contexts and check that they are clones under the
1185 * lock (including re-checking that neither has been
1186 * uncloned in the meantime). It doesn't matter which
1187 * order we take the locks because no other cpu could
1188 * be trying to lock both of these tasks.
1190 raw_spin_lock(&ctx
->lock
);
1191 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
1192 if (context_equiv(ctx
, next_ctx
)) {
1194 * XXX do we need a memory barrier of sorts
1195 * wrt to rcu_dereference() of perf_event_ctxp
1197 task
->perf_event_ctxp
= next_ctx
;
1198 next
->perf_event_ctxp
= ctx
;
1200 next_ctx
->task
= task
;
1203 perf_event_sync_stat(ctx
, next_ctx
);
1205 raw_spin_unlock(&next_ctx
->lock
);
1206 raw_spin_unlock(&ctx
->lock
);
1211 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
1212 cpuctx
->task_ctx
= NULL
;
1216 static void task_ctx_sched_out(struct perf_event_context
*ctx
,
1217 enum event_type_t event_type
)
1219 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1221 if (!cpuctx
->task_ctx
)
1224 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
1227 ctx_sched_out(ctx
, cpuctx
, event_type
);
1228 cpuctx
->task_ctx
= NULL
;
1232 * Called with IRQs disabled
1234 static void __perf_event_task_sched_out(struct perf_event_context
*ctx
)
1236 task_ctx_sched_out(ctx
, EVENT_ALL
);
1240 * Called with IRQs disabled
1242 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
1243 enum event_type_t event_type
)
1245 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
1249 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
1250 struct perf_cpu_context
*cpuctx
)
1252 struct perf_event
*event
;
1254 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
1255 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1257 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
1260 if (group_can_go_on(event
, cpuctx
, 1))
1261 group_sched_in(event
, cpuctx
, ctx
);
1264 * If this pinned group hasn't been scheduled,
1265 * put it in error state.
1267 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1268 update_group_times(event
);
1269 event
->state
= PERF_EVENT_STATE_ERROR
;
1275 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
1276 struct perf_cpu_context
*cpuctx
)
1278 struct perf_event
*event
;
1281 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
1282 /* Ignore events in OFF or ERROR state */
1283 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1286 * Listen to the 'cpu' scheduling filter constraint
1289 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
1292 if (group_can_go_on(event
, cpuctx
, can_add_hw
))
1293 if (group_sched_in(event
, cpuctx
, ctx
))
1299 ctx_sched_in(struct perf_event_context
*ctx
,
1300 struct perf_cpu_context
*cpuctx
,
1301 enum event_type_t event_type
)
1303 raw_spin_lock(&ctx
->lock
);
1305 if (likely(!ctx
->nr_events
))
1308 ctx
->timestamp
= perf_clock();
1313 * First go through the list and put on any pinned groups
1314 * in order to give them the best chance of going on.
1316 if (event_type
& EVENT_PINNED
)
1317 ctx_pinned_sched_in(ctx
, cpuctx
);
1319 /* Then walk through the lower prio flexible groups */
1320 if (event_type
& EVENT_FLEXIBLE
)
1321 ctx_flexible_sched_in(ctx
, cpuctx
);
1325 raw_spin_unlock(&ctx
->lock
);
1328 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
1329 enum event_type_t event_type
)
1331 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
1333 ctx_sched_in(ctx
, cpuctx
, event_type
);
1336 static void task_ctx_sched_in(struct task_struct
*task
,
1337 enum event_type_t event_type
)
1339 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1340 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1344 if (cpuctx
->task_ctx
== ctx
)
1346 ctx_sched_in(ctx
, cpuctx
, event_type
);
1347 cpuctx
->task_ctx
= ctx
;
1350 * Called from scheduler to add the events of the current task
1351 * with interrupts disabled.
1353 * We restore the event value and then enable it.
1355 * This does not protect us against NMI, but enable()
1356 * sets the enabled bit in the control field of event _before_
1357 * accessing the event control register. If a NMI hits, then it will
1358 * keep the event running.
1360 void perf_event_task_sched_in(struct task_struct
*task
)
1362 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1363 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1368 if (cpuctx
->task_ctx
== ctx
)
1372 * We want to keep the following priority order:
1373 * cpu pinned (that don't need to move), task pinned,
1374 * cpu flexible, task flexible.
1376 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
1378 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
);
1379 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
);
1380 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
);
1382 cpuctx
->task_ctx
= ctx
;
1385 #define MAX_INTERRUPTS (~0ULL)
1387 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1389 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
1391 u64 frequency
= event
->attr
.sample_freq
;
1392 u64 sec
= NSEC_PER_SEC
;
1393 u64 divisor
, dividend
;
1395 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
1397 count_fls
= fls64(count
);
1398 nsec_fls
= fls64(nsec
);
1399 frequency_fls
= fls64(frequency
);
1403 * We got @count in @nsec, with a target of sample_freq HZ
1404 * the target period becomes:
1407 * period = -------------------
1408 * @nsec * sample_freq
1413 * Reduce accuracy by one bit such that @a and @b converge
1414 * to a similar magnitude.
1416 #define REDUCE_FLS(a, b) \
1418 if (a##_fls > b##_fls) { \
1428 * Reduce accuracy until either term fits in a u64, then proceed with
1429 * the other, so that finally we can do a u64/u64 division.
1431 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
1432 REDUCE_FLS(nsec
, frequency
);
1433 REDUCE_FLS(sec
, count
);
1436 if (count_fls
+ sec_fls
> 64) {
1437 divisor
= nsec
* frequency
;
1439 while (count_fls
+ sec_fls
> 64) {
1440 REDUCE_FLS(count
, sec
);
1444 dividend
= count
* sec
;
1446 dividend
= count
* sec
;
1448 while (nsec_fls
+ frequency_fls
> 64) {
1449 REDUCE_FLS(nsec
, frequency
);
1453 divisor
= nsec
* frequency
;
1456 return div64_u64(dividend
, divisor
);
1459 static void perf_event_stop(struct perf_event
*event
)
1461 if (!event
->pmu
->stop
)
1462 return event
->pmu
->disable(event
);
1464 return event
->pmu
->stop(event
);
1467 static int perf_event_start(struct perf_event
*event
)
1469 if (!event
->pmu
->start
)
1470 return event
->pmu
->enable(event
);
1472 return event
->pmu
->start(event
);
1475 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
)
1477 struct hw_perf_event
*hwc
= &event
->hw
;
1478 u64 period
, sample_period
;
1481 period
= perf_calculate_period(event
, nsec
, count
);
1483 delta
= (s64
)(period
- hwc
->sample_period
);
1484 delta
= (delta
+ 7) / 8; /* low pass filter */
1486 sample_period
= hwc
->sample_period
+ delta
;
1491 hwc
->sample_period
= sample_period
;
1493 if (atomic64_read(&hwc
->period_left
) > 8*sample_period
) {
1495 perf_event_stop(event
);
1496 atomic64_set(&hwc
->period_left
, 0);
1497 perf_event_start(event
);
1502 static void perf_ctx_adjust_freq(struct perf_event_context
*ctx
)
1504 struct perf_event
*event
;
1505 struct hw_perf_event
*hwc
;
1506 u64 interrupts
, now
;
1509 raw_spin_lock(&ctx
->lock
);
1510 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
1511 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1514 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
1519 interrupts
= hwc
->interrupts
;
1520 hwc
->interrupts
= 0;
1523 * unthrottle events on the tick
1525 if (interrupts
== MAX_INTERRUPTS
) {
1526 perf_log_throttle(event
, 1);
1528 event
->pmu
->unthrottle(event
);
1532 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
1536 event
->pmu
->read(event
);
1537 now
= atomic64_read(&event
->count
);
1538 delta
= now
- hwc
->freq_count_stamp
;
1539 hwc
->freq_count_stamp
= now
;
1542 perf_adjust_period(event
, TICK_NSEC
, delta
);
1545 raw_spin_unlock(&ctx
->lock
);
1549 * Round-robin a context's events:
1551 static void rotate_ctx(struct perf_event_context
*ctx
)
1553 raw_spin_lock(&ctx
->lock
);
1555 /* Rotate the first entry last of non-pinned groups */
1556 list_rotate_left(&ctx
->flexible_groups
);
1558 raw_spin_unlock(&ctx
->lock
);
1561 void perf_event_task_tick(struct task_struct
*curr
)
1563 struct perf_cpu_context
*cpuctx
;
1564 struct perf_event_context
*ctx
;
1567 if (!atomic_read(&nr_events
))
1570 cpuctx
= &__get_cpu_var(perf_cpu_context
);
1571 if (cpuctx
->ctx
.nr_events
&&
1572 cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
1575 ctx
= curr
->perf_event_ctxp
;
1576 if (ctx
&& ctx
->nr_events
&& ctx
->nr_events
!= ctx
->nr_active
)
1579 perf_ctx_adjust_freq(&cpuctx
->ctx
);
1581 perf_ctx_adjust_freq(ctx
);
1587 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
1589 task_ctx_sched_out(ctx
, EVENT_FLEXIBLE
);
1591 rotate_ctx(&cpuctx
->ctx
);
1595 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
);
1597 task_ctx_sched_in(curr
, EVENT_FLEXIBLE
);
1601 static int event_enable_on_exec(struct perf_event
*event
,
1602 struct perf_event_context
*ctx
)
1604 if (!event
->attr
.enable_on_exec
)
1607 event
->attr
.enable_on_exec
= 0;
1608 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1611 __perf_event_mark_enabled(event
, ctx
);
1617 * Enable all of a task's events that have been marked enable-on-exec.
1618 * This expects task == current.
1620 static void perf_event_enable_on_exec(struct task_struct
*task
)
1622 struct perf_event_context
*ctx
;
1623 struct perf_event
*event
;
1624 unsigned long flags
;
1628 local_irq_save(flags
);
1629 ctx
= task
->perf_event_ctxp
;
1630 if (!ctx
|| !ctx
->nr_events
)
1633 __perf_event_task_sched_out(ctx
);
1635 raw_spin_lock(&ctx
->lock
);
1637 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
1638 ret
= event_enable_on_exec(event
, ctx
);
1643 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
1644 ret
= event_enable_on_exec(event
, ctx
);
1650 * Unclone this context if we enabled any event.
1655 raw_spin_unlock(&ctx
->lock
);
1657 perf_event_task_sched_in(task
);
1659 local_irq_restore(flags
);
1663 * Cross CPU call to read the hardware event
1665 static void __perf_event_read(void *info
)
1667 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1668 struct perf_event
*event
= info
;
1669 struct perf_event_context
*ctx
= event
->ctx
;
1672 * If this is a task context, we need to check whether it is
1673 * the current task context of this cpu. If not it has been
1674 * scheduled out before the smp call arrived. In that case
1675 * event->count would have been updated to a recent sample
1676 * when the event was scheduled out.
1678 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1681 raw_spin_lock(&ctx
->lock
);
1682 update_context_time(ctx
);
1683 update_event_times(event
);
1684 raw_spin_unlock(&ctx
->lock
);
1686 event
->pmu
->read(event
);
1689 static u64
perf_event_read(struct perf_event
*event
)
1692 * If event is enabled and currently active on a CPU, update the
1693 * value in the event structure:
1695 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1696 smp_call_function_single(event
->oncpu
,
1697 __perf_event_read
, event
, 1);
1698 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1699 struct perf_event_context
*ctx
= event
->ctx
;
1700 unsigned long flags
;
1702 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1703 update_context_time(ctx
);
1704 update_event_times(event
);
1705 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1708 return atomic64_read(&event
->count
);
1712 * Initialize the perf_event context in a task_struct:
1715 __perf_event_init_context(struct perf_event_context
*ctx
,
1716 struct task_struct
*task
)
1718 raw_spin_lock_init(&ctx
->lock
);
1719 mutex_init(&ctx
->mutex
);
1720 INIT_LIST_HEAD(&ctx
->pinned_groups
);
1721 INIT_LIST_HEAD(&ctx
->flexible_groups
);
1722 INIT_LIST_HEAD(&ctx
->event_list
);
1723 atomic_set(&ctx
->refcount
, 1);
1727 static struct perf_event_context
*find_get_context(pid_t pid
, int cpu
)
1729 struct perf_event_context
*ctx
;
1730 struct perf_cpu_context
*cpuctx
;
1731 struct task_struct
*task
;
1732 unsigned long flags
;
1735 if (pid
== -1 && cpu
!= -1) {
1736 /* Must be root to operate on a CPU event: */
1737 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
1738 return ERR_PTR(-EACCES
);
1740 if (cpu
< 0 || cpu
>= nr_cpumask_bits
)
1741 return ERR_PTR(-EINVAL
);
1744 * We could be clever and allow to attach a event to an
1745 * offline CPU and activate it when the CPU comes up, but
1748 if (!cpu_online(cpu
))
1749 return ERR_PTR(-ENODEV
);
1751 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1762 task
= find_task_by_vpid(pid
);
1764 get_task_struct(task
);
1768 return ERR_PTR(-ESRCH
);
1771 * Can't attach events to a dying task.
1774 if (task
->flags
& PF_EXITING
)
1777 /* Reuse ptrace permission checks for now. */
1779 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
1783 ctx
= perf_lock_task_context(task
, &flags
);
1786 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1790 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
1794 __perf_event_init_context(ctx
, task
);
1796 if (cmpxchg(&task
->perf_event_ctxp
, NULL
, ctx
)) {
1798 * We raced with some other task; use
1799 * the context they set.
1804 get_task_struct(task
);
1807 put_task_struct(task
);
1811 put_task_struct(task
);
1812 return ERR_PTR(err
);
1815 static void perf_event_free_filter(struct perf_event
*event
);
1817 static void free_event_rcu(struct rcu_head
*head
)
1819 struct perf_event
*event
;
1821 event
= container_of(head
, struct perf_event
, rcu_head
);
1823 put_pid_ns(event
->ns
);
1824 perf_event_free_filter(event
);
1828 static void perf_pending_sync(struct perf_event
*event
);
1830 static void free_event(struct perf_event
*event
)
1832 perf_pending_sync(event
);
1834 if (!event
->parent
) {
1835 atomic_dec(&nr_events
);
1836 if (event
->attr
.mmap
)
1837 atomic_dec(&nr_mmap_events
);
1838 if (event
->attr
.comm
)
1839 atomic_dec(&nr_comm_events
);
1840 if (event
->attr
.task
)
1841 atomic_dec(&nr_task_events
);
1844 if (event
->output
) {
1845 fput(event
->output
->filp
);
1846 event
->output
= NULL
;
1850 event
->destroy(event
);
1852 put_ctx(event
->ctx
);
1853 call_rcu(&event
->rcu_head
, free_event_rcu
);
1856 int perf_event_release_kernel(struct perf_event
*event
)
1858 struct perf_event_context
*ctx
= event
->ctx
;
1860 WARN_ON_ONCE(ctx
->parent_ctx
);
1861 mutex_lock(&ctx
->mutex
);
1862 perf_event_remove_from_context(event
);
1863 mutex_unlock(&ctx
->mutex
);
1865 mutex_lock(&event
->owner
->perf_event_mutex
);
1866 list_del_init(&event
->owner_entry
);
1867 mutex_unlock(&event
->owner
->perf_event_mutex
);
1868 put_task_struct(event
->owner
);
1874 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
1877 * Called when the last reference to the file is gone.
1879 static int perf_release(struct inode
*inode
, struct file
*file
)
1881 struct perf_event
*event
= file
->private_data
;
1883 file
->private_data
= NULL
;
1885 return perf_event_release_kernel(event
);
1888 static int perf_event_read_size(struct perf_event
*event
)
1890 int entry
= sizeof(u64
); /* value */
1894 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1895 size
+= sizeof(u64
);
1897 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1898 size
+= sizeof(u64
);
1900 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1901 entry
+= sizeof(u64
);
1903 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1904 nr
+= event
->group_leader
->nr_siblings
;
1905 size
+= sizeof(u64
);
1913 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
1915 struct perf_event
*child
;
1921 mutex_lock(&event
->child_mutex
);
1922 total
+= perf_event_read(event
);
1923 *enabled
+= event
->total_time_enabled
+
1924 atomic64_read(&event
->child_total_time_enabled
);
1925 *running
+= event
->total_time_running
+
1926 atomic64_read(&event
->child_total_time_running
);
1928 list_for_each_entry(child
, &event
->child_list
, child_list
) {
1929 total
+= perf_event_read(child
);
1930 *enabled
+= child
->total_time_enabled
;
1931 *running
+= child
->total_time_running
;
1933 mutex_unlock(&event
->child_mutex
);
1937 EXPORT_SYMBOL_GPL(perf_event_read_value
);
1939 static int perf_event_read_group(struct perf_event
*event
,
1940 u64 read_format
, char __user
*buf
)
1942 struct perf_event
*leader
= event
->group_leader
, *sub
;
1943 int n
= 0, size
= 0, ret
= -EFAULT
;
1944 struct perf_event_context
*ctx
= leader
->ctx
;
1946 u64 count
, enabled
, running
;
1948 mutex_lock(&ctx
->mutex
);
1949 count
= perf_event_read_value(leader
, &enabled
, &running
);
1951 values
[n
++] = 1 + leader
->nr_siblings
;
1952 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1953 values
[n
++] = enabled
;
1954 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1955 values
[n
++] = running
;
1956 values
[n
++] = count
;
1957 if (read_format
& PERF_FORMAT_ID
)
1958 values
[n
++] = primary_event_id(leader
);
1960 size
= n
* sizeof(u64
);
1962 if (copy_to_user(buf
, values
, size
))
1967 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
1970 values
[n
++] = perf_event_read_value(sub
, &enabled
, &running
);
1971 if (read_format
& PERF_FORMAT_ID
)
1972 values
[n
++] = primary_event_id(sub
);
1974 size
= n
* sizeof(u64
);
1976 if (copy_to_user(buf
+ ret
, values
, size
)) {
1984 mutex_unlock(&ctx
->mutex
);
1989 static int perf_event_read_one(struct perf_event
*event
,
1990 u64 read_format
, char __user
*buf
)
1992 u64 enabled
, running
;
1996 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
1997 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1998 values
[n
++] = enabled
;
1999 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2000 values
[n
++] = running
;
2001 if (read_format
& PERF_FORMAT_ID
)
2002 values
[n
++] = primary_event_id(event
);
2004 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
2007 return n
* sizeof(u64
);
2011 * Read the performance event - simple non blocking version for now
2014 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
2016 u64 read_format
= event
->attr
.read_format
;
2020 * Return end-of-file for a read on a event that is in
2021 * error state (i.e. because it was pinned but it couldn't be
2022 * scheduled on to the CPU at some point).
2024 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2027 if (count
< perf_event_read_size(event
))
2030 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2031 if (read_format
& PERF_FORMAT_GROUP
)
2032 ret
= perf_event_read_group(event
, read_format
, buf
);
2034 ret
= perf_event_read_one(event
, read_format
, buf
);
2040 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
2042 struct perf_event
*event
= file
->private_data
;
2044 return perf_read_hw(event
, buf
, count
);
2047 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
2049 struct perf_event
*event
= file
->private_data
;
2050 struct perf_mmap_data
*data
;
2051 unsigned int events
= POLL_HUP
;
2054 data
= rcu_dereference(event
->data
);
2056 events
= atomic_xchg(&data
->poll
, 0);
2059 poll_wait(file
, &event
->waitq
, wait
);
2064 static void perf_event_reset(struct perf_event
*event
)
2066 (void)perf_event_read(event
);
2067 atomic64_set(&event
->count
, 0);
2068 perf_event_update_userpage(event
);
2072 * Holding the top-level event's child_mutex means that any
2073 * descendant process that has inherited this event will block
2074 * in sync_child_event if it goes to exit, thus satisfying the
2075 * task existence requirements of perf_event_enable/disable.
2077 static void perf_event_for_each_child(struct perf_event
*event
,
2078 void (*func
)(struct perf_event
*))
2080 struct perf_event
*child
;
2082 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2083 mutex_lock(&event
->child_mutex
);
2085 list_for_each_entry(child
, &event
->child_list
, child_list
)
2087 mutex_unlock(&event
->child_mutex
);
2090 static void perf_event_for_each(struct perf_event
*event
,
2091 void (*func
)(struct perf_event
*))
2093 struct perf_event_context
*ctx
= event
->ctx
;
2094 struct perf_event
*sibling
;
2096 WARN_ON_ONCE(ctx
->parent_ctx
);
2097 mutex_lock(&ctx
->mutex
);
2098 event
= event
->group_leader
;
2100 perf_event_for_each_child(event
, func
);
2102 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
2103 perf_event_for_each_child(event
, func
);
2104 mutex_unlock(&ctx
->mutex
);
2107 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
2109 struct perf_event_context
*ctx
= event
->ctx
;
2114 if (!event
->attr
.sample_period
)
2117 size
= copy_from_user(&value
, arg
, sizeof(value
));
2118 if (size
!= sizeof(value
))
2124 raw_spin_lock_irq(&ctx
->lock
);
2125 if (event
->attr
.freq
) {
2126 if (value
> sysctl_perf_event_sample_rate
) {
2131 event
->attr
.sample_freq
= value
;
2133 event
->attr
.sample_period
= value
;
2134 event
->hw
.sample_period
= value
;
2137 raw_spin_unlock_irq(&ctx
->lock
);
2142 static int perf_event_set_output(struct perf_event
*event
, int output_fd
);
2143 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
2145 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2147 struct perf_event
*event
= file
->private_data
;
2148 void (*func
)(struct perf_event
*);
2152 case PERF_EVENT_IOC_ENABLE
:
2153 func
= perf_event_enable
;
2155 case PERF_EVENT_IOC_DISABLE
:
2156 func
= perf_event_disable
;
2158 case PERF_EVENT_IOC_RESET
:
2159 func
= perf_event_reset
;
2162 case PERF_EVENT_IOC_REFRESH
:
2163 return perf_event_refresh(event
, arg
);
2165 case PERF_EVENT_IOC_PERIOD
:
2166 return perf_event_period(event
, (u64 __user
*)arg
);
2168 case PERF_EVENT_IOC_SET_OUTPUT
:
2169 return perf_event_set_output(event
, arg
);
2171 case PERF_EVENT_IOC_SET_FILTER
:
2172 return perf_event_set_filter(event
, (void __user
*)arg
);
2178 if (flags
& PERF_IOC_FLAG_GROUP
)
2179 perf_event_for_each(event
, func
);
2181 perf_event_for_each_child(event
, func
);
2186 int perf_event_task_enable(void)
2188 struct perf_event
*event
;
2190 mutex_lock(¤t
->perf_event_mutex
);
2191 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2192 perf_event_for_each_child(event
, perf_event_enable
);
2193 mutex_unlock(¤t
->perf_event_mutex
);
2198 int perf_event_task_disable(void)
2200 struct perf_event
*event
;
2202 mutex_lock(¤t
->perf_event_mutex
);
2203 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2204 perf_event_for_each_child(event
, perf_event_disable
);
2205 mutex_unlock(¤t
->perf_event_mutex
);
2210 #ifndef PERF_EVENT_INDEX_OFFSET
2211 # define PERF_EVENT_INDEX_OFFSET 0
2214 static int perf_event_index(struct perf_event
*event
)
2216 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2219 return event
->hw
.idx
+ 1 - PERF_EVENT_INDEX_OFFSET
;
2223 * Callers need to ensure there can be no nesting of this function, otherwise
2224 * the seqlock logic goes bad. We can not serialize this because the arch
2225 * code calls this from NMI context.
2227 void perf_event_update_userpage(struct perf_event
*event
)
2229 struct perf_event_mmap_page
*userpg
;
2230 struct perf_mmap_data
*data
;
2233 data
= rcu_dereference(event
->data
);
2237 userpg
= data
->user_page
;
2240 * Disable preemption so as to not let the corresponding user-space
2241 * spin too long if we get preempted.
2246 userpg
->index
= perf_event_index(event
);
2247 userpg
->offset
= atomic64_read(&event
->count
);
2248 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
2249 userpg
->offset
-= atomic64_read(&event
->hw
.prev_count
);
2251 userpg
->time_enabled
= event
->total_time_enabled
+
2252 atomic64_read(&event
->child_total_time_enabled
);
2254 userpg
->time_running
= event
->total_time_running
+
2255 atomic64_read(&event
->child_total_time_running
);
2264 static unsigned long perf_data_size(struct perf_mmap_data
*data
)
2266 return data
->nr_pages
<< (PAGE_SHIFT
+ data
->data_order
);
2269 #ifndef CONFIG_PERF_USE_VMALLOC
2272 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2275 static struct page
*
2276 perf_mmap_to_page(struct perf_mmap_data
*data
, unsigned long pgoff
)
2278 if (pgoff
> data
->nr_pages
)
2282 return virt_to_page(data
->user_page
);
2284 return virt_to_page(data
->data_pages
[pgoff
- 1]);
2287 static struct perf_mmap_data
*
2288 perf_mmap_data_alloc(struct perf_event
*event
, int nr_pages
)
2290 struct perf_mmap_data
*data
;
2294 WARN_ON(atomic_read(&event
->mmap_count
));
2296 size
= sizeof(struct perf_mmap_data
);
2297 size
+= nr_pages
* sizeof(void *);
2299 data
= kzalloc(size
, GFP_KERNEL
);
2303 data
->user_page
= (void *)get_zeroed_page(GFP_KERNEL
);
2304 if (!data
->user_page
)
2305 goto fail_user_page
;
2307 for (i
= 0; i
< nr_pages
; i
++) {
2308 data
->data_pages
[i
] = (void *)get_zeroed_page(GFP_KERNEL
);
2309 if (!data
->data_pages
[i
])
2310 goto fail_data_pages
;
2313 data
->data_order
= 0;
2314 data
->nr_pages
= nr_pages
;
2319 for (i
--; i
>= 0; i
--)
2320 free_page((unsigned long)data
->data_pages
[i
]);
2322 free_page((unsigned long)data
->user_page
);
2331 static void perf_mmap_free_page(unsigned long addr
)
2333 struct page
*page
= virt_to_page((void *)addr
);
2335 page
->mapping
= NULL
;
2339 static void perf_mmap_data_free(struct perf_mmap_data
*data
)
2343 perf_mmap_free_page((unsigned long)data
->user_page
);
2344 for (i
= 0; i
< data
->nr_pages
; i
++)
2345 perf_mmap_free_page((unsigned long)data
->data_pages
[i
]);
2352 * Back perf_mmap() with vmalloc memory.
2354 * Required for architectures that have d-cache aliasing issues.
2357 static struct page
*
2358 perf_mmap_to_page(struct perf_mmap_data
*data
, unsigned long pgoff
)
2360 if (pgoff
> (1UL << data
->data_order
))
2363 return vmalloc_to_page((void *)data
->user_page
+ pgoff
* PAGE_SIZE
);
2366 static void perf_mmap_unmark_page(void *addr
)
2368 struct page
*page
= vmalloc_to_page(addr
);
2370 page
->mapping
= NULL
;
2373 static void perf_mmap_data_free_work(struct work_struct
*work
)
2375 struct perf_mmap_data
*data
;
2379 data
= container_of(work
, struct perf_mmap_data
, work
);
2380 nr
= 1 << data
->data_order
;
2382 base
= data
->user_page
;
2383 for (i
= 0; i
< nr
+ 1; i
++)
2384 perf_mmap_unmark_page(base
+ (i
* PAGE_SIZE
));
2390 static void perf_mmap_data_free(struct perf_mmap_data
*data
)
2392 schedule_work(&data
->work
);
2395 static struct perf_mmap_data
*
2396 perf_mmap_data_alloc(struct perf_event
*event
, int nr_pages
)
2398 struct perf_mmap_data
*data
;
2402 WARN_ON(atomic_read(&event
->mmap_count
));
2404 size
= sizeof(struct perf_mmap_data
);
2405 size
+= sizeof(void *);
2407 data
= kzalloc(size
, GFP_KERNEL
);
2411 INIT_WORK(&data
->work
, perf_mmap_data_free_work
);
2413 all_buf
= vmalloc_user((nr_pages
+ 1) * PAGE_SIZE
);
2417 data
->user_page
= all_buf
;
2418 data
->data_pages
[0] = all_buf
+ PAGE_SIZE
;
2419 data
->data_order
= ilog2(nr_pages
);
2433 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2435 struct perf_event
*event
= vma
->vm_file
->private_data
;
2436 struct perf_mmap_data
*data
;
2437 int ret
= VM_FAULT_SIGBUS
;
2439 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
2440 if (vmf
->pgoff
== 0)
2446 data
= rcu_dereference(event
->data
);
2450 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
2453 vmf
->page
= perf_mmap_to_page(data
, vmf
->pgoff
);
2457 get_page(vmf
->page
);
2458 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
2459 vmf
->page
->index
= vmf
->pgoff
;
2469 perf_mmap_data_init(struct perf_event
*event
, struct perf_mmap_data
*data
)
2471 long max_size
= perf_data_size(data
);
2473 atomic_set(&data
->lock
, -1);
2475 if (event
->attr
.watermark
) {
2476 data
->watermark
= min_t(long, max_size
,
2477 event
->attr
.wakeup_watermark
);
2480 if (!data
->watermark
)
2481 data
->watermark
= max_size
/ 2;
2484 rcu_assign_pointer(event
->data
, data
);
2487 static void perf_mmap_data_free_rcu(struct rcu_head
*rcu_head
)
2489 struct perf_mmap_data
*data
;
2491 data
= container_of(rcu_head
, struct perf_mmap_data
, rcu_head
);
2492 perf_mmap_data_free(data
);
2495 static void perf_mmap_data_release(struct perf_event
*event
)
2497 struct perf_mmap_data
*data
= event
->data
;
2499 WARN_ON(atomic_read(&event
->mmap_count
));
2501 rcu_assign_pointer(event
->data
, NULL
);
2502 call_rcu(&data
->rcu_head
, perf_mmap_data_free_rcu
);
2505 static void perf_mmap_open(struct vm_area_struct
*vma
)
2507 struct perf_event
*event
= vma
->vm_file
->private_data
;
2509 atomic_inc(&event
->mmap_count
);
2512 static void perf_mmap_close(struct vm_area_struct
*vma
)
2514 struct perf_event
*event
= vma
->vm_file
->private_data
;
2516 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2517 if (atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
)) {
2518 unsigned long size
= perf_data_size(event
->data
);
2519 struct user_struct
*user
= current_user();
2521 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &user
->locked_vm
);
2522 vma
->vm_mm
->locked_vm
-= event
->data
->nr_locked
;
2523 perf_mmap_data_release(event
);
2524 mutex_unlock(&event
->mmap_mutex
);
2528 static const struct vm_operations_struct perf_mmap_vmops
= {
2529 .open
= perf_mmap_open
,
2530 .close
= perf_mmap_close
,
2531 .fault
= perf_mmap_fault
,
2532 .page_mkwrite
= perf_mmap_fault
,
2535 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2537 struct perf_event
*event
= file
->private_data
;
2538 unsigned long user_locked
, user_lock_limit
;
2539 struct user_struct
*user
= current_user();
2540 unsigned long locked
, lock_limit
;
2541 struct perf_mmap_data
*data
;
2542 unsigned long vma_size
;
2543 unsigned long nr_pages
;
2544 long user_extra
, extra
;
2547 if (!(vma
->vm_flags
& VM_SHARED
))
2550 vma_size
= vma
->vm_end
- vma
->vm_start
;
2551 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
2554 * If we have data pages ensure they're a power-of-two number, so we
2555 * can do bitmasks instead of modulo.
2557 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
2560 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
2563 if (vma
->vm_pgoff
!= 0)
2566 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2567 mutex_lock(&event
->mmap_mutex
);
2568 if (event
->output
) {
2573 if (atomic_inc_not_zero(&event
->mmap_count
)) {
2574 if (nr_pages
!= event
->data
->nr_pages
)
2579 user_extra
= nr_pages
+ 1;
2580 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
2583 * Increase the limit linearly with more CPUs:
2585 user_lock_limit
*= num_online_cpus();
2587 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
2590 if (user_locked
> user_lock_limit
)
2591 extra
= user_locked
- user_lock_limit
;
2593 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
2594 lock_limit
>>= PAGE_SHIFT
;
2595 locked
= vma
->vm_mm
->locked_vm
+ extra
;
2597 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
2598 !capable(CAP_IPC_LOCK
)) {
2603 WARN_ON(event
->data
);
2605 data
= perf_mmap_data_alloc(event
, nr_pages
);
2611 perf_mmap_data_init(event
, data
);
2613 atomic_set(&event
->mmap_count
, 1);
2614 atomic_long_add(user_extra
, &user
->locked_vm
);
2615 vma
->vm_mm
->locked_vm
+= extra
;
2616 event
->data
->nr_locked
= extra
;
2617 if (vma
->vm_flags
& VM_WRITE
)
2618 event
->data
->writable
= 1;
2621 mutex_unlock(&event
->mmap_mutex
);
2623 vma
->vm_flags
|= VM_RESERVED
;
2624 vma
->vm_ops
= &perf_mmap_vmops
;
2629 static int perf_fasync(int fd
, struct file
*filp
, int on
)
2631 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
2632 struct perf_event
*event
= filp
->private_data
;
2635 mutex_lock(&inode
->i_mutex
);
2636 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
2637 mutex_unlock(&inode
->i_mutex
);
2645 static const struct file_operations perf_fops
= {
2646 .release
= perf_release
,
2649 .unlocked_ioctl
= perf_ioctl
,
2650 .compat_ioctl
= perf_ioctl
,
2652 .fasync
= perf_fasync
,
2658 * If there's data, ensure we set the poll() state and publish everything
2659 * to user-space before waking everybody up.
2662 void perf_event_wakeup(struct perf_event
*event
)
2664 wake_up_all(&event
->waitq
);
2666 if (event
->pending_kill
) {
2667 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
2668 event
->pending_kill
= 0;
2675 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2677 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2678 * single linked list and use cmpxchg() to add entries lockless.
2681 static void perf_pending_event(struct perf_pending_entry
*entry
)
2683 struct perf_event
*event
= container_of(entry
,
2684 struct perf_event
, pending
);
2686 if (event
->pending_disable
) {
2687 event
->pending_disable
= 0;
2688 __perf_event_disable(event
);
2691 if (event
->pending_wakeup
) {
2692 event
->pending_wakeup
= 0;
2693 perf_event_wakeup(event
);
2697 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2699 static DEFINE_PER_CPU(struct perf_pending_entry
*, perf_pending_head
) = {
2703 static void perf_pending_queue(struct perf_pending_entry
*entry
,
2704 void (*func
)(struct perf_pending_entry
*))
2706 struct perf_pending_entry
**head
;
2708 if (cmpxchg(&entry
->next
, NULL
, PENDING_TAIL
) != NULL
)
2713 head
= &get_cpu_var(perf_pending_head
);
2716 entry
->next
= *head
;
2717 } while (cmpxchg(head
, entry
->next
, entry
) != entry
->next
);
2719 set_perf_event_pending();
2721 put_cpu_var(perf_pending_head
);
2724 static int __perf_pending_run(void)
2726 struct perf_pending_entry
*list
;
2729 list
= xchg(&__get_cpu_var(perf_pending_head
), PENDING_TAIL
);
2730 while (list
!= PENDING_TAIL
) {
2731 void (*func
)(struct perf_pending_entry
*);
2732 struct perf_pending_entry
*entry
= list
;
2739 * Ensure we observe the unqueue before we issue the wakeup,
2740 * so that we won't be waiting forever.
2741 * -- see perf_not_pending().
2752 static inline int perf_not_pending(struct perf_event
*event
)
2755 * If we flush on whatever cpu we run, there is a chance we don't
2759 __perf_pending_run();
2763 * Ensure we see the proper queue state before going to sleep
2764 * so that we do not miss the wakeup. -- see perf_pending_handle()
2767 return event
->pending
.next
== NULL
;
2770 static void perf_pending_sync(struct perf_event
*event
)
2772 wait_event(event
->waitq
, perf_not_pending(event
));
2775 void perf_event_do_pending(void)
2777 __perf_pending_run();
2781 * Callchain support -- arch specific
2784 __weak
struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
2789 #ifdef CONFIG_EVENT_TRACING
2791 void perf_arch_fetch_caller_regs(struct pt_regs
*regs
, unsigned long ip
, int skip
)
2799 static bool perf_output_space(struct perf_mmap_data
*data
, unsigned long tail
,
2800 unsigned long offset
, unsigned long head
)
2804 if (!data
->writable
)
2807 mask
= perf_data_size(data
) - 1;
2809 offset
= (offset
- tail
) & mask
;
2810 head
= (head
- tail
) & mask
;
2812 if ((int)(head
- offset
) < 0)
2818 static void perf_output_wakeup(struct perf_output_handle
*handle
)
2820 atomic_set(&handle
->data
->poll
, POLL_IN
);
2823 handle
->event
->pending_wakeup
= 1;
2824 perf_pending_queue(&handle
->event
->pending
,
2825 perf_pending_event
);
2827 perf_event_wakeup(handle
->event
);
2831 * Curious locking construct.
2833 * We need to ensure a later event_id doesn't publish a head when a former
2834 * event_id isn't done writing. However since we need to deal with NMIs we
2835 * cannot fully serialize things.
2837 * What we do is serialize between CPUs so we only have to deal with NMI
2838 * nesting on a single CPU.
2840 * We only publish the head (and generate a wakeup) when the outer-most
2841 * event_id completes.
2843 static void perf_output_lock(struct perf_output_handle
*handle
)
2845 struct perf_mmap_data
*data
= handle
->data
;
2846 int cur
, cpu
= get_cpu();
2851 cur
= atomic_cmpxchg(&data
->lock
, -1, cpu
);
2863 static void perf_output_unlock(struct perf_output_handle
*handle
)
2865 struct perf_mmap_data
*data
= handle
->data
;
2869 data
->done_head
= data
->head
;
2871 if (!handle
->locked
)
2876 * The xchg implies a full barrier that ensures all writes are done
2877 * before we publish the new head, matched by a rmb() in userspace when
2878 * reading this position.
2880 while ((head
= atomic_long_xchg(&data
->done_head
, 0)))
2881 data
->user_page
->data_head
= head
;
2884 * NMI can happen here, which means we can miss a done_head update.
2887 cpu
= atomic_xchg(&data
->lock
, -1);
2888 WARN_ON_ONCE(cpu
!= smp_processor_id());
2891 * Therefore we have to validate we did not indeed do so.
2893 if (unlikely(atomic_long_read(&data
->done_head
))) {
2895 * Since we had it locked, we can lock it again.
2897 while (atomic_cmpxchg(&data
->lock
, -1, cpu
) != -1)
2903 if (atomic_xchg(&data
->wakeup
, 0))
2904 perf_output_wakeup(handle
);
2909 void perf_output_copy(struct perf_output_handle
*handle
,
2910 const void *buf
, unsigned int len
)
2912 unsigned int pages_mask
;
2913 unsigned long offset
;
2917 offset
= handle
->offset
;
2918 pages_mask
= handle
->data
->nr_pages
- 1;
2919 pages
= handle
->data
->data_pages
;
2922 unsigned long page_offset
;
2923 unsigned long page_size
;
2926 nr
= (offset
>> PAGE_SHIFT
) & pages_mask
;
2927 page_size
= 1UL << (handle
->data
->data_order
+ PAGE_SHIFT
);
2928 page_offset
= offset
& (page_size
- 1);
2929 size
= min_t(unsigned int, page_size
- page_offset
, len
);
2931 memcpy(pages
[nr
] + page_offset
, buf
, size
);
2938 handle
->offset
= offset
;
2941 * Check we didn't copy past our reservation window, taking the
2942 * possible unsigned int wrap into account.
2944 WARN_ON_ONCE(((long)(handle
->head
- handle
->offset
)) < 0);
2947 int perf_output_begin(struct perf_output_handle
*handle
,
2948 struct perf_event
*event
, unsigned int size
,
2949 int nmi
, int sample
)
2951 struct perf_event
*output_event
;
2952 struct perf_mmap_data
*data
;
2953 unsigned long tail
, offset
, head
;
2956 struct perf_event_header header
;
2963 * For inherited events we send all the output towards the parent.
2966 event
= event
->parent
;
2968 output_event
= rcu_dereference(event
->output
);
2970 event
= output_event
;
2972 data
= rcu_dereference(event
->data
);
2976 handle
->data
= data
;
2977 handle
->event
= event
;
2979 handle
->sample
= sample
;
2981 if (!data
->nr_pages
)
2984 have_lost
= atomic_read(&data
->lost
);
2986 size
+= sizeof(lost_event
);
2988 perf_output_lock(handle
);
2992 * Userspace could choose to issue a mb() before updating the
2993 * tail pointer. So that all reads will be completed before the
2996 tail
= ACCESS_ONCE(data
->user_page
->data_tail
);
2998 offset
= head
= atomic_long_read(&data
->head
);
3000 if (unlikely(!perf_output_space(data
, tail
, offset
, head
)))
3002 } while (atomic_long_cmpxchg(&data
->head
, offset
, head
) != offset
);
3004 handle
->offset
= offset
;
3005 handle
->head
= head
;
3007 if (head
- tail
> data
->watermark
)
3008 atomic_set(&data
->wakeup
, 1);
3011 lost_event
.header
.type
= PERF_RECORD_LOST
;
3012 lost_event
.header
.misc
= 0;
3013 lost_event
.header
.size
= sizeof(lost_event
);
3014 lost_event
.id
= event
->id
;
3015 lost_event
.lost
= atomic_xchg(&data
->lost
, 0);
3017 perf_output_put(handle
, lost_event
);
3023 atomic_inc(&data
->lost
);
3024 perf_output_unlock(handle
);
3031 void perf_output_end(struct perf_output_handle
*handle
)
3033 struct perf_event
*event
= handle
->event
;
3034 struct perf_mmap_data
*data
= handle
->data
;
3036 int wakeup_events
= event
->attr
.wakeup_events
;
3038 if (handle
->sample
&& wakeup_events
) {
3039 int events
= atomic_inc_return(&data
->events
);
3040 if (events
>= wakeup_events
) {
3041 atomic_sub(wakeup_events
, &data
->events
);
3042 atomic_set(&data
->wakeup
, 1);
3046 perf_output_unlock(handle
);
3050 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
3053 * only top level events have the pid namespace they were created in
3056 event
= event
->parent
;
3058 return task_tgid_nr_ns(p
, event
->ns
);
3061 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
3064 * only top level events have the pid namespace they were created in
3067 event
= event
->parent
;
3069 return task_pid_nr_ns(p
, event
->ns
);
3072 static void perf_output_read_one(struct perf_output_handle
*handle
,
3073 struct perf_event
*event
)
3075 u64 read_format
= event
->attr
.read_format
;
3079 values
[n
++] = atomic64_read(&event
->count
);
3080 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
3081 values
[n
++] = event
->total_time_enabled
+
3082 atomic64_read(&event
->child_total_time_enabled
);
3084 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
3085 values
[n
++] = event
->total_time_running
+
3086 atomic64_read(&event
->child_total_time_running
);
3088 if (read_format
& PERF_FORMAT_ID
)
3089 values
[n
++] = primary_event_id(event
);
3091 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3095 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3097 static void perf_output_read_group(struct perf_output_handle
*handle
,
3098 struct perf_event
*event
)
3100 struct perf_event
*leader
= event
->group_leader
, *sub
;
3101 u64 read_format
= event
->attr
.read_format
;
3105 values
[n
++] = 1 + leader
->nr_siblings
;
3107 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3108 values
[n
++] = leader
->total_time_enabled
;
3110 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3111 values
[n
++] = leader
->total_time_running
;
3113 if (leader
!= event
)
3114 leader
->pmu
->read(leader
);
3116 values
[n
++] = atomic64_read(&leader
->count
);
3117 if (read_format
& PERF_FORMAT_ID
)
3118 values
[n
++] = primary_event_id(leader
);
3120 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3122 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
3126 sub
->pmu
->read(sub
);
3128 values
[n
++] = atomic64_read(&sub
->count
);
3129 if (read_format
& PERF_FORMAT_ID
)
3130 values
[n
++] = primary_event_id(sub
);
3132 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3136 static void perf_output_read(struct perf_output_handle
*handle
,
3137 struct perf_event
*event
)
3139 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
3140 perf_output_read_group(handle
, event
);
3142 perf_output_read_one(handle
, event
);
3145 void perf_output_sample(struct perf_output_handle
*handle
,
3146 struct perf_event_header
*header
,
3147 struct perf_sample_data
*data
,
3148 struct perf_event
*event
)
3150 u64 sample_type
= data
->type
;
3152 perf_output_put(handle
, *header
);
3154 if (sample_type
& PERF_SAMPLE_IP
)
3155 perf_output_put(handle
, data
->ip
);
3157 if (sample_type
& PERF_SAMPLE_TID
)
3158 perf_output_put(handle
, data
->tid_entry
);
3160 if (sample_type
& PERF_SAMPLE_TIME
)
3161 perf_output_put(handle
, data
->time
);
3163 if (sample_type
& PERF_SAMPLE_ADDR
)
3164 perf_output_put(handle
, data
->addr
);
3166 if (sample_type
& PERF_SAMPLE_ID
)
3167 perf_output_put(handle
, data
->id
);
3169 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3170 perf_output_put(handle
, data
->stream_id
);
3172 if (sample_type
& PERF_SAMPLE_CPU
)
3173 perf_output_put(handle
, data
->cpu_entry
);
3175 if (sample_type
& PERF_SAMPLE_PERIOD
)
3176 perf_output_put(handle
, data
->period
);
3178 if (sample_type
& PERF_SAMPLE_READ
)
3179 perf_output_read(handle
, event
);
3181 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3182 if (data
->callchain
) {
3185 if (data
->callchain
)
3186 size
+= data
->callchain
->nr
;
3188 size
*= sizeof(u64
);
3190 perf_output_copy(handle
, data
->callchain
, size
);
3193 perf_output_put(handle
, nr
);
3197 if (sample_type
& PERF_SAMPLE_RAW
) {
3199 perf_output_put(handle
, data
->raw
->size
);
3200 perf_output_copy(handle
, data
->raw
->data
,
3207 .size
= sizeof(u32
),
3210 perf_output_put(handle
, raw
);
3215 void perf_prepare_sample(struct perf_event_header
*header
,
3216 struct perf_sample_data
*data
,
3217 struct perf_event
*event
,
3218 struct pt_regs
*regs
)
3220 u64 sample_type
= event
->attr
.sample_type
;
3222 data
->type
= sample_type
;
3224 header
->type
= PERF_RECORD_SAMPLE
;
3225 header
->size
= sizeof(*header
);
3228 header
->misc
|= perf_misc_flags(regs
);
3230 if (sample_type
& PERF_SAMPLE_IP
) {
3231 data
->ip
= perf_instruction_pointer(regs
);
3233 header
->size
+= sizeof(data
->ip
);
3236 if (sample_type
& PERF_SAMPLE_TID
) {
3237 /* namespace issues */
3238 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
3239 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
3241 header
->size
+= sizeof(data
->tid_entry
);
3244 if (sample_type
& PERF_SAMPLE_TIME
) {
3245 data
->time
= perf_clock();
3247 header
->size
+= sizeof(data
->time
);
3250 if (sample_type
& PERF_SAMPLE_ADDR
)
3251 header
->size
+= sizeof(data
->addr
);
3253 if (sample_type
& PERF_SAMPLE_ID
) {
3254 data
->id
= primary_event_id(event
);
3256 header
->size
+= sizeof(data
->id
);
3259 if (sample_type
& PERF_SAMPLE_STREAM_ID
) {
3260 data
->stream_id
= event
->id
;
3262 header
->size
+= sizeof(data
->stream_id
);
3265 if (sample_type
& PERF_SAMPLE_CPU
) {
3266 data
->cpu_entry
.cpu
= raw_smp_processor_id();
3267 data
->cpu_entry
.reserved
= 0;
3269 header
->size
+= sizeof(data
->cpu_entry
);
3272 if (sample_type
& PERF_SAMPLE_PERIOD
)
3273 header
->size
+= sizeof(data
->period
);
3275 if (sample_type
& PERF_SAMPLE_READ
)
3276 header
->size
+= perf_event_read_size(event
);
3278 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3281 data
->callchain
= perf_callchain(regs
);
3283 if (data
->callchain
)
3284 size
+= data
->callchain
->nr
;
3286 header
->size
+= size
* sizeof(u64
);
3289 if (sample_type
& PERF_SAMPLE_RAW
) {
3290 int size
= sizeof(u32
);
3293 size
+= data
->raw
->size
;
3295 size
+= sizeof(u32
);
3297 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
3298 header
->size
+= size
;
3302 static void perf_event_output(struct perf_event
*event
, int nmi
,
3303 struct perf_sample_data
*data
,
3304 struct pt_regs
*regs
)
3306 struct perf_output_handle handle
;
3307 struct perf_event_header header
;
3309 perf_prepare_sample(&header
, data
, event
, regs
);
3311 if (perf_output_begin(&handle
, event
, header
.size
, nmi
, 1))
3314 perf_output_sample(&handle
, &header
, data
, event
);
3316 perf_output_end(&handle
);
3323 struct perf_read_event
{
3324 struct perf_event_header header
;
3331 perf_event_read_event(struct perf_event
*event
,
3332 struct task_struct
*task
)
3334 struct perf_output_handle handle
;
3335 struct perf_read_event read_event
= {
3337 .type
= PERF_RECORD_READ
,
3339 .size
= sizeof(read_event
) + perf_event_read_size(event
),
3341 .pid
= perf_event_pid(event
, task
),
3342 .tid
= perf_event_tid(event
, task
),
3346 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
, 0, 0);
3350 perf_output_put(&handle
, read_event
);
3351 perf_output_read(&handle
, event
);
3353 perf_output_end(&handle
);
3357 * task tracking -- fork/exit
3359 * enabled by: attr.comm | attr.mmap | attr.task
3362 struct perf_task_event
{
3363 struct task_struct
*task
;
3364 struct perf_event_context
*task_ctx
;
3367 struct perf_event_header header
;
3377 static void perf_event_task_output(struct perf_event
*event
,
3378 struct perf_task_event
*task_event
)
3380 struct perf_output_handle handle
;
3382 struct task_struct
*task
= task_event
->task
;
3385 size
= task_event
->event_id
.header
.size
;
3386 ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3391 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
3392 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
3394 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
3395 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
3397 perf_output_put(&handle
, task_event
->event_id
);
3399 perf_output_end(&handle
);
3402 static int perf_event_task_match(struct perf_event
*event
)
3404 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
3407 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3410 if (event
->attr
.comm
|| event
->attr
.mmap
|| event
->attr
.task
)
3416 static void perf_event_task_ctx(struct perf_event_context
*ctx
,
3417 struct perf_task_event
*task_event
)
3419 struct perf_event
*event
;
3421 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3422 if (perf_event_task_match(event
))
3423 perf_event_task_output(event
, task_event
);
3427 static void perf_event_task_event(struct perf_task_event
*task_event
)
3429 struct perf_cpu_context
*cpuctx
;
3430 struct perf_event_context
*ctx
= task_event
->task_ctx
;
3433 cpuctx
= &get_cpu_var(perf_cpu_context
);
3434 perf_event_task_ctx(&cpuctx
->ctx
, task_event
);
3436 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3438 perf_event_task_ctx(ctx
, task_event
);
3439 put_cpu_var(perf_cpu_context
);
3443 static void perf_event_task(struct task_struct
*task
,
3444 struct perf_event_context
*task_ctx
,
3447 struct perf_task_event task_event
;
3449 if (!atomic_read(&nr_comm_events
) &&
3450 !atomic_read(&nr_mmap_events
) &&
3451 !atomic_read(&nr_task_events
))
3454 task_event
= (struct perf_task_event
){
3456 .task_ctx
= task_ctx
,
3459 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
3461 .size
= sizeof(task_event
.event_id
),
3467 .time
= perf_clock(),
3471 perf_event_task_event(&task_event
);
3474 void perf_event_fork(struct task_struct
*task
)
3476 perf_event_task(task
, NULL
, 1);
3483 struct perf_comm_event
{
3484 struct task_struct
*task
;
3489 struct perf_event_header header
;
3496 static void perf_event_comm_output(struct perf_event
*event
,
3497 struct perf_comm_event
*comm_event
)
3499 struct perf_output_handle handle
;
3500 int size
= comm_event
->event_id
.header
.size
;
3501 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3506 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
3507 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
3509 perf_output_put(&handle
, comm_event
->event_id
);
3510 perf_output_copy(&handle
, comm_event
->comm
,
3511 comm_event
->comm_size
);
3512 perf_output_end(&handle
);
3515 static int perf_event_comm_match(struct perf_event
*event
)
3517 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
3520 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3523 if (event
->attr
.comm
)
3529 static void perf_event_comm_ctx(struct perf_event_context
*ctx
,
3530 struct perf_comm_event
*comm_event
)
3532 struct perf_event
*event
;
3534 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3535 if (perf_event_comm_match(event
))
3536 perf_event_comm_output(event
, comm_event
);
3540 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
3542 struct perf_cpu_context
*cpuctx
;
3543 struct perf_event_context
*ctx
;
3545 char comm
[TASK_COMM_LEN
];
3547 memset(comm
, 0, sizeof(comm
));
3548 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
3549 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
3551 comm_event
->comm
= comm
;
3552 comm_event
->comm_size
= size
;
3554 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
3557 cpuctx
= &get_cpu_var(perf_cpu_context
);
3558 perf_event_comm_ctx(&cpuctx
->ctx
, comm_event
);
3559 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3561 perf_event_comm_ctx(ctx
, comm_event
);
3562 put_cpu_var(perf_cpu_context
);
3566 void perf_event_comm(struct task_struct
*task
)
3568 struct perf_comm_event comm_event
;
3570 if (task
->perf_event_ctxp
)
3571 perf_event_enable_on_exec(task
);
3573 if (!atomic_read(&nr_comm_events
))
3576 comm_event
= (struct perf_comm_event
){
3582 .type
= PERF_RECORD_COMM
,
3591 perf_event_comm_event(&comm_event
);
3598 struct perf_mmap_event
{
3599 struct vm_area_struct
*vma
;
3601 const char *file_name
;
3605 struct perf_event_header header
;
3615 static void perf_event_mmap_output(struct perf_event
*event
,
3616 struct perf_mmap_event
*mmap_event
)
3618 struct perf_output_handle handle
;
3619 int size
= mmap_event
->event_id
.header
.size
;
3620 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3625 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
3626 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
3628 perf_output_put(&handle
, mmap_event
->event_id
);
3629 perf_output_copy(&handle
, mmap_event
->file_name
,
3630 mmap_event
->file_size
);
3631 perf_output_end(&handle
);
3634 static int perf_event_mmap_match(struct perf_event
*event
,
3635 struct perf_mmap_event
*mmap_event
)
3637 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
3640 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3643 if (event
->attr
.mmap
)
3649 static void perf_event_mmap_ctx(struct perf_event_context
*ctx
,
3650 struct perf_mmap_event
*mmap_event
)
3652 struct perf_event
*event
;
3654 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3655 if (perf_event_mmap_match(event
, mmap_event
))
3656 perf_event_mmap_output(event
, mmap_event
);
3660 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
3662 struct perf_cpu_context
*cpuctx
;
3663 struct perf_event_context
*ctx
;
3664 struct vm_area_struct
*vma
= mmap_event
->vma
;
3665 struct file
*file
= vma
->vm_file
;
3671 memset(tmp
, 0, sizeof(tmp
));
3675 * d_path works from the end of the buffer backwards, so we
3676 * need to add enough zero bytes after the string to handle
3677 * the 64bit alignment we do later.
3679 buf
= kzalloc(PATH_MAX
+ sizeof(u64
), GFP_KERNEL
);
3681 name
= strncpy(tmp
, "//enomem", sizeof(tmp
));
3684 name
= d_path(&file
->f_path
, buf
, PATH_MAX
);
3686 name
= strncpy(tmp
, "//toolong", sizeof(tmp
));
3690 if (arch_vma_name(mmap_event
->vma
)) {
3691 name
= strncpy(tmp
, arch_vma_name(mmap_event
->vma
),
3697 name
= strncpy(tmp
, "[vdso]", sizeof(tmp
));
3701 name
= strncpy(tmp
, "//anon", sizeof(tmp
));
3706 size
= ALIGN(strlen(name
)+1, sizeof(u64
));
3708 mmap_event
->file_name
= name
;
3709 mmap_event
->file_size
= size
;
3711 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
3714 cpuctx
= &get_cpu_var(perf_cpu_context
);
3715 perf_event_mmap_ctx(&cpuctx
->ctx
, mmap_event
);
3716 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3718 perf_event_mmap_ctx(ctx
, mmap_event
);
3719 put_cpu_var(perf_cpu_context
);
3725 void __perf_event_mmap(struct vm_area_struct
*vma
)
3727 struct perf_mmap_event mmap_event
;
3729 if (!atomic_read(&nr_mmap_events
))
3732 mmap_event
= (struct perf_mmap_event
){
3738 .type
= PERF_RECORD_MMAP
,
3744 .start
= vma
->vm_start
,
3745 .len
= vma
->vm_end
- vma
->vm_start
,
3746 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
3750 perf_event_mmap_event(&mmap_event
);
3754 * IRQ throttle logging
3757 static void perf_log_throttle(struct perf_event
*event
, int enable
)
3759 struct perf_output_handle handle
;
3763 struct perf_event_header header
;
3767 } throttle_event
= {
3769 .type
= PERF_RECORD_THROTTLE
,
3771 .size
= sizeof(throttle_event
),
3773 .time
= perf_clock(),
3774 .id
= primary_event_id(event
),
3775 .stream_id
= event
->id
,
3779 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
3781 ret
= perf_output_begin(&handle
, event
, sizeof(throttle_event
), 1, 0);
3785 perf_output_put(&handle
, throttle_event
);
3786 perf_output_end(&handle
);
3790 * Generic event overflow handling, sampling.
3793 static int __perf_event_overflow(struct perf_event
*event
, int nmi
,
3794 int throttle
, struct perf_sample_data
*data
,
3795 struct pt_regs
*regs
)
3797 int events
= atomic_read(&event
->event_limit
);
3798 struct hw_perf_event
*hwc
= &event
->hw
;
3801 throttle
= (throttle
&& event
->pmu
->unthrottle
!= NULL
);
3806 if (hwc
->interrupts
!= MAX_INTERRUPTS
) {
3808 if (HZ
* hwc
->interrupts
>
3809 (u64
)sysctl_perf_event_sample_rate
) {
3810 hwc
->interrupts
= MAX_INTERRUPTS
;
3811 perf_log_throttle(event
, 0);
3816 * Keep re-disabling events even though on the previous
3817 * pass we disabled it - just in case we raced with a
3818 * sched-in and the event got enabled again:
3824 if (event
->attr
.freq
) {
3825 u64 now
= perf_clock();
3826 s64 delta
= now
- hwc
->freq_time_stamp
;
3828 hwc
->freq_time_stamp
= now
;
3830 if (delta
> 0 && delta
< 2*TICK_NSEC
)
3831 perf_adjust_period(event
, delta
, hwc
->last_period
);
3835 * XXX event_limit might not quite work as expected on inherited
3839 event
->pending_kill
= POLL_IN
;
3840 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
3842 event
->pending_kill
= POLL_HUP
;
3844 event
->pending_disable
= 1;
3845 perf_pending_queue(&event
->pending
,
3846 perf_pending_event
);
3848 perf_event_disable(event
);
3851 if (event
->overflow_handler
)
3852 event
->overflow_handler(event
, nmi
, data
, regs
);
3854 perf_event_output(event
, nmi
, data
, regs
);
3859 int perf_event_overflow(struct perf_event
*event
, int nmi
,
3860 struct perf_sample_data
*data
,
3861 struct pt_regs
*regs
)
3863 return __perf_event_overflow(event
, nmi
, 1, data
, regs
);
3867 * Generic software event infrastructure
3871 * We directly increment event->count and keep a second value in
3872 * event->hw.period_left to count intervals. This period event
3873 * is kept in the range [-sample_period, 0] so that we can use the
3877 static u64
perf_swevent_set_period(struct perf_event
*event
)
3879 struct hw_perf_event
*hwc
= &event
->hw
;
3880 u64 period
= hwc
->last_period
;
3884 hwc
->last_period
= hwc
->sample_period
;
3887 old
= val
= atomic64_read(&hwc
->period_left
);
3891 nr
= div64_u64(period
+ val
, period
);
3892 offset
= nr
* period
;
3894 if (atomic64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
3900 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
3901 int nmi
, struct perf_sample_data
*data
,
3902 struct pt_regs
*regs
)
3904 struct hw_perf_event
*hwc
= &event
->hw
;
3907 data
->period
= event
->hw
.last_period
;
3909 overflow
= perf_swevent_set_period(event
);
3911 if (hwc
->interrupts
== MAX_INTERRUPTS
)
3914 for (; overflow
; overflow
--) {
3915 if (__perf_event_overflow(event
, nmi
, throttle
,
3918 * We inhibit the overflow from happening when
3919 * hwc->interrupts == MAX_INTERRUPTS.
3927 static void perf_swevent_unthrottle(struct perf_event
*event
)
3930 * Nothing to do, we already reset hwc->interrupts.
3934 static void perf_swevent_add(struct perf_event
*event
, u64 nr
,
3935 int nmi
, struct perf_sample_data
*data
,
3936 struct pt_regs
*regs
)
3938 struct hw_perf_event
*hwc
= &event
->hw
;
3940 atomic64_add(nr
, &event
->count
);
3945 if (!hwc
->sample_period
)
3948 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
3949 return perf_swevent_overflow(event
, 1, nmi
, data
, regs
);
3951 if (atomic64_add_negative(nr
, &hwc
->period_left
))
3954 perf_swevent_overflow(event
, 0, nmi
, data
, regs
);
3957 static int perf_swevent_is_counting(struct perf_event
*event
)
3960 * The event is active, we're good!
3962 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
3966 * The event is off/error, not counting.
3968 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
)
3972 * The event is inactive, if the context is active
3973 * we're part of a group that didn't make it on the 'pmu',
3976 if (event
->ctx
->is_active
)
3980 * We're inactive and the context is too, this means the
3981 * task is scheduled out, we're counting events that happen
3982 * to us, like migration events.
3987 static int perf_tp_event_match(struct perf_event
*event
,
3988 struct perf_sample_data
*data
);
3990 static int perf_exclude_event(struct perf_event
*event
,
3991 struct pt_regs
*regs
)
3994 if (event
->attr
.exclude_user
&& user_mode(regs
))
3997 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
4004 static int perf_swevent_match(struct perf_event
*event
,
4005 enum perf_type_id type
,
4007 struct perf_sample_data
*data
,
4008 struct pt_regs
*regs
)
4010 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
4013 if (!perf_swevent_is_counting(event
))
4016 if (event
->attr
.type
!= type
)
4019 if (event
->attr
.config
!= event_id
)
4022 if (perf_exclude_event(event
, regs
))
4025 if (event
->attr
.type
== PERF_TYPE_TRACEPOINT
&&
4026 !perf_tp_event_match(event
, data
))
4032 static void perf_swevent_ctx_event(struct perf_event_context
*ctx
,
4033 enum perf_type_id type
,
4034 u32 event_id
, u64 nr
, int nmi
,
4035 struct perf_sample_data
*data
,
4036 struct pt_regs
*regs
)
4038 struct perf_event
*event
;
4040 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4041 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
4042 perf_swevent_add(event
, nr
, nmi
, data
, regs
);
4046 int perf_swevent_get_recursion_context(void)
4048 struct perf_cpu_context
*cpuctx
= &get_cpu_var(perf_cpu_context
);
4055 else if (in_softirq())
4060 if (cpuctx
->recursion
[rctx
]) {
4061 put_cpu_var(perf_cpu_context
);
4065 cpuctx
->recursion
[rctx
]++;
4070 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
4072 void perf_swevent_put_recursion_context(int rctx
)
4074 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
4076 cpuctx
->recursion
[rctx
]--;
4077 put_cpu_var(perf_cpu_context
);
4079 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context
);
4081 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
4083 struct perf_sample_data
*data
,
4084 struct pt_regs
*regs
)
4086 struct perf_cpu_context
*cpuctx
;
4087 struct perf_event_context
*ctx
;
4089 cpuctx
= &__get_cpu_var(perf_cpu_context
);
4091 perf_swevent_ctx_event(&cpuctx
->ctx
, type
, event_id
,
4092 nr
, nmi
, data
, regs
);
4094 * doesn't really matter which of the child contexts the
4095 * events ends up in.
4097 ctx
= rcu_dereference(current
->perf_event_ctxp
);
4099 perf_swevent_ctx_event(ctx
, type
, event_id
, nr
, nmi
, data
, regs
);
4103 void __perf_sw_event(u32 event_id
, u64 nr
, int nmi
,
4104 struct pt_regs
*regs
, u64 addr
)
4106 struct perf_sample_data data
;
4109 rctx
= perf_swevent_get_recursion_context();
4113 perf_sample_data_init(&data
, addr
);
4115 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, nmi
, &data
, regs
);
4117 perf_swevent_put_recursion_context(rctx
);
4120 static void perf_swevent_read(struct perf_event
*event
)
4124 static int perf_swevent_enable(struct perf_event
*event
)
4126 struct hw_perf_event
*hwc
= &event
->hw
;
4128 if (hwc
->sample_period
) {
4129 hwc
->last_period
= hwc
->sample_period
;
4130 perf_swevent_set_period(event
);
4135 static void perf_swevent_disable(struct perf_event
*event
)
4139 static const struct pmu perf_ops_generic
= {
4140 .enable
= perf_swevent_enable
,
4141 .disable
= perf_swevent_disable
,
4142 .read
= perf_swevent_read
,
4143 .unthrottle
= perf_swevent_unthrottle
,
4147 * hrtimer based swevent callback
4150 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
4152 enum hrtimer_restart ret
= HRTIMER_RESTART
;
4153 struct perf_sample_data data
;
4154 struct pt_regs
*regs
;
4155 struct perf_event
*event
;
4158 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
4159 event
->pmu
->read(event
);
4161 perf_sample_data_init(&data
, 0);
4162 data
.period
= event
->hw
.last_period
;
4163 regs
= get_irq_regs();
4165 * In case we exclude kernel IPs or are somehow not in interrupt
4166 * context, provide the next best thing, the user IP.
4168 if ((event
->attr
.exclude_kernel
|| !regs
) &&
4169 !event
->attr
.exclude_user
)
4170 regs
= task_pt_regs(current
);
4173 if (!(event
->attr
.exclude_idle
&& current
->pid
== 0))
4174 if (perf_event_overflow(event
, 0, &data
, regs
))
4175 ret
= HRTIMER_NORESTART
;
4178 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
4179 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
4184 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
4186 struct hw_perf_event
*hwc
= &event
->hw
;
4188 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
4189 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
4190 if (hwc
->sample_period
) {
4193 if (hwc
->remaining
) {
4194 if (hwc
->remaining
< 0)
4197 period
= hwc
->remaining
;
4200 period
= max_t(u64
, 10000, hwc
->sample_period
);
4202 __hrtimer_start_range_ns(&hwc
->hrtimer
,
4203 ns_to_ktime(period
), 0,
4204 HRTIMER_MODE_REL
, 0);
4208 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
4210 struct hw_perf_event
*hwc
= &event
->hw
;
4212 if (hwc
->sample_period
) {
4213 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
4214 hwc
->remaining
= ktime_to_ns(remaining
);
4216 hrtimer_cancel(&hwc
->hrtimer
);
4221 * Software event: cpu wall time clock
4224 static void cpu_clock_perf_event_update(struct perf_event
*event
)
4226 int cpu
= raw_smp_processor_id();
4230 now
= cpu_clock(cpu
);
4231 prev
= atomic64_xchg(&event
->hw
.prev_count
, now
);
4232 atomic64_add(now
- prev
, &event
->count
);
4235 static int cpu_clock_perf_event_enable(struct perf_event
*event
)
4237 struct hw_perf_event
*hwc
= &event
->hw
;
4238 int cpu
= raw_smp_processor_id();
4240 atomic64_set(&hwc
->prev_count
, cpu_clock(cpu
));
4241 perf_swevent_start_hrtimer(event
);
4246 static void cpu_clock_perf_event_disable(struct perf_event
*event
)
4248 perf_swevent_cancel_hrtimer(event
);
4249 cpu_clock_perf_event_update(event
);
4252 static void cpu_clock_perf_event_read(struct perf_event
*event
)
4254 cpu_clock_perf_event_update(event
);
4257 static const struct pmu perf_ops_cpu_clock
= {
4258 .enable
= cpu_clock_perf_event_enable
,
4259 .disable
= cpu_clock_perf_event_disable
,
4260 .read
= cpu_clock_perf_event_read
,
4264 * Software event: task time clock
4267 static void task_clock_perf_event_update(struct perf_event
*event
, u64 now
)
4272 prev
= atomic64_xchg(&event
->hw
.prev_count
, now
);
4274 atomic64_add(delta
, &event
->count
);
4277 static int task_clock_perf_event_enable(struct perf_event
*event
)
4279 struct hw_perf_event
*hwc
= &event
->hw
;
4282 now
= event
->ctx
->time
;
4284 atomic64_set(&hwc
->prev_count
, now
);
4286 perf_swevent_start_hrtimer(event
);
4291 static void task_clock_perf_event_disable(struct perf_event
*event
)
4293 perf_swevent_cancel_hrtimer(event
);
4294 task_clock_perf_event_update(event
, event
->ctx
->time
);
4298 static void task_clock_perf_event_read(struct perf_event
*event
)
4303 update_context_time(event
->ctx
);
4304 time
= event
->ctx
->time
;
4306 u64 now
= perf_clock();
4307 u64 delta
= now
- event
->ctx
->timestamp
;
4308 time
= event
->ctx
->time
+ delta
;
4311 task_clock_perf_event_update(event
, time
);
4314 static const struct pmu perf_ops_task_clock
= {
4315 .enable
= task_clock_perf_event_enable
,
4316 .disable
= task_clock_perf_event_disable
,
4317 .read
= task_clock_perf_event_read
,
4320 #ifdef CONFIG_EVENT_TRACING
4322 void perf_tp_event(int event_id
, u64 addr
, u64 count
, void *record
,
4323 int entry_size
, struct pt_regs
*regs
)
4325 struct perf_sample_data data
;
4326 struct perf_raw_record raw
= {
4331 perf_sample_data_init(&data
, addr
);
4334 /* Trace events already protected against recursion */
4335 do_perf_sw_event(PERF_TYPE_TRACEPOINT
, event_id
, count
, 1,
4338 EXPORT_SYMBOL_GPL(perf_tp_event
);
4340 static int perf_tp_event_match(struct perf_event
*event
,
4341 struct perf_sample_data
*data
)
4343 void *record
= data
->raw
->data
;
4345 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
4350 static void tp_perf_event_destroy(struct perf_event
*event
)
4352 perf_trace_disable(event
->attr
.config
);
4355 static const struct pmu
*tp_perf_event_init(struct perf_event
*event
)
4358 * Raw tracepoint data is a severe data leak, only allow root to
4361 if ((event
->attr
.sample_type
& PERF_SAMPLE_RAW
) &&
4362 perf_paranoid_tracepoint_raw() &&
4363 !capable(CAP_SYS_ADMIN
))
4364 return ERR_PTR(-EPERM
);
4366 if (perf_trace_enable(event
->attr
.config
))
4369 event
->destroy
= tp_perf_event_destroy
;
4371 return &perf_ops_generic
;
4374 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
4379 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
4382 filter_str
= strndup_user(arg
, PAGE_SIZE
);
4383 if (IS_ERR(filter_str
))
4384 return PTR_ERR(filter_str
);
4386 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
4392 static void perf_event_free_filter(struct perf_event
*event
)
4394 ftrace_profile_free_filter(event
);
4399 static int perf_tp_event_match(struct perf_event
*event
,
4400 struct perf_sample_data
*data
)
4405 static const struct pmu
*tp_perf_event_init(struct perf_event
*event
)
4410 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
4415 static void perf_event_free_filter(struct perf_event
*event
)
4419 #endif /* CONFIG_EVENT_TRACING */
4421 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4422 static void bp_perf_event_destroy(struct perf_event
*event
)
4424 release_bp_slot(event
);
4427 static const struct pmu
*bp_perf_event_init(struct perf_event
*bp
)
4431 err
= register_perf_hw_breakpoint(bp
);
4433 return ERR_PTR(err
);
4435 bp
->destroy
= bp_perf_event_destroy
;
4437 return &perf_ops_bp
;
4440 void perf_bp_event(struct perf_event
*bp
, void *data
)
4442 struct perf_sample_data sample
;
4443 struct pt_regs
*regs
= data
;
4445 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
);
4447 if (!perf_exclude_event(bp
, regs
))
4448 perf_swevent_add(bp
, 1, 1, &sample
, regs
);
4451 static const struct pmu
*bp_perf_event_init(struct perf_event
*bp
)
4456 void perf_bp_event(struct perf_event
*bp
, void *regs
)
4461 atomic_t perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
4463 static void sw_perf_event_destroy(struct perf_event
*event
)
4465 u64 event_id
= event
->attr
.config
;
4467 WARN_ON(event
->parent
);
4469 atomic_dec(&perf_swevent_enabled
[event_id
]);
4472 static const struct pmu
*sw_perf_event_init(struct perf_event
*event
)
4474 const struct pmu
*pmu
= NULL
;
4475 u64 event_id
= event
->attr
.config
;
4478 * Software events (currently) can't in general distinguish
4479 * between user, kernel and hypervisor events.
4480 * However, context switches and cpu migrations are considered
4481 * to be kernel events, and page faults are never hypervisor
4485 case PERF_COUNT_SW_CPU_CLOCK
:
4486 pmu
= &perf_ops_cpu_clock
;
4489 case PERF_COUNT_SW_TASK_CLOCK
:
4491 * If the user instantiates this as a per-cpu event,
4492 * use the cpu_clock event instead.
4494 if (event
->ctx
->task
)
4495 pmu
= &perf_ops_task_clock
;
4497 pmu
= &perf_ops_cpu_clock
;
4500 case PERF_COUNT_SW_PAGE_FAULTS
:
4501 case PERF_COUNT_SW_PAGE_FAULTS_MIN
:
4502 case PERF_COUNT_SW_PAGE_FAULTS_MAJ
:
4503 case PERF_COUNT_SW_CONTEXT_SWITCHES
:
4504 case PERF_COUNT_SW_CPU_MIGRATIONS
:
4505 case PERF_COUNT_SW_ALIGNMENT_FAULTS
:
4506 case PERF_COUNT_SW_EMULATION_FAULTS
:
4507 if (!event
->parent
) {
4508 atomic_inc(&perf_swevent_enabled
[event_id
]);
4509 event
->destroy
= sw_perf_event_destroy
;
4511 pmu
= &perf_ops_generic
;
4519 * Allocate and initialize a event structure
4521 static struct perf_event
*
4522 perf_event_alloc(struct perf_event_attr
*attr
,
4524 struct perf_event_context
*ctx
,
4525 struct perf_event
*group_leader
,
4526 struct perf_event
*parent_event
,
4527 perf_overflow_handler_t overflow_handler
,
4530 const struct pmu
*pmu
;
4531 struct perf_event
*event
;
4532 struct hw_perf_event
*hwc
;
4535 event
= kzalloc(sizeof(*event
), gfpflags
);
4537 return ERR_PTR(-ENOMEM
);
4540 * Single events are their own group leaders, with an
4541 * empty sibling list:
4544 group_leader
= event
;
4546 mutex_init(&event
->child_mutex
);
4547 INIT_LIST_HEAD(&event
->child_list
);
4549 INIT_LIST_HEAD(&event
->group_entry
);
4550 INIT_LIST_HEAD(&event
->event_entry
);
4551 INIT_LIST_HEAD(&event
->sibling_list
);
4552 init_waitqueue_head(&event
->waitq
);
4554 mutex_init(&event
->mmap_mutex
);
4557 event
->attr
= *attr
;
4558 event
->group_leader
= group_leader
;
4563 event
->parent
= parent_event
;
4565 event
->ns
= get_pid_ns(current
->nsproxy
->pid_ns
);
4566 event
->id
= atomic64_inc_return(&perf_event_id
);
4568 event
->state
= PERF_EVENT_STATE_INACTIVE
;
4570 if (!overflow_handler
&& parent_event
)
4571 overflow_handler
= parent_event
->overflow_handler
;
4573 event
->overflow_handler
= overflow_handler
;
4576 event
->state
= PERF_EVENT_STATE_OFF
;
4581 hwc
->sample_period
= attr
->sample_period
;
4582 if (attr
->freq
&& attr
->sample_freq
)
4583 hwc
->sample_period
= 1;
4584 hwc
->last_period
= hwc
->sample_period
;
4586 atomic64_set(&hwc
->period_left
, hwc
->sample_period
);
4589 * we currently do not support PERF_FORMAT_GROUP on inherited events
4591 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
4594 switch (attr
->type
) {
4596 case PERF_TYPE_HARDWARE
:
4597 case PERF_TYPE_HW_CACHE
:
4598 pmu
= hw_perf_event_init(event
);
4601 case PERF_TYPE_SOFTWARE
:
4602 pmu
= sw_perf_event_init(event
);
4605 case PERF_TYPE_TRACEPOINT
:
4606 pmu
= tp_perf_event_init(event
);
4609 case PERF_TYPE_BREAKPOINT
:
4610 pmu
= bp_perf_event_init(event
);
4621 else if (IS_ERR(pmu
))
4626 put_pid_ns(event
->ns
);
4628 return ERR_PTR(err
);
4633 if (!event
->parent
) {
4634 atomic_inc(&nr_events
);
4635 if (event
->attr
.mmap
)
4636 atomic_inc(&nr_mmap_events
);
4637 if (event
->attr
.comm
)
4638 atomic_inc(&nr_comm_events
);
4639 if (event
->attr
.task
)
4640 atomic_inc(&nr_task_events
);
4646 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
4647 struct perf_event_attr
*attr
)
4652 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
4656 * zero the full structure, so that a short copy will be nice.
4658 memset(attr
, 0, sizeof(*attr
));
4660 ret
= get_user(size
, &uattr
->size
);
4664 if (size
> PAGE_SIZE
) /* silly large */
4667 if (!size
) /* abi compat */
4668 size
= PERF_ATTR_SIZE_VER0
;
4670 if (size
< PERF_ATTR_SIZE_VER0
)
4674 * If we're handed a bigger struct than we know of,
4675 * ensure all the unknown bits are 0 - i.e. new
4676 * user-space does not rely on any kernel feature
4677 * extensions we dont know about yet.
4679 if (size
> sizeof(*attr
)) {
4680 unsigned char __user
*addr
;
4681 unsigned char __user
*end
;
4684 addr
= (void __user
*)uattr
+ sizeof(*attr
);
4685 end
= (void __user
*)uattr
+ size
;
4687 for (; addr
< end
; addr
++) {
4688 ret
= get_user(val
, addr
);
4694 size
= sizeof(*attr
);
4697 ret
= copy_from_user(attr
, uattr
, size
);
4702 * If the type exists, the corresponding creation will verify
4705 if (attr
->type
>= PERF_TYPE_MAX
)
4708 if (attr
->__reserved_1
)
4711 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
4714 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
4721 put_user(sizeof(*attr
), &uattr
->size
);
4726 static int perf_event_set_output(struct perf_event
*event
, int output_fd
)
4728 struct perf_event
*output_event
= NULL
;
4729 struct file
*output_file
= NULL
;
4730 struct perf_event
*old_output
;
4731 int fput_needed
= 0;
4737 output_file
= fget_light(output_fd
, &fput_needed
);
4741 if (output_file
->f_op
!= &perf_fops
)
4744 output_event
= output_file
->private_data
;
4746 /* Don't chain output fds */
4747 if (output_event
->output
)
4750 /* Don't set an output fd when we already have an output channel */
4754 atomic_long_inc(&output_file
->f_count
);
4757 mutex_lock(&event
->mmap_mutex
);
4758 old_output
= event
->output
;
4759 rcu_assign_pointer(event
->output
, output_event
);
4760 mutex_unlock(&event
->mmap_mutex
);
4764 * we need to make sure no existing perf_output_*()
4765 * is still referencing this event.
4768 fput(old_output
->filp
);
4773 fput_light(output_file
, fput_needed
);
4778 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4780 * @attr_uptr: event_id type attributes for monitoring/sampling
4783 * @group_fd: group leader event fd
4785 SYSCALL_DEFINE5(perf_event_open
,
4786 struct perf_event_attr __user
*, attr_uptr
,
4787 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
4789 struct perf_event
*event
, *group_leader
;
4790 struct perf_event_attr attr
;
4791 struct perf_event_context
*ctx
;
4792 struct file
*event_file
= NULL
;
4793 struct file
*group_file
= NULL
;
4794 int fput_needed
= 0;
4795 int fput_needed2
= 0;
4798 /* for future expandability... */
4799 if (flags
& ~(PERF_FLAG_FD_NO_GROUP
| PERF_FLAG_FD_OUTPUT
))
4802 err
= perf_copy_attr(attr_uptr
, &attr
);
4806 if (!attr
.exclude_kernel
) {
4807 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
4812 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
4817 * Get the target context (task or percpu):
4819 ctx
= find_get_context(pid
, cpu
);
4821 return PTR_ERR(ctx
);
4824 * Look up the group leader (we will attach this event to it):
4826 group_leader
= NULL
;
4827 if (group_fd
!= -1 && !(flags
& PERF_FLAG_FD_NO_GROUP
)) {
4829 group_file
= fget_light(group_fd
, &fput_needed
);
4831 goto err_put_context
;
4832 if (group_file
->f_op
!= &perf_fops
)
4833 goto err_put_context
;
4835 group_leader
= group_file
->private_data
;
4837 * Do not allow a recursive hierarchy (this new sibling
4838 * becoming part of another group-sibling):
4840 if (group_leader
->group_leader
!= group_leader
)
4841 goto err_put_context
;
4843 * Do not allow to attach to a group in a different
4844 * task or CPU context:
4846 if (group_leader
->ctx
!= ctx
)
4847 goto err_put_context
;
4849 * Only a group leader can be exclusive or pinned
4851 if (attr
.exclusive
|| attr
.pinned
)
4852 goto err_put_context
;
4855 event
= perf_event_alloc(&attr
, cpu
, ctx
, group_leader
,
4856 NULL
, NULL
, GFP_KERNEL
);
4857 err
= PTR_ERR(event
);
4859 goto err_put_context
;
4861 err
= anon_inode_getfd("[perf_event]", &perf_fops
, event
, O_RDWR
);
4863 goto err_free_put_context
;
4865 event_file
= fget_light(err
, &fput_needed2
);
4867 goto err_free_put_context
;
4869 if (flags
& PERF_FLAG_FD_OUTPUT
) {
4870 err
= perf_event_set_output(event
, group_fd
);
4872 goto err_fput_free_put_context
;
4875 event
->filp
= event_file
;
4876 WARN_ON_ONCE(ctx
->parent_ctx
);
4877 mutex_lock(&ctx
->mutex
);
4878 perf_install_in_context(ctx
, event
, cpu
);
4880 mutex_unlock(&ctx
->mutex
);
4882 event
->owner
= current
;
4883 get_task_struct(current
);
4884 mutex_lock(¤t
->perf_event_mutex
);
4885 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
4886 mutex_unlock(¤t
->perf_event_mutex
);
4888 err_fput_free_put_context
:
4889 fput_light(event_file
, fput_needed2
);
4891 err_free_put_context
:
4899 fput_light(group_file
, fput_needed
);
4905 * perf_event_create_kernel_counter
4907 * @attr: attributes of the counter to create
4908 * @cpu: cpu in which the counter is bound
4909 * @pid: task to profile
4912 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
4914 perf_overflow_handler_t overflow_handler
)
4916 struct perf_event
*event
;
4917 struct perf_event_context
*ctx
;
4921 * Get the target context (task or percpu):
4924 ctx
= find_get_context(pid
, cpu
);
4930 event
= perf_event_alloc(attr
, cpu
, ctx
, NULL
,
4931 NULL
, overflow_handler
, GFP_KERNEL
);
4932 if (IS_ERR(event
)) {
4933 err
= PTR_ERR(event
);
4934 goto err_put_context
;
4938 WARN_ON_ONCE(ctx
->parent_ctx
);
4939 mutex_lock(&ctx
->mutex
);
4940 perf_install_in_context(ctx
, event
, cpu
);
4942 mutex_unlock(&ctx
->mutex
);
4944 event
->owner
= current
;
4945 get_task_struct(current
);
4946 mutex_lock(¤t
->perf_event_mutex
);
4947 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
4948 mutex_unlock(¤t
->perf_event_mutex
);
4955 return ERR_PTR(err
);
4957 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
4960 * inherit a event from parent task to child task:
4962 static struct perf_event
*
4963 inherit_event(struct perf_event
*parent_event
,
4964 struct task_struct
*parent
,
4965 struct perf_event_context
*parent_ctx
,
4966 struct task_struct
*child
,
4967 struct perf_event
*group_leader
,
4968 struct perf_event_context
*child_ctx
)
4970 struct perf_event
*child_event
;
4973 * Instead of creating recursive hierarchies of events,
4974 * we link inherited events back to the original parent,
4975 * which has a filp for sure, which we use as the reference
4978 if (parent_event
->parent
)
4979 parent_event
= parent_event
->parent
;
4981 child_event
= perf_event_alloc(&parent_event
->attr
,
4982 parent_event
->cpu
, child_ctx
,
4983 group_leader
, parent_event
,
4985 if (IS_ERR(child_event
))
4990 * Make the child state follow the state of the parent event,
4991 * not its attr.disabled bit. We hold the parent's mutex,
4992 * so we won't race with perf_event_{en, dis}able_family.
4994 if (parent_event
->state
>= PERF_EVENT_STATE_INACTIVE
)
4995 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
4997 child_event
->state
= PERF_EVENT_STATE_OFF
;
4999 if (parent_event
->attr
.freq
) {
5000 u64 sample_period
= parent_event
->hw
.sample_period
;
5001 struct hw_perf_event
*hwc
= &child_event
->hw
;
5003 hwc
->sample_period
= sample_period
;
5004 hwc
->last_period
= sample_period
;
5006 atomic64_set(&hwc
->period_left
, sample_period
);
5009 child_event
->overflow_handler
= parent_event
->overflow_handler
;
5012 * Link it up in the child's context:
5014 add_event_to_ctx(child_event
, child_ctx
);
5017 * Get a reference to the parent filp - we will fput it
5018 * when the child event exits. This is safe to do because
5019 * we are in the parent and we know that the filp still
5020 * exists and has a nonzero count:
5022 atomic_long_inc(&parent_event
->filp
->f_count
);
5025 * Link this into the parent event's child list
5027 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
5028 mutex_lock(&parent_event
->child_mutex
);
5029 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
5030 mutex_unlock(&parent_event
->child_mutex
);
5035 static int inherit_group(struct perf_event
*parent_event
,
5036 struct task_struct
*parent
,
5037 struct perf_event_context
*parent_ctx
,
5038 struct task_struct
*child
,
5039 struct perf_event_context
*child_ctx
)
5041 struct perf_event
*leader
;
5042 struct perf_event
*sub
;
5043 struct perf_event
*child_ctr
;
5045 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
5046 child
, NULL
, child_ctx
);
5048 return PTR_ERR(leader
);
5049 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
5050 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
5051 child
, leader
, child_ctx
);
5052 if (IS_ERR(child_ctr
))
5053 return PTR_ERR(child_ctr
);
5058 static void sync_child_event(struct perf_event
*child_event
,
5059 struct task_struct
*child
)
5061 struct perf_event
*parent_event
= child_event
->parent
;
5064 if (child_event
->attr
.inherit_stat
)
5065 perf_event_read_event(child_event
, child
);
5067 child_val
= atomic64_read(&child_event
->count
);
5070 * Add back the child's count to the parent's count:
5072 atomic64_add(child_val
, &parent_event
->count
);
5073 atomic64_add(child_event
->total_time_enabled
,
5074 &parent_event
->child_total_time_enabled
);
5075 atomic64_add(child_event
->total_time_running
,
5076 &parent_event
->child_total_time_running
);
5079 * Remove this event from the parent's list
5081 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
5082 mutex_lock(&parent_event
->child_mutex
);
5083 list_del_init(&child_event
->child_list
);
5084 mutex_unlock(&parent_event
->child_mutex
);
5087 * Release the parent event, if this was the last
5090 fput(parent_event
->filp
);
5094 __perf_event_exit_task(struct perf_event
*child_event
,
5095 struct perf_event_context
*child_ctx
,
5096 struct task_struct
*child
)
5098 struct perf_event
*parent_event
;
5100 perf_event_remove_from_context(child_event
);
5102 parent_event
= child_event
->parent
;
5104 * It can happen that parent exits first, and has events
5105 * that are still around due to the child reference. These
5106 * events need to be zapped - but otherwise linger.
5109 sync_child_event(child_event
, child
);
5110 free_event(child_event
);
5115 * When a child task exits, feed back event values to parent events.
5117 void perf_event_exit_task(struct task_struct
*child
)
5119 struct perf_event
*child_event
, *tmp
;
5120 struct perf_event_context
*child_ctx
;
5121 unsigned long flags
;
5123 if (likely(!child
->perf_event_ctxp
)) {
5124 perf_event_task(child
, NULL
, 0);
5128 local_irq_save(flags
);
5130 * We can't reschedule here because interrupts are disabled,
5131 * and either child is current or it is a task that can't be
5132 * scheduled, so we are now safe from rescheduling changing
5135 child_ctx
= child
->perf_event_ctxp
;
5136 __perf_event_task_sched_out(child_ctx
);
5139 * Take the context lock here so that if find_get_context is
5140 * reading child->perf_event_ctxp, we wait until it has
5141 * incremented the context's refcount before we do put_ctx below.
5143 raw_spin_lock(&child_ctx
->lock
);
5144 child
->perf_event_ctxp
= NULL
;
5146 * If this context is a clone; unclone it so it can't get
5147 * swapped to another process while we're removing all
5148 * the events from it.
5150 unclone_ctx(child_ctx
);
5151 update_context_time(child_ctx
);
5152 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
5155 * Report the task dead after unscheduling the events so that we
5156 * won't get any samples after PERF_RECORD_EXIT. We can however still
5157 * get a few PERF_RECORD_READ events.
5159 perf_event_task(child
, child_ctx
, 0);
5162 * We can recurse on the same lock type through:
5164 * __perf_event_exit_task()
5165 * sync_child_event()
5166 * fput(parent_event->filp)
5168 * mutex_lock(&ctx->mutex)
5170 * But since its the parent context it won't be the same instance.
5172 mutex_lock_nested(&child_ctx
->mutex
, SINGLE_DEPTH_NESTING
);
5175 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->pinned_groups
,
5177 __perf_event_exit_task(child_event
, child_ctx
, child
);
5179 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->flexible_groups
,
5181 __perf_event_exit_task(child_event
, child_ctx
, child
);
5184 * If the last event was a group event, it will have appended all
5185 * its siblings to the list, but we obtained 'tmp' before that which
5186 * will still point to the list head terminating the iteration.
5188 if (!list_empty(&child_ctx
->pinned_groups
) ||
5189 !list_empty(&child_ctx
->flexible_groups
))
5192 mutex_unlock(&child_ctx
->mutex
);
5197 static void perf_free_event(struct perf_event
*event
,
5198 struct perf_event_context
*ctx
)
5200 struct perf_event
*parent
= event
->parent
;
5202 if (WARN_ON_ONCE(!parent
))
5205 mutex_lock(&parent
->child_mutex
);
5206 list_del_init(&event
->child_list
);
5207 mutex_unlock(&parent
->child_mutex
);
5211 list_del_event(event
, ctx
);
5216 * free an unexposed, unused context as created by inheritance by
5217 * init_task below, used by fork() in case of fail.
5219 void perf_event_free_task(struct task_struct
*task
)
5221 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
5222 struct perf_event
*event
, *tmp
;
5227 mutex_lock(&ctx
->mutex
);
5229 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
, group_entry
)
5230 perf_free_event(event
, ctx
);
5232 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
5234 perf_free_event(event
, ctx
);
5236 if (!list_empty(&ctx
->pinned_groups
) ||
5237 !list_empty(&ctx
->flexible_groups
))
5240 mutex_unlock(&ctx
->mutex
);
5246 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
5247 struct perf_event_context
*parent_ctx
,
5248 struct task_struct
*child
,
5252 struct perf_event_context
*child_ctx
= child
->perf_event_ctxp
;
5254 if (!event
->attr
.inherit
) {
5261 * This is executed from the parent task context, so
5262 * inherit events that have been marked for cloning.
5263 * First allocate and initialize a context for the
5267 child_ctx
= kzalloc(sizeof(struct perf_event_context
),
5272 __perf_event_init_context(child_ctx
, child
);
5273 child
->perf_event_ctxp
= child_ctx
;
5274 get_task_struct(child
);
5277 ret
= inherit_group(event
, parent
, parent_ctx
,
5288 * Initialize the perf_event context in task_struct
5290 int perf_event_init_task(struct task_struct
*child
)
5292 struct perf_event_context
*child_ctx
, *parent_ctx
;
5293 struct perf_event_context
*cloned_ctx
;
5294 struct perf_event
*event
;
5295 struct task_struct
*parent
= current
;
5296 int inherited_all
= 1;
5299 child
->perf_event_ctxp
= NULL
;
5301 mutex_init(&child
->perf_event_mutex
);
5302 INIT_LIST_HEAD(&child
->perf_event_list
);
5304 if (likely(!parent
->perf_event_ctxp
))
5308 * If the parent's context is a clone, pin it so it won't get
5311 parent_ctx
= perf_pin_task_context(parent
);
5314 * No need to check if parent_ctx != NULL here; since we saw
5315 * it non-NULL earlier, the only reason for it to become NULL
5316 * is if we exit, and since we're currently in the middle of
5317 * a fork we can't be exiting at the same time.
5321 * Lock the parent list. No need to lock the child - not PID
5322 * hashed yet and not running, so nobody can access it.
5324 mutex_lock(&parent_ctx
->mutex
);
5327 * We dont have to disable NMIs - we are only looking at
5328 * the list, not manipulating it:
5330 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
5331 ret
= inherit_task_group(event
, parent
, parent_ctx
, child
,
5337 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
5338 ret
= inherit_task_group(event
, parent
, parent_ctx
, child
,
5344 child_ctx
= child
->perf_event_ctxp
;
5346 if (child_ctx
&& inherited_all
) {
5348 * Mark the child context as a clone of the parent
5349 * context, or of whatever the parent is a clone of.
5350 * Note that if the parent is a clone, it could get
5351 * uncloned at any point, but that doesn't matter
5352 * because the list of events and the generation
5353 * count can't have changed since we took the mutex.
5355 cloned_ctx
= rcu_dereference(parent_ctx
->parent_ctx
);
5357 child_ctx
->parent_ctx
= cloned_ctx
;
5358 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
5360 child_ctx
->parent_ctx
= parent_ctx
;
5361 child_ctx
->parent_gen
= parent_ctx
->generation
;
5363 get_ctx(child_ctx
->parent_ctx
);
5366 mutex_unlock(&parent_ctx
->mutex
);
5368 perf_unpin_context(parent_ctx
);
5373 static void __init
perf_event_init_all_cpus(void)
5376 struct perf_cpu_context
*cpuctx
;
5378 for_each_possible_cpu(cpu
) {
5379 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5380 __perf_event_init_context(&cpuctx
->ctx
, NULL
);
5384 static void __cpuinit
perf_event_init_cpu(int cpu
)
5386 struct perf_cpu_context
*cpuctx
;
5388 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5390 spin_lock(&perf_resource_lock
);
5391 cpuctx
->max_pertask
= perf_max_events
- perf_reserved_percpu
;
5392 spin_unlock(&perf_resource_lock
);
5395 #ifdef CONFIG_HOTPLUG_CPU
5396 static void __perf_event_exit_cpu(void *info
)
5398 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
5399 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
5400 struct perf_event
*event
, *tmp
;
5402 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
, group_entry
)
5403 __perf_event_remove_from_context(event
);
5404 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
, group_entry
)
5405 __perf_event_remove_from_context(event
);
5407 static void perf_event_exit_cpu(int cpu
)
5409 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5410 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
5412 mutex_lock(&ctx
->mutex
);
5413 smp_call_function_single(cpu
, __perf_event_exit_cpu
, NULL
, 1);
5414 mutex_unlock(&ctx
->mutex
);
5417 static inline void perf_event_exit_cpu(int cpu
) { }
5420 static int __cpuinit
5421 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
5423 unsigned int cpu
= (long)hcpu
;
5427 case CPU_UP_PREPARE
:
5428 case CPU_UP_PREPARE_FROZEN
:
5429 perf_event_init_cpu(cpu
);
5432 case CPU_DOWN_PREPARE
:
5433 case CPU_DOWN_PREPARE_FROZEN
:
5434 perf_event_exit_cpu(cpu
);
5445 * This has to have a higher priority than migration_notifier in sched.c.
5447 static struct notifier_block __cpuinitdata perf_cpu_nb
= {
5448 .notifier_call
= perf_cpu_notify
,
5452 void __init
perf_event_init(void)
5454 perf_event_init_all_cpus();
5455 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_UP_PREPARE
,
5456 (void *)(long)smp_processor_id());
5457 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_ONLINE
,
5458 (void *)(long)smp_processor_id());
5459 register_cpu_notifier(&perf_cpu_nb
);
5462 static ssize_t
perf_show_reserve_percpu(struct sysdev_class
*class,
5463 struct sysdev_class_attribute
*attr
,
5466 return sprintf(buf
, "%d\n", perf_reserved_percpu
);
5470 perf_set_reserve_percpu(struct sysdev_class
*class,
5471 struct sysdev_class_attribute
*attr
,
5475 struct perf_cpu_context
*cpuctx
;
5479 err
= strict_strtoul(buf
, 10, &val
);
5482 if (val
> perf_max_events
)
5485 spin_lock(&perf_resource_lock
);
5486 perf_reserved_percpu
= val
;
5487 for_each_online_cpu(cpu
) {
5488 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5489 raw_spin_lock_irq(&cpuctx
->ctx
.lock
);
5490 mpt
= min(perf_max_events
- cpuctx
->ctx
.nr_events
,
5491 perf_max_events
- perf_reserved_percpu
);
5492 cpuctx
->max_pertask
= mpt
;
5493 raw_spin_unlock_irq(&cpuctx
->ctx
.lock
);
5495 spin_unlock(&perf_resource_lock
);
5500 static ssize_t
perf_show_overcommit(struct sysdev_class
*class,
5501 struct sysdev_class_attribute
*attr
,
5504 return sprintf(buf
, "%d\n", perf_overcommit
);
5508 perf_set_overcommit(struct sysdev_class
*class,
5509 struct sysdev_class_attribute
*attr
,
5510 const char *buf
, size_t count
)
5515 err
= strict_strtoul(buf
, 10, &val
);
5521 spin_lock(&perf_resource_lock
);
5522 perf_overcommit
= val
;
5523 spin_unlock(&perf_resource_lock
);
5528 static SYSDEV_CLASS_ATTR(
5531 perf_show_reserve_percpu
,
5532 perf_set_reserve_percpu
5535 static SYSDEV_CLASS_ATTR(
5538 perf_show_overcommit
,
5542 static struct attribute
*perfclass_attrs
[] = {
5543 &attr_reserve_percpu
.attr
,
5544 &attr_overcommit
.attr
,
5548 static struct attribute_group perfclass_attr_group
= {
5549 .attrs
= perfclass_attrs
,
5550 .name
= "perf_events",
5553 static int __init
perf_event_sysfs_init(void)
5555 return sysfs_create_group(&cpu_sysdev_class
.kset
.kobj
,
5556 &perfclass_attr_group
);
5558 device_initcall(perf_event_sysfs_init
);