mm: extended batches for generic mmu_gather
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memory.c
blob17193d74f30284a66269da7bb8ec65901abadfd4
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
68 #include "internal.h"
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
79 unsigned long num_physpages;
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
87 void * high_memory;
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
93 * Randomize the address space (stacks, mmaps, brk, etc.).
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
101 #else
103 #endif
105 static int __init disable_randmaps(char *s)
107 randomize_va_space = 0;
108 return 1;
110 __setup("norandmaps", disable_randmaps);
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 static int __init init_zero_pfn(void)
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
123 core_initcall(init_zero_pfn);
126 #if defined(SPLIT_RSS_COUNTING)
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
130 int i;
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (task->rss_stat.count[i]) {
134 add_mm_counter(mm, i, task->rss_stat.count[i]);
135 task->rss_stat.count[i] = 0;
138 task->rss_stat.events = 0;
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
143 struct task_struct *task = current;
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 __sync_task_rss_stat(task, task->mm);
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
165 long val = 0;
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
171 val = atomic_long_read(&mm->rss_stat.count[member]);
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
176 if (val < 0)
177 return 0;
178 return (unsigned long)val;
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
183 __sync_task_rss_stat(task, mm);
185 #else
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
190 static void check_sync_rss_stat(struct task_struct *task)
194 #endif
196 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
199 * See the comment near struct mmu_table_batch.
202 static void tlb_remove_table_smp_sync(void *arg)
204 /* Simply deliver the interrupt */
207 static void tlb_remove_table_one(void *table)
210 * This isn't an RCU grace period and hence the page-tables cannot be
211 * assumed to be actually RCU-freed.
213 * It is however sufficient for software page-table walkers that rely on
214 * IRQ disabling. See the comment near struct mmu_table_batch.
216 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
217 __tlb_remove_table(table);
220 static void tlb_remove_table_rcu(struct rcu_head *head)
222 struct mmu_table_batch *batch;
223 int i;
225 batch = container_of(head, struct mmu_table_batch, rcu);
227 for (i = 0; i < batch->nr; i++)
228 __tlb_remove_table(batch->tables[i]);
230 free_page((unsigned long)batch);
233 void tlb_table_flush(struct mmu_gather *tlb)
235 struct mmu_table_batch **batch = &tlb->batch;
237 if (*batch) {
238 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
239 *batch = NULL;
243 void tlb_remove_table(struct mmu_gather *tlb, void *table)
245 struct mmu_table_batch **batch = &tlb->batch;
247 tlb->need_flush = 1;
250 * When there's less then two users of this mm there cannot be a
251 * concurrent page-table walk.
253 if (atomic_read(&tlb->mm->mm_users) < 2) {
254 __tlb_remove_table(table);
255 return;
258 if (*batch == NULL) {
259 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
260 if (*batch == NULL) {
261 tlb_remove_table_one(table);
262 return;
264 (*batch)->nr = 0;
266 (*batch)->tables[(*batch)->nr++] = table;
267 if ((*batch)->nr == MAX_TABLE_BATCH)
268 tlb_table_flush(tlb);
271 #endif
274 * If a p?d_bad entry is found while walking page tables, report
275 * the error, before resetting entry to p?d_none. Usually (but
276 * very seldom) called out from the p?d_none_or_clear_bad macros.
279 void pgd_clear_bad(pgd_t *pgd)
281 pgd_ERROR(*pgd);
282 pgd_clear(pgd);
285 void pud_clear_bad(pud_t *pud)
287 pud_ERROR(*pud);
288 pud_clear(pud);
291 void pmd_clear_bad(pmd_t *pmd)
293 pmd_ERROR(*pmd);
294 pmd_clear(pmd);
298 * Note: this doesn't free the actual pages themselves. That
299 * has been handled earlier when unmapping all the memory regions.
301 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
302 unsigned long addr)
304 pgtable_t token = pmd_pgtable(*pmd);
305 pmd_clear(pmd);
306 pte_free_tlb(tlb, token, addr);
307 tlb->mm->nr_ptes--;
310 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
311 unsigned long addr, unsigned long end,
312 unsigned long floor, unsigned long ceiling)
314 pmd_t *pmd;
315 unsigned long next;
316 unsigned long start;
318 start = addr;
319 pmd = pmd_offset(pud, addr);
320 do {
321 next = pmd_addr_end(addr, end);
322 if (pmd_none_or_clear_bad(pmd))
323 continue;
324 free_pte_range(tlb, pmd, addr);
325 } while (pmd++, addr = next, addr != end);
327 start &= PUD_MASK;
328 if (start < floor)
329 return;
330 if (ceiling) {
331 ceiling &= PUD_MASK;
332 if (!ceiling)
333 return;
335 if (end - 1 > ceiling - 1)
336 return;
338 pmd = pmd_offset(pud, start);
339 pud_clear(pud);
340 pmd_free_tlb(tlb, pmd, start);
343 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
344 unsigned long addr, unsigned long end,
345 unsigned long floor, unsigned long ceiling)
347 pud_t *pud;
348 unsigned long next;
349 unsigned long start;
351 start = addr;
352 pud = pud_offset(pgd, addr);
353 do {
354 next = pud_addr_end(addr, end);
355 if (pud_none_or_clear_bad(pud))
356 continue;
357 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
358 } while (pud++, addr = next, addr != end);
360 start &= PGDIR_MASK;
361 if (start < floor)
362 return;
363 if (ceiling) {
364 ceiling &= PGDIR_MASK;
365 if (!ceiling)
366 return;
368 if (end - 1 > ceiling - 1)
369 return;
371 pud = pud_offset(pgd, start);
372 pgd_clear(pgd);
373 pud_free_tlb(tlb, pud, start);
377 * This function frees user-level page tables of a process.
379 * Must be called with pagetable lock held.
381 void free_pgd_range(struct mmu_gather *tlb,
382 unsigned long addr, unsigned long end,
383 unsigned long floor, unsigned long ceiling)
385 pgd_t *pgd;
386 unsigned long next;
389 * The next few lines have given us lots of grief...
391 * Why are we testing PMD* at this top level? Because often
392 * there will be no work to do at all, and we'd prefer not to
393 * go all the way down to the bottom just to discover that.
395 * Why all these "- 1"s? Because 0 represents both the bottom
396 * of the address space and the top of it (using -1 for the
397 * top wouldn't help much: the masks would do the wrong thing).
398 * The rule is that addr 0 and floor 0 refer to the bottom of
399 * the address space, but end 0 and ceiling 0 refer to the top
400 * Comparisons need to use "end - 1" and "ceiling - 1" (though
401 * that end 0 case should be mythical).
403 * Wherever addr is brought up or ceiling brought down, we must
404 * be careful to reject "the opposite 0" before it confuses the
405 * subsequent tests. But what about where end is brought down
406 * by PMD_SIZE below? no, end can't go down to 0 there.
408 * Whereas we round start (addr) and ceiling down, by different
409 * masks at different levels, in order to test whether a table
410 * now has no other vmas using it, so can be freed, we don't
411 * bother to round floor or end up - the tests don't need that.
414 addr &= PMD_MASK;
415 if (addr < floor) {
416 addr += PMD_SIZE;
417 if (!addr)
418 return;
420 if (ceiling) {
421 ceiling &= PMD_MASK;
422 if (!ceiling)
423 return;
425 if (end - 1 > ceiling - 1)
426 end -= PMD_SIZE;
427 if (addr > end - 1)
428 return;
430 pgd = pgd_offset(tlb->mm, addr);
431 do {
432 next = pgd_addr_end(addr, end);
433 if (pgd_none_or_clear_bad(pgd))
434 continue;
435 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
436 } while (pgd++, addr = next, addr != end);
439 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
440 unsigned long floor, unsigned long ceiling)
442 while (vma) {
443 struct vm_area_struct *next = vma->vm_next;
444 unsigned long addr = vma->vm_start;
447 * Hide vma from rmap and truncate_pagecache before freeing
448 * pgtables
450 unlink_anon_vmas(vma);
451 unlink_file_vma(vma);
453 if (is_vm_hugetlb_page(vma)) {
454 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
455 floor, next? next->vm_start: ceiling);
456 } else {
458 * Optimization: gather nearby vmas into one call down
460 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
461 && !is_vm_hugetlb_page(next)) {
462 vma = next;
463 next = vma->vm_next;
464 unlink_anon_vmas(vma);
465 unlink_file_vma(vma);
467 free_pgd_range(tlb, addr, vma->vm_end,
468 floor, next? next->vm_start: ceiling);
470 vma = next;
474 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
475 pmd_t *pmd, unsigned long address)
477 pgtable_t new = pte_alloc_one(mm, address);
478 int wait_split_huge_page;
479 if (!new)
480 return -ENOMEM;
483 * Ensure all pte setup (eg. pte page lock and page clearing) are
484 * visible before the pte is made visible to other CPUs by being
485 * put into page tables.
487 * The other side of the story is the pointer chasing in the page
488 * table walking code (when walking the page table without locking;
489 * ie. most of the time). Fortunately, these data accesses consist
490 * of a chain of data-dependent loads, meaning most CPUs (alpha
491 * being the notable exception) will already guarantee loads are
492 * seen in-order. See the alpha page table accessors for the
493 * smp_read_barrier_depends() barriers in page table walking code.
495 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
497 spin_lock(&mm->page_table_lock);
498 wait_split_huge_page = 0;
499 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
500 mm->nr_ptes++;
501 pmd_populate(mm, pmd, new);
502 new = NULL;
503 } else if (unlikely(pmd_trans_splitting(*pmd)))
504 wait_split_huge_page = 1;
505 spin_unlock(&mm->page_table_lock);
506 if (new)
507 pte_free(mm, new);
508 if (wait_split_huge_page)
509 wait_split_huge_page(vma->anon_vma, pmd);
510 return 0;
513 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
515 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
516 if (!new)
517 return -ENOMEM;
519 smp_wmb(); /* See comment in __pte_alloc */
521 spin_lock(&init_mm.page_table_lock);
522 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
523 pmd_populate_kernel(&init_mm, pmd, new);
524 new = NULL;
525 } else
526 VM_BUG_ON(pmd_trans_splitting(*pmd));
527 spin_unlock(&init_mm.page_table_lock);
528 if (new)
529 pte_free_kernel(&init_mm, new);
530 return 0;
533 static inline void init_rss_vec(int *rss)
535 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
538 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
540 int i;
542 if (current->mm == mm)
543 sync_mm_rss(current, mm);
544 for (i = 0; i < NR_MM_COUNTERS; i++)
545 if (rss[i])
546 add_mm_counter(mm, i, rss[i]);
550 * This function is called to print an error when a bad pte
551 * is found. For example, we might have a PFN-mapped pte in
552 * a region that doesn't allow it.
554 * The calling function must still handle the error.
556 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
557 pte_t pte, struct page *page)
559 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
560 pud_t *pud = pud_offset(pgd, addr);
561 pmd_t *pmd = pmd_offset(pud, addr);
562 struct address_space *mapping;
563 pgoff_t index;
564 static unsigned long resume;
565 static unsigned long nr_shown;
566 static unsigned long nr_unshown;
569 * Allow a burst of 60 reports, then keep quiet for that minute;
570 * or allow a steady drip of one report per second.
572 if (nr_shown == 60) {
573 if (time_before(jiffies, resume)) {
574 nr_unshown++;
575 return;
577 if (nr_unshown) {
578 printk(KERN_ALERT
579 "BUG: Bad page map: %lu messages suppressed\n",
580 nr_unshown);
581 nr_unshown = 0;
583 nr_shown = 0;
585 if (nr_shown++ == 0)
586 resume = jiffies + 60 * HZ;
588 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
589 index = linear_page_index(vma, addr);
591 printk(KERN_ALERT
592 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
593 current->comm,
594 (long long)pte_val(pte), (long long)pmd_val(*pmd));
595 if (page)
596 dump_page(page);
597 printk(KERN_ALERT
598 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
599 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
601 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
603 if (vma->vm_ops)
604 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
605 (unsigned long)vma->vm_ops->fault);
606 if (vma->vm_file && vma->vm_file->f_op)
607 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
608 (unsigned long)vma->vm_file->f_op->mmap);
609 dump_stack();
610 add_taint(TAINT_BAD_PAGE);
613 static inline int is_cow_mapping(unsigned int flags)
615 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
618 #ifndef is_zero_pfn
619 static inline int is_zero_pfn(unsigned long pfn)
621 return pfn == zero_pfn;
623 #endif
625 #ifndef my_zero_pfn
626 static inline unsigned long my_zero_pfn(unsigned long addr)
628 return zero_pfn;
630 #endif
633 * vm_normal_page -- This function gets the "struct page" associated with a pte.
635 * "Special" mappings do not wish to be associated with a "struct page" (either
636 * it doesn't exist, or it exists but they don't want to touch it). In this
637 * case, NULL is returned here. "Normal" mappings do have a struct page.
639 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
640 * pte bit, in which case this function is trivial. Secondly, an architecture
641 * may not have a spare pte bit, which requires a more complicated scheme,
642 * described below.
644 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
645 * special mapping (even if there are underlying and valid "struct pages").
646 * COWed pages of a VM_PFNMAP are always normal.
648 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
649 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
650 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
651 * mapping will always honor the rule
653 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
655 * And for normal mappings this is false.
657 * This restricts such mappings to be a linear translation from virtual address
658 * to pfn. To get around this restriction, we allow arbitrary mappings so long
659 * as the vma is not a COW mapping; in that case, we know that all ptes are
660 * special (because none can have been COWed).
663 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
665 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
666 * page" backing, however the difference is that _all_ pages with a struct
667 * page (that is, those where pfn_valid is true) are refcounted and considered
668 * normal pages by the VM. The disadvantage is that pages are refcounted
669 * (which can be slower and simply not an option for some PFNMAP users). The
670 * advantage is that we don't have to follow the strict linearity rule of
671 * PFNMAP mappings in order to support COWable mappings.
674 #ifdef __HAVE_ARCH_PTE_SPECIAL
675 # define HAVE_PTE_SPECIAL 1
676 #else
677 # define HAVE_PTE_SPECIAL 0
678 #endif
679 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
680 pte_t pte)
682 unsigned long pfn = pte_pfn(pte);
684 if (HAVE_PTE_SPECIAL) {
685 if (likely(!pte_special(pte)))
686 goto check_pfn;
687 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
688 return NULL;
689 if (!is_zero_pfn(pfn))
690 print_bad_pte(vma, addr, pte, NULL);
691 return NULL;
694 /* !HAVE_PTE_SPECIAL case follows: */
696 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
697 if (vma->vm_flags & VM_MIXEDMAP) {
698 if (!pfn_valid(pfn))
699 return NULL;
700 goto out;
701 } else {
702 unsigned long off;
703 off = (addr - vma->vm_start) >> PAGE_SHIFT;
704 if (pfn == vma->vm_pgoff + off)
705 return NULL;
706 if (!is_cow_mapping(vma->vm_flags))
707 return NULL;
711 if (is_zero_pfn(pfn))
712 return NULL;
713 check_pfn:
714 if (unlikely(pfn > highest_memmap_pfn)) {
715 print_bad_pte(vma, addr, pte, NULL);
716 return NULL;
720 * NOTE! We still have PageReserved() pages in the page tables.
721 * eg. VDSO mappings can cause them to exist.
723 out:
724 return pfn_to_page(pfn);
728 * copy one vm_area from one task to the other. Assumes the page tables
729 * already present in the new task to be cleared in the whole range
730 * covered by this vma.
733 static inline unsigned long
734 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
735 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
736 unsigned long addr, int *rss)
738 unsigned long vm_flags = vma->vm_flags;
739 pte_t pte = *src_pte;
740 struct page *page;
742 /* pte contains position in swap or file, so copy. */
743 if (unlikely(!pte_present(pte))) {
744 if (!pte_file(pte)) {
745 swp_entry_t entry = pte_to_swp_entry(pte);
747 if (swap_duplicate(entry) < 0)
748 return entry.val;
750 /* make sure dst_mm is on swapoff's mmlist. */
751 if (unlikely(list_empty(&dst_mm->mmlist))) {
752 spin_lock(&mmlist_lock);
753 if (list_empty(&dst_mm->mmlist))
754 list_add(&dst_mm->mmlist,
755 &src_mm->mmlist);
756 spin_unlock(&mmlist_lock);
758 if (likely(!non_swap_entry(entry)))
759 rss[MM_SWAPENTS]++;
760 else if (is_write_migration_entry(entry) &&
761 is_cow_mapping(vm_flags)) {
763 * COW mappings require pages in both parent
764 * and child to be set to read.
766 make_migration_entry_read(&entry);
767 pte = swp_entry_to_pte(entry);
768 set_pte_at(src_mm, addr, src_pte, pte);
771 goto out_set_pte;
775 * If it's a COW mapping, write protect it both
776 * in the parent and the child
778 if (is_cow_mapping(vm_flags)) {
779 ptep_set_wrprotect(src_mm, addr, src_pte);
780 pte = pte_wrprotect(pte);
784 * If it's a shared mapping, mark it clean in
785 * the child
787 if (vm_flags & VM_SHARED)
788 pte = pte_mkclean(pte);
789 pte = pte_mkold(pte);
791 page = vm_normal_page(vma, addr, pte);
792 if (page) {
793 get_page(page);
794 page_dup_rmap(page);
795 if (PageAnon(page))
796 rss[MM_ANONPAGES]++;
797 else
798 rss[MM_FILEPAGES]++;
801 out_set_pte:
802 set_pte_at(dst_mm, addr, dst_pte, pte);
803 return 0;
806 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
807 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
808 unsigned long addr, unsigned long end)
810 pte_t *orig_src_pte, *orig_dst_pte;
811 pte_t *src_pte, *dst_pte;
812 spinlock_t *src_ptl, *dst_ptl;
813 int progress = 0;
814 int rss[NR_MM_COUNTERS];
815 swp_entry_t entry = (swp_entry_t){0};
817 again:
818 init_rss_vec(rss);
820 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
821 if (!dst_pte)
822 return -ENOMEM;
823 src_pte = pte_offset_map(src_pmd, addr);
824 src_ptl = pte_lockptr(src_mm, src_pmd);
825 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
826 orig_src_pte = src_pte;
827 orig_dst_pte = dst_pte;
828 arch_enter_lazy_mmu_mode();
830 do {
832 * We are holding two locks at this point - either of them
833 * could generate latencies in another task on another CPU.
835 if (progress >= 32) {
836 progress = 0;
837 if (need_resched() ||
838 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
839 break;
841 if (pte_none(*src_pte)) {
842 progress++;
843 continue;
845 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
846 vma, addr, rss);
847 if (entry.val)
848 break;
849 progress += 8;
850 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
852 arch_leave_lazy_mmu_mode();
853 spin_unlock(src_ptl);
854 pte_unmap(orig_src_pte);
855 add_mm_rss_vec(dst_mm, rss);
856 pte_unmap_unlock(orig_dst_pte, dst_ptl);
857 cond_resched();
859 if (entry.val) {
860 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
861 return -ENOMEM;
862 progress = 0;
864 if (addr != end)
865 goto again;
866 return 0;
869 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
870 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
871 unsigned long addr, unsigned long end)
873 pmd_t *src_pmd, *dst_pmd;
874 unsigned long next;
876 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
877 if (!dst_pmd)
878 return -ENOMEM;
879 src_pmd = pmd_offset(src_pud, addr);
880 do {
881 next = pmd_addr_end(addr, end);
882 if (pmd_trans_huge(*src_pmd)) {
883 int err;
884 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
885 err = copy_huge_pmd(dst_mm, src_mm,
886 dst_pmd, src_pmd, addr, vma);
887 if (err == -ENOMEM)
888 return -ENOMEM;
889 if (!err)
890 continue;
891 /* fall through */
893 if (pmd_none_or_clear_bad(src_pmd))
894 continue;
895 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
896 vma, addr, next))
897 return -ENOMEM;
898 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
899 return 0;
902 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
903 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
904 unsigned long addr, unsigned long end)
906 pud_t *src_pud, *dst_pud;
907 unsigned long next;
909 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
910 if (!dst_pud)
911 return -ENOMEM;
912 src_pud = pud_offset(src_pgd, addr);
913 do {
914 next = pud_addr_end(addr, end);
915 if (pud_none_or_clear_bad(src_pud))
916 continue;
917 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
918 vma, addr, next))
919 return -ENOMEM;
920 } while (dst_pud++, src_pud++, addr = next, addr != end);
921 return 0;
924 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
925 struct vm_area_struct *vma)
927 pgd_t *src_pgd, *dst_pgd;
928 unsigned long next;
929 unsigned long addr = vma->vm_start;
930 unsigned long end = vma->vm_end;
931 int ret;
934 * Don't copy ptes where a page fault will fill them correctly.
935 * Fork becomes much lighter when there are big shared or private
936 * readonly mappings. The tradeoff is that copy_page_range is more
937 * efficient than faulting.
939 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
940 if (!vma->anon_vma)
941 return 0;
944 if (is_vm_hugetlb_page(vma))
945 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
947 if (unlikely(is_pfn_mapping(vma))) {
949 * We do not free on error cases below as remove_vma
950 * gets called on error from higher level routine
952 ret = track_pfn_vma_copy(vma);
953 if (ret)
954 return ret;
958 * We need to invalidate the secondary MMU mappings only when
959 * there could be a permission downgrade on the ptes of the
960 * parent mm. And a permission downgrade will only happen if
961 * is_cow_mapping() returns true.
963 if (is_cow_mapping(vma->vm_flags))
964 mmu_notifier_invalidate_range_start(src_mm, addr, end);
966 ret = 0;
967 dst_pgd = pgd_offset(dst_mm, addr);
968 src_pgd = pgd_offset(src_mm, addr);
969 do {
970 next = pgd_addr_end(addr, end);
971 if (pgd_none_or_clear_bad(src_pgd))
972 continue;
973 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
974 vma, addr, next))) {
975 ret = -ENOMEM;
976 break;
978 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
980 if (is_cow_mapping(vma->vm_flags))
981 mmu_notifier_invalidate_range_end(src_mm,
982 vma->vm_start, end);
983 return ret;
986 static unsigned long zap_pte_range(struct mmu_gather *tlb,
987 struct vm_area_struct *vma, pmd_t *pmd,
988 unsigned long addr, unsigned long end,
989 long *zap_work, struct zap_details *details)
991 struct mm_struct *mm = tlb->mm;
992 int force_flush = 0;
993 pte_t *pte;
994 spinlock_t *ptl;
995 int rss[NR_MM_COUNTERS];
997 again:
998 init_rss_vec(rss);
999 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1000 arch_enter_lazy_mmu_mode();
1001 do {
1002 pte_t ptent = *pte;
1003 if (pte_none(ptent)) {
1004 (*zap_work)--;
1005 continue;
1008 (*zap_work) -= PAGE_SIZE;
1010 if (pte_present(ptent)) {
1011 struct page *page;
1013 page = vm_normal_page(vma, addr, ptent);
1014 if (unlikely(details) && page) {
1016 * unmap_shared_mapping_pages() wants to
1017 * invalidate cache without truncating:
1018 * unmap shared but keep private pages.
1020 if (details->check_mapping &&
1021 details->check_mapping != page->mapping)
1022 continue;
1024 * Each page->index must be checked when
1025 * invalidating or truncating nonlinear.
1027 if (details->nonlinear_vma &&
1028 (page->index < details->first_index ||
1029 page->index > details->last_index))
1030 continue;
1032 ptent = ptep_get_and_clear_full(mm, addr, pte,
1033 tlb->fullmm);
1034 tlb_remove_tlb_entry(tlb, pte, addr);
1035 if (unlikely(!page))
1036 continue;
1037 if (unlikely(details) && details->nonlinear_vma
1038 && linear_page_index(details->nonlinear_vma,
1039 addr) != page->index)
1040 set_pte_at(mm, addr, pte,
1041 pgoff_to_pte(page->index));
1042 if (PageAnon(page))
1043 rss[MM_ANONPAGES]--;
1044 else {
1045 if (pte_dirty(ptent))
1046 set_page_dirty(page);
1047 if (pte_young(ptent) &&
1048 likely(!VM_SequentialReadHint(vma)))
1049 mark_page_accessed(page);
1050 rss[MM_FILEPAGES]--;
1052 page_remove_rmap(page);
1053 if (unlikely(page_mapcount(page) < 0))
1054 print_bad_pte(vma, addr, ptent, page);
1055 force_flush = !__tlb_remove_page(tlb, page);
1056 if (force_flush)
1057 break;
1058 continue;
1061 * If details->check_mapping, we leave swap entries;
1062 * if details->nonlinear_vma, we leave file entries.
1064 if (unlikely(details))
1065 continue;
1066 if (pte_file(ptent)) {
1067 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1068 print_bad_pte(vma, addr, ptent, NULL);
1069 } else {
1070 swp_entry_t entry = pte_to_swp_entry(ptent);
1072 if (!non_swap_entry(entry))
1073 rss[MM_SWAPENTS]--;
1074 if (unlikely(!free_swap_and_cache(entry)))
1075 print_bad_pte(vma, addr, ptent, NULL);
1077 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1078 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
1080 add_mm_rss_vec(mm, rss);
1081 arch_leave_lazy_mmu_mode();
1082 pte_unmap_unlock(pte - 1, ptl);
1085 * mmu_gather ran out of room to batch pages, we break out of
1086 * the PTE lock to avoid doing the potential expensive TLB invalidate
1087 * and page-free while holding it.
1089 if (force_flush) {
1090 force_flush = 0;
1091 tlb_flush_mmu(tlb);
1092 if (addr != end)
1093 goto again;
1096 return addr;
1099 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1100 struct vm_area_struct *vma, pud_t *pud,
1101 unsigned long addr, unsigned long end,
1102 long *zap_work, struct zap_details *details)
1104 pmd_t *pmd;
1105 unsigned long next;
1107 pmd = pmd_offset(pud, addr);
1108 do {
1109 next = pmd_addr_end(addr, end);
1110 if (pmd_trans_huge(*pmd)) {
1111 if (next-addr != HPAGE_PMD_SIZE) {
1112 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1113 split_huge_page_pmd(vma->vm_mm, pmd);
1114 } else if (zap_huge_pmd(tlb, vma, pmd)) {
1115 (*zap_work)--;
1116 continue;
1118 /* fall through */
1120 if (pmd_none_or_clear_bad(pmd)) {
1121 (*zap_work)--;
1122 continue;
1124 next = zap_pte_range(tlb, vma, pmd, addr, next,
1125 zap_work, details);
1126 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
1128 return addr;
1131 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1132 struct vm_area_struct *vma, pgd_t *pgd,
1133 unsigned long addr, unsigned long end,
1134 long *zap_work, struct zap_details *details)
1136 pud_t *pud;
1137 unsigned long next;
1139 pud = pud_offset(pgd, addr);
1140 do {
1141 next = pud_addr_end(addr, end);
1142 if (pud_none_or_clear_bad(pud)) {
1143 (*zap_work)--;
1144 continue;
1146 next = zap_pmd_range(tlb, vma, pud, addr, next,
1147 zap_work, details);
1148 } while (pud++, addr = next, (addr != end && *zap_work > 0));
1150 return addr;
1153 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1154 struct vm_area_struct *vma,
1155 unsigned long addr, unsigned long end,
1156 long *zap_work, struct zap_details *details)
1158 pgd_t *pgd;
1159 unsigned long next;
1161 if (details && !details->check_mapping && !details->nonlinear_vma)
1162 details = NULL;
1164 BUG_ON(addr >= end);
1165 mem_cgroup_uncharge_start();
1166 tlb_start_vma(tlb, vma);
1167 pgd = pgd_offset(vma->vm_mm, addr);
1168 do {
1169 next = pgd_addr_end(addr, end);
1170 if (pgd_none_or_clear_bad(pgd)) {
1171 (*zap_work)--;
1172 continue;
1174 next = zap_pud_range(tlb, vma, pgd, addr, next,
1175 zap_work, details);
1176 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1177 tlb_end_vma(tlb, vma);
1178 mem_cgroup_uncharge_end();
1180 return addr;
1183 #ifdef CONFIG_PREEMPT
1184 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1185 #else
1186 /* No preempt: go for improved straight-line efficiency */
1187 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1188 #endif
1191 * unmap_vmas - unmap a range of memory covered by a list of vma's
1192 * @tlbp: address of the caller's struct mmu_gather
1193 * @vma: the starting vma
1194 * @start_addr: virtual address at which to start unmapping
1195 * @end_addr: virtual address at which to end unmapping
1196 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1197 * @details: details of nonlinear truncation or shared cache invalidation
1199 * Returns the end address of the unmapping (restart addr if interrupted).
1201 * Unmap all pages in the vma list.
1203 * We aim to not hold locks for too long (for scheduling latency reasons).
1204 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1205 * return the ending mmu_gather to the caller.
1207 * Only addresses between `start' and `end' will be unmapped.
1209 * The VMA list must be sorted in ascending virtual address order.
1211 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1212 * range after unmap_vmas() returns. So the only responsibility here is to
1213 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1214 * drops the lock and schedules.
1216 unsigned long unmap_vmas(struct mmu_gather *tlb,
1217 struct vm_area_struct *vma, unsigned long start_addr,
1218 unsigned long end_addr, unsigned long *nr_accounted,
1219 struct zap_details *details)
1221 long zap_work = ZAP_BLOCK_SIZE;
1222 unsigned long start = start_addr;
1223 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1224 struct mm_struct *mm = vma->vm_mm;
1226 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1227 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1228 unsigned long end;
1230 start = max(vma->vm_start, start_addr);
1231 if (start >= vma->vm_end)
1232 continue;
1233 end = min(vma->vm_end, end_addr);
1234 if (end <= vma->vm_start)
1235 continue;
1237 if (vma->vm_flags & VM_ACCOUNT)
1238 *nr_accounted += (end - start) >> PAGE_SHIFT;
1240 if (unlikely(is_pfn_mapping(vma)))
1241 untrack_pfn_vma(vma, 0, 0);
1243 while (start != end) {
1244 if (unlikely(is_vm_hugetlb_page(vma))) {
1246 * It is undesirable to test vma->vm_file as it
1247 * should be non-null for valid hugetlb area.
1248 * However, vm_file will be NULL in the error
1249 * cleanup path of do_mmap_pgoff. When
1250 * hugetlbfs ->mmap method fails,
1251 * do_mmap_pgoff() nullifies vma->vm_file
1252 * before calling this function to clean up.
1253 * Since no pte has actually been setup, it is
1254 * safe to do nothing in this case.
1256 if (vma->vm_file) {
1257 unmap_hugepage_range(vma, start, end, NULL);
1258 zap_work -= (end - start) /
1259 pages_per_huge_page(hstate_vma(vma));
1262 start = end;
1263 } else
1264 start = unmap_page_range(tlb, vma,
1265 start, end, &zap_work, details);
1267 if (zap_work > 0) {
1268 BUG_ON(start != end);
1269 break;
1272 if (need_resched() ||
1273 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1274 if (i_mmap_lock)
1275 goto out;
1276 cond_resched();
1279 zap_work = ZAP_BLOCK_SIZE;
1282 out:
1283 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1284 return start; /* which is now the end (or restart) address */
1288 * zap_page_range - remove user pages in a given range
1289 * @vma: vm_area_struct holding the applicable pages
1290 * @address: starting address of pages to zap
1291 * @size: number of bytes to zap
1292 * @details: details of nonlinear truncation or shared cache invalidation
1294 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1295 unsigned long size, struct zap_details *details)
1297 struct mm_struct *mm = vma->vm_mm;
1298 struct mmu_gather tlb;
1299 unsigned long end = address + size;
1300 unsigned long nr_accounted = 0;
1302 lru_add_drain();
1303 tlb_gather_mmu(&tlb, mm, 0);
1304 update_hiwater_rss(mm);
1305 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1306 tlb_finish_mmu(&tlb, address, end);
1307 return end;
1311 * zap_vma_ptes - remove ptes mapping the vma
1312 * @vma: vm_area_struct holding ptes to be zapped
1313 * @address: starting address of pages to zap
1314 * @size: number of bytes to zap
1316 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1318 * The entire address range must be fully contained within the vma.
1320 * Returns 0 if successful.
1322 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1323 unsigned long size)
1325 if (address < vma->vm_start || address + size > vma->vm_end ||
1326 !(vma->vm_flags & VM_PFNMAP))
1327 return -1;
1328 zap_page_range(vma, address, size, NULL);
1329 return 0;
1331 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1334 * follow_page - look up a page descriptor from a user-virtual address
1335 * @vma: vm_area_struct mapping @address
1336 * @address: virtual address to look up
1337 * @flags: flags modifying lookup behaviour
1339 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1341 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1342 * an error pointer if there is a mapping to something not represented
1343 * by a page descriptor (see also vm_normal_page()).
1345 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1346 unsigned int flags)
1348 pgd_t *pgd;
1349 pud_t *pud;
1350 pmd_t *pmd;
1351 pte_t *ptep, pte;
1352 spinlock_t *ptl;
1353 struct page *page;
1354 struct mm_struct *mm = vma->vm_mm;
1356 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1357 if (!IS_ERR(page)) {
1358 BUG_ON(flags & FOLL_GET);
1359 goto out;
1362 page = NULL;
1363 pgd = pgd_offset(mm, address);
1364 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1365 goto no_page_table;
1367 pud = pud_offset(pgd, address);
1368 if (pud_none(*pud))
1369 goto no_page_table;
1370 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1371 BUG_ON(flags & FOLL_GET);
1372 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1373 goto out;
1375 if (unlikely(pud_bad(*pud)))
1376 goto no_page_table;
1378 pmd = pmd_offset(pud, address);
1379 if (pmd_none(*pmd))
1380 goto no_page_table;
1381 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1382 BUG_ON(flags & FOLL_GET);
1383 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1384 goto out;
1386 if (pmd_trans_huge(*pmd)) {
1387 if (flags & FOLL_SPLIT) {
1388 split_huge_page_pmd(mm, pmd);
1389 goto split_fallthrough;
1391 spin_lock(&mm->page_table_lock);
1392 if (likely(pmd_trans_huge(*pmd))) {
1393 if (unlikely(pmd_trans_splitting(*pmd))) {
1394 spin_unlock(&mm->page_table_lock);
1395 wait_split_huge_page(vma->anon_vma, pmd);
1396 } else {
1397 page = follow_trans_huge_pmd(mm, address,
1398 pmd, flags);
1399 spin_unlock(&mm->page_table_lock);
1400 goto out;
1402 } else
1403 spin_unlock(&mm->page_table_lock);
1404 /* fall through */
1406 split_fallthrough:
1407 if (unlikely(pmd_bad(*pmd)))
1408 goto no_page_table;
1410 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1412 pte = *ptep;
1413 if (!pte_present(pte))
1414 goto no_page;
1415 if ((flags & FOLL_WRITE) && !pte_write(pte))
1416 goto unlock;
1418 page = vm_normal_page(vma, address, pte);
1419 if (unlikely(!page)) {
1420 if ((flags & FOLL_DUMP) ||
1421 !is_zero_pfn(pte_pfn(pte)))
1422 goto bad_page;
1423 page = pte_page(pte);
1426 if (flags & FOLL_GET)
1427 get_page(page);
1428 if (flags & FOLL_TOUCH) {
1429 if ((flags & FOLL_WRITE) &&
1430 !pte_dirty(pte) && !PageDirty(page))
1431 set_page_dirty(page);
1433 * pte_mkyoung() would be more correct here, but atomic care
1434 * is needed to avoid losing the dirty bit: it is easier to use
1435 * mark_page_accessed().
1437 mark_page_accessed(page);
1439 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1441 * The preliminary mapping check is mainly to avoid the
1442 * pointless overhead of lock_page on the ZERO_PAGE
1443 * which might bounce very badly if there is contention.
1445 * If the page is already locked, we don't need to
1446 * handle it now - vmscan will handle it later if and
1447 * when it attempts to reclaim the page.
1449 if (page->mapping && trylock_page(page)) {
1450 lru_add_drain(); /* push cached pages to LRU */
1452 * Because we lock page here and migration is
1453 * blocked by the pte's page reference, we need
1454 * only check for file-cache page truncation.
1456 if (page->mapping)
1457 mlock_vma_page(page);
1458 unlock_page(page);
1461 unlock:
1462 pte_unmap_unlock(ptep, ptl);
1463 out:
1464 return page;
1466 bad_page:
1467 pte_unmap_unlock(ptep, ptl);
1468 return ERR_PTR(-EFAULT);
1470 no_page:
1471 pte_unmap_unlock(ptep, ptl);
1472 if (!pte_none(pte))
1473 return page;
1475 no_page_table:
1477 * When core dumping an enormous anonymous area that nobody
1478 * has touched so far, we don't want to allocate unnecessary pages or
1479 * page tables. Return error instead of NULL to skip handle_mm_fault,
1480 * then get_dump_page() will return NULL to leave a hole in the dump.
1481 * But we can only make this optimization where a hole would surely
1482 * be zero-filled if handle_mm_fault() actually did handle it.
1484 if ((flags & FOLL_DUMP) &&
1485 (!vma->vm_ops || !vma->vm_ops->fault))
1486 return ERR_PTR(-EFAULT);
1487 return page;
1490 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1492 return stack_guard_page_start(vma, addr) ||
1493 stack_guard_page_end(vma, addr+PAGE_SIZE);
1497 * __get_user_pages() - pin user pages in memory
1498 * @tsk: task_struct of target task
1499 * @mm: mm_struct of target mm
1500 * @start: starting user address
1501 * @nr_pages: number of pages from start to pin
1502 * @gup_flags: flags modifying pin behaviour
1503 * @pages: array that receives pointers to the pages pinned.
1504 * Should be at least nr_pages long. Or NULL, if caller
1505 * only intends to ensure the pages are faulted in.
1506 * @vmas: array of pointers to vmas corresponding to each page.
1507 * Or NULL if the caller does not require them.
1508 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1510 * Returns number of pages pinned. This may be fewer than the number
1511 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1512 * were pinned, returns -errno. Each page returned must be released
1513 * with a put_page() call when it is finished with. vmas will only
1514 * remain valid while mmap_sem is held.
1516 * Must be called with mmap_sem held for read or write.
1518 * __get_user_pages walks a process's page tables and takes a reference to
1519 * each struct page that each user address corresponds to at a given
1520 * instant. That is, it takes the page that would be accessed if a user
1521 * thread accesses the given user virtual address at that instant.
1523 * This does not guarantee that the page exists in the user mappings when
1524 * __get_user_pages returns, and there may even be a completely different
1525 * page there in some cases (eg. if mmapped pagecache has been invalidated
1526 * and subsequently re faulted). However it does guarantee that the page
1527 * won't be freed completely. And mostly callers simply care that the page
1528 * contains data that was valid *at some point in time*. Typically, an IO
1529 * or similar operation cannot guarantee anything stronger anyway because
1530 * locks can't be held over the syscall boundary.
1532 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1533 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1534 * appropriate) must be called after the page is finished with, and
1535 * before put_page is called.
1537 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1538 * or mmap_sem contention, and if waiting is needed to pin all pages,
1539 * *@nonblocking will be set to 0.
1541 * In most cases, get_user_pages or get_user_pages_fast should be used
1542 * instead of __get_user_pages. __get_user_pages should be used only if
1543 * you need some special @gup_flags.
1545 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1546 unsigned long start, int nr_pages, unsigned int gup_flags,
1547 struct page **pages, struct vm_area_struct **vmas,
1548 int *nonblocking)
1550 int i;
1551 unsigned long vm_flags;
1553 if (nr_pages <= 0)
1554 return 0;
1556 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1559 * Require read or write permissions.
1560 * If FOLL_FORCE is set, we only require the "MAY" flags.
1562 vm_flags = (gup_flags & FOLL_WRITE) ?
1563 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1564 vm_flags &= (gup_flags & FOLL_FORCE) ?
1565 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1566 i = 0;
1568 do {
1569 struct vm_area_struct *vma;
1571 vma = find_extend_vma(mm, start);
1572 if (!vma && in_gate_area(mm, start)) {
1573 unsigned long pg = start & PAGE_MASK;
1574 pgd_t *pgd;
1575 pud_t *pud;
1576 pmd_t *pmd;
1577 pte_t *pte;
1579 /* user gate pages are read-only */
1580 if (gup_flags & FOLL_WRITE)
1581 return i ? : -EFAULT;
1582 if (pg > TASK_SIZE)
1583 pgd = pgd_offset_k(pg);
1584 else
1585 pgd = pgd_offset_gate(mm, pg);
1586 BUG_ON(pgd_none(*pgd));
1587 pud = pud_offset(pgd, pg);
1588 BUG_ON(pud_none(*pud));
1589 pmd = pmd_offset(pud, pg);
1590 if (pmd_none(*pmd))
1591 return i ? : -EFAULT;
1592 VM_BUG_ON(pmd_trans_huge(*pmd));
1593 pte = pte_offset_map(pmd, pg);
1594 if (pte_none(*pte)) {
1595 pte_unmap(pte);
1596 return i ? : -EFAULT;
1598 vma = get_gate_vma(mm);
1599 if (pages) {
1600 struct page *page;
1602 page = vm_normal_page(vma, start, *pte);
1603 if (!page) {
1604 if (!(gup_flags & FOLL_DUMP) &&
1605 is_zero_pfn(pte_pfn(*pte)))
1606 page = pte_page(*pte);
1607 else {
1608 pte_unmap(pte);
1609 return i ? : -EFAULT;
1612 pages[i] = page;
1613 get_page(page);
1615 pte_unmap(pte);
1616 goto next_page;
1619 if (!vma ||
1620 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1621 !(vm_flags & vma->vm_flags))
1622 return i ? : -EFAULT;
1624 if (is_vm_hugetlb_page(vma)) {
1625 i = follow_hugetlb_page(mm, vma, pages, vmas,
1626 &start, &nr_pages, i, gup_flags);
1627 continue;
1630 do {
1631 struct page *page;
1632 unsigned int foll_flags = gup_flags;
1635 * If we have a pending SIGKILL, don't keep faulting
1636 * pages and potentially allocating memory.
1638 if (unlikely(fatal_signal_pending(current)))
1639 return i ? i : -ERESTARTSYS;
1641 cond_resched();
1642 while (!(page = follow_page(vma, start, foll_flags))) {
1643 int ret;
1644 unsigned int fault_flags = 0;
1646 /* For mlock, just skip the stack guard page. */
1647 if (foll_flags & FOLL_MLOCK) {
1648 if (stack_guard_page(vma, start))
1649 goto next_page;
1651 if (foll_flags & FOLL_WRITE)
1652 fault_flags |= FAULT_FLAG_WRITE;
1653 if (nonblocking)
1654 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1655 if (foll_flags & FOLL_NOWAIT)
1656 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1658 ret = handle_mm_fault(mm, vma, start,
1659 fault_flags);
1661 if (ret & VM_FAULT_ERROR) {
1662 if (ret & VM_FAULT_OOM)
1663 return i ? i : -ENOMEM;
1664 if (ret & (VM_FAULT_HWPOISON |
1665 VM_FAULT_HWPOISON_LARGE)) {
1666 if (i)
1667 return i;
1668 else if (gup_flags & FOLL_HWPOISON)
1669 return -EHWPOISON;
1670 else
1671 return -EFAULT;
1673 if (ret & VM_FAULT_SIGBUS)
1674 return i ? i : -EFAULT;
1675 BUG();
1678 if (tsk) {
1679 if (ret & VM_FAULT_MAJOR)
1680 tsk->maj_flt++;
1681 else
1682 tsk->min_flt++;
1685 if (ret & VM_FAULT_RETRY) {
1686 if (nonblocking)
1687 *nonblocking = 0;
1688 return i;
1692 * The VM_FAULT_WRITE bit tells us that
1693 * do_wp_page has broken COW when necessary,
1694 * even if maybe_mkwrite decided not to set
1695 * pte_write. We can thus safely do subsequent
1696 * page lookups as if they were reads. But only
1697 * do so when looping for pte_write is futile:
1698 * in some cases userspace may also be wanting
1699 * to write to the gotten user page, which a
1700 * read fault here might prevent (a readonly
1701 * page might get reCOWed by userspace write).
1703 if ((ret & VM_FAULT_WRITE) &&
1704 !(vma->vm_flags & VM_WRITE))
1705 foll_flags &= ~FOLL_WRITE;
1707 cond_resched();
1709 if (IS_ERR(page))
1710 return i ? i : PTR_ERR(page);
1711 if (pages) {
1712 pages[i] = page;
1714 flush_anon_page(vma, page, start);
1715 flush_dcache_page(page);
1717 next_page:
1718 if (vmas)
1719 vmas[i] = vma;
1720 i++;
1721 start += PAGE_SIZE;
1722 nr_pages--;
1723 } while (nr_pages && start < vma->vm_end);
1724 } while (nr_pages);
1725 return i;
1727 EXPORT_SYMBOL(__get_user_pages);
1730 * get_user_pages() - pin user pages in memory
1731 * @tsk: the task_struct to use for page fault accounting, or
1732 * NULL if faults are not to be recorded.
1733 * @mm: mm_struct of target mm
1734 * @start: starting user address
1735 * @nr_pages: number of pages from start to pin
1736 * @write: whether pages will be written to by the caller
1737 * @force: whether to force write access even if user mapping is
1738 * readonly. This will result in the page being COWed even
1739 * in MAP_SHARED mappings. You do not want this.
1740 * @pages: array that receives pointers to the pages pinned.
1741 * Should be at least nr_pages long. Or NULL, if caller
1742 * only intends to ensure the pages are faulted in.
1743 * @vmas: array of pointers to vmas corresponding to each page.
1744 * Or NULL if the caller does not require them.
1746 * Returns number of pages pinned. This may be fewer than the number
1747 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1748 * were pinned, returns -errno. Each page returned must be released
1749 * with a put_page() call when it is finished with. vmas will only
1750 * remain valid while mmap_sem is held.
1752 * Must be called with mmap_sem held for read or write.
1754 * get_user_pages walks a process's page tables and takes a reference to
1755 * each struct page that each user address corresponds to at a given
1756 * instant. That is, it takes the page that would be accessed if a user
1757 * thread accesses the given user virtual address at that instant.
1759 * This does not guarantee that the page exists in the user mappings when
1760 * get_user_pages returns, and there may even be a completely different
1761 * page there in some cases (eg. if mmapped pagecache has been invalidated
1762 * and subsequently re faulted). However it does guarantee that the page
1763 * won't be freed completely. And mostly callers simply care that the page
1764 * contains data that was valid *at some point in time*. Typically, an IO
1765 * or similar operation cannot guarantee anything stronger anyway because
1766 * locks can't be held over the syscall boundary.
1768 * If write=0, the page must not be written to. If the page is written to,
1769 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1770 * after the page is finished with, and before put_page is called.
1772 * get_user_pages is typically used for fewer-copy IO operations, to get a
1773 * handle on the memory by some means other than accesses via the user virtual
1774 * addresses. The pages may be submitted for DMA to devices or accessed via
1775 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1776 * use the correct cache flushing APIs.
1778 * See also get_user_pages_fast, for performance critical applications.
1780 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1781 unsigned long start, int nr_pages, int write, int force,
1782 struct page **pages, struct vm_area_struct **vmas)
1784 int flags = FOLL_TOUCH;
1786 if (pages)
1787 flags |= FOLL_GET;
1788 if (write)
1789 flags |= FOLL_WRITE;
1790 if (force)
1791 flags |= FOLL_FORCE;
1793 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1794 NULL);
1796 EXPORT_SYMBOL(get_user_pages);
1799 * get_dump_page() - pin user page in memory while writing it to core dump
1800 * @addr: user address
1802 * Returns struct page pointer of user page pinned for dump,
1803 * to be freed afterwards by page_cache_release() or put_page().
1805 * Returns NULL on any kind of failure - a hole must then be inserted into
1806 * the corefile, to preserve alignment with its headers; and also returns
1807 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1808 * allowing a hole to be left in the corefile to save diskspace.
1810 * Called without mmap_sem, but after all other threads have been killed.
1812 #ifdef CONFIG_ELF_CORE
1813 struct page *get_dump_page(unsigned long addr)
1815 struct vm_area_struct *vma;
1816 struct page *page;
1818 if (__get_user_pages(current, current->mm, addr, 1,
1819 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1820 NULL) < 1)
1821 return NULL;
1822 flush_cache_page(vma, addr, page_to_pfn(page));
1823 return page;
1825 #endif /* CONFIG_ELF_CORE */
1827 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1828 spinlock_t **ptl)
1830 pgd_t * pgd = pgd_offset(mm, addr);
1831 pud_t * pud = pud_alloc(mm, pgd, addr);
1832 if (pud) {
1833 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1834 if (pmd) {
1835 VM_BUG_ON(pmd_trans_huge(*pmd));
1836 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1839 return NULL;
1843 * This is the old fallback for page remapping.
1845 * For historical reasons, it only allows reserved pages. Only
1846 * old drivers should use this, and they needed to mark their
1847 * pages reserved for the old functions anyway.
1849 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1850 struct page *page, pgprot_t prot)
1852 struct mm_struct *mm = vma->vm_mm;
1853 int retval;
1854 pte_t *pte;
1855 spinlock_t *ptl;
1857 retval = -EINVAL;
1858 if (PageAnon(page))
1859 goto out;
1860 retval = -ENOMEM;
1861 flush_dcache_page(page);
1862 pte = get_locked_pte(mm, addr, &ptl);
1863 if (!pte)
1864 goto out;
1865 retval = -EBUSY;
1866 if (!pte_none(*pte))
1867 goto out_unlock;
1869 /* Ok, finally just insert the thing.. */
1870 get_page(page);
1871 inc_mm_counter_fast(mm, MM_FILEPAGES);
1872 page_add_file_rmap(page);
1873 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1875 retval = 0;
1876 pte_unmap_unlock(pte, ptl);
1877 return retval;
1878 out_unlock:
1879 pte_unmap_unlock(pte, ptl);
1880 out:
1881 return retval;
1885 * vm_insert_page - insert single page into user vma
1886 * @vma: user vma to map to
1887 * @addr: target user address of this page
1888 * @page: source kernel page
1890 * This allows drivers to insert individual pages they've allocated
1891 * into a user vma.
1893 * The page has to be a nice clean _individual_ kernel allocation.
1894 * If you allocate a compound page, you need to have marked it as
1895 * such (__GFP_COMP), or manually just split the page up yourself
1896 * (see split_page()).
1898 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1899 * took an arbitrary page protection parameter. This doesn't allow
1900 * that. Your vma protection will have to be set up correctly, which
1901 * means that if you want a shared writable mapping, you'd better
1902 * ask for a shared writable mapping!
1904 * The page does not need to be reserved.
1906 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1907 struct page *page)
1909 if (addr < vma->vm_start || addr >= vma->vm_end)
1910 return -EFAULT;
1911 if (!page_count(page))
1912 return -EINVAL;
1913 vma->vm_flags |= VM_INSERTPAGE;
1914 return insert_page(vma, addr, page, vma->vm_page_prot);
1916 EXPORT_SYMBOL(vm_insert_page);
1918 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1919 unsigned long pfn, pgprot_t prot)
1921 struct mm_struct *mm = vma->vm_mm;
1922 int retval;
1923 pte_t *pte, entry;
1924 spinlock_t *ptl;
1926 retval = -ENOMEM;
1927 pte = get_locked_pte(mm, addr, &ptl);
1928 if (!pte)
1929 goto out;
1930 retval = -EBUSY;
1931 if (!pte_none(*pte))
1932 goto out_unlock;
1934 /* Ok, finally just insert the thing.. */
1935 entry = pte_mkspecial(pfn_pte(pfn, prot));
1936 set_pte_at(mm, addr, pte, entry);
1937 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1939 retval = 0;
1940 out_unlock:
1941 pte_unmap_unlock(pte, ptl);
1942 out:
1943 return retval;
1947 * vm_insert_pfn - insert single pfn into user vma
1948 * @vma: user vma to map to
1949 * @addr: target user address of this page
1950 * @pfn: source kernel pfn
1952 * Similar to vm_inert_page, this allows drivers to insert individual pages
1953 * they've allocated into a user vma. Same comments apply.
1955 * This function should only be called from a vm_ops->fault handler, and
1956 * in that case the handler should return NULL.
1958 * vma cannot be a COW mapping.
1960 * As this is called only for pages that do not currently exist, we
1961 * do not need to flush old virtual caches or the TLB.
1963 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1964 unsigned long pfn)
1966 int ret;
1967 pgprot_t pgprot = vma->vm_page_prot;
1969 * Technically, architectures with pte_special can avoid all these
1970 * restrictions (same for remap_pfn_range). However we would like
1971 * consistency in testing and feature parity among all, so we should
1972 * try to keep these invariants in place for everybody.
1974 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1975 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1976 (VM_PFNMAP|VM_MIXEDMAP));
1977 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1978 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1980 if (addr < vma->vm_start || addr >= vma->vm_end)
1981 return -EFAULT;
1982 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1983 return -EINVAL;
1985 ret = insert_pfn(vma, addr, pfn, pgprot);
1987 if (ret)
1988 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1990 return ret;
1992 EXPORT_SYMBOL(vm_insert_pfn);
1994 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1995 unsigned long pfn)
1997 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1999 if (addr < vma->vm_start || addr >= vma->vm_end)
2000 return -EFAULT;
2003 * If we don't have pte special, then we have to use the pfn_valid()
2004 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2005 * refcount the page if pfn_valid is true (hence insert_page rather
2006 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2007 * without pte special, it would there be refcounted as a normal page.
2009 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2010 struct page *page;
2012 page = pfn_to_page(pfn);
2013 return insert_page(vma, addr, page, vma->vm_page_prot);
2015 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2017 EXPORT_SYMBOL(vm_insert_mixed);
2020 * maps a range of physical memory into the requested pages. the old
2021 * mappings are removed. any references to nonexistent pages results
2022 * in null mappings (currently treated as "copy-on-access")
2024 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2025 unsigned long addr, unsigned long end,
2026 unsigned long pfn, pgprot_t prot)
2028 pte_t *pte;
2029 spinlock_t *ptl;
2031 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2032 if (!pte)
2033 return -ENOMEM;
2034 arch_enter_lazy_mmu_mode();
2035 do {
2036 BUG_ON(!pte_none(*pte));
2037 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2038 pfn++;
2039 } while (pte++, addr += PAGE_SIZE, addr != end);
2040 arch_leave_lazy_mmu_mode();
2041 pte_unmap_unlock(pte - 1, ptl);
2042 return 0;
2045 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2046 unsigned long addr, unsigned long end,
2047 unsigned long pfn, pgprot_t prot)
2049 pmd_t *pmd;
2050 unsigned long next;
2052 pfn -= addr >> PAGE_SHIFT;
2053 pmd = pmd_alloc(mm, pud, addr);
2054 if (!pmd)
2055 return -ENOMEM;
2056 VM_BUG_ON(pmd_trans_huge(*pmd));
2057 do {
2058 next = pmd_addr_end(addr, end);
2059 if (remap_pte_range(mm, pmd, addr, next,
2060 pfn + (addr >> PAGE_SHIFT), prot))
2061 return -ENOMEM;
2062 } while (pmd++, addr = next, addr != end);
2063 return 0;
2066 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2067 unsigned long addr, unsigned long end,
2068 unsigned long pfn, pgprot_t prot)
2070 pud_t *pud;
2071 unsigned long next;
2073 pfn -= addr >> PAGE_SHIFT;
2074 pud = pud_alloc(mm, pgd, addr);
2075 if (!pud)
2076 return -ENOMEM;
2077 do {
2078 next = pud_addr_end(addr, end);
2079 if (remap_pmd_range(mm, pud, addr, next,
2080 pfn + (addr >> PAGE_SHIFT), prot))
2081 return -ENOMEM;
2082 } while (pud++, addr = next, addr != end);
2083 return 0;
2087 * remap_pfn_range - remap kernel memory to userspace
2088 * @vma: user vma to map to
2089 * @addr: target user address to start at
2090 * @pfn: physical address of kernel memory
2091 * @size: size of map area
2092 * @prot: page protection flags for this mapping
2094 * Note: this is only safe if the mm semaphore is held when called.
2096 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2097 unsigned long pfn, unsigned long size, pgprot_t prot)
2099 pgd_t *pgd;
2100 unsigned long next;
2101 unsigned long end = addr + PAGE_ALIGN(size);
2102 struct mm_struct *mm = vma->vm_mm;
2103 int err;
2106 * Physically remapped pages are special. Tell the
2107 * rest of the world about it:
2108 * VM_IO tells people not to look at these pages
2109 * (accesses can have side effects).
2110 * VM_RESERVED is specified all over the place, because
2111 * in 2.4 it kept swapout's vma scan off this vma; but
2112 * in 2.6 the LRU scan won't even find its pages, so this
2113 * flag means no more than count its pages in reserved_vm,
2114 * and omit it from core dump, even when VM_IO turned off.
2115 * VM_PFNMAP tells the core MM that the base pages are just
2116 * raw PFN mappings, and do not have a "struct page" associated
2117 * with them.
2119 * There's a horrible special case to handle copy-on-write
2120 * behaviour that some programs depend on. We mark the "original"
2121 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2123 if (addr == vma->vm_start && end == vma->vm_end) {
2124 vma->vm_pgoff = pfn;
2125 vma->vm_flags |= VM_PFN_AT_MMAP;
2126 } else if (is_cow_mapping(vma->vm_flags))
2127 return -EINVAL;
2129 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2131 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2132 if (err) {
2134 * To indicate that track_pfn related cleanup is not
2135 * needed from higher level routine calling unmap_vmas
2137 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2138 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2139 return -EINVAL;
2142 BUG_ON(addr >= end);
2143 pfn -= addr >> PAGE_SHIFT;
2144 pgd = pgd_offset(mm, addr);
2145 flush_cache_range(vma, addr, end);
2146 do {
2147 next = pgd_addr_end(addr, end);
2148 err = remap_pud_range(mm, pgd, addr, next,
2149 pfn + (addr >> PAGE_SHIFT), prot);
2150 if (err)
2151 break;
2152 } while (pgd++, addr = next, addr != end);
2154 if (err)
2155 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2157 return err;
2159 EXPORT_SYMBOL(remap_pfn_range);
2161 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2162 unsigned long addr, unsigned long end,
2163 pte_fn_t fn, void *data)
2165 pte_t *pte;
2166 int err;
2167 pgtable_t token;
2168 spinlock_t *uninitialized_var(ptl);
2170 pte = (mm == &init_mm) ?
2171 pte_alloc_kernel(pmd, addr) :
2172 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2173 if (!pte)
2174 return -ENOMEM;
2176 BUG_ON(pmd_huge(*pmd));
2178 arch_enter_lazy_mmu_mode();
2180 token = pmd_pgtable(*pmd);
2182 do {
2183 err = fn(pte++, token, addr, data);
2184 if (err)
2185 break;
2186 } while (addr += PAGE_SIZE, addr != end);
2188 arch_leave_lazy_mmu_mode();
2190 if (mm != &init_mm)
2191 pte_unmap_unlock(pte-1, ptl);
2192 return err;
2195 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2196 unsigned long addr, unsigned long end,
2197 pte_fn_t fn, void *data)
2199 pmd_t *pmd;
2200 unsigned long next;
2201 int err;
2203 BUG_ON(pud_huge(*pud));
2205 pmd = pmd_alloc(mm, pud, addr);
2206 if (!pmd)
2207 return -ENOMEM;
2208 do {
2209 next = pmd_addr_end(addr, end);
2210 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2211 if (err)
2212 break;
2213 } while (pmd++, addr = next, addr != end);
2214 return err;
2217 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2218 unsigned long addr, unsigned long end,
2219 pte_fn_t fn, void *data)
2221 pud_t *pud;
2222 unsigned long next;
2223 int err;
2225 pud = pud_alloc(mm, pgd, addr);
2226 if (!pud)
2227 return -ENOMEM;
2228 do {
2229 next = pud_addr_end(addr, end);
2230 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2231 if (err)
2232 break;
2233 } while (pud++, addr = next, addr != end);
2234 return err;
2238 * Scan a region of virtual memory, filling in page tables as necessary
2239 * and calling a provided function on each leaf page table.
2241 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2242 unsigned long size, pte_fn_t fn, void *data)
2244 pgd_t *pgd;
2245 unsigned long next;
2246 unsigned long end = addr + size;
2247 int err;
2249 BUG_ON(addr >= end);
2250 pgd = pgd_offset(mm, addr);
2251 do {
2252 next = pgd_addr_end(addr, end);
2253 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2254 if (err)
2255 break;
2256 } while (pgd++, addr = next, addr != end);
2258 return err;
2260 EXPORT_SYMBOL_GPL(apply_to_page_range);
2263 * handle_pte_fault chooses page fault handler according to an entry
2264 * which was read non-atomically. Before making any commitment, on
2265 * those architectures or configurations (e.g. i386 with PAE) which
2266 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2267 * must check under lock before unmapping the pte and proceeding
2268 * (but do_wp_page is only called after already making such a check;
2269 * and do_anonymous_page can safely check later on).
2271 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2272 pte_t *page_table, pte_t orig_pte)
2274 int same = 1;
2275 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2276 if (sizeof(pte_t) > sizeof(unsigned long)) {
2277 spinlock_t *ptl = pte_lockptr(mm, pmd);
2278 spin_lock(ptl);
2279 same = pte_same(*page_table, orig_pte);
2280 spin_unlock(ptl);
2282 #endif
2283 pte_unmap(page_table);
2284 return same;
2287 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2290 * If the source page was a PFN mapping, we don't have
2291 * a "struct page" for it. We do a best-effort copy by
2292 * just copying from the original user address. If that
2293 * fails, we just zero-fill it. Live with it.
2295 if (unlikely(!src)) {
2296 void *kaddr = kmap_atomic(dst, KM_USER0);
2297 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2300 * This really shouldn't fail, because the page is there
2301 * in the page tables. But it might just be unreadable,
2302 * in which case we just give up and fill the result with
2303 * zeroes.
2305 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2306 clear_page(kaddr);
2307 kunmap_atomic(kaddr, KM_USER0);
2308 flush_dcache_page(dst);
2309 } else
2310 copy_user_highpage(dst, src, va, vma);
2314 * This routine handles present pages, when users try to write
2315 * to a shared page. It is done by copying the page to a new address
2316 * and decrementing the shared-page counter for the old page.
2318 * Note that this routine assumes that the protection checks have been
2319 * done by the caller (the low-level page fault routine in most cases).
2320 * Thus we can safely just mark it writable once we've done any necessary
2321 * COW.
2323 * We also mark the page dirty at this point even though the page will
2324 * change only once the write actually happens. This avoids a few races,
2325 * and potentially makes it more efficient.
2327 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2328 * but allow concurrent faults), with pte both mapped and locked.
2329 * We return with mmap_sem still held, but pte unmapped and unlocked.
2331 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2332 unsigned long address, pte_t *page_table, pmd_t *pmd,
2333 spinlock_t *ptl, pte_t orig_pte)
2334 __releases(ptl)
2336 struct page *old_page, *new_page;
2337 pte_t entry;
2338 int ret = 0;
2339 int page_mkwrite = 0;
2340 struct page *dirty_page = NULL;
2342 old_page = vm_normal_page(vma, address, orig_pte);
2343 if (!old_page) {
2345 * VM_MIXEDMAP !pfn_valid() case
2347 * We should not cow pages in a shared writeable mapping.
2348 * Just mark the pages writable as we can't do any dirty
2349 * accounting on raw pfn maps.
2351 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2352 (VM_WRITE|VM_SHARED))
2353 goto reuse;
2354 goto gotten;
2358 * Take out anonymous pages first, anonymous shared vmas are
2359 * not dirty accountable.
2361 if (PageAnon(old_page) && !PageKsm(old_page)) {
2362 if (!trylock_page(old_page)) {
2363 page_cache_get(old_page);
2364 pte_unmap_unlock(page_table, ptl);
2365 lock_page(old_page);
2366 page_table = pte_offset_map_lock(mm, pmd, address,
2367 &ptl);
2368 if (!pte_same(*page_table, orig_pte)) {
2369 unlock_page(old_page);
2370 goto unlock;
2372 page_cache_release(old_page);
2374 if (reuse_swap_page(old_page)) {
2376 * The page is all ours. Move it to our anon_vma so
2377 * the rmap code will not search our parent or siblings.
2378 * Protected against the rmap code by the page lock.
2380 page_move_anon_rmap(old_page, vma, address);
2381 unlock_page(old_page);
2382 goto reuse;
2384 unlock_page(old_page);
2385 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2386 (VM_WRITE|VM_SHARED))) {
2388 * Only catch write-faults on shared writable pages,
2389 * read-only shared pages can get COWed by
2390 * get_user_pages(.write=1, .force=1).
2392 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2393 struct vm_fault vmf;
2394 int tmp;
2396 vmf.virtual_address = (void __user *)(address &
2397 PAGE_MASK);
2398 vmf.pgoff = old_page->index;
2399 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2400 vmf.page = old_page;
2403 * Notify the address space that the page is about to
2404 * become writable so that it can prohibit this or wait
2405 * for the page to get into an appropriate state.
2407 * We do this without the lock held, so that it can
2408 * sleep if it needs to.
2410 page_cache_get(old_page);
2411 pte_unmap_unlock(page_table, ptl);
2413 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2414 if (unlikely(tmp &
2415 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2416 ret = tmp;
2417 goto unwritable_page;
2419 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2420 lock_page(old_page);
2421 if (!old_page->mapping) {
2422 ret = 0; /* retry the fault */
2423 unlock_page(old_page);
2424 goto unwritable_page;
2426 } else
2427 VM_BUG_ON(!PageLocked(old_page));
2430 * Since we dropped the lock we need to revalidate
2431 * the PTE as someone else may have changed it. If
2432 * they did, we just return, as we can count on the
2433 * MMU to tell us if they didn't also make it writable.
2435 page_table = pte_offset_map_lock(mm, pmd, address,
2436 &ptl);
2437 if (!pte_same(*page_table, orig_pte)) {
2438 unlock_page(old_page);
2439 goto unlock;
2442 page_mkwrite = 1;
2444 dirty_page = old_page;
2445 get_page(dirty_page);
2447 reuse:
2448 flush_cache_page(vma, address, pte_pfn(orig_pte));
2449 entry = pte_mkyoung(orig_pte);
2450 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2451 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2452 update_mmu_cache(vma, address, page_table);
2453 pte_unmap_unlock(page_table, ptl);
2454 ret |= VM_FAULT_WRITE;
2456 if (!dirty_page)
2457 return ret;
2460 * Yes, Virginia, this is actually required to prevent a race
2461 * with clear_page_dirty_for_io() from clearing the page dirty
2462 * bit after it clear all dirty ptes, but before a racing
2463 * do_wp_page installs a dirty pte.
2465 * __do_fault is protected similarly.
2467 if (!page_mkwrite) {
2468 wait_on_page_locked(dirty_page);
2469 set_page_dirty_balance(dirty_page, page_mkwrite);
2471 put_page(dirty_page);
2472 if (page_mkwrite) {
2473 struct address_space *mapping = dirty_page->mapping;
2475 set_page_dirty(dirty_page);
2476 unlock_page(dirty_page);
2477 page_cache_release(dirty_page);
2478 if (mapping) {
2480 * Some device drivers do not set page.mapping
2481 * but still dirty their pages
2483 balance_dirty_pages_ratelimited(mapping);
2487 /* file_update_time outside page_lock */
2488 if (vma->vm_file)
2489 file_update_time(vma->vm_file);
2491 return ret;
2495 * Ok, we need to copy. Oh, well..
2497 page_cache_get(old_page);
2498 gotten:
2499 pte_unmap_unlock(page_table, ptl);
2501 if (unlikely(anon_vma_prepare(vma)))
2502 goto oom;
2504 if (is_zero_pfn(pte_pfn(orig_pte))) {
2505 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2506 if (!new_page)
2507 goto oom;
2508 } else {
2509 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2510 if (!new_page)
2511 goto oom;
2512 cow_user_page(new_page, old_page, address, vma);
2514 __SetPageUptodate(new_page);
2516 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2517 goto oom_free_new;
2520 * Re-check the pte - we dropped the lock
2522 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2523 if (likely(pte_same(*page_table, orig_pte))) {
2524 if (old_page) {
2525 if (!PageAnon(old_page)) {
2526 dec_mm_counter_fast(mm, MM_FILEPAGES);
2527 inc_mm_counter_fast(mm, MM_ANONPAGES);
2529 } else
2530 inc_mm_counter_fast(mm, MM_ANONPAGES);
2531 flush_cache_page(vma, address, pte_pfn(orig_pte));
2532 entry = mk_pte(new_page, vma->vm_page_prot);
2533 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2535 * Clear the pte entry and flush it first, before updating the
2536 * pte with the new entry. This will avoid a race condition
2537 * seen in the presence of one thread doing SMC and another
2538 * thread doing COW.
2540 ptep_clear_flush(vma, address, page_table);
2541 page_add_new_anon_rmap(new_page, vma, address);
2543 * We call the notify macro here because, when using secondary
2544 * mmu page tables (such as kvm shadow page tables), we want the
2545 * new page to be mapped directly into the secondary page table.
2547 set_pte_at_notify(mm, address, page_table, entry);
2548 update_mmu_cache(vma, address, page_table);
2549 if (old_page) {
2551 * Only after switching the pte to the new page may
2552 * we remove the mapcount here. Otherwise another
2553 * process may come and find the rmap count decremented
2554 * before the pte is switched to the new page, and
2555 * "reuse" the old page writing into it while our pte
2556 * here still points into it and can be read by other
2557 * threads.
2559 * The critical issue is to order this
2560 * page_remove_rmap with the ptp_clear_flush above.
2561 * Those stores are ordered by (if nothing else,)
2562 * the barrier present in the atomic_add_negative
2563 * in page_remove_rmap.
2565 * Then the TLB flush in ptep_clear_flush ensures that
2566 * no process can access the old page before the
2567 * decremented mapcount is visible. And the old page
2568 * cannot be reused until after the decremented
2569 * mapcount is visible. So transitively, TLBs to
2570 * old page will be flushed before it can be reused.
2572 page_remove_rmap(old_page);
2575 /* Free the old page.. */
2576 new_page = old_page;
2577 ret |= VM_FAULT_WRITE;
2578 } else
2579 mem_cgroup_uncharge_page(new_page);
2581 if (new_page)
2582 page_cache_release(new_page);
2583 unlock:
2584 pte_unmap_unlock(page_table, ptl);
2585 if (old_page) {
2587 * Don't let another task, with possibly unlocked vma,
2588 * keep the mlocked page.
2590 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2591 lock_page(old_page); /* LRU manipulation */
2592 munlock_vma_page(old_page);
2593 unlock_page(old_page);
2595 page_cache_release(old_page);
2597 return ret;
2598 oom_free_new:
2599 page_cache_release(new_page);
2600 oom:
2601 if (old_page) {
2602 if (page_mkwrite) {
2603 unlock_page(old_page);
2604 page_cache_release(old_page);
2606 page_cache_release(old_page);
2608 return VM_FAULT_OOM;
2610 unwritable_page:
2611 page_cache_release(old_page);
2612 return ret;
2616 * Helper functions for unmap_mapping_range().
2618 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2620 * We have to restart searching the prio_tree whenever we drop the lock,
2621 * since the iterator is only valid while the lock is held, and anyway
2622 * a later vma might be split and reinserted earlier while lock dropped.
2624 * The list of nonlinear vmas could be handled more efficiently, using
2625 * a placeholder, but handle it in the same way until a need is shown.
2626 * It is important to search the prio_tree before nonlinear list: a vma
2627 * may become nonlinear and be shifted from prio_tree to nonlinear list
2628 * while the lock is dropped; but never shifted from list to prio_tree.
2630 * In order to make forward progress despite restarting the search,
2631 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2632 * quickly skip it next time around. Since the prio_tree search only
2633 * shows us those vmas affected by unmapping the range in question, we
2634 * can't efficiently keep all vmas in step with mapping->truncate_count:
2635 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2636 * mapping->truncate_count and vma->vm_truncate_count are protected by
2637 * i_mmap_lock.
2639 * In order to make forward progress despite repeatedly restarting some
2640 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2641 * and restart from that address when we reach that vma again. It might
2642 * have been split or merged, shrunk or extended, but never shifted: so
2643 * restart_addr remains valid so long as it remains in the vma's range.
2644 * unmap_mapping_range forces truncate_count to leap over page-aligned
2645 * values so we can save vma's restart_addr in its truncate_count field.
2647 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2649 static void reset_vma_truncate_counts(struct address_space *mapping)
2651 struct vm_area_struct *vma;
2652 struct prio_tree_iter iter;
2654 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2655 vma->vm_truncate_count = 0;
2656 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2657 vma->vm_truncate_count = 0;
2660 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2661 unsigned long start_addr, unsigned long end_addr,
2662 struct zap_details *details)
2664 unsigned long restart_addr;
2665 int need_break;
2668 * files that support invalidating or truncating portions of the
2669 * file from under mmaped areas must have their ->fault function
2670 * return a locked page (and set VM_FAULT_LOCKED in the return).
2671 * This provides synchronisation against concurrent unmapping here.
2674 again:
2675 restart_addr = vma->vm_truncate_count;
2676 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2677 start_addr = restart_addr;
2678 if (start_addr >= end_addr) {
2679 /* Top of vma has been split off since last time */
2680 vma->vm_truncate_count = details->truncate_count;
2681 return 0;
2685 restart_addr = zap_page_range(vma, start_addr,
2686 end_addr - start_addr, details);
2687 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2689 if (restart_addr >= end_addr) {
2690 /* We have now completed this vma: mark it so */
2691 vma->vm_truncate_count = details->truncate_count;
2692 if (!need_break)
2693 return 0;
2694 } else {
2695 /* Note restart_addr in vma's truncate_count field */
2696 vma->vm_truncate_count = restart_addr;
2697 if (!need_break)
2698 goto again;
2701 spin_unlock(details->i_mmap_lock);
2702 cond_resched();
2703 spin_lock(details->i_mmap_lock);
2704 return -EINTR;
2707 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2708 struct zap_details *details)
2710 struct vm_area_struct *vma;
2711 struct prio_tree_iter iter;
2712 pgoff_t vba, vea, zba, zea;
2714 restart:
2715 vma_prio_tree_foreach(vma, &iter, root,
2716 details->first_index, details->last_index) {
2717 /* Skip quickly over those we have already dealt with */
2718 if (vma->vm_truncate_count == details->truncate_count)
2719 continue;
2721 vba = vma->vm_pgoff;
2722 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2723 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2724 zba = details->first_index;
2725 if (zba < vba)
2726 zba = vba;
2727 zea = details->last_index;
2728 if (zea > vea)
2729 zea = vea;
2731 if (unmap_mapping_range_vma(vma,
2732 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2733 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2734 details) < 0)
2735 goto restart;
2739 static inline void unmap_mapping_range_list(struct list_head *head,
2740 struct zap_details *details)
2742 struct vm_area_struct *vma;
2745 * In nonlinear VMAs there is no correspondence between virtual address
2746 * offset and file offset. So we must perform an exhaustive search
2747 * across *all* the pages in each nonlinear VMA, not just the pages
2748 * whose virtual address lies outside the file truncation point.
2750 restart:
2751 list_for_each_entry(vma, head, shared.vm_set.list) {
2752 /* Skip quickly over those we have already dealt with */
2753 if (vma->vm_truncate_count == details->truncate_count)
2754 continue;
2755 details->nonlinear_vma = vma;
2756 if (unmap_mapping_range_vma(vma, vma->vm_start,
2757 vma->vm_end, details) < 0)
2758 goto restart;
2763 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2764 * @mapping: the address space containing mmaps to be unmapped.
2765 * @holebegin: byte in first page to unmap, relative to the start of
2766 * the underlying file. This will be rounded down to a PAGE_SIZE
2767 * boundary. Note that this is different from truncate_pagecache(), which
2768 * must keep the partial page. In contrast, we must get rid of
2769 * partial pages.
2770 * @holelen: size of prospective hole in bytes. This will be rounded
2771 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2772 * end of the file.
2773 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2774 * but 0 when invalidating pagecache, don't throw away private data.
2776 void unmap_mapping_range(struct address_space *mapping,
2777 loff_t const holebegin, loff_t const holelen, int even_cows)
2779 struct zap_details details;
2780 pgoff_t hba = holebegin >> PAGE_SHIFT;
2781 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2783 /* Check for overflow. */
2784 if (sizeof(holelen) > sizeof(hlen)) {
2785 long long holeend =
2786 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2787 if (holeend & ~(long long)ULONG_MAX)
2788 hlen = ULONG_MAX - hba + 1;
2791 details.check_mapping = even_cows? NULL: mapping;
2792 details.nonlinear_vma = NULL;
2793 details.first_index = hba;
2794 details.last_index = hba + hlen - 1;
2795 if (details.last_index < details.first_index)
2796 details.last_index = ULONG_MAX;
2797 details.i_mmap_lock = &mapping->i_mmap_lock;
2799 mutex_lock(&mapping->unmap_mutex);
2800 spin_lock(&mapping->i_mmap_lock);
2802 /* Protect against endless unmapping loops */
2803 mapping->truncate_count++;
2804 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2805 if (mapping->truncate_count == 0)
2806 reset_vma_truncate_counts(mapping);
2807 mapping->truncate_count++;
2809 details.truncate_count = mapping->truncate_count;
2811 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2812 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2813 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2814 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2815 spin_unlock(&mapping->i_mmap_lock);
2816 mutex_unlock(&mapping->unmap_mutex);
2818 EXPORT_SYMBOL(unmap_mapping_range);
2820 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2822 struct address_space *mapping = inode->i_mapping;
2825 * If the underlying filesystem is not going to provide
2826 * a way to truncate a range of blocks (punch a hole) -
2827 * we should return failure right now.
2829 if (!inode->i_op->truncate_range)
2830 return -ENOSYS;
2832 mutex_lock(&inode->i_mutex);
2833 down_write(&inode->i_alloc_sem);
2834 unmap_mapping_range(mapping, offset, (end - offset), 1);
2835 truncate_inode_pages_range(mapping, offset, end);
2836 unmap_mapping_range(mapping, offset, (end - offset), 1);
2837 inode->i_op->truncate_range(inode, offset, end);
2838 up_write(&inode->i_alloc_sem);
2839 mutex_unlock(&inode->i_mutex);
2841 return 0;
2845 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2846 * but allow concurrent faults), and pte mapped but not yet locked.
2847 * We return with mmap_sem still held, but pte unmapped and unlocked.
2849 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2850 unsigned long address, pte_t *page_table, pmd_t *pmd,
2851 unsigned int flags, pte_t orig_pte)
2853 spinlock_t *ptl;
2854 struct page *page, *swapcache = NULL;
2855 swp_entry_t entry;
2856 pte_t pte;
2857 int locked;
2858 struct mem_cgroup *ptr;
2859 int exclusive = 0;
2860 int ret = 0;
2862 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2863 goto out;
2865 entry = pte_to_swp_entry(orig_pte);
2866 if (unlikely(non_swap_entry(entry))) {
2867 if (is_migration_entry(entry)) {
2868 migration_entry_wait(mm, pmd, address);
2869 } else if (is_hwpoison_entry(entry)) {
2870 ret = VM_FAULT_HWPOISON;
2871 } else {
2872 print_bad_pte(vma, address, orig_pte, NULL);
2873 ret = VM_FAULT_SIGBUS;
2875 goto out;
2877 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2878 page = lookup_swap_cache(entry);
2879 if (!page) {
2880 grab_swap_token(mm); /* Contend for token _before_ read-in */
2881 page = swapin_readahead(entry,
2882 GFP_HIGHUSER_MOVABLE, vma, address);
2883 if (!page) {
2885 * Back out if somebody else faulted in this pte
2886 * while we released the pte lock.
2888 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2889 if (likely(pte_same(*page_table, orig_pte)))
2890 ret = VM_FAULT_OOM;
2891 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2892 goto unlock;
2895 /* Had to read the page from swap area: Major fault */
2896 ret = VM_FAULT_MAJOR;
2897 count_vm_event(PGMAJFAULT);
2898 } else if (PageHWPoison(page)) {
2900 * hwpoisoned dirty swapcache pages are kept for killing
2901 * owner processes (which may be unknown at hwpoison time)
2903 ret = VM_FAULT_HWPOISON;
2904 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2905 goto out_release;
2908 locked = lock_page_or_retry(page, mm, flags);
2909 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2910 if (!locked) {
2911 ret |= VM_FAULT_RETRY;
2912 goto out_release;
2916 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2917 * release the swapcache from under us. The page pin, and pte_same
2918 * test below, are not enough to exclude that. Even if it is still
2919 * swapcache, we need to check that the page's swap has not changed.
2921 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2922 goto out_page;
2924 if (ksm_might_need_to_copy(page, vma, address)) {
2925 swapcache = page;
2926 page = ksm_does_need_to_copy(page, vma, address);
2928 if (unlikely(!page)) {
2929 ret = VM_FAULT_OOM;
2930 page = swapcache;
2931 swapcache = NULL;
2932 goto out_page;
2936 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2937 ret = VM_FAULT_OOM;
2938 goto out_page;
2942 * Back out if somebody else already faulted in this pte.
2944 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2945 if (unlikely(!pte_same(*page_table, orig_pte)))
2946 goto out_nomap;
2948 if (unlikely(!PageUptodate(page))) {
2949 ret = VM_FAULT_SIGBUS;
2950 goto out_nomap;
2954 * The page isn't present yet, go ahead with the fault.
2956 * Be careful about the sequence of operations here.
2957 * To get its accounting right, reuse_swap_page() must be called
2958 * while the page is counted on swap but not yet in mapcount i.e.
2959 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2960 * must be called after the swap_free(), or it will never succeed.
2961 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2962 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2963 * in page->private. In this case, a record in swap_cgroup is silently
2964 * discarded at swap_free().
2967 inc_mm_counter_fast(mm, MM_ANONPAGES);
2968 dec_mm_counter_fast(mm, MM_SWAPENTS);
2969 pte = mk_pte(page, vma->vm_page_prot);
2970 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2971 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2972 flags &= ~FAULT_FLAG_WRITE;
2973 ret |= VM_FAULT_WRITE;
2974 exclusive = 1;
2976 flush_icache_page(vma, page);
2977 set_pte_at(mm, address, page_table, pte);
2978 do_page_add_anon_rmap(page, vma, address, exclusive);
2979 /* It's better to call commit-charge after rmap is established */
2980 mem_cgroup_commit_charge_swapin(page, ptr);
2982 swap_free(entry);
2983 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2984 try_to_free_swap(page);
2985 unlock_page(page);
2986 if (swapcache) {
2988 * Hold the lock to avoid the swap entry to be reused
2989 * until we take the PT lock for the pte_same() check
2990 * (to avoid false positives from pte_same). For
2991 * further safety release the lock after the swap_free
2992 * so that the swap count won't change under a
2993 * parallel locked swapcache.
2995 unlock_page(swapcache);
2996 page_cache_release(swapcache);
2999 if (flags & FAULT_FLAG_WRITE) {
3000 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3001 if (ret & VM_FAULT_ERROR)
3002 ret &= VM_FAULT_ERROR;
3003 goto out;
3006 /* No need to invalidate - it was non-present before */
3007 update_mmu_cache(vma, address, page_table);
3008 unlock:
3009 pte_unmap_unlock(page_table, ptl);
3010 out:
3011 return ret;
3012 out_nomap:
3013 mem_cgroup_cancel_charge_swapin(ptr);
3014 pte_unmap_unlock(page_table, ptl);
3015 out_page:
3016 unlock_page(page);
3017 out_release:
3018 page_cache_release(page);
3019 if (swapcache) {
3020 unlock_page(swapcache);
3021 page_cache_release(swapcache);
3023 return ret;
3027 * This is like a special single-page "expand_{down|up}wards()",
3028 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3029 * doesn't hit another vma.
3031 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3033 address &= PAGE_MASK;
3034 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3035 struct vm_area_struct *prev = vma->vm_prev;
3038 * Is there a mapping abutting this one below?
3040 * That's only ok if it's the same stack mapping
3041 * that has gotten split..
3043 if (prev && prev->vm_end == address)
3044 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3046 expand_downwards(vma, address - PAGE_SIZE);
3048 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3049 struct vm_area_struct *next = vma->vm_next;
3051 /* As VM_GROWSDOWN but s/below/above/ */
3052 if (next && next->vm_start == address + PAGE_SIZE)
3053 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3055 expand_upwards(vma, address + PAGE_SIZE);
3057 return 0;
3061 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3062 * but allow concurrent faults), and pte mapped but not yet locked.
3063 * We return with mmap_sem still held, but pte unmapped and unlocked.
3065 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3066 unsigned long address, pte_t *page_table, pmd_t *pmd,
3067 unsigned int flags)
3069 struct page *page;
3070 spinlock_t *ptl;
3071 pte_t entry;
3073 pte_unmap(page_table);
3075 /* Check if we need to add a guard page to the stack */
3076 if (check_stack_guard_page(vma, address) < 0)
3077 return VM_FAULT_SIGBUS;
3079 /* Use the zero-page for reads */
3080 if (!(flags & FAULT_FLAG_WRITE)) {
3081 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3082 vma->vm_page_prot));
3083 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3084 if (!pte_none(*page_table))
3085 goto unlock;
3086 goto setpte;
3089 /* Allocate our own private page. */
3090 if (unlikely(anon_vma_prepare(vma)))
3091 goto oom;
3092 page = alloc_zeroed_user_highpage_movable(vma, address);
3093 if (!page)
3094 goto oom;
3095 __SetPageUptodate(page);
3097 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3098 goto oom_free_page;
3100 entry = mk_pte(page, vma->vm_page_prot);
3101 if (vma->vm_flags & VM_WRITE)
3102 entry = pte_mkwrite(pte_mkdirty(entry));
3104 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3105 if (!pte_none(*page_table))
3106 goto release;
3108 inc_mm_counter_fast(mm, MM_ANONPAGES);
3109 page_add_new_anon_rmap(page, vma, address);
3110 setpte:
3111 set_pte_at(mm, address, page_table, entry);
3113 /* No need to invalidate - it was non-present before */
3114 update_mmu_cache(vma, address, page_table);
3115 unlock:
3116 pte_unmap_unlock(page_table, ptl);
3117 return 0;
3118 release:
3119 mem_cgroup_uncharge_page(page);
3120 page_cache_release(page);
3121 goto unlock;
3122 oom_free_page:
3123 page_cache_release(page);
3124 oom:
3125 return VM_FAULT_OOM;
3129 * __do_fault() tries to create a new page mapping. It aggressively
3130 * tries to share with existing pages, but makes a separate copy if
3131 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3132 * the next page fault.
3134 * As this is called only for pages that do not currently exist, we
3135 * do not need to flush old virtual caches or the TLB.
3137 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3138 * but allow concurrent faults), and pte neither mapped nor locked.
3139 * We return with mmap_sem still held, but pte unmapped and unlocked.
3141 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3142 unsigned long address, pmd_t *pmd,
3143 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3145 pte_t *page_table;
3146 spinlock_t *ptl;
3147 struct page *page;
3148 pte_t entry;
3149 int anon = 0;
3150 int charged = 0;
3151 struct page *dirty_page = NULL;
3152 struct vm_fault vmf;
3153 int ret;
3154 int page_mkwrite = 0;
3156 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3157 vmf.pgoff = pgoff;
3158 vmf.flags = flags;
3159 vmf.page = NULL;
3161 ret = vma->vm_ops->fault(vma, &vmf);
3162 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3163 VM_FAULT_RETRY)))
3164 return ret;
3166 if (unlikely(PageHWPoison(vmf.page))) {
3167 if (ret & VM_FAULT_LOCKED)
3168 unlock_page(vmf.page);
3169 return VM_FAULT_HWPOISON;
3173 * For consistency in subsequent calls, make the faulted page always
3174 * locked.
3176 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3177 lock_page(vmf.page);
3178 else
3179 VM_BUG_ON(!PageLocked(vmf.page));
3182 * Should we do an early C-O-W break?
3184 page = vmf.page;
3185 if (flags & FAULT_FLAG_WRITE) {
3186 if (!(vma->vm_flags & VM_SHARED)) {
3187 anon = 1;
3188 if (unlikely(anon_vma_prepare(vma))) {
3189 ret = VM_FAULT_OOM;
3190 goto out;
3192 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
3193 vma, address);
3194 if (!page) {
3195 ret = VM_FAULT_OOM;
3196 goto out;
3198 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
3199 ret = VM_FAULT_OOM;
3200 page_cache_release(page);
3201 goto out;
3203 charged = 1;
3204 copy_user_highpage(page, vmf.page, address, vma);
3205 __SetPageUptodate(page);
3206 } else {
3208 * If the page will be shareable, see if the backing
3209 * address space wants to know that the page is about
3210 * to become writable
3212 if (vma->vm_ops->page_mkwrite) {
3213 int tmp;
3215 unlock_page(page);
3216 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3217 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3218 if (unlikely(tmp &
3219 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3220 ret = tmp;
3221 goto unwritable_page;
3223 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3224 lock_page(page);
3225 if (!page->mapping) {
3226 ret = 0; /* retry the fault */
3227 unlock_page(page);
3228 goto unwritable_page;
3230 } else
3231 VM_BUG_ON(!PageLocked(page));
3232 page_mkwrite = 1;
3238 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3241 * This silly early PAGE_DIRTY setting removes a race
3242 * due to the bad i386 page protection. But it's valid
3243 * for other architectures too.
3245 * Note that if FAULT_FLAG_WRITE is set, we either now have
3246 * an exclusive copy of the page, or this is a shared mapping,
3247 * so we can make it writable and dirty to avoid having to
3248 * handle that later.
3250 /* Only go through if we didn't race with anybody else... */
3251 if (likely(pte_same(*page_table, orig_pte))) {
3252 flush_icache_page(vma, page);
3253 entry = mk_pte(page, vma->vm_page_prot);
3254 if (flags & FAULT_FLAG_WRITE)
3255 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3256 if (anon) {
3257 inc_mm_counter_fast(mm, MM_ANONPAGES);
3258 page_add_new_anon_rmap(page, vma, address);
3259 } else {
3260 inc_mm_counter_fast(mm, MM_FILEPAGES);
3261 page_add_file_rmap(page);
3262 if (flags & FAULT_FLAG_WRITE) {
3263 dirty_page = page;
3264 get_page(dirty_page);
3267 set_pte_at(mm, address, page_table, entry);
3269 /* no need to invalidate: a not-present page won't be cached */
3270 update_mmu_cache(vma, address, page_table);
3271 } else {
3272 if (charged)
3273 mem_cgroup_uncharge_page(page);
3274 if (anon)
3275 page_cache_release(page);
3276 else
3277 anon = 1; /* no anon but release faulted_page */
3280 pte_unmap_unlock(page_table, ptl);
3282 out:
3283 if (dirty_page) {
3284 struct address_space *mapping = page->mapping;
3286 if (set_page_dirty(dirty_page))
3287 page_mkwrite = 1;
3288 unlock_page(dirty_page);
3289 put_page(dirty_page);
3290 if (page_mkwrite && mapping) {
3292 * Some device drivers do not set page.mapping but still
3293 * dirty their pages
3295 balance_dirty_pages_ratelimited(mapping);
3298 /* file_update_time outside page_lock */
3299 if (vma->vm_file)
3300 file_update_time(vma->vm_file);
3301 } else {
3302 unlock_page(vmf.page);
3303 if (anon)
3304 page_cache_release(vmf.page);
3307 return ret;
3309 unwritable_page:
3310 page_cache_release(page);
3311 return ret;
3314 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3315 unsigned long address, pte_t *page_table, pmd_t *pmd,
3316 unsigned int flags, pte_t orig_pte)
3318 pgoff_t pgoff = (((address & PAGE_MASK)
3319 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3321 pte_unmap(page_table);
3322 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3326 * Fault of a previously existing named mapping. Repopulate the pte
3327 * from the encoded file_pte if possible. This enables swappable
3328 * nonlinear vmas.
3330 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3331 * but allow concurrent faults), and pte mapped but not yet locked.
3332 * We return with mmap_sem still held, but pte unmapped and unlocked.
3334 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3335 unsigned long address, pte_t *page_table, pmd_t *pmd,
3336 unsigned int flags, pte_t orig_pte)
3338 pgoff_t pgoff;
3340 flags |= FAULT_FLAG_NONLINEAR;
3342 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3343 return 0;
3345 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3347 * Page table corrupted: show pte and kill process.
3349 print_bad_pte(vma, address, orig_pte, NULL);
3350 return VM_FAULT_SIGBUS;
3353 pgoff = pte_to_pgoff(orig_pte);
3354 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3358 * These routines also need to handle stuff like marking pages dirty
3359 * and/or accessed for architectures that don't do it in hardware (most
3360 * RISC architectures). The early dirtying is also good on the i386.
3362 * There is also a hook called "update_mmu_cache()" that architectures
3363 * with external mmu caches can use to update those (ie the Sparc or
3364 * PowerPC hashed page tables that act as extended TLBs).
3366 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3367 * but allow concurrent faults), and pte mapped but not yet locked.
3368 * We return with mmap_sem still held, but pte unmapped and unlocked.
3370 int handle_pte_fault(struct mm_struct *mm,
3371 struct vm_area_struct *vma, unsigned long address,
3372 pte_t *pte, pmd_t *pmd, unsigned int flags)
3374 pte_t entry;
3375 spinlock_t *ptl;
3377 entry = *pte;
3378 if (!pte_present(entry)) {
3379 if (pte_none(entry)) {
3380 if (vma->vm_ops) {
3381 if (likely(vma->vm_ops->fault))
3382 return do_linear_fault(mm, vma, address,
3383 pte, pmd, flags, entry);
3385 return do_anonymous_page(mm, vma, address,
3386 pte, pmd, flags);
3388 if (pte_file(entry))
3389 return do_nonlinear_fault(mm, vma, address,
3390 pte, pmd, flags, entry);
3391 return do_swap_page(mm, vma, address,
3392 pte, pmd, flags, entry);
3395 ptl = pte_lockptr(mm, pmd);
3396 spin_lock(ptl);
3397 if (unlikely(!pte_same(*pte, entry)))
3398 goto unlock;
3399 if (flags & FAULT_FLAG_WRITE) {
3400 if (!pte_write(entry))
3401 return do_wp_page(mm, vma, address,
3402 pte, pmd, ptl, entry);
3403 entry = pte_mkdirty(entry);
3405 entry = pte_mkyoung(entry);
3406 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3407 update_mmu_cache(vma, address, pte);
3408 } else {
3410 * This is needed only for protection faults but the arch code
3411 * is not yet telling us if this is a protection fault or not.
3412 * This still avoids useless tlb flushes for .text page faults
3413 * with threads.
3415 if (flags & FAULT_FLAG_WRITE)
3416 flush_tlb_fix_spurious_fault(vma, address);
3418 unlock:
3419 pte_unmap_unlock(pte, ptl);
3420 return 0;
3424 * By the time we get here, we already hold the mm semaphore
3426 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3427 unsigned long address, unsigned int flags)
3429 pgd_t *pgd;
3430 pud_t *pud;
3431 pmd_t *pmd;
3432 pte_t *pte;
3434 __set_current_state(TASK_RUNNING);
3436 count_vm_event(PGFAULT);
3438 /* do counter updates before entering really critical section. */
3439 check_sync_rss_stat(current);
3441 if (unlikely(is_vm_hugetlb_page(vma)))
3442 return hugetlb_fault(mm, vma, address, flags);
3444 pgd = pgd_offset(mm, address);
3445 pud = pud_alloc(mm, pgd, address);
3446 if (!pud)
3447 return VM_FAULT_OOM;
3448 pmd = pmd_alloc(mm, pud, address);
3449 if (!pmd)
3450 return VM_FAULT_OOM;
3451 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3452 if (!vma->vm_ops)
3453 return do_huge_pmd_anonymous_page(mm, vma, address,
3454 pmd, flags);
3455 } else {
3456 pmd_t orig_pmd = *pmd;
3457 barrier();
3458 if (pmd_trans_huge(orig_pmd)) {
3459 if (flags & FAULT_FLAG_WRITE &&
3460 !pmd_write(orig_pmd) &&
3461 !pmd_trans_splitting(orig_pmd))
3462 return do_huge_pmd_wp_page(mm, vma, address,
3463 pmd, orig_pmd);
3464 return 0;
3469 * Use __pte_alloc instead of pte_alloc_map, because we can't
3470 * run pte_offset_map on the pmd, if an huge pmd could
3471 * materialize from under us from a different thread.
3473 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3474 return VM_FAULT_OOM;
3475 /* if an huge pmd materialized from under us just retry later */
3476 if (unlikely(pmd_trans_huge(*pmd)))
3477 return 0;
3479 * A regular pmd is established and it can't morph into a huge pmd
3480 * from under us anymore at this point because we hold the mmap_sem
3481 * read mode and khugepaged takes it in write mode. So now it's
3482 * safe to run pte_offset_map().
3484 pte = pte_offset_map(pmd, address);
3486 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3489 #ifndef __PAGETABLE_PUD_FOLDED
3491 * Allocate page upper directory.
3492 * We've already handled the fast-path in-line.
3494 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3496 pud_t *new = pud_alloc_one(mm, address);
3497 if (!new)
3498 return -ENOMEM;
3500 smp_wmb(); /* See comment in __pte_alloc */
3502 spin_lock(&mm->page_table_lock);
3503 if (pgd_present(*pgd)) /* Another has populated it */
3504 pud_free(mm, new);
3505 else
3506 pgd_populate(mm, pgd, new);
3507 spin_unlock(&mm->page_table_lock);
3508 return 0;
3510 #endif /* __PAGETABLE_PUD_FOLDED */
3512 #ifndef __PAGETABLE_PMD_FOLDED
3514 * Allocate page middle directory.
3515 * We've already handled the fast-path in-line.
3517 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3519 pmd_t *new = pmd_alloc_one(mm, address);
3520 if (!new)
3521 return -ENOMEM;
3523 smp_wmb(); /* See comment in __pte_alloc */
3525 spin_lock(&mm->page_table_lock);
3526 #ifndef __ARCH_HAS_4LEVEL_HACK
3527 if (pud_present(*pud)) /* Another has populated it */
3528 pmd_free(mm, new);
3529 else
3530 pud_populate(mm, pud, new);
3531 #else
3532 if (pgd_present(*pud)) /* Another has populated it */
3533 pmd_free(mm, new);
3534 else
3535 pgd_populate(mm, pud, new);
3536 #endif /* __ARCH_HAS_4LEVEL_HACK */
3537 spin_unlock(&mm->page_table_lock);
3538 return 0;
3540 #endif /* __PAGETABLE_PMD_FOLDED */
3542 int make_pages_present(unsigned long addr, unsigned long end)
3544 int ret, len, write;
3545 struct vm_area_struct * vma;
3547 vma = find_vma(current->mm, addr);
3548 if (!vma)
3549 return -ENOMEM;
3551 * We want to touch writable mappings with a write fault in order
3552 * to break COW, except for shared mappings because these don't COW
3553 * and we would not want to dirty them for nothing.
3555 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3556 BUG_ON(addr >= end);
3557 BUG_ON(end > vma->vm_end);
3558 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3559 ret = get_user_pages(current, current->mm, addr,
3560 len, write, 0, NULL, NULL);
3561 if (ret < 0)
3562 return ret;
3563 return ret == len ? 0 : -EFAULT;
3566 #if !defined(__HAVE_ARCH_GATE_AREA)
3568 #if defined(AT_SYSINFO_EHDR)
3569 static struct vm_area_struct gate_vma;
3571 static int __init gate_vma_init(void)
3573 gate_vma.vm_mm = NULL;
3574 gate_vma.vm_start = FIXADDR_USER_START;
3575 gate_vma.vm_end = FIXADDR_USER_END;
3576 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3577 gate_vma.vm_page_prot = __P101;
3579 * Make sure the vDSO gets into every core dump.
3580 * Dumping its contents makes post-mortem fully interpretable later
3581 * without matching up the same kernel and hardware config to see
3582 * what PC values meant.
3584 gate_vma.vm_flags |= VM_ALWAYSDUMP;
3585 return 0;
3587 __initcall(gate_vma_init);
3588 #endif
3590 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3592 #ifdef AT_SYSINFO_EHDR
3593 return &gate_vma;
3594 #else
3595 return NULL;
3596 #endif
3599 int in_gate_area_no_mm(unsigned long addr)
3601 #ifdef AT_SYSINFO_EHDR
3602 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3603 return 1;
3604 #endif
3605 return 0;
3608 #endif /* __HAVE_ARCH_GATE_AREA */
3610 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3611 pte_t **ptepp, spinlock_t **ptlp)
3613 pgd_t *pgd;
3614 pud_t *pud;
3615 pmd_t *pmd;
3616 pte_t *ptep;
3618 pgd = pgd_offset(mm, address);
3619 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3620 goto out;
3622 pud = pud_offset(pgd, address);
3623 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3624 goto out;
3626 pmd = pmd_offset(pud, address);
3627 VM_BUG_ON(pmd_trans_huge(*pmd));
3628 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3629 goto out;
3631 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3632 if (pmd_huge(*pmd))
3633 goto out;
3635 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3636 if (!ptep)
3637 goto out;
3638 if (!pte_present(*ptep))
3639 goto unlock;
3640 *ptepp = ptep;
3641 return 0;
3642 unlock:
3643 pte_unmap_unlock(ptep, *ptlp);
3644 out:
3645 return -EINVAL;
3648 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3649 pte_t **ptepp, spinlock_t **ptlp)
3651 int res;
3653 /* (void) is needed to make gcc happy */
3654 (void) __cond_lock(*ptlp,
3655 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3656 return res;
3660 * follow_pfn - look up PFN at a user virtual address
3661 * @vma: memory mapping
3662 * @address: user virtual address
3663 * @pfn: location to store found PFN
3665 * Only IO mappings and raw PFN mappings are allowed.
3667 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3669 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3670 unsigned long *pfn)
3672 int ret = -EINVAL;
3673 spinlock_t *ptl;
3674 pte_t *ptep;
3676 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3677 return ret;
3679 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3680 if (ret)
3681 return ret;
3682 *pfn = pte_pfn(*ptep);
3683 pte_unmap_unlock(ptep, ptl);
3684 return 0;
3686 EXPORT_SYMBOL(follow_pfn);
3688 #ifdef CONFIG_HAVE_IOREMAP_PROT
3689 int follow_phys(struct vm_area_struct *vma,
3690 unsigned long address, unsigned int flags,
3691 unsigned long *prot, resource_size_t *phys)
3693 int ret = -EINVAL;
3694 pte_t *ptep, pte;
3695 spinlock_t *ptl;
3697 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3698 goto out;
3700 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3701 goto out;
3702 pte = *ptep;
3704 if ((flags & FOLL_WRITE) && !pte_write(pte))
3705 goto unlock;
3707 *prot = pgprot_val(pte_pgprot(pte));
3708 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3710 ret = 0;
3711 unlock:
3712 pte_unmap_unlock(ptep, ptl);
3713 out:
3714 return ret;
3717 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3718 void *buf, int len, int write)
3720 resource_size_t phys_addr;
3721 unsigned long prot = 0;
3722 void __iomem *maddr;
3723 int offset = addr & (PAGE_SIZE-1);
3725 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3726 return -EINVAL;
3728 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3729 if (write)
3730 memcpy_toio(maddr + offset, buf, len);
3731 else
3732 memcpy_fromio(buf, maddr + offset, len);
3733 iounmap(maddr);
3735 return len;
3737 #endif
3740 * Access another process' address space as given in mm. If non-NULL, use the
3741 * given task for page fault accounting.
3743 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3744 unsigned long addr, void *buf, int len, int write)
3746 struct vm_area_struct *vma;
3747 void *old_buf = buf;
3749 down_read(&mm->mmap_sem);
3750 /* ignore errors, just check how much was successfully transferred */
3751 while (len) {
3752 int bytes, ret, offset;
3753 void *maddr;
3754 struct page *page = NULL;
3756 ret = get_user_pages(tsk, mm, addr, 1,
3757 write, 1, &page, &vma);
3758 if (ret <= 0) {
3760 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3761 * we can access using slightly different code.
3763 #ifdef CONFIG_HAVE_IOREMAP_PROT
3764 vma = find_vma(mm, addr);
3765 if (!vma || vma->vm_start > addr)
3766 break;
3767 if (vma->vm_ops && vma->vm_ops->access)
3768 ret = vma->vm_ops->access(vma, addr, buf,
3769 len, write);
3770 if (ret <= 0)
3771 #endif
3772 break;
3773 bytes = ret;
3774 } else {
3775 bytes = len;
3776 offset = addr & (PAGE_SIZE-1);
3777 if (bytes > PAGE_SIZE-offset)
3778 bytes = PAGE_SIZE-offset;
3780 maddr = kmap(page);
3781 if (write) {
3782 copy_to_user_page(vma, page, addr,
3783 maddr + offset, buf, bytes);
3784 set_page_dirty_lock(page);
3785 } else {
3786 copy_from_user_page(vma, page, addr,
3787 buf, maddr + offset, bytes);
3789 kunmap(page);
3790 page_cache_release(page);
3792 len -= bytes;
3793 buf += bytes;
3794 addr += bytes;
3796 up_read(&mm->mmap_sem);
3798 return buf - old_buf;
3802 * access_remote_vm - access another process' address space
3803 * @mm: the mm_struct of the target address space
3804 * @addr: start address to access
3805 * @buf: source or destination buffer
3806 * @len: number of bytes to transfer
3807 * @write: whether the access is a write
3809 * The caller must hold a reference on @mm.
3811 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3812 void *buf, int len, int write)
3814 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3818 * Access another process' address space.
3819 * Source/target buffer must be kernel space,
3820 * Do not walk the page table directly, use get_user_pages
3822 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3823 void *buf, int len, int write)
3825 struct mm_struct *mm;
3826 int ret;
3828 mm = get_task_mm(tsk);
3829 if (!mm)
3830 return 0;
3832 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3833 mmput(mm);
3835 return ret;
3839 * Print the name of a VMA.
3841 void print_vma_addr(char *prefix, unsigned long ip)
3843 struct mm_struct *mm = current->mm;
3844 struct vm_area_struct *vma;
3847 * Do not print if we are in atomic
3848 * contexts (in exception stacks, etc.):
3850 if (preempt_count())
3851 return;
3853 down_read(&mm->mmap_sem);
3854 vma = find_vma(mm, ip);
3855 if (vma && vma->vm_file) {
3856 struct file *f = vma->vm_file;
3857 char *buf = (char *)__get_free_page(GFP_KERNEL);
3858 if (buf) {
3859 char *p, *s;
3861 p = d_path(&f->f_path, buf, PAGE_SIZE);
3862 if (IS_ERR(p))
3863 p = "?";
3864 s = strrchr(p, '/');
3865 if (s)
3866 p = s+1;
3867 printk("%s%s[%lx+%lx]", prefix, p,
3868 vma->vm_start,
3869 vma->vm_end - vma->vm_start);
3870 free_page((unsigned long)buf);
3873 up_read(&current->mm->mmap_sem);
3876 #ifdef CONFIG_PROVE_LOCKING
3877 void might_fault(void)
3880 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3881 * holding the mmap_sem, this is safe because kernel memory doesn't
3882 * get paged out, therefore we'll never actually fault, and the
3883 * below annotations will generate false positives.
3885 if (segment_eq(get_fs(), KERNEL_DS))
3886 return;
3888 might_sleep();
3890 * it would be nicer only to annotate paths which are not under
3891 * pagefault_disable, however that requires a larger audit and
3892 * providing helpers like get_user_atomic.
3894 if (!in_atomic() && current->mm)
3895 might_lock_read(&current->mm->mmap_sem);
3897 EXPORT_SYMBOL(might_fault);
3898 #endif
3900 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3901 static void clear_gigantic_page(struct page *page,
3902 unsigned long addr,
3903 unsigned int pages_per_huge_page)
3905 int i;
3906 struct page *p = page;
3908 might_sleep();
3909 for (i = 0; i < pages_per_huge_page;
3910 i++, p = mem_map_next(p, page, i)) {
3911 cond_resched();
3912 clear_user_highpage(p, addr + i * PAGE_SIZE);
3915 void clear_huge_page(struct page *page,
3916 unsigned long addr, unsigned int pages_per_huge_page)
3918 int i;
3920 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3921 clear_gigantic_page(page, addr, pages_per_huge_page);
3922 return;
3925 might_sleep();
3926 for (i = 0; i < pages_per_huge_page; i++) {
3927 cond_resched();
3928 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3932 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3933 unsigned long addr,
3934 struct vm_area_struct *vma,
3935 unsigned int pages_per_huge_page)
3937 int i;
3938 struct page *dst_base = dst;
3939 struct page *src_base = src;
3941 for (i = 0; i < pages_per_huge_page; ) {
3942 cond_resched();
3943 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3945 i++;
3946 dst = mem_map_next(dst, dst_base, i);
3947 src = mem_map_next(src, src_base, i);
3951 void copy_user_huge_page(struct page *dst, struct page *src,
3952 unsigned long addr, struct vm_area_struct *vma,
3953 unsigned int pages_per_huge_page)
3955 int i;
3957 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3958 copy_user_gigantic_page(dst, src, addr, vma,
3959 pages_per_huge_page);
3960 return;
3963 might_sleep();
3964 for (i = 0; i < pages_per_huge_page; i++) {
3965 cond_resched();
3966 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3969 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */