[ALSA] dt019x - Add PM support
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / slab.c
blobe5ec26e0c4603c9ee19a7ea5878426ea2420cddd
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in kmem_cache_t and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the semaphore 'cache_chain_sem'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/config.h>
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/seq_file.h>
98 #include <linux/notifier.h>
99 #include <linux/kallsyms.h>
100 #include <linux/cpu.h>
101 #include <linux/sysctl.h>
102 #include <linux/module.h>
103 #include <linux/rcupdate.h>
104 #include <linux/string.h>
105 #include <linux/nodemask.h>
107 #include <asm/uaccess.h>
108 #include <asm/cacheflush.h>
109 #include <asm/tlbflush.h>
110 #include <asm/page.h>
113 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
114 * SLAB_RED_ZONE & SLAB_POISON.
115 * 0 for faster, smaller code (especially in the critical paths).
117 * STATS - 1 to collect stats for /proc/slabinfo.
118 * 0 for faster, smaller code (especially in the critical paths).
120 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
123 #ifdef CONFIG_DEBUG_SLAB
124 #define DEBUG 1
125 #define STATS 1
126 #define FORCED_DEBUG 1
127 #else
128 #define DEBUG 0
129 #define STATS 0
130 #define FORCED_DEBUG 0
131 #endif
134 /* Shouldn't this be in a header file somewhere? */
135 #define BYTES_PER_WORD sizeof(void *)
137 #ifndef cache_line_size
138 #define cache_line_size() L1_CACHE_BYTES
139 #endif
141 #ifndef ARCH_KMALLOC_MINALIGN
143 * Enforce a minimum alignment for the kmalloc caches.
144 * Usually, the kmalloc caches are cache_line_size() aligned, except when
145 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
146 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
147 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
148 * Note that this flag disables some debug features.
150 #define ARCH_KMALLOC_MINALIGN 0
151 #endif
153 #ifndef ARCH_SLAB_MINALIGN
155 * Enforce a minimum alignment for all caches.
156 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
157 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
158 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
159 * some debug features.
161 #define ARCH_SLAB_MINALIGN 0
162 #endif
164 #ifndef ARCH_KMALLOC_FLAGS
165 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
166 #endif
168 /* Legal flag mask for kmem_cache_create(). */
169 #if DEBUG
170 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
171 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
172 SLAB_NO_REAP | SLAB_CACHE_DMA | \
173 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
174 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
175 SLAB_DESTROY_BY_RCU)
176 #else
177 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
178 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180 SLAB_DESTROY_BY_RCU)
181 #endif
184 * kmem_bufctl_t:
186 * Bufctl's are used for linking objs within a slab
187 * linked offsets.
189 * This implementation relies on "struct page" for locating the cache &
190 * slab an object belongs to.
191 * This allows the bufctl structure to be small (one int), but limits
192 * the number of objects a slab (not a cache) can contain when off-slab
193 * bufctls are used. The limit is the size of the largest general cache
194 * that does not use off-slab slabs.
195 * For 32bit archs with 4 kB pages, is this 56.
196 * This is not serious, as it is only for large objects, when it is unwise
197 * to have too many per slab.
198 * Note: This limit can be raised by introducing a general cache whose size
199 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
202 typedef unsigned int kmem_bufctl_t;
203 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
204 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
205 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
207 /* Max number of objs-per-slab for caches which use off-slab slabs.
208 * Needed to avoid a possible looping condition in cache_grow().
210 static unsigned long offslab_limit;
213 * struct slab
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 struct slab {
220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
224 kmem_bufctl_t free;
225 unsigned short nodeid;
229 * struct slab_rcu
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU. This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking. We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
242 * We assume struct slab_rcu can overlay struct slab when destroying.
244 struct slab_rcu {
245 struct rcu_head head;
246 kmem_cache_t *cachep;
247 void *addr;
251 * struct array_cache
253 * Purpose:
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
258 * The limit is stored in the per-cpu structure to reduce the data cache
259 * footprint.
262 struct array_cache {
263 unsigned int avail;
264 unsigned int limit;
265 unsigned int batchcount;
266 unsigned int touched;
267 spinlock_t lock;
268 void *entry[0]; /*
269 * Must have this definition in here for the proper
270 * alignment of array_cache. Also simplifies accessing
271 * the entries.
272 * [0] is for gcc 2.95. It should really be [].
276 /* bootstrap: The caches do not work without cpuarrays anymore,
277 * but the cpuarrays are allocated from the generic caches...
279 #define BOOT_CPUCACHE_ENTRIES 1
280 struct arraycache_init {
281 struct array_cache cache;
282 void * entries[BOOT_CPUCACHE_ENTRIES];
286 * The slab lists for all objects.
288 struct kmem_list3 {
289 struct list_head slabs_partial; /* partial list first, better asm code */
290 struct list_head slabs_full;
291 struct list_head slabs_free;
292 unsigned long free_objects;
293 unsigned long next_reap;
294 int free_touched;
295 unsigned int free_limit;
296 spinlock_t list_lock;
297 struct array_cache *shared; /* shared per node */
298 struct array_cache **alien; /* on other nodes */
302 * Need this for bootstrapping a per node allocator.
304 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
305 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
306 #define CACHE_CACHE 0
307 #define SIZE_AC 1
308 #define SIZE_L3 (1 + MAX_NUMNODES)
311 * This function must be completely optimized away if
312 * a constant is passed to it. Mostly the same as
313 * what is in linux/slab.h except it returns an
314 * index.
316 static __always_inline int index_of(const size_t size)
318 if (__builtin_constant_p(size)) {
319 int i = 0;
321 #define CACHE(x) \
322 if (size <=x) \
323 return i; \
324 else \
325 i++;
326 #include "linux/kmalloc_sizes.h"
327 #undef CACHE
329 extern void __bad_size(void);
330 __bad_size();
332 } else
333 BUG();
334 return 0;
337 #define INDEX_AC index_of(sizeof(struct arraycache_init))
338 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
340 static inline void kmem_list3_init(struct kmem_list3 *parent)
342 INIT_LIST_HEAD(&parent->slabs_full);
343 INIT_LIST_HEAD(&parent->slabs_partial);
344 INIT_LIST_HEAD(&parent->slabs_free);
345 parent->shared = NULL;
346 parent->alien = NULL;
347 spin_lock_init(&parent->list_lock);
348 parent->free_objects = 0;
349 parent->free_touched = 0;
352 #define MAKE_LIST(cachep, listp, slab, nodeid) \
353 do { \
354 INIT_LIST_HEAD(listp); \
355 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
356 } while (0)
358 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
359 do { \
360 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
361 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
362 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
363 } while (0)
366 * kmem_cache_t
368 * manages a cache.
371 struct kmem_cache {
372 /* 1) per-cpu data, touched during every alloc/free */
373 struct array_cache *array[NR_CPUS];
374 unsigned int batchcount;
375 unsigned int limit;
376 unsigned int shared;
377 unsigned int objsize;
378 /* 2) touched by every alloc & free from the backend */
379 struct kmem_list3 *nodelists[MAX_NUMNODES];
380 unsigned int flags; /* constant flags */
381 unsigned int num; /* # of objs per slab */
382 spinlock_t spinlock;
384 /* 3) cache_grow/shrink */
385 /* order of pgs per slab (2^n) */
386 unsigned int gfporder;
388 /* force GFP flags, e.g. GFP_DMA */
389 gfp_t gfpflags;
391 size_t colour; /* cache colouring range */
392 unsigned int colour_off; /* colour offset */
393 unsigned int colour_next; /* cache colouring */
394 kmem_cache_t *slabp_cache;
395 unsigned int slab_size;
396 unsigned int dflags; /* dynamic flags */
398 /* constructor func */
399 void (*ctor)(void *, kmem_cache_t *, unsigned long);
401 /* de-constructor func */
402 void (*dtor)(void *, kmem_cache_t *, unsigned long);
404 /* 4) cache creation/removal */
405 const char *name;
406 struct list_head next;
408 /* 5) statistics */
409 #if STATS
410 unsigned long num_active;
411 unsigned long num_allocations;
412 unsigned long high_mark;
413 unsigned long grown;
414 unsigned long reaped;
415 unsigned long errors;
416 unsigned long max_freeable;
417 unsigned long node_allocs;
418 unsigned long node_frees;
419 atomic_t allochit;
420 atomic_t allocmiss;
421 atomic_t freehit;
422 atomic_t freemiss;
423 #endif
424 #if DEBUG
425 int dbghead;
426 int reallen;
427 #endif
430 #define CFLGS_OFF_SLAB (0x80000000UL)
431 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
433 #define BATCHREFILL_LIMIT 16
434 /* Optimization question: fewer reaps means less
435 * probability for unnessary cpucache drain/refill cycles.
437 * OTOH the cpuarrays can contain lots of objects,
438 * which could lock up otherwise freeable slabs.
440 #define REAPTIMEOUT_CPUC (2*HZ)
441 #define REAPTIMEOUT_LIST3 (4*HZ)
443 #if STATS
444 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
445 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
446 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
447 #define STATS_INC_GROWN(x) ((x)->grown++)
448 #define STATS_INC_REAPED(x) ((x)->reaped++)
449 #define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
450 (x)->high_mark = (x)->num_active; \
451 } while (0)
452 #define STATS_INC_ERR(x) ((x)->errors++)
453 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
454 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
455 #define STATS_SET_FREEABLE(x, i) \
456 do { if ((x)->max_freeable < i) \
457 (x)->max_freeable = i; \
458 } while (0)
460 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
461 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
462 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
463 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
464 #else
465 #define STATS_INC_ACTIVE(x) do { } while (0)
466 #define STATS_DEC_ACTIVE(x) do { } while (0)
467 #define STATS_INC_ALLOCED(x) do { } while (0)
468 #define STATS_INC_GROWN(x) do { } while (0)
469 #define STATS_INC_REAPED(x) do { } while (0)
470 #define STATS_SET_HIGH(x) do { } while (0)
471 #define STATS_INC_ERR(x) do { } while (0)
472 #define STATS_INC_NODEALLOCS(x) do { } while (0)
473 #define STATS_INC_NODEFREES(x) do { } while (0)
474 #define STATS_SET_FREEABLE(x, i) \
475 do { } while (0)
477 #define STATS_INC_ALLOCHIT(x) do { } while (0)
478 #define STATS_INC_ALLOCMISS(x) do { } while (0)
479 #define STATS_INC_FREEHIT(x) do { } while (0)
480 #define STATS_INC_FREEMISS(x) do { } while (0)
481 #endif
483 #if DEBUG
484 /* Magic nums for obj red zoning.
485 * Placed in the first word before and the first word after an obj.
487 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
488 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
490 /* ...and for poisoning */
491 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
492 #define POISON_FREE 0x6b /* for use-after-free poisoning */
493 #define POISON_END 0xa5 /* end-byte of poisoning */
495 /* memory layout of objects:
496 * 0 : objp
497 * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that
498 * the end of an object is aligned with the end of the real
499 * allocation. Catches writes behind the end of the allocation.
500 * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1:
501 * redzone word.
502 * cachep->dbghead: The real object.
503 * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
504 * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
506 static int obj_dbghead(kmem_cache_t *cachep)
508 return cachep->dbghead;
511 static int obj_reallen(kmem_cache_t *cachep)
513 return cachep->reallen;
516 static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp)
518 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
519 return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD);
522 static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp)
524 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
525 if (cachep->flags & SLAB_STORE_USER)
526 return (unsigned long*) (objp+cachep->objsize-2*BYTES_PER_WORD);
527 return (unsigned long*) (objp+cachep->objsize-BYTES_PER_WORD);
530 static void **dbg_userword(kmem_cache_t *cachep, void *objp)
532 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
533 return (void**)(objp+cachep->objsize-BYTES_PER_WORD);
536 #else
538 #define obj_dbghead(x) 0
539 #define obj_reallen(cachep) (cachep->objsize)
540 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
541 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
542 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
544 #endif
547 * Maximum size of an obj (in 2^order pages)
548 * and absolute limit for the gfp order.
550 #if defined(CONFIG_LARGE_ALLOCS)
551 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
552 #define MAX_GFP_ORDER 13 /* up to 32Mb */
553 #elif defined(CONFIG_MMU)
554 #define MAX_OBJ_ORDER 5 /* 32 pages */
555 #define MAX_GFP_ORDER 5 /* 32 pages */
556 #else
557 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
558 #define MAX_GFP_ORDER 8 /* up to 1Mb */
559 #endif
562 * Do not go above this order unless 0 objects fit into the slab.
564 #define BREAK_GFP_ORDER_HI 1
565 #define BREAK_GFP_ORDER_LO 0
566 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
568 /* Functions for storing/retrieving the cachep and or slab from the
569 * global 'mem_map'. These are used to find the slab an obj belongs to.
570 * With kfree(), these are used to find the cache which an obj belongs to.
572 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
574 page->lru.next = (struct list_head *)cache;
577 static inline struct kmem_cache *page_get_cache(struct page *page)
579 return (struct kmem_cache *)page->lru.next;
582 static inline void page_set_slab(struct page *page, struct slab *slab)
584 page->lru.prev = (struct list_head *)slab;
587 static inline struct slab *page_get_slab(struct page *page)
589 return (struct slab *)page->lru.prev;
592 /* These are the default caches for kmalloc. Custom caches can have other sizes. */
593 struct cache_sizes malloc_sizes[] = {
594 #define CACHE(x) { .cs_size = (x) },
595 #include <linux/kmalloc_sizes.h>
596 CACHE(ULONG_MAX)
597 #undef CACHE
599 EXPORT_SYMBOL(malloc_sizes);
601 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
602 struct cache_names {
603 char *name;
604 char *name_dma;
607 static struct cache_names __initdata cache_names[] = {
608 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
609 #include <linux/kmalloc_sizes.h>
610 { NULL, }
611 #undef CACHE
614 static struct arraycache_init initarray_cache __initdata =
615 { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
616 static struct arraycache_init initarray_generic =
617 { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
619 /* internal cache of cache description objs */
620 static kmem_cache_t cache_cache = {
621 .batchcount = 1,
622 .limit = BOOT_CPUCACHE_ENTRIES,
623 .shared = 1,
624 .objsize = sizeof(kmem_cache_t),
625 .flags = SLAB_NO_REAP,
626 .spinlock = SPIN_LOCK_UNLOCKED,
627 .name = "kmem_cache",
628 #if DEBUG
629 .reallen = sizeof(kmem_cache_t),
630 #endif
633 /* Guard access to the cache-chain. */
634 static struct semaphore cache_chain_sem;
635 static struct list_head cache_chain;
638 * vm_enough_memory() looks at this to determine how many
639 * slab-allocated pages are possibly freeable under pressure
641 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
643 atomic_t slab_reclaim_pages;
646 * chicken and egg problem: delay the per-cpu array allocation
647 * until the general caches are up.
649 static enum {
650 NONE,
651 PARTIAL_AC,
652 PARTIAL_L3,
653 FULL
654 } g_cpucache_up;
656 static DEFINE_PER_CPU(struct work_struct, reap_work);
658 static void free_block(kmem_cache_t* cachep, void** objpp, int len, int node);
659 static void enable_cpucache (kmem_cache_t *cachep);
660 static void cache_reap (void *unused);
661 static int __node_shrink(kmem_cache_t *cachep, int node);
663 static inline struct array_cache *ac_data(kmem_cache_t *cachep)
665 return cachep->array[smp_processor_id()];
668 static inline kmem_cache_t *__find_general_cachep(size_t size, gfp_t gfpflags)
670 struct cache_sizes *csizep = malloc_sizes;
672 #if DEBUG
673 /* This happens if someone tries to call
674 * kmem_cache_create(), or __kmalloc(), before
675 * the generic caches are initialized.
677 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
678 #endif
679 while (size > csizep->cs_size)
680 csizep++;
683 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
684 * has cs_{dma,}cachep==NULL. Thus no special case
685 * for large kmalloc calls required.
687 if (unlikely(gfpflags & GFP_DMA))
688 return csizep->cs_dmacachep;
689 return csizep->cs_cachep;
692 kmem_cache_t *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
694 return __find_general_cachep(size, gfpflags);
696 EXPORT_SYMBOL(kmem_find_general_cachep);
698 /* Cal the num objs, wastage, and bytes left over for a given slab size. */
699 static void cache_estimate(unsigned long gfporder, size_t size, size_t align,
700 int flags, size_t *left_over, unsigned int *num)
702 int i;
703 size_t wastage = PAGE_SIZE<<gfporder;
704 size_t extra = 0;
705 size_t base = 0;
707 if (!(flags & CFLGS_OFF_SLAB)) {
708 base = sizeof(struct slab);
709 extra = sizeof(kmem_bufctl_t);
711 i = 0;
712 while (i*size + ALIGN(base+i*extra, align) <= wastage)
713 i++;
714 if (i > 0)
715 i--;
717 if (i > SLAB_LIMIT)
718 i = SLAB_LIMIT;
720 *num = i;
721 wastage -= i*size;
722 wastage -= ALIGN(base+i*extra, align);
723 *left_over = wastage;
726 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
728 static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg)
730 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
731 function, cachep->name, msg);
732 dump_stack();
736 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
737 * via the workqueue/eventd.
738 * Add the CPU number into the expiration time to minimize the possibility of
739 * the CPUs getting into lockstep and contending for the global cache chain
740 * lock.
742 static void __devinit start_cpu_timer(int cpu)
744 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
747 * When this gets called from do_initcalls via cpucache_init(),
748 * init_workqueues() has already run, so keventd will be setup
749 * at that time.
751 if (keventd_up() && reap_work->func == NULL) {
752 INIT_WORK(reap_work, cache_reap, NULL);
753 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
757 static struct array_cache *alloc_arraycache(int node, int entries,
758 int batchcount)
760 int memsize = sizeof(void*)*entries+sizeof(struct array_cache);
761 struct array_cache *nc = NULL;
763 nc = kmalloc_node(memsize, GFP_KERNEL, node);
764 if (nc) {
765 nc->avail = 0;
766 nc->limit = entries;
767 nc->batchcount = batchcount;
768 nc->touched = 0;
769 spin_lock_init(&nc->lock);
771 return nc;
774 #ifdef CONFIG_NUMA
775 static inline struct array_cache **alloc_alien_cache(int node, int limit)
777 struct array_cache **ac_ptr;
778 int memsize = sizeof(void*)*MAX_NUMNODES;
779 int i;
781 if (limit > 1)
782 limit = 12;
783 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
784 if (ac_ptr) {
785 for_each_node(i) {
786 if (i == node || !node_online(i)) {
787 ac_ptr[i] = NULL;
788 continue;
790 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
791 if (!ac_ptr[i]) {
792 for (i--; i <=0; i--)
793 kfree(ac_ptr[i]);
794 kfree(ac_ptr);
795 return NULL;
799 return ac_ptr;
802 static inline void free_alien_cache(struct array_cache **ac_ptr)
804 int i;
806 if (!ac_ptr)
807 return;
809 for_each_node(i)
810 kfree(ac_ptr[i]);
812 kfree(ac_ptr);
815 static inline void __drain_alien_cache(kmem_cache_t *cachep, struct array_cache *ac, int node)
817 struct kmem_list3 *rl3 = cachep->nodelists[node];
819 if (ac->avail) {
820 spin_lock(&rl3->list_lock);
821 free_block(cachep, ac->entry, ac->avail, node);
822 ac->avail = 0;
823 spin_unlock(&rl3->list_lock);
827 static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3)
829 int i=0;
830 struct array_cache *ac;
831 unsigned long flags;
833 for_each_online_node(i) {
834 ac = l3->alien[i];
835 if (ac) {
836 spin_lock_irqsave(&ac->lock, flags);
837 __drain_alien_cache(cachep, ac, i);
838 spin_unlock_irqrestore(&ac->lock, flags);
842 #else
843 #define alloc_alien_cache(node, limit) do { } while (0)
844 #define free_alien_cache(ac_ptr) do { } while (0)
845 #define drain_alien_cache(cachep, l3) do { } while (0)
846 #endif
848 static int __devinit cpuup_callback(struct notifier_block *nfb,
849 unsigned long action, void *hcpu)
851 long cpu = (long)hcpu;
852 kmem_cache_t* cachep;
853 struct kmem_list3 *l3 = NULL;
854 int node = cpu_to_node(cpu);
855 int memsize = sizeof(struct kmem_list3);
856 struct array_cache *nc = NULL;
858 switch (action) {
859 case CPU_UP_PREPARE:
860 down(&cache_chain_sem);
861 /* we need to do this right in the beginning since
862 * alloc_arraycache's are going to use this list.
863 * kmalloc_node allows us to add the slab to the right
864 * kmem_list3 and not this cpu's kmem_list3
867 list_for_each_entry(cachep, &cache_chain, next) {
868 /* setup the size64 kmemlist for cpu before we can
869 * begin anything. Make sure some other cpu on this
870 * node has not already allocated this
872 if (!cachep->nodelists[node]) {
873 if (!(l3 = kmalloc_node(memsize,
874 GFP_KERNEL, node)))
875 goto bad;
876 kmem_list3_init(l3);
877 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
878 ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
880 cachep->nodelists[node] = l3;
883 spin_lock_irq(&cachep->nodelists[node]->list_lock);
884 cachep->nodelists[node]->free_limit =
885 (1 + nr_cpus_node(node)) *
886 cachep->batchcount + cachep->num;
887 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
890 /* Now we can go ahead with allocating the shared array's
891 & array cache's */
892 list_for_each_entry(cachep, &cache_chain, next) {
893 nc = alloc_arraycache(node, cachep->limit,
894 cachep->batchcount);
895 if (!nc)
896 goto bad;
897 cachep->array[cpu] = nc;
899 l3 = cachep->nodelists[node];
900 BUG_ON(!l3);
901 if (!l3->shared) {
902 if (!(nc = alloc_arraycache(node,
903 cachep->shared*cachep->batchcount,
904 0xbaadf00d)))
905 goto bad;
907 /* we are serialised from CPU_DEAD or
908 CPU_UP_CANCELLED by the cpucontrol lock */
909 l3->shared = nc;
912 up(&cache_chain_sem);
913 break;
914 case CPU_ONLINE:
915 start_cpu_timer(cpu);
916 break;
917 #ifdef CONFIG_HOTPLUG_CPU
918 case CPU_DEAD:
919 /* fall thru */
920 case CPU_UP_CANCELED:
921 down(&cache_chain_sem);
923 list_for_each_entry(cachep, &cache_chain, next) {
924 struct array_cache *nc;
925 cpumask_t mask;
927 mask = node_to_cpumask(node);
928 spin_lock_irq(&cachep->spinlock);
929 /* cpu is dead; no one can alloc from it. */
930 nc = cachep->array[cpu];
931 cachep->array[cpu] = NULL;
932 l3 = cachep->nodelists[node];
934 if (!l3)
935 goto unlock_cache;
937 spin_lock(&l3->list_lock);
939 /* Free limit for this kmem_list3 */
940 l3->free_limit -= cachep->batchcount;
941 if (nc)
942 free_block(cachep, nc->entry, nc->avail, node);
944 if (!cpus_empty(mask)) {
945 spin_unlock(&l3->list_lock);
946 goto unlock_cache;
949 if (l3->shared) {
950 free_block(cachep, l3->shared->entry,
951 l3->shared->avail, node);
952 kfree(l3->shared);
953 l3->shared = NULL;
955 if (l3->alien) {
956 drain_alien_cache(cachep, l3);
957 free_alien_cache(l3->alien);
958 l3->alien = NULL;
961 /* free slabs belonging to this node */
962 if (__node_shrink(cachep, node)) {
963 cachep->nodelists[node] = NULL;
964 spin_unlock(&l3->list_lock);
965 kfree(l3);
966 } else {
967 spin_unlock(&l3->list_lock);
969 unlock_cache:
970 spin_unlock_irq(&cachep->spinlock);
971 kfree(nc);
973 up(&cache_chain_sem);
974 break;
975 #endif
977 return NOTIFY_OK;
978 bad:
979 up(&cache_chain_sem);
980 return NOTIFY_BAD;
983 static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
986 * swap the static kmem_list3 with kmalloced memory
988 static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list,
989 int nodeid)
991 struct kmem_list3 *ptr;
993 BUG_ON(cachep->nodelists[nodeid] != list);
994 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
995 BUG_ON(!ptr);
997 local_irq_disable();
998 memcpy(ptr, list, sizeof(struct kmem_list3));
999 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1000 cachep->nodelists[nodeid] = ptr;
1001 local_irq_enable();
1004 /* Initialisation.
1005 * Called after the gfp() functions have been enabled, and before smp_init().
1007 void __init kmem_cache_init(void)
1009 size_t left_over;
1010 struct cache_sizes *sizes;
1011 struct cache_names *names;
1012 int i;
1014 for (i = 0; i < NUM_INIT_LISTS; i++) {
1015 kmem_list3_init(&initkmem_list3[i]);
1016 if (i < MAX_NUMNODES)
1017 cache_cache.nodelists[i] = NULL;
1021 * Fragmentation resistance on low memory - only use bigger
1022 * page orders on machines with more than 32MB of memory.
1024 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1025 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1027 /* Bootstrap is tricky, because several objects are allocated
1028 * from caches that do not exist yet:
1029 * 1) initialize the cache_cache cache: it contains the kmem_cache_t
1030 * structures of all caches, except cache_cache itself: cache_cache
1031 * is statically allocated.
1032 * Initially an __init data area is used for the head array and the
1033 * kmem_list3 structures, it's replaced with a kmalloc allocated
1034 * array at the end of the bootstrap.
1035 * 2) Create the first kmalloc cache.
1036 * The kmem_cache_t for the new cache is allocated normally.
1037 * An __init data area is used for the head array.
1038 * 3) Create the remaining kmalloc caches, with minimally sized
1039 * head arrays.
1040 * 4) Replace the __init data head arrays for cache_cache and the first
1041 * kmalloc cache with kmalloc allocated arrays.
1042 * 5) Replace the __init data for kmem_list3 for cache_cache and
1043 * the other cache's with kmalloc allocated memory.
1044 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1047 /* 1) create the cache_cache */
1048 init_MUTEX(&cache_chain_sem);
1049 INIT_LIST_HEAD(&cache_chain);
1050 list_add(&cache_cache.next, &cache_chain);
1051 cache_cache.colour_off = cache_line_size();
1052 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1053 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1055 cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size());
1057 cache_estimate(0, cache_cache.objsize, cache_line_size(), 0,
1058 &left_over, &cache_cache.num);
1059 if (!cache_cache.num)
1060 BUG();
1062 cache_cache.colour = left_over/cache_cache.colour_off;
1063 cache_cache.colour_next = 0;
1064 cache_cache.slab_size = ALIGN(cache_cache.num*sizeof(kmem_bufctl_t) +
1065 sizeof(struct slab), cache_line_size());
1067 /* 2+3) create the kmalloc caches */
1068 sizes = malloc_sizes;
1069 names = cache_names;
1071 /* Initialize the caches that provide memory for the array cache
1072 * and the kmem_list3 structures first.
1073 * Without this, further allocations will bug
1076 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1077 sizes[INDEX_AC].cs_size, ARCH_KMALLOC_MINALIGN,
1078 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
1080 if (INDEX_AC != INDEX_L3)
1081 sizes[INDEX_L3].cs_cachep =
1082 kmem_cache_create(names[INDEX_L3].name,
1083 sizes[INDEX_L3].cs_size, ARCH_KMALLOC_MINALIGN,
1084 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
1086 while (sizes->cs_size != ULONG_MAX) {
1088 * For performance, all the general caches are L1 aligned.
1089 * This should be particularly beneficial on SMP boxes, as it
1090 * eliminates "false sharing".
1091 * Note for systems short on memory removing the alignment will
1092 * allow tighter packing of the smaller caches.
1094 if(!sizes->cs_cachep)
1095 sizes->cs_cachep = kmem_cache_create(names->name,
1096 sizes->cs_size, ARCH_KMALLOC_MINALIGN,
1097 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
1099 /* Inc off-slab bufctl limit until the ceiling is hit. */
1100 if (!(OFF_SLAB(sizes->cs_cachep))) {
1101 offslab_limit = sizes->cs_size-sizeof(struct slab);
1102 offslab_limit /= sizeof(kmem_bufctl_t);
1105 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1106 sizes->cs_size, ARCH_KMALLOC_MINALIGN,
1107 (ARCH_KMALLOC_FLAGS | SLAB_CACHE_DMA | SLAB_PANIC),
1108 NULL, NULL);
1110 sizes++;
1111 names++;
1113 /* 4) Replace the bootstrap head arrays */
1115 void * ptr;
1117 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1119 local_irq_disable();
1120 BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache);
1121 memcpy(ptr, ac_data(&cache_cache),
1122 sizeof(struct arraycache_init));
1123 cache_cache.array[smp_processor_id()] = ptr;
1124 local_irq_enable();
1126 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1128 local_irq_disable();
1129 BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep)
1130 != &initarray_generic.cache);
1131 memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep),
1132 sizeof(struct arraycache_init));
1133 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1134 ptr;
1135 local_irq_enable();
1137 /* 5) Replace the bootstrap kmem_list3's */
1139 int node;
1140 /* Replace the static kmem_list3 structures for the boot cpu */
1141 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1142 numa_node_id());
1144 for_each_online_node(node) {
1145 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1146 &initkmem_list3[SIZE_AC+node], node);
1148 if (INDEX_AC != INDEX_L3) {
1149 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1150 &initkmem_list3[SIZE_L3+node],
1151 node);
1156 /* 6) resize the head arrays to their final sizes */
1158 kmem_cache_t *cachep;
1159 down(&cache_chain_sem);
1160 list_for_each_entry(cachep, &cache_chain, next)
1161 enable_cpucache(cachep);
1162 up(&cache_chain_sem);
1165 /* Done! */
1166 g_cpucache_up = FULL;
1168 /* Register a cpu startup notifier callback
1169 * that initializes ac_data for all new cpus
1171 register_cpu_notifier(&cpucache_notifier);
1173 /* The reap timers are started later, with a module init call:
1174 * That part of the kernel is not yet operational.
1178 static int __init cpucache_init(void)
1180 int cpu;
1183 * Register the timers that return unneeded
1184 * pages to gfp.
1186 for_each_online_cpu(cpu)
1187 start_cpu_timer(cpu);
1189 return 0;
1192 __initcall(cpucache_init);
1195 * Interface to system's page allocator. No need to hold the cache-lock.
1197 * If we requested dmaable memory, we will get it. Even if we
1198 * did not request dmaable memory, we might get it, but that
1199 * would be relatively rare and ignorable.
1201 static void *kmem_getpages(kmem_cache_t *cachep, gfp_t flags, int nodeid)
1203 struct page *page;
1204 void *addr;
1205 int i;
1207 flags |= cachep->gfpflags;
1208 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1209 if (!page)
1210 return NULL;
1211 addr = page_address(page);
1213 i = (1 << cachep->gfporder);
1214 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1215 atomic_add(i, &slab_reclaim_pages);
1216 add_page_state(nr_slab, i);
1217 while (i--) {
1218 SetPageSlab(page);
1219 page++;
1221 return addr;
1225 * Interface to system's page release.
1227 static void kmem_freepages(kmem_cache_t *cachep, void *addr)
1229 unsigned long i = (1<<cachep->gfporder);
1230 struct page *page = virt_to_page(addr);
1231 const unsigned long nr_freed = i;
1233 while (i--) {
1234 if (!TestClearPageSlab(page))
1235 BUG();
1236 page++;
1238 sub_page_state(nr_slab, nr_freed);
1239 if (current->reclaim_state)
1240 current->reclaim_state->reclaimed_slab += nr_freed;
1241 free_pages((unsigned long)addr, cachep->gfporder);
1242 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1243 atomic_sub(1<<cachep->gfporder, &slab_reclaim_pages);
1246 static void kmem_rcu_free(struct rcu_head *head)
1248 struct slab_rcu *slab_rcu = (struct slab_rcu *) head;
1249 kmem_cache_t *cachep = slab_rcu->cachep;
1251 kmem_freepages(cachep, slab_rcu->addr);
1252 if (OFF_SLAB(cachep))
1253 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1256 #if DEBUG
1258 #ifdef CONFIG_DEBUG_PAGEALLOC
1259 static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr,
1260 unsigned long caller)
1262 int size = obj_reallen(cachep);
1264 addr = (unsigned long *)&((char*)addr)[obj_dbghead(cachep)];
1266 if (size < 5*sizeof(unsigned long))
1267 return;
1269 *addr++=0x12345678;
1270 *addr++=caller;
1271 *addr++=smp_processor_id();
1272 size -= 3*sizeof(unsigned long);
1274 unsigned long *sptr = &caller;
1275 unsigned long svalue;
1277 while (!kstack_end(sptr)) {
1278 svalue = *sptr++;
1279 if (kernel_text_address(svalue)) {
1280 *addr++=svalue;
1281 size -= sizeof(unsigned long);
1282 if (size <= sizeof(unsigned long))
1283 break;
1288 *addr++=0x87654321;
1290 #endif
1292 static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val)
1294 int size = obj_reallen(cachep);
1295 addr = &((char*)addr)[obj_dbghead(cachep)];
1297 memset(addr, val, size);
1298 *(unsigned char *)(addr+size-1) = POISON_END;
1301 static void dump_line(char *data, int offset, int limit)
1303 int i;
1304 printk(KERN_ERR "%03x:", offset);
1305 for (i=0;i<limit;i++) {
1306 printk(" %02x", (unsigned char)data[offset+i]);
1308 printk("\n");
1310 #endif
1312 #if DEBUG
1314 static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines)
1316 int i, size;
1317 char *realobj;
1319 if (cachep->flags & SLAB_RED_ZONE) {
1320 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1321 *dbg_redzone1(cachep, objp),
1322 *dbg_redzone2(cachep, objp));
1325 if (cachep->flags & SLAB_STORE_USER) {
1326 printk(KERN_ERR "Last user: [<%p>]",
1327 *dbg_userword(cachep, objp));
1328 print_symbol("(%s)",
1329 (unsigned long)*dbg_userword(cachep, objp));
1330 printk("\n");
1332 realobj = (char*)objp+obj_dbghead(cachep);
1333 size = obj_reallen(cachep);
1334 for (i=0; i<size && lines;i+=16, lines--) {
1335 int limit;
1336 limit = 16;
1337 if (i+limit > size)
1338 limit = size-i;
1339 dump_line(realobj, i, limit);
1343 static void check_poison_obj(kmem_cache_t *cachep, void *objp)
1345 char *realobj;
1346 int size, i;
1347 int lines = 0;
1349 realobj = (char*)objp+obj_dbghead(cachep);
1350 size = obj_reallen(cachep);
1352 for (i=0;i<size;i++) {
1353 char exp = POISON_FREE;
1354 if (i == size-1)
1355 exp = POISON_END;
1356 if (realobj[i] != exp) {
1357 int limit;
1358 /* Mismatch ! */
1359 /* Print header */
1360 if (lines == 0) {
1361 printk(KERN_ERR "Slab corruption: start=%p, len=%d\n",
1362 realobj, size);
1363 print_objinfo(cachep, objp, 0);
1365 /* Hexdump the affected line */
1366 i = (i/16)*16;
1367 limit = 16;
1368 if (i+limit > size)
1369 limit = size-i;
1370 dump_line(realobj, i, limit);
1371 i += 16;
1372 lines++;
1373 /* Limit to 5 lines */
1374 if (lines > 5)
1375 break;
1378 if (lines != 0) {
1379 /* Print some data about the neighboring objects, if they
1380 * exist:
1382 struct slab *slabp = page_get_slab(virt_to_page(objp));
1383 int objnr;
1385 objnr = (objp-slabp->s_mem)/cachep->objsize;
1386 if (objnr) {
1387 objp = slabp->s_mem+(objnr-1)*cachep->objsize;
1388 realobj = (char*)objp+obj_dbghead(cachep);
1389 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1390 realobj, size);
1391 print_objinfo(cachep, objp, 2);
1393 if (objnr+1 < cachep->num) {
1394 objp = slabp->s_mem+(objnr+1)*cachep->objsize;
1395 realobj = (char*)objp+obj_dbghead(cachep);
1396 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1397 realobj, size);
1398 print_objinfo(cachep, objp, 2);
1402 #endif
1404 /* Destroy all the objs in a slab, and release the mem back to the system.
1405 * Before calling the slab must have been unlinked from the cache.
1406 * The cache-lock is not held/needed.
1408 static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp)
1410 void *addr = slabp->s_mem - slabp->colouroff;
1412 #if DEBUG
1413 int i;
1414 for (i = 0; i < cachep->num; i++) {
1415 void *objp = slabp->s_mem + cachep->objsize * i;
1417 if (cachep->flags & SLAB_POISON) {
1418 #ifdef CONFIG_DEBUG_PAGEALLOC
1419 if ((cachep->objsize%PAGE_SIZE)==0 && OFF_SLAB(cachep))
1420 kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE,1);
1421 else
1422 check_poison_obj(cachep, objp);
1423 #else
1424 check_poison_obj(cachep, objp);
1425 #endif
1427 if (cachep->flags & SLAB_RED_ZONE) {
1428 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1429 slab_error(cachep, "start of a freed object "
1430 "was overwritten");
1431 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1432 slab_error(cachep, "end of a freed object "
1433 "was overwritten");
1435 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1436 (cachep->dtor)(objp+obj_dbghead(cachep), cachep, 0);
1438 #else
1439 if (cachep->dtor) {
1440 int i;
1441 for (i = 0; i < cachep->num; i++) {
1442 void* objp = slabp->s_mem+cachep->objsize*i;
1443 (cachep->dtor)(objp, cachep, 0);
1446 #endif
1448 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1449 struct slab_rcu *slab_rcu;
1451 slab_rcu = (struct slab_rcu *) slabp;
1452 slab_rcu->cachep = cachep;
1453 slab_rcu->addr = addr;
1454 call_rcu(&slab_rcu->head, kmem_rcu_free);
1455 } else {
1456 kmem_freepages(cachep, addr);
1457 if (OFF_SLAB(cachep))
1458 kmem_cache_free(cachep->slabp_cache, slabp);
1462 /* For setting up all the kmem_list3s for cache whose objsize is same
1463 as size of kmem_list3. */
1464 static inline void set_up_list3s(kmem_cache_t *cachep, int index)
1466 int node;
1468 for_each_online_node(node) {
1469 cachep->nodelists[node] = &initkmem_list3[index+node];
1470 cachep->nodelists[node]->next_reap = jiffies +
1471 REAPTIMEOUT_LIST3 +
1472 ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
1477 * kmem_cache_create - Create a cache.
1478 * @name: A string which is used in /proc/slabinfo to identify this cache.
1479 * @size: The size of objects to be created in this cache.
1480 * @align: The required alignment for the objects.
1481 * @flags: SLAB flags
1482 * @ctor: A constructor for the objects.
1483 * @dtor: A destructor for the objects.
1485 * Returns a ptr to the cache on success, NULL on failure.
1486 * Cannot be called within a int, but can be interrupted.
1487 * The @ctor is run when new pages are allocated by the cache
1488 * and the @dtor is run before the pages are handed back.
1490 * @name must be valid until the cache is destroyed. This implies that
1491 * the module calling this has to destroy the cache before getting
1492 * unloaded.
1494 * The flags are
1496 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1497 * to catch references to uninitialised memory.
1499 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1500 * for buffer overruns.
1502 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1503 * memory pressure.
1505 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1506 * cacheline. This can be beneficial if you're counting cycles as closely
1507 * as davem.
1509 kmem_cache_t *
1510 kmem_cache_create (const char *name, size_t size, size_t align,
1511 unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
1512 void (*dtor)(void*, kmem_cache_t *, unsigned long))
1514 size_t left_over, slab_size, ralign;
1515 kmem_cache_t *cachep = NULL;
1516 struct list_head *p;
1519 * Sanity checks... these are all serious usage bugs.
1521 if ((!name) ||
1522 in_interrupt() ||
1523 (size < BYTES_PER_WORD) ||
1524 (size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) ||
1525 (dtor && !ctor)) {
1526 printk(KERN_ERR "%s: Early error in slab %s\n",
1527 __FUNCTION__, name);
1528 BUG();
1531 down(&cache_chain_sem);
1533 list_for_each(p, &cache_chain) {
1534 kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
1535 mm_segment_t old_fs = get_fs();
1536 char tmp;
1537 int res;
1540 * This happens when the module gets unloaded and doesn't
1541 * destroy its slab cache and no-one else reuses the vmalloc
1542 * area of the module. Print a warning.
1544 set_fs(KERNEL_DS);
1545 res = __get_user(tmp, pc->name);
1546 set_fs(old_fs);
1547 if (res) {
1548 printk("SLAB: cache with size %d has lost its name\n",
1549 pc->objsize);
1550 continue;
1553 if (!strcmp(pc->name,name)) {
1554 printk("kmem_cache_create: duplicate cache %s\n", name);
1555 dump_stack();
1556 goto oops;
1560 #if DEBUG
1561 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1562 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1563 /* No constructor, but inital state check requested */
1564 printk(KERN_ERR "%s: No con, but init state check "
1565 "requested - %s\n", __FUNCTION__, name);
1566 flags &= ~SLAB_DEBUG_INITIAL;
1569 #if FORCED_DEBUG
1571 * Enable redzoning and last user accounting, except for caches with
1572 * large objects, if the increased size would increase the object size
1573 * above the next power of two: caches with object sizes just above a
1574 * power of two have a significant amount of internal fragmentation.
1576 if ((size < 4096 || fls(size-1) == fls(size-1+3*BYTES_PER_WORD)))
1577 flags |= SLAB_RED_ZONE|SLAB_STORE_USER;
1578 if (!(flags & SLAB_DESTROY_BY_RCU))
1579 flags |= SLAB_POISON;
1580 #endif
1581 if (flags & SLAB_DESTROY_BY_RCU)
1582 BUG_ON(flags & SLAB_POISON);
1583 #endif
1584 if (flags & SLAB_DESTROY_BY_RCU)
1585 BUG_ON(dtor);
1588 * Always checks flags, a caller might be expecting debug
1589 * support which isn't available.
1591 if (flags & ~CREATE_MASK)
1592 BUG();
1594 /* Check that size is in terms of words. This is needed to avoid
1595 * unaligned accesses for some archs when redzoning is used, and makes
1596 * sure any on-slab bufctl's are also correctly aligned.
1598 if (size & (BYTES_PER_WORD-1)) {
1599 size += (BYTES_PER_WORD-1);
1600 size &= ~(BYTES_PER_WORD-1);
1603 /* calculate out the final buffer alignment: */
1604 /* 1) arch recommendation: can be overridden for debug */
1605 if (flags & SLAB_HWCACHE_ALIGN) {
1606 /* Default alignment: as specified by the arch code.
1607 * Except if an object is really small, then squeeze multiple
1608 * objects into one cacheline.
1610 ralign = cache_line_size();
1611 while (size <= ralign/2)
1612 ralign /= 2;
1613 } else {
1614 ralign = BYTES_PER_WORD;
1616 /* 2) arch mandated alignment: disables debug if necessary */
1617 if (ralign < ARCH_SLAB_MINALIGN) {
1618 ralign = ARCH_SLAB_MINALIGN;
1619 if (ralign > BYTES_PER_WORD)
1620 flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER);
1622 /* 3) caller mandated alignment: disables debug if necessary */
1623 if (ralign < align) {
1624 ralign = align;
1625 if (ralign > BYTES_PER_WORD)
1626 flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER);
1628 /* 4) Store it. Note that the debug code below can reduce
1629 * the alignment to BYTES_PER_WORD.
1631 align = ralign;
1633 /* Get cache's description obj. */
1634 cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1635 if (!cachep)
1636 goto oops;
1637 memset(cachep, 0, sizeof(kmem_cache_t));
1639 #if DEBUG
1640 cachep->reallen = size;
1642 if (flags & SLAB_RED_ZONE) {
1643 /* redzoning only works with word aligned caches */
1644 align = BYTES_PER_WORD;
1646 /* add space for red zone words */
1647 cachep->dbghead += BYTES_PER_WORD;
1648 size += 2*BYTES_PER_WORD;
1650 if (flags & SLAB_STORE_USER) {
1651 /* user store requires word alignment and
1652 * one word storage behind the end of the real
1653 * object.
1655 align = BYTES_PER_WORD;
1656 size += BYTES_PER_WORD;
1658 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
1659 if (size >= malloc_sizes[INDEX_L3+1].cs_size && cachep->reallen > cache_line_size() && size < PAGE_SIZE) {
1660 cachep->dbghead += PAGE_SIZE - size;
1661 size = PAGE_SIZE;
1663 #endif
1664 #endif
1666 /* Determine if the slab management is 'on' or 'off' slab. */
1667 if (size >= (PAGE_SIZE>>3))
1669 * Size is large, assume best to place the slab management obj
1670 * off-slab (should allow better packing of objs).
1672 flags |= CFLGS_OFF_SLAB;
1674 size = ALIGN(size, align);
1676 if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
1678 * A VFS-reclaimable slab tends to have most allocations
1679 * as GFP_NOFS and we really don't want to have to be allocating
1680 * higher-order pages when we are unable to shrink dcache.
1682 cachep->gfporder = 0;
1683 cache_estimate(cachep->gfporder, size, align, flags,
1684 &left_over, &cachep->num);
1685 } else {
1687 * Calculate size (in pages) of slabs, and the num of objs per
1688 * slab. This could be made much more intelligent. For now,
1689 * try to avoid using high page-orders for slabs. When the
1690 * gfp() funcs are more friendly towards high-order requests,
1691 * this should be changed.
1693 do {
1694 unsigned int break_flag = 0;
1695 cal_wastage:
1696 cache_estimate(cachep->gfporder, size, align, flags,
1697 &left_over, &cachep->num);
1698 if (break_flag)
1699 break;
1700 if (cachep->gfporder >= MAX_GFP_ORDER)
1701 break;
1702 if (!cachep->num)
1703 goto next;
1704 if (flags & CFLGS_OFF_SLAB &&
1705 cachep->num > offslab_limit) {
1706 /* This num of objs will cause problems. */
1707 cachep->gfporder--;
1708 break_flag++;
1709 goto cal_wastage;
1713 * Large num of objs is good, but v. large slabs are
1714 * currently bad for the gfp()s.
1716 if (cachep->gfporder >= slab_break_gfp_order)
1717 break;
1719 if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder))
1720 break; /* Acceptable internal fragmentation. */
1721 next:
1722 cachep->gfporder++;
1723 } while (1);
1726 if (!cachep->num) {
1727 printk("kmem_cache_create: couldn't create cache %s.\n", name);
1728 kmem_cache_free(&cache_cache, cachep);
1729 cachep = NULL;
1730 goto oops;
1732 slab_size = ALIGN(cachep->num*sizeof(kmem_bufctl_t)
1733 + sizeof(struct slab), align);
1736 * If the slab has been placed off-slab, and we have enough space then
1737 * move it on-slab. This is at the expense of any extra colouring.
1739 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
1740 flags &= ~CFLGS_OFF_SLAB;
1741 left_over -= slab_size;
1744 if (flags & CFLGS_OFF_SLAB) {
1745 /* really off slab. No need for manual alignment */
1746 slab_size = cachep->num*sizeof(kmem_bufctl_t)+sizeof(struct slab);
1749 cachep->colour_off = cache_line_size();
1750 /* Offset must be a multiple of the alignment. */
1751 if (cachep->colour_off < align)
1752 cachep->colour_off = align;
1753 cachep->colour = left_over/cachep->colour_off;
1754 cachep->slab_size = slab_size;
1755 cachep->flags = flags;
1756 cachep->gfpflags = 0;
1757 if (flags & SLAB_CACHE_DMA)
1758 cachep->gfpflags |= GFP_DMA;
1759 spin_lock_init(&cachep->spinlock);
1760 cachep->objsize = size;
1762 if (flags & CFLGS_OFF_SLAB)
1763 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1764 cachep->ctor = ctor;
1765 cachep->dtor = dtor;
1766 cachep->name = name;
1768 /* Don't let CPUs to come and go */
1769 lock_cpu_hotplug();
1771 if (g_cpucache_up == FULL) {
1772 enable_cpucache(cachep);
1773 } else {
1774 if (g_cpucache_up == NONE) {
1775 /* Note: the first kmem_cache_create must create
1776 * the cache that's used by kmalloc(24), otherwise
1777 * the creation of further caches will BUG().
1779 cachep->array[smp_processor_id()] =
1780 &initarray_generic.cache;
1782 /* If the cache that's used by
1783 * kmalloc(sizeof(kmem_list3)) is the first cache,
1784 * then we need to set up all its list3s, otherwise
1785 * the creation of further caches will BUG().
1787 set_up_list3s(cachep, SIZE_AC);
1788 if (INDEX_AC == INDEX_L3)
1789 g_cpucache_up = PARTIAL_L3;
1790 else
1791 g_cpucache_up = PARTIAL_AC;
1792 } else {
1793 cachep->array[smp_processor_id()] =
1794 kmalloc(sizeof(struct arraycache_init),
1795 GFP_KERNEL);
1797 if (g_cpucache_up == PARTIAL_AC) {
1798 set_up_list3s(cachep, SIZE_L3);
1799 g_cpucache_up = PARTIAL_L3;
1800 } else {
1801 int node;
1802 for_each_online_node(node) {
1804 cachep->nodelists[node] =
1805 kmalloc_node(sizeof(struct kmem_list3),
1806 GFP_KERNEL, node);
1807 BUG_ON(!cachep->nodelists[node]);
1808 kmem_list3_init(cachep->nodelists[node]);
1812 cachep->nodelists[numa_node_id()]->next_reap =
1813 jiffies + REAPTIMEOUT_LIST3 +
1814 ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
1816 BUG_ON(!ac_data(cachep));
1817 ac_data(cachep)->avail = 0;
1818 ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1819 ac_data(cachep)->batchcount = 1;
1820 ac_data(cachep)->touched = 0;
1821 cachep->batchcount = 1;
1822 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1825 /* cache setup completed, link it into the list */
1826 list_add(&cachep->next, &cache_chain);
1827 unlock_cpu_hotplug();
1828 oops:
1829 if (!cachep && (flags & SLAB_PANIC))
1830 panic("kmem_cache_create(): failed to create slab `%s'\n",
1831 name);
1832 up(&cache_chain_sem);
1833 return cachep;
1835 EXPORT_SYMBOL(kmem_cache_create);
1837 #if DEBUG
1838 static void check_irq_off(void)
1840 BUG_ON(!irqs_disabled());
1843 static void check_irq_on(void)
1845 BUG_ON(irqs_disabled());
1848 static void check_spinlock_acquired(kmem_cache_t *cachep)
1850 #ifdef CONFIG_SMP
1851 check_irq_off();
1852 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1853 #endif
1856 static inline void check_spinlock_acquired_node(kmem_cache_t *cachep, int node)
1858 #ifdef CONFIG_SMP
1859 check_irq_off();
1860 assert_spin_locked(&cachep->nodelists[node]->list_lock);
1861 #endif
1864 #else
1865 #define check_irq_off() do { } while(0)
1866 #define check_irq_on() do { } while(0)
1867 #define check_spinlock_acquired(x) do { } while(0)
1868 #define check_spinlock_acquired_node(x, y) do { } while(0)
1869 #endif
1872 * Waits for all CPUs to execute func().
1874 static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg)
1876 check_irq_on();
1877 preempt_disable();
1879 local_irq_disable();
1880 func(arg);
1881 local_irq_enable();
1883 if (smp_call_function(func, arg, 1, 1))
1884 BUG();
1886 preempt_enable();
1889 static void drain_array_locked(kmem_cache_t* cachep,
1890 struct array_cache *ac, int force, int node);
1892 static void do_drain(void *arg)
1894 kmem_cache_t *cachep = (kmem_cache_t*)arg;
1895 struct array_cache *ac;
1896 int node = numa_node_id();
1898 check_irq_off();
1899 ac = ac_data(cachep);
1900 spin_lock(&cachep->nodelists[node]->list_lock);
1901 free_block(cachep, ac->entry, ac->avail, node);
1902 spin_unlock(&cachep->nodelists[node]->list_lock);
1903 ac->avail = 0;
1906 static void drain_cpu_caches(kmem_cache_t *cachep)
1908 struct kmem_list3 *l3;
1909 int node;
1911 smp_call_function_all_cpus(do_drain, cachep);
1912 check_irq_on();
1913 spin_lock_irq(&cachep->spinlock);
1914 for_each_online_node(node) {
1915 l3 = cachep->nodelists[node];
1916 if (l3) {
1917 spin_lock(&l3->list_lock);
1918 drain_array_locked(cachep, l3->shared, 1, node);
1919 spin_unlock(&l3->list_lock);
1920 if (l3->alien)
1921 drain_alien_cache(cachep, l3);
1924 spin_unlock_irq(&cachep->spinlock);
1927 static int __node_shrink(kmem_cache_t *cachep, int node)
1929 struct slab *slabp;
1930 struct kmem_list3 *l3 = cachep->nodelists[node];
1931 int ret;
1933 for (;;) {
1934 struct list_head *p;
1936 p = l3->slabs_free.prev;
1937 if (p == &l3->slabs_free)
1938 break;
1940 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
1941 #if DEBUG
1942 if (slabp->inuse)
1943 BUG();
1944 #endif
1945 list_del(&slabp->list);
1947 l3->free_objects -= cachep->num;
1948 spin_unlock_irq(&l3->list_lock);
1949 slab_destroy(cachep, slabp);
1950 spin_lock_irq(&l3->list_lock);
1952 ret = !list_empty(&l3->slabs_full) ||
1953 !list_empty(&l3->slabs_partial);
1954 return ret;
1957 static int __cache_shrink(kmem_cache_t *cachep)
1959 int ret = 0, i = 0;
1960 struct kmem_list3 *l3;
1962 drain_cpu_caches(cachep);
1964 check_irq_on();
1965 for_each_online_node(i) {
1966 l3 = cachep->nodelists[i];
1967 if (l3) {
1968 spin_lock_irq(&l3->list_lock);
1969 ret += __node_shrink(cachep, i);
1970 spin_unlock_irq(&l3->list_lock);
1973 return (ret ? 1 : 0);
1977 * kmem_cache_shrink - Shrink a cache.
1978 * @cachep: The cache to shrink.
1980 * Releases as many slabs as possible for a cache.
1981 * To help debugging, a zero exit status indicates all slabs were released.
1983 int kmem_cache_shrink(kmem_cache_t *cachep)
1985 if (!cachep || in_interrupt())
1986 BUG();
1988 return __cache_shrink(cachep);
1990 EXPORT_SYMBOL(kmem_cache_shrink);
1993 * kmem_cache_destroy - delete a cache
1994 * @cachep: the cache to destroy
1996 * Remove a kmem_cache_t object from the slab cache.
1997 * Returns 0 on success.
1999 * It is expected this function will be called by a module when it is
2000 * unloaded. This will remove the cache completely, and avoid a duplicate
2001 * cache being allocated each time a module is loaded and unloaded, if the
2002 * module doesn't have persistent in-kernel storage across loads and unloads.
2004 * The cache must be empty before calling this function.
2006 * The caller must guarantee that noone will allocate memory from the cache
2007 * during the kmem_cache_destroy().
2009 int kmem_cache_destroy(kmem_cache_t * cachep)
2011 int i;
2012 struct kmem_list3 *l3;
2014 if (!cachep || in_interrupt())
2015 BUG();
2017 /* Don't let CPUs to come and go */
2018 lock_cpu_hotplug();
2020 /* Find the cache in the chain of caches. */
2021 down(&cache_chain_sem);
2023 * the chain is never empty, cache_cache is never destroyed
2025 list_del(&cachep->next);
2026 up(&cache_chain_sem);
2028 if (__cache_shrink(cachep)) {
2029 slab_error(cachep, "Can't free all objects");
2030 down(&cache_chain_sem);
2031 list_add(&cachep->next,&cache_chain);
2032 up(&cache_chain_sem);
2033 unlock_cpu_hotplug();
2034 return 1;
2037 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2038 synchronize_rcu();
2040 for_each_online_cpu(i)
2041 kfree(cachep->array[i]);
2043 /* NUMA: free the list3 structures */
2044 for_each_online_node(i) {
2045 if ((l3 = cachep->nodelists[i])) {
2046 kfree(l3->shared);
2047 free_alien_cache(l3->alien);
2048 kfree(l3);
2051 kmem_cache_free(&cache_cache, cachep);
2053 unlock_cpu_hotplug();
2055 return 0;
2057 EXPORT_SYMBOL(kmem_cache_destroy);
2059 /* Get the memory for a slab management obj. */
2060 static struct slab* alloc_slabmgmt(kmem_cache_t *cachep, void *objp,
2061 int colour_off, gfp_t local_flags)
2063 struct slab *slabp;
2065 if (OFF_SLAB(cachep)) {
2066 /* Slab management obj is off-slab. */
2067 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2068 if (!slabp)
2069 return NULL;
2070 } else {
2071 slabp = objp+colour_off;
2072 colour_off += cachep->slab_size;
2074 slabp->inuse = 0;
2075 slabp->colouroff = colour_off;
2076 slabp->s_mem = objp+colour_off;
2078 return slabp;
2081 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2083 return (kmem_bufctl_t *)(slabp+1);
2086 static void cache_init_objs(kmem_cache_t *cachep,
2087 struct slab *slabp, unsigned long ctor_flags)
2089 int i;
2091 for (i = 0; i < cachep->num; i++) {
2092 void *objp = slabp->s_mem+cachep->objsize*i;
2093 #if DEBUG
2094 /* need to poison the objs? */
2095 if (cachep->flags & SLAB_POISON)
2096 poison_obj(cachep, objp, POISON_FREE);
2097 if (cachep->flags & SLAB_STORE_USER)
2098 *dbg_userword(cachep, objp) = NULL;
2100 if (cachep->flags & SLAB_RED_ZONE) {
2101 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2102 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2105 * Constructors are not allowed to allocate memory from
2106 * the same cache which they are a constructor for.
2107 * Otherwise, deadlock. They must also be threaded.
2109 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2110 cachep->ctor(objp+obj_dbghead(cachep), cachep, ctor_flags);
2112 if (cachep->flags & SLAB_RED_ZONE) {
2113 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2114 slab_error(cachep, "constructor overwrote the"
2115 " end of an object");
2116 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2117 slab_error(cachep, "constructor overwrote the"
2118 " start of an object");
2120 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2121 kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
2122 #else
2123 if (cachep->ctor)
2124 cachep->ctor(objp, cachep, ctor_flags);
2125 #endif
2126 slab_bufctl(slabp)[i] = i+1;
2128 slab_bufctl(slabp)[i-1] = BUFCTL_END;
2129 slabp->free = 0;
2132 static void kmem_flagcheck(kmem_cache_t *cachep, gfp_t flags)
2134 if (flags & SLAB_DMA) {
2135 if (!(cachep->gfpflags & GFP_DMA))
2136 BUG();
2137 } else {
2138 if (cachep->gfpflags & GFP_DMA)
2139 BUG();
2143 static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp)
2145 int i;
2146 struct page *page;
2148 /* Nasty!!!!!! I hope this is OK. */
2149 i = 1 << cachep->gfporder;
2150 page = virt_to_page(objp);
2151 do {
2152 page_set_cache(page, cachep);
2153 page_set_slab(page, slabp);
2154 page++;
2155 } while (--i);
2159 * Grow (by 1) the number of slabs within a cache. This is called by
2160 * kmem_cache_alloc() when there are no active objs left in a cache.
2162 static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid)
2164 struct slab *slabp;
2165 void *objp;
2166 size_t offset;
2167 gfp_t local_flags;
2168 unsigned long ctor_flags;
2169 struct kmem_list3 *l3;
2171 /* Be lazy and only check for valid flags here,
2172 * keeping it out of the critical path in kmem_cache_alloc().
2174 if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW))
2175 BUG();
2176 if (flags & SLAB_NO_GROW)
2177 return 0;
2179 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2180 local_flags = (flags & SLAB_LEVEL_MASK);
2181 if (!(local_flags & __GFP_WAIT))
2183 * Not allowed to sleep. Need to tell a constructor about
2184 * this - it might need to know...
2186 ctor_flags |= SLAB_CTOR_ATOMIC;
2188 /* About to mess with non-constant members - lock. */
2189 check_irq_off();
2190 spin_lock(&cachep->spinlock);
2192 /* Get colour for the slab, and cal the next value. */
2193 offset = cachep->colour_next;
2194 cachep->colour_next++;
2195 if (cachep->colour_next >= cachep->colour)
2196 cachep->colour_next = 0;
2197 offset *= cachep->colour_off;
2199 spin_unlock(&cachep->spinlock);
2201 check_irq_off();
2202 if (local_flags & __GFP_WAIT)
2203 local_irq_enable();
2206 * The test for missing atomic flag is performed here, rather than
2207 * the more obvious place, simply to reduce the critical path length
2208 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2209 * will eventually be caught here (where it matters).
2211 kmem_flagcheck(cachep, flags);
2213 /* Get mem for the objs.
2214 * Attempt to allocate a physical page from 'nodeid',
2216 if (!(objp = kmem_getpages(cachep, flags, nodeid)))
2217 goto failed;
2219 /* Get slab management. */
2220 if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
2221 goto opps1;
2223 slabp->nodeid = nodeid;
2224 set_slab_attr(cachep, slabp, objp);
2226 cache_init_objs(cachep, slabp, ctor_flags);
2228 if (local_flags & __GFP_WAIT)
2229 local_irq_disable();
2230 check_irq_off();
2231 l3 = cachep->nodelists[nodeid];
2232 spin_lock(&l3->list_lock);
2234 /* Make slab active. */
2235 list_add_tail(&slabp->list, &(l3->slabs_free));
2236 STATS_INC_GROWN(cachep);
2237 l3->free_objects += cachep->num;
2238 spin_unlock(&l3->list_lock);
2239 return 1;
2240 opps1:
2241 kmem_freepages(cachep, objp);
2242 failed:
2243 if (local_flags & __GFP_WAIT)
2244 local_irq_disable();
2245 return 0;
2248 #if DEBUG
2251 * Perform extra freeing checks:
2252 * - detect bad pointers.
2253 * - POISON/RED_ZONE checking
2254 * - destructor calls, for caches with POISON+dtor
2256 static void kfree_debugcheck(const void *objp)
2258 struct page *page;
2260 if (!virt_addr_valid(objp)) {
2261 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2262 (unsigned long)objp);
2263 BUG();
2265 page = virt_to_page(objp);
2266 if (!PageSlab(page)) {
2267 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp);
2268 BUG();
2272 static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp,
2273 void *caller)
2275 struct page *page;
2276 unsigned int objnr;
2277 struct slab *slabp;
2279 objp -= obj_dbghead(cachep);
2280 kfree_debugcheck(objp);
2281 page = virt_to_page(objp);
2283 if (page_get_cache(page) != cachep) {
2284 printk(KERN_ERR "mismatch in kmem_cache_free: expected cache %p, got %p\n",
2285 page_get_cache(page),cachep);
2286 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2287 printk(KERN_ERR "%p is %s.\n", page_get_cache(page), page_get_cache(page)->name);
2288 WARN_ON(1);
2290 slabp = page_get_slab(page);
2292 if (cachep->flags & SLAB_RED_ZONE) {
2293 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2294 slab_error(cachep, "double free, or memory outside"
2295 " object was overwritten");
2296 printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2297 objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
2299 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2300 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2302 if (cachep->flags & SLAB_STORE_USER)
2303 *dbg_userword(cachep, objp) = caller;
2305 objnr = (objp-slabp->s_mem)/cachep->objsize;
2307 BUG_ON(objnr >= cachep->num);
2308 BUG_ON(objp != slabp->s_mem + objnr*cachep->objsize);
2310 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2311 /* Need to call the slab's constructor so the
2312 * caller can perform a verify of its state (debugging).
2313 * Called without the cache-lock held.
2315 cachep->ctor(objp+obj_dbghead(cachep),
2316 cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
2318 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2319 /* we want to cache poison the object,
2320 * call the destruction callback
2322 cachep->dtor(objp+obj_dbghead(cachep), cachep, 0);
2324 if (cachep->flags & SLAB_POISON) {
2325 #ifdef CONFIG_DEBUG_PAGEALLOC
2326 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
2327 store_stackinfo(cachep, objp, (unsigned long)caller);
2328 kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
2329 } else {
2330 poison_obj(cachep, objp, POISON_FREE);
2332 #else
2333 poison_obj(cachep, objp, POISON_FREE);
2334 #endif
2336 return objp;
2339 static void check_slabp(kmem_cache_t *cachep, struct slab *slabp)
2341 kmem_bufctl_t i;
2342 int entries = 0;
2344 /* Check slab's freelist to see if this obj is there. */
2345 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2346 entries++;
2347 if (entries > cachep->num || i >= cachep->num)
2348 goto bad;
2350 if (entries != cachep->num - slabp->inuse) {
2351 bad:
2352 printk(KERN_ERR "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2353 cachep->name, cachep->num, slabp, slabp->inuse);
2354 for (i=0;i<sizeof(slabp)+cachep->num*sizeof(kmem_bufctl_t);i++) {
2355 if ((i%16)==0)
2356 printk("\n%03x:", i);
2357 printk(" %02x", ((unsigned char*)slabp)[i]);
2359 printk("\n");
2360 BUG();
2363 #else
2364 #define kfree_debugcheck(x) do { } while(0)
2365 #define cache_free_debugcheck(x,objp,z) (objp)
2366 #define check_slabp(x,y) do { } while(0)
2367 #endif
2369 static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags)
2371 int batchcount;
2372 struct kmem_list3 *l3;
2373 struct array_cache *ac;
2375 check_irq_off();
2376 ac = ac_data(cachep);
2377 retry:
2378 batchcount = ac->batchcount;
2379 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2380 /* if there was little recent activity on this
2381 * cache, then perform only a partial refill.
2382 * Otherwise we could generate refill bouncing.
2384 batchcount = BATCHREFILL_LIMIT;
2386 l3 = cachep->nodelists[numa_node_id()];
2388 BUG_ON(ac->avail > 0 || !l3);
2389 spin_lock(&l3->list_lock);
2391 if (l3->shared) {
2392 struct array_cache *shared_array = l3->shared;
2393 if (shared_array->avail) {
2394 if (batchcount > shared_array->avail)
2395 batchcount = shared_array->avail;
2396 shared_array->avail -= batchcount;
2397 ac->avail = batchcount;
2398 memcpy(ac->entry,
2399 &(shared_array->entry[shared_array->avail]),
2400 sizeof(void*)*batchcount);
2401 shared_array->touched = 1;
2402 goto alloc_done;
2405 while (batchcount > 0) {
2406 struct list_head *entry;
2407 struct slab *slabp;
2408 /* Get slab alloc is to come from. */
2409 entry = l3->slabs_partial.next;
2410 if (entry == &l3->slabs_partial) {
2411 l3->free_touched = 1;
2412 entry = l3->slabs_free.next;
2413 if (entry == &l3->slabs_free)
2414 goto must_grow;
2417 slabp = list_entry(entry, struct slab, list);
2418 check_slabp(cachep, slabp);
2419 check_spinlock_acquired(cachep);
2420 while (slabp->inuse < cachep->num && batchcount--) {
2421 kmem_bufctl_t next;
2422 STATS_INC_ALLOCED(cachep);
2423 STATS_INC_ACTIVE(cachep);
2424 STATS_SET_HIGH(cachep);
2426 /* get obj pointer */
2427 ac->entry[ac->avail++] = slabp->s_mem +
2428 slabp->free*cachep->objsize;
2430 slabp->inuse++;
2431 next = slab_bufctl(slabp)[slabp->free];
2432 #if DEBUG
2433 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2434 WARN_ON(numa_node_id() != slabp->nodeid);
2435 #endif
2436 slabp->free = next;
2438 check_slabp(cachep, slabp);
2440 /* move slabp to correct slabp list: */
2441 list_del(&slabp->list);
2442 if (slabp->free == BUFCTL_END)
2443 list_add(&slabp->list, &l3->slabs_full);
2444 else
2445 list_add(&slabp->list, &l3->slabs_partial);
2448 must_grow:
2449 l3->free_objects -= ac->avail;
2450 alloc_done:
2451 spin_unlock(&l3->list_lock);
2453 if (unlikely(!ac->avail)) {
2454 int x;
2455 x = cache_grow(cachep, flags, numa_node_id());
2457 // cache_grow can reenable interrupts, then ac could change.
2458 ac = ac_data(cachep);
2459 if (!x && ac->avail == 0) // no objects in sight? abort
2460 return NULL;
2462 if (!ac->avail) // objects refilled by interrupt?
2463 goto retry;
2465 ac->touched = 1;
2466 return ac->entry[--ac->avail];
2469 static inline void
2470 cache_alloc_debugcheck_before(kmem_cache_t *cachep, gfp_t flags)
2472 might_sleep_if(flags & __GFP_WAIT);
2473 #if DEBUG
2474 kmem_flagcheck(cachep, flags);
2475 #endif
2478 #if DEBUG
2479 static void *
2480 cache_alloc_debugcheck_after(kmem_cache_t *cachep,
2481 gfp_t flags, void *objp, void *caller)
2483 if (!objp)
2484 return objp;
2485 if (cachep->flags & SLAB_POISON) {
2486 #ifdef CONFIG_DEBUG_PAGEALLOC
2487 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2488 kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 1);
2489 else
2490 check_poison_obj(cachep, objp);
2491 #else
2492 check_poison_obj(cachep, objp);
2493 #endif
2494 poison_obj(cachep, objp, POISON_INUSE);
2496 if (cachep->flags & SLAB_STORE_USER)
2497 *dbg_userword(cachep, objp) = caller;
2499 if (cachep->flags & SLAB_RED_ZONE) {
2500 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2501 slab_error(cachep, "double free, or memory outside"
2502 " object was overwritten");
2503 printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2504 objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
2506 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2507 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2509 objp += obj_dbghead(cachep);
2510 if (cachep->ctor && cachep->flags & SLAB_POISON) {
2511 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2513 if (!(flags & __GFP_WAIT))
2514 ctor_flags |= SLAB_CTOR_ATOMIC;
2516 cachep->ctor(objp, cachep, ctor_flags);
2518 return objp;
2520 #else
2521 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2522 #endif
2524 static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags)
2526 void* objp;
2527 struct array_cache *ac;
2529 check_irq_off();
2530 ac = ac_data(cachep);
2531 if (likely(ac->avail)) {
2532 STATS_INC_ALLOCHIT(cachep);
2533 ac->touched = 1;
2534 objp = ac->entry[--ac->avail];
2535 } else {
2536 STATS_INC_ALLOCMISS(cachep);
2537 objp = cache_alloc_refill(cachep, flags);
2539 return objp;
2542 static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags)
2544 unsigned long save_flags;
2545 void* objp;
2547 cache_alloc_debugcheck_before(cachep, flags);
2549 local_irq_save(save_flags);
2550 objp = ____cache_alloc(cachep, flags);
2551 local_irq_restore(save_flags);
2552 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2553 __builtin_return_address(0));
2554 prefetchw(objp);
2555 return objp;
2558 #ifdef CONFIG_NUMA
2560 * A interface to enable slab creation on nodeid
2562 static void *__cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
2564 struct list_head *entry;
2565 struct slab *slabp;
2566 struct kmem_list3 *l3;
2567 void *obj;
2568 kmem_bufctl_t next;
2569 int x;
2571 l3 = cachep->nodelists[nodeid];
2572 BUG_ON(!l3);
2574 retry:
2575 spin_lock(&l3->list_lock);
2576 entry = l3->slabs_partial.next;
2577 if (entry == &l3->slabs_partial) {
2578 l3->free_touched = 1;
2579 entry = l3->slabs_free.next;
2580 if (entry == &l3->slabs_free)
2581 goto must_grow;
2584 slabp = list_entry(entry, struct slab, list);
2585 check_spinlock_acquired_node(cachep, nodeid);
2586 check_slabp(cachep, slabp);
2588 STATS_INC_NODEALLOCS(cachep);
2589 STATS_INC_ACTIVE(cachep);
2590 STATS_SET_HIGH(cachep);
2592 BUG_ON(slabp->inuse == cachep->num);
2594 /* get obj pointer */
2595 obj = slabp->s_mem + slabp->free*cachep->objsize;
2596 slabp->inuse++;
2597 next = slab_bufctl(slabp)[slabp->free];
2598 #if DEBUG
2599 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2600 #endif
2601 slabp->free = next;
2602 check_slabp(cachep, slabp);
2603 l3->free_objects--;
2604 /* move slabp to correct slabp list: */
2605 list_del(&slabp->list);
2607 if (slabp->free == BUFCTL_END) {
2608 list_add(&slabp->list, &l3->slabs_full);
2609 } else {
2610 list_add(&slabp->list, &l3->slabs_partial);
2613 spin_unlock(&l3->list_lock);
2614 goto done;
2616 must_grow:
2617 spin_unlock(&l3->list_lock);
2618 x = cache_grow(cachep, flags, nodeid);
2620 if (!x)
2621 return NULL;
2623 goto retry;
2624 done:
2625 return obj;
2627 #endif
2630 * Caller needs to acquire correct kmem_list's list_lock
2632 static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects, int node)
2634 int i;
2635 struct kmem_list3 *l3;
2637 for (i = 0; i < nr_objects; i++) {
2638 void *objp = objpp[i];
2639 struct slab *slabp;
2640 unsigned int objnr;
2642 slabp = page_get_slab(virt_to_page(objp));
2643 l3 = cachep->nodelists[node];
2644 list_del(&slabp->list);
2645 objnr = (objp - slabp->s_mem) / cachep->objsize;
2646 check_spinlock_acquired_node(cachep, node);
2647 check_slabp(cachep, slabp);
2649 #if DEBUG
2650 /* Verify that the slab belongs to the intended node */
2651 WARN_ON(slabp->nodeid != node);
2653 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2654 printk(KERN_ERR "slab: double free detected in cache "
2655 "'%s', objp %p\n", cachep->name, objp);
2656 BUG();
2658 #endif
2659 slab_bufctl(slabp)[objnr] = slabp->free;
2660 slabp->free = objnr;
2661 STATS_DEC_ACTIVE(cachep);
2662 slabp->inuse--;
2663 l3->free_objects++;
2664 check_slabp(cachep, slabp);
2666 /* fixup slab chains */
2667 if (slabp->inuse == 0) {
2668 if (l3->free_objects > l3->free_limit) {
2669 l3->free_objects -= cachep->num;
2670 slab_destroy(cachep, slabp);
2671 } else {
2672 list_add(&slabp->list, &l3->slabs_free);
2674 } else {
2675 /* Unconditionally move a slab to the end of the
2676 * partial list on free - maximum time for the
2677 * other objects to be freed, too.
2679 list_add_tail(&slabp->list, &l3->slabs_partial);
2684 static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac)
2686 int batchcount;
2687 struct kmem_list3 *l3;
2688 int node = numa_node_id();
2690 batchcount = ac->batchcount;
2691 #if DEBUG
2692 BUG_ON(!batchcount || batchcount > ac->avail);
2693 #endif
2694 check_irq_off();
2695 l3 = cachep->nodelists[node];
2696 spin_lock(&l3->list_lock);
2697 if (l3->shared) {
2698 struct array_cache *shared_array = l3->shared;
2699 int max = shared_array->limit-shared_array->avail;
2700 if (max) {
2701 if (batchcount > max)
2702 batchcount = max;
2703 memcpy(&(shared_array->entry[shared_array->avail]),
2704 ac->entry,
2705 sizeof(void*)*batchcount);
2706 shared_array->avail += batchcount;
2707 goto free_done;
2711 free_block(cachep, ac->entry, batchcount, node);
2712 free_done:
2713 #if STATS
2715 int i = 0;
2716 struct list_head *p;
2718 p = l3->slabs_free.next;
2719 while (p != &(l3->slabs_free)) {
2720 struct slab *slabp;
2722 slabp = list_entry(p, struct slab, list);
2723 BUG_ON(slabp->inuse);
2725 i++;
2726 p = p->next;
2728 STATS_SET_FREEABLE(cachep, i);
2730 #endif
2731 spin_unlock(&l3->list_lock);
2732 ac->avail -= batchcount;
2733 memmove(ac->entry, &(ac->entry[batchcount]),
2734 sizeof(void*)*ac->avail);
2739 * __cache_free
2740 * Release an obj back to its cache. If the obj has a constructed
2741 * state, it must be in this state _before_ it is released.
2743 * Called with disabled ints.
2745 static inline void __cache_free(kmem_cache_t *cachep, void *objp)
2747 struct array_cache *ac = ac_data(cachep);
2749 check_irq_off();
2750 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
2752 /* Make sure we are not freeing a object from another
2753 * node to the array cache on this cpu.
2755 #ifdef CONFIG_NUMA
2757 struct slab *slabp;
2758 slabp = page_get_slab(virt_to_page(objp));
2759 if (unlikely(slabp->nodeid != numa_node_id())) {
2760 struct array_cache *alien = NULL;
2761 int nodeid = slabp->nodeid;
2762 struct kmem_list3 *l3 = cachep->nodelists[numa_node_id()];
2764 STATS_INC_NODEFREES(cachep);
2765 if (l3->alien && l3->alien[nodeid]) {
2766 alien = l3->alien[nodeid];
2767 spin_lock(&alien->lock);
2768 if (unlikely(alien->avail == alien->limit))
2769 __drain_alien_cache(cachep,
2770 alien, nodeid);
2771 alien->entry[alien->avail++] = objp;
2772 spin_unlock(&alien->lock);
2773 } else {
2774 spin_lock(&(cachep->nodelists[nodeid])->
2775 list_lock);
2776 free_block(cachep, &objp, 1, nodeid);
2777 spin_unlock(&(cachep->nodelists[nodeid])->
2778 list_lock);
2780 return;
2783 #endif
2784 if (likely(ac->avail < ac->limit)) {
2785 STATS_INC_FREEHIT(cachep);
2786 ac->entry[ac->avail++] = objp;
2787 return;
2788 } else {
2789 STATS_INC_FREEMISS(cachep);
2790 cache_flusharray(cachep, ac);
2791 ac->entry[ac->avail++] = objp;
2796 * kmem_cache_alloc - Allocate an object
2797 * @cachep: The cache to allocate from.
2798 * @flags: See kmalloc().
2800 * Allocate an object from this cache. The flags are only relevant
2801 * if the cache has no available objects.
2803 void *kmem_cache_alloc(kmem_cache_t *cachep, gfp_t flags)
2805 return __cache_alloc(cachep, flags);
2807 EXPORT_SYMBOL(kmem_cache_alloc);
2810 * kmem_ptr_validate - check if an untrusted pointer might
2811 * be a slab entry.
2812 * @cachep: the cache we're checking against
2813 * @ptr: pointer to validate
2815 * This verifies that the untrusted pointer looks sane:
2816 * it is _not_ a guarantee that the pointer is actually
2817 * part of the slab cache in question, but it at least
2818 * validates that the pointer can be dereferenced and
2819 * looks half-way sane.
2821 * Currently only used for dentry validation.
2823 int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr)
2825 unsigned long addr = (unsigned long) ptr;
2826 unsigned long min_addr = PAGE_OFFSET;
2827 unsigned long align_mask = BYTES_PER_WORD-1;
2828 unsigned long size = cachep->objsize;
2829 struct page *page;
2831 if (unlikely(addr < min_addr))
2832 goto out;
2833 if (unlikely(addr > (unsigned long)high_memory - size))
2834 goto out;
2835 if (unlikely(addr & align_mask))
2836 goto out;
2837 if (unlikely(!kern_addr_valid(addr)))
2838 goto out;
2839 if (unlikely(!kern_addr_valid(addr + size - 1)))
2840 goto out;
2841 page = virt_to_page(ptr);
2842 if (unlikely(!PageSlab(page)))
2843 goto out;
2844 if (unlikely(page_get_cache(page) != cachep))
2845 goto out;
2846 return 1;
2847 out:
2848 return 0;
2851 #ifdef CONFIG_NUMA
2853 * kmem_cache_alloc_node - Allocate an object on the specified node
2854 * @cachep: The cache to allocate from.
2855 * @flags: See kmalloc().
2856 * @nodeid: node number of the target node.
2858 * Identical to kmem_cache_alloc, except that this function is slow
2859 * and can sleep. And it will allocate memory on the given node, which
2860 * can improve the performance for cpu bound structures.
2861 * New and improved: it will now make sure that the object gets
2862 * put on the correct node list so that there is no false sharing.
2864 void *kmem_cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
2866 unsigned long save_flags;
2867 void *ptr;
2869 if (nodeid == -1)
2870 return __cache_alloc(cachep, flags);
2872 if (unlikely(!cachep->nodelists[nodeid])) {
2873 /* Fall back to __cache_alloc if we run into trouble */
2874 printk(KERN_WARNING "slab: not allocating in inactive node %d for cache %s\n", nodeid, cachep->name);
2875 return __cache_alloc(cachep,flags);
2878 cache_alloc_debugcheck_before(cachep, flags);
2879 local_irq_save(save_flags);
2880 if (nodeid == numa_node_id())
2881 ptr = ____cache_alloc(cachep, flags);
2882 else
2883 ptr = __cache_alloc_node(cachep, flags, nodeid);
2884 local_irq_restore(save_flags);
2885 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, __builtin_return_address(0));
2887 return ptr;
2889 EXPORT_SYMBOL(kmem_cache_alloc_node);
2891 void *kmalloc_node(size_t size, gfp_t flags, int node)
2893 kmem_cache_t *cachep;
2895 cachep = kmem_find_general_cachep(size, flags);
2896 if (unlikely(cachep == NULL))
2897 return NULL;
2898 return kmem_cache_alloc_node(cachep, flags, node);
2900 EXPORT_SYMBOL(kmalloc_node);
2901 #endif
2904 * kmalloc - allocate memory
2905 * @size: how many bytes of memory are required.
2906 * @flags: the type of memory to allocate.
2908 * kmalloc is the normal method of allocating memory
2909 * in the kernel.
2911 * The @flags argument may be one of:
2913 * %GFP_USER - Allocate memory on behalf of user. May sleep.
2915 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
2917 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
2919 * Additionally, the %GFP_DMA flag may be set to indicate the memory
2920 * must be suitable for DMA. This can mean different things on different
2921 * platforms. For example, on i386, it means that the memory must come
2922 * from the first 16MB.
2924 void *__kmalloc(size_t size, gfp_t flags)
2926 kmem_cache_t *cachep;
2928 /* If you want to save a few bytes .text space: replace
2929 * __ with kmem_.
2930 * Then kmalloc uses the uninlined functions instead of the inline
2931 * functions.
2933 cachep = __find_general_cachep(size, flags);
2934 if (unlikely(cachep == NULL))
2935 return NULL;
2936 return __cache_alloc(cachep, flags);
2938 EXPORT_SYMBOL(__kmalloc);
2940 #ifdef CONFIG_SMP
2942 * __alloc_percpu - allocate one copy of the object for every present
2943 * cpu in the system, zeroing them.
2944 * Objects should be dereferenced using the per_cpu_ptr macro only.
2946 * @size: how many bytes of memory are required.
2947 * @align: the alignment, which can't be greater than SMP_CACHE_BYTES.
2949 void *__alloc_percpu(size_t size, size_t align)
2951 int i;
2952 struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL);
2954 if (!pdata)
2955 return NULL;
2958 * Cannot use for_each_online_cpu since a cpu may come online
2959 * and we have no way of figuring out how to fix the array
2960 * that we have allocated then....
2962 for_each_cpu(i) {
2963 int node = cpu_to_node(i);
2965 if (node_online(node))
2966 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
2967 else
2968 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
2970 if (!pdata->ptrs[i])
2971 goto unwind_oom;
2972 memset(pdata->ptrs[i], 0, size);
2975 /* Catch derefs w/o wrappers */
2976 return (void *) (~(unsigned long) pdata);
2978 unwind_oom:
2979 while (--i >= 0) {
2980 if (!cpu_possible(i))
2981 continue;
2982 kfree(pdata->ptrs[i]);
2984 kfree(pdata);
2985 return NULL;
2987 EXPORT_SYMBOL(__alloc_percpu);
2988 #endif
2991 * kmem_cache_free - Deallocate an object
2992 * @cachep: The cache the allocation was from.
2993 * @objp: The previously allocated object.
2995 * Free an object which was previously allocated from this
2996 * cache.
2998 void kmem_cache_free(kmem_cache_t *cachep, void *objp)
3000 unsigned long flags;
3002 local_irq_save(flags);
3003 __cache_free(cachep, objp);
3004 local_irq_restore(flags);
3006 EXPORT_SYMBOL(kmem_cache_free);
3009 * kzalloc - allocate memory. The memory is set to zero.
3010 * @size: how many bytes of memory are required.
3011 * @flags: the type of memory to allocate.
3013 void *kzalloc(size_t size, gfp_t flags)
3015 void *ret = kmalloc(size, flags);
3016 if (ret)
3017 memset(ret, 0, size);
3018 return ret;
3020 EXPORT_SYMBOL(kzalloc);
3023 * kfree - free previously allocated memory
3024 * @objp: pointer returned by kmalloc.
3026 * If @objp is NULL, no operation is performed.
3028 * Don't free memory not originally allocated by kmalloc()
3029 * or you will run into trouble.
3031 void kfree(const void *objp)
3033 kmem_cache_t *c;
3034 unsigned long flags;
3036 if (unlikely(!objp))
3037 return;
3038 local_irq_save(flags);
3039 kfree_debugcheck(objp);
3040 c = page_get_cache(virt_to_page(objp));
3041 __cache_free(c, (void*)objp);
3042 local_irq_restore(flags);
3044 EXPORT_SYMBOL(kfree);
3046 #ifdef CONFIG_SMP
3048 * free_percpu - free previously allocated percpu memory
3049 * @objp: pointer returned by alloc_percpu.
3051 * Don't free memory not originally allocated by alloc_percpu()
3052 * The complemented objp is to check for that.
3054 void
3055 free_percpu(const void *objp)
3057 int i;
3058 struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp);
3061 * We allocate for all cpus so we cannot use for online cpu here.
3063 for_each_cpu(i)
3064 kfree(p->ptrs[i]);
3065 kfree(p);
3067 EXPORT_SYMBOL(free_percpu);
3068 #endif
3070 unsigned int kmem_cache_size(kmem_cache_t *cachep)
3072 return obj_reallen(cachep);
3074 EXPORT_SYMBOL(kmem_cache_size);
3076 const char *kmem_cache_name(kmem_cache_t *cachep)
3078 return cachep->name;
3080 EXPORT_SYMBOL_GPL(kmem_cache_name);
3083 * This initializes kmem_list3 for all nodes.
3085 static int alloc_kmemlist(kmem_cache_t *cachep)
3087 int node;
3088 struct kmem_list3 *l3;
3089 int err = 0;
3091 for_each_online_node(node) {
3092 struct array_cache *nc = NULL, *new;
3093 struct array_cache **new_alien = NULL;
3094 #ifdef CONFIG_NUMA
3095 if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
3096 goto fail;
3097 #endif
3098 if (!(new = alloc_arraycache(node, (cachep->shared*
3099 cachep->batchcount), 0xbaadf00d)))
3100 goto fail;
3101 if ((l3 = cachep->nodelists[node])) {
3103 spin_lock_irq(&l3->list_lock);
3105 if ((nc = cachep->nodelists[node]->shared))
3106 free_block(cachep, nc->entry,
3107 nc->avail, node);
3109 l3->shared = new;
3110 if (!cachep->nodelists[node]->alien) {
3111 l3->alien = new_alien;
3112 new_alien = NULL;
3114 l3->free_limit = (1 + nr_cpus_node(node))*
3115 cachep->batchcount + cachep->num;
3116 spin_unlock_irq(&l3->list_lock);
3117 kfree(nc);
3118 free_alien_cache(new_alien);
3119 continue;
3121 if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
3122 GFP_KERNEL, node)))
3123 goto fail;
3125 kmem_list3_init(l3);
3126 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3127 ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
3128 l3->shared = new;
3129 l3->alien = new_alien;
3130 l3->free_limit = (1 + nr_cpus_node(node))*
3131 cachep->batchcount + cachep->num;
3132 cachep->nodelists[node] = l3;
3134 return err;
3135 fail:
3136 err = -ENOMEM;
3137 return err;
3140 struct ccupdate_struct {
3141 kmem_cache_t *cachep;
3142 struct array_cache *new[NR_CPUS];
3145 static void do_ccupdate_local(void *info)
3147 struct ccupdate_struct *new = (struct ccupdate_struct *)info;
3148 struct array_cache *old;
3150 check_irq_off();
3151 old = ac_data(new->cachep);
3153 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3154 new->new[smp_processor_id()] = old;
3158 static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount,
3159 int shared)
3161 struct ccupdate_struct new;
3162 int i, err;
3164 memset(&new.new,0,sizeof(new.new));
3165 for_each_online_cpu(i) {
3166 new.new[i] = alloc_arraycache(cpu_to_node(i), limit, batchcount);
3167 if (!new.new[i]) {
3168 for (i--; i >= 0; i--) kfree(new.new[i]);
3169 return -ENOMEM;
3172 new.cachep = cachep;
3174 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
3176 check_irq_on();
3177 spin_lock_irq(&cachep->spinlock);
3178 cachep->batchcount = batchcount;
3179 cachep->limit = limit;
3180 cachep->shared = shared;
3181 spin_unlock_irq(&cachep->spinlock);
3183 for_each_online_cpu(i) {
3184 struct array_cache *ccold = new.new[i];
3185 if (!ccold)
3186 continue;
3187 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3188 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3189 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3190 kfree(ccold);
3193 err = alloc_kmemlist(cachep);
3194 if (err) {
3195 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3196 cachep->name, -err);
3197 BUG();
3199 return 0;
3203 static void enable_cpucache(kmem_cache_t *cachep)
3205 int err;
3206 int limit, shared;
3208 /* The head array serves three purposes:
3209 * - create a LIFO ordering, i.e. return objects that are cache-warm
3210 * - reduce the number of spinlock operations.
3211 * - reduce the number of linked list operations on the slab and
3212 * bufctl chains: array operations are cheaper.
3213 * The numbers are guessed, we should auto-tune as described by
3214 * Bonwick.
3216 if (cachep->objsize > 131072)
3217 limit = 1;
3218 else if (cachep->objsize > PAGE_SIZE)
3219 limit = 8;
3220 else if (cachep->objsize > 1024)
3221 limit = 24;
3222 else if (cachep->objsize > 256)
3223 limit = 54;
3224 else
3225 limit = 120;
3227 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
3228 * allocation behaviour: Most allocs on one cpu, most free operations
3229 * on another cpu. For these cases, an efficient object passing between
3230 * cpus is necessary. This is provided by a shared array. The array
3231 * replaces Bonwick's magazine layer.
3232 * On uniprocessor, it's functionally equivalent (but less efficient)
3233 * to a larger limit. Thus disabled by default.
3235 shared = 0;
3236 #ifdef CONFIG_SMP
3237 if (cachep->objsize <= PAGE_SIZE)
3238 shared = 8;
3239 #endif
3241 #if DEBUG
3242 /* With debugging enabled, large batchcount lead to excessively
3243 * long periods with disabled local interrupts. Limit the
3244 * batchcount
3246 if (limit > 32)
3247 limit = 32;
3248 #endif
3249 err = do_tune_cpucache(cachep, limit, (limit+1)/2, shared);
3250 if (err)
3251 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3252 cachep->name, -err);
3255 static void drain_array_locked(kmem_cache_t *cachep,
3256 struct array_cache *ac, int force, int node)
3258 int tofree;
3260 check_spinlock_acquired_node(cachep, node);
3261 if (ac->touched && !force) {
3262 ac->touched = 0;
3263 } else if (ac->avail) {
3264 tofree = force ? ac->avail : (ac->limit+4)/5;
3265 if (tofree > ac->avail) {
3266 tofree = (ac->avail+1)/2;
3268 free_block(cachep, ac->entry, tofree, node);
3269 ac->avail -= tofree;
3270 memmove(ac->entry, &(ac->entry[tofree]),
3271 sizeof(void*)*ac->avail);
3276 * cache_reap - Reclaim memory from caches.
3277 * @unused: unused parameter
3279 * Called from workqueue/eventd every few seconds.
3280 * Purpose:
3281 * - clear the per-cpu caches for this CPU.
3282 * - return freeable pages to the main free memory pool.
3284 * If we cannot acquire the cache chain semaphore then just give up - we'll
3285 * try again on the next iteration.
3287 static void cache_reap(void *unused)
3289 struct list_head *walk;
3290 struct kmem_list3 *l3;
3292 if (down_trylock(&cache_chain_sem)) {
3293 /* Give up. Setup the next iteration. */
3294 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3295 return;
3298 list_for_each(walk, &cache_chain) {
3299 kmem_cache_t *searchp;
3300 struct list_head* p;
3301 int tofree;
3302 struct slab *slabp;
3304 searchp = list_entry(walk, kmem_cache_t, next);
3306 if (searchp->flags & SLAB_NO_REAP)
3307 goto next;
3309 check_irq_on();
3311 l3 = searchp->nodelists[numa_node_id()];
3312 if (l3->alien)
3313 drain_alien_cache(searchp, l3);
3314 spin_lock_irq(&l3->list_lock);
3316 drain_array_locked(searchp, ac_data(searchp), 0,
3317 numa_node_id());
3319 if (time_after(l3->next_reap, jiffies))
3320 goto next_unlock;
3322 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3324 if (l3->shared)
3325 drain_array_locked(searchp, l3->shared, 0,
3326 numa_node_id());
3328 if (l3->free_touched) {
3329 l3->free_touched = 0;
3330 goto next_unlock;
3333 tofree = (l3->free_limit+5*searchp->num-1)/(5*searchp->num);
3334 do {
3335 p = l3->slabs_free.next;
3336 if (p == &(l3->slabs_free))
3337 break;
3339 slabp = list_entry(p, struct slab, list);
3340 BUG_ON(slabp->inuse);
3341 list_del(&slabp->list);
3342 STATS_INC_REAPED(searchp);
3344 /* Safe to drop the lock. The slab is no longer
3345 * linked to the cache.
3346 * searchp cannot disappear, we hold
3347 * cache_chain_lock
3349 l3->free_objects -= searchp->num;
3350 spin_unlock_irq(&l3->list_lock);
3351 slab_destroy(searchp, slabp);
3352 spin_lock_irq(&l3->list_lock);
3353 } while(--tofree > 0);
3354 next_unlock:
3355 spin_unlock_irq(&l3->list_lock);
3356 next:
3357 cond_resched();
3359 check_irq_on();
3360 up(&cache_chain_sem);
3361 drain_remote_pages();
3362 /* Setup the next iteration */
3363 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3366 #ifdef CONFIG_PROC_FS
3368 static void *s_start(struct seq_file *m, loff_t *pos)
3370 loff_t n = *pos;
3371 struct list_head *p;
3373 down(&cache_chain_sem);
3374 if (!n) {
3376 * Output format version, so at least we can change it
3377 * without _too_ many complaints.
3379 #if STATS
3380 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3381 #else
3382 seq_puts(m, "slabinfo - version: 2.1\n");
3383 #endif
3384 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
3385 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3386 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3387 #if STATS
3388 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped>"
3389 " <error> <maxfreeable> <nodeallocs> <remotefrees>");
3390 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3391 #endif
3392 seq_putc(m, '\n');
3394 p = cache_chain.next;
3395 while (n--) {
3396 p = p->next;
3397 if (p == &cache_chain)
3398 return NULL;
3400 return list_entry(p, kmem_cache_t, next);
3403 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3405 kmem_cache_t *cachep = p;
3406 ++*pos;
3407 return cachep->next.next == &cache_chain ? NULL
3408 : list_entry(cachep->next.next, kmem_cache_t, next);
3411 static void s_stop(struct seq_file *m, void *p)
3413 up(&cache_chain_sem);
3416 static int s_show(struct seq_file *m, void *p)
3418 kmem_cache_t *cachep = p;
3419 struct list_head *q;
3420 struct slab *slabp;
3421 unsigned long active_objs;
3422 unsigned long num_objs;
3423 unsigned long active_slabs = 0;
3424 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3425 const char *name;
3426 char *error = NULL;
3427 int node;
3428 struct kmem_list3 *l3;
3430 check_irq_on();
3431 spin_lock_irq(&cachep->spinlock);
3432 active_objs = 0;
3433 num_slabs = 0;
3434 for_each_online_node(node) {
3435 l3 = cachep->nodelists[node];
3436 if (!l3)
3437 continue;
3439 spin_lock(&l3->list_lock);
3441 list_for_each(q,&l3->slabs_full) {
3442 slabp = list_entry(q, struct slab, list);
3443 if (slabp->inuse != cachep->num && !error)
3444 error = "slabs_full accounting error";
3445 active_objs += cachep->num;
3446 active_slabs++;
3448 list_for_each(q,&l3->slabs_partial) {
3449 slabp = list_entry(q, struct slab, list);
3450 if (slabp->inuse == cachep->num && !error)
3451 error = "slabs_partial inuse accounting error";
3452 if (!slabp->inuse && !error)
3453 error = "slabs_partial/inuse accounting error";
3454 active_objs += slabp->inuse;
3455 active_slabs++;
3457 list_for_each(q,&l3->slabs_free) {
3458 slabp = list_entry(q, struct slab, list);
3459 if (slabp->inuse && !error)
3460 error = "slabs_free/inuse accounting error";
3461 num_slabs++;
3463 free_objects += l3->free_objects;
3464 shared_avail += l3->shared->avail;
3466 spin_unlock(&l3->list_lock);
3468 num_slabs+=active_slabs;
3469 num_objs = num_slabs*cachep->num;
3470 if (num_objs - active_objs != free_objects && !error)
3471 error = "free_objects accounting error";
3473 name = cachep->name;
3474 if (error)
3475 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3477 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3478 name, active_objs, num_objs, cachep->objsize,
3479 cachep->num, (1<<cachep->gfporder));
3480 seq_printf(m, " : tunables %4u %4u %4u",
3481 cachep->limit, cachep->batchcount,
3482 cachep->shared);
3483 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3484 active_slabs, num_slabs, shared_avail);
3485 #if STATS
3486 { /* list3 stats */
3487 unsigned long high = cachep->high_mark;
3488 unsigned long allocs = cachep->num_allocations;
3489 unsigned long grown = cachep->grown;
3490 unsigned long reaped = cachep->reaped;
3491 unsigned long errors = cachep->errors;
3492 unsigned long max_freeable = cachep->max_freeable;
3493 unsigned long node_allocs = cachep->node_allocs;
3494 unsigned long node_frees = cachep->node_frees;
3496 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3497 %4lu %4lu %4lu %4lu",
3498 allocs, high, grown, reaped, errors,
3499 max_freeable, node_allocs, node_frees);
3501 /* cpu stats */
3503 unsigned long allochit = atomic_read(&cachep->allochit);
3504 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3505 unsigned long freehit = atomic_read(&cachep->freehit);
3506 unsigned long freemiss = atomic_read(&cachep->freemiss);
3508 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3509 allochit, allocmiss, freehit, freemiss);
3511 #endif
3512 seq_putc(m, '\n');
3513 spin_unlock_irq(&cachep->spinlock);
3514 return 0;
3518 * slabinfo_op - iterator that generates /proc/slabinfo
3520 * Output layout:
3521 * cache-name
3522 * num-active-objs
3523 * total-objs
3524 * object size
3525 * num-active-slabs
3526 * total-slabs
3527 * num-pages-per-slab
3528 * + further values on SMP and with statistics enabled
3531 struct seq_operations slabinfo_op = {
3532 .start = s_start,
3533 .next = s_next,
3534 .stop = s_stop,
3535 .show = s_show,
3538 #define MAX_SLABINFO_WRITE 128
3540 * slabinfo_write - Tuning for the slab allocator
3541 * @file: unused
3542 * @buffer: user buffer
3543 * @count: data length
3544 * @ppos: unused
3546 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
3547 size_t count, loff_t *ppos)
3549 char kbuf[MAX_SLABINFO_WRITE+1], *tmp;
3550 int limit, batchcount, shared, res;
3551 struct list_head *p;
3553 if (count > MAX_SLABINFO_WRITE)
3554 return -EINVAL;
3555 if (copy_from_user(&kbuf, buffer, count))
3556 return -EFAULT;
3557 kbuf[MAX_SLABINFO_WRITE] = '\0';
3559 tmp = strchr(kbuf, ' ');
3560 if (!tmp)
3561 return -EINVAL;
3562 *tmp = '\0';
3563 tmp++;
3564 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3565 return -EINVAL;
3567 /* Find the cache in the chain of caches. */
3568 down(&cache_chain_sem);
3569 res = -EINVAL;
3570 list_for_each(p,&cache_chain) {
3571 kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
3573 if (!strcmp(cachep->name, kbuf)) {
3574 if (limit < 1 ||
3575 batchcount < 1 ||
3576 batchcount > limit ||
3577 shared < 0) {
3578 res = 0;
3579 } else {
3580 res = do_tune_cpucache(cachep, limit,
3581 batchcount, shared);
3583 break;
3586 up(&cache_chain_sem);
3587 if (res >= 0)
3588 res = count;
3589 return res;
3591 #endif
3594 * ksize - get the actual amount of memory allocated for a given object
3595 * @objp: Pointer to the object
3597 * kmalloc may internally round up allocations and return more memory
3598 * than requested. ksize() can be used to determine the actual amount of
3599 * memory allocated. The caller may use this additional memory, even though
3600 * a smaller amount of memory was initially specified with the kmalloc call.
3601 * The caller must guarantee that objp points to a valid object previously
3602 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3603 * must not be freed during the duration of the call.
3605 unsigned int ksize(const void *objp)
3607 if (unlikely(objp == NULL))
3608 return 0;
3610 return obj_reallen(page_get_cache(virt_to_page(objp)));
3615 * kstrdup - allocate space for and copy an existing string
3617 * @s: the string to duplicate
3618 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
3620 char *kstrdup(const char *s, gfp_t gfp)
3622 size_t len;
3623 char *buf;
3625 if (!s)
3626 return NULL;
3628 len = strlen(s) + 1;
3629 buf = kmalloc(len, gfp);
3630 if (buf)
3631 memcpy(buf, s, len);
3632 return buf;
3634 EXPORT_SYMBOL(kstrdup);