ppp: fix pptp double release_sock in pptp_bind()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / target / target_core_transport.c
blob1340ffd764844a5a30762c6dc429907e276178f8
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
11 * Nicholas A. Bellinger <nab@kernel.org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 ******************************************************************************/
29 #include <linux/version.h>
30 #include <linux/net.h>
31 #include <linux/delay.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/slab.h>
35 #include <linux/blkdev.h>
36 #include <linux/spinlock.h>
37 #include <linux/kthread.h>
38 #include <linux/in.h>
39 #include <linux/cdrom.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
47 #include <target/target_core_base.h>
48 #include <target/target_core_device.h>
49 #include <target/target_core_tmr.h>
50 #include <target/target_core_tpg.h>
51 #include <target/target_core_transport.h>
52 #include <target/target_core_fabric_ops.h>
53 #include <target/target_core_configfs.h>
55 #include "target_core_alua.h"
56 #include "target_core_hba.h"
57 #include "target_core_pr.h"
58 #include "target_core_scdb.h"
59 #include "target_core_ua.h"
61 /* #define DEBUG_CDB_HANDLER */
62 #ifdef DEBUG_CDB_HANDLER
63 #define DEBUG_CDB_H(x...) printk(KERN_INFO x)
64 #else
65 #define DEBUG_CDB_H(x...)
66 #endif
68 /* #define DEBUG_CMD_MAP */
69 #ifdef DEBUG_CMD_MAP
70 #define DEBUG_CMD_M(x...) printk(KERN_INFO x)
71 #else
72 #define DEBUG_CMD_M(x...)
73 #endif
75 /* #define DEBUG_MEM_ALLOC */
76 #ifdef DEBUG_MEM_ALLOC
77 #define DEBUG_MEM(x...) printk(KERN_INFO x)
78 #else
79 #define DEBUG_MEM(x...)
80 #endif
82 /* #define DEBUG_MEM2_ALLOC */
83 #ifdef DEBUG_MEM2_ALLOC
84 #define DEBUG_MEM2(x...) printk(KERN_INFO x)
85 #else
86 #define DEBUG_MEM2(x...)
87 #endif
89 /* #define DEBUG_SG_CALC */
90 #ifdef DEBUG_SG_CALC
91 #define DEBUG_SC(x...) printk(KERN_INFO x)
92 #else
93 #define DEBUG_SC(x...)
94 #endif
96 /* #define DEBUG_SE_OBJ */
97 #ifdef DEBUG_SE_OBJ
98 #define DEBUG_SO(x...) printk(KERN_INFO x)
99 #else
100 #define DEBUG_SO(x...)
101 #endif
103 /* #define DEBUG_CMD_VOL */
104 #ifdef DEBUG_CMD_VOL
105 #define DEBUG_VOL(x...) printk(KERN_INFO x)
106 #else
107 #define DEBUG_VOL(x...)
108 #endif
110 /* #define DEBUG_CMD_STOP */
111 #ifdef DEBUG_CMD_STOP
112 #define DEBUG_CS(x...) printk(KERN_INFO x)
113 #else
114 #define DEBUG_CS(x...)
115 #endif
117 /* #define DEBUG_PASSTHROUGH */
118 #ifdef DEBUG_PASSTHROUGH
119 #define DEBUG_PT(x...) printk(KERN_INFO x)
120 #else
121 #define DEBUG_PT(x...)
122 #endif
124 /* #define DEBUG_TASK_STOP */
125 #ifdef DEBUG_TASK_STOP
126 #define DEBUG_TS(x...) printk(KERN_INFO x)
127 #else
128 #define DEBUG_TS(x...)
129 #endif
131 /* #define DEBUG_TRANSPORT_STOP */
132 #ifdef DEBUG_TRANSPORT_STOP
133 #define DEBUG_TRANSPORT_S(x...) printk(KERN_INFO x)
134 #else
135 #define DEBUG_TRANSPORT_S(x...)
136 #endif
138 /* #define DEBUG_TASK_FAILURE */
139 #ifdef DEBUG_TASK_FAILURE
140 #define DEBUG_TF(x...) printk(KERN_INFO x)
141 #else
142 #define DEBUG_TF(x...)
143 #endif
145 /* #define DEBUG_DEV_OFFLINE */
146 #ifdef DEBUG_DEV_OFFLINE
147 #define DEBUG_DO(x...) printk(KERN_INFO x)
148 #else
149 #define DEBUG_DO(x...)
150 #endif
152 /* #define DEBUG_TASK_STATE */
153 #ifdef DEBUG_TASK_STATE
154 #define DEBUG_TSTATE(x...) printk(KERN_INFO x)
155 #else
156 #define DEBUG_TSTATE(x...)
157 #endif
159 /* #define DEBUG_STATUS_THR */
160 #ifdef DEBUG_STATUS_THR
161 #define DEBUG_ST(x...) printk(KERN_INFO x)
162 #else
163 #define DEBUG_ST(x...)
164 #endif
166 /* #define DEBUG_TASK_TIMEOUT */
167 #ifdef DEBUG_TASK_TIMEOUT
168 #define DEBUG_TT(x...) printk(KERN_INFO x)
169 #else
170 #define DEBUG_TT(x...)
171 #endif
173 /* #define DEBUG_GENERIC_REQUEST_FAILURE */
174 #ifdef DEBUG_GENERIC_REQUEST_FAILURE
175 #define DEBUG_GRF(x...) printk(KERN_INFO x)
176 #else
177 #define DEBUG_GRF(x...)
178 #endif
180 /* #define DEBUG_SAM_TASK_ATTRS */
181 #ifdef DEBUG_SAM_TASK_ATTRS
182 #define DEBUG_STA(x...) printk(KERN_INFO x)
183 #else
184 #define DEBUG_STA(x...)
185 #endif
187 struct se_global *se_global;
189 static struct kmem_cache *se_cmd_cache;
190 static struct kmem_cache *se_sess_cache;
191 struct kmem_cache *se_tmr_req_cache;
192 struct kmem_cache *se_ua_cache;
193 struct kmem_cache *se_mem_cache;
194 struct kmem_cache *t10_pr_reg_cache;
195 struct kmem_cache *t10_alua_lu_gp_cache;
196 struct kmem_cache *t10_alua_lu_gp_mem_cache;
197 struct kmem_cache *t10_alua_tg_pt_gp_cache;
198 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
200 /* Used for transport_dev_get_map_*() */
201 typedef int (*map_func_t)(struct se_task *, u32);
203 static int transport_generic_write_pending(struct se_cmd *);
204 static int transport_processing_thread(void *);
205 static int __transport_execute_tasks(struct se_device *dev);
206 static void transport_complete_task_attr(struct se_cmd *cmd);
207 static void transport_direct_request_timeout(struct se_cmd *cmd);
208 static void transport_free_dev_tasks(struct se_cmd *cmd);
209 static u32 transport_generic_get_cdb_count(struct se_cmd *cmd,
210 unsigned long long starting_lba, u32 sectors,
211 enum dma_data_direction data_direction,
212 struct list_head *mem_list, int set_counts);
213 static int transport_generic_get_mem(struct se_cmd *cmd, u32 length,
214 u32 dma_size);
215 static int transport_generic_remove(struct se_cmd *cmd,
216 int release_to_pool, int session_reinstatement);
217 static int transport_get_sectors(struct se_cmd *cmd);
218 static struct list_head *transport_init_se_mem_list(void);
219 static int transport_map_sg_to_mem(struct se_cmd *cmd,
220 struct list_head *se_mem_list, void *in_mem,
221 u32 *se_mem_cnt);
222 static void transport_memcpy_se_mem_read_contig(struct se_cmd *cmd,
223 unsigned char *dst, struct list_head *se_mem_list);
224 static void transport_release_fe_cmd(struct se_cmd *cmd);
225 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
226 struct se_queue_obj *qobj);
227 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
228 static void transport_stop_all_task_timers(struct se_cmd *cmd);
230 int init_se_global(void)
232 struct se_global *global;
234 global = kzalloc(sizeof(struct se_global), GFP_KERNEL);
235 if (!(global)) {
236 printk(KERN_ERR "Unable to allocate memory for struct se_global\n");
237 return -1;
240 INIT_LIST_HEAD(&global->g_lu_gps_list);
241 INIT_LIST_HEAD(&global->g_se_tpg_list);
242 INIT_LIST_HEAD(&global->g_hba_list);
243 INIT_LIST_HEAD(&global->g_se_dev_list);
244 spin_lock_init(&global->g_device_lock);
245 spin_lock_init(&global->hba_lock);
246 spin_lock_init(&global->se_tpg_lock);
247 spin_lock_init(&global->lu_gps_lock);
248 spin_lock_init(&global->plugin_class_lock);
250 se_cmd_cache = kmem_cache_create("se_cmd_cache",
251 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
252 if (!(se_cmd_cache)) {
253 printk(KERN_ERR "kmem_cache_create for struct se_cmd failed\n");
254 goto out;
256 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
257 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
258 0, NULL);
259 if (!(se_tmr_req_cache)) {
260 printk(KERN_ERR "kmem_cache_create() for struct se_tmr_req"
261 " failed\n");
262 goto out;
264 se_sess_cache = kmem_cache_create("se_sess_cache",
265 sizeof(struct se_session), __alignof__(struct se_session),
266 0, NULL);
267 if (!(se_sess_cache)) {
268 printk(KERN_ERR "kmem_cache_create() for struct se_session"
269 " failed\n");
270 goto out;
272 se_ua_cache = kmem_cache_create("se_ua_cache",
273 sizeof(struct se_ua), __alignof__(struct se_ua),
274 0, NULL);
275 if (!(se_ua_cache)) {
276 printk(KERN_ERR "kmem_cache_create() for struct se_ua failed\n");
277 goto out;
279 se_mem_cache = kmem_cache_create("se_mem_cache",
280 sizeof(struct se_mem), __alignof__(struct se_mem), 0, NULL);
281 if (!(se_mem_cache)) {
282 printk(KERN_ERR "kmem_cache_create() for struct se_mem failed\n");
283 goto out;
285 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
286 sizeof(struct t10_pr_registration),
287 __alignof__(struct t10_pr_registration), 0, NULL);
288 if (!(t10_pr_reg_cache)) {
289 printk(KERN_ERR "kmem_cache_create() for struct t10_pr_registration"
290 " failed\n");
291 goto out;
293 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
294 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
295 0, NULL);
296 if (!(t10_alua_lu_gp_cache)) {
297 printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_cache"
298 " failed\n");
299 goto out;
301 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
302 sizeof(struct t10_alua_lu_gp_member),
303 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
304 if (!(t10_alua_lu_gp_mem_cache)) {
305 printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_mem_"
306 "cache failed\n");
307 goto out;
309 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
310 sizeof(struct t10_alua_tg_pt_gp),
311 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
312 if (!(t10_alua_tg_pt_gp_cache)) {
313 printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_"
314 "cache failed\n");
315 goto out;
317 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
318 "t10_alua_tg_pt_gp_mem_cache",
319 sizeof(struct t10_alua_tg_pt_gp_member),
320 __alignof__(struct t10_alua_tg_pt_gp_member),
321 0, NULL);
322 if (!(t10_alua_tg_pt_gp_mem_cache)) {
323 printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_"
324 "mem_t failed\n");
325 goto out;
328 se_global = global;
330 return 0;
331 out:
332 if (se_cmd_cache)
333 kmem_cache_destroy(se_cmd_cache);
334 if (se_tmr_req_cache)
335 kmem_cache_destroy(se_tmr_req_cache);
336 if (se_sess_cache)
337 kmem_cache_destroy(se_sess_cache);
338 if (se_ua_cache)
339 kmem_cache_destroy(se_ua_cache);
340 if (se_mem_cache)
341 kmem_cache_destroy(se_mem_cache);
342 if (t10_pr_reg_cache)
343 kmem_cache_destroy(t10_pr_reg_cache);
344 if (t10_alua_lu_gp_cache)
345 kmem_cache_destroy(t10_alua_lu_gp_cache);
346 if (t10_alua_lu_gp_mem_cache)
347 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
348 if (t10_alua_tg_pt_gp_cache)
349 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
350 if (t10_alua_tg_pt_gp_mem_cache)
351 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
352 kfree(global);
353 return -1;
356 void release_se_global(void)
358 struct se_global *global;
360 global = se_global;
361 if (!(global))
362 return;
364 kmem_cache_destroy(se_cmd_cache);
365 kmem_cache_destroy(se_tmr_req_cache);
366 kmem_cache_destroy(se_sess_cache);
367 kmem_cache_destroy(se_ua_cache);
368 kmem_cache_destroy(se_mem_cache);
369 kmem_cache_destroy(t10_pr_reg_cache);
370 kmem_cache_destroy(t10_alua_lu_gp_cache);
371 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
372 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
373 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
374 kfree(global);
376 se_global = NULL;
379 /* SCSI statistics table index */
380 static struct scsi_index_table scsi_index_table;
383 * Initialize the index table for allocating unique row indexes to various mib
384 * tables.
386 void init_scsi_index_table(void)
388 memset(&scsi_index_table, 0, sizeof(struct scsi_index_table));
389 spin_lock_init(&scsi_index_table.lock);
393 * Allocate a new row index for the entry type specified
395 u32 scsi_get_new_index(scsi_index_t type)
397 u32 new_index;
399 if ((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)) {
400 printk(KERN_ERR "Invalid index type %d\n", type);
401 return -EINVAL;
404 spin_lock(&scsi_index_table.lock);
405 new_index = ++scsi_index_table.scsi_mib_index[type];
406 if (new_index == 0)
407 new_index = ++scsi_index_table.scsi_mib_index[type];
408 spin_unlock(&scsi_index_table.lock);
410 return new_index;
413 void transport_init_queue_obj(struct se_queue_obj *qobj)
415 atomic_set(&qobj->queue_cnt, 0);
416 INIT_LIST_HEAD(&qobj->qobj_list);
417 init_waitqueue_head(&qobj->thread_wq);
418 spin_lock_init(&qobj->cmd_queue_lock);
420 EXPORT_SYMBOL(transport_init_queue_obj);
422 static int transport_subsystem_reqmods(void)
424 int ret;
426 ret = request_module("target_core_iblock");
427 if (ret != 0)
428 printk(KERN_ERR "Unable to load target_core_iblock\n");
430 ret = request_module("target_core_file");
431 if (ret != 0)
432 printk(KERN_ERR "Unable to load target_core_file\n");
434 ret = request_module("target_core_pscsi");
435 if (ret != 0)
436 printk(KERN_ERR "Unable to load target_core_pscsi\n");
438 ret = request_module("target_core_stgt");
439 if (ret != 0)
440 printk(KERN_ERR "Unable to load target_core_stgt\n");
442 return 0;
445 int transport_subsystem_check_init(void)
447 if (se_global->g_sub_api_initialized)
448 return 0;
450 * Request the loading of known TCM subsystem plugins..
452 if (transport_subsystem_reqmods() < 0)
453 return -1;
455 se_global->g_sub_api_initialized = 1;
456 return 0;
459 struct se_session *transport_init_session(void)
461 struct se_session *se_sess;
463 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
464 if (!(se_sess)) {
465 printk(KERN_ERR "Unable to allocate struct se_session from"
466 " se_sess_cache\n");
467 return ERR_PTR(-ENOMEM);
469 INIT_LIST_HEAD(&se_sess->sess_list);
470 INIT_LIST_HEAD(&se_sess->sess_acl_list);
472 return se_sess;
474 EXPORT_SYMBOL(transport_init_session);
477 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
479 void __transport_register_session(
480 struct se_portal_group *se_tpg,
481 struct se_node_acl *se_nacl,
482 struct se_session *se_sess,
483 void *fabric_sess_ptr)
485 unsigned char buf[PR_REG_ISID_LEN];
487 se_sess->se_tpg = se_tpg;
488 se_sess->fabric_sess_ptr = fabric_sess_ptr;
490 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
492 * Only set for struct se_session's that will actually be moving I/O.
493 * eg: *NOT* discovery sessions.
495 if (se_nacl) {
497 * If the fabric module supports an ISID based TransportID,
498 * save this value in binary from the fabric I_T Nexus now.
500 if (TPG_TFO(se_tpg)->sess_get_initiator_sid != NULL) {
501 memset(&buf[0], 0, PR_REG_ISID_LEN);
502 TPG_TFO(se_tpg)->sess_get_initiator_sid(se_sess,
503 &buf[0], PR_REG_ISID_LEN);
504 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
506 spin_lock_irq(&se_nacl->nacl_sess_lock);
508 * The se_nacl->nacl_sess pointer will be set to the
509 * last active I_T Nexus for each struct se_node_acl.
511 se_nacl->nacl_sess = se_sess;
513 list_add_tail(&se_sess->sess_acl_list,
514 &se_nacl->acl_sess_list);
515 spin_unlock_irq(&se_nacl->nacl_sess_lock);
517 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
519 printk(KERN_INFO "TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
520 TPG_TFO(se_tpg)->get_fabric_name(), se_sess->fabric_sess_ptr);
522 EXPORT_SYMBOL(__transport_register_session);
524 void transport_register_session(
525 struct se_portal_group *se_tpg,
526 struct se_node_acl *se_nacl,
527 struct se_session *se_sess,
528 void *fabric_sess_ptr)
530 spin_lock_bh(&se_tpg->session_lock);
531 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
532 spin_unlock_bh(&se_tpg->session_lock);
534 EXPORT_SYMBOL(transport_register_session);
536 void transport_deregister_session_configfs(struct se_session *se_sess)
538 struct se_node_acl *se_nacl;
539 unsigned long flags;
541 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
543 se_nacl = se_sess->se_node_acl;
544 if ((se_nacl)) {
545 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
546 list_del(&se_sess->sess_acl_list);
548 * If the session list is empty, then clear the pointer.
549 * Otherwise, set the struct se_session pointer from the tail
550 * element of the per struct se_node_acl active session list.
552 if (list_empty(&se_nacl->acl_sess_list))
553 se_nacl->nacl_sess = NULL;
554 else {
555 se_nacl->nacl_sess = container_of(
556 se_nacl->acl_sess_list.prev,
557 struct se_session, sess_acl_list);
559 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
562 EXPORT_SYMBOL(transport_deregister_session_configfs);
564 void transport_free_session(struct se_session *se_sess)
566 kmem_cache_free(se_sess_cache, se_sess);
568 EXPORT_SYMBOL(transport_free_session);
570 void transport_deregister_session(struct se_session *se_sess)
572 struct se_portal_group *se_tpg = se_sess->se_tpg;
573 struct se_node_acl *se_nacl;
575 if (!(se_tpg)) {
576 transport_free_session(se_sess);
577 return;
580 spin_lock_bh(&se_tpg->session_lock);
581 list_del(&se_sess->sess_list);
582 se_sess->se_tpg = NULL;
583 se_sess->fabric_sess_ptr = NULL;
584 spin_unlock_bh(&se_tpg->session_lock);
587 * Determine if we need to do extra work for this initiator node's
588 * struct se_node_acl if it had been previously dynamically generated.
590 se_nacl = se_sess->se_node_acl;
591 if ((se_nacl)) {
592 spin_lock_bh(&se_tpg->acl_node_lock);
593 if (se_nacl->dynamic_node_acl) {
594 if (!(TPG_TFO(se_tpg)->tpg_check_demo_mode_cache(
595 se_tpg))) {
596 list_del(&se_nacl->acl_list);
597 se_tpg->num_node_acls--;
598 spin_unlock_bh(&se_tpg->acl_node_lock);
600 core_tpg_wait_for_nacl_pr_ref(se_nacl);
601 core_free_device_list_for_node(se_nacl, se_tpg);
602 TPG_TFO(se_tpg)->tpg_release_fabric_acl(se_tpg,
603 se_nacl);
604 spin_lock_bh(&se_tpg->acl_node_lock);
607 spin_unlock_bh(&se_tpg->acl_node_lock);
610 transport_free_session(se_sess);
612 printk(KERN_INFO "TARGET_CORE[%s]: Deregistered fabric_sess\n",
613 TPG_TFO(se_tpg)->get_fabric_name());
615 EXPORT_SYMBOL(transport_deregister_session);
618 * Called with T_TASK(cmd)->t_state_lock held.
620 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
622 struct se_device *dev;
623 struct se_task *task;
624 unsigned long flags;
626 if (!T_TASK(cmd))
627 return;
629 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
630 dev = task->se_dev;
631 if (!(dev))
632 continue;
634 if (atomic_read(&task->task_active))
635 continue;
637 if (!(atomic_read(&task->task_state_active)))
638 continue;
640 spin_lock_irqsave(&dev->execute_task_lock, flags);
641 list_del(&task->t_state_list);
642 DEBUG_TSTATE("Removed ITT: 0x%08x dev: %p task[%p]\n",
643 CMD_TFO(cmd)->tfo_get_task_tag(cmd), dev, task);
644 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
646 atomic_set(&task->task_state_active, 0);
647 atomic_dec(&T_TASK(cmd)->t_task_cdbs_ex_left);
651 /* transport_cmd_check_stop():
653 * 'transport_off = 1' determines if t_transport_active should be cleared.
654 * 'transport_off = 2' determines if task_dev_state should be removed.
656 * A non-zero u8 t_state sets cmd->t_state.
657 * Returns 1 when command is stopped, else 0.
659 static int transport_cmd_check_stop(
660 struct se_cmd *cmd,
661 int transport_off,
662 u8 t_state)
664 unsigned long flags;
666 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
668 * Determine if IOCTL context caller in requesting the stopping of this
669 * command for LUN shutdown purposes.
671 if (atomic_read(&T_TASK(cmd)->transport_lun_stop)) {
672 DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->transport_lun_stop)"
673 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
674 CMD_TFO(cmd)->get_task_tag(cmd));
676 cmd->deferred_t_state = cmd->t_state;
677 cmd->t_state = TRANSPORT_DEFERRED_CMD;
678 atomic_set(&T_TASK(cmd)->t_transport_active, 0);
679 if (transport_off == 2)
680 transport_all_task_dev_remove_state(cmd);
681 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
683 complete(&T_TASK(cmd)->transport_lun_stop_comp);
684 return 1;
687 * Determine if frontend context caller is requesting the stopping of
688 * this command for frontend excpections.
690 if (atomic_read(&T_TASK(cmd)->t_transport_stop)) {
691 DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->t_transport_stop) =="
692 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
693 CMD_TFO(cmd)->get_task_tag(cmd));
695 cmd->deferred_t_state = cmd->t_state;
696 cmd->t_state = TRANSPORT_DEFERRED_CMD;
697 if (transport_off == 2)
698 transport_all_task_dev_remove_state(cmd);
701 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
702 * to FE.
704 if (transport_off == 2)
705 cmd->se_lun = NULL;
706 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
708 complete(&T_TASK(cmd)->t_transport_stop_comp);
709 return 1;
711 if (transport_off) {
712 atomic_set(&T_TASK(cmd)->t_transport_active, 0);
713 if (transport_off == 2) {
714 transport_all_task_dev_remove_state(cmd);
716 * Clear struct se_cmd->se_lun before the transport_off == 2
717 * handoff to fabric module.
719 cmd->se_lun = NULL;
721 * Some fabric modules like tcm_loop can release
722 * their internally allocated I/O reference now and
723 * struct se_cmd now.
725 if (CMD_TFO(cmd)->check_stop_free != NULL) {
726 spin_unlock_irqrestore(
727 &T_TASK(cmd)->t_state_lock, flags);
729 CMD_TFO(cmd)->check_stop_free(cmd);
730 return 1;
733 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
735 return 0;
736 } else if (t_state)
737 cmd->t_state = t_state;
738 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
740 return 0;
743 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
745 return transport_cmd_check_stop(cmd, 2, 0);
748 static void transport_lun_remove_cmd(struct se_cmd *cmd)
750 struct se_lun *lun = SE_LUN(cmd);
751 unsigned long flags;
753 if (!lun)
754 return;
756 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
757 if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
758 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
759 goto check_lun;
761 atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
762 transport_all_task_dev_remove_state(cmd);
763 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
766 check_lun:
767 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
768 if (atomic_read(&T_TASK(cmd)->transport_lun_active)) {
769 list_del(&cmd->se_lun_list);
770 atomic_set(&T_TASK(cmd)->transport_lun_active, 0);
771 #if 0
772 printk(KERN_INFO "Removed ITT: 0x%08x from LUN LIST[%d]\n"
773 CMD_TFO(cmd)->get_task_tag(cmd), lun->unpacked_lun);
774 #endif
776 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
779 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
781 transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj);
782 transport_lun_remove_cmd(cmd);
784 if (transport_cmd_check_stop_to_fabric(cmd))
785 return;
786 if (remove)
787 transport_generic_remove(cmd, 0, 0);
790 void transport_cmd_finish_abort_tmr(struct se_cmd *cmd)
792 transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj);
794 if (transport_cmd_check_stop_to_fabric(cmd))
795 return;
797 transport_generic_remove(cmd, 0, 0);
800 static int transport_add_cmd_to_queue(
801 struct se_cmd *cmd,
802 int t_state)
804 struct se_device *dev = cmd->se_dev;
805 struct se_queue_obj *qobj = dev->dev_queue_obj;
806 struct se_queue_req *qr;
807 unsigned long flags;
809 qr = kzalloc(sizeof(struct se_queue_req), GFP_ATOMIC);
810 if (!(qr)) {
811 printk(KERN_ERR "Unable to allocate memory for"
812 " struct se_queue_req\n");
813 return -1;
815 INIT_LIST_HEAD(&qr->qr_list);
817 qr->cmd = (void *)cmd;
818 qr->state = t_state;
820 if (t_state) {
821 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
822 cmd->t_state = t_state;
823 atomic_set(&T_TASK(cmd)->t_transport_active, 1);
824 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
827 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
828 list_add_tail(&qr->qr_list, &qobj->qobj_list);
829 atomic_inc(&T_TASK(cmd)->t_transport_queue_active);
830 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
832 atomic_inc(&qobj->queue_cnt);
833 wake_up_interruptible(&qobj->thread_wq);
834 return 0;
838 * Called with struct se_queue_obj->cmd_queue_lock held.
840 static struct se_queue_req *
841 __transport_get_qr_from_queue(struct se_queue_obj *qobj)
843 struct se_cmd *cmd;
844 struct se_queue_req *qr = NULL;
846 if (list_empty(&qobj->qobj_list))
847 return NULL;
849 list_for_each_entry(qr, &qobj->qobj_list, qr_list)
850 break;
852 if (qr->cmd) {
853 cmd = (struct se_cmd *)qr->cmd;
854 atomic_dec(&T_TASK(cmd)->t_transport_queue_active);
856 list_del(&qr->qr_list);
857 atomic_dec(&qobj->queue_cnt);
859 return qr;
862 static struct se_queue_req *
863 transport_get_qr_from_queue(struct se_queue_obj *qobj)
865 struct se_cmd *cmd;
866 struct se_queue_req *qr;
867 unsigned long flags;
869 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
870 if (list_empty(&qobj->qobj_list)) {
871 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
872 return NULL;
875 list_for_each_entry(qr, &qobj->qobj_list, qr_list)
876 break;
878 if (qr->cmd) {
879 cmd = (struct se_cmd *)qr->cmd;
880 atomic_dec(&T_TASK(cmd)->t_transport_queue_active);
882 list_del(&qr->qr_list);
883 atomic_dec(&qobj->queue_cnt);
884 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
886 return qr;
889 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
890 struct se_queue_obj *qobj)
892 struct se_cmd *q_cmd;
893 struct se_queue_req *qr = NULL, *qr_p = NULL;
894 unsigned long flags;
896 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
897 if (!(atomic_read(&T_TASK(cmd)->t_transport_queue_active))) {
898 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
899 return;
902 list_for_each_entry_safe(qr, qr_p, &qobj->qobj_list, qr_list) {
903 q_cmd = (struct se_cmd *)qr->cmd;
904 if (q_cmd != cmd)
905 continue;
907 atomic_dec(&T_TASK(q_cmd)->t_transport_queue_active);
908 atomic_dec(&qobj->queue_cnt);
909 list_del(&qr->qr_list);
910 kfree(qr);
912 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
914 if (atomic_read(&T_TASK(cmd)->t_transport_queue_active)) {
915 printk(KERN_ERR "ITT: 0x%08x t_transport_queue_active: %d\n",
916 CMD_TFO(cmd)->get_task_tag(cmd),
917 atomic_read(&T_TASK(cmd)->t_transport_queue_active));
922 * Completion function used by TCM subsystem plugins (such as FILEIO)
923 * for queueing up response from struct se_subsystem_api->do_task()
925 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
927 struct se_task *task = list_entry(T_TASK(cmd)->t_task_list.next,
928 struct se_task, t_list);
930 if (good) {
931 cmd->scsi_status = SAM_STAT_GOOD;
932 task->task_scsi_status = GOOD;
933 } else {
934 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
935 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
936 TASK_CMD(task)->transport_error_status =
937 PYX_TRANSPORT_ILLEGAL_REQUEST;
940 transport_complete_task(task, good);
942 EXPORT_SYMBOL(transport_complete_sync_cache);
944 /* transport_complete_task():
946 * Called from interrupt and non interrupt context depending
947 * on the transport plugin.
949 void transport_complete_task(struct se_task *task, int success)
951 struct se_cmd *cmd = TASK_CMD(task);
952 struct se_device *dev = task->se_dev;
953 int t_state;
954 unsigned long flags;
955 #if 0
956 printk(KERN_INFO "task: %p CDB: 0x%02x obj_ptr: %p\n", task,
957 T_TASK(cmd)->t_task_cdb[0], dev);
958 #endif
959 if (dev) {
960 spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);
961 atomic_inc(&dev->depth_left);
962 atomic_inc(&SE_HBA(dev)->left_queue_depth);
963 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
966 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
967 atomic_set(&task->task_active, 0);
970 * See if any sense data exists, if so set the TASK_SENSE flag.
971 * Also check for any other post completion work that needs to be
972 * done by the plugins.
974 if (dev && dev->transport->transport_complete) {
975 if (dev->transport->transport_complete(task) != 0) {
976 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
977 task->task_sense = 1;
978 success = 1;
983 * See if we are waiting for outstanding struct se_task
984 * to complete for an exception condition
986 if (atomic_read(&task->task_stop)) {
988 * Decrement T_TASK(cmd)->t_se_count if this task had
989 * previously thrown its timeout exception handler.
991 if (atomic_read(&task->task_timeout)) {
992 atomic_dec(&T_TASK(cmd)->t_se_count);
993 atomic_set(&task->task_timeout, 0);
995 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
997 complete(&task->task_stop_comp);
998 return;
1001 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
1002 * left counter to determine when the struct se_cmd is ready to be queued to
1003 * the processing thread.
1005 if (atomic_read(&task->task_timeout)) {
1006 if (!(atomic_dec_and_test(
1007 &T_TASK(cmd)->t_task_cdbs_timeout_left))) {
1008 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
1009 flags);
1010 return;
1012 t_state = TRANSPORT_COMPLETE_TIMEOUT;
1013 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1015 transport_add_cmd_to_queue(cmd, t_state);
1016 return;
1018 atomic_dec(&T_TASK(cmd)->t_task_cdbs_timeout_left);
1021 * Decrement the outstanding t_task_cdbs_left count. The last
1022 * struct se_task from struct se_cmd will complete itself into the
1023 * device queue depending upon int success.
1025 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_left))) {
1026 if (!success)
1027 T_TASK(cmd)->t_tasks_failed = 1;
1029 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1030 return;
1033 if (!success || T_TASK(cmd)->t_tasks_failed) {
1034 t_state = TRANSPORT_COMPLETE_FAILURE;
1035 if (!task->task_error_status) {
1036 task->task_error_status =
1037 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
1038 cmd->transport_error_status =
1039 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
1041 } else {
1042 atomic_set(&T_TASK(cmd)->t_transport_complete, 1);
1043 t_state = TRANSPORT_COMPLETE_OK;
1045 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1047 transport_add_cmd_to_queue(cmd, t_state);
1049 EXPORT_SYMBOL(transport_complete_task);
1052 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
1053 * struct se_task list are ready to be added to the active execution list
1054 * struct se_device
1056 * Called with se_dev_t->execute_task_lock called.
1058 static inline int transport_add_task_check_sam_attr(
1059 struct se_task *task,
1060 struct se_task *task_prev,
1061 struct se_device *dev)
1064 * No SAM Task attribute emulation enabled, add to tail of
1065 * execution queue
1067 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
1068 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
1069 return 0;
1072 * HEAD_OF_QUEUE attribute for received CDB, which means
1073 * the first task that is associated with a struct se_cmd goes to
1074 * head of the struct se_device->execute_task_list, and task_prev
1075 * after that for each subsequent task
1077 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
1078 list_add(&task->t_execute_list,
1079 (task_prev != NULL) ?
1080 &task_prev->t_execute_list :
1081 &dev->execute_task_list);
1083 DEBUG_STA("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
1084 " in execution queue\n",
1085 T_TASK(task->task_se_cmd)->t_task_cdb[0]);
1086 return 1;
1089 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
1090 * transitioned from Dermant -> Active state, and are added to the end
1091 * of the struct se_device->execute_task_list
1093 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
1094 return 0;
1097 /* __transport_add_task_to_execute_queue():
1099 * Called with se_dev_t->execute_task_lock called.
1101 static void __transport_add_task_to_execute_queue(
1102 struct se_task *task,
1103 struct se_task *task_prev,
1104 struct se_device *dev)
1106 int head_of_queue;
1108 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
1109 atomic_inc(&dev->execute_tasks);
1111 if (atomic_read(&task->task_state_active))
1112 return;
1114 * Determine if this task needs to go to HEAD_OF_QUEUE for the
1115 * state list as well. Running with SAM Task Attribute emulation
1116 * will always return head_of_queue == 0 here
1118 if (head_of_queue)
1119 list_add(&task->t_state_list, (task_prev) ?
1120 &task_prev->t_state_list :
1121 &dev->state_task_list);
1122 else
1123 list_add_tail(&task->t_state_list, &dev->state_task_list);
1125 atomic_set(&task->task_state_active, 1);
1127 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1128 CMD_TFO(task->task_se_cmd)->get_task_tag(task->task_se_cmd),
1129 task, dev);
1132 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
1134 struct se_device *dev;
1135 struct se_task *task;
1136 unsigned long flags;
1138 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
1139 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
1140 dev = task->se_dev;
1142 if (atomic_read(&task->task_state_active))
1143 continue;
1145 spin_lock(&dev->execute_task_lock);
1146 list_add_tail(&task->t_state_list, &dev->state_task_list);
1147 atomic_set(&task->task_state_active, 1);
1149 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1150 CMD_TFO(task->task_se_cmd)->get_task_tag(
1151 task->task_se_cmd), task, dev);
1153 spin_unlock(&dev->execute_task_lock);
1155 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1158 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
1160 struct se_device *dev = SE_DEV(cmd);
1161 struct se_task *task, *task_prev = NULL;
1162 unsigned long flags;
1164 spin_lock_irqsave(&dev->execute_task_lock, flags);
1165 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
1166 if (atomic_read(&task->task_execute_queue))
1167 continue;
1169 * __transport_add_task_to_execute_queue() handles the
1170 * SAM Task Attribute emulation if enabled
1172 __transport_add_task_to_execute_queue(task, task_prev, dev);
1173 atomic_set(&task->task_execute_queue, 1);
1174 task_prev = task;
1176 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
1178 return;
1181 /* transport_get_task_from_execute_queue():
1183 * Called with dev->execute_task_lock held.
1185 static struct se_task *
1186 transport_get_task_from_execute_queue(struct se_device *dev)
1188 struct se_task *task;
1190 if (list_empty(&dev->execute_task_list))
1191 return NULL;
1193 list_for_each_entry(task, &dev->execute_task_list, t_execute_list)
1194 break;
1196 list_del(&task->t_execute_list);
1197 atomic_set(&task->task_execute_queue, 0);
1198 atomic_dec(&dev->execute_tasks);
1200 return task;
1203 /* transport_remove_task_from_execute_queue():
1207 void transport_remove_task_from_execute_queue(
1208 struct se_task *task,
1209 struct se_device *dev)
1211 unsigned long flags;
1213 if (atomic_read(&task->task_execute_queue) == 0) {
1214 dump_stack();
1215 return;
1218 spin_lock_irqsave(&dev->execute_task_lock, flags);
1219 list_del(&task->t_execute_list);
1220 atomic_set(&task->task_execute_queue, 0);
1221 atomic_dec(&dev->execute_tasks);
1222 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
1225 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1227 switch (cmd->data_direction) {
1228 case DMA_NONE:
1229 return "NONE";
1230 case DMA_FROM_DEVICE:
1231 return "READ";
1232 case DMA_TO_DEVICE:
1233 return "WRITE";
1234 case DMA_BIDIRECTIONAL:
1235 return "BIDI";
1236 default:
1237 break;
1240 return "UNKNOWN";
1243 void transport_dump_dev_state(
1244 struct se_device *dev,
1245 char *b,
1246 int *bl)
1248 *bl += sprintf(b + *bl, "Status: ");
1249 switch (dev->dev_status) {
1250 case TRANSPORT_DEVICE_ACTIVATED:
1251 *bl += sprintf(b + *bl, "ACTIVATED");
1252 break;
1253 case TRANSPORT_DEVICE_DEACTIVATED:
1254 *bl += sprintf(b + *bl, "DEACTIVATED");
1255 break;
1256 case TRANSPORT_DEVICE_SHUTDOWN:
1257 *bl += sprintf(b + *bl, "SHUTDOWN");
1258 break;
1259 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1260 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1261 *bl += sprintf(b + *bl, "OFFLINE");
1262 break;
1263 default:
1264 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1265 break;
1268 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
1269 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1270 dev->queue_depth);
1271 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
1272 DEV_ATTRIB(dev)->block_size, DEV_ATTRIB(dev)->max_sectors);
1273 *bl += sprintf(b + *bl, " ");
1276 /* transport_release_all_cmds():
1280 static void transport_release_all_cmds(struct se_device *dev)
1282 struct se_cmd *cmd = NULL;
1283 struct se_queue_req *qr = NULL, *qr_p = NULL;
1284 int bug_out = 0, t_state;
1285 unsigned long flags;
1287 spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
1288 list_for_each_entry_safe(qr, qr_p, &dev->dev_queue_obj->qobj_list,
1289 qr_list) {
1291 cmd = (struct se_cmd *)qr->cmd;
1292 t_state = qr->state;
1293 list_del(&qr->qr_list);
1294 kfree(qr);
1295 spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock,
1296 flags);
1298 printk(KERN_ERR "Releasing ITT: 0x%08x, i_state: %u,"
1299 " t_state: %u directly\n",
1300 CMD_TFO(cmd)->get_task_tag(cmd),
1301 CMD_TFO(cmd)->get_cmd_state(cmd), t_state);
1303 transport_release_fe_cmd(cmd);
1304 bug_out = 1;
1306 spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
1308 spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock, flags);
1309 #if 0
1310 if (bug_out)
1311 BUG();
1312 #endif
1315 void transport_dump_vpd_proto_id(
1316 struct t10_vpd *vpd,
1317 unsigned char *p_buf,
1318 int p_buf_len)
1320 unsigned char buf[VPD_TMP_BUF_SIZE];
1321 int len;
1323 memset(buf, 0, VPD_TMP_BUF_SIZE);
1324 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1326 switch (vpd->protocol_identifier) {
1327 case 0x00:
1328 sprintf(buf+len, "Fibre Channel\n");
1329 break;
1330 case 0x10:
1331 sprintf(buf+len, "Parallel SCSI\n");
1332 break;
1333 case 0x20:
1334 sprintf(buf+len, "SSA\n");
1335 break;
1336 case 0x30:
1337 sprintf(buf+len, "IEEE 1394\n");
1338 break;
1339 case 0x40:
1340 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1341 " Protocol\n");
1342 break;
1343 case 0x50:
1344 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1345 break;
1346 case 0x60:
1347 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1348 break;
1349 case 0x70:
1350 sprintf(buf+len, "Automation/Drive Interface Transport"
1351 " Protocol\n");
1352 break;
1353 case 0x80:
1354 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1355 break;
1356 default:
1357 sprintf(buf+len, "Unknown 0x%02x\n",
1358 vpd->protocol_identifier);
1359 break;
1362 if (p_buf)
1363 strncpy(p_buf, buf, p_buf_len);
1364 else
1365 printk(KERN_INFO "%s", buf);
1368 void
1369 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1372 * Check if the Protocol Identifier Valid (PIV) bit is set..
1374 * from spc3r23.pdf section 7.5.1
1376 if (page_83[1] & 0x80) {
1377 vpd->protocol_identifier = (page_83[0] & 0xf0);
1378 vpd->protocol_identifier_set = 1;
1379 transport_dump_vpd_proto_id(vpd, NULL, 0);
1382 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1384 int transport_dump_vpd_assoc(
1385 struct t10_vpd *vpd,
1386 unsigned char *p_buf,
1387 int p_buf_len)
1389 unsigned char buf[VPD_TMP_BUF_SIZE];
1390 int ret = 0, len;
1392 memset(buf, 0, VPD_TMP_BUF_SIZE);
1393 len = sprintf(buf, "T10 VPD Identifier Association: ");
1395 switch (vpd->association) {
1396 case 0x00:
1397 sprintf(buf+len, "addressed logical unit\n");
1398 break;
1399 case 0x10:
1400 sprintf(buf+len, "target port\n");
1401 break;
1402 case 0x20:
1403 sprintf(buf+len, "SCSI target device\n");
1404 break;
1405 default:
1406 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1407 ret = -1;
1408 break;
1411 if (p_buf)
1412 strncpy(p_buf, buf, p_buf_len);
1413 else
1414 printk("%s", buf);
1416 return ret;
1419 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1422 * The VPD identification association..
1424 * from spc3r23.pdf Section 7.6.3.1 Table 297
1426 vpd->association = (page_83[1] & 0x30);
1427 return transport_dump_vpd_assoc(vpd, NULL, 0);
1429 EXPORT_SYMBOL(transport_set_vpd_assoc);
1431 int transport_dump_vpd_ident_type(
1432 struct t10_vpd *vpd,
1433 unsigned char *p_buf,
1434 int p_buf_len)
1436 unsigned char buf[VPD_TMP_BUF_SIZE];
1437 int ret = 0, len;
1439 memset(buf, 0, VPD_TMP_BUF_SIZE);
1440 len = sprintf(buf, "T10 VPD Identifier Type: ");
1442 switch (vpd->device_identifier_type) {
1443 case 0x00:
1444 sprintf(buf+len, "Vendor specific\n");
1445 break;
1446 case 0x01:
1447 sprintf(buf+len, "T10 Vendor ID based\n");
1448 break;
1449 case 0x02:
1450 sprintf(buf+len, "EUI-64 based\n");
1451 break;
1452 case 0x03:
1453 sprintf(buf+len, "NAA\n");
1454 break;
1455 case 0x04:
1456 sprintf(buf+len, "Relative target port identifier\n");
1457 break;
1458 case 0x08:
1459 sprintf(buf+len, "SCSI name string\n");
1460 break;
1461 default:
1462 sprintf(buf+len, "Unsupported: 0x%02x\n",
1463 vpd->device_identifier_type);
1464 ret = -1;
1465 break;
1468 if (p_buf)
1469 strncpy(p_buf, buf, p_buf_len);
1470 else
1471 printk("%s", buf);
1473 return ret;
1476 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1479 * The VPD identifier type..
1481 * from spc3r23.pdf Section 7.6.3.1 Table 298
1483 vpd->device_identifier_type = (page_83[1] & 0x0f);
1484 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1486 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1488 int transport_dump_vpd_ident(
1489 struct t10_vpd *vpd,
1490 unsigned char *p_buf,
1491 int p_buf_len)
1493 unsigned char buf[VPD_TMP_BUF_SIZE];
1494 int ret = 0;
1496 memset(buf, 0, VPD_TMP_BUF_SIZE);
1498 switch (vpd->device_identifier_code_set) {
1499 case 0x01: /* Binary */
1500 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1501 &vpd->device_identifier[0]);
1502 break;
1503 case 0x02: /* ASCII */
1504 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1505 &vpd->device_identifier[0]);
1506 break;
1507 case 0x03: /* UTF-8 */
1508 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1509 &vpd->device_identifier[0]);
1510 break;
1511 default:
1512 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1513 " 0x%02x", vpd->device_identifier_code_set);
1514 ret = -1;
1515 break;
1518 if (p_buf)
1519 strncpy(p_buf, buf, p_buf_len);
1520 else
1521 printk("%s", buf);
1523 return ret;
1527 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1529 static const char hex_str[] = "0123456789abcdef";
1530 int j = 0, i = 4; /* offset to start of the identifer */
1533 * The VPD Code Set (encoding)
1535 * from spc3r23.pdf Section 7.6.3.1 Table 296
1537 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1538 switch (vpd->device_identifier_code_set) {
1539 case 0x01: /* Binary */
1540 vpd->device_identifier[j++] =
1541 hex_str[vpd->device_identifier_type];
1542 while (i < (4 + page_83[3])) {
1543 vpd->device_identifier[j++] =
1544 hex_str[(page_83[i] & 0xf0) >> 4];
1545 vpd->device_identifier[j++] =
1546 hex_str[page_83[i] & 0x0f];
1547 i++;
1549 break;
1550 case 0x02: /* ASCII */
1551 case 0x03: /* UTF-8 */
1552 while (i < (4 + page_83[3]))
1553 vpd->device_identifier[j++] = page_83[i++];
1554 break;
1555 default:
1556 break;
1559 return transport_dump_vpd_ident(vpd, NULL, 0);
1561 EXPORT_SYMBOL(transport_set_vpd_ident);
1563 static void core_setup_task_attr_emulation(struct se_device *dev)
1566 * If this device is from Target_Core_Mod/pSCSI, disable the
1567 * SAM Task Attribute emulation.
1569 * This is currently not available in upsream Linux/SCSI Target
1570 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1572 if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1573 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1574 return;
1577 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1578 DEBUG_STA("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1579 " device\n", TRANSPORT(dev)->name,
1580 TRANSPORT(dev)->get_device_rev(dev));
1583 static void scsi_dump_inquiry(struct se_device *dev)
1585 struct t10_wwn *wwn = DEV_T10_WWN(dev);
1586 int i, device_type;
1588 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1590 printk(" Vendor: ");
1591 for (i = 0; i < 8; i++)
1592 if (wwn->vendor[i] >= 0x20)
1593 printk("%c", wwn->vendor[i]);
1594 else
1595 printk(" ");
1597 printk(" Model: ");
1598 for (i = 0; i < 16; i++)
1599 if (wwn->model[i] >= 0x20)
1600 printk("%c", wwn->model[i]);
1601 else
1602 printk(" ");
1604 printk(" Revision: ");
1605 for (i = 0; i < 4; i++)
1606 if (wwn->revision[i] >= 0x20)
1607 printk("%c", wwn->revision[i]);
1608 else
1609 printk(" ");
1611 printk("\n");
1613 device_type = TRANSPORT(dev)->get_device_type(dev);
1614 printk(" Type: %s ", scsi_device_type(device_type));
1615 printk(" ANSI SCSI revision: %02x\n",
1616 TRANSPORT(dev)->get_device_rev(dev));
1619 struct se_device *transport_add_device_to_core_hba(
1620 struct se_hba *hba,
1621 struct se_subsystem_api *transport,
1622 struct se_subsystem_dev *se_dev,
1623 u32 device_flags,
1624 void *transport_dev,
1625 struct se_dev_limits *dev_limits,
1626 const char *inquiry_prod,
1627 const char *inquiry_rev)
1629 int force_pt;
1630 struct se_device *dev;
1632 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1633 if (!(dev)) {
1634 printk(KERN_ERR "Unable to allocate memory for se_dev_t\n");
1635 return NULL;
1637 dev->dev_queue_obj = kzalloc(sizeof(struct se_queue_obj), GFP_KERNEL);
1638 if (!(dev->dev_queue_obj)) {
1639 printk(KERN_ERR "Unable to allocate memory for"
1640 " dev->dev_queue_obj\n");
1641 kfree(dev);
1642 return NULL;
1644 transport_init_queue_obj(dev->dev_queue_obj);
1646 dev->dev_status_queue_obj = kzalloc(sizeof(struct se_queue_obj),
1647 GFP_KERNEL);
1648 if (!(dev->dev_status_queue_obj)) {
1649 printk(KERN_ERR "Unable to allocate memory for"
1650 " dev->dev_status_queue_obj\n");
1651 kfree(dev->dev_queue_obj);
1652 kfree(dev);
1653 return NULL;
1655 transport_init_queue_obj(dev->dev_status_queue_obj);
1657 dev->dev_flags = device_flags;
1658 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1659 dev->dev_ptr = (void *) transport_dev;
1660 dev->se_hba = hba;
1661 dev->se_sub_dev = se_dev;
1662 dev->transport = transport;
1663 atomic_set(&dev->active_cmds, 0);
1664 INIT_LIST_HEAD(&dev->dev_list);
1665 INIT_LIST_HEAD(&dev->dev_sep_list);
1666 INIT_LIST_HEAD(&dev->dev_tmr_list);
1667 INIT_LIST_HEAD(&dev->execute_task_list);
1668 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1669 INIT_LIST_HEAD(&dev->ordered_cmd_list);
1670 INIT_LIST_HEAD(&dev->state_task_list);
1671 spin_lock_init(&dev->execute_task_lock);
1672 spin_lock_init(&dev->delayed_cmd_lock);
1673 spin_lock_init(&dev->ordered_cmd_lock);
1674 spin_lock_init(&dev->state_task_lock);
1675 spin_lock_init(&dev->dev_alua_lock);
1676 spin_lock_init(&dev->dev_reservation_lock);
1677 spin_lock_init(&dev->dev_status_lock);
1678 spin_lock_init(&dev->dev_status_thr_lock);
1679 spin_lock_init(&dev->se_port_lock);
1680 spin_lock_init(&dev->se_tmr_lock);
1682 dev->queue_depth = dev_limits->queue_depth;
1683 atomic_set(&dev->depth_left, dev->queue_depth);
1684 atomic_set(&dev->dev_ordered_id, 0);
1686 se_dev_set_default_attribs(dev, dev_limits);
1688 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1689 dev->creation_time = get_jiffies_64();
1690 spin_lock_init(&dev->stats_lock);
1692 spin_lock(&hba->device_lock);
1693 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1694 hba->dev_count++;
1695 spin_unlock(&hba->device_lock);
1697 * Setup the SAM Task Attribute emulation for struct se_device
1699 core_setup_task_attr_emulation(dev);
1701 * Force PR and ALUA passthrough emulation with internal object use.
1703 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1705 * Setup the Reservations infrastructure for struct se_device
1707 core_setup_reservations(dev, force_pt);
1709 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1711 if (core_setup_alua(dev, force_pt) < 0)
1712 goto out;
1715 * Startup the struct se_device processing thread
1717 dev->process_thread = kthread_run(transport_processing_thread, dev,
1718 "LIO_%s", TRANSPORT(dev)->name);
1719 if (IS_ERR(dev->process_thread)) {
1720 printk(KERN_ERR "Unable to create kthread: LIO_%s\n",
1721 TRANSPORT(dev)->name);
1722 goto out;
1726 * Preload the initial INQUIRY const values if we are doing
1727 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1728 * passthrough because this is being provided by the backend LLD.
1729 * This is required so that transport_get_inquiry() copies these
1730 * originals once back into DEV_T10_WWN(dev) for the virtual device
1731 * setup.
1733 if (TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1734 if (!(inquiry_prod) || !(inquiry_prod)) {
1735 printk(KERN_ERR "All non TCM/pSCSI plugins require"
1736 " INQUIRY consts\n");
1737 goto out;
1740 strncpy(&DEV_T10_WWN(dev)->vendor[0], "LIO-ORG", 8);
1741 strncpy(&DEV_T10_WWN(dev)->model[0], inquiry_prod, 16);
1742 strncpy(&DEV_T10_WWN(dev)->revision[0], inquiry_rev, 4);
1744 scsi_dump_inquiry(dev);
1746 return dev;
1747 out:
1748 kthread_stop(dev->process_thread);
1750 spin_lock(&hba->device_lock);
1751 list_del(&dev->dev_list);
1752 hba->dev_count--;
1753 spin_unlock(&hba->device_lock);
1755 se_release_vpd_for_dev(dev);
1757 kfree(dev->dev_status_queue_obj);
1758 kfree(dev->dev_queue_obj);
1759 kfree(dev);
1761 return NULL;
1763 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1765 /* transport_generic_prepare_cdb():
1767 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1768 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1769 * The point of this is since we are mapping iSCSI LUNs to
1770 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1771 * devices and HBAs for a loop.
1773 static inline void transport_generic_prepare_cdb(
1774 unsigned char *cdb)
1776 switch (cdb[0]) {
1777 case READ_10: /* SBC - RDProtect */
1778 case READ_12: /* SBC - RDProtect */
1779 case READ_16: /* SBC - RDProtect */
1780 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1781 case VERIFY: /* SBC - VRProtect */
1782 case VERIFY_16: /* SBC - VRProtect */
1783 case WRITE_VERIFY: /* SBC - VRProtect */
1784 case WRITE_VERIFY_12: /* SBC - VRProtect */
1785 break;
1786 default:
1787 cdb[1] &= 0x1f; /* clear logical unit number */
1788 break;
1792 static struct se_task *
1793 transport_generic_get_task(struct se_cmd *cmd,
1794 enum dma_data_direction data_direction)
1796 struct se_task *task;
1797 struct se_device *dev = SE_DEV(cmd);
1798 unsigned long flags;
1800 task = dev->transport->alloc_task(cmd);
1801 if (!task) {
1802 printk(KERN_ERR "Unable to allocate struct se_task\n");
1803 return NULL;
1806 INIT_LIST_HEAD(&task->t_list);
1807 INIT_LIST_HEAD(&task->t_execute_list);
1808 INIT_LIST_HEAD(&task->t_state_list);
1809 init_completion(&task->task_stop_comp);
1810 task->task_no = T_TASK(cmd)->t_tasks_no++;
1811 task->task_se_cmd = cmd;
1812 task->se_dev = dev;
1813 task->task_data_direction = data_direction;
1815 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
1816 list_add_tail(&task->t_list, &T_TASK(cmd)->t_task_list);
1817 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1819 return task;
1822 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1824 void transport_device_setup_cmd(struct se_cmd *cmd)
1826 cmd->se_dev = SE_LUN(cmd)->lun_se_dev;
1828 EXPORT_SYMBOL(transport_device_setup_cmd);
1831 * Used by fabric modules containing a local struct se_cmd within their
1832 * fabric dependent per I/O descriptor.
1834 void transport_init_se_cmd(
1835 struct se_cmd *cmd,
1836 struct target_core_fabric_ops *tfo,
1837 struct se_session *se_sess,
1838 u32 data_length,
1839 int data_direction,
1840 int task_attr,
1841 unsigned char *sense_buffer)
1843 INIT_LIST_HEAD(&cmd->se_lun_list);
1844 INIT_LIST_HEAD(&cmd->se_delayed_list);
1845 INIT_LIST_HEAD(&cmd->se_ordered_list);
1847 * Setup t_task pointer to t_task_backstore
1849 cmd->t_task = &cmd->t_task_backstore;
1851 INIT_LIST_HEAD(&T_TASK(cmd)->t_task_list);
1852 init_completion(&T_TASK(cmd)->transport_lun_fe_stop_comp);
1853 init_completion(&T_TASK(cmd)->transport_lun_stop_comp);
1854 init_completion(&T_TASK(cmd)->t_transport_stop_comp);
1855 spin_lock_init(&T_TASK(cmd)->t_state_lock);
1856 atomic_set(&T_TASK(cmd)->transport_dev_active, 1);
1858 cmd->se_tfo = tfo;
1859 cmd->se_sess = se_sess;
1860 cmd->data_length = data_length;
1861 cmd->data_direction = data_direction;
1862 cmd->sam_task_attr = task_attr;
1863 cmd->sense_buffer = sense_buffer;
1865 EXPORT_SYMBOL(transport_init_se_cmd);
1867 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1870 * Check if SAM Task Attribute emulation is enabled for this
1871 * struct se_device storage object
1873 if (SE_DEV(cmd)->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1874 return 0;
1876 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1877 DEBUG_STA("SAM Task Attribute ACA"
1878 " emulation is not supported\n");
1879 return -1;
1882 * Used to determine when ORDERED commands should go from
1883 * Dormant to Active status.
1885 cmd->se_ordered_id = atomic_inc_return(&SE_DEV(cmd)->dev_ordered_id);
1886 smp_mb__after_atomic_inc();
1887 DEBUG_STA("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1888 cmd->se_ordered_id, cmd->sam_task_attr,
1889 TRANSPORT(cmd->se_dev)->name);
1890 return 0;
1893 void transport_free_se_cmd(
1894 struct se_cmd *se_cmd)
1896 if (se_cmd->se_tmr_req)
1897 core_tmr_release_req(se_cmd->se_tmr_req);
1899 * Check and free any extended CDB buffer that was allocated
1901 if (T_TASK(se_cmd)->t_task_cdb != T_TASK(se_cmd)->__t_task_cdb)
1902 kfree(T_TASK(se_cmd)->t_task_cdb);
1904 EXPORT_SYMBOL(transport_free_se_cmd);
1906 static void transport_generic_wait_for_tasks(struct se_cmd *, int, int);
1908 /* transport_generic_allocate_tasks():
1910 * Called from fabric RX Thread.
1912 int transport_generic_allocate_tasks(
1913 struct se_cmd *cmd,
1914 unsigned char *cdb)
1916 int ret;
1918 transport_generic_prepare_cdb(cdb);
1921 * This is needed for early exceptions.
1923 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1925 transport_device_setup_cmd(cmd);
1927 * Ensure that the received CDB is less than the max (252 + 8) bytes
1928 * for VARIABLE_LENGTH_CMD
1930 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1931 printk(KERN_ERR "Received SCSI CDB with command_size: %d that"
1932 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1933 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1934 return -1;
1937 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1938 * allocate the additional extended CDB buffer now.. Otherwise
1939 * setup the pointer from __t_task_cdb to t_task_cdb.
1941 if (scsi_command_size(cdb) > sizeof(T_TASK(cmd)->__t_task_cdb)) {
1942 T_TASK(cmd)->t_task_cdb = kzalloc(scsi_command_size(cdb),
1943 GFP_KERNEL);
1944 if (!(T_TASK(cmd)->t_task_cdb)) {
1945 printk(KERN_ERR "Unable to allocate T_TASK(cmd)->t_task_cdb"
1946 " %u > sizeof(T_TASK(cmd)->__t_task_cdb): %lu ops\n",
1947 scsi_command_size(cdb),
1948 (unsigned long)sizeof(T_TASK(cmd)->__t_task_cdb));
1949 return -1;
1951 } else
1952 T_TASK(cmd)->t_task_cdb = &T_TASK(cmd)->__t_task_cdb[0];
1954 * Copy the original CDB into T_TASK(cmd).
1956 memcpy(T_TASK(cmd)->t_task_cdb, cdb, scsi_command_size(cdb));
1958 * Setup the received CDB based on SCSI defined opcodes and
1959 * perform unit attention, persistent reservations and ALUA
1960 * checks for virtual device backends. The T_TASK(cmd)->t_task_cdb
1961 * pointer is expected to be setup before we reach this point.
1963 ret = transport_generic_cmd_sequencer(cmd, cdb);
1964 if (ret < 0)
1965 return ret;
1967 * Check for SAM Task Attribute Emulation
1969 if (transport_check_alloc_task_attr(cmd) < 0) {
1970 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1971 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1972 return -2;
1974 spin_lock(&cmd->se_lun->lun_sep_lock);
1975 if (cmd->se_lun->lun_sep)
1976 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1977 spin_unlock(&cmd->se_lun->lun_sep_lock);
1978 return 0;
1980 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1983 * Used by fabric module frontends not defining a TFO->new_cmd_map()
1984 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
1986 int transport_generic_handle_cdb(
1987 struct se_cmd *cmd)
1989 if (!SE_LUN(cmd)) {
1990 dump_stack();
1991 printk(KERN_ERR "SE_LUN(cmd) is NULL\n");
1992 return -1;
1995 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD);
1996 return 0;
1998 EXPORT_SYMBOL(transport_generic_handle_cdb);
2001 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
2002 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
2003 * complete setup in TCM process context w/ TFO->new_cmd_map().
2005 int transport_generic_handle_cdb_map(
2006 struct se_cmd *cmd)
2008 if (!SE_LUN(cmd)) {
2009 dump_stack();
2010 printk(KERN_ERR "SE_LUN(cmd) is NULL\n");
2011 return -1;
2014 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
2015 return 0;
2017 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
2019 /* transport_generic_handle_data():
2023 int transport_generic_handle_data(
2024 struct se_cmd *cmd)
2027 * For the software fabric case, then we assume the nexus is being
2028 * failed/shutdown when signals are pending from the kthread context
2029 * caller, so we return a failure. For the HW target mode case running
2030 * in interrupt code, the signal_pending() check is skipped.
2032 if (!in_interrupt() && signal_pending(current))
2033 return -1;
2035 * If the received CDB has aleady been ABORTED by the generic
2036 * target engine, we now call transport_check_aborted_status()
2037 * to queue any delated TASK_ABORTED status for the received CDB to the
2038 * fabric module as we are expecting no further incoming DATA OUT
2039 * sequences at this point.
2041 if (transport_check_aborted_status(cmd, 1) != 0)
2042 return 0;
2044 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
2045 return 0;
2047 EXPORT_SYMBOL(transport_generic_handle_data);
2049 /* transport_generic_handle_tmr():
2053 int transport_generic_handle_tmr(
2054 struct se_cmd *cmd)
2057 * This is needed for early exceptions.
2059 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
2060 transport_device_setup_cmd(cmd);
2062 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
2063 return 0;
2065 EXPORT_SYMBOL(transport_generic_handle_tmr);
2067 void transport_generic_free_cmd_intr(
2068 struct se_cmd *cmd)
2070 transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR);
2072 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
2074 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
2076 struct se_task *task, *task_tmp;
2077 unsigned long flags;
2078 int ret = 0;
2080 DEBUG_TS("ITT[0x%08x] - Stopping tasks\n",
2081 CMD_TFO(cmd)->get_task_tag(cmd));
2084 * No tasks remain in the execution queue
2086 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2087 list_for_each_entry_safe(task, task_tmp,
2088 &T_TASK(cmd)->t_task_list, t_list) {
2089 DEBUG_TS("task_no[%d] - Processing task %p\n",
2090 task->task_no, task);
2092 * If the struct se_task has not been sent and is not active,
2093 * remove the struct se_task from the execution queue.
2095 if (!atomic_read(&task->task_sent) &&
2096 !atomic_read(&task->task_active)) {
2097 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
2098 flags);
2099 transport_remove_task_from_execute_queue(task,
2100 task->se_dev);
2102 DEBUG_TS("task_no[%d] - Removed from execute queue\n",
2103 task->task_no);
2104 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2105 continue;
2109 * If the struct se_task is active, sleep until it is returned
2110 * from the plugin.
2112 if (atomic_read(&task->task_active)) {
2113 atomic_set(&task->task_stop, 1);
2114 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
2115 flags);
2117 DEBUG_TS("task_no[%d] - Waiting to complete\n",
2118 task->task_no);
2119 wait_for_completion(&task->task_stop_comp);
2120 DEBUG_TS("task_no[%d] - Stopped successfully\n",
2121 task->task_no);
2123 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2124 atomic_dec(&T_TASK(cmd)->t_task_cdbs_left);
2126 atomic_set(&task->task_active, 0);
2127 atomic_set(&task->task_stop, 0);
2128 } else {
2129 DEBUG_TS("task_no[%d] - Did nothing\n", task->task_no);
2130 ret++;
2133 __transport_stop_task_timer(task, &flags);
2135 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2137 return ret;
2140 static void transport_failure_reset_queue_depth(struct se_device *dev)
2142 unsigned long flags;
2144 spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);
2145 atomic_inc(&dev->depth_left);
2146 atomic_inc(&SE_HBA(dev)->left_queue_depth);
2147 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2151 * Handle SAM-esque emulation for generic transport request failures.
2153 static void transport_generic_request_failure(
2154 struct se_cmd *cmd,
2155 struct se_device *dev,
2156 int complete,
2157 int sc)
2159 DEBUG_GRF("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
2160 " CDB: 0x%02x\n", cmd, CMD_TFO(cmd)->get_task_tag(cmd),
2161 T_TASK(cmd)->t_task_cdb[0]);
2162 DEBUG_GRF("-----[ i_state: %d t_state/def_t_state:"
2163 " %d/%d transport_error_status: %d\n",
2164 CMD_TFO(cmd)->get_cmd_state(cmd),
2165 cmd->t_state, cmd->deferred_t_state,
2166 cmd->transport_error_status);
2167 DEBUG_GRF("-----[ t_task_cdbs: %d t_task_cdbs_left: %d"
2168 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
2169 " t_transport_active: %d t_transport_stop: %d"
2170 " t_transport_sent: %d\n", T_TASK(cmd)->t_task_cdbs,
2171 atomic_read(&T_TASK(cmd)->t_task_cdbs_left),
2172 atomic_read(&T_TASK(cmd)->t_task_cdbs_sent),
2173 atomic_read(&T_TASK(cmd)->t_task_cdbs_ex_left),
2174 atomic_read(&T_TASK(cmd)->t_transport_active),
2175 atomic_read(&T_TASK(cmd)->t_transport_stop),
2176 atomic_read(&T_TASK(cmd)->t_transport_sent));
2178 transport_stop_all_task_timers(cmd);
2180 if (dev)
2181 transport_failure_reset_queue_depth(dev);
2183 * For SAM Task Attribute emulation for failed struct se_cmd
2185 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2186 transport_complete_task_attr(cmd);
2188 if (complete) {
2189 transport_direct_request_timeout(cmd);
2190 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2193 switch (cmd->transport_error_status) {
2194 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
2195 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2196 break;
2197 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
2198 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
2199 break;
2200 case PYX_TRANSPORT_INVALID_CDB_FIELD:
2201 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
2202 break;
2203 case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
2204 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
2205 break;
2206 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
2207 if (!sc)
2208 transport_new_cmd_failure(cmd);
2210 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
2211 * we force this session to fall back to session
2212 * recovery.
2214 CMD_TFO(cmd)->fall_back_to_erl0(cmd->se_sess);
2215 CMD_TFO(cmd)->stop_session(cmd->se_sess, 0, 0);
2217 goto check_stop;
2218 case PYX_TRANSPORT_LU_COMM_FAILURE:
2219 case PYX_TRANSPORT_ILLEGAL_REQUEST:
2220 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2221 break;
2222 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
2223 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
2224 break;
2225 case PYX_TRANSPORT_WRITE_PROTECTED:
2226 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
2227 break;
2228 case PYX_TRANSPORT_RESERVATION_CONFLICT:
2230 * No SENSE Data payload for this case, set SCSI Status
2231 * and queue the response to $FABRIC_MOD.
2233 * Uses linux/include/scsi/scsi.h SAM status codes defs
2235 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2237 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2238 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2239 * CONFLICT STATUS.
2241 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2243 if (SE_SESS(cmd) &&
2244 DEV_ATTRIB(cmd->se_dev)->emulate_ua_intlck_ctrl == 2)
2245 core_scsi3_ua_allocate(SE_SESS(cmd)->se_node_acl,
2246 cmd->orig_fe_lun, 0x2C,
2247 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2249 CMD_TFO(cmd)->queue_status(cmd);
2250 goto check_stop;
2251 case PYX_TRANSPORT_USE_SENSE_REASON:
2253 * struct se_cmd->scsi_sense_reason already set
2255 break;
2256 default:
2257 printk(KERN_ERR "Unknown transport error for CDB 0x%02x: %d\n",
2258 T_TASK(cmd)->t_task_cdb[0],
2259 cmd->transport_error_status);
2260 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2261 break;
2264 if (!sc)
2265 transport_new_cmd_failure(cmd);
2266 else
2267 transport_send_check_condition_and_sense(cmd,
2268 cmd->scsi_sense_reason, 0);
2269 check_stop:
2270 transport_lun_remove_cmd(cmd);
2271 if (!(transport_cmd_check_stop_to_fabric(cmd)))
2275 static void transport_direct_request_timeout(struct se_cmd *cmd)
2277 unsigned long flags;
2279 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2280 if (!(atomic_read(&T_TASK(cmd)->t_transport_timeout))) {
2281 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2282 return;
2284 if (atomic_read(&T_TASK(cmd)->t_task_cdbs_timeout_left)) {
2285 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2286 return;
2289 atomic_sub(atomic_read(&T_TASK(cmd)->t_transport_timeout),
2290 &T_TASK(cmd)->t_se_count);
2291 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2294 static void transport_generic_request_timeout(struct se_cmd *cmd)
2296 unsigned long flags;
2299 * Reset T_TASK(cmd)->t_se_count to allow transport_generic_remove()
2300 * to allow last call to free memory resources.
2302 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2303 if (atomic_read(&T_TASK(cmd)->t_transport_timeout) > 1) {
2304 int tmp = (atomic_read(&T_TASK(cmd)->t_transport_timeout) - 1);
2306 atomic_sub(tmp, &T_TASK(cmd)->t_se_count);
2308 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2310 transport_generic_remove(cmd, 0, 0);
2313 static int
2314 transport_generic_allocate_buf(struct se_cmd *cmd, u32 data_length)
2316 unsigned char *buf;
2318 buf = kzalloc(data_length, GFP_KERNEL);
2319 if (!(buf)) {
2320 printk(KERN_ERR "Unable to allocate memory for buffer\n");
2321 return -1;
2324 T_TASK(cmd)->t_tasks_se_num = 0;
2325 T_TASK(cmd)->t_task_buf = buf;
2327 return 0;
2330 static inline u32 transport_lba_21(unsigned char *cdb)
2332 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2335 static inline u32 transport_lba_32(unsigned char *cdb)
2337 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2340 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2342 unsigned int __v1, __v2;
2344 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2345 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2347 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2351 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2353 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2355 unsigned int __v1, __v2;
2357 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2358 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2360 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2363 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2365 unsigned long flags;
2367 spin_lock_irqsave(&T_TASK(se_cmd)->t_state_lock, flags);
2368 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2369 spin_unlock_irqrestore(&T_TASK(se_cmd)->t_state_lock, flags);
2373 * Called from interrupt context.
2375 static void transport_task_timeout_handler(unsigned long data)
2377 struct se_task *task = (struct se_task *)data;
2378 struct se_cmd *cmd = TASK_CMD(task);
2379 unsigned long flags;
2381 DEBUG_TT("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2383 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2384 if (task->task_flags & TF_STOP) {
2385 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2386 return;
2388 task->task_flags &= ~TF_RUNNING;
2391 * Determine if transport_complete_task() has already been called.
2393 if (!(atomic_read(&task->task_active))) {
2394 DEBUG_TT("transport task: %p cmd: %p timeout task_active"
2395 " == 0\n", task, cmd);
2396 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2397 return;
2400 atomic_inc(&T_TASK(cmd)->t_se_count);
2401 atomic_inc(&T_TASK(cmd)->t_transport_timeout);
2402 T_TASK(cmd)->t_tasks_failed = 1;
2404 atomic_set(&task->task_timeout, 1);
2405 task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2406 task->task_scsi_status = 1;
2408 if (atomic_read(&task->task_stop)) {
2409 DEBUG_TT("transport task: %p cmd: %p timeout task_stop"
2410 " == 1\n", task, cmd);
2411 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2412 complete(&task->task_stop_comp);
2413 return;
2416 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_left))) {
2417 DEBUG_TT("transport task: %p cmd: %p timeout non zero"
2418 " t_task_cdbs_left\n", task, cmd);
2419 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2420 return;
2422 DEBUG_TT("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2423 task, cmd);
2425 cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2426 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2428 transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
2432 * Called with T_TASK(cmd)->t_state_lock held.
2434 static void transport_start_task_timer(struct se_task *task)
2436 struct se_device *dev = task->se_dev;
2437 int timeout;
2439 if (task->task_flags & TF_RUNNING)
2440 return;
2442 * If the task_timeout is disabled, exit now.
2444 timeout = DEV_ATTRIB(dev)->task_timeout;
2445 if (!(timeout))
2446 return;
2448 init_timer(&task->task_timer);
2449 task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2450 task->task_timer.data = (unsigned long) task;
2451 task->task_timer.function = transport_task_timeout_handler;
2453 task->task_flags |= TF_RUNNING;
2454 add_timer(&task->task_timer);
2455 #if 0
2456 printk(KERN_INFO "Starting task timer for cmd: %p task: %p seconds:"
2457 " %d\n", task->task_se_cmd, task, timeout);
2458 #endif
2462 * Called with spin_lock_irq(&T_TASK(cmd)->t_state_lock) held.
2464 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2466 struct se_cmd *cmd = TASK_CMD(task);
2468 if (!(task->task_flags & TF_RUNNING))
2469 return;
2471 task->task_flags |= TF_STOP;
2472 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, *flags);
2474 del_timer_sync(&task->task_timer);
2476 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, *flags);
2477 task->task_flags &= ~TF_RUNNING;
2478 task->task_flags &= ~TF_STOP;
2481 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2483 struct se_task *task = NULL, *task_tmp;
2484 unsigned long flags;
2486 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2487 list_for_each_entry_safe(task, task_tmp,
2488 &T_TASK(cmd)->t_task_list, t_list)
2489 __transport_stop_task_timer(task, &flags);
2490 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2493 static inline int transport_tcq_window_closed(struct se_device *dev)
2495 if (dev->dev_tcq_window_closed++ <
2496 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2497 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2498 } else
2499 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2501 wake_up_interruptible(&dev->dev_queue_obj->thread_wq);
2502 return 0;
2506 * Called from Fabric Module context from transport_execute_tasks()
2508 * The return of this function determins if the tasks from struct se_cmd
2509 * get added to the execution queue in transport_execute_tasks(),
2510 * or are added to the delayed or ordered lists here.
2512 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2514 if (SE_DEV(cmd)->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2515 return 1;
2517 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2518 * to allow the passed struct se_cmd list of tasks to the front of the list.
2520 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2521 atomic_inc(&SE_DEV(cmd)->dev_hoq_count);
2522 smp_mb__after_atomic_inc();
2523 DEBUG_STA("Added HEAD_OF_QUEUE for CDB:"
2524 " 0x%02x, se_ordered_id: %u\n",
2525 T_TASK(cmd)->t_task_cdb[0],
2526 cmd->se_ordered_id);
2527 return 1;
2528 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2529 spin_lock(&SE_DEV(cmd)->ordered_cmd_lock);
2530 list_add_tail(&cmd->se_ordered_list,
2531 &SE_DEV(cmd)->ordered_cmd_list);
2532 spin_unlock(&SE_DEV(cmd)->ordered_cmd_lock);
2534 atomic_inc(&SE_DEV(cmd)->dev_ordered_sync);
2535 smp_mb__after_atomic_inc();
2537 DEBUG_STA("Added ORDERED for CDB: 0x%02x to ordered"
2538 " list, se_ordered_id: %u\n",
2539 T_TASK(cmd)->t_task_cdb[0],
2540 cmd->se_ordered_id);
2542 * Add ORDERED command to tail of execution queue if
2543 * no other older commands exist that need to be
2544 * completed first.
2546 if (!(atomic_read(&SE_DEV(cmd)->simple_cmds)))
2547 return 1;
2548 } else {
2550 * For SIMPLE and UNTAGGED Task Attribute commands
2552 atomic_inc(&SE_DEV(cmd)->simple_cmds);
2553 smp_mb__after_atomic_inc();
2556 * Otherwise if one or more outstanding ORDERED task attribute exist,
2557 * add the dormant task(s) built for the passed struct se_cmd to the
2558 * execution queue and become in Active state for this struct se_device.
2560 if (atomic_read(&SE_DEV(cmd)->dev_ordered_sync) != 0) {
2562 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2563 * will be drained upon completion of HEAD_OF_QUEUE task.
2565 spin_lock(&SE_DEV(cmd)->delayed_cmd_lock);
2566 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2567 list_add_tail(&cmd->se_delayed_list,
2568 &SE_DEV(cmd)->delayed_cmd_list);
2569 spin_unlock(&SE_DEV(cmd)->delayed_cmd_lock);
2571 DEBUG_STA("Added CDB: 0x%02x Task Attr: 0x%02x to"
2572 " delayed CMD list, se_ordered_id: %u\n",
2573 T_TASK(cmd)->t_task_cdb[0], cmd->sam_task_attr,
2574 cmd->se_ordered_id);
2576 * Return zero to let transport_execute_tasks() know
2577 * not to add the delayed tasks to the execution list.
2579 return 0;
2582 * Otherwise, no ORDERED task attributes exist..
2584 return 1;
2588 * Called from fabric module context in transport_generic_new_cmd() and
2589 * transport_generic_process_write()
2591 static int transport_execute_tasks(struct se_cmd *cmd)
2593 int add_tasks;
2595 if (!(cmd->se_cmd_flags & SCF_SE_DISABLE_ONLINE_CHECK)) {
2596 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2597 cmd->transport_error_status =
2598 PYX_TRANSPORT_LU_COMM_FAILURE;
2599 transport_generic_request_failure(cmd, NULL, 0, 1);
2600 return 0;
2604 * Call transport_cmd_check_stop() to see if a fabric exception
2605 * has occurred that prevents execution.
2607 if (!(transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING))) {
2609 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2610 * attribute for the tasks of the received struct se_cmd CDB
2612 add_tasks = transport_execute_task_attr(cmd);
2613 if (add_tasks == 0)
2614 goto execute_tasks;
2616 * This calls transport_add_tasks_from_cmd() to handle
2617 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2618 * (if enabled) in __transport_add_task_to_execute_queue() and
2619 * transport_add_task_check_sam_attr().
2621 transport_add_tasks_from_cmd(cmd);
2624 * Kick the execution queue for the cmd associated struct se_device
2625 * storage object.
2627 execute_tasks:
2628 __transport_execute_tasks(SE_DEV(cmd));
2629 return 0;
2633 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2634 * from struct se_device->execute_task_list and
2636 * Called from transport_processing_thread()
2638 static int __transport_execute_tasks(struct se_device *dev)
2640 int error;
2641 struct se_cmd *cmd = NULL;
2642 struct se_task *task;
2643 unsigned long flags;
2646 * Check if there is enough room in the device and HBA queue to send
2647 * struct se_transport_task's to the selected transport.
2649 check_depth:
2650 spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);
2651 if (!(atomic_read(&dev->depth_left)) ||
2652 !(atomic_read(&SE_HBA(dev)->left_queue_depth))) {
2653 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2654 return transport_tcq_window_closed(dev);
2656 dev->dev_tcq_window_closed = 0;
2658 spin_lock(&dev->execute_task_lock);
2659 task = transport_get_task_from_execute_queue(dev);
2660 spin_unlock(&dev->execute_task_lock);
2662 if (!task) {
2663 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2664 return 0;
2667 atomic_dec(&dev->depth_left);
2668 atomic_dec(&SE_HBA(dev)->left_queue_depth);
2669 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2671 cmd = TASK_CMD(task);
2673 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2674 atomic_set(&task->task_active, 1);
2675 atomic_set(&task->task_sent, 1);
2676 atomic_inc(&T_TASK(cmd)->t_task_cdbs_sent);
2678 if (atomic_read(&T_TASK(cmd)->t_task_cdbs_sent) ==
2679 T_TASK(cmd)->t_task_cdbs)
2680 atomic_set(&cmd->transport_sent, 1);
2682 transport_start_task_timer(task);
2683 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2685 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2686 * to grab REPORT_LUNS CDBs before they hit the
2687 * struct se_subsystem_api->do_task() caller below.
2689 if (cmd->transport_emulate_cdb) {
2690 error = cmd->transport_emulate_cdb(cmd);
2691 if (error != 0) {
2692 cmd->transport_error_status = error;
2693 atomic_set(&task->task_active, 0);
2694 atomic_set(&cmd->transport_sent, 0);
2695 transport_stop_tasks_for_cmd(cmd);
2696 transport_generic_request_failure(cmd, dev, 0, 1);
2697 goto check_depth;
2700 * Handle the successful completion for transport_emulate_cdb()
2701 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2702 * Otherwise the caller is expected to complete the task with
2703 * proper status.
2705 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2706 cmd->scsi_status = SAM_STAT_GOOD;
2707 task->task_scsi_status = GOOD;
2708 transport_complete_task(task, 1);
2710 } else {
2712 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2713 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2714 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2715 * LUN emulation code.
2717 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2718 * call ->do_task() directly and let the underlying TCM subsystem plugin
2719 * code handle the CDB emulation.
2721 if ((TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2722 (!(TASK_CMD(task)->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2723 error = transport_emulate_control_cdb(task);
2724 else
2725 error = TRANSPORT(dev)->do_task(task);
2727 if (error != 0) {
2728 cmd->transport_error_status = error;
2729 atomic_set(&task->task_active, 0);
2730 atomic_set(&cmd->transport_sent, 0);
2731 transport_stop_tasks_for_cmd(cmd);
2732 transport_generic_request_failure(cmd, dev, 0, 1);
2736 goto check_depth;
2738 return 0;
2741 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2743 unsigned long flags;
2745 * Any unsolicited data will get dumped for failed command inside of
2746 * the fabric plugin
2748 spin_lock_irqsave(&T_TASK(se_cmd)->t_state_lock, flags);
2749 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2750 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2751 spin_unlock_irqrestore(&T_TASK(se_cmd)->t_state_lock, flags);
2753 CMD_TFO(se_cmd)->new_cmd_failure(se_cmd);
2756 static void transport_nop_wait_for_tasks(struct se_cmd *, int, int);
2758 static inline u32 transport_get_sectors_6(
2759 unsigned char *cdb,
2760 struct se_cmd *cmd,
2761 int *ret)
2763 struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2766 * Assume TYPE_DISK for non struct se_device objects.
2767 * Use 8-bit sector value.
2769 if (!dev)
2770 goto type_disk;
2773 * Use 24-bit allocation length for TYPE_TAPE.
2775 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE)
2776 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2779 * Everything else assume TYPE_DISK Sector CDB location.
2780 * Use 8-bit sector value. SBC-3 says:
2782 * A TRANSFER LENGTH field set to zero specifies that 256
2783 * logical blocks shall be written. Any other value
2784 * specifies the number of logical blocks that shall be
2785 * written.
2787 type_disk:
2788 return cdb[4] ? : 256;
2791 static inline u32 transport_get_sectors_10(
2792 unsigned char *cdb,
2793 struct se_cmd *cmd,
2794 int *ret)
2796 struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2799 * Assume TYPE_DISK for non struct se_device objects.
2800 * Use 16-bit sector value.
2802 if (!dev)
2803 goto type_disk;
2806 * XXX_10 is not defined in SSC, throw an exception
2808 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) {
2809 *ret = -1;
2810 return 0;
2814 * Everything else assume TYPE_DISK Sector CDB location.
2815 * Use 16-bit sector value.
2817 type_disk:
2818 return (u32)(cdb[7] << 8) + cdb[8];
2821 static inline u32 transport_get_sectors_12(
2822 unsigned char *cdb,
2823 struct se_cmd *cmd,
2824 int *ret)
2826 struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2829 * Assume TYPE_DISK for non struct se_device objects.
2830 * Use 32-bit sector value.
2832 if (!dev)
2833 goto type_disk;
2836 * XXX_12 is not defined in SSC, throw an exception
2838 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) {
2839 *ret = -1;
2840 return 0;
2844 * Everything else assume TYPE_DISK Sector CDB location.
2845 * Use 32-bit sector value.
2847 type_disk:
2848 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2851 static inline u32 transport_get_sectors_16(
2852 unsigned char *cdb,
2853 struct se_cmd *cmd,
2854 int *ret)
2856 struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2859 * Assume TYPE_DISK for non struct se_device objects.
2860 * Use 32-bit sector value.
2862 if (!dev)
2863 goto type_disk;
2866 * Use 24-bit allocation length for TYPE_TAPE.
2868 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE)
2869 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2871 type_disk:
2872 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2873 (cdb[12] << 8) + cdb[13];
2877 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2879 static inline u32 transport_get_sectors_32(
2880 unsigned char *cdb,
2881 struct se_cmd *cmd,
2882 int *ret)
2885 * Assume TYPE_DISK for non struct se_device objects.
2886 * Use 32-bit sector value.
2888 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2889 (cdb[30] << 8) + cdb[31];
2893 static inline u32 transport_get_size(
2894 u32 sectors,
2895 unsigned char *cdb,
2896 struct se_cmd *cmd)
2898 struct se_device *dev = SE_DEV(cmd);
2900 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) {
2901 if (cdb[1] & 1) { /* sectors */
2902 return DEV_ATTRIB(dev)->block_size * sectors;
2903 } else /* bytes */
2904 return sectors;
2906 #if 0
2907 printk(KERN_INFO "Returning block_size: %u, sectors: %u == %u for"
2908 " %s object\n", DEV_ATTRIB(dev)->block_size, sectors,
2909 DEV_ATTRIB(dev)->block_size * sectors,
2910 TRANSPORT(dev)->name);
2911 #endif
2912 return DEV_ATTRIB(dev)->block_size * sectors;
2915 unsigned char transport_asciihex_to_binaryhex(unsigned char val[2])
2917 unsigned char result = 0;
2919 * MSB
2921 if ((val[0] >= 'a') && (val[0] <= 'f'))
2922 result = ((val[0] - 'a' + 10) & 0xf) << 4;
2923 else
2924 if ((val[0] >= 'A') && (val[0] <= 'F'))
2925 result = ((val[0] - 'A' + 10) & 0xf) << 4;
2926 else /* digit */
2927 result = ((val[0] - '0') & 0xf) << 4;
2929 * LSB
2931 if ((val[1] >= 'a') && (val[1] <= 'f'))
2932 result |= ((val[1] - 'a' + 10) & 0xf);
2933 else
2934 if ((val[1] >= 'A') && (val[1] <= 'F'))
2935 result |= ((val[1] - 'A' + 10) & 0xf);
2936 else /* digit */
2937 result |= ((val[1] - '0') & 0xf);
2939 return result;
2941 EXPORT_SYMBOL(transport_asciihex_to_binaryhex);
2943 static void transport_xor_callback(struct se_cmd *cmd)
2945 unsigned char *buf, *addr;
2946 struct se_mem *se_mem;
2947 unsigned int offset;
2948 int i;
2950 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2952 * 1) read the specified logical block(s);
2953 * 2) transfer logical blocks from the data-out buffer;
2954 * 3) XOR the logical blocks transferred from the data-out buffer with
2955 * the logical blocks read, storing the resulting XOR data in a buffer;
2956 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2957 * blocks transferred from the data-out buffer; and
2958 * 5) transfer the resulting XOR data to the data-in buffer.
2960 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2961 if (!(buf)) {
2962 printk(KERN_ERR "Unable to allocate xor_callback buf\n");
2963 return;
2966 * Copy the scatterlist WRITE buffer located at T_TASK(cmd)->t_mem_list
2967 * into the locally allocated *buf
2969 transport_memcpy_se_mem_read_contig(cmd, buf, T_TASK(cmd)->t_mem_list);
2971 * Now perform the XOR against the BIDI read memory located at
2972 * T_TASK(cmd)->t_mem_bidi_list
2975 offset = 0;
2976 list_for_each_entry(se_mem, T_TASK(cmd)->t_mem_bidi_list, se_list) {
2977 addr = (unsigned char *)kmap_atomic(se_mem->se_page, KM_USER0);
2978 if (!(addr))
2979 goto out;
2981 for (i = 0; i < se_mem->se_len; i++)
2982 *(addr + se_mem->se_off + i) ^= *(buf + offset + i);
2984 offset += se_mem->se_len;
2985 kunmap_atomic(addr, KM_USER0);
2987 out:
2988 kfree(buf);
2992 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2994 static int transport_get_sense_data(struct se_cmd *cmd)
2996 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2997 struct se_device *dev;
2998 struct se_task *task = NULL, *task_tmp;
2999 unsigned long flags;
3000 u32 offset = 0;
3002 if (!SE_LUN(cmd)) {
3003 printk(KERN_ERR "SE_LUN(cmd) is NULL\n");
3004 return -1;
3006 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
3007 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3008 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3009 return 0;
3012 list_for_each_entry_safe(task, task_tmp,
3013 &T_TASK(cmd)->t_task_list, t_list) {
3015 if (!task->task_sense)
3016 continue;
3018 dev = task->se_dev;
3019 if (!(dev))
3020 continue;
3022 if (!TRANSPORT(dev)->get_sense_buffer) {
3023 printk(KERN_ERR "TRANSPORT(dev)->get_sense_buffer"
3024 " is NULL\n");
3025 continue;
3028 sense_buffer = TRANSPORT(dev)->get_sense_buffer(task);
3029 if (!(sense_buffer)) {
3030 printk(KERN_ERR "ITT[0x%08x]_TASK[%d]: Unable to locate"
3031 " sense buffer for task with sense\n",
3032 CMD_TFO(cmd)->get_task_tag(cmd), task->task_no);
3033 continue;
3035 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3037 offset = CMD_TFO(cmd)->set_fabric_sense_len(cmd,
3038 TRANSPORT_SENSE_BUFFER);
3040 memcpy((void *)&buffer[offset], (void *)sense_buffer,
3041 TRANSPORT_SENSE_BUFFER);
3042 cmd->scsi_status = task->task_scsi_status;
3043 /* Automatically padded */
3044 cmd->scsi_sense_length =
3045 (TRANSPORT_SENSE_BUFFER + offset);
3047 printk(KERN_INFO "HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
3048 " and sense\n",
3049 dev->se_hba->hba_id, TRANSPORT(dev)->name,
3050 cmd->scsi_status);
3051 return 0;
3053 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3055 return -1;
3058 static int transport_allocate_resources(struct se_cmd *cmd)
3060 u32 length = cmd->data_length;
3062 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3063 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB))
3064 return transport_generic_get_mem(cmd, length, PAGE_SIZE);
3065 else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB)
3066 return transport_generic_allocate_buf(cmd, length);
3067 else
3068 return 0;
3071 static int
3072 transport_handle_reservation_conflict(struct se_cmd *cmd)
3074 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3075 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3076 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
3077 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
3079 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
3080 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
3081 * CONFLICT STATUS.
3083 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
3085 if (SE_SESS(cmd) &&
3086 DEV_ATTRIB(cmd->se_dev)->emulate_ua_intlck_ctrl == 2)
3087 core_scsi3_ua_allocate(SE_SESS(cmd)->se_node_acl,
3088 cmd->orig_fe_lun, 0x2C,
3089 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
3090 return -2;
3093 /* transport_generic_cmd_sequencer():
3095 * Generic Command Sequencer that should work for most DAS transport
3096 * drivers.
3098 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
3099 * RX Thread.
3101 * FIXME: Need to support other SCSI OPCODES where as well.
3103 static int transport_generic_cmd_sequencer(
3104 struct se_cmd *cmd,
3105 unsigned char *cdb)
3107 struct se_device *dev = SE_DEV(cmd);
3108 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
3109 int ret = 0, sector_ret = 0, passthrough;
3110 u32 sectors = 0, size = 0, pr_reg_type = 0;
3111 u16 service_action;
3112 u8 alua_ascq = 0;
3114 * Check for an existing UNIT ATTENTION condition
3116 if (core_scsi3_ua_check(cmd, cdb) < 0) {
3117 cmd->transport_wait_for_tasks =
3118 &transport_nop_wait_for_tasks;
3119 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3120 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
3121 return -2;
3124 * Check status of Asymmetric Logical Unit Assignment port
3126 ret = T10_ALUA(su_dev)->alua_state_check(cmd, cdb, &alua_ascq);
3127 if (ret != 0) {
3128 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3130 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
3131 * The ALUA additional sense code qualifier (ASCQ) is determined
3132 * by the ALUA primary or secondary access state..
3134 if (ret > 0) {
3135 #if 0
3136 printk(KERN_INFO "[%s]: ALUA TG Port not available,"
3137 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
3138 CMD_TFO(cmd)->get_fabric_name(), alua_ascq);
3139 #endif
3140 transport_set_sense_codes(cmd, 0x04, alua_ascq);
3141 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3142 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
3143 return -2;
3145 goto out_invalid_cdb_field;
3148 * Check status for SPC-3 Persistent Reservations
3150 if (T10_PR_OPS(su_dev)->t10_reservation_check(cmd, &pr_reg_type) != 0) {
3151 if (T10_PR_OPS(su_dev)->t10_seq_non_holder(
3152 cmd, cdb, pr_reg_type) != 0)
3153 return transport_handle_reservation_conflict(cmd);
3155 * This means the CDB is allowed for the SCSI Initiator port
3156 * when said port is *NOT* holding the legacy SPC-2 or
3157 * SPC-3 Persistent Reservation.
3161 switch (cdb[0]) {
3162 case READ_6:
3163 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
3164 if (sector_ret)
3165 goto out_unsupported_cdb;
3166 size = transport_get_size(sectors, cdb, cmd);
3167 cmd->transport_split_cdb = &split_cdb_XX_6;
3168 T_TASK(cmd)->t_task_lba = transport_lba_21(cdb);
3169 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3170 break;
3171 case READ_10:
3172 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3173 if (sector_ret)
3174 goto out_unsupported_cdb;
3175 size = transport_get_size(sectors, cdb, cmd);
3176 cmd->transport_split_cdb = &split_cdb_XX_10;
3177 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3178 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3179 break;
3180 case READ_12:
3181 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3182 if (sector_ret)
3183 goto out_unsupported_cdb;
3184 size = transport_get_size(sectors, cdb, cmd);
3185 cmd->transport_split_cdb = &split_cdb_XX_12;
3186 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3187 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3188 break;
3189 case READ_16:
3190 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3191 if (sector_ret)
3192 goto out_unsupported_cdb;
3193 size = transport_get_size(sectors, cdb, cmd);
3194 cmd->transport_split_cdb = &split_cdb_XX_16;
3195 T_TASK(cmd)->t_task_lba = transport_lba_64(cdb);
3196 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3197 break;
3198 case WRITE_6:
3199 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
3200 if (sector_ret)
3201 goto out_unsupported_cdb;
3202 size = transport_get_size(sectors, cdb, cmd);
3203 cmd->transport_split_cdb = &split_cdb_XX_6;
3204 T_TASK(cmd)->t_task_lba = transport_lba_21(cdb);
3205 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3206 break;
3207 case WRITE_10:
3208 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3209 if (sector_ret)
3210 goto out_unsupported_cdb;
3211 size = transport_get_size(sectors, cdb, cmd);
3212 cmd->transport_split_cdb = &split_cdb_XX_10;
3213 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3214 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3215 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3216 break;
3217 case WRITE_12:
3218 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3219 if (sector_ret)
3220 goto out_unsupported_cdb;
3221 size = transport_get_size(sectors, cdb, cmd);
3222 cmd->transport_split_cdb = &split_cdb_XX_12;
3223 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3224 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3225 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3226 break;
3227 case WRITE_16:
3228 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3229 if (sector_ret)
3230 goto out_unsupported_cdb;
3231 size = transport_get_size(sectors, cdb, cmd);
3232 cmd->transport_split_cdb = &split_cdb_XX_16;
3233 T_TASK(cmd)->t_task_lba = transport_lba_64(cdb);
3234 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3235 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3236 break;
3237 case XDWRITEREAD_10:
3238 if ((cmd->data_direction != DMA_TO_DEVICE) ||
3239 !(T_TASK(cmd)->t_tasks_bidi))
3240 goto out_invalid_cdb_field;
3241 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3242 if (sector_ret)
3243 goto out_unsupported_cdb;
3244 size = transport_get_size(sectors, cdb, cmd);
3245 cmd->transport_split_cdb = &split_cdb_XX_10;
3246 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3247 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3248 passthrough = (TRANSPORT(dev)->transport_type ==
3249 TRANSPORT_PLUGIN_PHBA_PDEV);
3251 * Skip the remaining assignments for TCM/PSCSI passthrough
3253 if (passthrough)
3254 break;
3256 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
3258 cmd->transport_complete_callback = &transport_xor_callback;
3259 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3260 break;
3261 case VARIABLE_LENGTH_CMD:
3262 service_action = get_unaligned_be16(&cdb[8]);
3264 * Determine if this is TCM/PSCSI device and we should disable
3265 * internal emulation for this CDB.
3267 passthrough = (TRANSPORT(dev)->transport_type ==
3268 TRANSPORT_PLUGIN_PHBA_PDEV);
3270 switch (service_action) {
3271 case XDWRITEREAD_32:
3272 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3273 if (sector_ret)
3274 goto out_unsupported_cdb;
3275 size = transport_get_size(sectors, cdb, cmd);
3277 * Use WRITE_32 and READ_32 opcodes for the emulated
3278 * XDWRITE_READ_32 logic.
3280 cmd->transport_split_cdb = &split_cdb_XX_32;
3281 T_TASK(cmd)->t_task_lba = transport_lba_64_ext(cdb);
3282 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3285 * Skip the remaining assignments for TCM/PSCSI passthrough
3287 if (passthrough)
3288 break;
3291 * Setup BIDI XOR callback to be run during
3292 * transport_generic_complete_ok()
3294 cmd->transport_complete_callback = &transport_xor_callback;
3295 T_TASK(cmd)->t_tasks_fua = (cdb[10] & 0x8);
3296 break;
3297 case WRITE_SAME_32:
3298 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3299 if (sector_ret)
3300 goto out_unsupported_cdb;
3301 size = transport_get_size(sectors, cdb, cmd);
3302 T_TASK(cmd)->t_task_lba = get_unaligned_be64(&cdb[12]);
3303 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3306 * Skip the remaining assignments for TCM/PSCSI passthrough
3308 if (passthrough)
3309 break;
3311 if ((cdb[10] & 0x04) || (cdb[10] & 0x02)) {
3312 printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA"
3313 " bits not supported for Block Discard"
3314 " Emulation\n");
3315 goto out_invalid_cdb_field;
3318 * Currently for the emulated case we only accept
3319 * tpws with the UNMAP=1 bit set.
3321 if (!(cdb[10] & 0x08)) {
3322 printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not"
3323 " supported for Block Discard Emulation\n");
3324 goto out_invalid_cdb_field;
3326 break;
3327 default:
3328 printk(KERN_ERR "VARIABLE_LENGTH_CMD service action"
3329 " 0x%04x not supported\n", service_action);
3330 goto out_unsupported_cdb;
3332 break;
3333 case 0xa3:
3334 if (TRANSPORT(dev)->get_device_type(dev) != TYPE_ROM) {
3335 /* MAINTENANCE_IN from SCC-2 */
3337 * Check for emulated MI_REPORT_TARGET_PGS.
3339 if (cdb[1] == MI_REPORT_TARGET_PGS) {
3340 cmd->transport_emulate_cdb =
3341 (T10_ALUA(su_dev)->alua_type ==
3342 SPC3_ALUA_EMULATED) ?
3343 &core_emulate_report_target_port_groups :
3344 NULL;
3346 size = (cdb[6] << 24) | (cdb[7] << 16) |
3347 (cdb[8] << 8) | cdb[9];
3348 } else {
3349 /* GPCMD_SEND_KEY from multi media commands */
3350 size = (cdb[8] << 8) + cdb[9];
3352 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3353 break;
3354 case MODE_SELECT:
3355 size = cdb[4];
3356 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3357 break;
3358 case MODE_SELECT_10:
3359 size = (cdb[7] << 8) + cdb[8];
3360 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3361 break;
3362 case MODE_SENSE:
3363 size = cdb[4];
3364 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3365 break;
3366 case MODE_SENSE_10:
3367 case GPCMD_READ_BUFFER_CAPACITY:
3368 case GPCMD_SEND_OPC:
3369 case LOG_SELECT:
3370 case LOG_SENSE:
3371 size = (cdb[7] << 8) + cdb[8];
3372 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3373 break;
3374 case READ_BLOCK_LIMITS:
3375 size = READ_BLOCK_LEN;
3376 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3377 break;
3378 case GPCMD_GET_CONFIGURATION:
3379 case GPCMD_READ_FORMAT_CAPACITIES:
3380 case GPCMD_READ_DISC_INFO:
3381 case GPCMD_READ_TRACK_RZONE_INFO:
3382 size = (cdb[7] << 8) + cdb[8];
3383 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3384 break;
3385 case PERSISTENT_RESERVE_IN:
3386 case PERSISTENT_RESERVE_OUT:
3387 cmd->transport_emulate_cdb =
3388 (T10_RES(su_dev)->res_type ==
3389 SPC3_PERSISTENT_RESERVATIONS) ?
3390 &core_scsi3_emulate_pr : NULL;
3391 size = (cdb[7] << 8) + cdb[8];
3392 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3393 break;
3394 case GPCMD_MECHANISM_STATUS:
3395 case GPCMD_READ_DVD_STRUCTURE:
3396 size = (cdb[8] << 8) + cdb[9];
3397 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3398 break;
3399 case READ_POSITION:
3400 size = READ_POSITION_LEN;
3401 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3402 break;
3403 case 0xa4:
3404 if (TRANSPORT(dev)->get_device_type(dev) != TYPE_ROM) {
3405 /* MAINTENANCE_OUT from SCC-2
3407 * Check for emulated MO_SET_TARGET_PGS.
3409 if (cdb[1] == MO_SET_TARGET_PGS) {
3410 cmd->transport_emulate_cdb =
3411 (T10_ALUA(su_dev)->alua_type ==
3412 SPC3_ALUA_EMULATED) ?
3413 &core_emulate_set_target_port_groups :
3414 NULL;
3417 size = (cdb[6] << 24) | (cdb[7] << 16) |
3418 (cdb[8] << 8) | cdb[9];
3419 } else {
3420 /* GPCMD_REPORT_KEY from multi media commands */
3421 size = (cdb[8] << 8) + cdb[9];
3423 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3424 break;
3425 case INQUIRY:
3426 size = (cdb[3] << 8) + cdb[4];
3428 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3429 * See spc4r17 section 5.3
3431 if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3432 cmd->sam_task_attr = MSG_HEAD_TAG;
3433 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3434 break;
3435 case READ_BUFFER:
3436 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3437 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3438 break;
3439 case READ_CAPACITY:
3440 size = READ_CAP_LEN;
3441 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3442 break;
3443 case READ_MEDIA_SERIAL_NUMBER:
3444 case SECURITY_PROTOCOL_IN:
3445 case SECURITY_PROTOCOL_OUT:
3446 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3447 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3448 break;
3449 case SERVICE_ACTION_IN:
3450 case ACCESS_CONTROL_IN:
3451 case ACCESS_CONTROL_OUT:
3452 case EXTENDED_COPY:
3453 case READ_ATTRIBUTE:
3454 case RECEIVE_COPY_RESULTS:
3455 case WRITE_ATTRIBUTE:
3456 size = (cdb[10] << 24) | (cdb[11] << 16) |
3457 (cdb[12] << 8) | cdb[13];
3458 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3459 break;
3460 case RECEIVE_DIAGNOSTIC:
3461 case SEND_DIAGNOSTIC:
3462 size = (cdb[3] << 8) | cdb[4];
3463 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3464 break;
3465 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3466 #if 0
3467 case GPCMD_READ_CD:
3468 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3469 size = (2336 * sectors);
3470 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3471 break;
3472 #endif
3473 case READ_TOC:
3474 size = cdb[8];
3475 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3476 break;
3477 case REQUEST_SENSE:
3478 size = cdb[4];
3479 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3480 break;
3481 case READ_ELEMENT_STATUS:
3482 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3483 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3484 break;
3485 case WRITE_BUFFER:
3486 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3487 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3488 break;
3489 case RESERVE:
3490 case RESERVE_10:
3492 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3493 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3495 if (cdb[0] == RESERVE_10)
3496 size = (cdb[7] << 8) | cdb[8];
3497 else
3498 size = cmd->data_length;
3501 * Setup the legacy emulated handler for SPC-2 and
3502 * >= SPC-3 compatible reservation handling (CRH=1)
3503 * Otherwise, we assume the underlying SCSI logic is
3504 * is running in SPC_PASSTHROUGH, and wants reservations
3505 * emulation disabled.
3507 cmd->transport_emulate_cdb =
3508 (T10_RES(su_dev)->res_type !=
3509 SPC_PASSTHROUGH) ?
3510 &core_scsi2_emulate_crh : NULL;
3511 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3512 break;
3513 case RELEASE:
3514 case RELEASE_10:
3516 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3517 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3519 if (cdb[0] == RELEASE_10)
3520 size = (cdb[7] << 8) | cdb[8];
3521 else
3522 size = cmd->data_length;
3524 cmd->transport_emulate_cdb =
3525 (T10_RES(su_dev)->res_type !=
3526 SPC_PASSTHROUGH) ?
3527 &core_scsi2_emulate_crh : NULL;
3528 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3529 break;
3530 case SYNCHRONIZE_CACHE:
3531 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3533 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3535 if (cdb[0] == SYNCHRONIZE_CACHE) {
3536 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3537 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3538 } else {
3539 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3540 T_TASK(cmd)->t_task_lba = transport_lba_64(cdb);
3542 if (sector_ret)
3543 goto out_unsupported_cdb;
3545 size = transport_get_size(sectors, cdb, cmd);
3546 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3549 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3551 if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3552 break;
3554 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3555 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3557 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3559 * Check to ensure that LBA + Range does not exceed past end of
3560 * device.
3562 if (transport_get_sectors(cmd) < 0)
3563 goto out_invalid_cdb_field;
3564 break;
3565 case UNMAP:
3566 size = get_unaligned_be16(&cdb[7]);
3567 passthrough = (TRANSPORT(dev)->transport_type ==
3568 TRANSPORT_PLUGIN_PHBA_PDEV);
3570 * Determine if the received UNMAP used to for direct passthrough
3571 * into Linux/SCSI with struct request via TCM/pSCSI or we are
3572 * signaling the use of internal transport_generic_unmap() emulation
3573 * for UNMAP -> Linux/BLOCK disbard with TCM/IBLOCK and TCM/FILEIO
3574 * subsystem plugin backstores.
3576 if (!(passthrough))
3577 cmd->se_cmd_flags |= SCF_EMULATE_SYNC_UNMAP;
3579 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3580 break;
3581 case WRITE_SAME_16:
3582 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3583 if (sector_ret)
3584 goto out_unsupported_cdb;
3585 size = transport_get_size(sectors, cdb, cmd);
3586 T_TASK(cmd)->t_task_lba = get_unaligned_be16(&cdb[2]);
3587 passthrough = (TRANSPORT(dev)->transport_type ==
3588 TRANSPORT_PLUGIN_PHBA_PDEV);
3590 * Determine if the received WRITE_SAME_16 is used to for direct
3591 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
3592 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
3593 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK and
3594 * TCM/FILEIO subsystem plugin backstores.
3596 if (!(passthrough)) {
3597 if ((cdb[1] & 0x04) || (cdb[1] & 0x02)) {
3598 printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA"
3599 " bits not supported for Block Discard"
3600 " Emulation\n");
3601 goto out_invalid_cdb_field;
3604 * Currently for the emulated case we only accept
3605 * tpws with the UNMAP=1 bit set.
3607 if (!(cdb[1] & 0x08)) {
3608 printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not "
3609 " supported for Block Discard Emulation\n");
3610 goto out_invalid_cdb_field;
3613 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3614 break;
3615 case ALLOW_MEDIUM_REMOVAL:
3616 case GPCMD_CLOSE_TRACK:
3617 case ERASE:
3618 case INITIALIZE_ELEMENT_STATUS:
3619 case GPCMD_LOAD_UNLOAD:
3620 case REZERO_UNIT:
3621 case SEEK_10:
3622 case GPCMD_SET_SPEED:
3623 case SPACE:
3624 case START_STOP:
3625 case TEST_UNIT_READY:
3626 case VERIFY:
3627 case WRITE_FILEMARKS:
3628 case MOVE_MEDIUM:
3629 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3630 break;
3631 case REPORT_LUNS:
3632 cmd->transport_emulate_cdb =
3633 &transport_core_report_lun_response;
3634 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3636 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3637 * See spc4r17 section 5.3
3639 if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3640 cmd->sam_task_attr = MSG_HEAD_TAG;
3641 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3642 break;
3643 default:
3644 printk(KERN_WARNING "TARGET_CORE[%s]: Unsupported SCSI Opcode"
3645 " 0x%02x, sending CHECK_CONDITION.\n",
3646 CMD_TFO(cmd)->get_fabric_name(), cdb[0]);
3647 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3648 goto out_unsupported_cdb;
3651 if (size != cmd->data_length) {
3652 printk(KERN_WARNING "TARGET_CORE[%s]: Expected Transfer Length:"
3653 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3654 " 0x%02x\n", CMD_TFO(cmd)->get_fabric_name(),
3655 cmd->data_length, size, cdb[0]);
3657 cmd->cmd_spdtl = size;
3659 if (cmd->data_direction == DMA_TO_DEVICE) {
3660 printk(KERN_ERR "Rejecting underflow/overflow"
3661 " WRITE data\n");
3662 goto out_invalid_cdb_field;
3665 * Reject READ_* or WRITE_* with overflow/underflow for
3666 * type SCF_SCSI_DATA_SG_IO_CDB.
3668 if (!(ret) && (DEV_ATTRIB(dev)->block_size != 512)) {
3669 printk(KERN_ERR "Failing OVERFLOW/UNDERFLOW for LBA op"
3670 " CDB on non 512-byte sector setup subsystem"
3671 " plugin: %s\n", TRANSPORT(dev)->name);
3672 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3673 goto out_invalid_cdb_field;
3676 if (size > cmd->data_length) {
3677 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3678 cmd->residual_count = (size - cmd->data_length);
3679 } else {
3680 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3681 cmd->residual_count = (cmd->data_length - size);
3683 cmd->data_length = size;
3686 transport_set_supported_SAM_opcode(cmd);
3687 return ret;
3689 out_unsupported_cdb:
3690 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3691 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3692 return -2;
3693 out_invalid_cdb_field:
3694 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3695 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3696 return -2;
3699 static inline void transport_release_tasks(struct se_cmd *);
3702 * This function will copy a contiguous *src buffer into a destination
3703 * struct scatterlist array.
3705 static void transport_memcpy_write_contig(
3706 struct se_cmd *cmd,
3707 struct scatterlist *sg_d,
3708 unsigned char *src)
3710 u32 i = 0, length = 0, total_length = cmd->data_length;
3711 void *dst;
3713 while (total_length) {
3714 length = sg_d[i].length;
3716 if (length > total_length)
3717 length = total_length;
3719 dst = sg_virt(&sg_d[i]);
3721 memcpy(dst, src, length);
3723 if (!(total_length -= length))
3724 return;
3726 src += length;
3727 i++;
3732 * This function will copy a struct scatterlist array *sg_s into a destination
3733 * contiguous *dst buffer.
3735 static void transport_memcpy_read_contig(
3736 struct se_cmd *cmd,
3737 unsigned char *dst,
3738 struct scatterlist *sg_s)
3740 u32 i = 0, length = 0, total_length = cmd->data_length;
3741 void *src;
3743 while (total_length) {
3744 length = sg_s[i].length;
3746 if (length > total_length)
3747 length = total_length;
3749 src = sg_virt(&sg_s[i]);
3751 memcpy(dst, src, length);
3753 if (!(total_length -= length))
3754 return;
3756 dst += length;
3757 i++;
3761 static void transport_memcpy_se_mem_read_contig(
3762 struct se_cmd *cmd,
3763 unsigned char *dst,
3764 struct list_head *se_mem_list)
3766 struct se_mem *se_mem;
3767 void *src;
3768 u32 length = 0, total_length = cmd->data_length;
3770 list_for_each_entry(se_mem, se_mem_list, se_list) {
3771 length = se_mem->se_len;
3773 if (length > total_length)
3774 length = total_length;
3776 src = page_address(se_mem->se_page) + se_mem->se_off;
3778 memcpy(dst, src, length);
3780 if (!(total_length -= length))
3781 return;
3783 dst += length;
3788 * Called from transport_generic_complete_ok() and
3789 * transport_generic_request_failure() to determine which dormant/delayed
3790 * and ordered cmds need to have their tasks added to the execution queue.
3792 static void transport_complete_task_attr(struct se_cmd *cmd)
3794 struct se_device *dev = SE_DEV(cmd);
3795 struct se_cmd *cmd_p, *cmd_tmp;
3796 int new_active_tasks = 0;
3798 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3799 atomic_dec(&dev->simple_cmds);
3800 smp_mb__after_atomic_dec();
3801 dev->dev_cur_ordered_id++;
3802 DEBUG_STA("Incremented dev->dev_cur_ordered_id: %u for"
3803 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3804 cmd->se_ordered_id);
3805 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3806 atomic_dec(&dev->dev_hoq_count);
3807 smp_mb__after_atomic_dec();
3808 dev->dev_cur_ordered_id++;
3809 DEBUG_STA("Incremented dev_cur_ordered_id: %u for"
3810 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3811 cmd->se_ordered_id);
3812 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3813 spin_lock(&dev->ordered_cmd_lock);
3814 list_del(&cmd->se_ordered_list);
3815 atomic_dec(&dev->dev_ordered_sync);
3816 smp_mb__after_atomic_dec();
3817 spin_unlock(&dev->ordered_cmd_lock);
3819 dev->dev_cur_ordered_id++;
3820 DEBUG_STA("Incremented dev_cur_ordered_id: %u for ORDERED:"
3821 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3824 * Process all commands up to the last received
3825 * ORDERED task attribute which requires another blocking
3826 * boundary
3828 spin_lock(&dev->delayed_cmd_lock);
3829 list_for_each_entry_safe(cmd_p, cmd_tmp,
3830 &dev->delayed_cmd_list, se_delayed_list) {
3832 list_del(&cmd_p->se_delayed_list);
3833 spin_unlock(&dev->delayed_cmd_lock);
3835 DEBUG_STA("Calling add_tasks() for"
3836 " cmd_p: 0x%02x Task Attr: 0x%02x"
3837 " Dormant -> Active, se_ordered_id: %u\n",
3838 T_TASK(cmd_p)->t_task_cdb[0],
3839 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3841 transport_add_tasks_from_cmd(cmd_p);
3842 new_active_tasks++;
3844 spin_lock(&dev->delayed_cmd_lock);
3845 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3846 break;
3848 spin_unlock(&dev->delayed_cmd_lock);
3850 * If new tasks have become active, wake up the transport thread
3851 * to do the processing of the Active tasks.
3853 if (new_active_tasks != 0)
3854 wake_up_interruptible(&dev->dev_queue_obj->thread_wq);
3857 static void transport_generic_complete_ok(struct se_cmd *cmd)
3859 int reason = 0;
3861 * Check if we need to move delayed/dormant tasks from cmds on the
3862 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3863 * Attribute.
3865 if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3866 transport_complete_task_attr(cmd);
3868 * Check if we need to retrieve a sense buffer from
3869 * the struct se_cmd in question.
3871 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3872 if (transport_get_sense_data(cmd) < 0)
3873 reason = TCM_NON_EXISTENT_LUN;
3876 * Only set when an struct se_task->task_scsi_status returned
3877 * a non GOOD status.
3879 if (cmd->scsi_status) {
3880 transport_send_check_condition_and_sense(
3881 cmd, reason, 1);
3882 transport_lun_remove_cmd(cmd);
3883 transport_cmd_check_stop_to_fabric(cmd);
3884 return;
3888 * Check for a callback, used by amongst other things
3889 * XDWRITE_READ_10 emulation.
3891 if (cmd->transport_complete_callback)
3892 cmd->transport_complete_callback(cmd);
3894 switch (cmd->data_direction) {
3895 case DMA_FROM_DEVICE:
3896 spin_lock(&cmd->se_lun->lun_sep_lock);
3897 if (SE_LUN(cmd)->lun_sep) {
3898 SE_LUN(cmd)->lun_sep->sep_stats.tx_data_octets +=
3899 cmd->data_length;
3901 spin_unlock(&cmd->se_lun->lun_sep_lock);
3903 * If enabled by TCM fabirc module pre-registered SGL
3904 * memory, perform the memcpy() from the TCM internal
3905 * contigious buffer back to the original SGL.
3907 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG)
3908 transport_memcpy_write_contig(cmd,
3909 T_TASK(cmd)->t_task_pt_sgl,
3910 T_TASK(cmd)->t_task_buf);
3912 CMD_TFO(cmd)->queue_data_in(cmd);
3913 break;
3914 case DMA_TO_DEVICE:
3915 spin_lock(&cmd->se_lun->lun_sep_lock);
3916 if (SE_LUN(cmd)->lun_sep) {
3917 SE_LUN(cmd)->lun_sep->sep_stats.rx_data_octets +=
3918 cmd->data_length;
3920 spin_unlock(&cmd->se_lun->lun_sep_lock);
3922 * Check if we need to send READ payload for BIDI-COMMAND
3924 if (T_TASK(cmd)->t_mem_bidi_list != NULL) {
3925 spin_lock(&cmd->se_lun->lun_sep_lock);
3926 if (SE_LUN(cmd)->lun_sep) {
3927 SE_LUN(cmd)->lun_sep->sep_stats.tx_data_octets +=
3928 cmd->data_length;
3930 spin_unlock(&cmd->se_lun->lun_sep_lock);
3931 CMD_TFO(cmd)->queue_data_in(cmd);
3932 break;
3934 /* Fall through for DMA_TO_DEVICE */
3935 case DMA_NONE:
3936 CMD_TFO(cmd)->queue_status(cmd);
3937 break;
3938 default:
3939 break;
3942 transport_lun_remove_cmd(cmd);
3943 transport_cmd_check_stop_to_fabric(cmd);
3946 static void transport_free_dev_tasks(struct se_cmd *cmd)
3948 struct se_task *task, *task_tmp;
3949 unsigned long flags;
3951 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
3952 list_for_each_entry_safe(task, task_tmp,
3953 &T_TASK(cmd)->t_task_list, t_list) {
3954 if (atomic_read(&task->task_active))
3955 continue;
3957 kfree(task->task_sg_bidi);
3958 kfree(task->task_sg);
3960 list_del(&task->t_list);
3962 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3963 if (task->se_dev)
3964 TRANSPORT(task->se_dev)->free_task(task);
3965 else
3966 printk(KERN_ERR "task[%u] - task->se_dev is NULL\n",
3967 task->task_no);
3968 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
3970 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3973 static inline void transport_free_pages(struct se_cmd *cmd)
3975 struct se_mem *se_mem, *se_mem_tmp;
3976 int free_page = 1;
3978 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3979 free_page = 0;
3980 if (cmd->se_dev->transport->do_se_mem_map)
3981 free_page = 0;
3983 if (T_TASK(cmd)->t_task_buf) {
3984 kfree(T_TASK(cmd)->t_task_buf);
3985 T_TASK(cmd)->t_task_buf = NULL;
3986 return;
3990 * Caller will handle releasing of struct se_mem.
3992 if (cmd->se_cmd_flags & SCF_CMD_PASSTHROUGH_NOALLOC)
3993 return;
3995 if (!(T_TASK(cmd)->t_tasks_se_num))
3996 return;
3998 list_for_each_entry_safe(se_mem, se_mem_tmp,
3999 T_TASK(cmd)->t_mem_list, se_list) {
4001 * We only release call __free_page(struct se_mem->se_page) when
4002 * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
4004 if (free_page)
4005 __free_page(se_mem->se_page);
4007 list_del(&se_mem->se_list);
4008 kmem_cache_free(se_mem_cache, se_mem);
4011 if (T_TASK(cmd)->t_mem_bidi_list && T_TASK(cmd)->t_tasks_se_bidi_num) {
4012 list_for_each_entry_safe(se_mem, se_mem_tmp,
4013 T_TASK(cmd)->t_mem_bidi_list, se_list) {
4015 * We only release call __free_page(struct se_mem->se_page) when
4016 * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
4018 if (free_page)
4019 __free_page(se_mem->se_page);
4021 list_del(&se_mem->se_list);
4022 kmem_cache_free(se_mem_cache, se_mem);
4026 kfree(T_TASK(cmd)->t_mem_bidi_list);
4027 T_TASK(cmd)->t_mem_bidi_list = NULL;
4028 kfree(T_TASK(cmd)->t_mem_list);
4029 T_TASK(cmd)->t_mem_list = NULL;
4030 T_TASK(cmd)->t_tasks_se_num = 0;
4033 static inline void transport_release_tasks(struct se_cmd *cmd)
4035 transport_free_dev_tasks(cmd);
4038 static inline int transport_dec_and_check(struct se_cmd *cmd)
4040 unsigned long flags;
4042 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4043 if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
4044 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_fe_count))) {
4045 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
4046 flags);
4047 return 1;
4051 if (atomic_read(&T_TASK(cmd)->t_se_count)) {
4052 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_se_count))) {
4053 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
4054 flags);
4055 return 1;
4058 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4060 return 0;
4063 static void transport_release_fe_cmd(struct se_cmd *cmd)
4065 unsigned long flags;
4067 if (transport_dec_and_check(cmd))
4068 return;
4070 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4071 if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
4072 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4073 goto free_pages;
4075 atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
4076 transport_all_task_dev_remove_state(cmd);
4077 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4079 transport_release_tasks(cmd);
4080 free_pages:
4081 transport_free_pages(cmd);
4082 transport_free_se_cmd(cmd);
4083 CMD_TFO(cmd)->release_cmd_direct(cmd);
4086 static int transport_generic_remove(
4087 struct se_cmd *cmd,
4088 int release_to_pool,
4089 int session_reinstatement)
4091 unsigned long flags;
4093 if (!(T_TASK(cmd)))
4094 goto release_cmd;
4096 if (transport_dec_and_check(cmd)) {
4097 if (session_reinstatement) {
4098 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4099 transport_all_task_dev_remove_state(cmd);
4100 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
4101 flags);
4103 return 1;
4106 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4107 if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
4108 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4109 goto free_pages;
4111 atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
4112 transport_all_task_dev_remove_state(cmd);
4113 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4115 transport_release_tasks(cmd);
4116 free_pages:
4117 transport_free_pages(cmd);
4119 release_cmd:
4120 if (release_to_pool) {
4121 transport_release_cmd_to_pool(cmd);
4122 } else {
4123 transport_free_se_cmd(cmd);
4124 CMD_TFO(cmd)->release_cmd_direct(cmd);
4127 return 0;
4131 * transport_generic_map_mem_to_cmd - Perform SGL -> struct se_mem map
4132 * @cmd: Associated se_cmd descriptor
4133 * @mem: SGL style memory for TCM WRITE / READ
4134 * @sg_mem_num: Number of SGL elements
4135 * @mem_bidi_in: SGL style memory for TCM BIDI READ
4136 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
4138 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
4139 * of parameters.
4141 int transport_generic_map_mem_to_cmd(
4142 struct se_cmd *cmd,
4143 struct scatterlist *mem,
4144 u32 sg_mem_num,
4145 struct scatterlist *mem_bidi_in,
4146 u32 sg_mem_bidi_num)
4148 u32 se_mem_cnt_out = 0;
4149 int ret;
4151 if (!(mem) || !(sg_mem_num))
4152 return 0;
4154 * Passed *mem will contain a list_head containing preformatted
4155 * struct se_mem elements...
4157 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM)) {
4158 if ((mem_bidi_in) || (sg_mem_bidi_num)) {
4159 printk(KERN_ERR "SCF_CMD_PASSTHROUGH_NOALLOC not supported"
4160 " with BIDI-COMMAND\n");
4161 return -ENOSYS;
4164 T_TASK(cmd)->t_mem_list = (struct list_head *)mem;
4165 T_TASK(cmd)->t_tasks_se_num = sg_mem_num;
4166 cmd->se_cmd_flags |= SCF_CMD_PASSTHROUGH_NOALLOC;
4167 return 0;
4170 * Otherwise, assume the caller is passing a struct scatterlist
4171 * array from include/linux/scatterlist.h
4173 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
4174 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
4176 * For CDB using TCM struct se_mem linked list scatterlist memory
4177 * processed into a TCM struct se_subsystem_dev, we do the mapping
4178 * from the passed physical memory to struct se_mem->se_page here.
4180 T_TASK(cmd)->t_mem_list = transport_init_se_mem_list();
4181 if (!(T_TASK(cmd)->t_mem_list))
4182 return -ENOMEM;
4184 ret = transport_map_sg_to_mem(cmd,
4185 T_TASK(cmd)->t_mem_list, mem, &se_mem_cnt_out);
4186 if (ret < 0)
4187 return -ENOMEM;
4189 T_TASK(cmd)->t_tasks_se_num = se_mem_cnt_out;
4191 * Setup BIDI READ list of struct se_mem elements
4193 if ((mem_bidi_in) && (sg_mem_bidi_num)) {
4194 T_TASK(cmd)->t_mem_bidi_list = transport_init_se_mem_list();
4195 if (!(T_TASK(cmd)->t_mem_bidi_list)) {
4196 kfree(T_TASK(cmd)->t_mem_list);
4197 return -ENOMEM;
4199 se_mem_cnt_out = 0;
4201 ret = transport_map_sg_to_mem(cmd,
4202 T_TASK(cmd)->t_mem_bidi_list, mem_bidi_in,
4203 &se_mem_cnt_out);
4204 if (ret < 0) {
4205 kfree(T_TASK(cmd)->t_mem_list);
4206 return -ENOMEM;
4209 T_TASK(cmd)->t_tasks_se_bidi_num = se_mem_cnt_out;
4211 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
4213 } else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) {
4214 if (mem_bidi_in || sg_mem_bidi_num) {
4215 printk(KERN_ERR "BIDI-Commands not supported using "
4216 "SCF_SCSI_CONTROL_NONSG_IO_CDB\n");
4217 return -ENOSYS;
4220 * For incoming CDBs using a contiguous buffer internall with TCM,
4221 * save the passed struct scatterlist memory. After TCM storage object
4222 * processing has completed for this struct se_cmd, TCM core will call
4223 * transport_memcpy_[write,read]_contig() as necessary from
4224 * transport_generic_complete_ok() and transport_write_pending() in order
4225 * to copy the TCM buffer to/from the original passed *mem in SGL ->
4226 * struct scatterlist format.
4228 cmd->se_cmd_flags |= SCF_PASSTHROUGH_CONTIG_TO_SG;
4229 T_TASK(cmd)->t_task_pt_sgl = mem;
4232 return 0;
4234 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
4237 static inline long long transport_dev_end_lba(struct se_device *dev)
4239 return dev->transport->get_blocks(dev) + 1;
4242 static int transport_get_sectors(struct se_cmd *cmd)
4244 struct se_device *dev = SE_DEV(cmd);
4246 T_TASK(cmd)->t_tasks_sectors =
4247 (cmd->data_length / DEV_ATTRIB(dev)->block_size);
4248 if (!(T_TASK(cmd)->t_tasks_sectors))
4249 T_TASK(cmd)->t_tasks_sectors = 1;
4251 if (TRANSPORT(dev)->get_device_type(dev) != TYPE_DISK)
4252 return 0;
4254 if ((T_TASK(cmd)->t_task_lba + T_TASK(cmd)->t_tasks_sectors) >
4255 transport_dev_end_lba(dev)) {
4256 printk(KERN_ERR "LBA: %llu Sectors: %u exceeds"
4257 " transport_dev_end_lba(): %llu\n",
4258 T_TASK(cmd)->t_task_lba, T_TASK(cmd)->t_tasks_sectors,
4259 transport_dev_end_lba(dev));
4260 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4261 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
4262 return PYX_TRANSPORT_REQ_TOO_MANY_SECTORS;
4265 return 0;
4268 static int transport_new_cmd_obj(struct se_cmd *cmd)
4270 struct se_device *dev = SE_DEV(cmd);
4271 u32 task_cdbs = 0, rc;
4273 if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
4274 task_cdbs++;
4275 T_TASK(cmd)->t_task_cdbs++;
4276 } else {
4277 int set_counts = 1;
4280 * Setup any BIDI READ tasks and memory from
4281 * T_TASK(cmd)->t_mem_bidi_list so the READ struct se_tasks
4282 * are queued first for the non pSCSI passthrough case.
4284 if ((T_TASK(cmd)->t_mem_bidi_list != NULL) &&
4285 (TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
4286 rc = transport_generic_get_cdb_count(cmd,
4287 T_TASK(cmd)->t_task_lba,
4288 T_TASK(cmd)->t_tasks_sectors,
4289 DMA_FROM_DEVICE, T_TASK(cmd)->t_mem_bidi_list,
4290 set_counts);
4291 if (!(rc)) {
4292 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4293 cmd->scsi_sense_reason =
4294 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4295 return PYX_TRANSPORT_LU_COMM_FAILURE;
4297 set_counts = 0;
4300 * Setup the tasks and memory from T_TASK(cmd)->t_mem_list
4301 * Note for BIDI transfers this will contain the WRITE payload
4303 task_cdbs = transport_generic_get_cdb_count(cmd,
4304 T_TASK(cmd)->t_task_lba,
4305 T_TASK(cmd)->t_tasks_sectors,
4306 cmd->data_direction, T_TASK(cmd)->t_mem_list,
4307 set_counts);
4308 if (!(task_cdbs)) {
4309 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4310 cmd->scsi_sense_reason =
4311 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4312 return PYX_TRANSPORT_LU_COMM_FAILURE;
4314 T_TASK(cmd)->t_task_cdbs += task_cdbs;
4316 #if 0
4317 printk(KERN_INFO "data_length: %u, LBA: %llu t_tasks_sectors:"
4318 " %u, t_task_cdbs: %u\n", obj_ptr, cmd->data_length,
4319 T_TASK(cmd)->t_task_lba, T_TASK(cmd)->t_tasks_sectors,
4320 T_TASK(cmd)->t_task_cdbs);
4321 #endif
4324 atomic_set(&T_TASK(cmd)->t_task_cdbs_left, task_cdbs);
4325 atomic_set(&T_TASK(cmd)->t_task_cdbs_ex_left, task_cdbs);
4326 atomic_set(&T_TASK(cmd)->t_task_cdbs_timeout_left, task_cdbs);
4327 return 0;
4330 static struct list_head *transport_init_se_mem_list(void)
4332 struct list_head *se_mem_list;
4334 se_mem_list = kzalloc(sizeof(struct list_head), GFP_KERNEL);
4335 if (!(se_mem_list)) {
4336 printk(KERN_ERR "Unable to allocate memory for se_mem_list\n");
4337 return NULL;
4339 INIT_LIST_HEAD(se_mem_list);
4341 return se_mem_list;
4344 static int
4345 transport_generic_get_mem(struct se_cmd *cmd, u32 length, u32 dma_size)
4347 unsigned char *buf;
4348 struct se_mem *se_mem;
4350 T_TASK(cmd)->t_mem_list = transport_init_se_mem_list();
4351 if (!(T_TASK(cmd)->t_mem_list))
4352 return -ENOMEM;
4355 * If the device uses memory mapping this is enough.
4357 if (cmd->se_dev->transport->do_se_mem_map)
4358 return 0;
4361 * Setup BIDI-COMMAND READ list of struct se_mem elements
4363 if (T_TASK(cmd)->t_tasks_bidi) {
4364 T_TASK(cmd)->t_mem_bidi_list = transport_init_se_mem_list();
4365 if (!(T_TASK(cmd)->t_mem_bidi_list)) {
4366 kfree(T_TASK(cmd)->t_mem_list);
4367 return -ENOMEM;
4371 while (length) {
4372 se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL);
4373 if (!(se_mem)) {
4374 printk(KERN_ERR "Unable to allocate struct se_mem\n");
4375 goto out;
4378 /* #warning FIXME Allocate contigous pages for struct se_mem elements */
4379 se_mem->se_page = alloc_pages(GFP_KERNEL, 0);
4380 if (!(se_mem->se_page)) {
4381 printk(KERN_ERR "alloc_pages() failed\n");
4382 goto out;
4385 buf = kmap_atomic(se_mem->se_page, KM_IRQ0);
4386 if (!(buf)) {
4387 printk(KERN_ERR "kmap_atomic() failed\n");
4388 goto out;
4390 INIT_LIST_HEAD(&se_mem->se_list);
4391 se_mem->se_len = (length > dma_size) ? dma_size : length;
4392 memset(buf, 0, se_mem->se_len);
4393 kunmap_atomic(buf, KM_IRQ0);
4395 list_add_tail(&se_mem->se_list, T_TASK(cmd)->t_mem_list);
4396 T_TASK(cmd)->t_tasks_se_num++;
4398 DEBUG_MEM("Allocated struct se_mem page(%p) Length(%u)"
4399 " Offset(%u)\n", se_mem->se_page, se_mem->se_len,
4400 se_mem->se_off);
4402 length -= se_mem->se_len;
4405 DEBUG_MEM("Allocated total struct se_mem elements(%u)\n",
4406 T_TASK(cmd)->t_tasks_se_num);
4408 return 0;
4409 out:
4410 if (se_mem)
4411 __free_pages(se_mem->se_page, 0);
4412 kmem_cache_free(se_mem_cache, se_mem);
4413 return -1;
4416 u32 transport_calc_sg_num(
4417 struct se_task *task,
4418 struct se_mem *in_se_mem,
4419 u32 task_offset)
4421 struct se_cmd *se_cmd = task->task_se_cmd;
4422 struct se_device *se_dev = SE_DEV(se_cmd);
4423 struct se_mem *se_mem = in_se_mem;
4424 struct target_core_fabric_ops *tfo = CMD_TFO(se_cmd);
4425 u32 sg_length, task_size = task->task_size, task_sg_num_padded;
4427 while (task_size != 0) {
4428 DEBUG_SC("se_mem->se_page(%p) se_mem->se_len(%u)"
4429 " se_mem->se_off(%u) task_offset(%u)\n",
4430 se_mem->se_page, se_mem->se_len,
4431 se_mem->se_off, task_offset);
4433 if (task_offset == 0) {
4434 if (task_size >= se_mem->se_len) {
4435 sg_length = se_mem->se_len;
4437 if (!(list_is_last(&se_mem->se_list,
4438 T_TASK(se_cmd)->t_mem_list)))
4439 se_mem = list_entry(se_mem->se_list.next,
4440 struct se_mem, se_list);
4441 } else {
4442 sg_length = task_size;
4443 task_size -= sg_length;
4444 goto next;
4447 DEBUG_SC("sg_length(%u) task_size(%u)\n",
4448 sg_length, task_size);
4449 } else {
4450 if ((se_mem->se_len - task_offset) > task_size) {
4451 sg_length = task_size;
4452 task_size -= sg_length;
4453 goto next;
4454 } else {
4455 sg_length = (se_mem->se_len - task_offset);
4457 if (!(list_is_last(&se_mem->se_list,
4458 T_TASK(se_cmd)->t_mem_list)))
4459 se_mem = list_entry(se_mem->se_list.next,
4460 struct se_mem, se_list);
4463 DEBUG_SC("sg_length(%u) task_size(%u)\n",
4464 sg_length, task_size);
4466 task_offset = 0;
4468 task_size -= sg_length;
4469 next:
4470 DEBUG_SC("task[%u] - Reducing task_size to(%u)\n",
4471 task->task_no, task_size);
4473 task->task_sg_num++;
4476 * Check if the fabric module driver is requesting that all
4477 * struct se_task->task_sg[] be chained together.. If so,
4478 * then allocate an extra padding SG entry for linking and
4479 * marking the end of the chained SGL.
4481 if (tfo->task_sg_chaining) {
4482 task_sg_num_padded = (task->task_sg_num + 1);
4483 task->task_padded_sg = 1;
4484 } else
4485 task_sg_num_padded = task->task_sg_num;
4487 task->task_sg = kzalloc(task_sg_num_padded *
4488 sizeof(struct scatterlist), GFP_KERNEL);
4489 if (!(task->task_sg)) {
4490 printk(KERN_ERR "Unable to allocate memory for"
4491 " task->task_sg\n");
4492 return 0;
4494 sg_init_table(&task->task_sg[0], task_sg_num_padded);
4496 * Setup task->task_sg_bidi for SCSI READ payload for
4497 * TCM/pSCSI passthrough if present for BIDI-COMMAND
4499 if ((T_TASK(se_cmd)->t_mem_bidi_list != NULL) &&
4500 (TRANSPORT(se_dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)) {
4501 task->task_sg_bidi = kzalloc(task_sg_num_padded *
4502 sizeof(struct scatterlist), GFP_KERNEL);
4503 if (!(task->task_sg_bidi)) {
4504 printk(KERN_ERR "Unable to allocate memory for"
4505 " task->task_sg_bidi\n");
4506 return 0;
4508 sg_init_table(&task->task_sg_bidi[0], task_sg_num_padded);
4511 * For the chaining case, setup the proper end of SGL for the
4512 * initial submission struct task into struct se_subsystem_api.
4513 * This will be cleared later by transport_do_task_sg_chain()
4515 if (task->task_padded_sg) {
4516 sg_mark_end(&task->task_sg[task->task_sg_num - 1]);
4518 * Added the 'if' check before marking end of bi-directional
4519 * scatterlist (which gets created only in case of request
4520 * (RD + WR).
4522 if (task->task_sg_bidi)
4523 sg_mark_end(&task->task_sg_bidi[task->task_sg_num - 1]);
4526 DEBUG_SC("Successfully allocated task->task_sg_num(%u),"
4527 " task_sg_num_padded(%u)\n", task->task_sg_num,
4528 task_sg_num_padded);
4530 return task->task_sg_num;
4533 static inline int transport_set_tasks_sectors_disk(
4534 struct se_task *task,
4535 struct se_device *dev,
4536 unsigned long long lba,
4537 u32 sectors,
4538 int *max_sectors_set)
4540 if ((lba + sectors) > transport_dev_end_lba(dev)) {
4541 task->task_sectors = ((transport_dev_end_lba(dev) - lba) + 1);
4543 if (task->task_sectors > DEV_ATTRIB(dev)->max_sectors) {
4544 task->task_sectors = DEV_ATTRIB(dev)->max_sectors;
4545 *max_sectors_set = 1;
4547 } else {
4548 if (sectors > DEV_ATTRIB(dev)->max_sectors) {
4549 task->task_sectors = DEV_ATTRIB(dev)->max_sectors;
4550 *max_sectors_set = 1;
4551 } else
4552 task->task_sectors = sectors;
4555 return 0;
4558 static inline int transport_set_tasks_sectors_non_disk(
4559 struct se_task *task,
4560 struct se_device *dev,
4561 unsigned long long lba,
4562 u32 sectors,
4563 int *max_sectors_set)
4565 if (sectors > DEV_ATTRIB(dev)->max_sectors) {
4566 task->task_sectors = DEV_ATTRIB(dev)->max_sectors;
4567 *max_sectors_set = 1;
4568 } else
4569 task->task_sectors = sectors;
4571 return 0;
4574 static inline int transport_set_tasks_sectors(
4575 struct se_task *task,
4576 struct se_device *dev,
4577 unsigned long long lba,
4578 u32 sectors,
4579 int *max_sectors_set)
4581 return (TRANSPORT(dev)->get_device_type(dev) == TYPE_DISK) ?
4582 transport_set_tasks_sectors_disk(task, dev, lba, sectors,
4583 max_sectors_set) :
4584 transport_set_tasks_sectors_non_disk(task, dev, lba, sectors,
4585 max_sectors_set);
4588 static int transport_map_sg_to_mem(
4589 struct se_cmd *cmd,
4590 struct list_head *se_mem_list,
4591 void *in_mem,
4592 u32 *se_mem_cnt)
4594 struct se_mem *se_mem;
4595 struct scatterlist *sg;
4596 u32 sg_count = 1, cmd_size = cmd->data_length;
4598 if (!in_mem) {
4599 printk(KERN_ERR "No source scatterlist\n");
4600 return -1;
4602 sg = (struct scatterlist *)in_mem;
4604 while (cmd_size) {
4605 se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL);
4606 if (!(se_mem)) {
4607 printk(KERN_ERR "Unable to allocate struct se_mem\n");
4608 return -1;
4610 INIT_LIST_HEAD(&se_mem->se_list);
4611 DEBUG_MEM("sg_to_mem: Starting loop with cmd_size: %u"
4612 " sg_page: %p offset: %d length: %d\n", cmd_size,
4613 sg_page(sg), sg->offset, sg->length);
4615 se_mem->se_page = sg_page(sg);
4616 se_mem->se_off = sg->offset;
4618 if (cmd_size > sg->length) {
4619 se_mem->se_len = sg->length;
4620 sg = sg_next(sg);
4621 sg_count++;
4622 } else
4623 se_mem->se_len = cmd_size;
4625 cmd_size -= se_mem->se_len;
4627 DEBUG_MEM("sg_to_mem: *se_mem_cnt: %u cmd_size: %u\n",
4628 *se_mem_cnt, cmd_size);
4629 DEBUG_MEM("sg_to_mem: Final se_page: %p se_off: %d se_len: %d\n",
4630 se_mem->se_page, se_mem->se_off, se_mem->se_len);
4632 list_add_tail(&se_mem->se_list, se_mem_list);
4633 (*se_mem_cnt)++;
4636 DEBUG_MEM("task[0] - Mapped(%u) struct scatterlist segments to(%u)"
4637 " struct se_mem\n", sg_count, *se_mem_cnt);
4639 if (sg_count != *se_mem_cnt)
4640 BUG();
4642 return 0;
4645 /* transport_map_mem_to_sg():
4649 int transport_map_mem_to_sg(
4650 struct se_task *task,
4651 struct list_head *se_mem_list,
4652 void *in_mem,
4653 struct se_mem *in_se_mem,
4654 struct se_mem **out_se_mem,
4655 u32 *se_mem_cnt,
4656 u32 *task_offset)
4658 struct se_cmd *se_cmd = task->task_se_cmd;
4659 struct se_mem *se_mem = in_se_mem;
4660 struct scatterlist *sg = (struct scatterlist *)in_mem;
4661 u32 task_size = task->task_size, sg_no = 0;
4663 if (!sg) {
4664 printk(KERN_ERR "Unable to locate valid struct"
4665 " scatterlist pointer\n");
4666 return -1;
4669 while (task_size != 0) {
4671 * Setup the contigious array of scatterlists for
4672 * this struct se_task.
4674 sg_assign_page(sg, se_mem->se_page);
4676 if (*task_offset == 0) {
4677 sg->offset = se_mem->se_off;
4679 if (task_size >= se_mem->se_len) {
4680 sg->length = se_mem->se_len;
4682 if (!(list_is_last(&se_mem->se_list,
4683 T_TASK(se_cmd)->t_mem_list))) {
4684 se_mem = list_entry(se_mem->se_list.next,
4685 struct se_mem, se_list);
4686 (*se_mem_cnt)++;
4688 } else {
4689 sg->length = task_size;
4691 * Determine if we need to calculate an offset
4692 * into the struct se_mem on the next go around..
4694 task_size -= sg->length;
4695 if (!(task_size))
4696 *task_offset = sg->length;
4698 goto next;
4701 } else {
4702 sg->offset = (*task_offset + se_mem->se_off);
4704 if ((se_mem->se_len - *task_offset) > task_size) {
4705 sg->length = task_size;
4707 * Determine if we need to calculate an offset
4708 * into the struct se_mem on the next go around..
4710 task_size -= sg->length;
4711 if (!(task_size))
4712 *task_offset += sg->length;
4714 goto next;
4715 } else {
4716 sg->length = (se_mem->se_len - *task_offset);
4718 if (!(list_is_last(&se_mem->se_list,
4719 T_TASK(se_cmd)->t_mem_list))) {
4720 se_mem = list_entry(se_mem->se_list.next,
4721 struct se_mem, se_list);
4722 (*se_mem_cnt)++;
4726 *task_offset = 0;
4728 task_size -= sg->length;
4729 next:
4730 DEBUG_MEM("task[%u] mem_to_sg - sg[%u](%p)(%u)(%u) - Reducing"
4731 " task_size to(%u), task_offset: %u\n", task->task_no, sg_no,
4732 sg_page(sg), sg->length, sg->offset, task_size, *task_offset);
4734 sg_no++;
4735 if (!(task_size))
4736 break;
4738 sg = sg_next(sg);
4740 if (task_size > se_cmd->data_length)
4741 BUG();
4743 *out_se_mem = se_mem;
4745 DEBUG_MEM("task[%u] - Mapped(%u) struct se_mem segments to total(%u)"
4746 " SGs\n", task->task_no, *se_mem_cnt, sg_no);
4748 return 0;
4752 * This function can be used by HW target mode drivers to create a linked
4753 * scatterlist from all contiguously allocated struct se_task->task_sg[].
4754 * This is intended to be called during the completion path by TCM Core
4755 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
4757 void transport_do_task_sg_chain(struct se_cmd *cmd)
4759 struct scatterlist *sg_head = NULL, *sg_link = NULL, *sg_first = NULL;
4760 struct scatterlist *sg_head_cur = NULL, *sg_link_cur = NULL;
4761 struct scatterlist *sg, *sg_end = NULL, *sg_end_cur = NULL;
4762 struct se_task *task;
4763 struct target_core_fabric_ops *tfo = CMD_TFO(cmd);
4764 u32 task_sg_num = 0, sg_count = 0;
4765 int i;
4767 if (tfo->task_sg_chaining == 0) {
4768 printk(KERN_ERR "task_sg_chaining is diabled for fabric module:"
4769 " %s\n", tfo->get_fabric_name());
4770 dump_stack();
4771 return;
4774 * Walk the struct se_task list and setup scatterlist chains
4775 * for each contiguosly allocated struct se_task->task_sg[].
4777 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
4778 if (!(task->task_sg) || !(task->task_padded_sg))
4779 continue;
4781 if (sg_head && sg_link) {
4782 sg_head_cur = &task->task_sg[0];
4783 sg_link_cur = &task->task_sg[task->task_sg_num];
4785 * Either add chain or mark end of scatterlist
4787 if (!(list_is_last(&task->t_list,
4788 &T_TASK(cmd)->t_task_list))) {
4790 * Clear existing SGL termination bit set in
4791 * transport_calc_sg_num(), see sg_mark_end()
4793 sg_end_cur = &task->task_sg[task->task_sg_num - 1];
4794 sg_end_cur->page_link &= ~0x02;
4796 sg_chain(sg_head, task_sg_num, sg_head_cur);
4797 sg_count += task->task_sg_num;
4798 task_sg_num = (task->task_sg_num + 1);
4799 } else {
4800 sg_chain(sg_head, task_sg_num, sg_head_cur);
4801 sg_count += task->task_sg_num;
4802 task_sg_num = task->task_sg_num;
4805 sg_head = sg_head_cur;
4806 sg_link = sg_link_cur;
4807 continue;
4809 sg_head = sg_first = &task->task_sg[0];
4810 sg_link = &task->task_sg[task->task_sg_num];
4812 * Check for single task..
4814 if (!(list_is_last(&task->t_list, &T_TASK(cmd)->t_task_list))) {
4816 * Clear existing SGL termination bit set in
4817 * transport_calc_sg_num(), see sg_mark_end()
4819 sg_end = &task->task_sg[task->task_sg_num - 1];
4820 sg_end->page_link &= ~0x02;
4821 sg_count += task->task_sg_num;
4822 task_sg_num = (task->task_sg_num + 1);
4823 } else {
4824 sg_count += task->task_sg_num;
4825 task_sg_num = task->task_sg_num;
4829 * Setup the starting pointer and total t_tasks_sg_linked_no including
4830 * padding SGs for linking and to mark the end.
4832 T_TASK(cmd)->t_tasks_sg_chained = sg_first;
4833 T_TASK(cmd)->t_tasks_sg_chained_no = sg_count;
4835 DEBUG_CMD_M("Setup cmd: %p T_TASK(cmd)->t_tasks_sg_chained: %p and"
4836 " t_tasks_sg_chained_no: %u\n", cmd, T_TASK(cmd)->t_tasks_sg_chained,
4837 T_TASK(cmd)->t_tasks_sg_chained_no);
4839 for_each_sg(T_TASK(cmd)->t_tasks_sg_chained, sg,
4840 T_TASK(cmd)->t_tasks_sg_chained_no, i) {
4842 DEBUG_CMD_M("SG[%d]: %p page: %p length: %d offset: %d, magic: 0x%08x\n",
4843 i, sg, sg_page(sg), sg->length, sg->offset, sg->sg_magic);
4844 if (sg_is_chain(sg))
4845 DEBUG_CMD_M("SG: %p sg_is_chain=1\n", sg);
4846 if (sg_is_last(sg))
4847 DEBUG_CMD_M("SG: %p sg_is_last=1\n", sg);
4850 EXPORT_SYMBOL(transport_do_task_sg_chain);
4852 static int transport_do_se_mem_map(
4853 struct se_device *dev,
4854 struct se_task *task,
4855 struct list_head *se_mem_list,
4856 void *in_mem,
4857 struct se_mem *in_se_mem,
4858 struct se_mem **out_se_mem,
4859 u32 *se_mem_cnt,
4860 u32 *task_offset_in)
4862 u32 task_offset = *task_offset_in;
4863 int ret = 0;
4865 * se_subsystem_api_t->do_se_mem_map is used when internal allocation
4866 * has been done by the transport plugin.
4868 if (TRANSPORT(dev)->do_se_mem_map) {
4869 ret = TRANSPORT(dev)->do_se_mem_map(task, se_mem_list,
4870 in_mem, in_se_mem, out_se_mem, se_mem_cnt,
4871 task_offset_in);
4872 if (ret == 0)
4873 T_TASK(task->task_se_cmd)->t_tasks_se_num += *se_mem_cnt;
4875 return ret;
4878 BUG_ON(list_empty(se_mem_list));
4880 * This is the normal path for all normal non BIDI and BIDI-COMMAND
4881 * WRITE payloads.. If we need to do BIDI READ passthrough for
4882 * TCM/pSCSI the first call to transport_do_se_mem_map ->
4883 * transport_calc_sg_num() -> transport_map_mem_to_sg() will do the
4884 * allocation for task->task_sg_bidi, and the subsequent call to
4885 * transport_do_se_mem_map() from transport_generic_get_cdb_count()
4887 if (!(task->task_sg_bidi)) {
4889 * Assume default that transport plugin speaks preallocated
4890 * scatterlists.
4892 if (!(transport_calc_sg_num(task, in_se_mem, task_offset)))
4893 return -1;
4895 * struct se_task->task_sg now contains the struct scatterlist array.
4897 return transport_map_mem_to_sg(task, se_mem_list, task->task_sg,
4898 in_se_mem, out_se_mem, se_mem_cnt,
4899 task_offset_in);
4902 * Handle the se_mem_list -> struct task->task_sg_bidi
4903 * memory map for the extra BIDI READ payload
4905 return transport_map_mem_to_sg(task, se_mem_list, task->task_sg_bidi,
4906 in_se_mem, out_se_mem, se_mem_cnt,
4907 task_offset_in);
4910 static u32 transport_generic_get_cdb_count(
4911 struct se_cmd *cmd,
4912 unsigned long long lba,
4913 u32 sectors,
4914 enum dma_data_direction data_direction,
4915 struct list_head *mem_list,
4916 int set_counts)
4918 unsigned char *cdb = NULL;
4919 struct se_task *task;
4920 struct se_mem *se_mem = NULL, *se_mem_lout = NULL;
4921 struct se_mem *se_mem_bidi = NULL, *se_mem_bidi_lout = NULL;
4922 struct se_device *dev = SE_DEV(cmd);
4923 int max_sectors_set = 0, ret;
4924 u32 task_offset_in = 0, se_mem_cnt = 0, se_mem_bidi_cnt = 0, task_cdbs = 0;
4926 if (!mem_list) {
4927 printk(KERN_ERR "mem_list is NULL in transport_generic_get"
4928 "_cdb_count()\n");
4929 return 0;
4932 * While using RAMDISK_DR backstores is the only case where
4933 * mem_list will ever be empty at this point.
4935 if (!(list_empty(mem_list)))
4936 se_mem = list_entry(mem_list->next, struct se_mem, se_list);
4938 * Check for extra se_mem_bidi mapping for BIDI-COMMANDs to
4939 * struct se_task->task_sg_bidi for TCM/pSCSI passthrough operation
4941 if ((T_TASK(cmd)->t_mem_bidi_list != NULL) &&
4942 !(list_empty(T_TASK(cmd)->t_mem_bidi_list)) &&
4943 (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV))
4944 se_mem_bidi = list_entry(T_TASK(cmd)->t_mem_bidi_list->next,
4945 struct se_mem, se_list);
4947 while (sectors) {
4948 DEBUG_VOL("ITT[0x%08x] LBA(%llu) SectorsLeft(%u) EOBJ(%llu)\n",
4949 CMD_TFO(cmd)->get_task_tag(cmd), lba, sectors,
4950 transport_dev_end_lba(dev));
4952 task = transport_generic_get_task(cmd, data_direction);
4953 if (!(task))
4954 goto out;
4956 transport_set_tasks_sectors(task, dev, lba, sectors,
4957 &max_sectors_set);
4959 task->task_lba = lba;
4960 lba += task->task_sectors;
4961 sectors -= task->task_sectors;
4962 task->task_size = (task->task_sectors *
4963 DEV_ATTRIB(dev)->block_size);
4965 cdb = TRANSPORT(dev)->get_cdb(task);
4966 if ((cdb)) {
4967 memcpy(cdb, T_TASK(cmd)->t_task_cdb,
4968 scsi_command_size(T_TASK(cmd)->t_task_cdb));
4969 cmd->transport_split_cdb(task->task_lba,
4970 &task->task_sectors, cdb);
4974 * Perform the SE OBJ plugin and/or Transport plugin specific
4975 * mapping for T_TASK(cmd)->t_mem_list. And setup the
4976 * task->task_sg and if necessary task->task_sg_bidi
4978 ret = transport_do_se_mem_map(dev, task, mem_list,
4979 NULL, se_mem, &se_mem_lout, &se_mem_cnt,
4980 &task_offset_in);
4981 if (ret < 0)
4982 goto out;
4984 se_mem = se_mem_lout;
4986 * Setup the T_TASK(cmd)->t_mem_bidi_list -> task->task_sg_bidi
4987 * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI
4989 * Note that the first call to transport_do_se_mem_map() above will
4990 * allocate struct se_task->task_sg_bidi in transport_do_se_mem_map()
4991 * -> transport_calc_sg_num(), and the second here will do the
4992 * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI.
4994 if (task->task_sg_bidi != NULL) {
4995 ret = transport_do_se_mem_map(dev, task,
4996 T_TASK(cmd)->t_mem_bidi_list, NULL,
4997 se_mem_bidi, &se_mem_bidi_lout, &se_mem_bidi_cnt,
4998 &task_offset_in);
4999 if (ret < 0)
5000 goto out;
5002 se_mem_bidi = se_mem_bidi_lout;
5004 task_cdbs++;
5006 DEBUG_VOL("Incremented task_cdbs(%u) task->task_sg_num(%u)\n",
5007 task_cdbs, task->task_sg_num);
5009 if (max_sectors_set) {
5010 max_sectors_set = 0;
5011 continue;
5014 if (!sectors)
5015 break;
5018 if (set_counts) {
5019 atomic_inc(&T_TASK(cmd)->t_fe_count);
5020 atomic_inc(&T_TASK(cmd)->t_se_count);
5023 DEBUG_VOL("ITT[0x%08x] total %s cdbs(%u)\n",
5024 CMD_TFO(cmd)->get_task_tag(cmd), (data_direction == DMA_TO_DEVICE)
5025 ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE", task_cdbs);
5027 return task_cdbs;
5028 out:
5029 return 0;
5032 static int
5033 transport_map_control_cmd_to_task(struct se_cmd *cmd)
5035 struct se_device *dev = SE_DEV(cmd);
5036 unsigned char *cdb;
5037 struct se_task *task;
5038 int ret;
5040 task = transport_generic_get_task(cmd, cmd->data_direction);
5041 if (!task)
5042 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5044 cdb = TRANSPORT(dev)->get_cdb(task);
5045 if (cdb)
5046 memcpy(cdb, cmd->t_task->t_task_cdb,
5047 scsi_command_size(cmd->t_task->t_task_cdb));
5049 task->task_size = cmd->data_length;
5050 task->task_sg_num =
5051 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) ? 1 : 0;
5053 atomic_inc(&cmd->t_task->t_fe_count);
5054 atomic_inc(&cmd->t_task->t_se_count);
5056 if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) {
5057 struct se_mem *se_mem = NULL, *se_mem_lout = NULL;
5058 u32 se_mem_cnt = 0, task_offset = 0;
5060 if (!list_empty(T_TASK(cmd)->t_mem_list))
5061 se_mem = list_entry(T_TASK(cmd)->t_mem_list->next,
5062 struct se_mem, se_list);
5064 ret = transport_do_se_mem_map(dev, task,
5065 cmd->t_task->t_mem_list, NULL, se_mem,
5066 &se_mem_lout, &se_mem_cnt, &task_offset);
5067 if (ret < 0)
5068 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5070 if (dev->transport->map_task_SG)
5071 return dev->transport->map_task_SG(task);
5072 return 0;
5073 } else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) {
5074 if (dev->transport->map_task_non_SG)
5075 return dev->transport->map_task_non_SG(task);
5076 return 0;
5077 } else if (cmd->se_cmd_flags & SCF_SCSI_NON_DATA_CDB) {
5078 if (dev->transport->cdb_none)
5079 return dev->transport->cdb_none(task);
5080 return 0;
5081 } else {
5082 BUG();
5083 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5087 /* transport_generic_new_cmd(): Called from transport_processing_thread()
5089 * Allocate storage transport resources from a set of values predefined
5090 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
5091 * Any non zero return here is treated as an "out of resource' op here.
5094 * Generate struct se_task(s) and/or their payloads for this CDB.
5096 static int transport_generic_new_cmd(struct se_cmd *cmd)
5098 struct se_portal_group *se_tpg;
5099 struct se_task *task;
5100 struct se_device *dev = SE_DEV(cmd);
5101 int ret = 0;
5104 * Determine is the TCM fabric module has already allocated physical
5105 * memory, and is directly calling transport_generic_map_mem_to_cmd()
5106 * to setup beforehand the linked list of physical memory at
5107 * T_TASK(cmd)->t_mem_list of struct se_mem->se_page
5109 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)) {
5110 ret = transport_allocate_resources(cmd);
5111 if (ret < 0)
5112 return ret;
5115 ret = transport_get_sectors(cmd);
5116 if (ret < 0)
5117 return ret;
5119 ret = transport_new_cmd_obj(cmd);
5120 if (ret < 0)
5121 return ret;
5124 * Determine if the calling TCM fabric module is talking to
5125 * Linux/NET via kernel sockets and needs to allocate a
5126 * struct iovec array to complete the struct se_cmd
5128 se_tpg = SE_LUN(cmd)->lun_sep->sep_tpg;
5129 if (TPG_TFO(se_tpg)->alloc_cmd_iovecs != NULL) {
5130 ret = TPG_TFO(se_tpg)->alloc_cmd_iovecs(cmd);
5131 if (ret < 0)
5132 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5135 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
5136 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
5137 if (atomic_read(&task->task_sent))
5138 continue;
5139 if (!dev->transport->map_task_SG)
5140 continue;
5142 ret = dev->transport->map_task_SG(task);
5143 if (ret < 0)
5144 return ret;
5146 } else {
5147 ret = transport_map_control_cmd_to_task(cmd);
5148 if (ret < 0)
5149 return ret;
5153 * For WRITEs, let the iSCSI Target RX Thread know its buffer is ready..
5154 * This WRITE struct se_cmd (and all of its associated struct se_task's)
5155 * will be added to the struct se_device execution queue after its WRITE
5156 * data has arrived. (ie: It gets handled by the transport processing
5157 * thread a second time)
5159 if (cmd->data_direction == DMA_TO_DEVICE) {
5160 transport_add_tasks_to_state_queue(cmd);
5161 return transport_generic_write_pending(cmd);
5164 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
5165 * to the execution queue.
5167 transport_execute_tasks(cmd);
5168 return 0;
5171 /* transport_generic_process_write():
5175 void transport_generic_process_write(struct se_cmd *cmd)
5177 #if 0
5179 * Copy SCSI Presented DTL sector(s) from received buffers allocated to
5180 * original EDTL
5182 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
5183 if (!T_TASK(cmd)->t_tasks_se_num) {
5184 unsigned char *dst, *buf =
5185 (unsigned char *)T_TASK(cmd)->t_task_buf;
5187 dst = kzalloc(cmd->cmd_spdtl), GFP_KERNEL);
5188 if (!(dst)) {
5189 printk(KERN_ERR "Unable to allocate memory for"
5190 " WRITE underflow\n");
5191 transport_generic_request_failure(cmd, NULL,
5192 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
5193 return;
5195 memcpy(dst, buf, cmd->cmd_spdtl);
5197 kfree(T_TASK(cmd)->t_task_buf);
5198 T_TASK(cmd)->t_task_buf = dst;
5199 } else {
5200 struct scatterlist *sg =
5201 (struct scatterlist *sg)T_TASK(cmd)->t_task_buf;
5202 struct scatterlist *orig_sg;
5204 orig_sg = kzalloc(sizeof(struct scatterlist) *
5205 T_TASK(cmd)->t_tasks_se_num,
5206 GFP_KERNEL))) {
5207 if (!(orig_sg)) {
5208 printk(KERN_ERR "Unable to allocate memory"
5209 " for WRITE underflow\n");
5210 transport_generic_request_failure(cmd, NULL,
5211 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
5212 return;
5215 memcpy(orig_sg, T_TASK(cmd)->t_task_buf,
5216 sizeof(struct scatterlist) *
5217 T_TASK(cmd)->t_tasks_se_num);
5219 cmd->data_length = cmd->cmd_spdtl;
5221 * FIXME, clear out original struct se_task and state
5222 * information.
5224 if (transport_generic_new_cmd(cmd) < 0) {
5225 transport_generic_request_failure(cmd, NULL,
5226 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
5227 kfree(orig_sg);
5228 return;
5231 transport_memcpy_write_sg(cmd, orig_sg);
5234 #endif
5235 transport_execute_tasks(cmd);
5237 EXPORT_SYMBOL(transport_generic_process_write);
5239 /* transport_generic_write_pending():
5243 static int transport_generic_write_pending(struct se_cmd *cmd)
5245 unsigned long flags;
5246 int ret;
5248 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5249 cmd->t_state = TRANSPORT_WRITE_PENDING;
5250 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5252 * For the TCM control CDBs using a contiguous buffer, do the memcpy
5253 * from the passed Linux/SCSI struct scatterlist located at
5254 * T_TASK(se_cmd)->t_task_pt_buf to the contiguous buffer at
5255 * T_TASK(se_cmd)->t_task_buf.
5257 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG)
5258 transport_memcpy_read_contig(cmd,
5259 T_TASK(cmd)->t_task_buf,
5260 T_TASK(cmd)->t_task_pt_sgl);
5262 * Clear the se_cmd for WRITE_PENDING status in order to set
5263 * T_TASK(cmd)->t_transport_active=0 so that transport_generic_handle_data
5264 * can be called from HW target mode interrupt code. This is safe
5265 * to be called with transport_off=1 before the CMD_TFO(cmd)->write_pending
5266 * because the se_cmd->se_lun pointer is not being cleared.
5268 transport_cmd_check_stop(cmd, 1, 0);
5271 * Call the fabric write_pending function here to let the
5272 * frontend know that WRITE buffers are ready.
5274 ret = CMD_TFO(cmd)->write_pending(cmd);
5275 if (ret < 0)
5276 return ret;
5278 return PYX_TRANSPORT_WRITE_PENDING;
5281 /* transport_release_cmd_to_pool():
5285 void transport_release_cmd_to_pool(struct se_cmd *cmd)
5287 BUG_ON(!T_TASK(cmd));
5288 BUG_ON(!CMD_TFO(cmd));
5290 transport_free_se_cmd(cmd);
5291 CMD_TFO(cmd)->release_cmd_to_pool(cmd);
5293 EXPORT_SYMBOL(transport_release_cmd_to_pool);
5295 /* transport_generic_free_cmd():
5297 * Called from processing frontend to release storage engine resources
5299 void transport_generic_free_cmd(
5300 struct se_cmd *cmd,
5301 int wait_for_tasks,
5302 int release_to_pool,
5303 int session_reinstatement)
5305 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) || !T_TASK(cmd))
5306 transport_release_cmd_to_pool(cmd);
5307 else {
5308 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
5310 if (SE_LUN(cmd)) {
5311 #if 0
5312 printk(KERN_INFO "cmd: %p ITT: 0x%08x contains"
5313 " SE_LUN(cmd)\n", cmd,
5314 CMD_TFO(cmd)->get_task_tag(cmd));
5315 #endif
5316 transport_lun_remove_cmd(cmd);
5319 if (wait_for_tasks && cmd->transport_wait_for_tasks)
5320 cmd->transport_wait_for_tasks(cmd, 0, 0);
5322 transport_free_dev_tasks(cmd);
5324 transport_generic_remove(cmd, release_to_pool,
5325 session_reinstatement);
5328 EXPORT_SYMBOL(transport_generic_free_cmd);
5330 static void transport_nop_wait_for_tasks(
5331 struct se_cmd *cmd,
5332 int remove_cmd,
5333 int session_reinstatement)
5335 return;
5338 /* transport_lun_wait_for_tasks():
5340 * Called from ConfigFS context to stop the passed struct se_cmd to allow
5341 * an struct se_lun to be successfully shutdown.
5343 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
5345 unsigned long flags;
5346 int ret;
5348 * If the frontend has already requested this struct se_cmd to
5349 * be stopped, we can safely ignore this struct se_cmd.
5351 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5352 if (atomic_read(&T_TASK(cmd)->t_transport_stop)) {
5353 atomic_set(&T_TASK(cmd)->transport_lun_stop, 0);
5354 DEBUG_TRANSPORT_S("ConfigFS ITT[0x%08x] - t_transport_stop =="
5355 " TRUE, skipping\n", CMD_TFO(cmd)->get_task_tag(cmd));
5356 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5357 transport_cmd_check_stop(cmd, 1, 0);
5358 return -1;
5360 atomic_set(&T_TASK(cmd)->transport_lun_fe_stop, 1);
5361 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5363 wake_up_interruptible(&SE_DEV(cmd)->dev_queue_obj->thread_wq);
5365 ret = transport_stop_tasks_for_cmd(cmd);
5367 DEBUG_TRANSPORT_S("ConfigFS: cmd: %p t_task_cdbs: %d stop tasks ret:"
5368 " %d\n", cmd, T_TASK(cmd)->t_task_cdbs, ret);
5369 if (!ret) {
5370 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
5371 CMD_TFO(cmd)->get_task_tag(cmd));
5372 wait_for_completion(&T_TASK(cmd)->transport_lun_stop_comp);
5373 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
5374 CMD_TFO(cmd)->get_task_tag(cmd));
5376 transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj);
5378 return 0;
5381 /* #define DEBUG_CLEAR_LUN */
5382 #ifdef DEBUG_CLEAR_LUN
5383 #define DEBUG_CLEAR_L(x...) printk(KERN_INFO x)
5384 #else
5385 #define DEBUG_CLEAR_L(x...)
5386 #endif
5388 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
5390 struct se_cmd *cmd = NULL;
5391 unsigned long lun_flags, cmd_flags;
5393 * Do exception processing and return CHECK_CONDITION status to the
5394 * Initiator Port.
5396 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5397 while (!list_empty_careful(&lun->lun_cmd_list)) {
5398 cmd = list_entry(lun->lun_cmd_list.next,
5399 struct se_cmd, se_lun_list);
5400 list_del(&cmd->se_lun_list);
5402 if (!(T_TASK(cmd))) {
5403 printk(KERN_ERR "ITT: 0x%08x, T_TASK(cmd) = NULL"
5404 "[i,t]_state: %u/%u\n",
5405 CMD_TFO(cmd)->get_task_tag(cmd),
5406 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state);
5407 BUG();
5409 atomic_set(&T_TASK(cmd)->transport_lun_active, 0);
5411 * This will notify iscsi_target_transport.c:
5412 * transport_cmd_check_stop() that a LUN shutdown is in
5413 * progress for the iscsi_cmd_t.
5415 spin_lock(&T_TASK(cmd)->t_state_lock);
5416 DEBUG_CLEAR_L("SE_LUN[%d] - Setting T_TASK(cmd)->transport"
5417 "_lun_stop for ITT: 0x%08x\n",
5418 SE_LUN(cmd)->unpacked_lun,
5419 CMD_TFO(cmd)->get_task_tag(cmd));
5420 atomic_set(&T_TASK(cmd)->transport_lun_stop, 1);
5421 spin_unlock(&T_TASK(cmd)->t_state_lock);
5423 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
5425 if (!(SE_LUN(cmd))) {
5426 printk(KERN_ERR "ITT: 0x%08x, [i,t]_state: %u/%u\n",
5427 CMD_TFO(cmd)->get_task_tag(cmd),
5428 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state);
5429 BUG();
5432 * If the Storage engine still owns the iscsi_cmd_t, determine
5433 * and/or stop its context.
5435 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x before transport"
5436 "_lun_wait_for_tasks()\n", SE_LUN(cmd)->unpacked_lun,
5437 CMD_TFO(cmd)->get_task_tag(cmd));
5439 if (transport_lun_wait_for_tasks(cmd, SE_LUN(cmd)) < 0) {
5440 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5441 continue;
5444 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
5445 "_wait_for_tasks(): SUCCESS\n",
5446 SE_LUN(cmd)->unpacked_lun,
5447 CMD_TFO(cmd)->get_task_tag(cmd));
5449 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, cmd_flags);
5450 if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
5451 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags);
5452 goto check_cond;
5454 atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
5455 transport_all_task_dev_remove_state(cmd);
5456 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags);
5458 transport_free_dev_tasks(cmd);
5460 * The Storage engine stopped this struct se_cmd before it was
5461 * send to the fabric frontend for delivery back to the
5462 * Initiator Node. Return this SCSI CDB back with an
5463 * CHECK_CONDITION status.
5465 check_cond:
5466 transport_send_check_condition_and_sense(cmd,
5467 TCM_NON_EXISTENT_LUN, 0);
5469 * If the fabric frontend is waiting for this iscsi_cmd_t to
5470 * be released, notify the waiting thread now that LU has
5471 * finished accessing it.
5473 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, cmd_flags);
5474 if (atomic_read(&T_TASK(cmd)->transport_lun_fe_stop)) {
5475 DEBUG_CLEAR_L("SE_LUN[%d] - Detected FE stop for"
5476 " struct se_cmd: %p ITT: 0x%08x\n",
5477 lun->unpacked_lun,
5478 cmd, CMD_TFO(cmd)->get_task_tag(cmd));
5480 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
5481 cmd_flags);
5482 transport_cmd_check_stop(cmd, 1, 0);
5483 complete(&T_TASK(cmd)->transport_lun_fe_stop_comp);
5484 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5485 continue;
5487 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
5488 lun->unpacked_lun, CMD_TFO(cmd)->get_task_tag(cmd));
5490 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags);
5491 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5493 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
5496 static int transport_clear_lun_thread(void *p)
5498 struct se_lun *lun = (struct se_lun *)p;
5500 __transport_clear_lun_from_sessions(lun);
5501 complete(&lun->lun_shutdown_comp);
5503 return 0;
5506 int transport_clear_lun_from_sessions(struct se_lun *lun)
5508 struct task_struct *kt;
5510 kt = kthread_run(transport_clear_lun_thread, (void *)lun,
5511 "tcm_cl_%u", lun->unpacked_lun);
5512 if (IS_ERR(kt)) {
5513 printk(KERN_ERR "Unable to start clear_lun thread\n");
5514 return -1;
5516 wait_for_completion(&lun->lun_shutdown_comp);
5518 return 0;
5521 /* transport_generic_wait_for_tasks():
5523 * Called from frontend or passthrough context to wait for storage engine
5524 * to pause and/or release frontend generated struct se_cmd.
5526 static void transport_generic_wait_for_tasks(
5527 struct se_cmd *cmd,
5528 int remove_cmd,
5529 int session_reinstatement)
5531 unsigned long flags;
5533 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req))
5534 return;
5536 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5538 * If we are already stopped due to an external event (ie: LUN shutdown)
5539 * sleep until the connection can have the passed struct se_cmd back.
5540 * The T_TASK(cmd)->transport_lun_stopped_sem will be upped by
5541 * transport_clear_lun_from_sessions() once the ConfigFS context caller
5542 * has completed its operation on the struct se_cmd.
5544 if (atomic_read(&T_TASK(cmd)->transport_lun_stop)) {
5546 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping"
5547 " wait_for_completion(&T_TASK(cmd)transport_lun_fe"
5548 "_stop_comp); for ITT: 0x%08x\n",
5549 CMD_TFO(cmd)->get_task_tag(cmd));
5551 * There is a special case for WRITES where a FE exception +
5552 * LUN shutdown means ConfigFS context is still sleeping on
5553 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
5554 * We go ahead and up transport_lun_stop_comp just to be sure
5555 * here.
5557 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5558 complete(&T_TASK(cmd)->transport_lun_stop_comp);
5559 wait_for_completion(&T_TASK(cmd)->transport_lun_fe_stop_comp);
5560 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5562 transport_all_task_dev_remove_state(cmd);
5564 * At this point, the frontend who was the originator of this
5565 * struct se_cmd, now owns the structure and can be released through
5566 * normal means below.
5568 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped"
5569 " wait_for_completion(&T_TASK(cmd)transport_lun_fe_"
5570 "stop_comp); for ITT: 0x%08x\n",
5571 CMD_TFO(cmd)->get_task_tag(cmd));
5573 atomic_set(&T_TASK(cmd)->transport_lun_stop, 0);
5575 if (!atomic_read(&T_TASK(cmd)->t_transport_active) ||
5576 atomic_read(&T_TASK(cmd)->t_transport_aborted))
5577 goto remove;
5579 atomic_set(&T_TASK(cmd)->t_transport_stop, 1);
5581 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping %p ITT: 0x%08x"
5582 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
5583 " = TRUE\n", cmd, CMD_TFO(cmd)->get_task_tag(cmd),
5584 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state,
5585 cmd->deferred_t_state);
5587 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5589 wake_up_interruptible(&SE_DEV(cmd)->dev_queue_obj->thread_wq);
5591 wait_for_completion(&T_TASK(cmd)->t_transport_stop_comp);
5593 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5594 atomic_set(&T_TASK(cmd)->t_transport_active, 0);
5595 atomic_set(&T_TASK(cmd)->t_transport_stop, 0);
5597 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped wait_for_compltion("
5598 "&T_TASK(cmd)->t_transport_stop_comp) for ITT: 0x%08x\n",
5599 CMD_TFO(cmd)->get_task_tag(cmd));
5600 remove:
5601 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5602 if (!remove_cmd)
5603 return;
5605 transport_generic_free_cmd(cmd, 0, 0, session_reinstatement);
5608 static int transport_get_sense_codes(
5609 struct se_cmd *cmd,
5610 u8 *asc,
5611 u8 *ascq)
5613 *asc = cmd->scsi_asc;
5614 *ascq = cmd->scsi_ascq;
5616 return 0;
5619 static int transport_set_sense_codes(
5620 struct se_cmd *cmd,
5621 u8 asc,
5622 u8 ascq)
5624 cmd->scsi_asc = asc;
5625 cmd->scsi_ascq = ascq;
5627 return 0;
5630 int transport_send_check_condition_and_sense(
5631 struct se_cmd *cmd,
5632 u8 reason,
5633 int from_transport)
5635 unsigned char *buffer = cmd->sense_buffer;
5636 unsigned long flags;
5637 int offset;
5638 u8 asc = 0, ascq = 0;
5640 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5641 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
5642 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5643 return 0;
5645 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
5646 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5648 if (!reason && from_transport)
5649 goto after_reason;
5651 if (!from_transport)
5652 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
5654 * Data Segment and SenseLength of the fabric response PDU.
5656 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
5657 * from include/scsi/scsi_cmnd.h
5659 offset = CMD_TFO(cmd)->set_fabric_sense_len(cmd,
5660 TRANSPORT_SENSE_BUFFER);
5662 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
5663 * SENSE KEY values from include/scsi/scsi.h
5665 switch (reason) {
5666 case TCM_NON_EXISTENT_LUN:
5667 case TCM_UNSUPPORTED_SCSI_OPCODE:
5668 case TCM_SECTOR_COUNT_TOO_MANY:
5669 /* CURRENT ERROR */
5670 buffer[offset] = 0x70;
5671 /* ILLEGAL REQUEST */
5672 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5673 /* INVALID COMMAND OPERATION CODE */
5674 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
5675 break;
5676 case TCM_UNKNOWN_MODE_PAGE:
5677 /* CURRENT ERROR */
5678 buffer[offset] = 0x70;
5679 /* ILLEGAL REQUEST */
5680 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5681 /* INVALID FIELD IN CDB */
5682 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
5683 break;
5684 case TCM_CHECK_CONDITION_ABORT_CMD:
5685 /* CURRENT ERROR */
5686 buffer[offset] = 0x70;
5687 /* ABORTED COMMAND */
5688 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5689 /* BUS DEVICE RESET FUNCTION OCCURRED */
5690 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
5691 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
5692 break;
5693 case TCM_INCORRECT_AMOUNT_OF_DATA:
5694 /* CURRENT ERROR */
5695 buffer[offset] = 0x70;
5696 /* ABORTED COMMAND */
5697 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5698 /* WRITE ERROR */
5699 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
5700 /* NOT ENOUGH UNSOLICITED DATA */
5701 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
5702 break;
5703 case TCM_INVALID_CDB_FIELD:
5704 /* CURRENT ERROR */
5705 buffer[offset] = 0x70;
5706 /* ABORTED COMMAND */
5707 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5708 /* INVALID FIELD IN CDB */
5709 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
5710 break;
5711 case TCM_INVALID_PARAMETER_LIST:
5712 /* CURRENT ERROR */
5713 buffer[offset] = 0x70;
5714 /* ABORTED COMMAND */
5715 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5716 /* INVALID FIELD IN PARAMETER LIST */
5717 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
5718 break;
5719 case TCM_UNEXPECTED_UNSOLICITED_DATA:
5720 /* CURRENT ERROR */
5721 buffer[offset] = 0x70;
5722 /* ABORTED COMMAND */
5723 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5724 /* WRITE ERROR */
5725 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
5726 /* UNEXPECTED_UNSOLICITED_DATA */
5727 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
5728 break;
5729 case TCM_SERVICE_CRC_ERROR:
5730 /* CURRENT ERROR */
5731 buffer[offset] = 0x70;
5732 /* ABORTED COMMAND */
5733 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5734 /* PROTOCOL SERVICE CRC ERROR */
5735 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
5736 /* N/A */
5737 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
5738 break;
5739 case TCM_SNACK_REJECTED:
5740 /* CURRENT ERROR */
5741 buffer[offset] = 0x70;
5742 /* ABORTED COMMAND */
5743 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5744 /* READ ERROR */
5745 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
5746 /* FAILED RETRANSMISSION REQUEST */
5747 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
5748 break;
5749 case TCM_WRITE_PROTECTED:
5750 /* CURRENT ERROR */
5751 buffer[offset] = 0x70;
5752 /* DATA PROTECT */
5753 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
5754 /* WRITE PROTECTED */
5755 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
5756 break;
5757 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
5758 /* CURRENT ERROR */
5759 buffer[offset] = 0x70;
5760 /* UNIT ATTENTION */
5761 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
5762 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
5763 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
5764 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
5765 break;
5766 case TCM_CHECK_CONDITION_NOT_READY:
5767 /* CURRENT ERROR */
5768 buffer[offset] = 0x70;
5769 /* Not Ready */
5770 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
5771 transport_get_sense_codes(cmd, &asc, &ascq);
5772 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
5773 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
5774 break;
5775 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
5776 default:
5777 /* CURRENT ERROR */
5778 buffer[offset] = 0x70;
5779 /* ILLEGAL REQUEST */
5780 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5781 /* LOGICAL UNIT COMMUNICATION FAILURE */
5782 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
5783 break;
5786 * This code uses linux/include/scsi/scsi.h SAM status codes!
5788 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
5790 * Automatically padded, this value is encoded in the fabric's
5791 * data_length response PDU containing the SCSI defined sense data.
5793 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
5795 after_reason:
5796 CMD_TFO(cmd)->queue_status(cmd);
5797 return 0;
5799 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
5801 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
5803 int ret = 0;
5805 if (atomic_read(&T_TASK(cmd)->t_transport_aborted) != 0) {
5806 if (!(send_status) ||
5807 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
5808 return 1;
5809 #if 0
5810 printk(KERN_INFO "Sending delayed SAM_STAT_TASK_ABORTED"
5811 " status for CDB: 0x%02x ITT: 0x%08x\n",
5812 T_TASK(cmd)->t_task_cdb[0],
5813 CMD_TFO(cmd)->get_task_tag(cmd));
5814 #endif
5815 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
5816 CMD_TFO(cmd)->queue_status(cmd);
5817 ret = 1;
5819 return ret;
5821 EXPORT_SYMBOL(transport_check_aborted_status);
5823 void transport_send_task_abort(struct se_cmd *cmd)
5826 * If there are still expected incoming fabric WRITEs, we wait
5827 * until until they have completed before sending a TASK_ABORTED
5828 * response. This response with TASK_ABORTED status will be
5829 * queued back to fabric module by transport_check_aborted_status().
5831 if (cmd->data_direction == DMA_TO_DEVICE) {
5832 if (CMD_TFO(cmd)->write_pending_status(cmd) != 0) {
5833 atomic_inc(&T_TASK(cmd)->t_transport_aborted);
5834 smp_mb__after_atomic_inc();
5835 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
5836 transport_new_cmd_failure(cmd);
5837 return;
5840 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
5841 #if 0
5842 printk(KERN_INFO "Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
5843 " ITT: 0x%08x\n", T_TASK(cmd)->t_task_cdb[0],
5844 CMD_TFO(cmd)->get_task_tag(cmd));
5845 #endif
5846 CMD_TFO(cmd)->queue_status(cmd);
5849 /* transport_generic_do_tmr():
5853 int transport_generic_do_tmr(struct se_cmd *cmd)
5855 struct se_cmd *ref_cmd;
5856 struct se_device *dev = SE_DEV(cmd);
5857 struct se_tmr_req *tmr = cmd->se_tmr_req;
5858 int ret;
5860 switch (tmr->function) {
5861 case TMR_ABORT_TASK:
5862 ref_cmd = tmr->ref_cmd;
5863 tmr->response = TMR_FUNCTION_REJECTED;
5864 break;
5865 case TMR_ABORT_TASK_SET:
5866 case TMR_CLEAR_ACA:
5867 case TMR_CLEAR_TASK_SET:
5868 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
5869 break;
5870 case TMR_LUN_RESET:
5871 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
5872 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
5873 TMR_FUNCTION_REJECTED;
5874 break;
5875 case TMR_TARGET_WARM_RESET:
5876 tmr->response = TMR_FUNCTION_REJECTED;
5877 break;
5878 case TMR_TARGET_COLD_RESET:
5879 tmr->response = TMR_FUNCTION_REJECTED;
5880 break;
5881 default:
5882 printk(KERN_ERR "Uknown TMR function: 0x%02x.\n",
5883 tmr->function);
5884 tmr->response = TMR_FUNCTION_REJECTED;
5885 break;
5888 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
5889 CMD_TFO(cmd)->queue_tm_rsp(cmd);
5891 transport_cmd_check_stop(cmd, 2, 0);
5892 return 0;
5896 * Called with spin_lock_irq(&dev->execute_task_lock); held
5899 static struct se_task *
5900 transport_get_task_from_state_list(struct se_device *dev)
5902 struct se_task *task;
5904 if (list_empty(&dev->state_task_list))
5905 return NULL;
5907 list_for_each_entry(task, &dev->state_task_list, t_state_list)
5908 break;
5910 list_del(&task->t_state_list);
5911 atomic_set(&task->task_state_active, 0);
5913 return task;
5916 static void transport_processing_shutdown(struct se_device *dev)
5918 struct se_cmd *cmd;
5919 struct se_queue_req *qr;
5920 struct se_task *task;
5921 u8 state;
5922 unsigned long flags;
5924 * Empty the struct se_device's struct se_task state list.
5926 spin_lock_irqsave(&dev->execute_task_lock, flags);
5927 while ((task = transport_get_task_from_state_list(dev))) {
5928 if (!(TASK_CMD(task))) {
5929 printk(KERN_ERR "TASK_CMD(task) is NULL!\n");
5930 continue;
5932 cmd = TASK_CMD(task);
5934 if (!T_TASK(cmd)) {
5935 printk(KERN_ERR "T_TASK(cmd) is NULL for task: %p cmd:"
5936 " %p ITT: 0x%08x\n", task, cmd,
5937 CMD_TFO(cmd)->get_task_tag(cmd));
5938 continue;
5940 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5942 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5944 DEBUG_DO("PT: cmd: %p task: %p ITT/CmdSN: 0x%08x/0x%08x,"
5945 " i_state/def_i_state: %d/%d, t_state/def_t_state:"
5946 " %d/%d cdb: 0x%02x\n", cmd, task,
5947 CMD_TFO(cmd)->get_task_tag(cmd), cmd->cmd_sn,
5948 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->deferred_i_state,
5949 cmd->t_state, cmd->deferred_t_state,
5950 T_TASK(cmd)->t_task_cdb[0]);
5951 DEBUG_DO("PT: ITT[0x%08x] - t_task_cdbs: %d t_task_cdbs_left:"
5952 " %d t_task_cdbs_sent: %d -- t_transport_active: %d"
5953 " t_transport_stop: %d t_transport_sent: %d\n",
5954 CMD_TFO(cmd)->get_task_tag(cmd),
5955 T_TASK(cmd)->t_task_cdbs,
5956 atomic_read(&T_TASK(cmd)->t_task_cdbs_left),
5957 atomic_read(&T_TASK(cmd)->t_task_cdbs_sent),
5958 atomic_read(&T_TASK(cmd)->t_transport_active),
5959 atomic_read(&T_TASK(cmd)->t_transport_stop),
5960 atomic_read(&T_TASK(cmd)->t_transport_sent));
5962 if (atomic_read(&task->task_active)) {
5963 atomic_set(&task->task_stop, 1);
5964 spin_unlock_irqrestore(
5965 &T_TASK(cmd)->t_state_lock, flags);
5967 DEBUG_DO("Waiting for task: %p to shutdown for dev:"
5968 " %p\n", task, dev);
5969 wait_for_completion(&task->task_stop_comp);
5970 DEBUG_DO("Completed task: %p shutdown for dev: %p\n",
5971 task, dev);
5973 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5974 atomic_dec(&T_TASK(cmd)->t_task_cdbs_left);
5976 atomic_set(&task->task_active, 0);
5977 atomic_set(&task->task_stop, 0);
5978 } else {
5979 if (atomic_read(&task->task_execute_queue) != 0)
5980 transport_remove_task_from_execute_queue(task, dev);
5982 __transport_stop_task_timer(task, &flags);
5984 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_ex_left))) {
5985 spin_unlock_irqrestore(
5986 &T_TASK(cmd)->t_state_lock, flags);
5988 DEBUG_DO("Skipping task: %p, dev: %p for"
5989 " t_task_cdbs_ex_left: %d\n", task, dev,
5990 atomic_read(&T_TASK(cmd)->t_task_cdbs_ex_left));
5992 spin_lock_irqsave(&dev->execute_task_lock, flags);
5993 continue;
5996 if (atomic_read(&T_TASK(cmd)->t_transport_active)) {
5997 DEBUG_DO("got t_transport_active = 1 for task: %p, dev:"
5998 " %p\n", task, dev);
6000 if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
6001 spin_unlock_irqrestore(
6002 &T_TASK(cmd)->t_state_lock, flags);
6003 transport_send_check_condition_and_sense(
6004 cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE,
6006 transport_remove_cmd_from_queue(cmd,
6007 SE_DEV(cmd)->dev_queue_obj);
6009 transport_lun_remove_cmd(cmd);
6010 transport_cmd_check_stop(cmd, 1, 0);
6011 } else {
6012 spin_unlock_irqrestore(
6013 &T_TASK(cmd)->t_state_lock, flags);
6015 transport_remove_cmd_from_queue(cmd,
6016 SE_DEV(cmd)->dev_queue_obj);
6018 transport_lun_remove_cmd(cmd);
6020 if (transport_cmd_check_stop(cmd, 1, 0))
6021 transport_generic_remove(cmd, 0, 0);
6024 spin_lock_irqsave(&dev->execute_task_lock, flags);
6025 continue;
6027 DEBUG_DO("Got t_transport_active = 0 for task: %p, dev: %p\n",
6028 task, dev);
6030 if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
6031 spin_unlock_irqrestore(
6032 &T_TASK(cmd)->t_state_lock, flags);
6033 transport_send_check_condition_and_sense(cmd,
6034 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
6035 transport_remove_cmd_from_queue(cmd,
6036 SE_DEV(cmd)->dev_queue_obj);
6038 transport_lun_remove_cmd(cmd);
6039 transport_cmd_check_stop(cmd, 1, 0);
6040 } else {
6041 spin_unlock_irqrestore(
6042 &T_TASK(cmd)->t_state_lock, flags);
6044 transport_remove_cmd_from_queue(cmd,
6045 SE_DEV(cmd)->dev_queue_obj);
6046 transport_lun_remove_cmd(cmd);
6048 if (transport_cmd_check_stop(cmd, 1, 0))
6049 transport_generic_remove(cmd, 0, 0);
6052 spin_lock_irqsave(&dev->execute_task_lock, flags);
6054 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
6056 * Empty the struct se_device's struct se_cmd list.
6058 spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
6059 while ((qr = __transport_get_qr_from_queue(dev->dev_queue_obj))) {
6060 spin_unlock_irqrestore(
6061 &dev->dev_queue_obj->cmd_queue_lock, flags);
6062 cmd = (struct se_cmd *)qr->cmd;
6063 state = qr->state;
6064 kfree(qr);
6066 DEBUG_DO("From Device Queue: cmd: %p t_state: %d\n",
6067 cmd, state);
6069 if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
6070 transport_send_check_condition_and_sense(cmd,
6071 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
6073 transport_lun_remove_cmd(cmd);
6074 transport_cmd_check_stop(cmd, 1, 0);
6075 } else {
6076 transport_lun_remove_cmd(cmd);
6077 if (transport_cmd_check_stop(cmd, 1, 0))
6078 transport_generic_remove(cmd, 0, 0);
6080 spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
6082 spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock, flags);
6085 /* transport_processing_thread():
6089 static int transport_processing_thread(void *param)
6091 int ret, t_state;
6092 struct se_cmd *cmd;
6093 struct se_device *dev = (struct se_device *) param;
6094 struct se_queue_req *qr;
6096 set_user_nice(current, -20);
6098 while (!kthread_should_stop()) {
6099 ret = wait_event_interruptible(dev->dev_queue_obj->thread_wq,
6100 atomic_read(&dev->dev_queue_obj->queue_cnt) ||
6101 kthread_should_stop());
6102 if (ret < 0)
6103 goto out;
6105 spin_lock_irq(&dev->dev_status_lock);
6106 if (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) {
6107 spin_unlock_irq(&dev->dev_status_lock);
6108 transport_processing_shutdown(dev);
6109 continue;
6111 spin_unlock_irq(&dev->dev_status_lock);
6113 get_cmd:
6114 __transport_execute_tasks(dev);
6116 qr = transport_get_qr_from_queue(dev->dev_queue_obj);
6117 if (!(qr))
6118 continue;
6120 cmd = (struct se_cmd *)qr->cmd;
6121 t_state = qr->state;
6122 kfree(qr);
6124 switch (t_state) {
6125 case TRANSPORT_NEW_CMD_MAP:
6126 if (!(CMD_TFO(cmd)->new_cmd_map)) {
6127 printk(KERN_ERR "CMD_TFO(cmd)->new_cmd_map is"
6128 " NULL for TRANSPORT_NEW_CMD_MAP\n");
6129 BUG();
6131 ret = CMD_TFO(cmd)->new_cmd_map(cmd);
6132 if (ret < 0) {
6133 cmd->transport_error_status = ret;
6134 transport_generic_request_failure(cmd, NULL,
6135 0, (cmd->data_direction !=
6136 DMA_TO_DEVICE));
6137 break;
6139 /* Fall through */
6140 case TRANSPORT_NEW_CMD:
6141 ret = transport_generic_new_cmd(cmd);
6142 if (ret < 0) {
6143 cmd->transport_error_status = ret;
6144 transport_generic_request_failure(cmd, NULL,
6145 0, (cmd->data_direction !=
6146 DMA_TO_DEVICE));
6148 break;
6149 case TRANSPORT_PROCESS_WRITE:
6150 transport_generic_process_write(cmd);
6151 break;
6152 case TRANSPORT_COMPLETE_OK:
6153 transport_stop_all_task_timers(cmd);
6154 transport_generic_complete_ok(cmd);
6155 break;
6156 case TRANSPORT_REMOVE:
6157 transport_generic_remove(cmd, 1, 0);
6158 break;
6159 case TRANSPORT_FREE_CMD_INTR:
6160 transport_generic_free_cmd(cmd, 0, 1, 0);
6161 break;
6162 case TRANSPORT_PROCESS_TMR:
6163 transport_generic_do_tmr(cmd);
6164 break;
6165 case TRANSPORT_COMPLETE_FAILURE:
6166 transport_generic_request_failure(cmd, NULL, 1, 1);
6167 break;
6168 case TRANSPORT_COMPLETE_TIMEOUT:
6169 transport_stop_all_task_timers(cmd);
6170 transport_generic_request_timeout(cmd);
6171 break;
6172 default:
6173 printk(KERN_ERR "Unknown t_state: %d deferred_t_state:"
6174 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
6175 " %u\n", t_state, cmd->deferred_t_state,
6176 CMD_TFO(cmd)->get_task_tag(cmd),
6177 CMD_TFO(cmd)->get_cmd_state(cmd),
6178 SE_LUN(cmd)->unpacked_lun);
6179 BUG();
6182 goto get_cmd;
6185 out:
6186 transport_release_all_cmds(dev);
6187 dev->process_thread = NULL;
6188 return 0;