2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
26 * These routines are used by both DMA-remapping and Interrupt-remapping
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34 #include <linux/irq.h>
35 #include <linux/interrupt.h>
36 #include <linux/tboot.h>
37 #include <linux/dmi.h>
38 #include <linux/slab.h>
39 #include <asm/iommu_table.h>
41 #define PREFIX "DMAR: "
43 /* No locks are needed as DMA remapping hardware unit
44 * list is constructed at boot time and hotplug of
45 * these units are not supported by the architecture.
47 LIST_HEAD(dmar_drhd_units
);
49 static struct acpi_table_header
* __initdata dmar_tbl
;
50 static acpi_size dmar_tbl_size
;
52 static void __init
dmar_register_drhd_unit(struct dmar_drhd_unit
*drhd
)
55 * add INCLUDE_ALL at the tail, so scan the list will find it at
58 if (drhd
->include_all
)
59 list_add_tail(&drhd
->list
, &dmar_drhd_units
);
61 list_add(&drhd
->list
, &dmar_drhd_units
);
64 static int __init
dmar_parse_one_dev_scope(struct acpi_dmar_device_scope
*scope
,
65 struct pci_dev
**dev
, u16 segment
)
68 struct pci_dev
*pdev
= NULL
;
69 struct acpi_dmar_pci_path
*path
;
72 bus
= pci_find_bus(segment
, scope
->bus
);
73 path
= (struct acpi_dmar_pci_path
*)(scope
+ 1);
74 count
= (scope
->length
- sizeof(struct acpi_dmar_device_scope
))
75 / sizeof(struct acpi_dmar_pci_path
);
81 * Some BIOSes list non-exist devices in DMAR table, just
86 PREFIX
"Device scope bus [%d] not found\n",
90 pdev
= pci_get_slot(bus
, PCI_DEVFN(path
->dev
, path
->fn
));
92 printk(KERN_WARNING PREFIX
93 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
94 segment
, bus
->number
, path
->dev
, path
->fn
);
99 bus
= pdev
->subordinate
;
102 printk(KERN_WARNING PREFIX
103 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
104 segment
, scope
->bus
, path
->dev
, path
->fn
);
108 if ((scope
->entry_type
== ACPI_DMAR_SCOPE_TYPE_ENDPOINT
&& \
109 pdev
->subordinate
) || (scope
->entry_type
== \
110 ACPI_DMAR_SCOPE_TYPE_BRIDGE
&& !pdev
->subordinate
)) {
112 printk(KERN_WARNING PREFIX
113 "Device scope type does not match for %s\n",
121 static int __init
dmar_parse_dev_scope(void *start
, void *end
, int *cnt
,
122 struct pci_dev
***devices
, u16 segment
)
124 struct acpi_dmar_device_scope
*scope
;
130 while (start
< end
) {
132 if (scope
->entry_type
== ACPI_DMAR_SCOPE_TYPE_ENDPOINT
||
133 scope
->entry_type
== ACPI_DMAR_SCOPE_TYPE_BRIDGE
)
135 else if (scope
->entry_type
!= ACPI_DMAR_SCOPE_TYPE_IOAPIC
) {
136 printk(KERN_WARNING PREFIX
137 "Unsupported device scope\n");
139 start
+= scope
->length
;
144 *devices
= kcalloc(*cnt
, sizeof(struct pci_dev
*), GFP_KERNEL
);
150 while (start
< end
) {
152 if (scope
->entry_type
== ACPI_DMAR_SCOPE_TYPE_ENDPOINT
||
153 scope
->entry_type
== ACPI_DMAR_SCOPE_TYPE_BRIDGE
) {
154 ret
= dmar_parse_one_dev_scope(scope
,
155 &(*devices
)[index
], segment
);
162 start
+= scope
->length
;
169 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
170 * structure which uniquely represent one DMA remapping hardware unit
171 * present in the platform
174 dmar_parse_one_drhd(struct acpi_dmar_header
*header
)
176 struct acpi_dmar_hardware_unit
*drhd
;
177 struct dmar_drhd_unit
*dmaru
;
180 drhd
= (struct acpi_dmar_hardware_unit
*)header
;
181 dmaru
= kzalloc(sizeof(*dmaru
), GFP_KERNEL
);
186 dmaru
->reg_base_addr
= drhd
->address
;
187 dmaru
->segment
= drhd
->segment
;
188 dmaru
->include_all
= drhd
->flags
& 0x1; /* BIT0: INCLUDE_ALL */
190 ret
= alloc_iommu(dmaru
);
195 dmar_register_drhd_unit(dmaru
);
199 static int __init
dmar_parse_dev(struct dmar_drhd_unit
*dmaru
)
201 struct acpi_dmar_hardware_unit
*drhd
;
204 drhd
= (struct acpi_dmar_hardware_unit
*) dmaru
->hdr
;
206 if (dmaru
->include_all
)
209 ret
= dmar_parse_dev_scope((void *)(drhd
+ 1),
210 ((void *)drhd
) + drhd
->header
.length
,
211 &dmaru
->devices_cnt
, &dmaru
->devices
,
214 list_del(&dmaru
->list
);
221 LIST_HEAD(dmar_rmrr_units
);
223 static void __init
dmar_register_rmrr_unit(struct dmar_rmrr_unit
*rmrr
)
225 list_add(&rmrr
->list
, &dmar_rmrr_units
);
230 dmar_parse_one_rmrr(struct acpi_dmar_header
*header
)
232 struct acpi_dmar_reserved_memory
*rmrr
;
233 struct dmar_rmrr_unit
*rmrru
;
235 rmrru
= kzalloc(sizeof(*rmrru
), GFP_KERNEL
);
240 rmrr
= (struct acpi_dmar_reserved_memory
*)header
;
241 rmrru
->base_address
= rmrr
->base_address
;
242 rmrru
->end_address
= rmrr
->end_address
;
244 dmar_register_rmrr_unit(rmrru
);
249 rmrr_parse_dev(struct dmar_rmrr_unit
*rmrru
)
251 struct acpi_dmar_reserved_memory
*rmrr
;
254 rmrr
= (struct acpi_dmar_reserved_memory
*) rmrru
->hdr
;
255 ret
= dmar_parse_dev_scope((void *)(rmrr
+ 1),
256 ((void *)rmrr
) + rmrr
->header
.length
,
257 &rmrru
->devices_cnt
, &rmrru
->devices
, rmrr
->segment
);
259 if (ret
|| (rmrru
->devices_cnt
== 0)) {
260 list_del(&rmrru
->list
);
266 static LIST_HEAD(dmar_atsr_units
);
268 static int __init
dmar_parse_one_atsr(struct acpi_dmar_header
*hdr
)
270 struct acpi_dmar_atsr
*atsr
;
271 struct dmar_atsr_unit
*atsru
;
273 atsr
= container_of(hdr
, struct acpi_dmar_atsr
, header
);
274 atsru
= kzalloc(sizeof(*atsru
), GFP_KERNEL
);
279 atsru
->include_all
= atsr
->flags
& 0x1;
281 list_add(&atsru
->list
, &dmar_atsr_units
);
286 static int __init
atsr_parse_dev(struct dmar_atsr_unit
*atsru
)
289 struct acpi_dmar_atsr
*atsr
;
291 if (atsru
->include_all
)
294 atsr
= container_of(atsru
->hdr
, struct acpi_dmar_atsr
, header
);
295 rc
= dmar_parse_dev_scope((void *)(atsr
+ 1),
296 (void *)atsr
+ atsr
->header
.length
,
297 &atsru
->devices_cnt
, &atsru
->devices
,
299 if (rc
|| !atsru
->devices_cnt
) {
300 list_del(&atsru
->list
);
307 int dmar_find_matched_atsr_unit(struct pci_dev
*dev
)
311 struct acpi_dmar_atsr
*atsr
;
312 struct dmar_atsr_unit
*atsru
;
314 dev
= pci_physfn(dev
);
316 list_for_each_entry(atsru
, &dmar_atsr_units
, list
) {
317 atsr
= container_of(atsru
->hdr
, struct acpi_dmar_atsr
, header
);
318 if (atsr
->segment
== pci_domain_nr(dev
->bus
))
325 for (bus
= dev
->bus
; bus
; bus
= bus
->parent
) {
326 struct pci_dev
*bridge
= bus
->self
;
328 if (!bridge
|| !pci_is_pcie(bridge
) ||
329 bridge
->pcie_type
== PCI_EXP_TYPE_PCI_BRIDGE
)
332 if (bridge
->pcie_type
== PCI_EXP_TYPE_ROOT_PORT
) {
333 for (i
= 0; i
< atsru
->devices_cnt
; i
++)
334 if (atsru
->devices
[i
] == bridge
)
340 if (atsru
->include_all
)
347 #ifdef CONFIG_ACPI_NUMA
349 dmar_parse_one_rhsa(struct acpi_dmar_header
*header
)
351 struct acpi_dmar_rhsa
*rhsa
;
352 struct dmar_drhd_unit
*drhd
;
354 rhsa
= (struct acpi_dmar_rhsa
*)header
;
355 for_each_drhd_unit(drhd
) {
356 if (drhd
->reg_base_addr
== rhsa
->base_address
) {
357 int node
= acpi_map_pxm_to_node(rhsa
->proximity_domain
);
359 if (!node_online(node
))
361 drhd
->iommu
->node
= node
;
366 1, TAINT_FIRMWARE_WORKAROUND
,
367 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
368 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
370 dmi_get_system_info(DMI_BIOS_VENDOR
),
371 dmi_get_system_info(DMI_BIOS_VERSION
),
372 dmi_get_system_info(DMI_PRODUCT_VERSION
));
379 dmar_table_print_dmar_entry(struct acpi_dmar_header
*header
)
381 struct acpi_dmar_hardware_unit
*drhd
;
382 struct acpi_dmar_reserved_memory
*rmrr
;
383 struct acpi_dmar_atsr
*atsr
;
384 struct acpi_dmar_rhsa
*rhsa
;
386 switch (header
->type
) {
387 case ACPI_DMAR_TYPE_HARDWARE_UNIT
:
388 drhd
= container_of(header
, struct acpi_dmar_hardware_unit
,
390 printk (KERN_INFO PREFIX
391 "DRHD base: %#016Lx flags: %#x\n",
392 (unsigned long long)drhd
->address
, drhd
->flags
);
394 case ACPI_DMAR_TYPE_RESERVED_MEMORY
:
395 rmrr
= container_of(header
, struct acpi_dmar_reserved_memory
,
397 printk (KERN_INFO PREFIX
398 "RMRR base: %#016Lx end: %#016Lx\n",
399 (unsigned long long)rmrr
->base_address
,
400 (unsigned long long)rmrr
->end_address
);
402 case ACPI_DMAR_TYPE_ATSR
:
403 atsr
= container_of(header
, struct acpi_dmar_atsr
, header
);
404 printk(KERN_INFO PREFIX
"ATSR flags: %#x\n", atsr
->flags
);
406 case ACPI_DMAR_HARDWARE_AFFINITY
:
407 rhsa
= container_of(header
, struct acpi_dmar_rhsa
, header
);
408 printk(KERN_INFO PREFIX
"RHSA base: %#016Lx proximity domain: %#x\n",
409 (unsigned long long)rhsa
->base_address
,
410 rhsa
->proximity_domain
);
416 * dmar_table_detect - checks to see if the platform supports DMAR devices
418 static int __init
dmar_table_detect(void)
420 acpi_status status
= AE_OK
;
422 /* if we could find DMAR table, then there are DMAR devices */
423 status
= acpi_get_table_with_size(ACPI_SIG_DMAR
, 0,
424 (struct acpi_table_header
**)&dmar_tbl
,
427 if (ACPI_SUCCESS(status
) && !dmar_tbl
) {
428 printk (KERN_WARNING PREFIX
"Unable to map DMAR\n");
429 status
= AE_NOT_FOUND
;
432 return (ACPI_SUCCESS(status
) ? 1 : 0);
436 * parse_dmar_table - parses the DMA reporting table
439 parse_dmar_table(void)
441 struct acpi_table_dmar
*dmar
;
442 struct acpi_dmar_header
*entry_header
;
446 * Do it again, earlier dmar_tbl mapping could be mapped with
452 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
453 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
455 dmar_tbl
= tboot_get_dmar_table(dmar_tbl
);
457 dmar
= (struct acpi_table_dmar
*)dmar_tbl
;
461 if (dmar
->width
< PAGE_SHIFT
- 1) {
462 printk(KERN_WARNING PREFIX
"Invalid DMAR haw\n");
466 printk (KERN_INFO PREFIX
"Host address width %d\n",
469 entry_header
= (struct acpi_dmar_header
*)(dmar
+ 1);
470 while (((unsigned long)entry_header
) <
471 (((unsigned long)dmar
) + dmar_tbl
->length
)) {
472 /* Avoid looping forever on bad ACPI tables */
473 if (entry_header
->length
== 0) {
474 printk(KERN_WARNING PREFIX
475 "Invalid 0-length structure\n");
480 dmar_table_print_dmar_entry(entry_header
);
482 switch (entry_header
->type
) {
483 case ACPI_DMAR_TYPE_HARDWARE_UNIT
:
484 ret
= dmar_parse_one_drhd(entry_header
);
486 case ACPI_DMAR_TYPE_RESERVED_MEMORY
:
488 ret
= dmar_parse_one_rmrr(entry_header
);
491 case ACPI_DMAR_TYPE_ATSR
:
493 ret
= dmar_parse_one_atsr(entry_header
);
496 case ACPI_DMAR_HARDWARE_AFFINITY
:
497 #ifdef CONFIG_ACPI_NUMA
498 ret
= dmar_parse_one_rhsa(entry_header
);
502 printk(KERN_WARNING PREFIX
503 "Unknown DMAR structure type %d\n",
505 ret
= 0; /* for forward compatibility */
511 entry_header
= ((void *)entry_header
+ entry_header
->length
);
516 static int dmar_pci_device_match(struct pci_dev
*devices
[], int cnt
,
522 for (index
= 0; index
< cnt
; index
++)
523 if (dev
== devices
[index
])
526 /* Check our parent */
527 dev
= dev
->bus
->self
;
533 struct dmar_drhd_unit
*
534 dmar_find_matched_drhd_unit(struct pci_dev
*dev
)
536 struct dmar_drhd_unit
*dmaru
= NULL
;
537 struct acpi_dmar_hardware_unit
*drhd
;
539 dev
= pci_physfn(dev
);
541 list_for_each_entry(dmaru
, &dmar_drhd_units
, list
) {
542 drhd
= container_of(dmaru
->hdr
,
543 struct acpi_dmar_hardware_unit
,
546 if (dmaru
->include_all
&&
547 drhd
->segment
== pci_domain_nr(dev
->bus
))
550 if (dmar_pci_device_match(dmaru
->devices
,
551 dmaru
->devices_cnt
, dev
))
558 int __init
dmar_dev_scope_init(void)
560 struct dmar_drhd_unit
*drhd
, *drhd_n
;
563 list_for_each_entry_safe(drhd
, drhd_n
, &dmar_drhd_units
, list
) {
564 ret
= dmar_parse_dev(drhd
);
571 struct dmar_rmrr_unit
*rmrr
, *rmrr_n
;
572 struct dmar_atsr_unit
*atsr
, *atsr_n
;
574 list_for_each_entry_safe(rmrr
, rmrr_n
, &dmar_rmrr_units
, list
) {
575 ret
= rmrr_parse_dev(rmrr
);
580 list_for_each_entry_safe(atsr
, atsr_n
, &dmar_atsr_units
, list
) {
581 ret
= atsr_parse_dev(atsr
);
592 int __init
dmar_table_init(void)
594 static int dmar_table_initialized
;
597 if (dmar_table_initialized
)
600 dmar_table_initialized
= 1;
602 ret
= parse_dmar_table();
605 printk(KERN_INFO PREFIX
"parse DMAR table failure.\n");
609 if (list_empty(&dmar_drhd_units
)) {
610 printk(KERN_INFO PREFIX
"No DMAR devices found\n");
615 if (list_empty(&dmar_rmrr_units
))
616 printk(KERN_INFO PREFIX
"No RMRR found\n");
618 if (list_empty(&dmar_atsr_units
))
619 printk(KERN_INFO PREFIX
"No ATSR found\n");
625 static void warn_invalid_dmar(u64 addr
, const char *message
)
628 1, TAINT_FIRMWARE_WORKAROUND
,
629 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
630 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
632 dmi_get_system_info(DMI_BIOS_VENDOR
),
633 dmi_get_system_info(DMI_BIOS_VERSION
),
634 dmi_get_system_info(DMI_PRODUCT_VERSION
));
637 int __init
check_zero_address(void)
639 struct acpi_table_dmar
*dmar
;
640 struct acpi_dmar_header
*entry_header
;
641 struct acpi_dmar_hardware_unit
*drhd
;
643 dmar
= (struct acpi_table_dmar
*)dmar_tbl
;
644 entry_header
= (struct acpi_dmar_header
*)(dmar
+ 1);
646 while (((unsigned long)entry_header
) <
647 (((unsigned long)dmar
) + dmar_tbl
->length
)) {
648 /* Avoid looping forever on bad ACPI tables */
649 if (entry_header
->length
== 0) {
650 printk(KERN_WARNING PREFIX
651 "Invalid 0-length structure\n");
655 if (entry_header
->type
== ACPI_DMAR_TYPE_HARDWARE_UNIT
) {
659 drhd
= (void *)entry_header
;
660 if (!drhd
->address
) {
661 warn_invalid_dmar(0, "");
665 addr
= early_ioremap(drhd
->address
, VTD_PAGE_SIZE
);
667 printk("IOMMU: can't validate: %llx\n", drhd
->address
);
670 cap
= dmar_readq(addr
+ DMAR_CAP_REG
);
671 ecap
= dmar_readq(addr
+ DMAR_ECAP_REG
);
672 early_iounmap(addr
, VTD_PAGE_SIZE
);
673 if (cap
== (uint64_t)-1 && ecap
== (uint64_t)-1) {
674 warn_invalid_dmar(drhd
->address
,
675 " returns all ones");
680 entry_header
= ((void *)entry_header
+ entry_header
->length
);
691 int __init
detect_intel_iommu(void)
695 ret
= dmar_table_detect();
697 ret
= check_zero_address();
699 #ifdef CONFIG_INTR_REMAP
700 struct acpi_table_dmar
*dmar
;
702 * for now we will disable dma-remapping when interrupt
703 * remapping is enabled.
704 * When support for queued invalidation for IOTLB invalidation
705 * is added, we will not need this any more.
707 dmar
= (struct acpi_table_dmar
*) dmar_tbl
;
708 if (ret
&& cpu_has_x2apic
&& dmar
->flags
& 0x1)
710 "Queued invalidation will be enabled to support "
711 "x2apic and Intr-remapping.\n");
714 if (ret
&& !no_iommu
&& !iommu_detected
&& !dmar_disabled
) {
716 /* Make sure ACS will be enabled */
722 x86_init
.iommu
.iommu_init
= intel_iommu_init
;
725 early_acpi_os_unmap_memory(dmar_tbl
, dmar_tbl_size
);
728 return ret
? 1 : -ENODEV
;
732 int alloc_iommu(struct dmar_drhd_unit
*drhd
)
734 struct intel_iommu
*iommu
;
737 static int iommu_allocated
= 0;
741 if (!drhd
->reg_base_addr
) {
742 warn_invalid_dmar(0, "");
746 iommu
= kzalloc(sizeof(*iommu
), GFP_KERNEL
);
750 iommu
->seq_id
= iommu_allocated
++;
751 sprintf (iommu
->name
, "dmar%d", iommu
->seq_id
);
753 iommu
->reg
= ioremap(drhd
->reg_base_addr
, VTD_PAGE_SIZE
);
755 printk(KERN_ERR
"IOMMU: can't map the region\n");
758 iommu
->cap
= dmar_readq(iommu
->reg
+ DMAR_CAP_REG
);
759 iommu
->ecap
= dmar_readq(iommu
->reg
+ DMAR_ECAP_REG
);
761 if (iommu
->cap
== (uint64_t)-1 && iommu
->ecap
== (uint64_t)-1) {
762 warn_invalid_dmar(drhd
->reg_base_addr
, " returns all ones");
767 agaw
= iommu_calculate_agaw(iommu
);
770 "Cannot get a valid agaw for iommu (seq_id = %d)\n",
774 msagaw
= iommu_calculate_max_sagaw(iommu
);
777 "Cannot get a valid max agaw for iommu (seq_id = %d)\n",
783 iommu
->msagaw
= msagaw
;
787 /* the registers might be more than one page */
788 map_size
= max_t(int, ecap_max_iotlb_offset(iommu
->ecap
),
789 cap_max_fault_reg_offset(iommu
->cap
));
790 map_size
= VTD_PAGE_ALIGN(map_size
);
791 if (map_size
> VTD_PAGE_SIZE
) {
793 iommu
->reg
= ioremap(drhd
->reg_base_addr
, map_size
);
795 printk(KERN_ERR
"IOMMU: can't map the region\n");
800 ver
= readl(iommu
->reg
+ DMAR_VER_REG
);
801 pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
803 (unsigned long long)drhd
->reg_base_addr
,
804 DMAR_VER_MAJOR(ver
), DMAR_VER_MINOR(ver
),
805 (unsigned long long)iommu
->cap
,
806 (unsigned long long)iommu
->ecap
);
808 spin_lock_init(&iommu
->register_lock
);
820 void free_iommu(struct intel_iommu
*iommu
)
826 free_dmar_iommu(iommu
);
835 * Reclaim all the submitted descriptors which have completed its work.
837 static inline void reclaim_free_desc(struct q_inval
*qi
)
839 while (qi
->desc_status
[qi
->free_tail
] == QI_DONE
||
840 qi
->desc_status
[qi
->free_tail
] == QI_ABORT
) {
841 qi
->desc_status
[qi
->free_tail
] = QI_FREE
;
842 qi
->free_tail
= (qi
->free_tail
+ 1) % QI_LENGTH
;
847 static int qi_check_fault(struct intel_iommu
*iommu
, int index
)
851 struct q_inval
*qi
= iommu
->qi
;
852 int wait_index
= (index
+ 1) % QI_LENGTH
;
854 if (qi
->desc_status
[wait_index
] == QI_ABORT
)
857 fault
= readl(iommu
->reg
+ DMAR_FSTS_REG
);
860 * If IQE happens, the head points to the descriptor associated
861 * with the error. No new descriptors are fetched until the IQE
864 if (fault
& DMA_FSTS_IQE
) {
865 head
= readl(iommu
->reg
+ DMAR_IQH_REG
);
866 if ((head
>> DMAR_IQ_SHIFT
) == index
) {
867 printk(KERN_ERR
"VT-d detected invalid descriptor: "
868 "low=%llx, high=%llx\n",
869 (unsigned long long)qi
->desc
[index
].low
,
870 (unsigned long long)qi
->desc
[index
].high
);
871 memcpy(&qi
->desc
[index
], &qi
->desc
[wait_index
],
872 sizeof(struct qi_desc
));
873 __iommu_flush_cache(iommu
, &qi
->desc
[index
],
874 sizeof(struct qi_desc
));
875 writel(DMA_FSTS_IQE
, iommu
->reg
+ DMAR_FSTS_REG
);
881 * If ITE happens, all pending wait_desc commands are aborted.
882 * No new descriptors are fetched until the ITE is cleared.
884 if (fault
& DMA_FSTS_ITE
) {
885 head
= readl(iommu
->reg
+ DMAR_IQH_REG
);
886 head
= ((head
>> DMAR_IQ_SHIFT
) - 1 + QI_LENGTH
) % QI_LENGTH
;
888 tail
= readl(iommu
->reg
+ DMAR_IQT_REG
);
889 tail
= ((tail
>> DMAR_IQ_SHIFT
) - 1 + QI_LENGTH
) % QI_LENGTH
;
891 writel(DMA_FSTS_ITE
, iommu
->reg
+ DMAR_FSTS_REG
);
894 if (qi
->desc_status
[head
] == QI_IN_USE
)
895 qi
->desc_status
[head
] = QI_ABORT
;
896 head
= (head
- 2 + QI_LENGTH
) % QI_LENGTH
;
897 } while (head
!= tail
);
899 if (qi
->desc_status
[wait_index
] == QI_ABORT
)
903 if (fault
& DMA_FSTS_ICE
)
904 writel(DMA_FSTS_ICE
, iommu
->reg
+ DMAR_FSTS_REG
);
910 * Submit the queued invalidation descriptor to the remapping
911 * hardware unit and wait for its completion.
913 int qi_submit_sync(struct qi_desc
*desc
, struct intel_iommu
*iommu
)
916 struct q_inval
*qi
= iommu
->qi
;
917 struct qi_desc
*hw
, wait_desc
;
918 int wait_index
, index
;
929 spin_lock_irqsave(&qi
->q_lock
, flags
);
930 while (qi
->free_cnt
< 3) {
931 spin_unlock_irqrestore(&qi
->q_lock
, flags
);
933 spin_lock_irqsave(&qi
->q_lock
, flags
);
936 index
= qi
->free_head
;
937 wait_index
= (index
+ 1) % QI_LENGTH
;
939 qi
->desc_status
[index
] = qi
->desc_status
[wait_index
] = QI_IN_USE
;
943 wait_desc
.low
= QI_IWD_STATUS_DATA(QI_DONE
) |
944 QI_IWD_STATUS_WRITE
| QI_IWD_TYPE
;
945 wait_desc
.high
= virt_to_phys(&qi
->desc_status
[wait_index
]);
947 hw
[wait_index
] = wait_desc
;
949 __iommu_flush_cache(iommu
, &hw
[index
], sizeof(struct qi_desc
));
950 __iommu_flush_cache(iommu
, &hw
[wait_index
], sizeof(struct qi_desc
));
952 qi
->free_head
= (qi
->free_head
+ 2) % QI_LENGTH
;
956 * update the HW tail register indicating the presence of
959 writel(qi
->free_head
<< DMAR_IQ_SHIFT
, iommu
->reg
+ DMAR_IQT_REG
);
961 while (qi
->desc_status
[wait_index
] != QI_DONE
) {
963 * We will leave the interrupts disabled, to prevent interrupt
964 * context to queue another cmd while a cmd is already submitted
965 * and waiting for completion on this cpu. This is to avoid
966 * a deadlock where the interrupt context can wait indefinitely
967 * for free slots in the queue.
969 rc
= qi_check_fault(iommu
, index
);
973 spin_unlock(&qi
->q_lock
);
975 spin_lock(&qi
->q_lock
);
978 qi
->desc_status
[index
] = QI_DONE
;
980 reclaim_free_desc(qi
);
981 spin_unlock_irqrestore(&qi
->q_lock
, flags
);
990 * Flush the global interrupt entry cache.
992 void qi_global_iec(struct intel_iommu
*iommu
)
996 desc
.low
= QI_IEC_TYPE
;
999 /* should never fail */
1000 qi_submit_sync(&desc
, iommu
);
1003 void qi_flush_context(struct intel_iommu
*iommu
, u16 did
, u16 sid
, u8 fm
,
1006 struct qi_desc desc
;
1008 desc
.low
= QI_CC_FM(fm
) | QI_CC_SID(sid
) | QI_CC_DID(did
)
1009 | QI_CC_GRAN(type
) | QI_CC_TYPE
;
1012 qi_submit_sync(&desc
, iommu
);
1015 void qi_flush_iotlb(struct intel_iommu
*iommu
, u16 did
, u64 addr
,
1016 unsigned int size_order
, u64 type
)
1020 struct qi_desc desc
;
1023 if (cap_write_drain(iommu
->cap
))
1026 if (cap_read_drain(iommu
->cap
))
1029 desc
.low
= QI_IOTLB_DID(did
) | QI_IOTLB_DR(dr
) | QI_IOTLB_DW(dw
)
1030 | QI_IOTLB_GRAN(type
) | QI_IOTLB_TYPE
;
1031 desc
.high
= QI_IOTLB_ADDR(addr
) | QI_IOTLB_IH(ih
)
1032 | QI_IOTLB_AM(size_order
);
1034 qi_submit_sync(&desc
, iommu
);
1037 void qi_flush_dev_iotlb(struct intel_iommu
*iommu
, u16 sid
, u16 qdep
,
1038 u64 addr
, unsigned mask
)
1040 struct qi_desc desc
;
1043 BUG_ON(addr
& ((1 << (VTD_PAGE_SHIFT
+ mask
)) - 1));
1044 addr
|= (1 << (VTD_PAGE_SHIFT
+ mask
- 1)) - 1;
1045 desc
.high
= QI_DEV_IOTLB_ADDR(addr
) | QI_DEV_IOTLB_SIZE
;
1047 desc
.high
= QI_DEV_IOTLB_ADDR(addr
);
1049 if (qdep
>= QI_DEV_IOTLB_MAX_INVS
)
1052 desc
.low
= QI_DEV_IOTLB_SID(sid
) | QI_DEV_IOTLB_QDEP(qdep
) |
1055 qi_submit_sync(&desc
, iommu
);
1059 * Disable Queued Invalidation interface.
1061 void dmar_disable_qi(struct intel_iommu
*iommu
)
1063 unsigned long flags
;
1065 cycles_t start_time
= get_cycles();
1067 if (!ecap_qis(iommu
->ecap
))
1070 spin_lock_irqsave(&iommu
->register_lock
, flags
);
1072 sts
= dmar_readq(iommu
->reg
+ DMAR_GSTS_REG
);
1073 if (!(sts
& DMA_GSTS_QIES
))
1077 * Give a chance to HW to complete the pending invalidation requests.
1079 while ((readl(iommu
->reg
+ DMAR_IQT_REG
) !=
1080 readl(iommu
->reg
+ DMAR_IQH_REG
)) &&
1081 (DMAR_OPERATION_TIMEOUT
> (get_cycles() - start_time
)))
1084 iommu
->gcmd
&= ~DMA_GCMD_QIE
;
1085 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
1087 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
, readl
,
1088 !(sts
& DMA_GSTS_QIES
), sts
);
1090 spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
1094 * Enable queued invalidation.
1096 static void __dmar_enable_qi(struct intel_iommu
*iommu
)
1099 unsigned long flags
;
1100 struct q_inval
*qi
= iommu
->qi
;
1102 qi
->free_head
= qi
->free_tail
= 0;
1103 qi
->free_cnt
= QI_LENGTH
;
1105 spin_lock_irqsave(&iommu
->register_lock
, flags
);
1107 /* write zero to the tail reg */
1108 writel(0, iommu
->reg
+ DMAR_IQT_REG
);
1110 dmar_writeq(iommu
->reg
+ DMAR_IQA_REG
, virt_to_phys(qi
->desc
));
1112 iommu
->gcmd
|= DMA_GCMD_QIE
;
1113 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
1115 /* Make sure hardware complete it */
1116 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
, readl
, (sts
& DMA_GSTS_QIES
), sts
);
1118 spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
1122 * Enable Queued Invalidation interface. This is a must to support
1123 * interrupt-remapping. Also used by DMA-remapping, which replaces
1124 * register based IOTLB invalidation.
1126 int dmar_enable_qi(struct intel_iommu
*iommu
)
1129 struct page
*desc_page
;
1131 if (!ecap_qis(iommu
->ecap
))
1135 * queued invalidation is already setup and enabled.
1140 iommu
->qi
= kmalloc(sizeof(*qi
), GFP_ATOMIC
);
1147 desc_page
= alloc_pages_node(iommu
->node
, GFP_ATOMIC
| __GFP_ZERO
, 0);
1154 qi
->desc
= page_address(desc_page
);
1156 qi
->desc_status
= kmalloc(QI_LENGTH
* sizeof(int), GFP_ATOMIC
);
1157 if (!qi
->desc_status
) {
1158 free_page((unsigned long) qi
->desc
);
1164 qi
->free_head
= qi
->free_tail
= 0;
1165 qi
->free_cnt
= QI_LENGTH
;
1167 spin_lock_init(&qi
->q_lock
);
1169 __dmar_enable_qi(iommu
);
1174 /* iommu interrupt handling. Most stuff are MSI-like. */
1182 static const char *dma_remap_fault_reasons
[] =
1185 "Present bit in root entry is clear",
1186 "Present bit in context entry is clear",
1187 "Invalid context entry",
1188 "Access beyond MGAW",
1189 "PTE Write access is not set",
1190 "PTE Read access is not set",
1191 "Next page table ptr is invalid",
1192 "Root table address invalid",
1193 "Context table ptr is invalid",
1194 "non-zero reserved fields in RTP",
1195 "non-zero reserved fields in CTP",
1196 "non-zero reserved fields in PTE",
1199 static const char *intr_remap_fault_reasons
[] =
1201 "Detected reserved fields in the decoded interrupt-remapped request",
1202 "Interrupt index exceeded the interrupt-remapping table size",
1203 "Present field in the IRTE entry is clear",
1204 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1205 "Detected reserved fields in the IRTE entry",
1206 "Blocked a compatibility format interrupt request",
1207 "Blocked an interrupt request due to source-id verification failure",
1210 #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
1212 const char *dmar_get_fault_reason(u8 fault_reason
, int *fault_type
)
1214 if (fault_reason
>= 0x20 && (fault_reason
<= 0x20 +
1215 ARRAY_SIZE(intr_remap_fault_reasons
))) {
1216 *fault_type
= INTR_REMAP
;
1217 return intr_remap_fault_reasons
[fault_reason
- 0x20];
1218 } else if (fault_reason
< ARRAY_SIZE(dma_remap_fault_reasons
)) {
1219 *fault_type
= DMA_REMAP
;
1220 return dma_remap_fault_reasons
[fault_reason
];
1222 *fault_type
= UNKNOWN
;
1227 void dmar_msi_unmask(struct irq_data
*data
)
1229 struct intel_iommu
*iommu
= irq_data_get_irq_handler_data(data
);
1233 spin_lock_irqsave(&iommu
->register_lock
, flag
);
1234 writel(0, iommu
->reg
+ DMAR_FECTL_REG
);
1235 /* Read a reg to force flush the post write */
1236 readl(iommu
->reg
+ DMAR_FECTL_REG
);
1237 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1240 void dmar_msi_mask(struct irq_data
*data
)
1243 struct intel_iommu
*iommu
= irq_data_get_irq_handler_data(data
);
1246 spin_lock_irqsave(&iommu
->register_lock
, flag
);
1247 writel(DMA_FECTL_IM
, iommu
->reg
+ DMAR_FECTL_REG
);
1248 /* Read a reg to force flush the post write */
1249 readl(iommu
->reg
+ DMAR_FECTL_REG
);
1250 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1253 void dmar_msi_write(int irq
, struct msi_msg
*msg
)
1255 struct intel_iommu
*iommu
= irq_get_handler_data(irq
);
1258 spin_lock_irqsave(&iommu
->register_lock
, flag
);
1259 writel(msg
->data
, iommu
->reg
+ DMAR_FEDATA_REG
);
1260 writel(msg
->address_lo
, iommu
->reg
+ DMAR_FEADDR_REG
);
1261 writel(msg
->address_hi
, iommu
->reg
+ DMAR_FEUADDR_REG
);
1262 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1265 void dmar_msi_read(int irq
, struct msi_msg
*msg
)
1267 struct intel_iommu
*iommu
= irq_get_handler_data(irq
);
1270 spin_lock_irqsave(&iommu
->register_lock
, flag
);
1271 msg
->data
= readl(iommu
->reg
+ DMAR_FEDATA_REG
);
1272 msg
->address_lo
= readl(iommu
->reg
+ DMAR_FEADDR_REG
);
1273 msg
->address_hi
= readl(iommu
->reg
+ DMAR_FEUADDR_REG
);
1274 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1277 static int dmar_fault_do_one(struct intel_iommu
*iommu
, int type
,
1278 u8 fault_reason
, u16 source_id
, unsigned long long addr
)
1283 reason
= dmar_get_fault_reason(fault_reason
, &fault_type
);
1285 if (fault_type
== INTR_REMAP
)
1286 printk(KERN_ERR
"INTR-REMAP: Request device [[%02x:%02x.%d] "
1287 "fault index %llx\n"
1288 "INTR-REMAP:[fault reason %02d] %s\n",
1289 (source_id
>> 8), PCI_SLOT(source_id
& 0xFF),
1290 PCI_FUNC(source_id
& 0xFF), addr
>> 48,
1291 fault_reason
, reason
);
1294 "DMAR:[%s] Request device [%02x:%02x.%d] "
1295 "fault addr %llx \n"
1296 "DMAR:[fault reason %02d] %s\n",
1297 (type
? "DMA Read" : "DMA Write"),
1298 (source_id
>> 8), PCI_SLOT(source_id
& 0xFF),
1299 PCI_FUNC(source_id
& 0xFF), addr
, fault_reason
, reason
);
1303 #define PRIMARY_FAULT_REG_LEN (16)
1304 irqreturn_t
dmar_fault(int irq
, void *dev_id
)
1306 struct intel_iommu
*iommu
= dev_id
;
1307 int reg
, fault_index
;
1311 spin_lock_irqsave(&iommu
->register_lock
, flag
);
1312 fault_status
= readl(iommu
->reg
+ DMAR_FSTS_REG
);
1314 printk(KERN_ERR
"DRHD: handling fault status reg %x\n",
1317 /* TBD: ignore advanced fault log currently */
1318 if (!(fault_status
& DMA_FSTS_PPF
))
1321 fault_index
= dma_fsts_fault_record_index(fault_status
);
1322 reg
= cap_fault_reg_offset(iommu
->cap
);
1330 /* highest 32 bits */
1331 data
= readl(iommu
->reg
+ reg
+
1332 fault_index
* PRIMARY_FAULT_REG_LEN
+ 12);
1333 if (!(data
& DMA_FRCD_F
))
1336 fault_reason
= dma_frcd_fault_reason(data
);
1337 type
= dma_frcd_type(data
);
1339 data
= readl(iommu
->reg
+ reg
+
1340 fault_index
* PRIMARY_FAULT_REG_LEN
+ 8);
1341 source_id
= dma_frcd_source_id(data
);
1343 guest_addr
= dmar_readq(iommu
->reg
+ reg
+
1344 fault_index
* PRIMARY_FAULT_REG_LEN
);
1345 guest_addr
= dma_frcd_page_addr(guest_addr
);
1346 /* clear the fault */
1347 writel(DMA_FRCD_F
, iommu
->reg
+ reg
+
1348 fault_index
* PRIMARY_FAULT_REG_LEN
+ 12);
1350 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1352 dmar_fault_do_one(iommu
, type
, fault_reason
,
1353 source_id
, guest_addr
);
1356 if (fault_index
>= cap_num_fault_regs(iommu
->cap
))
1358 spin_lock_irqsave(&iommu
->register_lock
, flag
);
1361 /* clear all the other faults */
1362 fault_status
= readl(iommu
->reg
+ DMAR_FSTS_REG
);
1363 writel(fault_status
, iommu
->reg
+ DMAR_FSTS_REG
);
1365 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1369 int dmar_set_interrupt(struct intel_iommu
*iommu
)
1374 * Check if the fault interrupt is already initialized.
1381 printk(KERN_ERR
"IOMMU: no free vectors\n");
1385 irq_set_handler_data(irq
, iommu
);
1388 ret
= arch_setup_dmar_msi(irq
);
1390 irq_set_handler_data(irq
, NULL
);
1396 ret
= request_irq(irq
, dmar_fault
, 0, iommu
->name
, iommu
);
1398 printk(KERN_ERR
"IOMMU: can't request irq\n");
1402 int __init
enable_drhd_fault_handling(void)
1404 struct dmar_drhd_unit
*drhd
;
1407 * Enable fault control interrupt.
1409 for_each_drhd_unit(drhd
) {
1411 struct intel_iommu
*iommu
= drhd
->iommu
;
1412 ret
= dmar_set_interrupt(iommu
);
1415 printk(KERN_ERR
"DRHD %Lx: failed to enable fault, "
1416 " interrupt, ret %d\n",
1417 (unsigned long long)drhd
->reg_base_addr
, ret
);
1422 * Clear any previous faults.
1424 dmar_fault(iommu
->irq
, iommu
);
1431 * Re-enable Queued Invalidation interface.
1433 int dmar_reenable_qi(struct intel_iommu
*iommu
)
1435 if (!ecap_qis(iommu
->ecap
))
1442 * First disable queued invalidation.
1444 dmar_disable_qi(iommu
);
1446 * Then enable queued invalidation again. Since there is no pending
1447 * invalidation requests now, it's safe to re-enable queued
1450 __dmar_enable_qi(iommu
);
1456 * Check interrupt remapping support in DMAR table description.
1458 int __init
dmar_ir_support(void)
1460 struct acpi_table_dmar
*dmar
;
1461 dmar
= (struct acpi_table_dmar
*)dmar_tbl
;
1464 return dmar
->flags
& 0x1;
1466 IOMMU_INIT_POST(detect_intel_iommu
);