2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements UBIFS journal.
26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27 * length and position, while a bud logical eraseblock is any LEB in the main
28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29 * contains only references to buds and some other stuff like commit
30 * start node. The idea is that when we commit the journal, we do
31 * not copy the data, the buds just become indexed. Since after the commit the
32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34 * become leafs in the future.
36 * The journal is multi-headed because we want to write data to the journal as
37 * optimally as possible. It is nice to have nodes belonging to the same inode
38 * in one LEB, so we may write data owned by different inodes to different
39 * journal heads, although at present only one data head is used.
41 * For recovery reasons, the base head contains all inode nodes, all directory
42 * entry nodes and all truncate nodes. This means that the other heads contain
45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46 * time of commit, the bud is retained to continue to be used in the journal,
47 * even though the "front" of the LEB is now indexed. In that case, the log
48 * reference contains the offset where the bud starts for the purposes of the
51 * The journal size has to be limited, because the larger is the journal, the
52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53 * takes (indexing in the TNC).
55 * All the journal write operations like 'ubifs_jnl_update()' here, which write
56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57 * unclean reboots. Should the unclean reboot happen, the recovery code drops
64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65 * @ino: the inode to zero out
67 static inline void zero_ino_node_unused(struct ubifs_ino_node
*ino
)
69 memset(ino
->padding1
, 0, 4);
70 memset(ino
->padding2
, 0, 26);
74 * zero_dent_node_unused - zero out unused fields of an on-flash directory
76 * @dent: the directory entry to zero out
78 static inline void zero_dent_node_unused(struct ubifs_dent_node
*dent
)
81 memset(dent
->padding2
, 0, 4);
85 * zero_data_node_unused - zero out unused fields of an on-flash data node.
86 * @data: the data node to zero out
88 static inline void zero_data_node_unused(struct ubifs_data_node
*data
)
90 memset(data
->padding
, 0, 2);
94 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
96 * @trun: the truncation node to zero out
98 static inline void zero_trun_node_unused(struct ubifs_trun_node
*trun
)
100 memset(trun
->padding
, 0, 12);
104 * reserve_space - reserve space in the journal.
105 * @c: UBIFS file-system description object
106 * @jhead: journal head number
109 * This function reserves space in journal head @head. If the reservation
110 * succeeded, the journal head stays locked and later has to be unlocked using
111 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
112 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
113 * other negative error codes in case of other failures.
115 static int reserve_space(struct ubifs_info
*c
, int jhead
, int len
)
117 int err
= 0, err1
, retries
= 0, avail
, lnum
, offs
, squeeze
;
118 struct ubifs_wbuf
*wbuf
= &c
->jheads
[jhead
].wbuf
;
121 * Typically, the base head has smaller nodes written to it, so it is
122 * better to try to allocate space at the ends of eraseblocks. This is
123 * what the squeeze parameter does.
125 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
126 squeeze
= (jhead
== BASEHD
);
128 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
135 avail
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
136 if (wbuf
->lnum
!= -1 && avail
>= len
)
140 * Write buffer wasn't seek'ed or there is no enough space - look for an
141 * LEB with some empty space.
143 lnum
= ubifs_find_free_space(c
, len
, &offs
, squeeze
);
145 /* Found an LEB, add it to the journal head */
146 err
= ubifs_add_bud_to_log(c
, jhead
, lnum
, offs
);
149 /* A new bud was successfully allocated and added to the log */
158 * No free space, we have to run garbage collector to make
159 * some. But the write-buffer mutex has to be unlocked because
162 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead
));
163 mutex_unlock(&wbuf
->io_mutex
);
165 lnum
= ubifs_garbage_collect(c
, 0);
172 * GC could not make a free LEB. But someone else may
173 * have allocated new bud for this journal head,
174 * because we dropped @wbuf->io_mutex, so try once
177 dbg_jnl("GC couldn't make a free LEB for jhead %s",
180 dbg_jnl("retry (%d)", retries
);
184 dbg_jnl("return -ENOSPC");
188 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
189 dbg_jnl("got LEB %d for jhead %s", lnum
, dbg_jhead(jhead
));
190 avail
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
192 if (wbuf
->lnum
!= -1 && avail
>= len
) {
194 * Someone else has switched the journal head and we have
195 * enough space now. This happens when more than one process is
196 * trying to write to the same journal head at the same time.
198 dbg_jnl("return LEB %d back, already have LEB %d:%d",
199 lnum
, wbuf
->lnum
, wbuf
->offs
+ wbuf
->used
);
200 err
= ubifs_return_leb(c
, lnum
);
206 err
= ubifs_add_bud_to_log(c
, jhead
, lnum
, 0);
212 err
= ubifs_wbuf_seek_nolock(wbuf
, lnum
, offs
, wbuf
->dtype
);
219 mutex_unlock(&wbuf
->io_mutex
);
223 /* An error occurred and the LEB has to be returned to lprops */
224 ubifs_assert(err
< 0);
225 err1
= ubifs_return_leb(c
, lnum
);
226 if (err1
&& err
== -EAGAIN
)
228 * Return original error code only if it is not %-EAGAIN,
229 * which is not really an error. Otherwise, return the error
230 * code of 'ubifs_return_leb()'.
233 mutex_unlock(&wbuf
->io_mutex
);
238 * write_node - write node to a journal head.
239 * @c: UBIFS file-system description object
240 * @jhead: journal head
241 * @node: node to write
243 * @lnum: LEB number written is returned here
244 * @offs: offset written is returned here
246 * This function writes a node to reserved space of journal head @jhead.
247 * Returns zero in case of success and a negative error code in case of
250 static int write_node(struct ubifs_info
*c
, int jhead
, void *node
, int len
,
251 int *lnum
, int *offs
)
253 struct ubifs_wbuf
*wbuf
= &c
->jheads
[jhead
].wbuf
;
255 ubifs_assert(jhead
!= GCHD
);
257 *lnum
= c
->jheads
[jhead
].wbuf
.lnum
;
258 *offs
= c
->jheads
[jhead
].wbuf
.offs
+ c
->jheads
[jhead
].wbuf
.used
;
260 dbg_jnl("jhead %s, LEB %d:%d, len %d",
261 dbg_jhead(jhead
), *lnum
, *offs
, len
);
262 ubifs_prepare_node(c
, node
, len
, 0);
264 return ubifs_wbuf_write_nolock(wbuf
, node
, len
);
268 * write_head - write data to a journal head.
269 * @c: UBIFS file-system description object
270 * @jhead: journal head
271 * @buf: buffer to write
272 * @len: length to write
273 * @lnum: LEB number written is returned here
274 * @offs: offset written is returned here
275 * @sync: non-zero if the write-buffer has to by synchronized
277 * This function is the same as 'write_node()' but it does not assume the
278 * buffer it is writing is a node, so it does not prepare it (which means
279 * initializing common header and calculating CRC).
281 static int write_head(struct ubifs_info
*c
, int jhead
, void *buf
, int len
,
282 int *lnum
, int *offs
, int sync
)
285 struct ubifs_wbuf
*wbuf
= &c
->jheads
[jhead
].wbuf
;
287 ubifs_assert(jhead
!= GCHD
);
289 *lnum
= c
->jheads
[jhead
].wbuf
.lnum
;
290 *offs
= c
->jheads
[jhead
].wbuf
.offs
+ c
->jheads
[jhead
].wbuf
.used
;
291 dbg_jnl("jhead %s, LEB %d:%d, len %d",
292 dbg_jhead(jhead
), *lnum
, *offs
, len
);
294 err
= ubifs_wbuf_write_nolock(wbuf
, buf
, len
);
298 err
= ubifs_wbuf_sync_nolock(wbuf
);
303 * make_reservation - reserve journal space.
304 * @c: UBIFS file-system description object
305 * @jhead: journal head
306 * @len: how many bytes to reserve
308 * This function makes space reservation in journal head @jhead. The function
309 * takes the commit lock and locks the journal head, and the caller has to
310 * unlock the head and finish the reservation with 'finish_reservation()'.
311 * Returns zero in case of success and a negative error code in case of
314 * Note, the journal head may be unlocked as soon as the data is written, while
315 * the commit lock has to be released after the data has been added to the
318 static int make_reservation(struct ubifs_info
*c
, int jhead
, int len
)
320 int err
, cmt_retries
= 0, nospc_retries
= 0;
323 down_read(&c
->commit_sem
);
324 err
= reserve_space(c
, jhead
, len
);
327 up_read(&c
->commit_sem
);
329 if (err
== -ENOSPC
) {
331 * GC could not make any progress. We should try to commit
332 * once because it could make some dirty space and GC would
333 * make progress, so make the error -EAGAIN so that the below
334 * will commit and re-try.
336 if (nospc_retries
++ < 2) {
337 dbg_jnl("no space, retry");
342 * This means that the budgeting is incorrect. We always have
343 * to be able to write to the media, because all operations are
344 * budgeted. Deletions are not budgeted, though, but we reserve
345 * an extra LEB for them.
353 * -EAGAIN means that the journal is full or too large, or the above
354 * code wants to do one commit. Do this and re-try.
356 if (cmt_retries
> 128) {
358 * This should not happen unless the journal size limitations
361 ubifs_err("stuck in space allocation");
364 } else if (cmt_retries
> 32)
365 ubifs_warn("too many space allocation re-tries (%d)",
368 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
372 err
= ubifs_run_commit(c
);
378 ubifs_err("cannot reserve %d bytes in jhead %d, error %d",
380 if (err
== -ENOSPC
) {
381 /* This are some budgeting problems, print useful information */
382 down_write(&c
->commit_sem
);
383 spin_lock(&c
->space_lock
);
386 spin_unlock(&c
->space_lock
);
388 cmt_retries
= dbg_check_lprops(c
);
389 up_write(&c
->commit_sem
);
395 * release_head - release a journal head.
396 * @c: UBIFS file-system description object
397 * @jhead: journal head
399 * This function releases journal head @jhead which was locked by
400 * the 'make_reservation()' function. It has to be called after each successful
401 * 'make_reservation()' invocation.
403 static inline void release_head(struct ubifs_info
*c
, int jhead
)
405 mutex_unlock(&c
->jheads
[jhead
].wbuf
.io_mutex
);
409 * finish_reservation - finish a reservation.
410 * @c: UBIFS file-system description object
412 * This function finishes journal space reservation. It must be called after
413 * 'make_reservation()'.
415 static void finish_reservation(struct ubifs_info
*c
)
417 up_read(&c
->commit_sem
);
421 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
424 static int get_dent_type(int mode
)
426 switch (mode
& S_IFMT
) {
428 return UBIFS_ITYPE_REG
;
430 return UBIFS_ITYPE_DIR
;
432 return UBIFS_ITYPE_LNK
;
434 return UBIFS_ITYPE_BLK
;
436 return UBIFS_ITYPE_CHR
;
438 return UBIFS_ITYPE_FIFO
;
440 return UBIFS_ITYPE_SOCK
;
448 * pack_inode - pack an inode node.
449 * @c: UBIFS file-system description object
450 * @ino: buffer in which to pack inode node
451 * @inode: inode to pack
452 * @last: indicates the last node of the group
454 static void pack_inode(struct ubifs_info
*c
, struct ubifs_ino_node
*ino
,
455 const struct inode
*inode
, int last
)
457 int data_len
= 0, last_reference
= !inode
->i_nlink
;
458 struct ubifs_inode
*ui
= ubifs_inode(inode
);
460 ino
->ch
.node_type
= UBIFS_INO_NODE
;
461 ino_key_init_flash(c
, &ino
->key
, inode
->i_ino
);
462 ino
->creat_sqnum
= cpu_to_le64(ui
->creat_sqnum
);
463 ino
->atime_sec
= cpu_to_le64(inode
->i_atime
.tv_sec
);
464 ino
->atime_nsec
= cpu_to_le32(inode
->i_atime
.tv_nsec
);
465 ino
->ctime_sec
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
466 ino
->ctime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
467 ino
->mtime_sec
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
468 ino
->mtime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
469 ino
->uid
= cpu_to_le32(inode
->i_uid
);
470 ino
->gid
= cpu_to_le32(inode
->i_gid
);
471 ino
->mode
= cpu_to_le32(inode
->i_mode
);
472 ino
->flags
= cpu_to_le32(ui
->flags
);
473 ino
->size
= cpu_to_le64(ui
->ui_size
);
474 ino
->nlink
= cpu_to_le32(inode
->i_nlink
);
475 ino
->compr_type
= cpu_to_le16(ui
->compr_type
);
476 ino
->data_len
= cpu_to_le32(ui
->data_len
);
477 ino
->xattr_cnt
= cpu_to_le32(ui
->xattr_cnt
);
478 ino
->xattr_size
= cpu_to_le32(ui
->xattr_size
);
479 ino
->xattr_names
= cpu_to_le32(ui
->xattr_names
);
480 zero_ino_node_unused(ino
);
483 * Drop the attached data if this is a deletion inode, the data is not
486 if (!last_reference
) {
487 memcpy(ino
->data
, ui
->data
, ui
->data_len
);
488 data_len
= ui
->data_len
;
491 ubifs_prep_grp_node(c
, ino
, UBIFS_INO_NODE_SZ
+ data_len
, last
);
495 * mark_inode_clean - mark UBIFS inode as clean.
496 * @c: UBIFS file-system description object
497 * @ui: UBIFS inode to mark as clean
499 * This helper function marks UBIFS inode @ui as clean by cleaning the
500 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
501 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
504 static void mark_inode_clean(struct ubifs_info
*c
, struct ubifs_inode
*ui
)
507 ubifs_release_dirty_inode_budget(c
, ui
);
512 * ubifs_jnl_update - update inode.
513 * @c: UBIFS file-system description object
514 * @dir: parent inode or host inode in case of extended attributes
515 * @nm: directory entry name
516 * @inode: inode to update
517 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
518 * @xent: non-zero if the directory entry is an extended attribute entry
520 * This function updates an inode by writing a directory entry (or extended
521 * attribute entry), the inode itself, and the parent directory inode (or the
522 * host inode) to the journal.
524 * The function writes the host inode @dir last, which is important in case of
525 * extended attributes. Indeed, then we guarantee that if the host inode gets
526 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
527 * the extended attribute inode gets flushed too. And this is exactly what the
528 * user expects - synchronizing the host inode synchronizes its extended
529 * attributes. Similarly, this guarantees that if @dir is synchronized, its
530 * directory entry corresponding to @nm gets synchronized too.
532 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
533 * function synchronizes the write-buffer.
535 * This function marks the @dir and @inode inodes as clean and returns zero on
536 * success. In case of failure, a negative error code is returned.
538 int ubifs_jnl_update(struct ubifs_info
*c
, const struct inode
*dir
,
539 const struct qstr
*nm
, const struct inode
*inode
,
540 int deletion
, int xent
)
542 int err
, dlen
, ilen
, len
, lnum
, ino_offs
, dent_offs
;
543 int aligned_dlen
, aligned_ilen
, sync
= IS_DIRSYNC(dir
);
544 int last_reference
= !!(deletion
&& inode
->i_nlink
== 0);
545 struct ubifs_inode
*ui
= ubifs_inode(inode
);
546 struct ubifs_inode
*dir_ui
= ubifs_inode(dir
);
547 struct ubifs_dent_node
*dent
;
548 struct ubifs_ino_node
*ino
;
549 union ubifs_key dent_key
, ino_key
;
551 dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu",
552 inode
->i_ino
, nm
->len
, nm
->name
, ui
->data_len
, dir
->i_ino
);
553 ubifs_assert(dir_ui
->data_len
== 0);
554 ubifs_assert(mutex_is_locked(&dir_ui
->ui_mutex
));
556 dlen
= UBIFS_DENT_NODE_SZ
+ nm
->len
+ 1;
557 ilen
= UBIFS_INO_NODE_SZ
;
560 * If the last reference to the inode is being deleted, then there is
561 * no need to attach and write inode data, it is being deleted anyway.
562 * And if the inode is being deleted, no need to synchronize
563 * write-buffer even if the inode is synchronous.
565 if (!last_reference
) {
566 ilen
+= ui
->data_len
;
567 sync
|= IS_SYNC(inode
);
570 aligned_dlen
= ALIGN(dlen
, 8);
571 aligned_ilen
= ALIGN(ilen
, 8);
572 len
= aligned_dlen
+ aligned_ilen
+ UBIFS_INO_NODE_SZ
;
573 dent
= kmalloc(len
, GFP_NOFS
);
577 /* Make reservation before allocating sequence numbers */
578 err
= make_reservation(c
, BASEHD
, len
);
583 dent
->ch
.node_type
= UBIFS_DENT_NODE
;
584 dent_key_init(c
, &dent_key
, dir
->i_ino
, nm
);
586 dent
->ch
.node_type
= UBIFS_XENT_NODE
;
587 xent_key_init(c
, &dent_key
, dir
->i_ino
, nm
);
590 key_write(c
, &dent_key
, dent
->key
);
591 dent
->inum
= deletion
? 0 : cpu_to_le64(inode
->i_ino
);
592 dent
->type
= get_dent_type(inode
->i_mode
);
593 dent
->nlen
= cpu_to_le16(nm
->len
);
594 memcpy(dent
->name
, nm
->name
, nm
->len
);
595 dent
->name
[nm
->len
] = '\0';
596 zero_dent_node_unused(dent
);
597 ubifs_prep_grp_node(c
, dent
, dlen
, 0);
599 ino
= (void *)dent
+ aligned_dlen
;
600 pack_inode(c
, ino
, inode
, 0);
601 ino
= (void *)ino
+ aligned_ilen
;
602 pack_inode(c
, ino
, dir
, 1);
604 if (last_reference
) {
605 err
= ubifs_add_orphan(c
, inode
->i_ino
);
607 release_head(c
, BASEHD
);
610 ui
->del_cmtno
= c
->cmt_no
;
613 err
= write_head(c
, BASEHD
, dent
, len
, &lnum
, &dent_offs
, sync
);
617 struct ubifs_wbuf
*wbuf
= &c
->jheads
[BASEHD
].wbuf
;
619 ubifs_wbuf_add_ino_nolock(wbuf
, inode
->i_ino
);
620 ubifs_wbuf_add_ino_nolock(wbuf
, dir
->i_ino
);
622 release_head(c
, BASEHD
);
626 err
= ubifs_tnc_remove_nm(c
, &dent_key
, nm
);
629 err
= ubifs_add_dirt(c
, lnum
, dlen
);
631 err
= ubifs_tnc_add_nm(c
, &dent_key
, lnum
, dent_offs
, dlen
, nm
);
636 * Note, we do not remove the inode from TNC even if the last reference
637 * to it has just been deleted, because the inode may still be opened.
638 * Instead, the inode has been added to orphan lists and the orphan
639 * subsystem will take further care about it.
641 ino_key_init(c
, &ino_key
, inode
->i_ino
);
642 ino_offs
= dent_offs
+ aligned_dlen
;
643 err
= ubifs_tnc_add(c
, &ino_key
, lnum
, ino_offs
, ilen
);
647 ino_key_init(c
, &ino_key
, dir
->i_ino
);
648 ino_offs
+= aligned_ilen
;
649 err
= ubifs_tnc_add(c
, &ino_key
, lnum
, ino_offs
, UBIFS_INO_NODE_SZ
);
653 finish_reservation(c
);
654 spin_lock(&ui
->ui_lock
);
655 ui
->synced_i_size
= ui
->ui_size
;
656 spin_unlock(&ui
->ui_lock
);
657 mark_inode_clean(c
, ui
);
658 mark_inode_clean(c
, dir_ui
);
662 finish_reservation(c
);
668 release_head(c
, BASEHD
);
670 ubifs_ro_mode(c
, err
);
672 ubifs_delete_orphan(c
, inode
->i_ino
);
673 finish_reservation(c
);
678 * ubifs_jnl_write_data - write a data node to the journal.
679 * @c: UBIFS file-system description object
680 * @inode: inode the data node belongs to
682 * @buf: buffer to write
683 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
685 * This function writes a data node to the journal. Returns %0 if the data node
686 * was successfully written, and a negative error code in case of failure.
688 int ubifs_jnl_write_data(struct ubifs_info
*c
, const struct inode
*inode
,
689 const union ubifs_key
*key
, const void *buf
, int len
)
691 struct ubifs_data_node
*data
;
692 int err
, lnum
, offs
, compr_type
, out_len
;
693 int dlen
= COMPRESSED_DATA_NODE_BUF_SZ
, allocated
= 1;
694 struct ubifs_inode
*ui
= ubifs_inode(inode
);
696 dbg_jnl("ino %lu, blk %u, len %d, key %s",
697 (unsigned long)key_inum(c
, key
), key_block(c
, key
), len
,
699 ubifs_assert(len
<= UBIFS_BLOCK_SIZE
);
701 data
= kmalloc(dlen
, GFP_NOFS
| __GFP_NOWARN
);
704 * Fall-back to the write reserve buffer. Note, we might be
705 * currently on the memory reclaim path, when the kernel is
706 * trying to free some memory by writing out dirty pages. The
707 * write reserve buffer helps us to guarantee that we are
708 * always able to write the data.
711 mutex_lock(&c
->write_reserve_mutex
);
712 data
= c
->write_reserve_buf
;
715 data
->ch
.node_type
= UBIFS_DATA_NODE
;
716 key_write(c
, key
, &data
->key
);
717 data
->size
= cpu_to_le32(len
);
718 zero_data_node_unused(data
);
720 if (!(ui
->flags
& UBIFS_COMPR_FL
))
721 /* Compression is disabled for this inode */
722 compr_type
= UBIFS_COMPR_NONE
;
724 compr_type
= ui
->compr_type
;
726 out_len
= dlen
- UBIFS_DATA_NODE_SZ
;
727 ubifs_compress(buf
, len
, &data
->data
, &out_len
, &compr_type
);
728 ubifs_assert(out_len
<= UBIFS_BLOCK_SIZE
);
730 dlen
= UBIFS_DATA_NODE_SZ
+ out_len
;
731 data
->compr_type
= cpu_to_le16(compr_type
);
733 /* Make reservation before allocating sequence numbers */
734 err
= make_reservation(c
, DATAHD
, dlen
);
738 err
= write_node(c
, DATAHD
, data
, dlen
, &lnum
, &offs
);
741 ubifs_wbuf_add_ino_nolock(&c
->jheads
[DATAHD
].wbuf
, key_inum(c
, key
));
742 release_head(c
, DATAHD
);
744 err
= ubifs_tnc_add(c
, key
, lnum
, offs
, dlen
);
748 finish_reservation(c
);
750 mutex_unlock(&c
->write_reserve_mutex
);
756 release_head(c
, DATAHD
);
758 ubifs_ro_mode(c
, err
);
759 finish_reservation(c
);
762 mutex_unlock(&c
->write_reserve_mutex
);
769 * ubifs_jnl_write_inode - flush inode to the journal.
770 * @c: UBIFS file-system description object
771 * @inode: inode to flush
773 * This function writes inode @inode to the journal. If the inode is
774 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
775 * success and a negative error code in case of failure.
777 int ubifs_jnl_write_inode(struct ubifs_info
*c
, const struct inode
*inode
)
780 struct ubifs_ino_node
*ino
;
781 struct ubifs_inode
*ui
= ubifs_inode(inode
);
782 int sync
= 0, len
= UBIFS_INO_NODE_SZ
, last_reference
= !inode
->i_nlink
;
784 dbg_jnl("ino %lu, nlink %u", inode
->i_ino
, inode
->i_nlink
);
787 * If the inode is being deleted, do not write the attached data. No
788 * need to synchronize the write-buffer either.
790 if (!last_reference
) {
792 sync
= IS_SYNC(inode
);
794 ino
= kmalloc(len
, GFP_NOFS
);
798 /* Make reservation before allocating sequence numbers */
799 err
= make_reservation(c
, BASEHD
, len
);
803 pack_inode(c
, ino
, inode
, 1);
804 err
= write_head(c
, BASEHD
, ino
, len
, &lnum
, &offs
, sync
);
808 ubifs_wbuf_add_ino_nolock(&c
->jheads
[BASEHD
].wbuf
,
810 release_head(c
, BASEHD
);
812 if (last_reference
) {
813 err
= ubifs_tnc_remove_ino(c
, inode
->i_ino
);
816 ubifs_delete_orphan(c
, inode
->i_ino
);
817 err
= ubifs_add_dirt(c
, lnum
, len
);
821 ino_key_init(c
, &key
, inode
->i_ino
);
822 err
= ubifs_tnc_add(c
, &key
, lnum
, offs
, len
);
827 finish_reservation(c
);
828 spin_lock(&ui
->ui_lock
);
829 ui
->synced_i_size
= ui
->ui_size
;
830 spin_unlock(&ui
->ui_lock
);
835 release_head(c
, BASEHD
);
837 ubifs_ro_mode(c
, err
);
838 finish_reservation(c
);
845 * ubifs_jnl_delete_inode - delete an inode.
846 * @c: UBIFS file-system description object
847 * @inode: inode to delete
849 * This function deletes inode @inode which includes removing it from orphans,
850 * deleting it from TNC and, in some cases, writing a deletion inode to the
853 * When regular file inodes are unlinked or a directory inode is removed, the
854 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
855 * direntry to the media, and adds the inode to orphans. After this, when the
856 * last reference to this inode has been dropped, this function is called. In
857 * general, it has to write one more deletion inode to the media, because if
858 * a commit happened between 'ubifs_jnl_update()' and
859 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
860 * anymore, and in fact it might not be on the flash anymore, because it might
861 * have been garbage-collected already. And for optimization reasons UBIFS does
862 * not read the orphan area if it has been unmounted cleanly, so it would have
863 * no indication in the journal that there is a deleted inode which has to be
866 * However, if there was no commit between 'ubifs_jnl_update()' and
867 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
868 * inode to the media for the second time. And this is quite a typical case.
870 * This function returns zero in case of success and a negative error code in
873 int ubifs_jnl_delete_inode(struct ubifs_info
*c
, const struct inode
*inode
)
876 struct ubifs_inode
*ui
= ubifs_inode(inode
);
878 ubifs_assert(inode
->i_nlink
== 0);
880 if (ui
->del_cmtno
!= c
->cmt_no
)
881 /* A commit happened for sure */
882 return ubifs_jnl_write_inode(c
, inode
);
884 down_read(&c
->commit_sem
);
886 * Check commit number again, because the first test has been done
887 * without @c->commit_sem, so a commit might have happened.
889 if (ui
->del_cmtno
!= c
->cmt_no
) {
890 up_read(&c
->commit_sem
);
891 return ubifs_jnl_write_inode(c
, inode
);
894 err
= ubifs_tnc_remove_ino(c
, inode
->i_ino
);
896 ubifs_ro_mode(c
, err
);
898 ubifs_delete_orphan(c
, inode
->i_ino
);
899 up_read(&c
->commit_sem
);
904 * ubifs_jnl_rename - rename a directory entry.
905 * @c: UBIFS file-system description object
906 * @old_dir: parent inode of directory entry to rename
907 * @old_dentry: directory entry to rename
908 * @new_dir: parent inode of directory entry to rename
909 * @new_dentry: new directory entry (or directory entry to replace)
910 * @sync: non-zero if the write-buffer has to be synchronized
912 * This function implements the re-name operation which may involve writing up
913 * to 3 inodes and 2 directory entries. It marks the written inodes as clean
914 * and returns zero on success. In case of failure, a negative error code is
917 int ubifs_jnl_rename(struct ubifs_info
*c
, const struct inode
*old_dir
,
918 const struct dentry
*old_dentry
,
919 const struct inode
*new_dir
,
920 const struct dentry
*new_dentry
, int sync
)
924 struct ubifs_dent_node
*dent
, *dent2
;
925 int err
, dlen1
, dlen2
, ilen
, lnum
, offs
, len
;
926 const struct inode
*old_inode
= old_dentry
->d_inode
;
927 const struct inode
*new_inode
= new_dentry
->d_inode
;
928 int aligned_dlen1
, aligned_dlen2
, plen
= UBIFS_INO_NODE_SZ
;
929 int last_reference
= !!(new_inode
&& new_inode
->i_nlink
== 0);
930 int move
= (old_dir
!= new_dir
);
931 struct ubifs_inode
*uninitialized_var(new_ui
);
933 dbg_jnl("dent '%.*s' in dir ino %lu to dent '%.*s' in dir ino %lu",
934 old_dentry
->d_name
.len
, old_dentry
->d_name
.name
,
935 old_dir
->i_ino
, new_dentry
->d_name
.len
,
936 new_dentry
->d_name
.name
, new_dir
->i_ino
);
937 ubifs_assert(ubifs_inode(old_dir
)->data_len
== 0);
938 ubifs_assert(ubifs_inode(new_dir
)->data_len
== 0);
939 ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir
)->ui_mutex
));
940 ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir
)->ui_mutex
));
942 dlen1
= UBIFS_DENT_NODE_SZ
+ new_dentry
->d_name
.len
+ 1;
943 dlen2
= UBIFS_DENT_NODE_SZ
+ old_dentry
->d_name
.len
+ 1;
945 new_ui
= ubifs_inode(new_inode
);
946 ubifs_assert(mutex_is_locked(&new_ui
->ui_mutex
));
947 ilen
= UBIFS_INO_NODE_SZ
;
949 ilen
+= new_ui
->data_len
;
953 aligned_dlen1
= ALIGN(dlen1
, 8);
954 aligned_dlen2
= ALIGN(dlen2
, 8);
955 len
= aligned_dlen1
+ aligned_dlen2
+ ALIGN(ilen
, 8) + ALIGN(plen
, 8);
956 if (old_dir
!= new_dir
)
958 dent
= kmalloc(len
, GFP_NOFS
);
962 /* Make reservation before allocating sequence numbers */
963 err
= make_reservation(c
, BASEHD
, len
);
968 dent
->ch
.node_type
= UBIFS_DENT_NODE
;
969 dent_key_init_flash(c
, &dent
->key
, new_dir
->i_ino
, &new_dentry
->d_name
);
970 dent
->inum
= cpu_to_le64(old_inode
->i_ino
);
971 dent
->type
= get_dent_type(old_inode
->i_mode
);
972 dent
->nlen
= cpu_to_le16(new_dentry
->d_name
.len
);
973 memcpy(dent
->name
, new_dentry
->d_name
.name
, new_dentry
->d_name
.len
);
974 dent
->name
[new_dentry
->d_name
.len
] = '\0';
975 zero_dent_node_unused(dent
);
976 ubifs_prep_grp_node(c
, dent
, dlen1
, 0);
978 /* Make deletion dent */
979 dent2
= (void *)dent
+ aligned_dlen1
;
980 dent2
->ch
.node_type
= UBIFS_DENT_NODE
;
981 dent_key_init_flash(c
, &dent2
->key
, old_dir
->i_ino
,
982 &old_dentry
->d_name
);
984 dent2
->type
= DT_UNKNOWN
;
985 dent2
->nlen
= cpu_to_le16(old_dentry
->d_name
.len
);
986 memcpy(dent2
->name
, old_dentry
->d_name
.name
, old_dentry
->d_name
.len
);
987 dent2
->name
[old_dentry
->d_name
.len
] = '\0';
988 zero_dent_node_unused(dent2
);
989 ubifs_prep_grp_node(c
, dent2
, dlen2
, 0);
991 p
= (void *)dent2
+ aligned_dlen2
;
993 pack_inode(c
, p
, new_inode
, 0);
998 pack_inode(c
, p
, old_dir
, 1);
1000 pack_inode(c
, p
, old_dir
, 0);
1001 p
+= ALIGN(plen
, 8);
1002 pack_inode(c
, p
, new_dir
, 1);
1005 if (last_reference
) {
1006 err
= ubifs_add_orphan(c
, new_inode
->i_ino
);
1008 release_head(c
, BASEHD
);
1011 new_ui
->del_cmtno
= c
->cmt_no
;
1014 err
= write_head(c
, BASEHD
, dent
, len
, &lnum
, &offs
, sync
);
1018 struct ubifs_wbuf
*wbuf
= &c
->jheads
[BASEHD
].wbuf
;
1020 ubifs_wbuf_add_ino_nolock(wbuf
, new_dir
->i_ino
);
1021 ubifs_wbuf_add_ino_nolock(wbuf
, old_dir
->i_ino
);
1023 ubifs_wbuf_add_ino_nolock(&c
->jheads
[BASEHD
].wbuf
,
1026 release_head(c
, BASEHD
);
1028 dent_key_init(c
, &key
, new_dir
->i_ino
, &new_dentry
->d_name
);
1029 err
= ubifs_tnc_add_nm(c
, &key
, lnum
, offs
, dlen1
, &new_dentry
->d_name
);
1033 err
= ubifs_add_dirt(c
, lnum
, dlen2
);
1037 dent_key_init(c
, &key
, old_dir
->i_ino
, &old_dentry
->d_name
);
1038 err
= ubifs_tnc_remove_nm(c
, &key
, &old_dentry
->d_name
);
1042 offs
+= aligned_dlen1
+ aligned_dlen2
;
1044 ino_key_init(c
, &key
, new_inode
->i_ino
);
1045 err
= ubifs_tnc_add(c
, &key
, lnum
, offs
, ilen
);
1048 offs
+= ALIGN(ilen
, 8);
1051 ino_key_init(c
, &key
, old_dir
->i_ino
);
1052 err
= ubifs_tnc_add(c
, &key
, lnum
, offs
, plen
);
1056 if (old_dir
!= new_dir
) {
1057 offs
+= ALIGN(plen
, 8);
1058 ino_key_init(c
, &key
, new_dir
->i_ino
);
1059 err
= ubifs_tnc_add(c
, &key
, lnum
, offs
, plen
);
1064 finish_reservation(c
);
1066 mark_inode_clean(c
, new_ui
);
1067 spin_lock(&new_ui
->ui_lock
);
1068 new_ui
->synced_i_size
= new_ui
->ui_size
;
1069 spin_unlock(&new_ui
->ui_lock
);
1071 mark_inode_clean(c
, ubifs_inode(old_dir
));
1073 mark_inode_clean(c
, ubifs_inode(new_dir
));
1078 release_head(c
, BASEHD
);
1080 ubifs_ro_mode(c
, err
);
1082 ubifs_delete_orphan(c
, new_inode
->i_ino
);
1084 finish_reservation(c
);
1091 * recomp_data_node - re-compress a truncated data node.
1092 * @dn: data node to re-compress
1093 * @new_len: new length
1095 * This function is used when an inode is truncated and the last data node of
1096 * the inode has to be re-compressed and re-written.
1098 static int recomp_data_node(struct ubifs_data_node
*dn
, int *new_len
)
1101 int err
, len
, compr_type
, out_len
;
1103 out_len
= le32_to_cpu(dn
->size
);
1104 buf
= kmalloc(out_len
* WORST_COMPR_FACTOR
, GFP_NOFS
);
1108 len
= le32_to_cpu(dn
->ch
.len
) - UBIFS_DATA_NODE_SZ
;
1109 compr_type
= le16_to_cpu(dn
->compr_type
);
1110 err
= ubifs_decompress(&dn
->data
, len
, buf
, &out_len
, compr_type
);
1114 ubifs_compress(buf
, *new_len
, &dn
->data
, &out_len
, &compr_type
);
1115 ubifs_assert(out_len
<= UBIFS_BLOCK_SIZE
);
1116 dn
->compr_type
= cpu_to_le16(compr_type
);
1117 dn
->size
= cpu_to_le32(*new_len
);
1118 *new_len
= UBIFS_DATA_NODE_SZ
+ out_len
;
1125 * ubifs_jnl_truncate - update the journal for a truncation.
1126 * @c: UBIFS file-system description object
1127 * @inode: inode to truncate
1128 * @old_size: old size
1129 * @new_size: new size
1131 * When the size of a file decreases due to truncation, a truncation node is
1132 * written, the journal tree is updated, and the last data block is re-written
1133 * if it has been affected. The inode is also updated in order to synchronize
1134 * the new inode size.
1136 * This function marks the inode as clean and returns zero on success. In case
1137 * of failure, a negative error code is returned.
1139 int ubifs_jnl_truncate(struct ubifs_info
*c
, const struct inode
*inode
,
1140 loff_t old_size
, loff_t new_size
)
1142 union ubifs_key key
, to_key
;
1143 struct ubifs_ino_node
*ino
;
1144 struct ubifs_trun_node
*trun
;
1145 struct ubifs_data_node
*uninitialized_var(dn
);
1146 int err
, dlen
, len
, lnum
, offs
, bit
, sz
, sync
= IS_SYNC(inode
);
1147 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1148 ino_t inum
= inode
->i_ino
;
1151 dbg_jnl("ino %lu, size %lld -> %lld",
1152 (unsigned long)inum
, old_size
, new_size
);
1153 ubifs_assert(!ui
->data_len
);
1154 ubifs_assert(S_ISREG(inode
->i_mode
));
1155 ubifs_assert(mutex_is_locked(&ui
->ui_mutex
));
1157 sz
= UBIFS_TRUN_NODE_SZ
+ UBIFS_INO_NODE_SZ
+
1158 UBIFS_MAX_DATA_NODE_SZ
* WORST_COMPR_FACTOR
;
1159 ino
= kmalloc(sz
, GFP_NOFS
);
1163 trun
= (void *)ino
+ UBIFS_INO_NODE_SZ
;
1164 trun
->ch
.node_type
= UBIFS_TRUN_NODE
;
1165 trun
->inum
= cpu_to_le32(inum
);
1166 trun
->old_size
= cpu_to_le64(old_size
);
1167 trun
->new_size
= cpu_to_le64(new_size
);
1168 zero_trun_node_unused(trun
);
1170 dlen
= new_size
& (UBIFS_BLOCK_SIZE
- 1);
1172 /* Get last data block so it can be truncated */
1173 dn
= (void *)trun
+ UBIFS_TRUN_NODE_SZ
;
1174 blk
= new_size
>> UBIFS_BLOCK_SHIFT
;
1175 data_key_init(c
, &key
, inum
, blk
);
1176 dbg_jnl("last block key %s", DBGKEY(&key
));
1177 err
= ubifs_tnc_lookup(c
, &key
, dn
);
1179 dlen
= 0; /* Not found (so it is a hole) */
1183 if (le32_to_cpu(dn
->size
) <= dlen
)
1184 dlen
= 0; /* Nothing to do */
1186 int compr_type
= le16_to_cpu(dn
->compr_type
);
1188 if (compr_type
!= UBIFS_COMPR_NONE
) {
1189 err
= recomp_data_node(dn
, &dlen
);
1193 dn
->size
= cpu_to_le32(dlen
);
1194 dlen
+= UBIFS_DATA_NODE_SZ
;
1196 zero_data_node_unused(dn
);
1201 /* Must make reservation before allocating sequence numbers */
1202 len
= UBIFS_TRUN_NODE_SZ
+ UBIFS_INO_NODE_SZ
;
1205 err
= make_reservation(c
, BASEHD
, len
);
1209 pack_inode(c
, ino
, inode
, 0);
1210 ubifs_prep_grp_node(c
, trun
, UBIFS_TRUN_NODE_SZ
, dlen
? 0 : 1);
1212 ubifs_prep_grp_node(c
, dn
, dlen
, 1);
1214 err
= write_head(c
, BASEHD
, ino
, len
, &lnum
, &offs
, sync
);
1218 ubifs_wbuf_add_ino_nolock(&c
->jheads
[BASEHD
].wbuf
, inum
);
1219 release_head(c
, BASEHD
);
1222 sz
= offs
+ UBIFS_INO_NODE_SZ
+ UBIFS_TRUN_NODE_SZ
;
1223 err
= ubifs_tnc_add(c
, &key
, lnum
, sz
, dlen
);
1228 ino_key_init(c
, &key
, inum
);
1229 err
= ubifs_tnc_add(c
, &key
, lnum
, offs
, UBIFS_INO_NODE_SZ
);
1233 err
= ubifs_add_dirt(c
, lnum
, UBIFS_TRUN_NODE_SZ
);
1237 bit
= new_size
& (UBIFS_BLOCK_SIZE
- 1);
1238 blk
= (new_size
>> UBIFS_BLOCK_SHIFT
) + (bit
? 1 : 0);
1239 data_key_init(c
, &key
, inum
, blk
);
1241 bit
= old_size
& (UBIFS_BLOCK_SIZE
- 1);
1242 blk
= (old_size
>> UBIFS_BLOCK_SHIFT
) - (bit
? 0 : 1);
1243 data_key_init(c
, &to_key
, inum
, blk
);
1245 err
= ubifs_tnc_remove_range(c
, &key
, &to_key
);
1249 finish_reservation(c
);
1250 spin_lock(&ui
->ui_lock
);
1251 ui
->synced_i_size
= ui
->ui_size
;
1252 spin_unlock(&ui
->ui_lock
);
1253 mark_inode_clean(c
, ui
);
1258 release_head(c
, BASEHD
);
1260 ubifs_ro_mode(c
, err
);
1261 finish_reservation(c
);
1267 #ifdef CONFIG_UBIFS_FS_XATTR
1270 * ubifs_jnl_delete_xattr - delete an extended attribute.
1271 * @c: UBIFS file-system description object
1273 * @inode: extended attribute inode
1274 * @nm: extended attribute entry name
1276 * This function delete an extended attribute which is very similar to
1277 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1278 * updates the target inode. Returns zero in case of success and a negative
1279 * error code in case of failure.
1281 int ubifs_jnl_delete_xattr(struct ubifs_info
*c
, const struct inode
*host
,
1282 const struct inode
*inode
, const struct qstr
*nm
)
1284 int err
, xlen
, hlen
, len
, lnum
, xent_offs
, aligned_xlen
;
1285 struct ubifs_dent_node
*xent
;
1286 struct ubifs_ino_node
*ino
;
1287 union ubifs_key xent_key
, key1
, key2
;
1288 int sync
= IS_DIRSYNC(host
);
1289 struct ubifs_inode
*host_ui
= ubifs_inode(host
);
1291 dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d",
1292 host
->i_ino
, inode
->i_ino
, nm
->name
,
1293 ubifs_inode(inode
)->data_len
);
1294 ubifs_assert(inode
->i_nlink
== 0);
1295 ubifs_assert(mutex_is_locked(&host_ui
->ui_mutex
));
1298 * Since we are deleting the inode, we do not bother to attach any data
1299 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1301 xlen
= UBIFS_DENT_NODE_SZ
+ nm
->len
+ 1;
1302 aligned_xlen
= ALIGN(xlen
, 8);
1303 hlen
= host_ui
->data_len
+ UBIFS_INO_NODE_SZ
;
1304 len
= aligned_xlen
+ UBIFS_INO_NODE_SZ
+ ALIGN(hlen
, 8);
1306 xent
= kmalloc(len
, GFP_NOFS
);
1310 /* Make reservation before allocating sequence numbers */
1311 err
= make_reservation(c
, BASEHD
, len
);
1317 xent
->ch
.node_type
= UBIFS_XENT_NODE
;
1318 xent_key_init(c
, &xent_key
, host
->i_ino
, nm
);
1319 key_write(c
, &xent_key
, xent
->key
);
1321 xent
->type
= get_dent_type(inode
->i_mode
);
1322 xent
->nlen
= cpu_to_le16(nm
->len
);
1323 memcpy(xent
->name
, nm
->name
, nm
->len
);
1324 xent
->name
[nm
->len
] = '\0';
1325 zero_dent_node_unused(xent
);
1326 ubifs_prep_grp_node(c
, xent
, xlen
, 0);
1328 ino
= (void *)xent
+ aligned_xlen
;
1329 pack_inode(c
, ino
, inode
, 0);
1330 ino
= (void *)ino
+ UBIFS_INO_NODE_SZ
;
1331 pack_inode(c
, ino
, host
, 1);
1333 err
= write_head(c
, BASEHD
, xent
, len
, &lnum
, &xent_offs
, sync
);
1335 ubifs_wbuf_add_ino_nolock(&c
->jheads
[BASEHD
].wbuf
, host
->i_ino
);
1336 release_head(c
, BASEHD
);
1341 /* Remove the extended attribute entry from TNC */
1342 err
= ubifs_tnc_remove_nm(c
, &xent_key
, nm
);
1345 err
= ubifs_add_dirt(c
, lnum
, xlen
);
1350 * Remove all nodes belonging to the extended attribute inode from TNC.
1351 * Well, there actually must be only one node - the inode itself.
1353 lowest_ino_key(c
, &key1
, inode
->i_ino
);
1354 highest_ino_key(c
, &key2
, inode
->i_ino
);
1355 err
= ubifs_tnc_remove_range(c
, &key1
, &key2
);
1358 err
= ubifs_add_dirt(c
, lnum
, UBIFS_INO_NODE_SZ
);
1362 /* And update TNC with the new host inode position */
1363 ino_key_init(c
, &key1
, host
->i_ino
);
1364 err
= ubifs_tnc_add(c
, &key1
, lnum
, xent_offs
+ len
- hlen
, hlen
);
1368 finish_reservation(c
);
1369 spin_lock(&host_ui
->ui_lock
);
1370 host_ui
->synced_i_size
= host_ui
->ui_size
;
1371 spin_unlock(&host_ui
->ui_lock
);
1372 mark_inode_clean(c
, host_ui
);
1376 ubifs_ro_mode(c
, err
);
1377 finish_reservation(c
);
1382 * ubifs_jnl_change_xattr - change an extended attribute.
1383 * @c: UBIFS file-system description object
1384 * @inode: extended attribute inode
1387 * This function writes the updated version of an extended attribute inode and
1388 * the host inode to the journal (to the base head). The host inode is written
1389 * after the extended attribute inode in order to guarantee that the extended
1390 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1391 * consequently, the write-buffer is synchronized. This function returns zero
1392 * in case of success and a negative error code in case of failure.
1394 int ubifs_jnl_change_xattr(struct ubifs_info
*c
, const struct inode
*inode
,
1395 const struct inode
*host
)
1397 int err
, len1
, len2
, aligned_len
, aligned_len1
, lnum
, offs
;
1398 struct ubifs_inode
*host_ui
= ubifs_inode(host
);
1399 struct ubifs_ino_node
*ino
;
1400 union ubifs_key key
;
1401 int sync
= IS_DIRSYNC(host
);
1403 dbg_jnl("ino %lu, ino %lu", host
->i_ino
, inode
->i_ino
);
1404 ubifs_assert(host
->i_nlink
> 0);
1405 ubifs_assert(inode
->i_nlink
> 0);
1406 ubifs_assert(mutex_is_locked(&host_ui
->ui_mutex
));
1408 len1
= UBIFS_INO_NODE_SZ
+ host_ui
->data_len
;
1409 len2
= UBIFS_INO_NODE_SZ
+ ubifs_inode(inode
)->data_len
;
1410 aligned_len1
= ALIGN(len1
, 8);
1411 aligned_len
= aligned_len1
+ ALIGN(len2
, 8);
1413 ino
= kmalloc(aligned_len
, GFP_NOFS
);
1417 /* Make reservation before allocating sequence numbers */
1418 err
= make_reservation(c
, BASEHD
, aligned_len
);
1422 pack_inode(c
, ino
, host
, 0);
1423 pack_inode(c
, (void *)ino
+ aligned_len1
, inode
, 1);
1425 err
= write_head(c
, BASEHD
, ino
, aligned_len
, &lnum
, &offs
, 0);
1426 if (!sync
&& !err
) {
1427 struct ubifs_wbuf
*wbuf
= &c
->jheads
[BASEHD
].wbuf
;
1429 ubifs_wbuf_add_ino_nolock(wbuf
, host
->i_ino
);
1430 ubifs_wbuf_add_ino_nolock(wbuf
, inode
->i_ino
);
1432 release_head(c
, BASEHD
);
1436 ino_key_init(c
, &key
, host
->i_ino
);
1437 err
= ubifs_tnc_add(c
, &key
, lnum
, offs
, len1
);
1441 ino_key_init(c
, &key
, inode
->i_ino
);
1442 err
= ubifs_tnc_add(c
, &key
, lnum
, offs
+ aligned_len1
, len2
);
1446 finish_reservation(c
);
1447 spin_lock(&host_ui
->ui_lock
);
1448 host_ui
->synced_i_size
= host_ui
->ui_size
;
1449 spin_unlock(&host_ui
->ui_lock
);
1450 mark_inode_clean(c
, host_ui
);
1455 ubifs_ro_mode(c
, err
);
1456 finish_reservation(c
);
1462 #endif /* CONFIG_UBIFS_FS_XATTR */