2 * net/sched/sch_netem.c Network emulator
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
9 * Many of the algorithms and ideas for this came from
10 * NIST Net which is not copyrighted.
12 * Authors: Stephen Hemminger <shemminger@osdl.org>
13 * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/skbuff.h>
22 #include <linux/vmalloc.h>
23 #include <linux/rtnetlink.h>
25 #include <net/netlink.h>
26 #include <net/pkt_sched.h>
30 /* Network Emulation Queuing algorithm.
31 ====================================
33 Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
34 Network Emulation Tool
35 [2] Luigi Rizzo, DummyNet for FreeBSD
37 ----------------------------------------------------------------
39 This started out as a simple way to delay outgoing packets to
40 test TCP but has grown to include most of the functionality
41 of a full blown network emulator like NISTnet. It can delay
42 packets and add random jitter (and correlation). The random
43 distribution can be loaded from a table as well to provide
44 normal, Pareto, or experimental curves. Packet loss,
45 duplication, and reordering can also be emulated.
47 This qdisc does not do classification that can be handled in
48 layering other disciplines. It does not need to do bandwidth
49 control either since that can be handled by using token
50 bucket or other rate control.
52 Correlated Loss Generator models
54 Added generation of correlated loss according to the
55 "Gilbert-Elliot" model, a 4-state markov model.
58 [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
59 [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
60 and intuitive loss model for packet networks and its implementation
61 in the Netem module in the Linux kernel", available in [1]
63 Authors: Stefano Salsano <stefano.salsano at uniroma2.it
64 Fabio Ludovici <fabio.ludovici at yahoo.it>
67 struct netem_sched_data
{
69 struct qdisc_watchdog watchdog
;
71 psched_tdiff_t latency
;
72 psched_tdiff_t jitter
;
85 } delay_cor
, loss_cor
, dup_cor
, reorder_cor
, corrupt_cor
;
98 /* Correlated Loss Generation models */
100 /* state of the Markov chain */
103 /* 4-states and Gilbert-Elliot models */
104 u32 a1
; /* p13 for 4-states or p for GE */
105 u32 a2
; /* p31 for 4-states or r for GE */
106 u32 a3
; /* p32 for 4-states or h for GE */
107 u32 a4
; /* p14 for 4-states or 1-k for GE */
108 u32 a5
; /* p23 used only in 4-states */
113 /* Time stamp put into socket buffer control block */
114 struct netem_skb_cb
{
115 psched_time_t time_to_send
;
118 static inline struct netem_skb_cb
*netem_skb_cb(struct sk_buff
*skb
)
120 BUILD_BUG_ON(sizeof(skb
->cb
) <
121 sizeof(struct qdisc_skb_cb
) + sizeof(struct netem_skb_cb
));
122 return (struct netem_skb_cb
*)qdisc_skb_cb(skb
)->data
;
125 /* init_crandom - initialize correlated random number generator
126 * Use entropy source for initial seed.
128 static void init_crandom(struct crndstate
*state
, unsigned long rho
)
131 state
->last
= net_random();
134 /* get_crandom - correlated random number generator
135 * Next number depends on last value.
136 * rho is scaled to avoid floating point.
138 static u32
get_crandom(struct crndstate
*state
)
141 unsigned long answer
;
143 if (state
->rho
== 0) /* no correlation */
146 value
= net_random();
147 rho
= (u64
)state
->rho
+ 1;
148 answer
= (value
* ((1ull<<32) - rho
) + state
->last
* rho
) >> 32;
149 state
->last
= answer
;
153 /* loss_4state - 4-state model loss generator
154 * Generates losses according to the 4-state Markov chain adopted in
155 * the GI (General and Intuitive) loss model.
157 static bool loss_4state(struct netem_sched_data
*q
)
159 struct clgstate
*clg
= &q
->clg
;
160 u32 rnd
= net_random();
163 * Makes a comparision between rnd and the transition
164 * probabilities outgoing from the current state, then decides the
165 * next state and if the next packet has to be transmitted or lost.
166 * The four states correspond to:
167 * 1 => successfully transmitted packets within a gap period
168 * 4 => isolated losses within a gap period
169 * 3 => lost packets within a burst period
170 * 2 => successfully transmitted packets within a burst period
172 switch (clg
->state
) {
177 } else if (clg
->a4
< rnd
&& rnd
< clg
->a1
) {
180 } else if (clg
->a1
< rnd
)
195 else if (clg
->a3
< rnd
&& rnd
< clg
->a2
+ clg
->a3
) {
198 } else if (clg
->a2
+ clg
->a3
< rnd
) {
211 /* loss_gilb_ell - Gilbert-Elliot model loss generator
212 * Generates losses according to the Gilbert-Elliot loss model or
213 * its special cases (Gilbert or Simple Gilbert)
215 * Makes a comparision between random number and the transition
216 * probabilities outgoing from the current state, then decides the
217 * next state. A second random number is extracted and the comparision
218 * with the loss probability of the current state decides if the next
219 * packet will be transmitted or lost.
221 static bool loss_gilb_ell(struct netem_sched_data
*q
)
223 struct clgstate
*clg
= &q
->clg
;
225 switch (clg
->state
) {
227 if (net_random() < clg
->a1
)
229 if (net_random() < clg
->a4
)
232 if (net_random() < clg
->a2
)
234 if (clg
->a3
> net_random())
241 static bool loss_event(struct netem_sched_data
*q
)
243 switch (q
->loss_model
) {
245 /* Random packet drop 0 => none, ~0 => all */
246 return q
->loss
&& q
->loss
>= get_crandom(&q
->loss_cor
);
249 /* 4state loss model algorithm (used also for GI model)
250 * Extracts a value from the markov 4 state loss generator,
251 * if it is 1 drops a packet and if needed writes the event in
254 return loss_4state(q
);
257 /* Gilbert-Elliot loss model algorithm
258 * Extracts a value from the Gilbert-Elliot loss generator,
259 * if it is 1 drops a packet and if needed writes the event in
262 return loss_gilb_ell(q
);
265 return false; /* not reached */
269 /* tabledist - return a pseudo-randomly distributed value with mean mu and
270 * std deviation sigma. Uses table lookup to approximate the desired
271 * distribution, and a uniformly-distributed pseudo-random source.
273 static psched_tdiff_t
tabledist(psched_tdiff_t mu
, psched_tdiff_t sigma
,
274 struct crndstate
*state
,
275 const struct disttable
*dist
)
284 rnd
= get_crandom(state
);
286 /* default uniform distribution */
288 return (rnd
% (2*sigma
)) - sigma
+ mu
;
290 t
= dist
->table
[rnd
% dist
->size
];
291 x
= (sigma
% NETEM_DIST_SCALE
) * t
;
293 x
+= NETEM_DIST_SCALE
/2;
295 x
-= NETEM_DIST_SCALE
/2;
297 return x
/ NETEM_DIST_SCALE
+ (sigma
/ NETEM_DIST_SCALE
) * t
+ mu
;
301 * Insert one skb into qdisc.
302 * Note: parent depends on return value to account for queue length.
303 * NET_XMIT_DROP: queue length didn't change.
304 * NET_XMIT_SUCCESS: one skb was queued.
306 static int netem_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
)
308 struct netem_sched_data
*q
= qdisc_priv(sch
);
309 /* We don't fill cb now as skb_unshare() may invalidate it */
310 struct netem_skb_cb
*cb
;
311 struct sk_buff
*skb2
;
315 /* Random duplication */
316 if (q
->duplicate
&& q
->duplicate
>= get_crandom(&q
->dup_cor
))
326 return NET_XMIT_SUCCESS
| __NET_XMIT_BYPASS
;
332 * If we need to duplicate packet, then re-insert at top of the
333 * qdisc tree, since parent queuer expects that only one
334 * skb will be queued.
336 if (count
> 1 && (skb2
= skb_clone(skb
, GFP_ATOMIC
)) != NULL
) {
337 struct Qdisc
*rootq
= qdisc_root(sch
);
338 u32 dupsave
= q
->duplicate
; /* prevent duplicating a dup... */
341 qdisc_enqueue_root(skb2
, rootq
);
342 q
->duplicate
= dupsave
;
346 * Randomized packet corruption.
347 * Make copy if needed since we are modifying
348 * If packet is going to be hardware checksummed, then
349 * do it now in software before we mangle it.
351 if (q
->corrupt
&& q
->corrupt
>= get_crandom(&q
->corrupt_cor
)) {
352 if (!(skb
= skb_unshare(skb
, GFP_ATOMIC
)) ||
353 (skb
->ip_summed
== CHECKSUM_PARTIAL
&&
354 skb_checksum_help(skb
))) {
356 return NET_XMIT_DROP
;
359 skb
->data
[net_random() % skb_headlen(skb
)] ^= 1<<(net_random() % 8);
362 cb
= netem_skb_cb(skb
);
363 if (q
->gap
== 0 || /* not doing reordering */
364 q
->counter
< q
->gap
|| /* inside last reordering gap */
365 q
->reorder
< get_crandom(&q
->reorder_cor
)) {
367 psched_tdiff_t delay
;
369 delay
= tabledist(q
->latency
, q
->jitter
,
370 &q
->delay_cor
, q
->delay_dist
);
372 now
= psched_get_time();
373 cb
->time_to_send
= now
+ delay
;
375 ret
= qdisc_enqueue(skb
, q
->qdisc
);
378 * Do re-ordering by putting one out of N packets at the front
381 cb
->time_to_send
= psched_get_time();
384 __skb_queue_head(&q
->qdisc
->q
, skb
);
385 q
->qdisc
->qstats
.backlog
+= qdisc_pkt_len(skb
);
386 q
->qdisc
->qstats
.requeues
++;
387 ret
= NET_XMIT_SUCCESS
;
390 if (ret
!= NET_XMIT_SUCCESS
) {
391 if (net_xmit_drop_count(ret
)) {
398 return NET_XMIT_SUCCESS
;
401 static unsigned int netem_drop(struct Qdisc
*sch
)
403 struct netem_sched_data
*q
= qdisc_priv(sch
);
404 unsigned int len
= 0;
406 if (q
->qdisc
->ops
->drop
&& (len
= q
->qdisc
->ops
->drop(q
->qdisc
)) != 0) {
413 static struct sk_buff
*netem_dequeue(struct Qdisc
*sch
)
415 struct netem_sched_data
*q
= qdisc_priv(sch
);
418 if (qdisc_is_throttled(sch
))
421 skb
= q
->qdisc
->ops
->peek(q
->qdisc
);
423 const struct netem_skb_cb
*cb
= netem_skb_cb(skb
);
424 psched_time_t now
= psched_get_time();
426 /* if more time remaining? */
427 if (cb
->time_to_send
<= now
) {
428 skb
= qdisc_dequeue_peeked(q
->qdisc
);
432 #ifdef CONFIG_NET_CLS_ACT
434 * If it's at ingress let's pretend the delay is
435 * from the network (tstamp will be updated).
437 if (G_TC_FROM(skb
->tc_verd
) & AT_INGRESS
)
438 skb
->tstamp
.tv64
= 0;
442 qdisc_unthrottled(sch
);
443 qdisc_bstats_update(sch
, skb
);
447 qdisc_watchdog_schedule(&q
->watchdog
, cb
->time_to_send
);
453 static void netem_reset(struct Qdisc
*sch
)
455 struct netem_sched_data
*q
= qdisc_priv(sch
);
457 qdisc_reset(q
->qdisc
);
459 qdisc_watchdog_cancel(&q
->watchdog
);
462 static void dist_free(struct disttable
*d
)
465 if (is_vmalloc_addr(d
))
473 * Distribution data is a variable size payload containing
474 * signed 16 bit values.
476 static int get_dist_table(struct Qdisc
*sch
, const struct nlattr
*attr
)
478 struct netem_sched_data
*q
= qdisc_priv(sch
);
479 size_t n
= nla_len(attr
)/sizeof(__s16
);
480 const __s16
*data
= nla_data(attr
);
481 spinlock_t
*root_lock
;
486 if (n
> NETEM_DIST_MAX
)
489 s
= sizeof(struct disttable
) + n
* sizeof(s16
);
490 d
= kmalloc(s
, GFP_KERNEL
);
497 for (i
= 0; i
< n
; i
++)
498 d
->table
[i
] = data
[i
];
500 root_lock
= qdisc_root_sleeping_lock(sch
);
502 spin_lock_bh(root_lock
);
503 dist_free(q
->delay_dist
);
505 spin_unlock_bh(root_lock
);
509 static void get_correlation(struct Qdisc
*sch
, const struct nlattr
*attr
)
511 struct netem_sched_data
*q
= qdisc_priv(sch
);
512 const struct tc_netem_corr
*c
= nla_data(attr
);
514 init_crandom(&q
->delay_cor
, c
->delay_corr
);
515 init_crandom(&q
->loss_cor
, c
->loss_corr
);
516 init_crandom(&q
->dup_cor
, c
->dup_corr
);
519 static void get_reorder(struct Qdisc
*sch
, const struct nlattr
*attr
)
521 struct netem_sched_data
*q
= qdisc_priv(sch
);
522 const struct tc_netem_reorder
*r
= nla_data(attr
);
524 q
->reorder
= r
->probability
;
525 init_crandom(&q
->reorder_cor
, r
->correlation
);
528 static void get_corrupt(struct Qdisc
*sch
, const struct nlattr
*attr
)
530 struct netem_sched_data
*q
= qdisc_priv(sch
);
531 const struct tc_netem_corrupt
*r
= nla_data(attr
);
533 q
->corrupt
= r
->probability
;
534 init_crandom(&q
->corrupt_cor
, r
->correlation
);
537 static int get_loss_clg(struct Qdisc
*sch
, const struct nlattr
*attr
)
539 struct netem_sched_data
*q
= qdisc_priv(sch
);
540 const struct nlattr
*la
;
543 nla_for_each_nested(la
, attr
, rem
) {
544 u16 type
= nla_type(la
);
547 case NETEM_LOSS_GI
: {
548 const struct tc_netem_gimodel
*gi
= nla_data(la
);
550 if (nla_len(la
) != sizeof(struct tc_netem_gimodel
)) {
551 pr_info("netem: incorrect gi model size\n");
555 q
->loss_model
= CLG_4_STATES
;
566 case NETEM_LOSS_GE
: {
567 const struct tc_netem_gemodel
*ge
= nla_data(la
);
569 if (nla_len(la
) != sizeof(struct tc_netem_gemodel
)) {
570 pr_info("netem: incorrect gi model size\n");
574 q
->loss_model
= CLG_GILB_ELL
;
584 pr_info("netem: unknown loss type %u\n", type
);
592 static const struct nla_policy netem_policy
[TCA_NETEM_MAX
+ 1] = {
593 [TCA_NETEM_CORR
] = { .len
= sizeof(struct tc_netem_corr
) },
594 [TCA_NETEM_REORDER
] = { .len
= sizeof(struct tc_netem_reorder
) },
595 [TCA_NETEM_CORRUPT
] = { .len
= sizeof(struct tc_netem_corrupt
) },
596 [TCA_NETEM_LOSS
] = { .type
= NLA_NESTED
},
599 static int parse_attr(struct nlattr
*tb
[], int maxtype
, struct nlattr
*nla
,
600 const struct nla_policy
*policy
, int len
)
602 int nested_len
= nla_len(nla
) - NLA_ALIGN(len
);
604 if (nested_len
< 0) {
605 pr_info("netem: invalid attributes len %d\n", nested_len
);
609 if (nested_len
>= nla_attr_size(0))
610 return nla_parse(tb
, maxtype
, nla_data(nla
) + NLA_ALIGN(len
),
613 memset(tb
, 0, sizeof(struct nlattr
*) * (maxtype
+ 1));
617 /* Parse netlink message to set options */
618 static int netem_change(struct Qdisc
*sch
, struct nlattr
*opt
)
620 struct netem_sched_data
*q
= qdisc_priv(sch
);
621 struct nlattr
*tb
[TCA_NETEM_MAX
+ 1];
622 struct tc_netem_qopt
*qopt
;
628 qopt
= nla_data(opt
);
629 ret
= parse_attr(tb
, TCA_NETEM_MAX
, opt
, netem_policy
, sizeof(*qopt
));
633 ret
= fifo_set_limit(q
->qdisc
, qopt
->limit
);
635 pr_info("netem: can't set fifo limit\n");
639 q
->latency
= qopt
->latency
;
640 q
->jitter
= qopt
->jitter
;
641 q
->limit
= qopt
->limit
;
644 q
->loss
= qopt
->loss
;
645 q
->duplicate
= qopt
->duplicate
;
647 /* for compatibility with earlier versions.
648 * if gap is set, need to assume 100% probability
653 if (tb
[TCA_NETEM_CORR
])
654 get_correlation(sch
, tb
[TCA_NETEM_CORR
]);
656 if (tb
[TCA_NETEM_DELAY_DIST
]) {
657 ret
= get_dist_table(sch
, tb
[TCA_NETEM_DELAY_DIST
]);
662 if (tb
[TCA_NETEM_REORDER
])
663 get_reorder(sch
, tb
[TCA_NETEM_REORDER
]);
665 if (tb
[TCA_NETEM_CORRUPT
])
666 get_corrupt(sch
, tb
[TCA_NETEM_CORRUPT
]);
668 q
->loss_model
= CLG_RANDOM
;
669 if (tb
[TCA_NETEM_LOSS
])
670 ret
= get_loss_clg(sch
, tb
[TCA_NETEM_LOSS
]);
676 * Special case version of FIFO queue for use by netem.
677 * It queues in order based on timestamps in skb's
679 struct fifo_sched_data
{
681 psched_time_t oldest
;
684 static int tfifo_enqueue(struct sk_buff
*nskb
, struct Qdisc
*sch
)
686 struct fifo_sched_data
*q
= qdisc_priv(sch
);
687 struct sk_buff_head
*list
= &sch
->q
;
688 psched_time_t tnext
= netem_skb_cb(nskb
)->time_to_send
;
691 if (likely(skb_queue_len(list
) < q
->limit
)) {
692 /* Optimize for add at tail */
693 if (likely(skb_queue_empty(list
) || tnext
>= q
->oldest
)) {
695 return qdisc_enqueue_tail(nskb
, sch
);
698 skb_queue_reverse_walk(list
, skb
) {
699 const struct netem_skb_cb
*cb
= netem_skb_cb(skb
);
701 if (tnext
>= cb
->time_to_send
)
705 __skb_queue_after(list
, skb
, nskb
);
707 sch
->qstats
.backlog
+= qdisc_pkt_len(nskb
);
709 return NET_XMIT_SUCCESS
;
712 return qdisc_reshape_fail(nskb
, sch
);
715 static int tfifo_init(struct Qdisc
*sch
, struct nlattr
*opt
)
717 struct fifo_sched_data
*q
= qdisc_priv(sch
);
720 struct tc_fifo_qopt
*ctl
= nla_data(opt
);
721 if (nla_len(opt
) < sizeof(*ctl
))
724 q
->limit
= ctl
->limit
;
726 q
->limit
= max_t(u32
, qdisc_dev(sch
)->tx_queue_len
, 1);
728 q
->oldest
= PSCHED_PASTPERFECT
;
732 static int tfifo_dump(struct Qdisc
*sch
, struct sk_buff
*skb
)
734 struct fifo_sched_data
*q
= qdisc_priv(sch
);
735 struct tc_fifo_qopt opt
= { .limit
= q
->limit
};
737 NLA_PUT(skb
, TCA_OPTIONS
, sizeof(opt
), &opt
);
744 static struct Qdisc_ops tfifo_qdisc_ops __read_mostly
= {
746 .priv_size
= sizeof(struct fifo_sched_data
),
747 .enqueue
= tfifo_enqueue
,
748 .dequeue
= qdisc_dequeue_head
,
749 .peek
= qdisc_peek_head
,
750 .drop
= qdisc_queue_drop
,
752 .reset
= qdisc_reset_queue
,
753 .change
= tfifo_init
,
757 static int netem_init(struct Qdisc
*sch
, struct nlattr
*opt
)
759 struct netem_sched_data
*q
= qdisc_priv(sch
);
765 qdisc_watchdog_init(&q
->watchdog
, sch
);
767 q
->loss_model
= CLG_RANDOM
;
768 q
->qdisc
= qdisc_create_dflt(sch
->dev_queue
, &tfifo_qdisc_ops
,
769 TC_H_MAKE(sch
->handle
, 1));
771 pr_notice("netem: qdisc create tfifo qdisc failed\n");
775 ret
= netem_change(sch
, opt
);
777 pr_info("netem: change failed\n");
778 qdisc_destroy(q
->qdisc
);
783 static void netem_destroy(struct Qdisc
*sch
)
785 struct netem_sched_data
*q
= qdisc_priv(sch
);
787 qdisc_watchdog_cancel(&q
->watchdog
);
788 qdisc_destroy(q
->qdisc
);
789 dist_free(q
->delay_dist
);
792 static int dump_loss_model(const struct netem_sched_data
*q
,
797 nest
= nla_nest_start(skb
, TCA_NETEM_LOSS
);
799 goto nla_put_failure
;
801 switch (q
->loss_model
) {
803 /* legacy loss model */
804 nla_nest_cancel(skb
, nest
);
805 return 0; /* no data */
808 struct tc_netem_gimodel gi
= {
816 NLA_PUT(skb
, NETEM_LOSS_GI
, sizeof(gi
), &gi
);
820 struct tc_netem_gemodel ge
= {
827 NLA_PUT(skb
, NETEM_LOSS_GE
, sizeof(ge
), &ge
);
832 nla_nest_end(skb
, nest
);
836 nla_nest_cancel(skb
, nest
);
840 static int netem_dump(struct Qdisc
*sch
, struct sk_buff
*skb
)
842 const struct netem_sched_data
*q
= qdisc_priv(sch
);
843 struct nlattr
*nla
= (struct nlattr
*) skb_tail_pointer(skb
);
844 struct tc_netem_qopt qopt
;
845 struct tc_netem_corr cor
;
846 struct tc_netem_reorder reorder
;
847 struct tc_netem_corrupt corrupt
;
849 qopt
.latency
= q
->latency
;
850 qopt
.jitter
= q
->jitter
;
851 qopt
.limit
= q
->limit
;
854 qopt
.duplicate
= q
->duplicate
;
855 NLA_PUT(skb
, TCA_OPTIONS
, sizeof(qopt
), &qopt
);
857 cor
.delay_corr
= q
->delay_cor
.rho
;
858 cor
.loss_corr
= q
->loss_cor
.rho
;
859 cor
.dup_corr
= q
->dup_cor
.rho
;
860 NLA_PUT(skb
, TCA_NETEM_CORR
, sizeof(cor
), &cor
);
862 reorder
.probability
= q
->reorder
;
863 reorder
.correlation
= q
->reorder_cor
.rho
;
864 NLA_PUT(skb
, TCA_NETEM_REORDER
, sizeof(reorder
), &reorder
);
866 corrupt
.probability
= q
->corrupt
;
867 corrupt
.correlation
= q
->corrupt_cor
.rho
;
868 NLA_PUT(skb
, TCA_NETEM_CORRUPT
, sizeof(corrupt
), &corrupt
);
870 if (dump_loss_model(q
, skb
) != 0)
871 goto nla_put_failure
;
873 return nla_nest_end(skb
, nla
);
876 nlmsg_trim(skb
, nla
);
880 static int netem_dump_class(struct Qdisc
*sch
, unsigned long cl
,
881 struct sk_buff
*skb
, struct tcmsg
*tcm
)
883 struct netem_sched_data
*q
= qdisc_priv(sch
);
885 if (cl
!= 1) /* only one class */
888 tcm
->tcm_handle
|= TC_H_MIN(1);
889 tcm
->tcm_info
= q
->qdisc
->handle
;
894 static int netem_graft(struct Qdisc
*sch
, unsigned long arg
, struct Qdisc
*new,
897 struct netem_sched_data
*q
= qdisc_priv(sch
);
905 qdisc_tree_decrease_qlen(*old
, (*old
)->q
.qlen
);
907 sch_tree_unlock(sch
);
912 static struct Qdisc
*netem_leaf(struct Qdisc
*sch
, unsigned long arg
)
914 struct netem_sched_data
*q
= qdisc_priv(sch
);
918 static unsigned long netem_get(struct Qdisc
*sch
, u32 classid
)
923 static void netem_put(struct Qdisc
*sch
, unsigned long arg
)
927 static void netem_walk(struct Qdisc
*sch
, struct qdisc_walker
*walker
)
930 if (walker
->count
>= walker
->skip
)
931 if (walker
->fn(sch
, 1, walker
) < 0) {
939 static const struct Qdisc_class_ops netem_class_ops
= {
940 .graft
= netem_graft
,
945 .dump
= netem_dump_class
,
948 static struct Qdisc_ops netem_qdisc_ops __read_mostly
= {
950 .cl_ops
= &netem_class_ops
,
951 .priv_size
= sizeof(struct netem_sched_data
),
952 .enqueue
= netem_enqueue
,
953 .dequeue
= netem_dequeue
,
954 .peek
= qdisc_peek_dequeued
,
957 .reset
= netem_reset
,
958 .destroy
= netem_destroy
,
959 .change
= netem_change
,
961 .owner
= THIS_MODULE
,
965 static int __init
netem_module_init(void)
967 pr_info("netem: version " VERSION
"\n");
968 return register_qdisc(&netem_qdisc_ops
);
970 static void __exit
netem_module_exit(void)
972 unregister_qdisc(&netem_qdisc_ops
);
974 module_init(netem_module_init
)
975 module_exit(netem_module_exit
)
976 MODULE_LICENSE("GPL");