ACPI: thinkpad-acpi: add power-management handler capability
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / skfp / drvfbi.c
blob4fe624b0dd251907522f74d9aecd97554f3f3040
1 /******************************************************************************
3 * (C)Copyright 1998,1999 SysKonnect,
4 * a business unit of Schneider & Koch & Co. Datensysteme GmbH.
6 * See the file "skfddi.c" for further information.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * The information in this file is provided "AS IS" without warranty.
15 ******************************************************************************/
18 * FBI board dependent Driver for SMT and LLC
21 #include "h/types.h"
22 #include "h/fddi.h"
23 #include "h/smc.h"
24 #include "h/supern_2.h"
25 #include "h/skfbiinc.h"
26 #include <linux/bitrev.h>
28 #ifndef lint
29 static const char ID_sccs[] = "@(#)drvfbi.c 1.63 99/02/11 (C) SK " ;
30 #endif
33 * PCM active state
35 #define PC8_ACTIVE 8
37 #define LED_Y_ON 0x11 /* Used for ring up/down indication */
38 #define LED_Y_OFF 0x10
41 #define MS2BCLK(x) ((x)*12500L)
44 * valid configuration values are:
46 #ifdef ISA
47 const int opt_ints[] = {8, 3, 4, 5, 9, 10, 11, 12, 15} ;
48 const int opt_iops[] = {8,
49 0x100, 0x120, 0x180, 0x1a0, 0x220, 0x240, 0x320, 0x340};
50 const int opt_dmas[] = {4, 3, 5, 6, 7} ;
51 const int opt_eproms[] = {15, 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce,
52 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc} ;
53 #endif
54 #ifdef EISA
55 const int opt_ints[] = {5, 9, 10, 11} ;
56 const int opt_dmas[] = {0, 5, 6, 7} ;
57 const int opt_eproms[] = {0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce,
58 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc} ;
59 #endif
61 #ifdef MCA
62 int opt_ints[] = {3, 11, 10, 9} ; /* FM1 */
63 int opt_eproms[] = {0, 0xc4, 0xc8, 0xcc, 0xd0, 0xd4, 0xd8, 0xdc} ;
64 #endif /* MCA */
67 * xPOS_ID:xxxx
68 * | \ /
69 * | \/
70 * | --------------------- the patched POS_ID of the Adapter
71 * | xxxx = (Vendor ID low byte,
72 * | Vendor ID high byte,
73 * | Device ID low byte,
74 * | Device ID high byte)
75 * +------------------------------ the patched oem_id must be
76 * 'S' for SK or 'I' for IBM
77 * this is a short id for the driver.
79 #ifndef MULT_OEM
80 #ifndef OEM_CONCEPT
81 #ifndef MCA
82 const u_char oem_id[] = "xPOS_ID:xxxx" ;
83 #else
84 const u_char oem_id[] = "xPOSID1:xxxx" ; /* FM1 card id. */
85 #endif
86 #else /* OEM_CONCEPT */
87 #ifndef MCA
88 const u_char oem_id[] = OEM_ID ;
89 #else
90 const u_char oem_id[] = OEM_ID1 ; /* FM1 card id. */
91 #endif /* MCA */
92 #endif /* OEM_CONCEPT */
93 #define ID_BYTE0 8
94 #define OEMID(smc,i) oem_id[ID_BYTE0 + i]
95 #else /* MULT_OEM */
96 const struct s_oem_ids oem_ids[] = {
97 #include "oemids.h"
98 {0}
100 #define OEMID(smc,i) smc->hw.oem_id->oi_id[i]
101 #endif /* MULT_OEM */
103 /* Prototypes of external functions */
104 #ifdef AIX
105 extern int AIX_vpdReadByte() ;
106 #endif
109 /* Prototype of a local function. */
110 static void smt_stop_watchdog(struct s_smc *smc);
112 #ifdef MCA
113 static int read_card_id() ;
114 static void DisableSlotAccess() ;
115 static void EnableSlotAccess() ;
116 #ifdef AIX
117 extern int attach_POS_addr() ;
118 extern int detach_POS_addr() ;
119 extern u_char read_POS() ;
120 extern void write_POS() ;
121 extern int AIX_vpdReadByte() ;
122 #else
123 #define read_POS(smc,a1,a2) ((u_char) inp(a1))
124 #define write_POS(smc,a1,a2,a3) outp((a1),(a3))
125 #endif
126 #endif /* MCA */
130 * FDDI card reset
132 static void card_start(struct s_smc *smc)
134 int i ;
135 #ifdef PCI
136 u_char rev_id ;
137 u_short word;
138 #endif
140 smt_stop_watchdog(smc) ;
142 #ifdef ISA
143 outpw(CSR_A,0) ; /* reset for all chips */
144 for (i = 10 ; i ; i--) /* delay for PLC's */
145 (void)inpw(ISR_A) ;
146 OUT_82c54_TIMER(3,COUNT(2) | RW_OP(3) | TMODE(2)) ;
147 /* counter 2, mode 2 */
148 OUT_82c54_TIMER(2,97) ; /* LSB */
149 OUT_82c54_TIMER(2,0) ; /* MSB ( 15.6 us ) */
150 outpw(CSR_A,CS_CRESET) ;
151 #endif
152 #ifdef EISA
153 outpw(CSR_A,0) ; /* reset for all chips */
154 for (i = 10 ; i ; i--) /* delay for PLC's */
155 (void)inpw(ISR_A) ;
156 outpw(CSR_A,CS_CRESET) ;
157 smc->hw.led = (2<<6) ;
158 outpw(CSR_A,CS_CRESET | smc->hw.led) ;
159 #endif
160 #ifdef MCA
161 outp(ADDR(CARD_DIS),0) ; /* reset for all chips */
162 for (i = 10 ; i ; i--) /* delay for PLC's */
163 (void)inpw(ISR_A) ;
164 outp(ADDR(CARD_EN),0) ;
165 /* first I/O after reset must not be a access to FORMAC or PLC */
168 * bus timeout (MCA)
170 OUT_82c54_TIMER(3,COUNT(2) | RW_OP(3) | TMODE(3)) ;
171 /* counter 2, mode 3 */
172 OUT_82c54_TIMER(2,(2*24)) ; /* 3.9 us * 2 square wave */
173 OUT_82c54_TIMER(2,0) ; /* MSB */
175 /* POS 102 indicated an activ Check Line or Buss Error monitoring */
176 if (inpw(CSA_A) & (POS_EN_CHKINT | POS_EN_BUS_ERR)) {
177 outp(ADDR(IRQ_CHCK_EN),0) ;
180 if (!((i = inpw(CSR_A)) & CS_SAS)) {
181 if (!(i & CS_BYSTAT)) {
182 outp(ADDR(BYPASS(STAT_INS)),0) ;/* insert station */
185 outpw(LEDR_A,LED_1) ; /* yellow */
186 #endif /* MCA */
187 #ifdef PCI
189 * make sure no transfer activity is pending
191 outpw(FM_A(FM_MDREG1),FM_MINIT) ;
192 outp(ADDR(B0_CTRL), CTRL_HPI_SET) ;
193 hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ;
195 * now reset everything
197 outp(ADDR(B0_CTRL),CTRL_RST_SET) ; /* reset for all chips */
198 i = (int) inp(ADDR(B0_CTRL)) ; /* do dummy read */
199 SK_UNUSED(i) ; /* Make LINT happy. */
200 outp(ADDR(B0_CTRL), CTRL_RST_CLR) ;
203 * Reset all bits in the PCI STATUS register
205 outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_ON) ; /* enable for writes */
206 word = inpw(PCI_C(PCI_STATUS)) ;
207 outpw(PCI_C(PCI_STATUS), word | PCI_ERRBITS) ;
208 outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_OFF) ; /* disable writes */
211 * Release the reset of all the State machines
212 * Release Master_Reset
213 * Release HPI_SM_Reset
215 outp(ADDR(B0_CTRL), CTRL_MRST_CLR|CTRL_HPI_CLR) ;
218 * determine the adapter type
219 * Note: Do it here, because some drivers may call card_start() once
220 * at very first before any other initialization functions is
221 * executed.
223 rev_id = inp(PCI_C(PCI_REV_ID)) ;
224 if ((rev_id & 0xf0) == SK_ML_ID_1 || (rev_id & 0xf0) == SK_ML_ID_2) {
225 smc->hw.hw_is_64bit = TRUE ;
226 } else {
227 smc->hw.hw_is_64bit = FALSE ;
231 * Watermark initialization
233 if (!smc->hw.hw_is_64bit) {
234 outpd(ADDR(B4_R1_F), RX_WATERMARK) ;
235 outpd(ADDR(B5_XA_F), TX_WATERMARK) ;
236 outpd(ADDR(B5_XS_F), TX_WATERMARK) ;
239 outp(ADDR(B0_CTRL),CTRL_RST_CLR) ; /* clear the reset chips */
240 outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_ON|LED_GB_OFF) ; /* ye LED on */
242 /* init the timer value for the watch dog 2,5 minutes */
243 outpd(ADDR(B2_WDOG_INI),0x6FC23AC0) ;
245 /* initialize the ISR mask */
246 smc->hw.is_imask = ISR_MASK ;
247 smc->hw.hw_state = STOPPED ;
248 #endif
249 GET_PAGE(0) ; /* necessary for BOOT */
252 void card_stop(struct s_smc *smc)
254 smt_stop_watchdog(smc) ;
255 smc->hw.mac_ring_is_up = 0 ; /* ring down */
256 #ifdef ISA
257 outpw(CSR_A,0) ; /* reset for all chips */
258 #endif
259 #ifdef EISA
260 outpw(CSR_A,0) ; /* reset for all chips */
261 #endif
262 #ifdef MCA
263 outp(ADDR(CARD_DIS),0) ; /* reset for all chips */
264 #endif
265 #ifdef PCI
267 * make sure no transfer activity is pending
269 outpw(FM_A(FM_MDREG1),FM_MINIT) ;
270 outp(ADDR(B0_CTRL), CTRL_HPI_SET) ;
271 hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ;
273 * now reset everything
275 outp(ADDR(B0_CTRL),CTRL_RST_SET) ; /* reset for all chips */
276 outp(ADDR(B0_CTRL),CTRL_RST_CLR) ; /* reset for all chips */
277 outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_OFF|LED_GB_OFF) ; /* all LEDs off */
278 smc->hw.hw_state = STOPPED ;
279 #endif
281 /*--------------------------- ISR handling ----------------------------------*/
283 void mac1_irq(struct s_smc *smc, u_short stu, u_short stl)
285 int restart_tx = 0 ;
286 again:
287 #ifndef PCI
288 #ifndef ISA
290 * FORMAC+ bug modified the queue pointer if many read/write accesses happens!?
292 if (stl & (FM_SPCEPDS | /* parit/coding err. syn.q.*/
293 FM_SPCEPDA0 | /* parit/coding err. a.q.0 */
294 FM_SPCEPDA1 | /* parit/coding err. a.q.1 */
295 FM_SPCEPDA2)) { /* parit/coding err. a.q.2 */
296 SMT_PANIC(smc,SMT_E0132, SMT_E0132_MSG) ;
298 if (stl & (FM_STBURS | /* tx buffer underrun syn.q.*/
299 FM_STBURA0 | /* tx buffer underrun a.q.0 */
300 FM_STBURA1 | /* tx buffer underrun a.q.1 */
301 FM_STBURA2)) { /* tx buffer underrun a.q.2 */
302 SMT_PANIC(smc,SMT_E0133, SMT_E0133_MSG) ;
304 #endif
305 if ( (stu & (FM_SXMTABT | /* transmit abort */
306 #ifdef SYNC
307 FM_STXABRS | /* syn. tx abort */
308 #endif /* SYNC */
309 FM_STXABRA0)) || /* asyn. tx abort */
310 (stl & (FM_SQLCKS | /* lock for syn. q. */
311 FM_SQLCKA0)) ) { /* lock for asyn. q. */
312 formac_tx_restart(smc) ; /* init tx */
313 restart_tx = 1 ;
314 stu = inpw(FM_A(FM_ST1U)) ;
315 stl = inpw(FM_A(FM_ST1L)) ;
316 stu &= ~ (FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS) ;
317 if (stu || stl)
318 goto again ;
321 #ifndef SYNC
322 if (stu & (FM_STECFRMA0 | /* end of chain asyn tx */
323 FM_STEFRMA0)) { /* end of frame asyn tx */
324 /* free tx_queue */
325 smc->hw.n_a_send = 0 ;
326 if (++smc->hw.fp.tx_free < smc->hw.fp.tx_max) {
327 start_next_send(smc);
329 restart_tx = 1 ;
331 #else /* SYNC */
332 if (stu & (FM_STEFRMA0 | /* end of asyn tx */
333 FM_STEFRMS)) { /* end of sync tx */
334 restart_tx = 1 ;
336 #endif /* SYNC */
337 if (restart_tx)
338 llc_restart_tx(smc) ;
340 #else /* PCI */
343 * parity error: note encoding error is not possible in tag mode
345 if (stl & (FM_SPCEPDS | /* parity err. syn.q.*/
346 FM_SPCEPDA0 | /* parity err. a.q.0 */
347 FM_SPCEPDA1)) { /* parity err. a.q.1 */
348 SMT_PANIC(smc,SMT_E0134, SMT_E0134_MSG) ;
351 * buffer underrun: can only occur if a tx threshold is specified
353 if (stl & (FM_STBURS | /* tx buffer underrun syn.q.*/
354 FM_STBURA0 | /* tx buffer underrun a.q.0 */
355 FM_STBURA1)) { /* tx buffer underrun a.q.2 */
356 SMT_PANIC(smc,SMT_E0133, SMT_E0133_MSG) ;
359 if ( (stu & (FM_SXMTABT | /* transmit abort */
360 FM_STXABRS | /* syn. tx abort */
361 FM_STXABRA0)) || /* asyn. tx abort */
362 (stl & (FM_SQLCKS | /* lock for syn. q. */
363 FM_SQLCKA0)) ) { /* lock for asyn. q. */
364 formac_tx_restart(smc) ; /* init tx */
365 restart_tx = 1 ;
366 stu = inpw(FM_A(FM_ST1U)) ;
367 stl = inpw(FM_A(FM_ST1L)) ;
368 stu &= ~ (FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS) ;
369 if (stu || stl)
370 goto again ;
373 if (stu & (FM_STEFRMA0 | /* end of asyn tx */
374 FM_STEFRMS)) { /* end of sync tx */
375 restart_tx = 1 ;
378 if (restart_tx)
379 llc_restart_tx(smc) ;
381 #endif /* PCI */
383 * interrupt source= plc1
384 * this function is called in nwfbisr.asm
386 void plc1_irq(struct s_smc *smc)
388 u_short st = inpw(PLC(PB,PL_INTR_EVENT)) ;
390 #if (defined(ISA) || defined(EISA))
391 /* reset PLC Int. bits */
392 outpw(PLC1_I,inpw(PLC1_I)) ;
393 #endif
394 plc_irq(smc,PB,st) ;
398 * interrupt source= plc2
399 * this function is called in nwfbisr.asm
401 void plc2_irq(struct s_smc *smc)
403 u_short st = inpw(PLC(PA,PL_INTR_EVENT)) ;
405 #if (defined(ISA) || defined(EISA))
406 /* reset PLC Int. bits */
407 outpw(PLC2_I,inpw(PLC2_I)) ;
408 #endif
409 plc_irq(smc,PA,st) ;
414 * interrupt source= timer
416 void timer_irq(struct s_smc *smc)
418 hwt_restart(smc);
419 smc->hw.t_stop = smc->hw.t_start;
420 smt_timer_done(smc) ;
424 * return S-port (PA or PB)
426 int pcm_get_s_port(struct s_smc *smc)
428 SK_UNUSED(smc) ;
429 return(PS) ;
433 * Station Label = "FDDI-XYZ" where
435 * X = connector type
436 * Y = PMD type
437 * Z = port type
439 #define STATION_LABEL_CONNECTOR_OFFSET 5
440 #define STATION_LABEL_PMD_OFFSET 6
441 #define STATION_LABEL_PORT_OFFSET 7
443 void read_address(struct s_smc *smc, u_char *mac_addr)
445 char ConnectorType ;
446 char PmdType ;
447 int i ;
449 #if (defined(ISA) || defined(MCA))
450 for (i = 0; i < 4 ;i++) { /* read mac address from board */
451 smc->hw.fddi_phys_addr.a[i] =
452 bitrev8(inpw(PR_A(i+SA_MAC)));
454 for (i = 4; i < 6; i++) {
455 smc->hw.fddi_phys_addr.a[i] =
456 bitrev8(inpw(PR_A(i+SA_MAC+PRA_OFF)));
458 #endif
459 #ifdef EISA
461 * Note: We get trouble on an Alpha machine if we make a inpw()
462 * instead of inp()
464 for (i = 0; i < 4 ;i++) { /* read mac address from board */
465 smc->hw.fddi_phys_addr.a[i] =
466 bitrev8(inp(PR_A(i+SA_MAC)));
468 for (i = 4; i < 6; i++) {
469 smc->hw.fddi_phys_addr.a[i] =
470 bitrev8(inp(PR_A(i+SA_MAC+PRA_OFF)));
472 #endif
473 #ifdef PCI
474 for (i = 0; i < 6; i++) { /* read mac address from board */
475 smc->hw.fddi_phys_addr.a[i] =
476 bitrev8(inp(ADDR(B2_MAC_0+i)));
478 #endif
479 #ifndef PCI
480 ConnectorType = inpw(PR_A(SA_PMD_TYPE)) & 0xff ;
481 PmdType = inpw(PR_A(SA_PMD_TYPE+1)) & 0xff ;
482 #else
483 ConnectorType = inp(ADDR(B2_CONN_TYP)) ;
484 PmdType = inp(ADDR(B2_PMD_TYP)) ;
485 #endif
487 smc->y[PA].pmd_type[PMD_SK_CONN] =
488 smc->y[PB].pmd_type[PMD_SK_CONN] = ConnectorType ;
489 smc->y[PA].pmd_type[PMD_SK_PMD ] =
490 smc->y[PB].pmd_type[PMD_SK_PMD ] = PmdType ;
492 if (mac_addr) {
493 for (i = 0; i < 6 ;i++) {
494 smc->hw.fddi_canon_addr.a[i] = mac_addr[i] ;
495 smc->hw.fddi_home_addr.a[i] = bitrev8(mac_addr[i]);
497 return ;
499 smc->hw.fddi_home_addr = smc->hw.fddi_phys_addr ;
501 for (i = 0; i < 6 ;i++) {
502 smc->hw.fddi_canon_addr.a[i] =
503 bitrev8(smc->hw.fddi_phys_addr.a[i]);
508 * FDDI card soft reset
510 void init_board(struct s_smc *smc, u_char *mac_addr)
512 card_start(smc) ;
513 read_address(smc,mac_addr) ;
515 #ifndef PCI
516 if (inpw(CSR_A) & CS_SAS)
517 #else
518 if (!(inp(ADDR(B0_DAS)) & DAS_AVAIL))
519 #endif
520 smc->s.sas = SMT_SAS ; /* Single att. station */
521 else
522 smc->s.sas = SMT_DAS ; /* Dual att. station */
524 #ifndef PCI
525 if (inpw(CSR_A) & CS_BYSTAT)
526 #else
527 if (!(inp(ADDR(B0_DAS)) & DAS_BYP_ST))
528 #endif
529 smc->mib.fddiSMTBypassPresent = 0 ;
530 /* without opt. bypass */
531 else
532 smc->mib.fddiSMTBypassPresent = 1 ;
533 /* with opt. bypass */
537 * insert or deinsert optical bypass (called by ECM)
539 void sm_pm_bypass_req(struct s_smc *smc, int mode)
541 #if (defined(ISA) || defined(EISA))
542 int csra_v ;
543 #endif
545 DB_ECMN(1,"ECM : sm_pm_bypass_req(%s)\n",(mode == BP_INSERT) ?
546 "BP_INSERT" : "BP_DEINSERT",0) ;
548 if (smc->s.sas != SMT_DAS)
549 return ;
551 #if (defined(ISA) || defined(EISA))
553 csra_v = inpw(CSR_A) & ~CS_BYPASS ;
554 #ifdef EISA
555 csra_v |= smc->hw.led ;
556 #endif
558 switch(mode) {
559 case BP_INSERT :
560 outpw(CSR_A,csra_v | CS_BYPASS) ;
561 break ;
562 case BP_DEINSERT :
563 outpw(CSR_A,csra_v) ;
564 break ;
566 #endif /* ISA / EISA */
567 #ifdef MCA
568 switch(mode) {
569 case BP_INSERT :
570 outp(ADDR(BYPASS(STAT_INS)),0) ;/* insert station */
571 break ;
572 case BP_DEINSERT :
573 outp(ADDR(BYPASS(STAT_BYP)),0) ; /* bypass station */
574 break ;
576 #endif
577 #ifdef PCI
578 switch(mode) {
579 case BP_INSERT :
580 outp(ADDR(B0_DAS),DAS_BYP_INS) ; /* insert station */
581 break ;
582 case BP_DEINSERT :
583 outp(ADDR(B0_DAS),DAS_BYP_RMV) ; /* bypass station */
584 break ;
586 #endif
590 * check if bypass connected
592 int sm_pm_bypass_present(struct s_smc *smc)
594 #ifndef PCI
595 return( (inpw(CSR_A) & CS_BYSTAT) ? FALSE : TRUE ) ;
596 #else
597 return( (inp(ADDR(B0_DAS)) & DAS_BYP_ST) ? TRUE: FALSE) ;
598 #endif
601 void plc_clear_irq(struct s_smc *smc, int p)
603 SK_UNUSED(p) ;
605 #if (defined(ISA) || defined(EISA))
606 switch (p) {
607 case PA :
608 /* reset PLC Int. bits */
609 outpw(PLC2_I,inpw(PLC2_I)) ;
610 break ;
611 case PB :
612 /* reset PLC Int. bits */
613 outpw(PLC1_I,inpw(PLC1_I)) ;
614 break ;
616 #else
617 SK_UNUSED(smc) ;
618 #endif
623 * led_indication called by rmt_indication() and
624 * pcm_state_change()
626 * Input:
627 * smc: SMT context
628 * led_event:
629 * 0 Only switch green LEDs according to their respective PCM state
630 * LED_Y_OFF just switch yellow LED off
631 * LED_Y_ON just switch yello LED on
633 static void led_indication(struct s_smc *smc, int led_event)
635 /* use smc->hw.mac_ring_is_up == TRUE
636 * as indication for Ring Operational
638 u_short led_state ;
639 struct s_phy *phy ;
640 struct fddi_mib_p *mib_a ;
641 struct fddi_mib_p *mib_b ;
643 phy = &smc->y[PA] ;
644 mib_a = phy->mib ;
645 phy = &smc->y[PB] ;
646 mib_b = phy->mib ;
648 #ifdef EISA
649 /* Ring up = yellow led OFF*/
650 if (led_event == LED_Y_ON) {
651 smc->hw.led |= CS_LED_1 ;
653 else if (led_event == LED_Y_OFF) {
654 smc->hw.led &= ~CS_LED_1 ;
656 else {
657 /* Link at Port A or B = green led ON */
658 if (mib_a->fddiPORTPCMState == PC8_ACTIVE ||
659 mib_b->fddiPORTPCMState == PC8_ACTIVE) {
660 smc->hw.led |= CS_LED_0 ;
662 else {
663 smc->hw.led &= ~CS_LED_0 ;
666 #endif
667 #ifdef MCA
668 led_state = inpw(LEDR_A) ;
670 /* Ring up = yellow led OFF*/
671 if (led_event == LED_Y_ON) {
672 led_state |= LED_1 ;
674 else if (led_event == LED_Y_OFF) {
675 led_state &= ~LED_1 ;
677 else {
678 led_state &= ~(LED_2|LED_0) ;
680 /* Link at Port A = green led A ON */
681 if (mib_a->fddiPORTPCMState == PC8_ACTIVE) {
682 led_state |= LED_2 ;
685 /* Link at Port B/S = green led B ON */
686 if (mib_b->fddiPORTPCMState == PC8_ACTIVE) {
687 led_state |= LED_0 ;
691 outpw(LEDR_A, led_state) ;
692 #endif /* MCA */
693 #ifdef PCI
694 led_state = 0 ;
696 /* Ring up = yellow led OFF*/
697 if (led_event == LED_Y_ON) {
698 led_state |= LED_MY_ON ;
700 else if (led_event == LED_Y_OFF) {
701 led_state |= LED_MY_OFF ;
703 else { /* PCM state changed */
704 /* Link at Port A/S = green led A ON */
705 if (mib_a->fddiPORTPCMState == PC8_ACTIVE) {
706 led_state |= LED_GA_ON ;
708 else {
709 led_state |= LED_GA_OFF ;
712 /* Link at Port B = green led B ON */
713 if (mib_b->fddiPORTPCMState == PC8_ACTIVE) {
714 led_state |= LED_GB_ON ;
716 else {
717 led_state |= LED_GB_OFF ;
721 outp(ADDR(B0_LED), led_state) ;
722 #endif /* PCI */
727 void pcm_state_change(struct s_smc *smc, int plc, int p_state)
730 * the current implementation of pcm_state_change() in the driver
731 * parts must be renamed to drv_pcm_state_change() which will be called
732 * now after led_indication.
734 DRV_PCM_STATE_CHANGE(smc,plc,p_state) ;
736 led_indication(smc,0) ;
740 void rmt_indication(struct s_smc *smc, int i)
742 /* Call a driver special function if defined */
743 DRV_RMT_INDICATION(smc,i) ;
745 led_indication(smc, i ? LED_Y_OFF : LED_Y_ON) ;
750 * llc_recover_tx called by init_tx (fplus.c)
752 void llc_recover_tx(struct s_smc *smc)
754 #ifdef LOAD_GEN
755 extern int load_gen_flag ;
757 load_gen_flag = 0 ;
758 #endif
759 #ifndef SYNC
760 smc->hw.n_a_send= 0 ;
761 #else
762 SK_UNUSED(smc) ;
763 #endif
766 #ifdef MULT_OEM
767 static int is_equal_num(char comp1[], char comp2[], int num)
769 int i ;
771 for (i = 0 ; i < num ; i++) {
772 if (comp1[i] != comp2[i])
773 return (0) ;
775 return (1) ;
776 } /* is_equal_num */
780 * set the OEM ID defaults, and test the contents of the OEM data base
781 * The default OEM is the first ACTIVE entry in the OEM data base
783 * returns: 0 success
784 * 1 error in data base
785 * 2 data base empty
786 * 3 no active entry
788 int set_oi_id_def(struct s_smc *smc)
790 int sel_id ;
791 int i ;
792 int act_entries ;
794 i = 0 ;
795 sel_id = -1 ;
796 act_entries = FALSE ;
797 smc->hw.oem_id = 0 ;
798 smc->hw.oem_min_status = OI_STAT_ACTIVE ;
800 /* check OEM data base */
801 while (oem_ids[i].oi_status) {
802 switch (oem_ids[i].oi_status) {
803 case OI_STAT_ACTIVE:
804 act_entries = TRUE ; /* we have active IDs */
805 if (sel_id == -1)
806 sel_id = i ; /* save the first active ID */
807 case OI_STAT_VALID:
808 case OI_STAT_PRESENT:
809 i++ ;
810 break ; /* entry ok */
811 default:
812 return (1) ; /* invalid oi_status */
816 if (i == 0)
817 return (2) ;
818 if (!act_entries)
819 return (3) ;
821 /* ok, we have a valid OEM data base with an active entry */
822 smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[sel_id] ;
823 return (0) ;
825 #endif /* MULT_OEM */
828 #ifdef MCA
829 /************************
831 * BEGIN_MANUAL_ENTRY()
833 * exist_board
835 * Check if an MCA board is present in the specified slot.
837 * int exist_board(
838 * struct s_smc *smc,
839 * int slot) ;
840 * In
841 * smc - A pointer to the SMT Context struct.
843 * slot - The number of the slot to inspect.
844 * Out
845 * 0 = No adapter present.
846 * 1 = Found FM1 adapter.
848 * Pseudo
849 * Read MCA ID
850 * for all valid OEM_IDs
851 * compare with ID read
852 * if equal, return 1
853 * return(0
855 * Note
856 * The smc pointer must be valid now.
858 * END_MANUAL_ENTRY()
860 ************************/
861 #define LONG_CARD_ID(lo, hi) ((((hi) & 0xff) << 8) | ((lo) & 0xff))
862 int exist_board(struct s_smc *smc, int slot)
864 #ifdef MULT_OEM
865 SK_LOC_DECL(u_char,id[2]) ;
866 int idi ;
867 #endif /* MULT_OEM */
869 /* No longer valid. */
870 if (smc == NULL)
871 return(0) ;
873 #ifndef MULT_OEM
874 if (read_card_id(smc, slot)
875 == LONG_CARD_ID(OEMID(smc,0), OEMID(smc,1)))
876 return (1) ; /* Found FM adapter. */
878 #else /* MULT_OEM */
879 idi = read_card_id(smc, slot) ;
880 id[0] = idi & 0xff ;
881 id[1] = idi >> 8 ;
883 smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;
884 for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
885 if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
886 continue ;
888 if (is_equal_num(&id[0],&OEMID(smc,0),2))
889 return (1) ;
891 #endif /* MULT_OEM */
892 return (0) ; /* No adapter found. */
895 /************************
897 * read_card_id
899 * Read the MCA card id from the specified slot.
900 * In
901 * smc - A pointer to the SMT Context struct.
902 * CAVEAT: This pointer may be NULL and *must not* be used within this
903 * function. It's only purpose is for drivers that need some information
904 * for the inp() and outp() macros.
906 * slot - The number of the slot for which the card id is returned.
907 * Out
908 * Returns the card id read from the specified slot. If an illegal slot
909 * number is specified, the function returns zero.
911 ************************/
912 static int read_card_id(struct s_smc *smc, int slot)
913 /* struct s_smc *smc ; Do not use. */
915 int card_id ;
917 SK_UNUSED(smc) ; /* Make LINT happy. */
918 if ((slot < 1) || (slot > 15)) /* max 16 slots, 0 = motherboard */
919 return (0) ; /* Illegal slot number specified. */
921 EnableSlotAccess(smc, slot) ;
923 card_id = ((read_POS(smc,POS_ID_HIGH,slot - 1) & 0xff) << 8) |
924 (read_POS(smc,POS_ID_LOW,slot - 1) & 0xff) ;
926 DisableSlotAccess(smc) ;
928 return (card_id) ;
931 /************************
933 * BEGIN_MANUAL_ENTRY()
935 * get_board_para
937 * Get adapter configuration information. Fill all board specific
938 * parameters within the 'smc' structure.
940 * int get_board_para(
941 * struct s_smc *smc,
942 * int slot) ;
943 * In
944 * smc - A pointer to the SMT Context struct, to which this function will
945 * write some adapter configuration data.
947 * slot - The number of the slot, in which the adapter is installed.
948 * Out
949 * 0 = No adapter present.
950 * 1 = Ok.
951 * 2 = Adapter present, but card enable bit not set.
953 * END_MANUAL_ENTRY()
955 ************************/
956 int get_board_para(struct s_smc *smc, int slot)
958 int val ;
959 int i ;
961 /* Check if adapter present & get type of adapter. */
962 switch (exist_board(smc, slot)) {
963 case 0: /* Adapter not present. */
964 return (0) ;
965 case 1: /* FM Rev. 1 */
966 smc->hw.rev = FM1_REV ;
967 smc->hw.VFullRead = 0x0a ;
968 smc->hw.VFullWrite = 0x05 ;
969 smc->hw.DmaWriteExtraBytes = 8 ; /* 2 extra words. */
970 break ;
972 smc->hw.slot = slot ;
974 EnableSlotAccess(smc, slot) ;
976 if (!(read_POS(smc,POS_102, slot - 1) & POS_CARD_EN)) {
977 DisableSlotAccess(smc) ;
978 return (2) ; /* Card enable bit not set. */
981 val = read_POS(smc,POS_104, slot - 1) ; /* I/O, IRQ */
983 #ifndef MEM_MAPPED_IO /* is defined by the operating system */
984 i = val & POS_IOSEL ; /* I/O base addr. (0x0200 .. 0xfe00) */
985 smc->hw.iop = (i + 1) * 0x0400 - 0x200 ;
986 #endif
987 i = ((val & POS_IRQSEL) >> 6) & 0x03 ; /* IRQ <0, 1> */
988 smc->hw.irq = opt_ints[i] ;
990 /* FPROM base addr. */
991 i = ((read_POS(smc,POS_103, slot - 1) & POS_MSEL) >> 4) & 0x07 ;
992 smc->hw.eprom = opt_eproms[i] ;
994 DisableSlotAccess(smc) ;
996 /* before this, the smc->hw.iop must be set !!! */
997 smc->hw.slot_32 = inpw(CSF_A) & SLOT_32 ;
999 return (1) ;
1002 /* Enable access to specified MCA slot. */
1003 static void EnableSlotAccess(struct s_smc *smc, int slot)
1005 SK_UNUSED(slot) ;
1007 #ifndef AIX
1008 SK_UNUSED(smc) ;
1010 /* System mode. */
1011 outp(POS_SYS_SETUP, POS_SYSTEM) ;
1013 /* Select slot. */
1014 outp(POS_CHANNEL_POS, POS_CHANNEL_BIT | (slot-1)) ;
1015 #else
1016 attach_POS_addr (smc) ;
1017 #endif
1020 /* Disable access to MCA slot formerly enabled via EnableSlotAccess(). */
1021 static void DisableSlotAccess(struct s_smc *smc)
1023 #ifndef AIX
1024 SK_UNUSED(smc) ;
1026 outp(POS_CHANNEL_POS, 0) ;
1027 #else
1028 detach_POS_addr (smc) ;
1029 #endif
1031 #endif /* MCA */
1033 #ifdef EISA
1034 #ifndef MEM_MAPPED_IO
1035 #define SADDR(slot) (((slot)<<12)&0xf000)
1036 #else /* MEM_MAPPED_IO */
1037 #define SADDR(slot) (smc->hw.iop)
1038 #endif /* MEM_MAPPED_IO */
1040 /************************
1042 * BEGIN_MANUAL_ENTRY()
1044 * exist_board
1046 * Check if an EISA board is present in the specified slot.
1048 * int exist_board(
1049 * struct s_smc *smc,
1050 * int slot) ;
1051 * In
1052 * smc - A pointer to the SMT Context struct.
1054 * slot - The number of the slot to inspect.
1055 * Out
1056 * 0 = No adapter present.
1057 * 1 = Found adapter.
1059 * Pseudo
1060 * Read EISA ID
1061 * for all valid OEM_IDs
1062 * compare with ID read
1063 * if equal, return 1
1064 * return(0
1066 * Note
1067 * The smc pointer must be valid now.
1069 ************************/
1070 int exist_board(struct s_smc *smc, int slot)
1072 int i ;
1073 #ifdef MULT_OEM
1074 SK_LOC_DECL(u_char,id[4]) ;
1075 #endif /* MULT_OEM */
1077 /* No longer valid. */
1078 if (smc == NULL)
1079 return(0);
1081 SK_UNUSED(slot) ;
1083 #ifndef MULT_OEM
1084 for (i = 0 ; i < 4 ; i++) {
1085 if (inp(SADDR(slot)+PRA(i)) != OEMID(smc,i))
1086 return(0) ;
1088 return(1) ;
1089 #else /* MULT_OEM */
1090 for (i = 0 ; i < 4 ; i++)
1091 id[i] = inp(SADDR(slot)+PRA(i)) ;
1093 smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;
1095 for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
1096 if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
1097 continue ;
1099 if (is_equal_num(&id[0],&OEMID(smc,0),4))
1100 return (1) ;
1102 return (0) ; /* No adapter found. */
1103 #endif /* MULT_OEM */
1107 int get_board_para(struct s_smc *smc, int slot)
1109 int i ;
1111 if (!exist_board(smc,slot))
1112 return(0) ;
1114 smc->hw.slot = slot ;
1115 #ifndef MEM_MAPPED_IO /* if defined by the operating system */
1116 smc->hw.iop = SADDR(slot) ;
1117 #endif
1119 if (!(inp(C0_A(0))&CFG_CARD_EN)) {
1120 return(2) ; /* CFG_CARD_EN bit not set! */
1123 smc->hw.irq = opt_ints[(inp(C1_A(0)) & CFG_IRQ_SEL)] ;
1124 smc->hw.dma = opt_dmas[((inp(C1_A(0)) & CFG_DRQ_SEL)>>3)] ;
1126 if ((i = inp(C2_A(0)) & CFG_EPROM_SEL) != 0x0f)
1127 smc->hw.eprom = opt_eproms[i] ;
1128 else
1129 smc->hw.eprom = 0 ;
1131 smc->hw.DmaWriteExtraBytes = 8 ;
1133 return(1) ;
1135 #endif /* EISA */
1137 #ifdef ISA
1138 #ifndef MULT_OEM
1139 const u_char sklogo[6] = SKLOGO_STR ;
1140 #define SIZE_SKLOGO(smc) sizeof(sklogo)
1141 #define SKLOGO(smc,i) sklogo[i]
1142 #else /* MULT_OEM */
1143 #define SIZE_SKLOGO(smc) smc->hw.oem_id->oi_logo_len
1144 #define SKLOGO(smc,i) smc->hw.oem_id->oi_logo[i]
1145 #endif /* MULT_OEM */
1148 int exist_board(struct s_smc *smc, HW_PTR port)
1150 int i ;
1151 #ifdef MULT_OEM
1152 int bytes_read ;
1153 u_char board_logo[15] ;
1154 SK_LOC_DECL(u_char,id[4]) ;
1155 #endif /* MULT_OEM */
1157 /* No longer valid. */
1158 if (smc == NULL)
1159 return(0);
1161 SK_UNUSED(smc) ;
1162 #ifndef MULT_OEM
1163 for (i = SADDRL ; i < (signed) (SADDRL+SIZE_SKLOGO(smc)) ; i++) {
1164 if ((u_char)inpw((PRA(i)+port)) != SKLOGO(smc,i-SADDRL)) {
1165 return(0) ;
1169 /* check MAC address (S&K or other) */
1170 for (i = 0 ; i < 3 ; i++) {
1171 if ((u_char)inpw((PRA(i)+port)) != OEMID(smc,i))
1172 return(0) ;
1174 return(1) ;
1175 #else /* MULT_OEM */
1176 smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;
1177 board_logo[0] = (u_char)inpw((PRA(SADDRL)+port)) ;
1178 bytes_read = 1 ;
1180 for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
1181 if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
1182 continue ;
1184 /* Test all read bytes with current OEM_entry */
1185 /* for (i=0; (i<bytes_read) && (i < SIZE_SKLOGO(smc)); i++) { */
1186 for (i = 0; i < bytes_read; i++) {
1187 if (board_logo[i] != SKLOGO(smc,i))
1188 break ;
1191 /* If mismatch, switch to next OEM entry */
1192 if ((board_logo[i] != SKLOGO(smc,i)) && (i < bytes_read))
1193 continue ;
1195 --i ;
1196 while (bytes_read < SIZE_SKLOGO(smc)) {
1197 // inpw next byte SK_Logo
1198 i++ ;
1199 board_logo[i] = (u_char)inpw((PRA(SADDRL+i)+port)) ;
1200 bytes_read++ ;
1201 if (board_logo[i] != SKLOGO(smc,i))
1202 break ;
1205 for (i = 0 ; i < 3 ; i++)
1206 id[i] = (u_char)inpw((PRA(i)+port)) ;
1208 if ((board_logo[i] == SKLOGO(smc,i))
1209 && (bytes_read == SIZE_SKLOGO(smc))) {
1211 if (is_equal_num(&id[0],&OEMID(smc,0),3))
1212 return(1);
1214 } /* for */
1215 return(0) ;
1216 #endif /* MULT_OEM */
1219 int get_board_para(struct s_smc *smc, int slot)
1221 SK_UNUSED(smc) ;
1222 SK_UNUSED(slot) ;
1223 return(0) ; /* for ISA not supported */
1225 #endif /* ISA */
1227 #ifdef PCI
1228 #ifdef USE_BIOS_FUN
1229 int exist_board(struct s_smc *smc, int slot)
1231 u_short dev_id ;
1232 u_short ven_id ;
1233 int found ;
1234 int i ;
1236 found = FALSE ; /* make sure we returned with adatper not found*/
1237 /* if an empty oemids.h was included */
1239 #ifdef MULT_OEM
1240 smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;
1241 for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
1242 if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
1243 continue ;
1244 #endif
1245 ven_id = OEMID(smc,0) + (OEMID(smc,1) << 8) ;
1246 dev_id = OEMID(smc,2) + (OEMID(smc,3) << 8) ;
1247 for (i = 0; i < slot; i++) {
1248 if (pci_find_device(i,&smc->hw.pci_handle,
1249 dev_id,ven_id) != 0) {
1251 found = FALSE ;
1252 } else {
1253 found = TRUE ;
1256 if (found) {
1257 return(1) ; /* adapter was found */
1259 #ifdef MULT_OEM
1261 #endif
1262 return(0) ; /* adapter was not found */
1264 #endif /* PCI */
1265 #endif /* USE_BIOS_FUNC */
1267 void driver_get_bia(struct s_smc *smc, struct fddi_addr *bia_addr)
1269 int i ;
1271 for (i = 0 ; i < 6 ; i++)
1272 bia_addr->a[i] = bitrev8(smc->hw.fddi_phys_addr.a[i]);
1275 void smt_start_watchdog(struct s_smc *smc)
1277 SK_UNUSED(smc) ; /* Make LINT happy. */
1279 #ifndef DEBUG
1281 #ifdef PCI
1282 if (smc->hw.wdog_used) {
1283 outpw(ADDR(B2_WDOG_CRTL),TIM_START) ; /* Start timer. */
1285 #endif
1287 #endif /* DEBUG */
1290 static void smt_stop_watchdog(struct s_smc *smc)
1292 SK_UNUSED(smc) ; /* Make LINT happy. */
1293 #ifndef DEBUG
1295 #ifdef PCI
1296 if (smc->hw.wdog_used) {
1297 outpw(ADDR(B2_WDOG_CRTL),TIM_STOP) ; /* Stop timer. */
1299 #endif
1301 #endif /* DEBUG */
1304 #ifdef PCI
1306 void mac_do_pci_fix(struct s_smc *smc)
1308 SK_UNUSED(smc) ;
1310 #endif /* PCI */