ACPI: thinkpad-acpi: add power-management handler capability
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / ppp_async.c
blob27f5b904f48ec403f2008a27a1e292f98a8d211f
1 /*
2 * PPP async serial channel driver for Linux.
4 * Copyright 1999 Paul Mackerras.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 * This driver provides the encapsulation and framing for sending
12 * and receiving PPP frames over async serial lines. It relies on
13 * the generic PPP layer to give it frames to send and to process
14 * received frames. It implements the PPP line discipline.
16 * Part of the code in this driver was inspired by the old async-only
17 * PPP driver, written by Michael Callahan and Al Longyear, and
18 * subsequently hacked by Paul Mackerras.
21 #include <linux/module.h>
22 #include <linux/kernel.h>
23 #include <linux/skbuff.h>
24 #include <linux/tty.h>
25 #include <linux/netdevice.h>
26 #include <linux/poll.h>
27 #include <linux/crc-ccitt.h>
28 #include <linux/ppp_defs.h>
29 #include <linux/if_ppp.h>
30 #include <linux/ppp_channel.h>
31 #include <linux/spinlock.h>
32 #include <linux/init.h>
33 #include <linux/jiffies.h>
34 #include <asm/uaccess.h>
35 #include <asm/string.h>
37 #define PPP_VERSION "2.4.2"
39 #define OBUFSIZE 256
41 /* Structure for storing local state. */
42 struct asyncppp {
43 struct tty_struct *tty;
44 unsigned int flags;
45 unsigned int state;
46 unsigned int rbits;
47 int mru;
48 spinlock_t xmit_lock;
49 spinlock_t recv_lock;
50 unsigned long xmit_flags;
51 u32 xaccm[8];
52 u32 raccm;
53 unsigned int bytes_sent;
54 unsigned int bytes_rcvd;
56 struct sk_buff *tpkt;
57 int tpkt_pos;
58 u16 tfcs;
59 unsigned char *optr;
60 unsigned char *olim;
61 unsigned long last_xmit;
63 struct sk_buff *rpkt;
64 int lcp_fcs;
65 struct sk_buff_head rqueue;
67 struct tasklet_struct tsk;
69 atomic_t refcnt;
70 struct semaphore dead_sem;
71 struct ppp_channel chan; /* interface to generic ppp layer */
72 unsigned char obuf[OBUFSIZE];
75 /* Bit numbers in xmit_flags */
76 #define XMIT_WAKEUP 0
77 #define XMIT_FULL 1
78 #define XMIT_BUSY 2
80 /* State bits */
81 #define SC_TOSS 1
82 #define SC_ESCAPE 2
83 #define SC_PREV_ERROR 4
85 /* Bits in rbits */
86 #define SC_RCV_BITS (SC_RCV_B7_1|SC_RCV_B7_0|SC_RCV_ODDP|SC_RCV_EVNP)
88 static int flag_time = HZ;
89 module_param(flag_time, int, 0);
90 MODULE_PARM_DESC(flag_time, "ppp_async: interval between flagged packets (in clock ticks)");
91 MODULE_LICENSE("GPL");
92 MODULE_ALIAS_LDISC(N_PPP);
95 * Prototypes.
97 static int ppp_async_encode(struct asyncppp *ap);
98 static int ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb);
99 static int ppp_async_push(struct asyncppp *ap);
100 static void ppp_async_flush_output(struct asyncppp *ap);
101 static void ppp_async_input(struct asyncppp *ap, const unsigned char *buf,
102 char *flags, int count);
103 static int ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd,
104 unsigned long arg);
105 static void ppp_async_process(unsigned long arg);
107 static void async_lcp_peek(struct asyncppp *ap, unsigned char *data,
108 int len, int inbound);
110 static struct ppp_channel_ops async_ops = {
111 ppp_async_send,
112 ppp_async_ioctl
116 * Routines implementing the PPP line discipline.
120 * We have a potential race on dereferencing tty->disc_data,
121 * because the tty layer provides no locking at all - thus one
122 * cpu could be running ppp_asynctty_receive while another
123 * calls ppp_asynctty_close, which zeroes tty->disc_data and
124 * frees the memory that ppp_asynctty_receive is using. The best
125 * way to fix this is to use a rwlock in the tty struct, but for now
126 * we use a single global rwlock for all ttys in ppp line discipline.
128 * FIXME: this is no longer true. The _close path for the ldisc is
129 * now guaranteed to be sane.
131 static DEFINE_RWLOCK(disc_data_lock);
133 static struct asyncppp *ap_get(struct tty_struct *tty)
135 struct asyncppp *ap;
137 read_lock(&disc_data_lock);
138 ap = tty->disc_data;
139 if (ap != NULL)
140 atomic_inc(&ap->refcnt);
141 read_unlock(&disc_data_lock);
142 return ap;
145 static void ap_put(struct asyncppp *ap)
147 if (atomic_dec_and_test(&ap->refcnt))
148 up(&ap->dead_sem);
152 * Called when a tty is put into PPP line discipline. Called in process
153 * context.
155 static int
156 ppp_asynctty_open(struct tty_struct *tty)
158 struct asyncppp *ap;
159 int err;
161 err = -ENOMEM;
162 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
163 if (ap == 0)
164 goto out;
166 /* initialize the asyncppp structure */
167 ap->tty = tty;
168 ap->mru = PPP_MRU;
169 spin_lock_init(&ap->xmit_lock);
170 spin_lock_init(&ap->recv_lock);
171 ap->xaccm[0] = ~0U;
172 ap->xaccm[3] = 0x60000000U;
173 ap->raccm = ~0U;
174 ap->optr = ap->obuf;
175 ap->olim = ap->obuf;
176 ap->lcp_fcs = -1;
178 skb_queue_head_init(&ap->rqueue);
179 tasklet_init(&ap->tsk, ppp_async_process, (unsigned long) ap);
181 atomic_set(&ap->refcnt, 1);
182 init_MUTEX_LOCKED(&ap->dead_sem);
184 ap->chan.private = ap;
185 ap->chan.ops = &async_ops;
186 ap->chan.mtu = PPP_MRU;
187 err = ppp_register_channel(&ap->chan);
188 if (err)
189 goto out_free;
191 tty->disc_data = ap;
192 tty->receive_room = 65536;
193 return 0;
195 out_free:
196 kfree(ap);
197 out:
198 return err;
202 * Called when the tty is put into another line discipline
203 * or it hangs up. We have to wait for any cpu currently
204 * executing in any of the other ppp_asynctty_* routines to
205 * finish before we can call ppp_unregister_channel and free
206 * the asyncppp struct. This routine must be called from
207 * process context, not interrupt or softirq context.
209 static void
210 ppp_asynctty_close(struct tty_struct *tty)
212 struct asyncppp *ap;
214 write_lock_irq(&disc_data_lock);
215 ap = tty->disc_data;
216 tty->disc_data = NULL;
217 write_unlock_irq(&disc_data_lock);
218 if (ap == 0)
219 return;
222 * We have now ensured that nobody can start using ap from now
223 * on, but we have to wait for all existing users to finish.
224 * Note that ppp_unregister_channel ensures that no calls to
225 * our channel ops (i.e. ppp_async_send/ioctl) are in progress
226 * by the time it returns.
228 if (!atomic_dec_and_test(&ap->refcnt))
229 down(&ap->dead_sem);
230 tasklet_kill(&ap->tsk);
232 ppp_unregister_channel(&ap->chan);
233 if (ap->rpkt != 0)
234 kfree_skb(ap->rpkt);
235 skb_queue_purge(&ap->rqueue);
236 if (ap->tpkt != 0)
237 kfree_skb(ap->tpkt);
238 kfree(ap);
242 * Called on tty hangup in process context.
244 * Wait for I/O to driver to complete and unregister PPP channel.
245 * This is already done by the close routine, so just call that.
247 static int ppp_asynctty_hangup(struct tty_struct *tty)
249 ppp_asynctty_close(tty);
250 return 0;
254 * Read does nothing - no data is ever available this way.
255 * Pppd reads and writes packets via /dev/ppp instead.
257 static ssize_t
258 ppp_asynctty_read(struct tty_struct *tty, struct file *file,
259 unsigned char __user *buf, size_t count)
261 return -EAGAIN;
265 * Write on the tty does nothing, the packets all come in
266 * from the ppp generic stuff.
268 static ssize_t
269 ppp_asynctty_write(struct tty_struct *tty, struct file *file,
270 const unsigned char *buf, size_t count)
272 return -EAGAIN;
276 * Called in process context only. May be re-entered by multiple
277 * ioctl calling threads.
280 static int
281 ppp_asynctty_ioctl(struct tty_struct *tty, struct file *file,
282 unsigned int cmd, unsigned long arg)
284 struct asyncppp *ap = ap_get(tty);
285 int err, val;
286 int __user *p = (int __user *)arg;
288 if (ap == 0)
289 return -ENXIO;
290 err = -EFAULT;
291 switch (cmd) {
292 case PPPIOCGCHAN:
293 err = -ENXIO;
294 if (ap == 0)
295 break;
296 err = -EFAULT;
297 if (put_user(ppp_channel_index(&ap->chan), p))
298 break;
299 err = 0;
300 break;
302 case PPPIOCGUNIT:
303 err = -ENXIO;
304 if (ap == 0)
305 break;
306 err = -EFAULT;
307 if (put_user(ppp_unit_number(&ap->chan), p))
308 break;
309 err = 0;
310 break;
312 case TCGETS:
313 case TCGETA:
314 err = n_tty_ioctl(tty, file, cmd, arg);
315 break;
317 case TCFLSH:
318 /* flush our buffers and the serial port's buffer */
319 if (arg == TCIOFLUSH || arg == TCOFLUSH)
320 ppp_async_flush_output(ap);
321 err = n_tty_ioctl(tty, file, cmd, arg);
322 break;
324 case FIONREAD:
325 val = 0;
326 if (put_user(val, p))
327 break;
328 err = 0;
329 break;
331 default:
332 err = -ENOIOCTLCMD;
335 ap_put(ap);
336 return err;
339 /* No kernel lock - fine */
340 static unsigned int
341 ppp_asynctty_poll(struct tty_struct *tty, struct file *file, poll_table *wait)
343 return 0;
347 * This can now be called from hard interrupt level as well
348 * as soft interrupt level or mainline.
350 static void
351 ppp_asynctty_receive(struct tty_struct *tty, const unsigned char *buf,
352 char *cflags, int count)
354 struct asyncppp *ap = ap_get(tty);
355 unsigned long flags;
357 if (ap == 0)
358 return;
359 spin_lock_irqsave(&ap->recv_lock, flags);
360 ppp_async_input(ap, buf, cflags, count);
361 spin_unlock_irqrestore(&ap->recv_lock, flags);
362 if (!skb_queue_empty(&ap->rqueue))
363 tasklet_schedule(&ap->tsk);
364 ap_put(ap);
365 if (test_and_clear_bit(TTY_THROTTLED, &tty->flags)
366 && tty->driver->unthrottle)
367 tty->driver->unthrottle(tty);
370 static void
371 ppp_asynctty_wakeup(struct tty_struct *tty)
373 struct asyncppp *ap = ap_get(tty);
375 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
376 if (ap == 0)
377 return;
378 set_bit(XMIT_WAKEUP, &ap->xmit_flags);
379 tasklet_schedule(&ap->tsk);
380 ap_put(ap);
384 static struct tty_ldisc ppp_ldisc = {
385 .owner = THIS_MODULE,
386 .magic = TTY_LDISC_MAGIC,
387 .name = "ppp",
388 .open = ppp_asynctty_open,
389 .close = ppp_asynctty_close,
390 .hangup = ppp_asynctty_hangup,
391 .read = ppp_asynctty_read,
392 .write = ppp_asynctty_write,
393 .ioctl = ppp_asynctty_ioctl,
394 .poll = ppp_asynctty_poll,
395 .receive_buf = ppp_asynctty_receive,
396 .write_wakeup = ppp_asynctty_wakeup,
399 static int __init
400 ppp_async_init(void)
402 int err;
404 err = tty_register_ldisc(N_PPP, &ppp_ldisc);
405 if (err != 0)
406 printk(KERN_ERR "PPP_async: error %d registering line disc.\n",
407 err);
408 return err;
412 * The following routines provide the PPP channel interface.
414 static int
415 ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, unsigned long arg)
417 struct asyncppp *ap = chan->private;
418 void __user *argp = (void __user *)arg;
419 int __user *p = argp;
420 int err, val;
421 u32 accm[8];
423 err = -EFAULT;
424 switch (cmd) {
425 case PPPIOCGFLAGS:
426 val = ap->flags | ap->rbits;
427 if (put_user(val, p))
428 break;
429 err = 0;
430 break;
431 case PPPIOCSFLAGS:
432 if (get_user(val, p))
433 break;
434 ap->flags = val & ~SC_RCV_BITS;
435 spin_lock_irq(&ap->recv_lock);
436 ap->rbits = val & SC_RCV_BITS;
437 spin_unlock_irq(&ap->recv_lock);
438 err = 0;
439 break;
441 case PPPIOCGASYNCMAP:
442 if (put_user(ap->xaccm[0], (u32 __user *)argp))
443 break;
444 err = 0;
445 break;
446 case PPPIOCSASYNCMAP:
447 if (get_user(ap->xaccm[0], (u32 __user *)argp))
448 break;
449 err = 0;
450 break;
452 case PPPIOCGRASYNCMAP:
453 if (put_user(ap->raccm, (u32 __user *)argp))
454 break;
455 err = 0;
456 break;
457 case PPPIOCSRASYNCMAP:
458 if (get_user(ap->raccm, (u32 __user *)argp))
459 break;
460 err = 0;
461 break;
463 case PPPIOCGXASYNCMAP:
464 if (copy_to_user(argp, ap->xaccm, sizeof(ap->xaccm)))
465 break;
466 err = 0;
467 break;
468 case PPPIOCSXASYNCMAP:
469 if (copy_from_user(accm, argp, sizeof(accm)))
470 break;
471 accm[2] &= ~0x40000000U; /* can't escape 0x5e */
472 accm[3] |= 0x60000000U; /* must escape 0x7d, 0x7e */
473 memcpy(ap->xaccm, accm, sizeof(ap->xaccm));
474 err = 0;
475 break;
477 case PPPIOCGMRU:
478 if (put_user(ap->mru, p))
479 break;
480 err = 0;
481 break;
482 case PPPIOCSMRU:
483 if (get_user(val, p))
484 break;
485 if (val < PPP_MRU)
486 val = PPP_MRU;
487 ap->mru = val;
488 err = 0;
489 break;
491 default:
492 err = -ENOTTY;
495 return err;
499 * This is called at softirq level to deliver received packets
500 * to the ppp_generic code, and to tell the ppp_generic code
501 * if we can accept more output now.
503 static void ppp_async_process(unsigned long arg)
505 struct asyncppp *ap = (struct asyncppp *) arg;
506 struct sk_buff *skb;
508 /* process received packets */
509 while ((skb = skb_dequeue(&ap->rqueue)) != NULL) {
510 if (skb->cb[0])
511 ppp_input_error(&ap->chan, 0);
512 ppp_input(&ap->chan, skb);
515 /* try to push more stuff out */
516 if (test_bit(XMIT_WAKEUP, &ap->xmit_flags) && ppp_async_push(ap))
517 ppp_output_wakeup(&ap->chan);
521 * Procedures for encapsulation and framing.
525 * Procedure to encode the data for async serial transmission.
526 * Does octet stuffing (escaping), puts the address/control bytes
527 * on if A/C compression is disabled, and does protocol compression.
528 * Assumes ap->tpkt != 0 on entry.
529 * Returns 1 if we finished the current frame, 0 otherwise.
532 #define PUT_BYTE(ap, buf, c, islcp) do { \
533 if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 << (c & 0x1f)))) {\
534 *buf++ = PPP_ESCAPE; \
535 *buf++ = c ^ 0x20; \
536 } else \
537 *buf++ = c; \
538 } while (0)
540 static int
541 ppp_async_encode(struct asyncppp *ap)
543 int fcs, i, count, c, proto;
544 unsigned char *buf, *buflim;
545 unsigned char *data;
546 int islcp;
548 buf = ap->obuf;
549 ap->olim = buf;
550 ap->optr = buf;
551 i = ap->tpkt_pos;
552 data = ap->tpkt->data;
553 count = ap->tpkt->len;
554 fcs = ap->tfcs;
555 proto = (data[0] << 8) + data[1];
558 * LCP packets with code values between 1 (configure-reqest)
559 * and 7 (code-reject) must be sent as though no options
560 * had been negotiated.
562 islcp = proto == PPP_LCP && 1 <= data[2] && data[2] <= 7;
564 if (i == 0) {
565 if (islcp)
566 async_lcp_peek(ap, data, count, 0);
569 * Start of a new packet - insert the leading FLAG
570 * character if necessary.
572 if (islcp || flag_time == 0
573 || time_after_eq(jiffies, ap->last_xmit + flag_time))
574 *buf++ = PPP_FLAG;
575 ap->last_xmit = jiffies;
576 fcs = PPP_INITFCS;
579 * Put in the address/control bytes if necessary
581 if ((ap->flags & SC_COMP_AC) == 0 || islcp) {
582 PUT_BYTE(ap, buf, 0xff, islcp);
583 fcs = PPP_FCS(fcs, 0xff);
584 PUT_BYTE(ap, buf, 0x03, islcp);
585 fcs = PPP_FCS(fcs, 0x03);
590 * Once we put in the last byte, we need to put in the FCS
591 * and closing flag, so make sure there is at least 7 bytes
592 * of free space in the output buffer.
594 buflim = ap->obuf + OBUFSIZE - 6;
595 while (i < count && buf < buflim) {
596 c = data[i++];
597 if (i == 1 && c == 0 && (ap->flags & SC_COMP_PROT))
598 continue; /* compress protocol field */
599 fcs = PPP_FCS(fcs, c);
600 PUT_BYTE(ap, buf, c, islcp);
603 if (i < count) {
605 * Remember where we are up to in this packet.
607 ap->olim = buf;
608 ap->tpkt_pos = i;
609 ap->tfcs = fcs;
610 return 0;
614 * We have finished the packet. Add the FCS and flag.
616 fcs = ~fcs;
617 c = fcs & 0xff;
618 PUT_BYTE(ap, buf, c, islcp);
619 c = (fcs >> 8) & 0xff;
620 PUT_BYTE(ap, buf, c, islcp);
621 *buf++ = PPP_FLAG;
622 ap->olim = buf;
624 kfree_skb(ap->tpkt);
625 ap->tpkt = NULL;
626 return 1;
630 * Transmit-side routines.
634 * Send a packet to the peer over an async tty line.
635 * Returns 1 iff the packet was accepted.
636 * If the packet was not accepted, we will call ppp_output_wakeup
637 * at some later time.
639 static int
640 ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb)
642 struct asyncppp *ap = chan->private;
644 ppp_async_push(ap);
646 if (test_and_set_bit(XMIT_FULL, &ap->xmit_flags))
647 return 0; /* already full */
648 ap->tpkt = skb;
649 ap->tpkt_pos = 0;
651 ppp_async_push(ap);
652 return 1;
656 * Push as much data as possible out to the tty.
658 static int
659 ppp_async_push(struct asyncppp *ap)
661 int avail, sent, done = 0;
662 struct tty_struct *tty = ap->tty;
663 int tty_stuffed = 0;
666 * We can get called recursively here if the tty write
667 * function calls our wakeup function. This can happen
668 * for example on a pty with both the master and slave
669 * set to PPP line discipline.
670 * We use the XMIT_BUSY bit to detect this and get out,
671 * leaving the XMIT_WAKEUP bit set to tell the other
672 * instance that it may now be able to write more now.
674 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags))
675 return 0;
676 spin_lock_bh(&ap->xmit_lock);
677 for (;;) {
678 if (test_and_clear_bit(XMIT_WAKEUP, &ap->xmit_flags))
679 tty_stuffed = 0;
680 if (!tty_stuffed && ap->optr < ap->olim) {
681 avail = ap->olim - ap->optr;
682 set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
683 sent = tty->driver->write(tty, ap->optr, avail);
684 if (sent < 0)
685 goto flush; /* error, e.g. loss of CD */
686 ap->optr += sent;
687 if (sent < avail)
688 tty_stuffed = 1;
689 continue;
691 if (ap->optr >= ap->olim && ap->tpkt != 0) {
692 if (ppp_async_encode(ap)) {
693 /* finished processing ap->tpkt */
694 clear_bit(XMIT_FULL, &ap->xmit_flags);
695 done = 1;
697 continue;
700 * We haven't made any progress this time around.
701 * Clear XMIT_BUSY to let other callers in, but
702 * after doing so we have to check if anyone set
703 * XMIT_WAKEUP since we last checked it. If they
704 * did, we should try again to set XMIT_BUSY and go
705 * around again in case XMIT_BUSY was still set when
706 * the other caller tried.
708 clear_bit(XMIT_BUSY, &ap->xmit_flags);
709 /* any more work to do? if not, exit the loop */
710 if (!(test_bit(XMIT_WAKEUP, &ap->xmit_flags)
711 || (!tty_stuffed && ap->tpkt != 0)))
712 break;
713 /* more work to do, see if we can do it now */
714 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags))
715 break;
717 spin_unlock_bh(&ap->xmit_lock);
718 return done;
720 flush:
721 clear_bit(XMIT_BUSY, &ap->xmit_flags);
722 if (ap->tpkt != 0) {
723 kfree_skb(ap->tpkt);
724 ap->tpkt = NULL;
725 clear_bit(XMIT_FULL, &ap->xmit_flags);
726 done = 1;
728 ap->optr = ap->olim;
729 spin_unlock_bh(&ap->xmit_lock);
730 return done;
734 * Flush output from our internal buffers.
735 * Called for the TCFLSH ioctl. Can be entered in parallel
736 * but this is covered by the xmit_lock.
738 static void
739 ppp_async_flush_output(struct asyncppp *ap)
741 int done = 0;
743 spin_lock_bh(&ap->xmit_lock);
744 ap->optr = ap->olim;
745 if (ap->tpkt != NULL) {
746 kfree_skb(ap->tpkt);
747 ap->tpkt = NULL;
748 clear_bit(XMIT_FULL, &ap->xmit_flags);
749 done = 1;
751 spin_unlock_bh(&ap->xmit_lock);
752 if (done)
753 ppp_output_wakeup(&ap->chan);
757 * Receive-side routines.
760 /* see how many ordinary chars there are at the start of buf */
761 static inline int
762 scan_ordinary(struct asyncppp *ap, const unsigned char *buf, int count)
764 int i, c;
766 for (i = 0; i < count; ++i) {
767 c = buf[i];
768 if (c == PPP_ESCAPE || c == PPP_FLAG
769 || (c < 0x20 && (ap->raccm & (1 << c)) != 0))
770 break;
772 return i;
775 /* called when a flag is seen - do end-of-packet processing */
776 static void
777 process_input_packet(struct asyncppp *ap)
779 struct sk_buff *skb;
780 unsigned char *p;
781 unsigned int len, fcs, proto;
783 skb = ap->rpkt;
784 if (ap->state & (SC_TOSS | SC_ESCAPE))
785 goto err;
787 if (skb == NULL)
788 return; /* 0-length packet */
790 /* check the FCS */
791 p = skb->data;
792 len = skb->len;
793 if (len < 3)
794 goto err; /* too short */
795 fcs = PPP_INITFCS;
796 for (; len > 0; --len)
797 fcs = PPP_FCS(fcs, *p++);
798 if (fcs != PPP_GOODFCS)
799 goto err; /* bad FCS */
800 skb_trim(skb, skb->len - 2);
802 /* check for address/control and protocol compression */
803 p = skb->data;
804 if (p[0] == PPP_ALLSTATIONS) {
805 /* chop off address/control */
806 if (p[1] != PPP_UI || skb->len < 3)
807 goto err;
808 p = skb_pull(skb, 2);
810 proto = p[0];
811 if (proto & 1) {
812 /* protocol is compressed */
813 skb_push(skb, 1)[0] = 0;
814 } else {
815 if (skb->len < 2)
816 goto err;
817 proto = (proto << 8) + p[1];
818 if (proto == PPP_LCP)
819 async_lcp_peek(ap, p, skb->len, 1);
822 /* queue the frame to be processed */
823 skb->cb[0] = ap->state;
824 skb_queue_tail(&ap->rqueue, skb);
825 ap->rpkt = NULL;
826 ap->state = 0;
827 return;
829 err:
830 /* frame had an error, remember that, reset SC_TOSS & SC_ESCAPE */
831 ap->state = SC_PREV_ERROR;
832 if (skb) {
833 /* make skb appear as freshly allocated */
834 skb_trim(skb, 0);
835 skb_reserve(skb, - skb_headroom(skb));
839 /* Called when the tty driver has data for us. Runs parallel with the
840 other ldisc functions but will not be re-entered */
842 static void
843 ppp_async_input(struct asyncppp *ap, const unsigned char *buf,
844 char *flags, int count)
846 struct sk_buff *skb;
847 int c, i, j, n, s, f;
848 unsigned char *sp;
850 /* update bits used for 8-bit cleanness detection */
851 if (~ap->rbits & SC_RCV_BITS) {
852 s = 0;
853 for (i = 0; i < count; ++i) {
854 c = buf[i];
855 if (flags != 0 && flags[i] != 0)
856 continue;
857 s |= (c & 0x80)? SC_RCV_B7_1: SC_RCV_B7_0;
858 c = ((c >> 4) ^ c) & 0xf;
859 s |= (0x6996 & (1 << c))? SC_RCV_ODDP: SC_RCV_EVNP;
861 ap->rbits |= s;
864 while (count > 0) {
865 /* scan through and see how many chars we can do in bulk */
866 if ((ap->state & SC_ESCAPE) && buf[0] == PPP_ESCAPE)
867 n = 1;
868 else
869 n = scan_ordinary(ap, buf, count);
871 f = 0;
872 if (flags != 0 && (ap->state & SC_TOSS) == 0) {
873 /* check the flags to see if any char had an error */
874 for (j = 0; j < n; ++j)
875 if ((f = flags[j]) != 0)
876 break;
878 if (f != 0) {
879 /* start tossing */
880 ap->state |= SC_TOSS;
882 } else if (n > 0 && (ap->state & SC_TOSS) == 0) {
883 /* stuff the chars in the skb */
884 skb = ap->rpkt;
885 if (skb == 0) {
886 skb = dev_alloc_skb(ap->mru + PPP_HDRLEN + 2);
887 if (skb == 0)
888 goto nomem;
889 ap->rpkt = skb;
891 if (skb->len == 0) {
892 /* Try to get the payload 4-byte aligned.
893 * This should match the
894 * PPP_ALLSTATIONS/PPP_UI/compressed tests in
895 * process_input_packet, but we do not have
896 * enough chars here to test buf[1] and buf[2].
898 if (buf[0] != PPP_ALLSTATIONS)
899 skb_reserve(skb, 2 + (buf[0] & 1));
901 if (n > skb_tailroom(skb)) {
902 /* packet overflowed MRU */
903 ap->state |= SC_TOSS;
904 } else {
905 sp = skb_put(skb, n);
906 memcpy(sp, buf, n);
907 if (ap->state & SC_ESCAPE) {
908 sp[0] ^= 0x20;
909 ap->state &= ~SC_ESCAPE;
914 if (n >= count)
915 break;
917 c = buf[n];
918 if (flags != NULL && flags[n] != 0) {
919 ap->state |= SC_TOSS;
920 } else if (c == PPP_FLAG) {
921 process_input_packet(ap);
922 } else if (c == PPP_ESCAPE) {
923 ap->state |= SC_ESCAPE;
924 } else if (I_IXON(ap->tty)) {
925 if (c == START_CHAR(ap->tty))
926 start_tty(ap->tty);
927 else if (c == STOP_CHAR(ap->tty))
928 stop_tty(ap->tty);
930 /* otherwise it's a char in the recv ACCM */
931 ++n;
933 buf += n;
934 if (flags != 0)
935 flags += n;
936 count -= n;
938 return;
940 nomem:
941 printk(KERN_ERR "PPPasync: no memory (input pkt)\n");
942 ap->state |= SC_TOSS;
946 * We look at LCP frames going past so that we can notice
947 * and react to the LCP configure-ack from the peer.
948 * In the situation where the peer has been sent a configure-ack
949 * already, LCP is up once it has sent its configure-ack
950 * so the immediately following packet can be sent with the
951 * configured LCP options. This allows us to process the following
952 * packet correctly without pppd needing to respond quickly.
954 * We only respond to the received configure-ack if we have just
955 * sent a configure-request, and the configure-ack contains the
956 * same data (this is checked using a 16-bit crc of the data).
958 #define CONFREQ 1 /* LCP code field values */
959 #define CONFACK 2
960 #define LCP_MRU 1 /* LCP option numbers */
961 #define LCP_ASYNCMAP 2
963 static void async_lcp_peek(struct asyncppp *ap, unsigned char *data,
964 int len, int inbound)
966 int dlen, fcs, i, code;
967 u32 val;
969 data += 2; /* skip protocol bytes */
970 len -= 2;
971 if (len < 4) /* 4 = code, ID, length */
972 return;
973 code = data[0];
974 if (code != CONFACK && code != CONFREQ)
975 return;
976 dlen = (data[2] << 8) + data[3];
977 if (len < dlen)
978 return; /* packet got truncated or length is bogus */
980 if (code == (inbound? CONFACK: CONFREQ)) {
982 * sent confreq or received confack:
983 * calculate the crc of the data from the ID field on.
985 fcs = PPP_INITFCS;
986 for (i = 1; i < dlen; ++i)
987 fcs = PPP_FCS(fcs, data[i]);
989 if (!inbound) {
990 /* outbound confreq - remember the crc for later */
991 ap->lcp_fcs = fcs;
992 return;
995 /* received confack, check the crc */
996 fcs ^= ap->lcp_fcs;
997 ap->lcp_fcs = -1;
998 if (fcs != 0)
999 return;
1000 } else if (inbound)
1001 return; /* not interested in received confreq */
1003 /* process the options in the confack */
1004 data += 4;
1005 dlen -= 4;
1006 /* data[0] is code, data[1] is length */
1007 while (dlen >= 2 && dlen >= data[1] && data[1] >= 2) {
1008 switch (data[0]) {
1009 case LCP_MRU:
1010 val = (data[2] << 8) + data[3];
1011 if (inbound)
1012 ap->mru = val;
1013 else
1014 ap->chan.mtu = val;
1015 break;
1016 case LCP_ASYNCMAP:
1017 val = (data[2] << 24) + (data[3] << 16)
1018 + (data[4] << 8) + data[5];
1019 if (inbound)
1020 ap->raccm = val;
1021 else
1022 ap->xaccm[0] = val;
1023 break;
1025 dlen -= data[1];
1026 data += data[1];
1030 static void __exit ppp_async_cleanup(void)
1032 if (tty_unregister_ldisc(N_PPP) != 0)
1033 printk(KERN_ERR "failed to unregister PPP line discipline\n");
1036 module_init(ppp_async_init);
1037 module_exit(ppp_async_cleanup);