panasonic-laptop: Simplify calls to acpi_pcc_retrieve_biosdata
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / block / loop.c
blob91797bbbe702f01afc5770f45618487ab21054da
1 /*
2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/smp_lock.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h> /* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/kthread.h>
76 #include <linux/splice.h>
78 #include <asm/uaccess.h>
80 static LIST_HEAD(loop_devices);
81 static DEFINE_MUTEX(loop_devices_mutex);
83 static int max_part;
84 static int part_shift;
87 * Transfer functions
89 static int transfer_none(struct loop_device *lo, int cmd,
90 struct page *raw_page, unsigned raw_off,
91 struct page *loop_page, unsigned loop_off,
92 int size, sector_t real_block)
94 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
95 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
97 if (cmd == READ)
98 memcpy(loop_buf, raw_buf, size);
99 else
100 memcpy(raw_buf, loop_buf, size);
102 kunmap_atomic(raw_buf, KM_USER0);
103 kunmap_atomic(loop_buf, KM_USER1);
104 cond_resched();
105 return 0;
108 static int transfer_xor(struct loop_device *lo, int cmd,
109 struct page *raw_page, unsigned raw_off,
110 struct page *loop_page, unsigned loop_off,
111 int size, sector_t real_block)
113 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
114 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
115 char *in, *out, *key;
116 int i, keysize;
118 if (cmd == READ) {
119 in = raw_buf;
120 out = loop_buf;
121 } else {
122 in = loop_buf;
123 out = raw_buf;
126 key = lo->lo_encrypt_key;
127 keysize = lo->lo_encrypt_key_size;
128 for (i = 0; i < size; i++)
129 *out++ = *in++ ^ key[(i & 511) % keysize];
131 kunmap_atomic(raw_buf, KM_USER0);
132 kunmap_atomic(loop_buf, KM_USER1);
133 cond_resched();
134 return 0;
137 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
139 if (unlikely(info->lo_encrypt_key_size <= 0))
140 return -EINVAL;
141 return 0;
144 static struct loop_func_table none_funcs = {
145 .number = LO_CRYPT_NONE,
146 .transfer = transfer_none,
149 static struct loop_func_table xor_funcs = {
150 .number = LO_CRYPT_XOR,
151 .transfer = transfer_xor,
152 .init = xor_init
155 /* xfer_funcs[0] is special - its release function is never called */
156 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
157 &none_funcs,
158 &xor_funcs
161 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 loff_t size, offset, loopsize;
165 /* Compute loopsize in bytes */
166 size = i_size_read(file->f_mapping->host);
167 offset = lo->lo_offset;
168 loopsize = size - offset;
169 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
170 loopsize = lo->lo_sizelimit;
173 * Unfortunately, if we want to do I/O on the device,
174 * the number of 512-byte sectors has to fit into a sector_t.
176 return loopsize >> 9;
179 static int
180 figure_loop_size(struct loop_device *lo)
182 loff_t size = get_loop_size(lo, lo->lo_backing_file);
183 sector_t x = (sector_t)size;
185 if (unlikely((loff_t)x != size))
186 return -EFBIG;
188 set_capacity(lo->lo_disk, x);
189 return 0;
192 static inline int
193 lo_do_transfer(struct loop_device *lo, int cmd,
194 struct page *rpage, unsigned roffs,
195 struct page *lpage, unsigned loffs,
196 int size, sector_t rblock)
198 if (unlikely(!lo->transfer))
199 return 0;
201 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
205 * do_lo_send_aops - helper for writing data to a loop device
207 * This is the fast version for backing filesystems which implement the address
208 * space operations write_begin and write_end.
210 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
211 loff_t pos, struct page *unused)
213 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
214 struct address_space *mapping = file->f_mapping;
215 pgoff_t index;
216 unsigned offset, bv_offs;
217 int len, ret;
219 mutex_lock(&mapping->host->i_mutex);
220 index = pos >> PAGE_CACHE_SHIFT;
221 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
222 bv_offs = bvec->bv_offset;
223 len = bvec->bv_len;
224 while (len > 0) {
225 sector_t IV;
226 unsigned size, copied;
227 int transfer_result;
228 struct page *page;
229 void *fsdata;
231 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
232 size = PAGE_CACHE_SIZE - offset;
233 if (size > len)
234 size = len;
236 ret = pagecache_write_begin(file, mapping, pos, size, 0,
237 &page, &fsdata);
238 if (ret)
239 goto fail;
241 file_update_time(file);
243 transfer_result = lo_do_transfer(lo, WRITE, page, offset,
244 bvec->bv_page, bv_offs, size, IV);
245 copied = size;
246 if (unlikely(transfer_result))
247 copied = 0;
249 ret = pagecache_write_end(file, mapping, pos, size, copied,
250 page, fsdata);
251 if (ret < 0 || ret != copied)
252 goto fail;
254 if (unlikely(transfer_result))
255 goto fail;
257 bv_offs += copied;
258 len -= copied;
259 offset = 0;
260 index++;
261 pos += copied;
263 ret = 0;
264 out:
265 mutex_unlock(&mapping->host->i_mutex);
266 return ret;
267 fail:
268 ret = -1;
269 goto out;
273 * __do_lo_send_write - helper for writing data to a loop device
275 * This helper just factors out common code between do_lo_send_direct_write()
276 * and do_lo_send_write().
278 static int __do_lo_send_write(struct file *file,
279 u8 *buf, const int len, loff_t pos)
281 ssize_t bw;
282 mm_segment_t old_fs = get_fs();
284 set_fs(get_ds());
285 bw = file->f_op->write(file, buf, len, &pos);
286 set_fs(old_fs);
287 if (likely(bw == len))
288 return 0;
289 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
290 (unsigned long long)pos, len);
291 if (bw >= 0)
292 bw = -EIO;
293 return bw;
297 * do_lo_send_direct_write - helper for writing data to a loop device
299 * This is the fast, non-transforming version for backing filesystems which do
300 * not implement the address space operations write_begin and write_end.
301 * It uses the write file operation which should be present on all writeable
302 * filesystems.
304 static int do_lo_send_direct_write(struct loop_device *lo,
305 struct bio_vec *bvec, loff_t pos, struct page *page)
307 ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
308 kmap(bvec->bv_page) + bvec->bv_offset,
309 bvec->bv_len, pos);
310 kunmap(bvec->bv_page);
311 cond_resched();
312 return bw;
316 * do_lo_send_write - helper for writing data to a loop device
318 * This is the slow, transforming version for filesystems which do not
319 * implement the address space operations write_begin and write_end. It
320 * uses the write file operation which should be present on all writeable
321 * filesystems.
323 * Using fops->write is slower than using aops->{prepare,commit}_write in the
324 * transforming case because we need to double buffer the data as we cannot do
325 * the transformations in place as we do not have direct access to the
326 * destination pages of the backing file.
328 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
329 loff_t pos, struct page *page)
331 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
332 bvec->bv_offset, bvec->bv_len, pos >> 9);
333 if (likely(!ret))
334 return __do_lo_send_write(lo->lo_backing_file,
335 page_address(page), bvec->bv_len,
336 pos);
337 printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
338 "length %i.\n", (unsigned long long)pos, bvec->bv_len);
339 if (ret > 0)
340 ret = -EIO;
341 return ret;
344 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
346 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
347 struct page *page);
348 struct bio_vec *bvec;
349 struct page *page = NULL;
350 int i, ret = 0;
352 do_lo_send = do_lo_send_aops;
353 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
354 do_lo_send = do_lo_send_direct_write;
355 if (lo->transfer != transfer_none) {
356 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
357 if (unlikely(!page))
358 goto fail;
359 kmap(page);
360 do_lo_send = do_lo_send_write;
363 bio_for_each_segment(bvec, bio, i) {
364 ret = do_lo_send(lo, bvec, pos, page);
365 if (ret < 0)
366 break;
367 pos += bvec->bv_len;
369 if (page) {
370 kunmap(page);
371 __free_page(page);
373 out:
374 return ret;
375 fail:
376 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
377 ret = -ENOMEM;
378 goto out;
381 struct lo_read_data {
382 struct loop_device *lo;
383 struct page *page;
384 unsigned offset;
385 int bsize;
388 static int
389 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
390 struct splice_desc *sd)
392 struct lo_read_data *p = sd->u.data;
393 struct loop_device *lo = p->lo;
394 struct page *page = buf->page;
395 sector_t IV;
396 int size, ret;
398 ret = buf->ops->confirm(pipe, buf);
399 if (unlikely(ret))
400 return ret;
402 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
403 (buf->offset >> 9);
404 size = sd->len;
405 if (size > p->bsize)
406 size = p->bsize;
408 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
409 printk(KERN_ERR "loop: transfer error block %ld\n",
410 page->index);
411 size = -EINVAL;
414 flush_dcache_page(p->page);
416 if (size > 0)
417 p->offset += size;
419 return size;
422 static int
423 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
425 return __splice_from_pipe(pipe, sd, lo_splice_actor);
428 static int
429 do_lo_receive(struct loop_device *lo,
430 struct bio_vec *bvec, int bsize, loff_t pos)
432 struct lo_read_data cookie;
433 struct splice_desc sd;
434 struct file *file;
435 long retval;
437 cookie.lo = lo;
438 cookie.page = bvec->bv_page;
439 cookie.offset = bvec->bv_offset;
440 cookie.bsize = bsize;
442 sd.len = 0;
443 sd.total_len = bvec->bv_len;
444 sd.flags = 0;
445 sd.pos = pos;
446 sd.u.data = &cookie;
448 file = lo->lo_backing_file;
449 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
451 if (retval < 0)
452 return retval;
454 return 0;
457 static int
458 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
460 struct bio_vec *bvec;
461 int i, ret = 0;
463 bio_for_each_segment(bvec, bio, i) {
464 ret = do_lo_receive(lo, bvec, bsize, pos);
465 if (ret < 0)
466 break;
467 pos += bvec->bv_len;
469 return ret;
472 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
474 loff_t pos;
475 int ret;
477 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
479 if (bio_rw(bio) == WRITE) {
480 bool barrier = !!(bio->bi_rw & REQ_HARDBARRIER);
481 struct file *file = lo->lo_backing_file;
483 if (barrier) {
484 if (unlikely(!file->f_op->fsync)) {
485 ret = -EOPNOTSUPP;
486 goto out;
489 ret = vfs_fsync(file, 0);
490 if (unlikely(ret)) {
491 ret = -EIO;
492 goto out;
496 ret = lo_send(lo, bio, pos);
498 if (barrier && !ret) {
499 ret = vfs_fsync(file, 0);
500 if (unlikely(ret))
501 ret = -EIO;
503 } else
504 ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
506 out:
507 return ret;
511 * Add bio to back of pending list
513 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
515 bio_list_add(&lo->lo_bio_list, bio);
519 * Grab first pending buffer
521 static struct bio *loop_get_bio(struct loop_device *lo)
523 return bio_list_pop(&lo->lo_bio_list);
526 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
528 struct loop_device *lo = q->queuedata;
529 int rw = bio_rw(old_bio);
531 if (rw == READA)
532 rw = READ;
534 BUG_ON(!lo || (rw != READ && rw != WRITE));
536 spin_lock_irq(&lo->lo_lock);
537 if (lo->lo_state != Lo_bound)
538 goto out;
539 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
540 goto out;
541 loop_add_bio(lo, old_bio);
542 wake_up(&lo->lo_event);
543 spin_unlock_irq(&lo->lo_lock);
544 return 0;
546 out:
547 spin_unlock_irq(&lo->lo_lock);
548 bio_io_error(old_bio);
549 return 0;
553 * kick off io on the underlying address space
555 static void loop_unplug(struct request_queue *q)
557 struct loop_device *lo = q->queuedata;
559 queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q);
560 blk_run_address_space(lo->lo_backing_file->f_mapping);
563 struct switch_request {
564 struct file *file;
565 struct completion wait;
568 static void do_loop_switch(struct loop_device *, struct switch_request *);
570 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
572 if (unlikely(!bio->bi_bdev)) {
573 do_loop_switch(lo, bio->bi_private);
574 bio_put(bio);
575 } else {
576 int ret = do_bio_filebacked(lo, bio);
577 bio_endio(bio, ret);
582 * worker thread that handles reads/writes to file backed loop devices,
583 * to avoid blocking in our make_request_fn. it also does loop decrypting
584 * on reads for block backed loop, as that is too heavy to do from
585 * b_end_io context where irqs may be disabled.
587 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
588 * calling kthread_stop(). Therefore once kthread_should_stop() is
589 * true, make_request will not place any more requests. Therefore
590 * once kthread_should_stop() is true and lo_bio is NULL, we are
591 * done with the loop.
593 static int loop_thread(void *data)
595 struct loop_device *lo = data;
596 struct bio *bio;
598 set_user_nice(current, -20);
600 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
602 wait_event_interruptible(lo->lo_event,
603 !bio_list_empty(&lo->lo_bio_list) ||
604 kthread_should_stop());
606 if (bio_list_empty(&lo->lo_bio_list))
607 continue;
608 spin_lock_irq(&lo->lo_lock);
609 bio = loop_get_bio(lo);
610 spin_unlock_irq(&lo->lo_lock);
612 BUG_ON(!bio);
613 loop_handle_bio(lo, bio);
616 return 0;
620 * loop_switch performs the hard work of switching a backing store.
621 * First it needs to flush existing IO, it does this by sending a magic
622 * BIO down the pipe. The completion of this BIO does the actual switch.
624 static int loop_switch(struct loop_device *lo, struct file *file)
626 struct switch_request w;
627 struct bio *bio = bio_alloc(GFP_KERNEL, 0);
628 if (!bio)
629 return -ENOMEM;
630 init_completion(&w.wait);
631 w.file = file;
632 bio->bi_private = &w;
633 bio->bi_bdev = NULL;
634 loop_make_request(lo->lo_queue, bio);
635 wait_for_completion(&w.wait);
636 return 0;
640 * Helper to flush the IOs in loop, but keeping loop thread running
642 static int loop_flush(struct loop_device *lo)
644 /* loop not yet configured, no running thread, nothing to flush */
645 if (!lo->lo_thread)
646 return 0;
648 return loop_switch(lo, NULL);
652 * Do the actual switch; called from the BIO completion routine
654 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
656 struct file *file = p->file;
657 struct file *old_file = lo->lo_backing_file;
658 struct address_space *mapping;
660 /* if no new file, only flush of queued bios requested */
661 if (!file)
662 goto out;
664 mapping = file->f_mapping;
665 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
666 lo->lo_backing_file = file;
667 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
668 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
669 lo->old_gfp_mask = mapping_gfp_mask(mapping);
670 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
671 out:
672 complete(&p->wait);
677 * loop_change_fd switched the backing store of a loopback device to
678 * a new file. This is useful for operating system installers to free up
679 * the original file and in High Availability environments to switch to
680 * an alternative location for the content in case of server meltdown.
681 * This can only work if the loop device is used read-only, and if the
682 * new backing store is the same size and type as the old backing store.
684 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
685 unsigned int arg)
687 struct file *file, *old_file;
688 struct inode *inode;
689 int error;
691 error = -ENXIO;
692 if (lo->lo_state != Lo_bound)
693 goto out;
695 /* the loop device has to be read-only */
696 error = -EINVAL;
697 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
698 goto out;
700 error = -EBADF;
701 file = fget(arg);
702 if (!file)
703 goto out;
705 inode = file->f_mapping->host;
706 old_file = lo->lo_backing_file;
708 error = -EINVAL;
710 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
711 goto out_putf;
713 /* size of the new backing store needs to be the same */
714 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
715 goto out_putf;
717 /* and ... switch */
718 error = loop_switch(lo, file);
719 if (error)
720 goto out_putf;
722 fput(old_file);
723 if (max_part > 0)
724 ioctl_by_bdev(bdev, BLKRRPART, 0);
725 return 0;
727 out_putf:
728 fput(file);
729 out:
730 return error;
733 static inline int is_loop_device(struct file *file)
735 struct inode *i = file->f_mapping->host;
737 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
740 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
741 struct block_device *bdev, unsigned int arg)
743 struct file *file, *f;
744 struct inode *inode;
745 struct address_space *mapping;
746 unsigned lo_blocksize;
747 int lo_flags = 0;
748 int error;
749 loff_t size;
751 /* This is safe, since we have a reference from open(). */
752 __module_get(THIS_MODULE);
754 error = -EBADF;
755 file = fget(arg);
756 if (!file)
757 goto out;
759 error = -EBUSY;
760 if (lo->lo_state != Lo_unbound)
761 goto out_putf;
763 /* Avoid recursion */
764 f = file;
765 while (is_loop_device(f)) {
766 struct loop_device *l;
768 if (f->f_mapping->host->i_bdev == bdev)
769 goto out_putf;
771 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
772 if (l->lo_state == Lo_unbound) {
773 error = -EINVAL;
774 goto out_putf;
776 f = l->lo_backing_file;
779 mapping = file->f_mapping;
780 inode = mapping->host;
782 if (!(file->f_mode & FMODE_WRITE))
783 lo_flags |= LO_FLAGS_READ_ONLY;
785 error = -EINVAL;
786 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
787 const struct address_space_operations *aops = mapping->a_ops;
789 if (aops->write_begin)
790 lo_flags |= LO_FLAGS_USE_AOPS;
791 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
792 lo_flags |= LO_FLAGS_READ_ONLY;
794 lo_blocksize = S_ISBLK(inode->i_mode) ?
795 inode->i_bdev->bd_block_size : PAGE_SIZE;
797 error = 0;
798 } else {
799 goto out_putf;
802 size = get_loop_size(lo, file);
804 if ((loff_t)(sector_t)size != size) {
805 error = -EFBIG;
806 goto out_putf;
809 if (!(mode & FMODE_WRITE))
810 lo_flags |= LO_FLAGS_READ_ONLY;
812 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
814 lo->lo_blocksize = lo_blocksize;
815 lo->lo_device = bdev;
816 lo->lo_flags = lo_flags;
817 lo->lo_backing_file = file;
818 lo->transfer = transfer_none;
819 lo->ioctl = NULL;
820 lo->lo_sizelimit = 0;
821 lo->old_gfp_mask = mapping_gfp_mask(mapping);
822 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
824 bio_list_init(&lo->lo_bio_list);
827 * set queue make_request_fn, and add limits based on lower level
828 * device
830 blk_queue_make_request(lo->lo_queue, loop_make_request);
831 lo->lo_queue->queuedata = lo;
832 lo->lo_queue->unplug_fn = loop_unplug;
834 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
835 blk_queue_ordered(lo->lo_queue, QUEUE_ORDERED_DRAIN);
837 set_capacity(lo->lo_disk, size);
838 bd_set_size(bdev, size << 9);
839 /* let user-space know about the new size */
840 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
842 set_blocksize(bdev, lo_blocksize);
844 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
845 lo->lo_number);
846 if (IS_ERR(lo->lo_thread)) {
847 error = PTR_ERR(lo->lo_thread);
848 goto out_clr;
850 lo->lo_state = Lo_bound;
851 wake_up_process(lo->lo_thread);
852 if (max_part > 0)
853 ioctl_by_bdev(bdev, BLKRRPART, 0);
854 return 0;
856 out_clr:
857 lo->lo_thread = NULL;
858 lo->lo_device = NULL;
859 lo->lo_backing_file = NULL;
860 lo->lo_flags = 0;
861 set_capacity(lo->lo_disk, 0);
862 invalidate_bdev(bdev);
863 bd_set_size(bdev, 0);
864 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
865 mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
866 lo->lo_state = Lo_unbound;
867 out_putf:
868 fput(file);
869 out:
870 /* This is safe: open() is still holding a reference. */
871 module_put(THIS_MODULE);
872 return error;
875 static int
876 loop_release_xfer(struct loop_device *lo)
878 int err = 0;
879 struct loop_func_table *xfer = lo->lo_encryption;
881 if (xfer) {
882 if (xfer->release)
883 err = xfer->release(lo);
884 lo->transfer = NULL;
885 lo->lo_encryption = NULL;
886 module_put(xfer->owner);
888 return err;
891 static int
892 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
893 const struct loop_info64 *i)
895 int err = 0;
897 if (xfer) {
898 struct module *owner = xfer->owner;
900 if (!try_module_get(owner))
901 return -EINVAL;
902 if (xfer->init)
903 err = xfer->init(lo, i);
904 if (err)
905 module_put(owner);
906 else
907 lo->lo_encryption = xfer;
909 return err;
912 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
914 struct file *filp = lo->lo_backing_file;
915 gfp_t gfp = lo->old_gfp_mask;
917 if (lo->lo_state != Lo_bound)
918 return -ENXIO;
920 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
921 return -EBUSY;
923 if (filp == NULL)
924 return -EINVAL;
926 spin_lock_irq(&lo->lo_lock);
927 lo->lo_state = Lo_rundown;
928 spin_unlock_irq(&lo->lo_lock);
930 kthread_stop(lo->lo_thread);
932 lo->lo_queue->unplug_fn = NULL;
933 lo->lo_backing_file = NULL;
935 loop_release_xfer(lo);
936 lo->transfer = NULL;
937 lo->ioctl = NULL;
938 lo->lo_device = NULL;
939 lo->lo_encryption = NULL;
940 lo->lo_offset = 0;
941 lo->lo_sizelimit = 0;
942 lo->lo_encrypt_key_size = 0;
943 lo->lo_flags = 0;
944 lo->lo_thread = NULL;
945 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
946 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
947 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
948 if (bdev)
949 invalidate_bdev(bdev);
950 set_capacity(lo->lo_disk, 0);
951 if (bdev) {
952 bd_set_size(bdev, 0);
953 /* let user-space know about this change */
954 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
956 mapping_set_gfp_mask(filp->f_mapping, gfp);
957 lo->lo_state = Lo_unbound;
958 /* This is safe: open() is still holding a reference. */
959 module_put(THIS_MODULE);
960 if (max_part > 0 && bdev)
961 ioctl_by_bdev(bdev, BLKRRPART, 0);
962 mutex_unlock(&lo->lo_ctl_mutex);
964 * Need not hold lo_ctl_mutex to fput backing file.
965 * Calling fput holding lo_ctl_mutex triggers a circular
966 * lock dependency possibility warning as fput can take
967 * bd_mutex which is usually taken before lo_ctl_mutex.
969 fput(filp);
970 return 0;
973 static int
974 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
976 int err;
977 struct loop_func_table *xfer;
978 uid_t uid = current_uid();
980 if (lo->lo_encrypt_key_size &&
981 lo->lo_key_owner != uid &&
982 !capable(CAP_SYS_ADMIN))
983 return -EPERM;
984 if (lo->lo_state != Lo_bound)
985 return -ENXIO;
986 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
987 return -EINVAL;
989 err = loop_release_xfer(lo);
990 if (err)
991 return err;
993 if (info->lo_encrypt_type) {
994 unsigned int type = info->lo_encrypt_type;
996 if (type >= MAX_LO_CRYPT)
997 return -EINVAL;
998 xfer = xfer_funcs[type];
999 if (xfer == NULL)
1000 return -EINVAL;
1001 } else
1002 xfer = NULL;
1004 err = loop_init_xfer(lo, xfer, info);
1005 if (err)
1006 return err;
1008 if (lo->lo_offset != info->lo_offset ||
1009 lo->lo_sizelimit != info->lo_sizelimit) {
1010 lo->lo_offset = info->lo_offset;
1011 lo->lo_sizelimit = info->lo_sizelimit;
1012 if (figure_loop_size(lo))
1013 return -EFBIG;
1016 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1017 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1018 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1019 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1021 if (!xfer)
1022 xfer = &none_funcs;
1023 lo->transfer = xfer->transfer;
1024 lo->ioctl = xfer->ioctl;
1026 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1027 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1028 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1030 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1031 lo->lo_init[0] = info->lo_init[0];
1032 lo->lo_init[1] = info->lo_init[1];
1033 if (info->lo_encrypt_key_size) {
1034 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1035 info->lo_encrypt_key_size);
1036 lo->lo_key_owner = uid;
1039 return 0;
1042 static int
1043 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1045 struct file *file = lo->lo_backing_file;
1046 struct kstat stat;
1047 int error;
1049 if (lo->lo_state != Lo_bound)
1050 return -ENXIO;
1051 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1052 if (error)
1053 return error;
1054 memset(info, 0, sizeof(*info));
1055 info->lo_number = lo->lo_number;
1056 info->lo_device = huge_encode_dev(stat.dev);
1057 info->lo_inode = stat.ino;
1058 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1059 info->lo_offset = lo->lo_offset;
1060 info->lo_sizelimit = lo->lo_sizelimit;
1061 info->lo_flags = lo->lo_flags;
1062 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1063 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1064 info->lo_encrypt_type =
1065 lo->lo_encryption ? lo->lo_encryption->number : 0;
1066 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1067 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1068 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1069 lo->lo_encrypt_key_size);
1071 return 0;
1074 static void
1075 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1077 memset(info64, 0, sizeof(*info64));
1078 info64->lo_number = info->lo_number;
1079 info64->lo_device = info->lo_device;
1080 info64->lo_inode = info->lo_inode;
1081 info64->lo_rdevice = info->lo_rdevice;
1082 info64->lo_offset = info->lo_offset;
1083 info64->lo_sizelimit = 0;
1084 info64->lo_encrypt_type = info->lo_encrypt_type;
1085 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1086 info64->lo_flags = info->lo_flags;
1087 info64->lo_init[0] = info->lo_init[0];
1088 info64->lo_init[1] = info->lo_init[1];
1089 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1090 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1091 else
1092 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1093 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1096 static int
1097 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1099 memset(info, 0, sizeof(*info));
1100 info->lo_number = info64->lo_number;
1101 info->lo_device = info64->lo_device;
1102 info->lo_inode = info64->lo_inode;
1103 info->lo_rdevice = info64->lo_rdevice;
1104 info->lo_offset = info64->lo_offset;
1105 info->lo_encrypt_type = info64->lo_encrypt_type;
1106 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1107 info->lo_flags = info64->lo_flags;
1108 info->lo_init[0] = info64->lo_init[0];
1109 info->lo_init[1] = info64->lo_init[1];
1110 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1111 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1112 else
1113 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1114 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1116 /* error in case values were truncated */
1117 if (info->lo_device != info64->lo_device ||
1118 info->lo_rdevice != info64->lo_rdevice ||
1119 info->lo_inode != info64->lo_inode ||
1120 info->lo_offset != info64->lo_offset)
1121 return -EOVERFLOW;
1123 return 0;
1126 static int
1127 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1129 struct loop_info info;
1130 struct loop_info64 info64;
1132 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1133 return -EFAULT;
1134 loop_info64_from_old(&info, &info64);
1135 return loop_set_status(lo, &info64);
1138 static int
1139 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1141 struct loop_info64 info64;
1143 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1144 return -EFAULT;
1145 return loop_set_status(lo, &info64);
1148 static int
1149 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1150 struct loop_info info;
1151 struct loop_info64 info64;
1152 int err = 0;
1154 if (!arg)
1155 err = -EINVAL;
1156 if (!err)
1157 err = loop_get_status(lo, &info64);
1158 if (!err)
1159 err = loop_info64_to_old(&info64, &info);
1160 if (!err && copy_to_user(arg, &info, sizeof(info)))
1161 err = -EFAULT;
1163 return err;
1166 static int
1167 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1168 struct loop_info64 info64;
1169 int err = 0;
1171 if (!arg)
1172 err = -EINVAL;
1173 if (!err)
1174 err = loop_get_status(lo, &info64);
1175 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1176 err = -EFAULT;
1178 return err;
1181 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1183 int err;
1184 sector_t sec;
1185 loff_t sz;
1187 err = -ENXIO;
1188 if (unlikely(lo->lo_state != Lo_bound))
1189 goto out;
1190 err = figure_loop_size(lo);
1191 if (unlikely(err))
1192 goto out;
1193 sec = get_capacity(lo->lo_disk);
1194 /* the width of sector_t may be narrow for bit-shift */
1195 sz = sec;
1196 sz <<= 9;
1197 mutex_lock(&bdev->bd_mutex);
1198 bd_set_size(bdev, sz);
1199 /* let user-space know about the new size */
1200 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1201 mutex_unlock(&bdev->bd_mutex);
1203 out:
1204 return err;
1207 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1208 unsigned int cmd, unsigned long arg)
1210 struct loop_device *lo = bdev->bd_disk->private_data;
1211 int err;
1213 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1214 switch (cmd) {
1215 case LOOP_SET_FD:
1216 err = loop_set_fd(lo, mode, bdev, arg);
1217 break;
1218 case LOOP_CHANGE_FD:
1219 err = loop_change_fd(lo, bdev, arg);
1220 break;
1221 case LOOP_CLR_FD:
1222 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1223 err = loop_clr_fd(lo, bdev);
1224 if (!err)
1225 goto out_unlocked;
1226 break;
1227 case LOOP_SET_STATUS:
1228 err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1229 break;
1230 case LOOP_GET_STATUS:
1231 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1232 break;
1233 case LOOP_SET_STATUS64:
1234 err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1235 break;
1236 case LOOP_GET_STATUS64:
1237 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1238 break;
1239 case LOOP_SET_CAPACITY:
1240 err = -EPERM;
1241 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1242 err = loop_set_capacity(lo, bdev);
1243 break;
1244 default:
1245 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1247 mutex_unlock(&lo->lo_ctl_mutex);
1249 out_unlocked:
1250 return err;
1253 #ifdef CONFIG_COMPAT
1254 struct compat_loop_info {
1255 compat_int_t lo_number; /* ioctl r/o */
1256 compat_dev_t lo_device; /* ioctl r/o */
1257 compat_ulong_t lo_inode; /* ioctl r/o */
1258 compat_dev_t lo_rdevice; /* ioctl r/o */
1259 compat_int_t lo_offset;
1260 compat_int_t lo_encrypt_type;
1261 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1262 compat_int_t lo_flags; /* ioctl r/o */
1263 char lo_name[LO_NAME_SIZE];
1264 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1265 compat_ulong_t lo_init[2];
1266 char reserved[4];
1270 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1271 * - noinlined to reduce stack space usage in main part of driver
1273 static noinline int
1274 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1275 struct loop_info64 *info64)
1277 struct compat_loop_info info;
1279 if (copy_from_user(&info, arg, sizeof(info)))
1280 return -EFAULT;
1282 memset(info64, 0, sizeof(*info64));
1283 info64->lo_number = info.lo_number;
1284 info64->lo_device = info.lo_device;
1285 info64->lo_inode = info.lo_inode;
1286 info64->lo_rdevice = info.lo_rdevice;
1287 info64->lo_offset = info.lo_offset;
1288 info64->lo_sizelimit = 0;
1289 info64->lo_encrypt_type = info.lo_encrypt_type;
1290 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1291 info64->lo_flags = info.lo_flags;
1292 info64->lo_init[0] = info.lo_init[0];
1293 info64->lo_init[1] = info.lo_init[1];
1294 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1295 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1296 else
1297 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1298 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1299 return 0;
1303 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1304 * - noinlined to reduce stack space usage in main part of driver
1306 static noinline int
1307 loop_info64_to_compat(const struct loop_info64 *info64,
1308 struct compat_loop_info __user *arg)
1310 struct compat_loop_info info;
1312 memset(&info, 0, sizeof(info));
1313 info.lo_number = info64->lo_number;
1314 info.lo_device = info64->lo_device;
1315 info.lo_inode = info64->lo_inode;
1316 info.lo_rdevice = info64->lo_rdevice;
1317 info.lo_offset = info64->lo_offset;
1318 info.lo_encrypt_type = info64->lo_encrypt_type;
1319 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1320 info.lo_flags = info64->lo_flags;
1321 info.lo_init[0] = info64->lo_init[0];
1322 info.lo_init[1] = info64->lo_init[1];
1323 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1324 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1325 else
1326 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1327 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1329 /* error in case values were truncated */
1330 if (info.lo_device != info64->lo_device ||
1331 info.lo_rdevice != info64->lo_rdevice ||
1332 info.lo_inode != info64->lo_inode ||
1333 info.lo_offset != info64->lo_offset ||
1334 info.lo_init[0] != info64->lo_init[0] ||
1335 info.lo_init[1] != info64->lo_init[1])
1336 return -EOVERFLOW;
1338 if (copy_to_user(arg, &info, sizeof(info)))
1339 return -EFAULT;
1340 return 0;
1343 static int
1344 loop_set_status_compat(struct loop_device *lo,
1345 const struct compat_loop_info __user *arg)
1347 struct loop_info64 info64;
1348 int ret;
1350 ret = loop_info64_from_compat(arg, &info64);
1351 if (ret < 0)
1352 return ret;
1353 return loop_set_status(lo, &info64);
1356 static int
1357 loop_get_status_compat(struct loop_device *lo,
1358 struct compat_loop_info __user *arg)
1360 struct loop_info64 info64;
1361 int err = 0;
1363 if (!arg)
1364 err = -EINVAL;
1365 if (!err)
1366 err = loop_get_status(lo, &info64);
1367 if (!err)
1368 err = loop_info64_to_compat(&info64, arg);
1369 return err;
1372 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1373 unsigned int cmd, unsigned long arg)
1375 struct loop_device *lo = bdev->bd_disk->private_data;
1376 int err;
1378 switch(cmd) {
1379 case LOOP_SET_STATUS:
1380 mutex_lock(&lo->lo_ctl_mutex);
1381 err = loop_set_status_compat(
1382 lo, (const struct compat_loop_info __user *) arg);
1383 mutex_unlock(&lo->lo_ctl_mutex);
1384 break;
1385 case LOOP_GET_STATUS:
1386 mutex_lock(&lo->lo_ctl_mutex);
1387 err = loop_get_status_compat(
1388 lo, (struct compat_loop_info __user *) arg);
1389 mutex_unlock(&lo->lo_ctl_mutex);
1390 break;
1391 case LOOP_SET_CAPACITY:
1392 case LOOP_CLR_FD:
1393 case LOOP_GET_STATUS64:
1394 case LOOP_SET_STATUS64:
1395 arg = (unsigned long) compat_ptr(arg);
1396 case LOOP_SET_FD:
1397 case LOOP_CHANGE_FD:
1398 err = lo_ioctl(bdev, mode, cmd, arg);
1399 break;
1400 default:
1401 err = -ENOIOCTLCMD;
1402 break;
1404 return err;
1406 #endif
1408 static int lo_open(struct block_device *bdev, fmode_t mode)
1410 struct loop_device *lo = bdev->bd_disk->private_data;
1412 lock_kernel();
1413 mutex_lock(&lo->lo_ctl_mutex);
1414 lo->lo_refcnt++;
1415 mutex_unlock(&lo->lo_ctl_mutex);
1416 unlock_kernel();
1418 return 0;
1421 static int lo_release(struct gendisk *disk, fmode_t mode)
1423 struct loop_device *lo = disk->private_data;
1424 int err;
1426 lock_kernel();
1427 mutex_lock(&lo->lo_ctl_mutex);
1429 if (--lo->lo_refcnt)
1430 goto out;
1432 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1434 * In autoclear mode, stop the loop thread
1435 * and remove configuration after last close.
1437 err = loop_clr_fd(lo, NULL);
1438 if (!err)
1439 goto out_unlocked;
1440 } else {
1442 * Otherwise keep thread (if running) and config,
1443 * but flush possible ongoing bios in thread.
1445 loop_flush(lo);
1448 out:
1449 mutex_unlock(&lo->lo_ctl_mutex);
1450 out_unlocked:
1451 lock_kernel();
1452 return 0;
1455 static const struct block_device_operations lo_fops = {
1456 .owner = THIS_MODULE,
1457 .open = lo_open,
1458 .release = lo_release,
1459 .ioctl = lo_ioctl,
1460 #ifdef CONFIG_COMPAT
1461 .compat_ioctl = lo_compat_ioctl,
1462 #endif
1466 * And now the modules code and kernel interface.
1468 static int max_loop;
1469 module_param(max_loop, int, 0);
1470 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1471 module_param(max_part, int, 0);
1472 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1473 MODULE_LICENSE("GPL");
1474 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1476 int loop_register_transfer(struct loop_func_table *funcs)
1478 unsigned int n = funcs->number;
1480 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1481 return -EINVAL;
1482 xfer_funcs[n] = funcs;
1483 return 0;
1486 int loop_unregister_transfer(int number)
1488 unsigned int n = number;
1489 struct loop_device *lo;
1490 struct loop_func_table *xfer;
1492 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1493 return -EINVAL;
1495 xfer_funcs[n] = NULL;
1497 list_for_each_entry(lo, &loop_devices, lo_list) {
1498 mutex_lock(&lo->lo_ctl_mutex);
1500 if (lo->lo_encryption == xfer)
1501 loop_release_xfer(lo);
1503 mutex_unlock(&lo->lo_ctl_mutex);
1506 return 0;
1509 EXPORT_SYMBOL(loop_register_transfer);
1510 EXPORT_SYMBOL(loop_unregister_transfer);
1512 static struct loop_device *loop_alloc(int i)
1514 struct loop_device *lo;
1515 struct gendisk *disk;
1517 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1518 if (!lo)
1519 goto out;
1521 lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1522 if (!lo->lo_queue)
1523 goto out_free_dev;
1525 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1526 if (!disk)
1527 goto out_free_queue;
1529 mutex_init(&lo->lo_ctl_mutex);
1530 lo->lo_number = i;
1531 lo->lo_thread = NULL;
1532 init_waitqueue_head(&lo->lo_event);
1533 spin_lock_init(&lo->lo_lock);
1534 disk->major = LOOP_MAJOR;
1535 disk->first_minor = i << part_shift;
1536 disk->fops = &lo_fops;
1537 disk->private_data = lo;
1538 disk->queue = lo->lo_queue;
1539 sprintf(disk->disk_name, "loop%d", i);
1540 return lo;
1542 out_free_queue:
1543 blk_cleanup_queue(lo->lo_queue);
1544 out_free_dev:
1545 kfree(lo);
1546 out:
1547 return NULL;
1550 static void loop_free(struct loop_device *lo)
1552 blk_cleanup_queue(lo->lo_queue);
1553 put_disk(lo->lo_disk);
1554 list_del(&lo->lo_list);
1555 kfree(lo);
1558 static struct loop_device *loop_init_one(int i)
1560 struct loop_device *lo;
1562 list_for_each_entry(lo, &loop_devices, lo_list) {
1563 if (lo->lo_number == i)
1564 return lo;
1567 lo = loop_alloc(i);
1568 if (lo) {
1569 add_disk(lo->lo_disk);
1570 list_add_tail(&lo->lo_list, &loop_devices);
1572 return lo;
1575 static void loop_del_one(struct loop_device *lo)
1577 del_gendisk(lo->lo_disk);
1578 loop_free(lo);
1581 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1583 struct loop_device *lo;
1584 struct kobject *kobj;
1586 mutex_lock(&loop_devices_mutex);
1587 lo = loop_init_one(dev & MINORMASK);
1588 kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
1589 mutex_unlock(&loop_devices_mutex);
1591 *part = 0;
1592 return kobj;
1595 static int __init loop_init(void)
1597 int i, nr;
1598 unsigned long range;
1599 struct loop_device *lo, *next;
1602 * loop module now has a feature to instantiate underlying device
1603 * structure on-demand, provided that there is an access dev node.
1604 * However, this will not work well with user space tool that doesn't
1605 * know about such "feature". In order to not break any existing
1606 * tool, we do the following:
1608 * (1) if max_loop is specified, create that many upfront, and this
1609 * also becomes a hard limit.
1610 * (2) if max_loop is not specified, create 8 loop device on module
1611 * load, user can further extend loop device by create dev node
1612 * themselves and have kernel automatically instantiate actual
1613 * device on-demand.
1616 part_shift = 0;
1617 if (max_part > 0)
1618 part_shift = fls(max_part);
1620 if (max_loop > 1UL << (MINORBITS - part_shift))
1621 return -EINVAL;
1623 if (max_loop) {
1624 nr = max_loop;
1625 range = max_loop;
1626 } else {
1627 nr = 8;
1628 range = 1UL << (MINORBITS - part_shift);
1631 if (register_blkdev(LOOP_MAJOR, "loop"))
1632 return -EIO;
1634 for (i = 0; i < nr; i++) {
1635 lo = loop_alloc(i);
1636 if (!lo)
1637 goto Enomem;
1638 list_add_tail(&lo->lo_list, &loop_devices);
1641 /* point of no return */
1643 list_for_each_entry(lo, &loop_devices, lo_list)
1644 add_disk(lo->lo_disk);
1646 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1647 THIS_MODULE, loop_probe, NULL, NULL);
1649 printk(KERN_INFO "loop: module loaded\n");
1650 return 0;
1652 Enomem:
1653 printk(KERN_INFO "loop: out of memory\n");
1655 list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1656 loop_free(lo);
1658 unregister_blkdev(LOOP_MAJOR, "loop");
1659 return -ENOMEM;
1662 static void __exit loop_exit(void)
1664 unsigned long range;
1665 struct loop_device *lo, *next;
1667 range = max_loop ? max_loop : 1UL << (MINORBITS - part_shift);
1669 list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1670 loop_del_one(lo);
1672 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1673 unregister_blkdev(LOOP_MAJOR, "loop");
1676 module_init(loop_init);
1677 module_exit(loop_exit);
1679 #ifndef MODULE
1680 static int __init max_loop_setup(char *str)
1682 max_loop = simple_strtol(str, NULL, 0);
1683 return 1;
1686 __setup("max_loop=", max_loop_setup);
1687 #endif