dma40: combine duplicated code in log_sg_to_dev
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / namei.c
blob7d77f24d32a98a115e320605369006eeef30ae0d
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
37 #include "internal.h"
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existant name.
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
87 * [10-Sep-98 Alan Modra] Another symlink change.
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
117 static int do_getname(const char __user *filename, char *page)
119 int retval;
120 unsigned long len = PATH_MAX;
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
139 char * getname(const char __user * filename)
141 char *tmp, *result;
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
148 result = tmp;
149 if (retval < 0) {
150 __putname(tmp);
151 result = ERR_PTR(retval);
154 audit_getname(result);
155 return result;
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
166 EXPORT_SYMBOL(putname);
167 #endif
170 * This does basic POSIX ACL permission checking
172 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags,
173 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
175 umode_t mode = inode->i_mode;
177 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
179 if (current_fsuid() == inode->i_uid)
180 mode >>= 6;
181 else {
182 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 int error = check_acl(inode, mask, flags);
184 if (error != -EAGAIN)
185 return error;
188 if (in_group_p(inode->i_gid))
189 mode >>= 3;
193 * If the DACs are ok we don't need any capability check.
195 if ((mask & ~mode) == 0)
196 return 0;
197 return -EACCES;
201 * generic_permission - check for access rights on a Posix-like filesystem
202 * @inode: inode to check access rights for
203 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204 * @check_acl: optional callback to check for Posix ACLs
205 * @flags: IPERM_FLAG_ flags.
207 * Used to check for read/write/execute permissions on a file.
208 * We use "fsuid" for this, letting us set arbitrary permissions
209 * for filesystem access without changing the "normal" uids which
210 * are used for other things.
212 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
213 * request cannot be satisfied (eg. requires blocking or too much complexity).
214 * It would then be called again in ref-walk mode.
216 int generic_permission(struct inode *inode, int mask, unsigned int flags,
217 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
219 int ret;
222 * Do the basic POSIX ACL permission checks.
224 ret = acl_permission_check(inode, mask, flags, check_acl);
225 if (ret != -EACCES)
226 return ret;
229 * Read/write DACs are always overridable.
230 * Executable DACs are overridable if at least one exec bit is set.
232 if (!(mask & MAY_EXEC) || execute_ok(inode))
233 if (capable(CAP_DAC_OVERRIDE))
234 return 0;
237 * Searching includes executable on directories, else just read.
239 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
240 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
241 if (capable(CAP_DAC_READ_SEARCH))
242 return 0;
244 return -EACCES;
248 * inode_permission - check for access rights to a given inode
249 * @inode: inode to check permission on
250 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
252 * Used to check for read/write/execute permissions on an inode.
253 * We use "fsuid" for this, letting us set arbitrary permissions
254 * for filesystem access without changing the "normal" uids which
255 * are used for other things.
257 int inode_permission(struct inode *inode, int mask)
259 int retval;
261 if (mask & MAY_WRITE) {
262 umode_t mode = inode->i_mode;
265 * Nobody gets write access to a read-only fs.
267 if (IS_RDONLY(inode) &&
268 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
269 return -EROFS;
272 * Nobody gets write access to an immutable file.
274 if (IS_IMMUTABLE(inode))
275 return -EACCES;
278 if (inode->i_op->permission)
279 retval = inode->i_op->permission(inode, mask, 0);
280 else
281 retval = generic_permission(inode, mask, 0,
282 inode->i_op->check_acl);
284 if (retval)
285 return retval;
287 retval = devcgroup_inode_permission(inode, mask);
288 if (retval)
289 return retval;
291 return security_inode_permission(inode, mask);
295 * file_permission - check for additional access rights to a given file
296 * @file: file to check access rights for
297 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
299 * Used to check for read/write/execute permissions on an already opened
300 * file.
302 * Note:
303 * Do not use this function in new code. All access checks should
304 * be done using inode_permission().
306 int file_permission(struct file *file, int mask)
308 return inode_permission(file->f_path.dentry->d_inode, mask);
312 * get_write_access() gets write permission for a file.
313 * put_write_access() releases this write permission.
314 * This is used for regular files.
315 * We cannot support write (and maybe mmap read-write shared) accesses and
316 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
317 * can have the following values:
318 * 0: no writers, no VM_DENYWRITE mappings
319 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
320 * > 0: (i_writecount) users are writing to the file.
322 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
323 * except for the cases where we don't hold i_writecount yet. Then we need to
324 * use {get,deny}_write_access() - these functions check the sign and refuse
325 * to do the change if sign is wrong. Exclusion between them is provided by
326 * the inode->i_lock spinlock.
329 int get_write_access(struct inode * inode)
331 spin_lock(&inode->i_lock);
332 if (atomic_read(&inode->i_writecount) < 0) {
333 spin_unlock(&inode->i_lock);
334 return -ETXTBSY;
336 atomic_inc(&inode->i_writecount);
337 spin_unlock(&inode->i_lock);
339 return 0;
342 int deny_write_access(struct file * file)
344 struct inode *inode = file->f_path.dentry->d_inode;
346 spin_lock(&inode->i_lock);
347 if (atomic_read(&inode->i_writecount) > 0) {
348 spin_unlock(&inode->i_lock);
349 return -ETXTBSY;
351 atomic_dec(&inode->i_writecount);
352 spin_unlock(&inode->i_lock);
354 return 0;
358 * path_get - get a reference to a path
359 * @path: path to get the reference to
361 * Given a path increment the reference count to the dentry and the vfsmount.
363 void path_get(struct path *path)
365 mntget(path->mnt);
366 dget(path->dentry);
368 EXPORT_SYMBOL(path_get);
371 * path_put - put a reference to a path
372 * @path: path to put the reference to
374 * Given a path decrement the reference count to the dentry and the vfsmount.
376 void path_put(struct path *path)
378 dput(path->dentry);
379 mntput(path->mnt);
381 EXPORT_SYMBOL(path_put);
384 * nameidata_drop_rcu - drop this nameidata out of rcu-walk
385 * @nd: nameidata pathwalk data to drop
386 * Returns: 0 on success, -ECHILD on failure
388 * Path walking has 2 modes, rcu-walk and ref-walk (see
389 * Documentation/filesystems/path-lookup.txt). __drop_rcu* functions attempt
390 * to drop out of rcu-walk mode and take normal reference counts on dentries
391 * and vfsmounts to transition to rcu-walk mode. __drop_rcu* functions take
392 * refcounts at the last known good point before rcu-walk got stuck, so
393 * ref-walk may continue from there. If this is not successful (eg. a seqcount
394 * has changed), then failure is returned and path walk restarts from the
395 * beginning in ref-walk mode.
397 * nameidata_drop_rcu attempts to drop the current nd->path and nd->root into
398 * ref-walk. Must be called from rcu-walk context.
400 static int nameidata_drop_rcu(struct nameidata *nd)
402 struct fs_struct *fs = current->fs;
403 struct dentry *dentry = nd->path.dentry;
405 BUG_ON(!(nd->flags & LOOKUP_RCU));
406 if (nd->root.mnt) {
407 spin_lock(&fs->lock);
408 if (nd->root.mnt != fs->root.mnt ||
409 nd->root.dentry != fs->root.dentry)
410 goto err_root;
412 spin_lock(&dentry->d_lock);
413 if (!__d_rcu_to_refcount(dentry, nd->seq))
414 goto err;
415 BUG_ON(nd->inode != dentry->d_inode);
416 spin_unlock(&dentry->d_lock);
417 if (nd->root.mnt) {
418 path_get(&nd->root);
419 spin_unlock(&fs->lock);
421 mntget(nd->path.mnt);
423 rcu_read_unlock();
424 br_read_unlock(vfsmount_lock);
425 nd->flags &= ~LOOKUP_RCU;
426 return 0;
427 err:
428 spin_unlock(&dentry->d_lock);
429 err_root:
430 if (nd->root.mnt)
431 spin_unlock(&fs->lock);
432 return -ECHILD;
435 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
436 static inline int nameidata_drop_rcu_maybe(struct nameidata *nd)
438 if (nd->flags & LOOKUP_RCU)
439 return nameidata_drop_rcu(nd);
440 return 0;
444 * nameidata_dentry_drop_rcu - drop nameidata and dentry out of rcu-walk
445 * @nd: nameidata pathwalk data to drop
446 * @dentry: dentry to drop
447 * Returns: 0 on success, -ECHILD on failure
449 * nameidata_dentry_drop_rcu attempts to drop the current nd->path and nd->root,
450 * and dentry into ref-walk. @dentry must be a path found by a do_lookup call on
451 * @nd. Must be called from rcu-walk context.
453 static int nameidata_dentry_drop_rcu(struct nameidata *nd, struct dentry *dentry)
455 struct fs_struct *fs = current->fs;
456 struct dentry *parent = nd->path.dentry;
459 * It can be possible to revalidate the dentry that we started
460 * the path walk with. force_reval_path may also revalidate the
461 * dentry already committed to the nameidata.
463 if (unlikely(parent == dentry))
464 return nameidata_drop_rcu(nd);
466 BUG_ON(!(nd->flags & LOOKUP_RCU));
467 if (nd->root.mnt) {
468 spin_lock(&fs->lock);
469 if (nd->root.mnt != fs->root.mnt ||
470 nd->root.dentry != fs->root.dentry)
471 goto err_root;
473 spin_lock(&parent->d_lock);
474 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
475 if (!__d_rcu_to_refcount(dentry, nd->seq))
476 goto err;
478 * If the sequence check on the child dentry passed, then the child has
479 * not been removed from its parent. This means the parent dentry must
480 * be valid and able to take a reference at this point.
482 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
483 BUG_ON(!parent->d_count);
484 parent->d_count++;
485 spin_unlock(&dentry->d_lock);
486 spin_unlock(&parent->d_lock);
487 if (nd->root.mnt) {
488 path_get(&nd->root);
489 spin_unlock(&fs->lock);
491 mntget(nd->path.mnt);
493 rcu_read_unlock();
494 br_read_unlock(vfsmount_lock);
495 nd->flags &= ~LOOKUP_RCU;
496 return 0;
497 err:
498 spin_unlock(&dentry->d_lock);
499 spin_unlock(&parent->d_lock);
500 err_root:
501 if (nd->root.mnt)
502 spin_unlock(&fs->lock);
503 return -ECHILD;
506 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
507 static inline int nameidata_dentry_drop_rcu_maybe(struct nameidata *nd, struct dentry *dentry)
509 if (nd->flags & LOOKUP_RCU)
510 return nameidata_dentry_drop_rcu(nd, dentry);
511 return 0;
515 * nameidata_drop_rcu_last - drop nameidata ending path walk out of rcu-walk
516 * @nd: nameidata pathwalk data to drop
517 * Returns: 0 on success, -ECHILD on failure
519 * nameidata_drop_rcu_last attempts to drop the current nd->path into ref-walk.
520 * nd->path should be the final element of the lookup, so nd->root is discarded.
521 * Must be called from rcu-walk context.
523 static int nameidata_drop_rcu_last(struct nameidata *nd)
525 struct dentry *dentry = nd->path.dentry;
527 BUG_ON(!(nd->flags & LOOKUP_RCU));
528 nd->flags &= ~LOOKUP_RCU;
529 nd->root.mnt = NULL;
530 spin_lock(&dentry->d_lock);
531 if (!__d_rcu_to_refcount(dentry, nd->seq))
532 goto err_unlock;
533 BUG_ON(nd->inode != dentry->d_inode);
534 spin_unlock(&dentry->d_lock);
536 mntget(nd->path.mnt);
538 rcu_read_unlock();
539 br_read_unlock(vfsmount_lock);
541 return 0;
543 err_unlock:
544 spin_unlock(&dentry->d_lock);
545 rcu_read_unlock();
546 br_read_unlock(vfsmount_lock);
547 return -ECHILD;
550 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
551 static inline int nameidata_drop_rcu_last_maybe(struct nameidata *nd)
553 if (likely(nd->flags & LOOKUP_RCU))
554 return nameidata_drop_rcu_last(nd);
555 return 0;
559 * release_open_intent - free up open intent resources
560 * @nd: pointer to nameidata
562 void release_open_intent(struct nameidata *nd)
564 if (nd->intent.open.file->f_path.dentry == NULL)
565 put_filp(nd->intent.open.file);
566 else
567 fput(nd->intent.open.file);
571 * Call d_revalidate and handle filesystems that request rcu-walk
572 * to be dropped. This may be called and return in rcu-walk mode,
573 * regardless of success or error. If -ECHILD is returned, the caller
574 * must return -ECHILD back up the path walk stack so path walk may
575 * be restarted in ref-walk mode.
577 static int d_revalidate(struct dentry *dentry, struct nameidata *nd)
579 int status;
581 status = dentry->d_op->d_revalidate(dentry, nd);
582 if (status == -ECHILD) {
583 if (nameidata_dentry_drop_rcu(nd, dentry))
584 return status;
585 status = dentry->d_op->d_revalidate(dentry, nd);
588 return status;
591 static inline struct dentry *
592 do_revalidate(struct dentry *dentry, struct nameidata *nd)
594 int status;
596 status = d_revalidate(dentry, nd);
597 if (unlikely(status <= 0)) {
599 * The dentry failed validation.
600 * If d_revalidate returned 0 attempt to invalidate
601 * the dentry otherwise d_revalidate is asking us
602 * to return a fail status.
604 if (status < 0) {
605 /* If we're in rcu-walk, we don't have a ref */
606 if (!(nd->flags & LOOKUP_RCU))
607 dput(dentry);
608 dentry = ERR_PTR(status);
610 } else {
611 /* Don't d_invalidate in rcu-walk mode */
612 if (nameidata_dentry_drop_rcu_maybe(nd, dentry))
613 return ERR_PTR(-ECHILD);
614 if (!d_invalidate(dentry)) {
615 dput(dentry);
616 dentry = NULL;
620 return dentry;
623 static inline int need_reval_dot(struct dentry *dentry)
625 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
626 return 0;
628 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
629 return 0;
631 return 1;
635 * force_reval_path - force revalidation of a dentry
637 * In some situations the path walking code will trust dentries without
638 * revalidating them. This causes problems for filesystems that depend on
639 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
640 * (which indicates that it's possible for the dentry to go stale), force
641 * a d_revalidate call before proceeding.
643 * Returns 0 if the revalidation was successful. If the revalidation fails,
644 * either return the error returned by d_revalidate or -ESTALE if the
645 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
646 * invalidate the dentry. It's up to the caller to handle putting references
647 * to the path if necessary.
649 static int
650 force_reval_path(struct path *path, struct nameidata *nd)
652 int status;
653 struct dentry *dentry = path->dentry;
656 * only check on filesystems where it's possible for the dentry to
657 * become stale.
659 if (!need_reval_dot(dentry))
660 return 0;
662 status = d_revalidate(dentry, nd);
663 if (status > 0)
664 return 0;
666 if (!status) {
667 /* Don't d_invalidate in rcu-walk mode */
668 if (nameidata_drop_rcu(nd))
669 return -ECHILD;
670 d_invalidate(dentry);
671 status = -ESTALE;
673 return status;
677 * Short-cut version of permission(), for calling on directories
678 * during pathname resolution. Combines parts of permission()
679 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
681 * If appropriate, check DAC only. If not appropriate, or
682 * short-cut DAC fails, then call ->permission() to do more
683 * complete permission check.
685 static inline int exec_permission(struct inode *inode, unsigned int flags)
687 int ret;
689 if (inode->i_op->permission) {
690 ret = inode->i_op->permission(inode, MAY_EXEC, flags);
691 } else {
692 ret = acl_permission_check(inode, MAY_EXEC, flags,
693 inode->i_op->check_acl);
695 if (likely(!ret))
696 goto ok;
697 if (ret == -ECHILD)
698 return ret;
700 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
701 goto ok;
703 return ret;
705 return security_inode_exec_permission(inode, flags);
708 static __always_inline void set_root(struct nameidata *nd)
710 if (!nd->root.mnt)
711 get_fs_root(current->fs, &nd->root);
714 static int link_path_walk(const char *, struct nameidata *);
716 static __always_inline void set_root_rcu(struct nameidata *nd)
718 if (!nd->root.mnt) {
719 struct fs_struct *fs = current->fs;
720 unsigned seq;
722 do {
723 seq = read_seqcount_begin(&fs->seq);
724 nd->root = fs->root;
725 } while (read_seqcount_retry(&fs->seq, seq));
729 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
731 int ret;
733 if (IS_ERR(link))
734 goto fail;
736 if (*link == '/') {
737 set_root(nd);
738 path_put(&nd->path);
739 nd->path = nd->root;
740 path_get(&nd->root);
742 nd->inode = nd->path.dentry->d_inode;
744 ret = link_path_walk(link, nd);
745 return ret;
746 fail:
747 path_put(&nd->path);
748 return PTR_ERR(link);
751 static void path_put_conditional(struct path *path, struct nameidata *nd)
753 dput(path->dentry);
754 if (path->mnt != nd->path.mnt)
755 mntput(path->mnt);
758 static inline void path_to_nameidata(const struct path *path,
759 struct nameidata *nd)
761 if (!(nd->flags & LOOKUP_RCU)) {
762 dput(nd->path.dentry);
763 if (nd->path.mnt != path->mnt)
764 mntput(nd->path.mnt);
766 nd->path.mnt = path->mnt;
767 nd->path.dentry = path->dentry;
770 static __always_inline int
771 __do_follow_link(const struct path *link, struct nameidata *nd, void **p)
773 int error;
774 struct dentry *dentry = link->dentry;
776 touch_atime(link->mnt, dentry);
777 nd_set_link(nd, NULL);
779 if (link->mnt == nd->path.mnt)
780 mntget(link->mnt);
782 nd->last_type = LAST_BIND;
783 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
784 error = PTR_ERR(*p);
785 if (!IS_ERR(*p)) {
786 char *s = nd_get_link(nd);
787 error = 0;
788 if (s)
789 error = __vfs_follow_link(nd, s);
790 else if (nd->last_type == LAST_BIND) {
791 error = force_reval_path(&nd->path, nd);
792 if (error)
793 path_put(&nd->path);
796 return error;
800 * This limits recursive symlink follows to 8, while
801 * limiting consecutive symlinks to 40.
803 * Without that kind of total limit, nasty chains of consecutive
804 * symlinks can cause almost arbitrarily long lookups.
806 static inline int do_follow_link(struct path *path, struct nameidata *nd)
808 void *cookie;
809 int err = -ELOOP;
810 if (current->link_count >= MAX_NESTED_LINKS)
811 goto loop;
812 if (current->total_link_count >= 40)
813 goto loop;
814 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
815 cond_resched();
816 err = security_inode_follow_link(path->dentry, nd);
817 if (err)
818 goto loop;
819 current->link_count++;
820 current->total_link_count++;
821 nd->depth++;
822 err = __do_follow_link(path, nd, &cookie);
823 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
824 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
825 path_put(path);
826 current->link_count--;
827 nd->depth--;
828 return err;
829 loop:
830 path_put_conditional(path, nd);
831 path_put(&nd->path);
832 return err;
835 static int follow_up_rcu(struct path *path)
837 struct vfsmount *parent;
838 struct dentry *mountpoint;
840 parent = path->mnt->mnt_parent;
841 if (parent == path->mnt)
842 return 0;
843 mountpoint = path->mnt->mnt_mountpoint;
844 path->dentry = mountpoint;
845 path->mnt = parent;
846 return 1;
849 int follow_up(struct path *path)
851 struct vfsmount *parent;
852 struct dentry *mountpoint;
854 br_read_lock(vfsmount_lock);
855 parent = path->mnt->mnt_parent;
856 if (parent == path->mnt) {
857 br_read_unlock(vfsmount_lock);
858 return 0;
860 mntget(parent);
861 mountpoint = dget(path->mnt->mnt_mountpoint);
862 br_read_unlock(vfsmount_lock);
863 dput(path->dentry);
864 path->dentry = mountpoint;
865 mntput(path->mnt);
866 path->mnt = parent;
867 return 1;
871 * Perform an automount
872 * - return -EISDIR to tell follow_managed() to stop and return the path we
873 * were called with.
875 static int follow_automount(struct path *path, unsigned flags,
876 bool *need_mntput)
878 struct vfsmount *mnt;
879 int err;
881 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
882 return -EREMOTE;
884 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
885 * and this is the terminal part of the path.
887 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
888 return -EISDIR; /* we actually want to stop here */
890 /* We want to mount if someone is trying to open/create a file of any
891 * type under the mountpoint, wants to traverse through the mountpoint
892 * or wants to open the mounted directory.
894 * We don't want to mount if someone's just doing a stat and they've
895 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
896 * appended a '/' to the name.
898 if (!(flags & LOOKUP_FOLLOW) &&
899 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
900 LOOKUP_OPEN | LOOKUP_CREATE)))
901 return -EISDIR;
903 current->total_link_count++;
904 if (current->total_link_count >= 40)
905 return -ELOOP;
907 mnt = path->dentry->d_op->d_automount(path);
908 if (IS_ERR(mnt)) {
910 * The filesystem is allowed to return -EISDIR here to indicate
911 * it doesn't want to automount. For instance, autofs would do
912 * this so that its userspace daemon can mount on this dentry.
914 * However, we can only permit this if it's a terminal point in
915 * the path being looked up; if it wasn't then the remainder of
916 * the path is inaccessible and we should say so.
918 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
919 return -EREMOTE;
920 return PTR_ERR(mnt);
923 if (!mnt) /* mount collision */
924 return 0;
926 err = finish_automount(mnt, path);
928 switch (err) {
929 case -EBUSY:
930 /* Someone else made a mount here whilst we were busy */
931 return 0;
932 case 0:
933 dput(path->dentry);
934 if (*need_mntput)
935 mntput(path->mnt);
936 path->mnt = mnt;
937 path->dentry = dget(mnt->mnt_root);
938 *need_mntput = true;
939 return 0;
940 default:
941 return err;
947 * Handle a dentry that is managed in some way.
948 * - Flagged for transit management (autofs)
949 * - Flagged as mountpoint
950 * - Flagged as automount point
952 * This may only be called in refwalk mode.
954 * Serialization is taken care of in namespace.c
956 static int follow_managed(struct path *path, unsigned flags)
958 unsigned managed;
959 bool need_mntput = false;
960 int ret;
962 /* Given that we're not holding a lock here, we retain the value in a
963 * local variable for each dentry as we look at it so that we don't see
964 * the components of that value change under us */
965 while (managed = ACCESS_ONCE(path->dentry->d_flags),
966 managed &= DCACHE_MANAGED_DENTRY,
967 unlikely(managed != 0)) {
968 /* Allow the filesystem to manage the transit without i_mutex
969 * being held. */
970 if (managed & DCACHE_MANAGE_TRANSIT) {
971 BUG_ON(!path->dentry->d_op);
972 BUG_ON(!path->dentry->d_op->d_manage);
973 ret = path->dentry->d_op->d_manage(path->dentry,
974 false, false);
975 if (ret < 0)
976 return ret == -EISDIR ? 0 : ret;
979 /* Transit to a mounted filesystem. */
980 if (managed & DCACHE_MOUNTED) {
981 struct vfsmount *mounted = lookup_mnt(path);
982 if (mounted) {
983 dput(path->dentry);
984 if (need_mntput)
985 mntput(path->mnt);
986 path->mnt = mounted;
987 path->dentry = dget(mounted->mnt_root);
988 need_mntput = true;
989 continue;
992 /* Something is mounted on this dentry in another
993 * namespace and/or whatever was mounted there in this
994 * namespace got unmounted before we managed to get the
995 * vfsmount_lock */
998 /* Handle an automount point */
999 if (managed & DCACHE_NEED_AUTOMOUNT) {
1000 ret = follow_automount(path, flags, &need_mntput);
1001 if (ret < 0)
1002 return ret == -EISDIR ? 0 : ret;
1003 continue;
1006 /* We didn't change the current path point */
1007 break;
1009 return 0;
1012 int follow_down_one(struct path *path)
1014 struct vfsmount *mounted;
1016 mounted = lookup_mnt(path);
1017 if (mounted) {
1018 dput(path->dentry);
1019 mntput(path->mnt);
1020 path->mnt = mounted;
1021 path->dentry = dget(mounted->mnt_root);
1022 return 1;
1024 return 0;
1028 * Skip to top of mountpoint pile in rcuwalk mode. We abort the rcu-walk if we
1029 * meet a managed dentry and we're not walking to "..". True is returned to
1030 * continue, false to abort.
1032 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1033 struct inode **inode, bool reverse_transit)
1035 while (d_mountpoint(path->dentry)) {
1036 struct vfsmount *mounted;
1037 if (unlikely(path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) &&
1038 !reverse_transit &&
1039 path->dentry->d_op->d_manage(path->dentry, false, true) < 0)
1040 return false;
1041 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1042 if (!mounted)
1043 break;
1044 path->mnt = mounted;
1045 path->dentry = mounted->mnt_root;
1046 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1047 *inode = path->dentry->d_inode;
1050 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1051 return reverse_transit;
1052 return true;
1055 static int follow_dotdot_rcu(struct nameidata *nd)
1057 struct inode *inode = nd->inode;
1059 set_root_rcu(nd);
1061 while (1) {
1062 if (nd->path.dentry == nd->root.dentry &&
1063 nd->path.mnt == nd->root.mnt) {
1064 break;
1066 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1067 struct dentry *old = nd->path.dentry;
1068 struct dentry *parent = old->d_parent;
1069 unsigned seq;
1071 seq = read_seqcount_begin(&parent->d_seq);
1072 if (read_seqcount_retry(&old->d_seq, nd->seq))
1073 return -ECHILD;
1074 inode = parent->d_inode;
1075 nd->path.dentry = parent;
1076 nd->seq = seq;
1077 break;
1079 if (!follow_up_rcu(&nd->path))
1080 break;
1081 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1082 inode = nd->path.dentry->d_inode;
1084 __follow_mount_rcu(nd, &nd->path, &inode, true);
1085 nd->inode = inode;
1087 return 0;
1091 * Follow down to the covering mount currently visible to userspace. At each
1092 * point, the filesystem owning that dentry may be queried as to whether the
1093 * caller is permitted to proceed or not.
1095 * Care must be taken as namespace_sem may be held (indicated by mounting_here
1096 * being true).
1098 int follow_down(struct path *path, bool mounting_here)
1100 unsigned managed;
1101 int ret;
1103 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1104 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1105 /* Allow the filesystem to manage the transit without i_mutex
1106 * being held.
1108 * We indicate to the filesystem if someone is trying to mount
1109 * something here. This gives autofs the chance to deny anyone
1110 * other than its daemon the right to mount on its
1111 * superstructure.
1113 * The filesystem may sleep at this point.
1115 if (managed & DCACHE_MANAGE_TRANSIT) {
1116 BUG_ON(!path->dentry->d_op);
1117 BUG_ON(!path->dentry->d_op->d_manage);
1118 ret = path->dentry->d_op->d_manage(
1119 path->dentry, mounting_here, false);
1120 if (ret < 0)
1121 return ret == -EISDIR ? 0 : ret;
1124 /* Transit to a mounted filesystem. */
1125 if (managed & DCACHE_MOUNTED) {
1126 struct vfsmount *mounted = lookup_mnt(path);
1127 if (!mounted)
1128 break;
1129 dput(path->dentry);
1130 mntput(path->mnt);
1131 path->mnt = mounted;
1132 path->dentry = dget(mounted->mnt_root);
1133 continue;
1136 /* Don't handle automount points here */
1137 break;
1139 return 0;
1143 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1145 static void follow_mount(struct path *path)
1147 while (d_mountpoint(path->dentry)) {
1148 struct vfsmount *mounted = lookup_mnt(path);
1149 if (!mounted)
1150 break;
1151 dput(path->dentry);
1152 mntput(path->mnt);
1153 path->mnt = mounted;
1154 path->dentry = dget(mounted->mnt_root);
1158 static void follow_dotdot(struct nameidata *nd)
1160 set_root(nd);
1162 while(1) {
1163 struct dentry *old = nd->path.dentry;
1165 if (nd->path.dentry == nd->root.dentry &&
1166 nd->path.mnt == nd->root.mnt) {
1167 break;
1169 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1170 /* rare case of legitimate dget_parent()... */
1171 nd->path.dentry = dget_parent(nd->path.dentry);
1172 dput(old);
1173 break;
1175 if (!follow_up(&nd->path))
1176 break;
1178 follow_mount(&nd->path);
1179 nd->inode = nd->path.dentry->d_inode;
1183 * Allocate a dentry with name and parent, and perform a parent
1184 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1185 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1186 * have verified that no child exists while under i_mutex.
1188 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1189 struct qstr *name, struct nameidata *nd)
1191 struct inode *inode = parent->d_inode;
1192 struct dentry *dentry;
1193 struct dentry *old;
1195 /* Don't create child dentry for a dead directory. */
1196 if (unlikely(IS_DEADDIR(inode)))
1197 return ERR_PTR(-ENOENT);
1199 dentry = d_alloc(parent, name);
1200 if (unlikely(!dentry))
1201 return ERR_PTR(-ENOMEM);
1203 old = inode->i_op->lookup(inode, dentry, nd);
1204 if (unlikely(old)) {
1205 dput(dentry);
1206 dentry = old;
1208 return dentry;
1212 * It's more convoluted than I'd like it to be, but... it's still fairly
1213 * small and for now I'd prefer to have fast path as straight as possible.
1214 * It _is_ time-critical.
1216 static int do_lookup(struct nameidata *nd, struct qstr *name,
1217 struct path *path, struct inode **inode)
1219 struct vfsmount *mnt = nd->path.mnt;
1220 struct dentry *dentry, *parent = nd->path.dentry;
1221 struct inode *dir;
1222 int err;
1225 * See if the low-level filesystem might want
1226 * to use its own hash..
1228 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1229 err = parent->d_op->d_hash(parent, nd->inode, name);
1230 if (err < 0)
1231 return err;
1235 * Rename seqlock is not required here because in the off chance
1236 * of a false negative due to a concurrent rename, we're going to
1237 * do the non-racy lookup, below.
1239 if (nd->flags & LOOKUP_RCU) {
1240 unsigned seq;
1242 *inode = nd->inode;
1243 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1244 if (!dentry) {
1245 if (nameidata_drop_rcu(nd))
1246 return -ECHILD;
1247 goto need_lookup;
1249 /* Memory barrier in read_seqcount_begin of child is enough */
1250 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1251 return -ECHILD;
1253 nd->seq = seq;
1254 if (dentry->d_flags & DCACHE_OP_REVALIDATE)
1255 goto need_revalidate;
1256 done2:
1257 path->mnt = mnt;
1258 path->dentry = dentry;
1259 if (likely(__follow_mount_rcu(nd, path, inode, false)))
1260 return 0;
1261 if (nameidata_drop_rcu(nd))
1262 return -ECHILD;
1263 /* fallthru */
1265 dentry = __d_lookup(parent, name);
1266 if (!dentry)
1267 goto need_lookup;
1268 found:
1269 if (dentry->d_flags & DCACHE_OP_REVALIDATE)
1270 goto need_revalidate;
1271 done:
1272 path->mnt = mnt;
1273 path->dentry = dentry;
1274 err = follow_managed(path, nd->flags);
1275 if (unlikely(err < 0)) {
1276 path_put_conditional(path, nd);
1277 return err;
1279 *inode = path->dentry->d_inode;
1280 return 0;
1282 need_lookup:
1283 dir = parent->d_inode;
1284 BUG_ON(nd->inode != dir);
1286 mutex_lock(&dir->i_mutex);
1288 * First re-do the cached lookup just in case it was created
1289 * while we waited for the directory semaphore, or the first
1290 * lookup failed due to an unrelated rename.
1292 * This could use version numbering or similar to avoid unnecessary
1293 * cache lookups, but then we'd have to do the first lookup in the
1294 * non-racy way. However in the common case here, everything should
1295 * be hot in cache, so would it be a big win?
1297 dentry = d_lookup(parent, name);
1298 if (likely(!dentry)) {
1299 dentry = d_alloc_and_lookup(parent, name, nd);
1300 mutex_unlock(&dir->i_mutex);
1301 if (IS_ERR(dentry))
1302 goto fail;
1303 goto done;
1306 * Uhhuh! Nasty case: the cache was re-populated while
1307 * we waited on the semaphore. Need to revalidate.
1309 mutex_unlock(&dir->i_mutex);
1310 goto found;
1312 need_revalidate:
1313 dentry = do_revalidate(dentry, nd);
1314 if (!dentry)
1315 goto need_lookup;
1316 if (IS_ERR(dentry))
1317 goto fail;
1318 if (nd->flags & LOOKUP_RCU)
1319 goto done2;
1320 goto done;
1322 fail:
1323 return PTR_ERR(dentry);
1327 * Name resolution.
1328 * This is the basic name resolution function, turning a pathname into
1329 * the final dentry. We expect 'base' to be positive and a directory.
1331 * Returns 0 and nd will have valid dentry and mnt on success.
1332 * Returns error and drops reference to input namei data on failure.
1334 static int link_path_walk(const char *name, struct nameidata *nd)
1336 struct path next;
1337 int err;
1338 unsigned int lookup_flags = nd->flags;
1340 while (*name=='/')
1341 name++;
1342 if (!*name)
1343 goto return_reval;
1345 if (nd->depth)
1346 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
1348 /* At this point we know we have a real path component. */
1349 for(;;) {
1350 struct inode *inode;
1351 unsigned long hash;
1352 struct qstr this;
1353 unsigned int c;
1355 nd->flags |= LOOKUP_CONTINUE;
1356 if (nd->flags & LOOKUP_RCU) {
1357 err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1358 if (err == -ECHILD) {
1359 if (nameidata_drop_rcu(nd))
1360 return -ECHILD;
1361 goto exec_again;
1363 } else {
1364 exec_again:
1365 err = exec_permission(nd->inode, 0);
1367 if (err)
1368 break;
1370 this.name = name;
1371 c = *(const unsigned char *)name;
1373 hash = init_name_hash();
1374 do {
1375 name++;
1376 hash = partial_name_hash(c, hash);
1377 c = *(const unsigned char *)name;
1378 } while (c && (c != '/'));
1379 this.len = name - (const char *) this.name;
1380 this.hash = end_name_hash(hash);
1382 /* remove trailing slashes? */
1383 if (!c)
1384 goto last_component;
1385 while (*++name == '/');
1386 if (!*name)
1387 goto last_with_slashes;
1390 * "." and ".." are special - ".." especially so because it has
1391 * to be able to know about the current root directory and
1392 * parent relationships.
1394 if (this.name[0] == '.') switch (this.len) {
1395 default:
1396 break;
1397 case 2:
1398 if (this.name[1] != '.')
1399 break;
1400 if (nd->flags & LOOKUP_RCU) {
1401 if (follow_dotdot_rcu(nd))
1402 return -ECHILD;
1403 } else
1404 follow_dotdot(nd);
1405 /* fallthrough */
1406 case 1:
1407 continue;
1409 /* This does the actual lookups.. */
1410 err = do_lookup(nd, &this, &next, &inode);
1411 if (err)
1412 break;
1413 err = -ENOENT;
1414 if (!inode)
1415 goto out_dput;
1417 if (inode->i_op->follow_link) {
1418 /* We commonly drop rcu-walk here */
1419 if (nameidata_dentry_drop_rcu_maybe(nd, next.dentry))
1420 return -ECHILD;
1421 BUG_ON(inode != next.dentry->d_inode);
1422 err = do_follow_link(&next, nd);
1423 if (err)
1424 goto return_err;
1425 nd->inode = nd->path.dentry->d_inode;
1426 err = -ENOENT;
1427 if (!nd->inode)
1428 break;
1429 } else {
1430 path_to_nameidata(&next, nd);
1431 nd->inode = inode;
1433 err = -ENOTDIR;
1434 if (!nd->inode->i_op->lookup)
1435 break;
1436 continue;
1437 /* here ends the main loop */
1439 last_with_slashes:
1440 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1441 last_component:
1442 /* Clear LOOKUP_CONTINUE iff it was previously unset */
1443 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1444 if (lookup_flags & LOOKUP_PARENT)
1445 goto lookup_parent;
1446 if (this.name[0] == '.') switch (this.len) {
1447 default:
1448 break;
1449 case 2:
1450 if (this.name[1] != '.')
1451 break;
1452 if (nd->flags & LOOKUP_RCU) {
1453 if (follow_dotdot_rcu(nd))
1454 return -ECHILD;
1455 } else
1456 follow_dotdot(nd);
1457 /* fallthrough */
1458 case 1:
1459 goto return_reval;
1461 err = do_lookup(nd, &this, &next, &inode);
1462 if (err)
1463 break;
1464 if (inode && unlikely(inode->i_op->follow_link) &&
1465 (lookup_flags & LOOKUP_FOLLOW)) {
1466 if (nameidata_dentry_drop_rcu_maybe(nd, next.dentry))
1467 return -ECHILD;
1468 BUG_ON(inode != next.dentry->d_inode);
1469 err = do_follow_link(&next, nd);
1470 if (err)
1471 goto return_err;
1472 nd->inode = nd->path.dentry->d_inode;
1473 } else {
1474 path_to_nameidata(&next, nd);
1475 nd->inode = inode;
1477 err = -ENOENT;
1478 if (!nd->inode)
1479 break;
1480 if (lookup_flags & LOOKUP_DIRECTORY) {
1481 err = -ENOTDIR;
1482 if (!nd->inode->i_op->lookup)
1483 break;
1485 goto return_base;
1486 lookup_parent:
1487 nd->last = this;
1488 nd->last_type = LAST_NORM;
1489 if (this.name[0] != '.')
1490 goto return_base;
1491 if (this.len == 1)
1492 nd->last_type = LAST_DOT;
1493 else if (this.len == 2 && this.name[1] == '.')
1494 nd->last_type = LAST_DOTDOT;
1495 else
1496 goto return_base;
1497 return_reval:
1499 * We bypassed the ordinary revalidation routines.
1500 * We may need to check the cached dentry for staleness.
1502 if (need_reval_dot(nd->path.dentry)) {
1503 /* Note: we do not d_invalidate() */
1504 err = d_revalidate(nd->path.dentry, nd);
1505 if (!err)
1506 err = -ESTALE;
1507 if (err < 0)
1508 break;
1510 return_base:
1511 if (nameidata_drop_rcu_last_maybe(nd))
1512 return -ECHILD;
1513 return 0;
1514 out_dput:
1515 if (!(nd->flags & LOOKUP_RCU))
1516 path_put_conditional(&next, nd);
1517 break;
1519 if (!(nd->flags & LOOKUP_RCU))
1520 path_put(&nd->path);
1521 return_err:
1522 return err;
1525 static inline int path_walk_rcu(const char *name, struct nameidata *nd)
1527 current->total_link_count = 0;
1529 return link_path_walk(name, nd);
1532 static inline int path_walk_simple(const char *name, struct nameidata *nd)
1534 current->total_link_count = 0;
1536 return link_path_walk(name, nd);
1539 static int path_walk(const char *name, struct nameidata *nd)
1541 struct path save = nd->path;
1542 int result;
1544 current->total_link_count = 0;
1546 /* make sure the stuff we saved doesn't go away */
1547 path_get(&save);
1549 result = link_path_walk(name, nd);
1550 if (result == -ESTALE) {
1551 /* nd->path had been dropped */
1552 current->total_link_count = 0;
1553 nd->path = save;
1554 path_get(&nd->path);
1555 nd->flags |= LOOKUP_REVAL;
1556 result = link_path_walk(name, nd);
1559 path_put(&save);
1561 return result;
1564 static void path_finish_rcu(struct nameidata *nd)
1566 if (nd->flags & LOOKUP_RCU) {
1567 /* RCU dangling. Cancel it. */
1568 nd->flags &= ~LOOKUP_RCU;
1569 nd->root.mnt = NULL;
1570 rcu_read_unlock();
1571 br_read_unlock(vfsmount_lock);
1573 if (nd->file)
1574 fput(nd->file);
1577 static int path_init_rcu(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1579 int retval = 0;
1580 int fput_needed;
1581 struct file *file;
1583 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1584 nd->flags = flags | LOOKUP_RCU;
1585 nd->depth = 0;
1586 nd->root.mnt = NULL;
1587 nd->file = NULL;
1589 if (*name=='/') {
1590 struct fs_struct *fs = current->fs;
1591 unsigned seq;
1593 br_read_lock(vfsmount_lock);
1594 rcu_read_lock();
1596 do {
1597 seq = read_seqcount_begin(&fs->seq);
1598 nd->root = fs->root;
1599 nd->path = nd->root;
1600 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1601 } while (read_seqcount_retry(&fs->seq, seq));
1603 } else if (dfd == AT_FDCWD) {
1604 struct fs_struct *fs = current->fs;
1605 unsigned seq;
1607 br_read_lock(vfsmount_lock);
1608 rcu_read_lock();
1610 do {
1611 seq = read_seqcount_begin(&fs->seq);
1612 nd->path = fs->pwd;
1613 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1614 } while (read_seqcount_retry(&fs->seq, seq));
1616 } else {
1617 struct dentry *dentry;
1619 file = fget_light(dfd, &fput_needed);
1620 retval = -EBADF;
1621 if (!file)
1622 goto out_fail;
1624 dentry = file->f_path.dentry;
1626 retval = -ENOTDIR;
1627 if (!S_ISDIR(dentry->d_inode->i_mode))
1628 goto fput_fail;
1630 retval = file_permission(file, MAY_EXEC);
1631 if (retval)
1632 goto fput_fail;
1634 nd->path = file->f_path;
1635 if (fput_needed)
1636 nd->file = file;
1638 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1639 br_read_lock(vfsmount_lock);
1640 rcu_read_lock();
1642 nd->inode = nd->path.dentry->d_inode;
1643 return 0;
1645 fput_fail:
1646 fput_light(file, fput_needed);
1647 out_fail:
1648 return retval;
1651 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1653 int retval = 0;
1654 int fput_needed;
1655 struct file *file;
1657 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1658 nd->flags = flags;
1659 nd->depth = 0;
1660 nd->root.mnt = NULL;
1662 if (*name=='/') {
1663 set_root(nd);
1664 nd->path = nd->root;
1665 path_get(&nd->root);
1666 } else if (dfd == AT_FDCWD) {
1667 get_fs_pwd(current->fs, &nd->path);
1668 } else {
1669 struct dentry *dentry;
1671 file = fget_light(dfd, &fput_needed);
1672 retval = -EBADF;
1673 if (!file)
1674 goto out_fail;
1676 dentry = file->f_path.dentry;
1678 retval = -ENOTDIR;
1679 if (!S_ISDIR(dentry->d_inode->i_mode))
1680 goto fput_fail;
1682 retval = file_permission(file, MAY_EXEC);
1683 if (retval)
1684 goto fput_fail;
1686 nd->path = file->f_path;
1687 path_get(&file->f_path);
1689 fput_light(file, fput_needed);
1691 nd->inode = nd->path.dentry->d_inode;
1692 return 0;
1694 fput_fail:
1695 fput_light(file, fput_needed);
1696 out_fail:
1697 return retval;
1700 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1701 static int do_path_lookup(int dfd, const char *name,
1702 unsigned int flags, struct nameidata *nd)
1704 int retval;
1707 * Path walking is largely split up into 2 different synchronisation
1708 * schemes, rcu-walk and ref-walk (explained in
1709 * Documentation/filesystems/path-lookup.txt). These share much of the
1710 * path walk code, but some things particularly setup, cleanup, and
1711 * following mounts are sufficiently divergent that functions are
1712 * duplicated. Typically there is a function foo(), and its RCU
1713 * analogue, foo_rcu().
1715 * -ECHILD is the error number of choice (just to avoid clashes) that
1716 * is returned if some aspect of an rcu-walk fails. Such an error must
1717 * be handled by restarting a traditional ref-walk (which will always
1718 * be able to complete).
1720 retval = path_init_rcu(dfd, name, flags, nd);
1721 if (unlikely(retval))
1722 return retval;
1723 retval = path_walk_rcu(name, nd);
1724 path_finish_rcu(nd);
1725 if (nd->root.mnt) {
1726 path_put(&nd->root);
1727 nd->root.mnt = NULL;
1730 if (unlikely(retval == -ECHILD || retval == -ESTALE)) {
1731 /* slower, locked walk */
1732 if (retval == -ESTALE)
1733 flags |= LOOKUP_REVAL;
1734 retval = path_init(dfd, name, flags, nd);
1735 if (unlikely(retval))
1736 return retval;
1737 retval = path_walk(name, nd);
1738 if (nd->root.mnt) {
1739 path_put(&nd->root);
1740 nd->root.mnt = NULL;
1744 if (likely(!retval)) {
1745 if (unlikely(!audit_dummy_context())) {
1746 if (nd->path.dentry && nd->inode)
1747 audit_inode(name, nd->path.dentry);
1751 return retval;
1754 int path_lookup(const char *name, unsigned int flags,
1755 struct nameidata *nd)
1757 return do_path_lookup(AT_FDCWD, name, flags, nd);
1760 int kern_path(const char *name, unsigned int flags, struct path *path)
1762 struct nameidata nd;
1763 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1764 if (!res)
1765 *path = nd.path;
1766 return res;
1770 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1771 * @dentry: pointer to dentry of the base directory
1772 * @mnt: pointer to vfs mount of the base directory
1773 * @name: pointer to file name
1774 * @flags: lookup flags
1775 * @nd: pointer to nameidata
1777 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1778 const char *name, unsigned int flags,
1779 struct nameidata *nd)
1781 int retval;
1783 /* same as do_path_lookup */
1784 nd->last_type = LAST_ROOT;
1785 nd->flags = flags;
1786 nd->depth = 0;
1788 nd->path.dentry = dentry;
1789 nd->path.mnt = mnt;
1790 path_get(&nd->path);
1791 nd->root = nd->path;
1792 path_get(&nd->root);
1793 nd->inode = nd->path.dentry->d_inode;
1795 retval = path_walk(name, nd);
1796 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1797 nd->inode))
1798 audit_inode(name, nd->path.dentry);
1800 path_put(&nd->root);
1801 nd->root.mnt = NULL;
1803 return retval;
1806 static struct dentry *__lookup_hash(struct qstr *name,
1807 struct dentry *base, struct nameidata *nd)
1809 struct inode *inode = base->d_inode;
1810 struct dentry *dentry;
1811 int err;
1813 err = exec_permission(inode, 0);
1814 if (err)
1815 return ERR_PTR(err);
1818 * See if the low-level filesystem might want
1819 * to use its own hash..
1821 if (base->d_flags & DCACHE_OP_HASH) {
1822 err = base->d_op->d_hash(base, inode, name);
1823 dentry = ERR_PTR(err);
1824 if (err < 0)
1825 goto out;
1829 * Don't bother with __d_lookup: callers are for creat as
1830 * well as unlink, so a lot of the time it would cost
1831 * a double lookup.
1833 dentry = d_lookup(base, name);
1835 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1836 dentry = do_revalidate(dentry, nd);
1838 if (!dentry)
1839 dentry = d_alloc_and_lookup(base, name, nd);
1840 out:
1841 return dentry;
1845 * Restricted form of lookup. Doesn't follow links, single-component only,
1846 * needs parent already locked. Doesn't follow mounts.
1847 * SMP-safe.
1849 static struct dentry *lookup_hash(struct nameidata *nd)
1851 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1854 static int __lookup_one_len(const char *name, struct qstr *this,
1855 struct dentry *base, int len)
1857 unsigned long hash;
1858 unsigned int c;
1860 this->name = name;
1861 this->len = len;
1862 if (!len)
1863 return -EACCES;
1865 hash = init_name_hash();
1866 while (len--) {
1867 c = *(const unsigned char *)name++;
1868 if (c == '/' || c == '\0')
1869 return -EACCES;
1870 hash = partial_name_hash(c, hash);
1872 this->hash = end_name_hash(hash);
1873 return 0;
1877 * lookup_one_len - filesystem helper to lookup single pathname component
1878 * @name: pathname component to lookup
1879 * @base: base directory to lookup from
1880 * @len: maximum length @len should be interpreted to
1882 * Note that this routine is purely a helper for filesystem usage and should
1883 * not be called by generic code. Also note that by using this function the
1884 * nameidata argument is passed to the filesystem methods and a filesystem
1885 * using this helper needs to be prepared for that.
1887 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1889 int err;
1890 struct qstr this;
1892 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1894 err = __lookup_one_len(name, &this, base, len);
1895 if (err)
1896 return ERR_PTR(err);
1898 return __lookup_hash(&this, base, NULL);
1901 int user_path_at(int dfd, const char __user *name, unsigned flags,
1902 struct path *path)
1904 struct nameidata nd;
1905 char *tmp = getname(name);
1906 int err = PTR_ERR(tmp);
1907 if (!IS_ERR(tmp)) {
1909 BUG_ON(flags & LOOKUP_PARENT);
1911 err = do_path_lookup(dfd, tmp, flags, &nd);
1912 putname(tmp);
1913 if (!err)
1914 *path = nd.path;
1916 return err;
1919 static int user_path_parent(int dfd, const char __user *path,
1920 struct nameidata *nd, char **name)
1922 char *s = getname(path);
1923 int error;
1925 if (IS_ERR(s))
1926 return PTR_ERR(s);
1928 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1929 if (error)
1930 putname(s);
1931 else
1932 *name = s;
1934 return error;
1938 * It's inline, so penalty for filesystems that don't use sticky bit is
1939 * minimal.
1941 static inline int check_sticky(struct inode *dir, struct inode *inode)
1943 uid_t fsuid = current_fsuid();
1945 if (!(dir->i_mode & S_ISVTX))
1946 return 0;
1947 if (inode->i_uid == fsuid)
1948 return 0;
1949 if (dir->i_uid == fsuid)
1950 return 0;
1951 return !capable(CAP_FOWNER);
1955 * Check whether we can remove a link victim from directory dir, check
1956 * whether the type of victim is right.
1957 * 1. We can't do it if dir is read-only (done in permission())
1958 * 2. We should have write and exec permissions on dir
1959 * 3. We can't remove anything from append-only dir
1960 * 4. We can't do anything with immutable dir (done in permission())
1961 * 5. If the sticky bit on dir is set we should either
1962 * a. be owner of dir, or
1963 * b. be owner of victim, or
1964 * c. have CAP_FOWNER capability
1965 * 6. If the victim is append-only or immutable we can't do antyhing with
1966 * links pointing to it.
1967 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1968 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1969 * 9. We can't remove a root or mountpoint.
1970 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1971 * nfs_async_unlink().
1973 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1975 int error;
1977 if (!victim->d_inode)
1978 return -ENOENT;
1980 BUG_ON(victim->d_parent->d_inode != dir);
1981 audit_inode_child(victim, dir);
1983 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1984 if (error)
1985 return error;
1986 if (IS_APPEND(dir))
1987 return -EPERM;
1988 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1989 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1990 return -EPERM;
1991 if (isdir) {
1992 if (!S_ISDIR(victim->d_inode->i_mode))
1993 return -ENOTDIR;
1994 if (IS_ROOT(victim))
1995 return -EBUSY;
1996 } else if (S_ISDIR(victim->d_inode->i_mode))
1997 return -EISDIR;
1998 if (IS_DEADDIR(dir))
1999 return -ENOENT;
2000 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2001 return -EBUSY;
2002 return 0;
2005 /* Check whether we can create an object with dentry child in directory
2006 * dir.
2007 * 1. We can't do it if child already exists (open has special treatment for
2008 * this case, but since we are inlined it's OK)
2009 * 2. We can't do it if dir is read-only (done in permission())
2010 * 3. We should have write and exec permissions on dir
2011 * 4. We can't do it if dir is immutable (done in permission())
2013 static inline int may_create(struct inode *dir, struct dentry *child)
2015 if (child->d_inode)
2016 return -EEXIST;
2017 if (IS_DEADDIR(dir))
2018 return -ENOENT;
2019 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2023 * p1 and p2 should be directories on the same fs.
2025 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2027 struct dentry *p;
2029 if (p1 == p2) {
2030 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2031 return NULL;
2034 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2036 p = d_ancestor(p2, p1);
2037 if (p) {
2038 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2039 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2040 return p;
2043 p = d_ancestor(p1, p2);
2044 if (p) {
2045 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2046 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2047 return p;
2050 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2051 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2052 return NULL;
2055 void unlock_rename(struct dentry *p1, struct dentry *p2)
2057 mutex_unlock(&p1->d_inode->i_mutex);
2058 if (p1 != p2) {
2059 mutex_unlock(&p2->d_inode->i_mutex);
2060 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2064 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
2065 struct nameidata *nd)
2067 int error = may_create(dir, dentry);
2069 if (error)
2070 return error;
2072 if (!dir->i_op->create)
2073 return -EACCES; /* shouldn't it be ENOSYS? */
2074 mode &= S_IALLUGO;
2075 mode |= S_IFREG;
2076 error = security_inode_create(dir, dentry, mode);
2077 if (error)
2078 return error;
2079 error = dir->i_op->create(dir, dentry, mode, nd);
2080 if (!error)
2081 fsnotify_create(dir, dentry);
2082 return error;
2085 int may_open(struct path *path, int acc_mode, int flag)
2087 struct dentry *dentry = path->dentry;
2088 struct inode *inode = dentry->d_inode;
2089 int error;
2091 if (!inode)
2092 return -ENOENT;
2094 switch (inode->i_mode & S_IFMT) {
2095 case S_IFLNK:
2096 return -ELOOP;
2097 case S_IFDIR:
2098 if (acc_mode & MAY_WRITE)
2099 return -EISDIR;
2100 break;
2101 case S_IFBLK:
2102 case S_IFCHR:
2103 if (path->mnt->mnt_flags & MNT_NODEV)
2104 return -EACCES;
2105 /*FALLTHRU*/
2106 case S_IFIFO:
2107 case S_IFSOCK:
2108 flag &= ~O_TRUNC;
2109 break;
2112 error = inode_permission(inode, acc_mode);
2113 if (error)
2114 return error;
2117 * An append-only file must be opened in append mode for writing.
2119 if (IS_APPEND(inode)) {
2120 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2121 return -EPERM;
2122 if (flag & O_TRUNC)
2123 return -EPERM;
2126 /* O_NOATIME can only be set by the owner or superuser */
2127 if (flag & O_NOATIME && !is_owner_or_cap(inode))
2128 return -EPERM;
2131 * Ensure there are no outstanding leases on the file.
2133 return break_lease(inode, flag);
2136 static int handle_truncate(struct file *filp)
2138 struct path *path = &filp->f_path;
2139 struct inode *inode = path->dentry->d_inode;
2140 int error = get_write_access(inode);
2141 if (error)
2142 return error;
2144 * Refuse to truncate files with mandatory locks held on them.
2146 error = locks_verify_locked(inode);
2147 if (!error)
2148 error = security_path_truncate(path);
2149 if (!error) {
2150 error = do_truncate(path->dentry, 0,
2151 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2152 filp);
2154 put_write_access(inode);
2155 return error;
2159 * Be careful about ever adding any more callers of this
2160 * function. Its flags must be in the namei format, not
2161 * what get passed to sys_open().
2163 static int __open_namei_create(struct nameidata *nd, struct path *path,
2164 int open_flag, int mode)
2166 int error;
2167 struct dentry *dir = nd->path.dentry;
2169 if (!IS_POSIXACL(dir->d_inode))
2170 mode &= ~current_umask();
2171 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
2172 if (error)
2173 goto out_unlock;
2174 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
2175 out_unlock:
2176 mutex_unlock(&dir->d_inode->i_mutex);
2177 dput(nd->path.dentry);
2178 nd->path.dentry = path->dentry;
2180 if (error)
2181 return error;
2182 /* Don't check for write permission, don't truncate */
2183 return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
2187 * Note that while the flag value (low two bits) for sys_open means:
2188 * 00 - read-only
2189 * 01 - write-only
2190 * 10 - read-write
2191 * 11 - special
2192 * it is changed into
2193 * 00 - no permissions needed
2194 * 01 - read-permission
2195 * 10 - write-permission
2196 * 11 - read-write
2197 * for the internal routines (ie open_namei()/follow_link() etc)
2198 * This is more logical, and also allows the 00 "no perm needed"
2199 * to be used for symlinks (where the permissions are checked
2200 * later).
2203 static inline int open_to_namei_flags(int flag)
2205 if ((flag+1) & O_ACCMODE)
2206 flag++;
2207 return flag;
2210 static int open_will_truncate(int flag, struct inode *inode)
2213 * We'll never write to the fs underlying
2214 * a device file.
2216 if (special_file(inode->i_mode))
2217 return 0;
2218 return (flag & O_TRUNC);
2221 static struct file *finish_open(struct nameidata *nd,
2222 int open_flag, int acc_mode)
2224 struct file *filp;
2225 int will_truncate;
2226 int error;
2228 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
2229 if (will_truncate) {
2230 error = mnt_want_write(nd->path.mnt);
2231 if (error)
2232 goto exit;
2234 error = may_open(&nd->path, acc_mode, open_flag);
2235 if (error) {
2236 if (will_truncate)
2237 mnt_drop_write(nd->path.mnt);
2238 goto exit;
2240 filp = nameidata_to_filp(nd);
2241 if (!IS_ERR(filp)) {
2242 error = ima_file_check(filp, acc_mode);
2243 if (error) {
2244 fput(filp);
2245 filp = ERR_PTR(error);
2248 if (!IS_ERR(filp)) {
2249 if (will_truncate) {
2250 error = handle_truncate(filp);
2251 if (error) {
2252 fput(filp);
2253 filp = ERR_PTR(error);
2258 * It is now safe to drop the mnt write
2259 * because the filp has had a write taken
2260 * on its behalf.
2262 if (will_truncate)
2263 mnt_drop_write(nd->path.mnt);
2264 path_put(&nd->path);
2265 return filp;
2267 exit:
2268 if (!IS_ERR(nd->intent.open.file))
2269 release_open_intent(nd);
2270 path_put(&nd->path);
2271 return ERR_PTR(error);
2275 * Handle O_CREAT case for do_filp_open
2277 static struct file *do_last(struct nameidata *nd, struct path *path,
2278 int open_flag, int acc_mode,
2279 int mode, const char *pathname)
2281 struct dentry *dir = nd->path.dentry;
2282 struct file *filp;
2283 int error = -EISDIR;
2285 switch (nd->last_type) {
2286 case LAST_DOTDOT:
2287 follow_dotdot(nd);
2288 dir = nd->path.dentry;
2289 case LAST_DOT:
2290 if (need_reval_dot(dir)) {
2291 int status = d_revalidate(nd->path.dentry, nd);
2292 if (!status)
2293 status = -ESTALE;
2294 if (status < 0) {
2295 error = status;
2296 goto exit;
2299 /* fallthrough */
2300 case LAST_ROOT:
2301 goto exit;
2302 case LAST_BIND:
2303 audit_inode(pathname, dir);
2304 goto ok;
2307 /* trailing slashes? */
2308 if (nd->last.name[nd->last.len])
2309 goto exit;
2311 mutex_lock(&dir->d_inode->i_mutex);
2313 path->dentry = lookup_hash(nd);
2314 path->mnt = nd->path.mnt;
2316 error = PTR_ERR(path->dentry);
2317 if (IS_ERR(path->dentry)) {
2318 mutex_unlock(&dir->d_inode->i_mutex);
2319 goto exit;
2322 if (IS_ERR(nd->intent.open.file)) {
2323 error = PTR_ERR(nd->intent.open.file);
2324 goto exit_mutex_unlock;
2327 /* Negative dentry, just create the file */
2328 if (!path->dentry->d_inode) {
2330 * This write is needed to ensure that a
2331 * ro->rw transition does not occur between
2332 * the time when the file is created and when
2333 * a permanent write count is taken through
2334 * the 'struct file' in nameidata_to_filp().
2336 error = mnt_want_write(nd->path.mnt);
2337 if (error)
2338 goto exit_mutex_unlock;
2339 error = __open_namei_create(nd, path, open_flag, mode);
2340 if (error) {
2341 mnt_drop_write(nd->path.mnt);
2342 goto exit;
2344 filp = nameidata_to_filp(nd);
2345 mnt_drop_write(nd->path.mnt);
2346 path_put(&nd->path);
2347 if (!IS_ERR(filp)) {
2348 error = ima_file_check(filp, acc_mode);
2349 if (error) {
2350 fput(filp);
2351 filp = ERR_PTR(error);
2354 return filp;
2358 * It already exists.
2360 mutex_unlock(&dir->d_inode->i_mutex);
2361 audit_inode(pathname, path->dentry);
2363 error = -EEXIST;
2364 if (open_flag & O_EXCL)
2365 goto exit_dput;
2367 error = follow_managed(path, nd->flags);
2368 if (error < 0)
2369 goto exit_dput;
2371 error = -ENOENT;
2372 if (!path->dentry->d_inode)
2373 goto exit_dput;
2375 if (path->dentry->d_inode->i_op->follow_link)
2376 return NULL;
2378 path_to_nameidata(path, nd);
2379 nd->inode = path->dentry->d_inode;
2380 error = -EISDIR;
2381 if (S_ISDIR(nd->inode->i_mode))
2382 goto exit;
2384 filp = finish_open(nd, open_flag, acc_mode);
2385 return filp;
2387 exit_mutex_unlock:
2388 mutex_unlock(&dir->d_inode->i_mutex);
2389 exit_dput:
2390 path_put_conditional(path, nd);
2391 exit:
2392 if (!IS_ERR(nd->intent.open.file))
2393 release_open_intent(nd);
2394 path_put(&nd->path);
2395 return ERR_PTR(error);
2399 * Note that the low bits of the passed in "open_flag"
2400 * are not the same as in the local variable "flag". See
2401 * open_to_namei_flags() for more details.
2403 struct file *do_filp_open(int dfd, const char *pathname,
2404 int open_flag, int mode, int acc_mode)
2406 struct file *filp;
2407 struct nameidata nd;
2408 int error;
2409 struct path path;
2410 int count = 0;
2411 int flag = open_to_namei_flags(open_flag);
2412 int flags;
2414 if (!(open_flag & O_CREAT))
2415 mode = 0;
2417 /* Must never be set by userspace */
2418 open_flag &= ~FMODE_NONOTIFY;
2421 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only
2422 * check for O_DSYNC if the need any syncing at all we enforce it's
2423 * always set instead of having to deal with possibly weird behaviour
2424 * for malicious applications setting only __O_SYNC.
2426 if (open_flag & __O_SYNC)
2427 open_flag |= O_DSYNC;
2429 if (!acc_mode)
2430 acc_mode = MAY_OPEN | ACC_MODE(open_flag);
2432 /* O_TRUNC implies we need access checks for write permissions */
2433 if (open_flag & O_TRUNC)
2434 acc_mode |= MAY_WRITE;
2436 /* Allow the LSM permission hook to distinguish append
2437 access from general write access. */
2438 if (open_flag & O_APPEND)
2439 acc_mode |= MAY_APPEND;
2441 flags = LOOKUP_OPEN;
2442 if (open_flag & O_CREAT) {
2443 flags |= LOOKUP_CREATE;
2444 if (open_flag & O_EXCL)
2445 flags |= LOOKUP_EXCL;
2447 if (open_flag & O_DIRECTORY)
2448 flags |= LOOKUP_DIRECTORY;
2449 if (!(open_flag & O_NOFOLLOW))
2450 flags |= LOOKUP_FOLLOW;
2452 filp = get_empty_filp();
2453 if (!filp)
2454 return ERR_PTR(-ENFILE);
2456 filp->f_flags = open_flag;
2457 nd.intent.open.file = filp;
2458 nd.intent.open.flags = flag;
2459 nd.intent.open.create_mode = mode;
2461 if (open_flag & O_CREAT)
2462 goto creat;
2464 /* !O_CREAT, simple open */
2465 error = do_path_lookup(dfd, pathname, flags, &nd);
2466 if (unlikely(error))
2467 goto out_filp;
2468 error = -ELOOP;
2469 if (!(nd.flags & LOOKUP_FOLLOW)) {
2470 if (nd.inode->i_op->follow_link)
2471 goto out_path;
2473 error = -ENOTDIR;
2474 if (nd.flags & LOOKUP_DIRECTORY) {
2475 if (!nd.inode->i_op->lookup)
2476 goto out_path;
2478 audit_inode(pathname, nd.path.dentry);
2479 filp = finish_open(&nd, open_flag, acc_mode);
2480 return filp;
2482 creat:
2483 /* OK, have to create the file. Find the parent. */
2484 error = path_init_rcu(dfd, pathname,
2485 LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd);
2486 if (error)
2487 goto out_filp;
2488 error = path_walk_rcu(pathname, &nd);
2489 path_finish_rcu(&nd);
2490 if (unlikely(error == -ECHILD || error == -ESTALE)) {
2491 /* slower, locked walk */
2492 if (error == -ESTALE) {
2493 reval:
2494 flags |= LOOKUP_REVAL;
2496 error = path_init(dfd, pathname,
2497 LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd);
2498 if (error)
2499 goto out_filp;
2501 error = path_walk_simple(pathname, &nd);
2503 if (unlikely(error))
2504 goto out_filp;
2505 if (unlikely(!audit_dummy_context()))
2506 audit_inode(pathname, nd.path.dentry);
2509 * We have the parent and last component.
2511 nd.flags = flags;
2512 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
2513 while (unlikely(!filp)) { /* trailing symlink */
2514 struct path link = path;
2515 struct inode *linki = link.dentry->d_inode;
2516 void *cookie;
2517 error = -ELOOP;
2518 if (!(nd.flags & LOOKUP_FOLLOW))
2519 goto exit_dput;
2520 if (count++ == 32)
2521 goto exit_dput;
2523 * This is subtle. Instead of calling do_follow_link() we do
2524 * the thing by hands. The reason is that this way we have zero
2525 * link_count and path_walk() (called from ->follow_link)
2526 * honoring LOOKUP_PARENT. After that we have the parent and
2527 * last component, i.e. we are in the same situation as after
2528 * the first path_walk(). Well, almost - if the last component
2529 * is normal we get its copy stored in nd->last.name and we will
2530 * have to putname() it when we are done. Procfs-like symlinks
2531 * just set LAST_BIND.
2533 nd.flags |= LOOKUP_PARENT;
2534 error = security_inode_follow_link(link.dentry, &nd);
2535 if (error)
2536 goto exit_dput;
2537 error = __do_follow_link(&link, &nd, &cookie);
2538 if (unlikely(error)) {
2539 if (!IS_ERR(cookie) && linki->i_op->put_link)
2540 linki->i_op->put_link(link.dentry, &nd, cookie);
2541 /* nd.path had been dropped */
2542 nd.path = link;
2543 goto out_path;
2545 nd.flags &= ~LOOKUP_PARENT;
2546 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
2547 if (linki->i_op->put_link)
2548 linki->i_op->put_link(link.dentry, &nd, cookie);
2549 path_put(&link);
2551 out:
2552 if (nd.root.mnt)
2553 path_put(&nd.root);
2554 if (filp == ERR_PTR(-ESTALE) && !(flags & LOOKUP_REVAL))
2555 goto reval;
2556 return filp;
2558 exit_dput:
2559 path_put_conditional(&path, &nd);
2560 out_path:
2561 path_put(&nd.path);
2562 out_filp:
2563 if (!IS_ERR(nd.intent.open.file))
2564 release_open_intent(&nd);
2565 filp = ERR_PTR(error);
2566 goto out;
2570 * filp_open - open file and return file pointer
2572 * @filename: path to open
2573 * @flags: open flags as per the open(2) second argument
2574 * @mode: mode for the new file if O_CREAT is set, else ignored
2576 * This is the helper to open a file from kernelspace if you really
2577 * have to. But in generally you should not do this, so please move
2578 * along, nothing to see here..
2580 struct file *filp_open(const char *filename, int flags, int mode)
2582 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
2584 EXPORT_SYMBOL(filp_open);
2587 * lookup_create - lookup a dentry, creating it if it doesn't exist
2588 * @nd: nameidata info
2589 * @is_dir: directory flag
2591 * Simple function to lookup and return a dentry and create it
2592 * if it doesn't exist. Is SMP-safe.
2594 * Returns with nd->path.dentry->d_inode->i_mutex locked.
2596 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2598 struct dentry *dentry = ERR_PTR(-EEXIST);
2600 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2602 * Yucky last component or no last component at all?
2603 * (foo/., foo/.., /////)
2605 if (nd->last_type != LAST_NORM)
2606 goto fail;
2607 nd->flags &= ~LOOKUP_PARENT;
2608 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2609 nd->intent.open.flags = O_EXCL;
2612 * Do the final lookup.
2614 dentry = lookup_hash(nd);
2615 if (IS_ERR(dentry))
2616 goto fail;
2618 if (dentry->d_inode)
2619 goto eexist;
2621 * Special case - lookup gave negative, but... we had foo/bar/
2622 * From the vfs_mknod() POV we just have a negative dentry -
2623 * all is fine. Let's be bastards - you had / on the end, you've
2624 * been asking for (non-existent) directory. -ENOENT for you.
2626 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2627 dput(dentry);
2628 dentry = ERR_PTR(-ENOENT);
2630 return dentry;
2631 eexist:
2632 dput(dentry);
2633 dentry = ERR_PTR(-EEXIST);
2634 fail:
2635 return dentry;
2637 EXPORT_SYMBOL_GPL(lookup_create);
2639 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2641 int error = may_create(dir, dentry);
2643 if (error)
2644 return error;
2646 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2647 return -EPERM;
2649 if (!dir->i_op->mknod)
2650 return -EPERM;
2652 error = devcgroup_inode_mknod(mode, dev);
2653 if (error)
2654 return error;
2656 error = security_inode_mknod(dir, dentry, mode, dev);
2657 if (error)
2658 return error;
2660 error = dir->i_op->mknod(dir, dentry, mode, dev);
2661 if (!error)
2662 fsnotify_create(dir, dentry);
2663 return error;
2666 static int may_mknod(mode_t mode)
2668 switch (mode & S_IFMT) {
2669 case S_IFREG:
2670 case S_IFCHR:
2671 case S_IFBLK:
2672 case S_IFIFO:
2673 case S_IFSOCK:
2674 case 0: /* zero mode translates to S_IFREG */
2675 return 0;
2676 case S_IFDIR:
2677 return -EPERM;
2678 default:
2679 return -EINVAL;
2683 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2684 unsigned, dev)
2686 int error;
2687 char *tmp;
2688 struct dentry *dentry;
2689 struct nameidata nd;
2691 if (S_ISDIR(mode))
2692 return -EPERM;
2694 error = user_path_parent(dfd, filename, &nd, &tmp);
2695 if (error)
2696 return error;
2698 dentry = lookup_create(&nd, 0);
2699 if (IS_ERR(dentry)) {
2700 error = PTR_ERR(dentry);
2701 goto out_unlock;
2703 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2704 mode &= ~current_umask();
2705 error = may_mknod(mode);
2706 if (error)
2707 goto out_dput;
2708 error = mnt_want_write(nd.path.mnt);
2709 if (error)
2710 goto out_dput;
2711 error = security_path_mknod(&nd.path, dentry, mode, dev);
2712 if (error)
2713 goto out_drop_write;
2714 switch (mode & S_IFMT) {
2715 case 0: case S_IFREG:
2716 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2717 break;
2718 case S_IFCHR: case S_IFBLK:
2719 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2720 new_decode_dev(dev));
2721 break;
2722 case S_IFIFO: case S_IFSOCK:
2723 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2724 break;
2726 out_drop_write:
2727 mnt_drop_write(nd.path.mnt);
2728 out_dput:
2729 dput(dentry);
2730 out_unlock:
2731 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2732 path_put(&nd.path);
2733 putname(tmp);
2735 return error;
2738 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2740 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2743 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2745 int error = may_create(dir, dentry);
2747 if (error)
2748 return error;
2750 if (!dir->i_op->mkdir)
2751 return -EPERM;
2753 mode &= (S_IRWXUGO|S_ISVTX);
2754 error = security_inode_mkdir(dir, dentry, mode);
2755 if (error)
2756 return error;
2758 error = dir->i_op->mkdir(dir, dentry, mode);
2759 if (!error)
2760 fsnotify_mkdir(dir, dentry);
2761 return error;
2764 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2766 int error = 0;
2767 char * tmp;
2768 struct dentry *dentry;
2769 struct nameidata nd;
2771 error = user_path_parent(dfd, pathname, &nd, &tmp);
2772 if (error)
2773 goto out_err;
2775 dentry = lookup_create(&nd, 1);
2776 error = PTR_ERR(dentry);
2777 if (IS_ERR(dentry))
2778 goto out_unlock;
2780 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2781 mode &= ~current_umask();
2782 error = mnt_want_write(nd.path.mnt);
2783 if (error)
2784 goto out_dput;
2785 error = security_path_mkdir(&nd.path, dentry, mode);
2786 if (error)
2787 goto out_drop_write;
2788 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2789 out_drop_write:
2790 mnt_drop_write(nd.path.mnt);
2791 out_dput:
2792 dput(dentry);
2793 out_unlock:
2794 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2795 path_put(&nd.path);
2796 putname(tmp);
2797 out_err:
2798 return error;
2801 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2803 return sys_mkdirat(AT_FDCWD, pathname, mode);
2807 * We try to drop the dentry early: we should have
2808 * a usage count of 2 if we're the only user of this
2809 * dentry, and if that is true (possibly after pruning
2810 * the dcache), then we drop the dentry now.
2812 * A low-level filesystem can, if it choses, legally
2813 * do a
2815 * if (!d_unhashed(dentry))
2816 * return -EBUSY;
2818 * if it cannot handle the case of removing a directory
2819 * that is still in use by something else..
2821 void dentry_unhash(struct dentry *dentry)
2823 dget(dentry);
2824 shrink_dcache_parent(dentry);
2825 spin_lock(&dentry->d_lock);
2826 if (dentry->d_count == 2)
2827 __d_drop(dentry);
2828 spin_unlock(&dentry->d_lock);
2831 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2833 int error = may_delete(dir, dentry, 1);
2835 if (error)
2836 return error;
2838 if (!dir->i_op->rmdir)
2839 return -EPERM;
2841 mutex_lock(&dentry->d_inode->i_mutex);
2842 dentry_unhash(dentry);
2843 if (d_mountpoint(dentry))
2844 error = -EBUSY;
2845 else {
2846 error = security_inode_rmdir(dir, dentry);
2847 if (!error) {
2848 error = dir->i_op->rmdir(dir, dentry);
2849 if (!error) {
2850 dentry->d_inode->i_flags |= S_DEAD;
2851 dont_mount(dentry);
2855 mutex_unlock(&dentry->d_inode->i_mutex);
2856 if (!error) {
2857 d_delete(dentry);
2859 dput(dentry);
2861 return error;
2864 static long do_rmdir(int dfd, const char __user *pathname)
2866 int error = 0;
2867 char * name;
2868 struct dentry *dentry;
2869 struct nameidata nd;
2871 error = user_path_parent(dfd, pathname, &nd, &name);
2872 if (error)
2873 return error;
2875 switch(nd.last_type) {
2876 case LAST_DOTDOT:
2877 error = -ENOTEMPTY;
2878 goto exit1;
2879 case LAST_DOT:
2880 error = -EINVAL;
2881 goto exit1;
2882 case LAST_ROOT:
2883 error = -EBUSY;
2884 goto exit1;
2887 nd.flags &= ~LOOKUP_PARENT;
2889 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2890 dentry = lookup_hash(&nd);
2891 error = PTR_ERR(dentry);
2892 if (IS_ERR(dentry))
2893 goto exit2;
2894 error = mnt_want_write(nd.path.mnt);
2895 if (error)
2896 goto exit3;
2897 error = security_path_rmdir(&nd.path, dentry);
2898 if (error)
2899 goto exit4;
2900 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2901 exit4:
2902 mnt_drop_write(nd.path.mnt);
2903 exit3:
2904 dput(dentry);
2905 exit2:
2906 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2907 exit1:
2908 path_put(&nd.path);
2909 putname(name);
2910 return error;
2913 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2915 return do_rmdir(AT_FDCWD, pathname);
2918 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2920 int error = may_delete(dir, dentry, 0);
2922 if (error)
2923 return error;
2925 if (!dir->i_op->unlink)
2926 return -EPERM;
2928 mutex_lock(&dentry->d_inode->i_mutex);
2929 if (d_mountpoint(dentry))
2930 error = -EBUSY;
2931 else {
2932 error = security_inode_unlink(dir, dentry);
2933 if (!error) {
2934 error = dir->i_op->unlink(dir, dentry);
2935 if (!error)
2936 dont_mount(dentry);
2939 mutex_unlock(&dentry->d_inode->i_mutex);
2941 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2942 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2943 fsnotify_link_count(dentry->d_inode);
2944 d_delete(dentry);
2947 return error;
2951 * Make sure that the actual truncation of the file will occur outside its
2952 * directory's i_mutex. Truncate can take a long time if there is a lot of
2953 * writeout happening, and we don't want to prevent access to the directory
2954 * while waiting on the I/O.
2956 static long do_unlinkat(int dfd, const char __user *pathname)
2958 int error;
2959 char *name;
2960 struct dentry *dentry;
2961 struct nameidata nd;
2962 struct inode *inode = NULL;
2964 error = user_path_parent(dfd, pathname, &nd, &name);
2965 if (error)
2966 return error;
2968 error = -EISDIR;
2969 if (nd.last_type != LAST_NORM)
2970 goto exit1;
2972 nd.flags &= ~LOOKUP_PARENT;
2974 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2975 dentry = lookup_hash(&nd);
2976 error = PTR_ERR(dentry);
2977 if (!IS_ERR(dentry)) {
2978 /* Why not before? Because we want correct error value */
2979 if (nd.last.name[nd.last.len])
2980 goto slashes;
2981 inode = dentry->d_inode;
2982 if (inode)
2983 ihold(inode);
2984 error = mnt_want_write(nd.path.mnt);
2985 if (error)
2986 goto exit2;
2987 error = security_path_unlink(&nd.path, dentry);
2988 if (error)
2989 goto exit3;
2990 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2991 exit3:
2992 mnt_drop_write(nd.path.mnt);
2993 exit2:
2994 dput(dentry);
2996 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2997 if (inode)
2998 iput(inode); /* truncate the inode here */
2999 exit1:
3000 path_put(&nd.path);
3001 putname(name);
3002 return error;
3004 slashes:
3005 error = !dentry->d_inode ? -ENOENT :
3006 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3007 goto exit2;
3010 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3012 if ((flag & ~AT_REMOVEDIR) != 0)
3013 return -EINVAL;
3015 if (flag & AT_REMOVEDIR)
3016 return do_rmdir(dfd, pathname);
3018 return do_unlinkat(dfd, pathname);
3021 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3023 return do_unlinkat(AT_FDCWD, pathname);
3026 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3028 int error = may_create(dir, dentry);
3030 if (error)
3031 return error;
3033 if (!dir->i_op->symlink)
3034 return -EPERM;
3036 error = security_inode_symlink(dir, dentry, oldname);
3037 if (error)
3038 return error;
3040 error = dir->i_op->symlink(dir, dentry, oldname);
3041 if (!error)
3042 fsnotify_create(dir, dentry);
3043 return error;
3046 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3047 int, newdfd, const char __user *, newname)
3049 int error;
3050 char *from;
3051 char *to;
3052 struct dentry *dentry;
3053 struct nameidata nd;
3055 from = getname(oldname);
3056 if (IS_ERR(from))
3057 return PTR_ERR(from);
3059 error = user_path_parent(newdfd, newname, &nd, &to);
3060 if (error)
3061 goto out_putname;
3063 dentry = lookup_create(&nd, 0);
3064 error = PTR_ERR(dentry);
3065 if (IS_ERR(dentry))
3066 goto out_unlock;
3068 error = mnt_want_write(nd.path.mnt);
3069 if (error)
3070 goto out_dput;
3071 error = security_path_symlink(&nd.path, dentry, from);
3072 if (error)
3073 goto out_drop_write;
3074 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
3075 out_drop_write:
3076 mnt_drop_write(nd.path.mnt);
3077 out_dput:
3078 dput(dentry);
3079 out_unlock:
3080 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3081 path_put(&nd.path);
3082 putname(to);
3083 out_putname:
3084 putname(from);
3085 return error;
3088 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3090 return sys_symlinkat(oldname, AT_FDCWD, newname);
3093 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3095 struct inode *inode = old_dentry->d_inode;
3096 int error;
3098 if (!inode)
3099 return -ENOENT;
3101 error = may_create(dir, new_dentry);
3102 if (error)
3103 return error;
3105 if (dir->i_sb != inode->i_sb)
3106 return -EXDEV;
3109 * A link to an append-only or immutable file cannot be created.
3111 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3112 return -EPERM;
3113 if (!dir->i_op->link)
3114 return -EPERM;
3115 if (S_ISDIR(inode->i_mode))
3116 return -EPERM;
3118 error = security_inode_link(old_dentry, dir, new_dentry);
3119 if (error)
3120 return error;
3122 mutex_lock(&inode->i_mutex);
3123 error = dir->i_op->link(old_dentry, dir, new_dentry);
3124 mutex_unlock(&inode->i_mutex);
3125 if (!error)
3126 fsnotify_link(dir, inode, new_dentry);
3127 return error;
3131 * Hardlinks are often used in delicate situations. We avoid
3132 * security-related surprises by not following symlinks on the
3133 * newname. --KAB
3135 * We don't follow them on the oldname either to be compatible
3136 * with linux 2.0, and to avoid hard-linking to directories
3137 * and other special files. --ADM
3139 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3140 int, newdfd, const char __user *, newname, int, flags)
3142 struct dentry *new_dentry;
3143 struct nameidata nd;
3144 struct path old_path;
3145 int error;
3146 char *to;
3148 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
3149 return -EINVAL;
3151 error = user_path_at(olddfd, oldname,
3152 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
3153 &old_path);
3154 if (error)
3155 return error;
3157 error = user_path_parent(newdfd, newname, &nd, &to);
3158 if (error)
3159 goto out;
3160 error = -EXDEV;
3161 if (old_path.mnt != nd.path.mnt)
3162 goto out_release;
3163 new_dentry = lookup_create(&nd, 0);
3164 error = PTR_ERR(new_dentry);
3165 if (IS_ERR(new_dentry))
3166 goto out_unlock;
3167 error = mnt_want_write(nd.path.mnt);
3168 if (error)
3169 goto out_dput;
3170 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
3171 if (error)
3172 goto out_drop_write;
3173 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
3174 out_drop_write:
3175 mnt_drop_write(nd.path.mnt);
3176 out_dput:
3177 dput(new_dentry);
3178 out_unlock:
3179 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3180 out_release:
3181 path_put(&nd.path);
3182 putname(to);
3183 out:
3184 path_put(&old_path);
3186 return error;
3189 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3191 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3195 * The worst of all namespace operations - renaming directory. "Perverted"
3196 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3197 * Problems:
3198 * a) we can get into loop creation. Check is done in is_subdir().
3199 * b) race potential - two innocent renames can create a loop together.
3200 * That's where 4.4 screws up. Current fix: serialization on
3201 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3202 * story.
3203 * c) we have to lock _three_ objects - parents and victim (if it exists).
3204 * And that - after we got ->i_mutex on parents (until then we don't know
3205 * whether the target exists). Solution: try to be smart with locking
3206 * order for inodes. We rely on the fact that tree topology may change
3207 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3208 * move will be locked. Thus we can rank directories by the tree
3209 * (ancestors first) and rank all non-directories after them.
3210 * That works since everybody except rename does "lock parent, lookup,
3211 * lock child" and rename is under ->s_vfs_rename_mutex.
3212 * HOWEVER, it relies on the assumption that any object with ->lookup()
3213 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3214 * we'd better make sure that there's no link(2) for them.
3215 * d) some filesystems don't support opened-but-unlinked directories,
3216 * either because of layout or because they are not ready to deal with
3217 * all cases correctly. The latter will be fixed (taking this sort of
3218 * stuff into VFS), but the former is not going away. Solution: the same
3219 * trick as in rmdir().
3220 * e) conversion from fhandle to dentry may come in the wrong moment - when
3221 * we are removing the target. Solution: we will have to grab ->i_mutex
3222 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3223 * ->i_mutex on parents, which works but leads to some truly excessive
3224 * locking].
3226 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3227 struct inode *new_dir, struct dentry *new_dentry)
3229 int error = 0;
3230 struct inode *target;
3233 * If we are going to change the parent - check write permissions,
3234 * we'll need to flip '..'.
3236 if (new_dir != old_dir) {
3237 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3238 if (error)
3239 return error;
3242 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3243 if (error)
3244 return error;
3246 target = new_dentry->d_inode;
3247 if (target)
3248 mutex_lock(&target->i_mutex);
3249 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3250 error = -EBUSY;
3251 else {
3252 if (target)
3253 dentry_unhash(new_dentry);
3254 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3256 if (target) {
3257 if (!error) {
3258 target->i_flags |= S_DEAD;
3259 dont_mount(new_dentry);
3261 mutex_unlock(&target->i_mutex);
3262 if (d_unhashed(new_dentry))
3263 d_rehash(new_dentry);
3264 dput(new_dentry);
3266 if (!error)
3267 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3268 d_move(old_dentry,new_dentry);
3269 return error;
3272 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3273 struct inode *new_dir, struct dentry *new_dentry)
3275 struct inode *target;
3276 int error;
3278 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3279 if (error)
3280 return error;
3282 dget(new_dentry);
3283 target = new_dentry->d_inode;
3284 if (target)
3285 mutex_lock(&target->i_mutex);
3286 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3287 error = -EBUSY;
3288 else
3289 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3290 if (!error) {
3291 if (target)
3292 dont_mount(new_dentry);
3293 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3294 d_move(old_dentry, new_dentry);
3296 if (target)
3297 mutex_unlock(&target->i_mutex);
3298 dput(new_dentry);
3299 return error;
3302 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3303 struct inode *new_dir, struct dentry *new_dentry)
3305 int error;
3306 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3307 const unsigned char *old_name;
3309 if (old_dentry->d_inode == new_dentry->d_inode)
3310 return 0;
3312 error = may_delete(old_dir, old_dentry, is_dir);
3313 if (error)
3314 return error;
3316 if (!new_dentry->d_inode)
3317 error = may_create(new_dir, new_dentry);
3318 else
3319 error = may_delete(new_dir, new_dentry, is_dir);
3320 if (error)
3321 return error;
3323 if (!old_dir->i_op->rename)
3324 return -EPERM;
3326 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3328 if (is_dir)
3329 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3330 else
3331 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3332 if (!error)
3333 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3334 new_dentry->d_inode, old_dentry);
3335 fsnotify_oldname_free(old_name);
3337 return error;
3340 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3341 int, newdfd, const char __user *, newname)
3343 struct dentry *old_dir, *new_dir;
3344 struct dentry *old_dentry, *new_dentry;
3345 struct dentry *trap;
3346 struct nameidata oldnd, newnd;
3347 char *from;
3348 char *to;
3349 int error;
3351 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3352 if (error)
3353 goto exit;
3355 error = user_path_parent(newdfd, newname, &newnd, &to);
3356 if (error)
3357 goto exit1;
3359 error = -EXDEV;
3360 if (oldnd.path.mnt != newnd.path.mnt)
3361 goto exit2;
3363 old_dir = oldnd.path.dentry;
3364 error = -EBUSY;
3365 if (oldnd.last_type != LAST_NORM)
3366 goto exit2;
3368 new_dir = newnd.path.dentry;
3369 if (newnd.last_type != LAST_NORM)
3370 goto exit2;
3372 oldnd.flags &= ~LOOKUP_PARENT;
3373 newnd.flags &= ~LOOKUP_PARENT;
3374 newnd.flags |= LOOKUP_RENAME_TARGET;
3376 trap = lock_rename(new_dir, old_dir);
3378 old_dentry = lookup_hash(&oldnd);
3379 error = PTR_ERR(old_dentry);
3380 if (IS_ERR(old_dentry))
3381 goto exit3;
3382 /* source must exist */
3383 error = -ENOENT;
3384 if (!old_dentry->d_inode)
3385 goto exit4;
3386 /* unless the source is a directory trailing slashes give -ENOTDIR */
3387 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3388 error = -ENOTDIR;
3389 if (oldnd.last.name[oldnd.last.len])
3390 goto exit4;
3391 if (newnd.last.name[newnd.last.len])
3392 goto exit4;
3394 /* source should not be ancestor of target */
3395 error = -EINVAL;
3396 if (old_dentry == trap)
3397 goto exit4;
3398 new_dentry = lookup_hash(&newnd);
3399 error = PTR_ERR(new_dentry);
3400 if (IS_ERR(new_dentry))
3401 goto exit4;
3402 /* target should not be an ancestor of source */
3403 error = -ENOTEMPTY;
3404 if (new_dentry == trap)
3405 goto exit5;
3407 error = mnt_want_write(oldnd.path.mnt);
3408 if (error)
3409 goto exit5;
3410 error = security_path_rename(&oldnd.path, old_dentry,
3411 &newnd.path, new_dentry);
3412 if (error)
3413 goto exit6;
3414 error = vfs_rename(old_dir->d_inode, old_dentry,
3415 new_dir->d_inode, new_dentry);
3416 exit6:
3417 mnt_drop_write(oldnd.path.mnt);
3418 exit5:
3419 dput(new_dentry);
3420 exit4:
3421 dput(old_dentry);
3422 exit3:
3423 unlock_rename(new_dir, old_dir);
3424 exit2:
3425 path_put(&newnd.path);
3426 putname(to);
3427 exit1:
3428 path_put(&oldnd.path);
3429 putname(from);
3430 exit:
3431 return error;
3434 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3436 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3439 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3441 int len;
3443 len = PTR_ERR(link);
3444 if (IS_ERR(link))
3445 goto out;
3447 len = strlen(link);
3448 if (len > (unsigned) buflen)
3449 len = buflen;
3450 if (copy_to_user(buffer, link, len))
3451 len = -EFAULT;
3452 out:
3453 return len;
3457 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3458 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3459 * using) it for any given inode is up to filesystem.
3461 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3463 struct nameidata nd;
3464 void *cookie;
3465 int res;
3467 nd.depth = 0;
3468 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3469 if (IS_ERR(cookie))
3470 return PTR_ERR(cookie);
3472 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3473 if (dentry->d_inode->i_op->put_link)
3474 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3475 return res;
3478 int vfs_follow_link(struct nameidata *nd, const char *link)
3480 return __vfs_follow_link(nd, link);
3483 /* get the link contents into pagecache */
3484 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3486 char *kaddr;
3487 struct page *page;
3488 struct address_space *mapping = dentry->d_inode->i_mapping;
3489 page = read_mapping_page(mapping, 0, NULL);
3490 if (IS_ERR(page))
3491 return (char*)page;
3492 *ppage = page;
3493 kaddr = kmap(page);
3494 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3495 return kaddr;
3498 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3500 struct page *page = NULL;
3501 char *s = page_getlink(dentry, &page);
3502 int res = vfs_readlink(dentry,buffer,buflen,s);
3503 if (page) {
3504 kunmap(page);
3505 page_cache_release(page);
3507 return res;
3510 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3512 struct page *page = NULL;
3513 nd_set_link(nd, page_getlink(dentry, &page));
3514 return page;
3517 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3519 struct page *page = cookie;
3521 if (page) {
3522 kunmap(page);
3523 page_cache_release(page);
3528 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3530 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3532 struct address_space *mapping = inode->i_mapping;
3533 struct page *page;
3534 void *fsdata;
3535 int err;
3536 char *kaddr;
3537 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3538 if (nofs)
3539 flags |= AOP_FLAG_NOFS;
3541 retry:
3542 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3543 flags, &page, &fsdata);
3544 if (err)
3545 goto fail;
3547 kaddr = kmap_atomic(page, KM_USER0);
3548 memcpy(kaddr, symname, len-1);
3549 kunmap_atomic(kaddr, KM_USER0);
3551 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3552 page, fsdata);
3553 if (err < 0)
3554 goto fail;
3555 if (err < len-1)
3556 goto retry;
3558 mark_inode_dirty(inode);
3559 return 0;
3560 fail:
3561 return err;
3564 int page_symlink(struct inode *inode, const char *symname, int len)
3566 return __page_symlink(inode, symname, len,
3567 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3570 const struct inode_operations page_symlink_inode_operations = {
3571 .readlink = generic_readlink,
3572 .follow_link = page_follow_link_light,
3573 .put_link = page_put_link,
3576 EXPORT_SYMBOL(user_path_at);
3577 EXPORT_SYMBOL(follow_down_one);
3578 EXPORT_SYMBOL(follow_down);
3579 EXPORT_SYMBOL(follow_up);
3580 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3581 EXPORT_SYMBOL(getname);
3582 EXPORT_SYMBOL(lock_rename);
3583 EXPORT_SYMBOL(lookup_one_len);
3584 EXPORT_SYMBOL(page_follow_link_light);
3585 EXPORT_SYMBOL(page_put_link);
3586 EXPORT_SYMBOL(page_readlink);
3587 EXPORT_SYMBOL(__page_symlink);
3588 EXPORT_SYMBOL(page_symlink);
3589 EXPORT_SYMBOL(page_symlink_inode_operations);
3590 EXPORT_SYMBOL(path_lookup);
3591 EXPORT_SYMBOL(kern_path);
3592 EXPORT_SYMBOL(vfs_path_lookup);
3593 EXPORT_SYMBOL(inode_permission);
3594 EXPORT_SYMBOL(file_permission);
3595 EXPORT_SYMBOL(unlock_rename);
3596 EXPORT_SYMBOL(vfs_create);
3597 EXPORT_SYMBOL(vfs_follow_link);
3598 EXPORT_SYMBOL(vfs_link);
3599 EXPORT_SYMBOL(vfs_mkdir);
3600 EXPORT_SYMBOL(vfs_mknod);
3601 EXPORT_SYMBOL(generic_permission);
3602 EXPORT_SYMBOL(vfs_readlink);
3603 EXPORT_SYMBOL(vfs_rename);
3604 EXPORT_SYMBOL(vfs_rmdir);
3605 EXPORT_SYMBOL(vfs_symlink);
3606 EXPORT_SYMBOL(vfs_unlink);
3607 EXPORT_SYMBOL(dentry_unhash);
3608 EXPORT_SYMBOL(generic_readlink);