sched: fix RCU lockdep splat from task_group()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blob285f587225b36ae4c7ade78fa4a3fb5acaeb66bf
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/sched.h>
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104 * Helpers for converting nanosecond timing to jiffy resolution
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
112 * These are the 'tuning knobs' of the scheduler:
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
117 #define DEF_TIMESLICE (100 * HZ / 1000)
120 * single value that denotes runtime == period, ie unlimited time.
122 #define RUNTIME_INF ((u64)~0ULL)
124 static inline int rt_policy(int policy)
126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 return 1;
128 return 0;
131 static inline int task_has_rt_policy(struct task_struct *p)
133 return rt_policy(p->policy);
137 * This is the priority-queue data structure of the RT scheduling class:
139 struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
144 struct rt_bandwidth {
145 /* nests inside the rq lock: */
146 raw_spinlock_t rt_runtime_lock;
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
152 static struct rt_bandwidth def_rt_bandwidth;
154 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168 if (!overrun)
169 break;
171 idle = do_sched_rt_period_timer(rt_b, overrun);
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
177 static
178 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
190 static inline int rt_bandwidth_enabled(void)
192 return sysctl_sched_rt_runtime >= 0;
195 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197 ktime_t now;
199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 return;
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
205 raw_spin_lock(&rt_b->rt_runtime_lock);
206 for (;;) {
207 unsigned long delta;
208 ktime_t soft, hard;
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220 HRTIMER_MODE_ABS_PINNED, 0);
222 raw_spin_unlock(&rt_b->rt_runtime_lock);
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228 hrtimer_cancel(&rt_b->rt_period_timer);
230 #endif
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
236 static DEFINE_MUTEX(sched_domains_mutex);
238 #ifdef CONFIG_CGROUP_SCHED
240 #include <linux/cgroup.h>
242 struct cfs_rq;
244 static LIST_HEAD(task_groups);
246 /* task group related information */
247 struct task_group {
248 struct cgroup_subsys_state css;
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
256 #endif
258 #ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
262 struct rt_bandwidth rt_bandwidth;
263 #endif
265 struct rcu_head rcu;
266 struct list_head list;
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
273 #define root_task_group init_task_group
275 /* task_group_lock serializes add/remove of task groups and also changes to
276 * a task group's cpu shares.
278 static DEFINE_SPINLOCK(task_group_lock);
280 #ifdef CONFIG_FAIR_GROUP_SCHED
282 #ifdef CONFIG_SMP
283 static int root_task_group_empty(void)
285 return list_empty(&root_task_group.children);
287 #endif
289 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
299 #define MIN_SHARES 2
300 #define MAX_SHARES (1UL << 18)
302 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303 #endif
305 /* Default task group.
306 * Every task in system belong to this group at bootup.
308 struct task_group init_task_group;
310 #endif /* CONFIG_CGROUP_SCHED */
312 /* CFS-related fields in a runqueue */
313 struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
317 u64 exec_clock;
318 u64 min_vruntime;
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
323 struct list_head tasks;
324 struct list_head *balance_iterator;
327 * 'curr' points to currently running entity on this cfs_rq.
328 * It is set to NULL otherwise (i.e when none are currently running).
330 struct sched_entity *curr, *next, *last;
332 unsigned int nr_spread_over;
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
348 #ifdef CONFIG_SMP
350 * the part of load.weight contributed by tasks
352 unsigned long task_weight;
355 * h_load = weight * f(tg)
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
360 unsigned long h_load;
363 * this cpu's part of tg->shares
365 unsigned long shares;
368 * load.weight at the time we set shares
370 unsigned long rq_weight;
371 #endif
372 #endif
375 /* Real-Time classes' related field in a runqueue: */
376 struct rt_rq {
377 struct rt_prio_array active;
378 unsigned long rt_nr_running;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
380 struct {
381 int curr; /* highest queued rt task prio */
382 #ifdef CONFIG_SMP
383 int next; /* next highest */
384 #endif
385 } highest_prio;
386 #endif
387 #ifdef CONFIG_SMP
388 unsigned long rt_nr_migratory;
389 unsigned long rt_nr_total;
390 int overloaded;
391 struct plist_head pushable_tasks;
392 #endif
393 int rt_throttled;
394 u64 rt_time;
395 u64 rt_runtime;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock;
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted;
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
405 #endif
408 #ifdef CONFIG_SMP
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
418 struct root_domain {
419 atomic_t refcount;
420 cpumask_var_t span;
421 cpumask_var_t online;
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
427 cpumask_var_t rto_mask;
428 atomic_t rto_count;
429 #ifdef CONFIG_SMP
430 struct cpupri cpupri;
431 #endif
435 * By default the system creates a single root-domain with all cpus as
436 * members (mimicking the global state we have today).
438 static struct root_domain def_root_domain;
440 #endif
443 * This is the main, per-CPU runqueue data structure.
445 * Locking rule: those places that want to lock multiple runqueues
446 * (such as the load balancing or the thread migration code), lock
447 * acquire operations must be ordered by ascending &runqueue.
449 struct rq {
450 /* runqueue lock: */
451 raw_spinlock_t lock;
454 * nr_running and cpu_load should be in the same cacheline because
455 * remote CPUs use both these fields when doing load calculation.
457 unsigned long nr_running;
458 #define CPU_LOAD_IDX_MAX 5
459 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
460 unsigned long last_load_update_tick;
461 #ifdef CONFIG_NO_HZ
462 u64 nohz_stamp;
463 unsigned char nohz_balance_kick;
464 #endif
465 unsigned int skip_clock_update;
467 /* capture load from *all* tasks on this cpu: */
468 struct load_weight load;
469 unsigned long nr_load_updates;
470 u64 nr_switches;
472 struct cfs_rq cfs;
473 struct rt_rq rt;
475 #ifdef CONFIG_FAIR_GROUP_SCHED
476 /* list of leaf cfs_rq on this cpu: */
477 struct list_head leaf_cfs_rq_list;
478 #endif
479 #ifdef CONFIG_RT_GROUP_SCHED
480 struct list_head leaf_rt_rq_list;
481 #endif
484 * This is part of a global counter where only the total sum
485 * over all CPUs matters. A task can increase this counter on
486 * one CPU and if it got migrated afterwards it may decrease
487 * it on another CPU. Always updated under the runqueue lock:
489 unsigned long nr_uninterruptible;
491 struct task_struct *curr, *idle;
492 unsigned long next_balance;
493 struct mm_struct *prev_mm;
495 u64 clock;
497 atomic_t nr_iowait;
499 #ifdef CONFIG_SMP
500 struct root_domain *rd;
501 struct sched_domain *sd;
503 unsigned long cpu_power;
505 unsigned char idle_at_tick;
506 /* For active balancing */
507 int post_schedule;
508 int active_balance;
509 int push_cpu;
510 struct cpu_stop_work active_balance_work;
511 /* cpu of this runqueue: */
512 int cpu;
513 int online;
515 unsigned long avg_load_per_task;
517 u64 rt_avg;
518 u64 age_stamp;
519 u64 idle_stamp;
520 u64 avg_idle;
521 #endif
523 /* calc_load related fields */
524 unsigned long calc_load_update;
525 long calc_load_active;
527 #ifdef CONFIG_SCHED_HRTICK
528 #ifdef CONFIG_SMP
529 int hrtick_csd_pending;
530 struct call_single_data hrtick_csd;
531 #endif
532 struct hrtimer hrtick_timer;
533 #endif
535 #ifdef CONFIG_SCHEDSTATS
536 /* latency stats */
537 struct sched_info rq_sched_info;
538 unsigned long long rq_cpu_time;
539 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
541 /* sys_sched_yield() stats */
542 unsigned int yld_count;
544 /* schedule() stats */
545 unsigned int sched_switch;
546 unsigned int sched_count;
547 unsigned int sched_goidle;
549 /* try_to_wake_up() stats */
550 unsigned int ttwu_count;
551 unsigned int ttwu_local;
553 /* BKL stats */
554 unsigned int bkl_count;
555 #endif
558 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
560 static inline
561 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
563 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
566 * A queue event has occurred, and we're going to schedule. In
567 * this case, we can save a useless back to back clock update.
569 if (test_tsk_need_resched(p))
570 rq->skip_clock_update = 1;
573 static inline int cpu_of(struct rq *rq)
575 #ifdef CONFIG_SMP
576 return rq->cpu;
577 #else
578 return 0;
579 #endif
582 #define rcu_dereference_check_sched_domain(p) \
583 rcu_dereference_check((p), \
584 rcu_read_lock_sched_held() || \
585 lockdep_is_held(&sched_domains_mutex))
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
589 * See detach_destroy_domains: synchronize_sched for details.
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
594 #define for_each_domain(cpu, __sd) \
595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
597 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598 #define this_rq() (&__get_cpu_var(runqueues))
599 #define task_rq(p) cpu_rq(task_cpu(p))
600 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
601 #define raw_rq() (&__raw_get_cpu_var(runqueues))
603 #ifdef CONFIG_CGROUP_SCHED
606 * Return the group to which this tasks belongs.
608 * We use task_subsys_state_check() and extend the RCU verification
609 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
610 * holds that lock for each task it moves into the cgroup. Therefore
611 * by holding that lock, we pin the task to the current cgroup.
613 static inline struct task_group *task_group(struct task_struct *p)
615 struct cgroup_subsys_state *css;
617 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
618 lockdep_is_held(&task_rq(p)->lock));
619 return container_of(css, struct task_group, css);
622 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
623 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
625 #ifdef CONFIG_FAIR_GROUP_SCHED
626 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
627 p->se.parent = task_group(p)->se[cpu];
628 #endif
630 #ifdef CONFIG_RT_GROUP_SCHED
631 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
632 p->rt.parent = task_group(p)->rt_se[cpu];
633 #endif
636 #else /* CONFIG_CGROUP_SCHED */
638 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
639 static inline struct task_group *task_group(struct task_struct *p)
641 return NULL;
644 #endif /* CONFIG_CGROUP_SCHED */
646 inline void update_rq_clock(struct rq *rq)
648 if (!rq->skip_clock_update)
649 rq->clock = sched_clock_cpu(cpu_of(rq));
653 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
655 #ifdef CONFIG_SCHED_DEBUG
656 # define const_debug __read_mostly
657 #else
658 # define const_debug static const
659 #endif
662 * runqueue_is_locked
663 * @cpu: the processor in question.
665 * Returns true if the current cpu runqueue is locked.
666 * This interface allows printk to be called with the runqueue lock
667 * held and know whether or not it is OK to wake up the klogd.
669 int runqueue_is_locked(int cpu)
671 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
675 * Debugging: various feature bits
678 #define SCHED_FEAT(name, enabled) \
679 __SCHED_FEAT_##name ,
681 enum {
682 #include "sched_features.h"
685 #undef SCHED_FEAT
687 #define SCHED_FEAT(name, enabled) \
688 (1UL << __SCHED_FEAT_##name) * enabled |
690 const_debug unsigned int sysctl_sched_features =
691 #include "sched_features.h"
694 #undef SCHED_FEAT
696 #ifdef CONFIG_SCHED_DEBUG
697 #define SCHED_FEAT(name, enabled) \
698 #name ,
700 static __read_mostly char *sched_feat_names[] = {
701 #include "sched_features.h"
702 NULL
705 #undef SCHED_FEAT
707 static int sched_feat_show(struct seq_file *m, void *v)
709 int i;
711 for (i = 0; sched_feat_names[i]; i++) {
712 if (!(sysctl_sched_features & (1UL << i)))
713 seq_puts(m, "NO_");
714 seq_printf(m, "%s ", sched_feat_names[i]);
716 seq_puts(m, "\n");
718 return 0;
721 static ssize_t
722 sched_feat_write(struct file *filp, const char __user *ubuf,
723 size_t cnt, loff_t *ppos)
725 char buf[64];
726 char *cmp;
727 int neg = 0;
728 int i;
730 if (cnt > 63)
731 cnt = 63;
733 if (copy_from_user(&buf, ubuf, cnt))
734 return -EFAULT;
736 buf[cnt] = 0;
737 cmp = strstrip(buf);
739 if (strncmp(buf, "NO_", 3) == 0) {
740 neg = 1;
741 cmp += 3;
744 for (i = 0; sched_feat_names[i]; i++) {
745 if (strcmp(cmp, sched_feat_names[i]) == 0) {
746 if (neg)
747 sysctl_sched_features &= ~(1UL << i);
748 else
749 sysctl_sched_features |= (1UL << i);
750 break;
754 if (!sched_feat_names[i])
755 return -EINVAL;
757 *ppos += cnt;
759 return cnt;
762 static int sched_feat_open(struct inode *inode, struct file *filp)
764 return single_open(filp, sched_feat_show, NULL);
767 static const struct file_operations sched_feat_fops = {
768 .open = sched_feat_open,
769 .write = sched_feat_write,
770 .read = seq_read,
771 .llseek = seq_lseek,
772 .release = single_release,
775 static __init int sched_init_debug(void)
777 debugfs_create_file("sched_features", 0644, NULL, NULL,
778 &sched_feat_fops);
780 return 0;
782 late_initcall(sched_init_debug);
784 #endif
786 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
792 const_debug unsigned int sysctl_sched_nr_migrate = 32;
795 * ratelimit for updating the group shares.
796 * default: 0.25ms
798 unsigned int sysctl_sched_shares_ratelimit = 250000;
799 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
802 * Inject some fuzzyness into changing the per-cpu group shares
803 * this avoids remote rq-locks at the expense of fairness.
804 * default: 4
806 unsigned int sysctl_sched_shares_thresh = 4;
809 * period over which we average the RT time consumption, measured
810 * in ms.
812 * default: 1s
814 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
817 * period over which we measure -rt task cpu usage in us.
818 * default: 1s
820 unsigned int sysctl_sched_rt_period = 1000000;
822 static __read_mostly int scheduler_running;
825 * part of the period that we allow rt tasks to run in us.
826 * default: 0.95s
828 int sysctl_sched_rt_runtime = 950000;
830 static inline u64 global_rt_period(void)
832 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
835 static inline u64 global_rt_runtime(void)
837 if (sysctl_sched_rt_runtime < 0)
838 return RUNTIME_INF;
840 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
843 #ifndef prepare_arch_switch
844 # define prepare_arch_switch(next) do { } while (0)
845 #endif
846 #ifndef finish_arch_switch
847 # define finish_arch_switch(prev) do { } while (0)
848 #endif
850 static inline int task_current(struct rq *rq, struct task_struct *p)
852 return rq->curr == p;
855 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
856 static inline int task_running(struct rq *rq, struct task_struct *p)
858 return task_current(rq, p);
861 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
865 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
867 #ifdef CONFIG_DEBUG_SPINLOCK
868 /* this is a valid case when another task releases the spinlock */
869 rq->lock.owner = current;
870 #endif
872 * If we are tracking spinlock dependencies then we have to
873 * fix up the runqueue lock - which gets 'carried over' from
874 * prev into current:
876 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
878 raw_spin_unlock_irq(&rq->lock);
881 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
882 static inline int task_running(struct rq *rq, struct task_struct *p)
884 #ifdef CONFIG_SMP
885 return p->oncpu;
886 #else
887 return task_current(rq, p);
888 #endif
891 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
893 #ifdef CONFIG_SMP
895 * We can optimise this out completely for !SMP, because the
896 * SMP rebalancing from interrupt is the only thing that cares
897 * here.
899 next->oncpu = 1;
900 #endif
901 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
902 raw_spin_unlock_irq(&rq->lock);
903 #else
904 raw_spin_unlock(&rq->lock);
905 #endif
908 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
910 #ifdef CONFIG_SMP
912 * After ->oncpu is cleared, the task can be moved to a different CPU.
913 * We must ensure this doesn't happen until the switch is completely
914 * finished.
916 smp_wmb();
917 prev->oncpu = 0;
918 #endif
919 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 local_irq_enable();
921 #endif
923 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
926 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
927 * against ttwu().
929 static inline int task_is_waking(struct task_struct *p)
931 return unlikely(p->state == TASK_WAKING);
935 * __task_rq_lock - lock the runqueue a given task resides on.
936 * Must be called interrupts disabled.
938 static inline struct rq *__task_rq_lock(struct task_struct *p)
939 __acquires(rq->lock)
941 struct rq *rq;
943 for (;;) {
944 rq = task_rq(p);
945 raw_spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
948 raw_spin_unlock(&rq->lock);
953 * task_rq_lock - lock the runqueue a given task resides on and disable
954 * interrupts. Note the ordering: we can safely lookup the task_rq without
955 * explicitly disabling preemption.
957 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
958 __acquires(rq->lock)
960 struct rq *rq;
962 for (;;) {
963 local_irq_save(*flags);
964 rq = task_rq(p);
965 raw_spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
967 return rq;
968 raw_spin_unlock_irqrestore(&rq->lock, *flags);
972 static void __task_rq_unlock(struct rq *rq)
973 __releases(rq->lock)
975 raw_spin_unlock(&rq->lock);
978 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
979 __releases(rq->lock)
981 raw_spin_unlock_irqrestore(&rq->lock, *flags);
985 * this_rq_lock - lock this runqueue and disable interrupts.
987 static struct rq *this_rq_lock(void)
988 __acquires(rq->lock)
990 struct rq *rq;
992 local_irq_disable();
993 rq = this_rq();
994 raw_spin_lock(&rq->lock);
996 return rq;
999 #ifdef CONFIG_SCHED_HRTICK
1001 * Use HR-timers to deliver accurate preemption points.
1003 * Its all a bit involved since we cannot program an hrt while holding the
1004 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1005 * reschedule event.
1007 * When we get rescheduled we reprogram the hrtick_timer outside of the
1008 * rq->lock.
1012 * Use hrtick when:
1013 * - enabled by features
1014 * - hrtimer is actually high res
1016 static inline int hrtick_enabled(struct rq *rq)
1018 if (!sched_feat(HRTICK))
1019 return 0;
1020 if (!cpu_active(cpu_of(rq)))
1021 return 0;
1022 return hrtimer_is_hres_active(&rq->hrtick_timer);
1025 static void hrtick_clear(struct rq *rq)
1027 if (hrtimer_active(&rq->hrtick_timer))
1028 hrtimer_cancel(&rq->hrtick_timer);
1032 * High-resolution timer tick.
1033 * Runs from hardirq context with interrupts disabled.
1035 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1037 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1039 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1041 raw_spin_lock(&rq->lock);
1042 update_rq_clock(rq);
1043 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1044 raw_spin_unlock(&rq->lock);
1046 return HRTIMER_NORESTART;
1049 #ifdef CONFIG_SMP
1051 * called from hardirq (IPI) context
1053 static void __hrtick_start(void *arg)
1055 struct rq *rq = arg;
1057 raw_spin_lock(&rq->lock);
1058 hrtimer_restart(&rq->hrtick_timer);
1059 rq->hrtick_csd_pending = 0;
1060 raw_spin_unlock(&rq->lock);
1064 * Called to set the hrtick timer state.
1066 * called with rq->lock held and irqs disabled
1068 static void hrtick_start(struct rq *rq, u64 delay)
1070 struct hrtimer *timer = &rq->hrtick_timer;
1071 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1073 hrtimer_set_expires(timer, time);
1075 if (rq == this_rq()) {
1076 hrtimer_restart(timer);
1077 } else if (!rq->hrtick_csd_pending) {
1078 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1079 rq->hrtick_csd_pending = 1;
1083 static int
1084 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1086 int cpu = (int)(long)hcpu;
1088 switch (action) {
1089 case CPU_UP_CANCELED:
1090 case CPU_UP_CANCELED_FROZEN:
1091 case CPU_DOWN_PREPARE:
1092 case CPU_DOWN_PREPARE_FROZEN:
1093 case CPU_DEAD:
1094 case CPU_DEAD_FROZEN:
1095 hrtick_clear(cpu_rq(cpu));
1096 return NOTIFY_OK;
1099 return NOTIFY_DONE;
1102 static __init void init_hrtick(void)
1104 hotcpu_notifier(hotplug_hrtick, 0);
1106 #else
1108 * Called to set the hrtick timer state.
1110 * called with rq->lock held and irqs disabled
1112 static void hrtick_start(struct rq *rq, u64 delay)
1114 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1115 HRTIMER_MODE_REL_PINNED, 0);
1118 static inline void init_hrtick(void)
1121 #endif /* CONFIG_SMP */
1123 static void init_rq_hrtick(struct rq *rq)
1125 #ifdef CONFIG_SMP
1126 rq->hrtick_csd_pending = 0;
1128 rq->hrtick_csd.flags = 0;
1129 rq->hrtick_csd.func = __hrtick_start;
1130 rq->hrtick_csd.info = rq;
1131 #endif
1133 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1134 rq->hrtick_timer.function = hrtick;
1136 #else /* CONFIG_SCHED_HRTICK */
1137 static inline void hrtick_clear(struct rq *rq)
1141 static inline void init_rq_hrtick(struct rq *rq)
1145 static inline void init_hrtick(void)
1148 #endif /* CONFIG_SCHED_HRTICK */
1151 * resched_task - mark a task 'to be rescheduled now'.
1153 * On UP this means the setting of the need_resched flag, on SMP it
1154 * might also involve a cross-CPU call to trigger the scheduler on
1155 * the target CPU.
1157 #ifdef CONFIG_SMP
1159 #ifndef tsk_is_polling
1160 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1161 #endif
1163 static void resched_task(struct task_struct *p)
1165 int cpu;
1167 assert_raw_spin_locked(&task_rq(p)->lock);
1169 if (test_tsk_need_resched(p))
1170 return;
1172 set_tsk_need_resched(p);
1174 cpu = task_cpu(p);
1175 if (cpu == smp_processor_id())
1176 return;
1178 /* NEED_RESCHED must be visible before we test polling */
1179 smp_mb();
1180 if (!tsk_is_polling(p))
1181 smp_send_reschedule(cpu);
1184 static void resched_cpu(int cpu)
1186 struct rq *rq = cpu_rq(cpu);
1187 unsigned long flags;
1189 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1190 return;
1191 resched_task(cpu_curr(cpu));
1192 raw_spin_unlock_irqrestore(&rq->lock, flags);
1195 #ifdef CONFIG_NO_HZ
1197 * In the semi idle case, use the nearest busy cpu for migrating timers
1198 * from an idle cpu. This is good for power-savings.
1200 * We don't do similar optimization for completely idle system, as
1201 * selecting an idle cpu will add more delays to the timers than intended
1202 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1204 int get_nohz_timer_target(void)
1206 int cpu = smp_processor_id();
1207 int i;
1208 struct sched_domain *sd;
1210 for_each_domain(cpu, sd) {
1211 for_each_cpu(i, sched_domain_span(sd))
1212 if (!idle_cpu(i))
1213 return i;
1215 return cpu;
1218 * When add_timer_on() enqueues a timer into the timer wheel of an
1219 * idle CPU then this timer might expire before the next timer event
1220 * which is scheduled to wake up that CPU. In case of a completely
1221 * idle system the next event might even be infinite time into the
1222 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1223 * leaves the inner idle loop so the newly added timer is taken into
1224 * account when the CPU goes back to idle and evaluates the timer
1225 * wheel for the next timer event.
1227 void wake_up_idle_cpu(int cpu)
1229 struct rq *rq = cpu_rq(cpu);
1231 if (cpu == smp_processor_id())
1232 return;
1235 * This is safe, as this function is called with the timer
1236 * wheel base lock of (cpu) held. When the CPU is on the way
1237 * to idle and has not yet set rq->curr to idle then it will
1238 * be serialized on the timer wheel base lock and take the new
1239 * timer into account automatically.
1241 if (rq->curr != rq->idle)
1242 return;
1245 * We can set TIF_RESCHED on the idle task of the other CPU
1246 * lockless. The worst case is that the other CPU runs the
1247 * idle task through an additional NOOP schedule()
1249 set_tsk_need_resched(rq->idle);
1251 /* NEED_RESCHED must be visible before we test polling */
1252 smp_mb();
1253 if (!tsk_is_polling(rq->idle))
1254 smp_send_reschedule(cpu);
1257 #endif /* CONFIG_NO_HZ */
1259 static u64 sched_avg_period(void)
1261 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1264 static void sched_avg_update(struct rq *rq)
1266 s64 period = sched_avg_period();
1268 while ((s64)(rq->clock - rq->age_stamp) > period) {
1270 * Inline assembly required to prevent the compiler
1271 * optimising this loop into a divmod call.
1272 * See __iter_div_u64_rem() for another example of this.
1274 asm("" : "+rm" (rq->age_stamp));
1275 rq->age_stamp += period;
1276 rq->rt_avg /= 2;
1280 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1282 rq->rt_avg += rt_delta;
1283 sched_avg_update(rq);
1286 #else /* !CONFIG_SMP */
1287 static void resched_task(struct task_struct *p)
1289 assert_raw_spin_locked(&task_rq(p)->lock);
1290 set_tsk_need_resched(p);
1293 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1297 static void sched_avg_update(struct rq *rq)
1300 #endif /* CONFIG_SMP */
1302 #if BITS_PER_LONG == 32
1303 # define WMULT_CONST (~0UL)
1304 #else
1305 # define WMULT_CONST (1UL << 32)
1306 #endif
1308 #define WMULT_SHIFT 32
1311 * Shift right and round:
1313 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1316 * delta *= weight / lw
1318 static unsigned long
1319 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1320 struct load_weight *lw)
1322 u64 tmp;
1324 if (!lw->inv_weight) {
1325 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1326 lw->inv_weight = 1;
1327 else
1328 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1329 / (lw->weight+1);
1332 tmp = (u64)delta_exec * weight;
1334 * Check whether we'd overflow the 64-bit multiplication:
1336 if (unlikely(tmp > WMULT_CONST))
1337 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1338 WMULT_SHIFT/2);
1339 else
1340 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1342 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1345 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1347 lw->weight += inc;
1348 lw->inv_weight = 0;
1351 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1353 lw->weight -= dec;
1354 lw->inv_weight = 0;
1358 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1359 * of tasks with abnormal "nice" values across CPUs the contribution that
1360 * each task makes to its run queue's load is weighted according to its
1361 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1362 * scaled version of the new time slice allocation that they receive on time
1363 * slice expiry etc.
1366 #define WEIGHT_IDLEPRIO 3
1367 #define WMULT_IDLEPRIO 1431655765
1370 * Nice levels are multiplicative, with a gentle 10% change for every
1371 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1372 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1373 * that remained on nice 0.
1375 * The "10% effect" is relative and cumulative: from _any_ nice level,
1376 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1377 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1378 * If a task goes up by ~10% and another task goes down by ~10% then
1379 * the relative distance between them is ~25%.)
1381 static const int prio_to_weight[40] = {
1382 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1383 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1384 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1385 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1386 /* 0 */ 1024, 820, 655, 526, 423,
1387 /* 5 */ 335, 272, 215, 172, 137,
1388 /* 10 */ 110, 87, 70, 56, 45,
1389 /* 15 */ 36, 29, 23, 18, 15,
1393 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1395 * In cases where the weight does not change often, we can use the
1396 * precalculated inverse to speed up arithmetics by turning divisions
1397 * into multiplications:
1399 static const u32 prio_to_wmult[40] = {
1400 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1401 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1402 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1403 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1404 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1405 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1406 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1407 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1410 /* Time spent by the tasks of the cpu accounting group executing in ... */
1411 enum cpuacct_stat_index {
1412 CPUACCT_STAT_USER, /* ... user mode */
1413 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1415 CPUACCT_STAT_NSTATS,
1418 #ifdef CONFIG_CGROUP_CPUACCT
1419 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1420 static void cpuacct_update_stats(struct task_struct *tsk,
1421 enum cpuacct_stat_index idx, cputime_t val);
1422 #else
1423 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1424 static inline void cpuacct_update_stats(struct task_struct *tsk,
1425 enum cpuacct_stat_index idx, cputime_t val) {}
1426 #endif
1428 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1430 update_load_add(&rq->load, load);
1433 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1435 update_load_sub(&rq->load, load);
1438 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1439 typedef int (*tg_visitor)(struct task_group *, void *);
1442 * Iterate the full tree, calling @down when first entering a node and @up when
1443 * leaving it for the final time.
1445 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1447 struct task_group *parent, *child;
1448 int ret;
1450 rcu_read_lock();
1451 parent = &root_task_group;
1452 down:
1453 ret = (*down)(parent, data);
1454 if (ret)
1455 goto out_unlock;
1456 list_for_each_entry_rcu(child, &parent->children, siblings) {
1457 parent = child;
1458 goto down;
1461 continue;
1463 ret = (*up)(parent, data);
1464 if (ret)
1465 goto out_unlock;
1467 child = parent;
1468 parent = parent->parent;
1469 if (parent)
1470 goto up;
1471 out_unlock:
1472 rcu_read_unlock();
1474 return ret;
1477 static int tg_nop(struct task_group *tg, void *data)
1479 return 0;
1481 #endif
1483 #ifdef CONFIG_SMP
1484 /* Used instead of source_load when we know the type == 0 */
1485 static unsigned long weighted_cpuload(const int cpu)
1487 return cpu_rq(cpu)->load.weight;
1491 * Return a low guess at the load of a migration-source cpu weighted
1492 * according to the scheduling class and "nice" value.
1494 * We want to under-estimate the load of migration sources, to
1495 * balance conservatively.
1497 static unsigned long source_load(int cpu, int type)
1499 struct rq *rq = cpu_rq(cpu);
1500 unsigned long total = weighted_cpuload(cpu);
1502 if (type == 0 || !sched_feat(LB_BIAS))
1503 return total;
1505 return min(rq->cpu_load[type-1], total);
1509 * Return a high guess at the load of a migration-target cpu weighted
1510 * according to the scheduling class and "nice" value.
1512 static unsigned long target_load(int cpu, int type)
1514 struct rq *rq = cpu_rq(cpu);
1515 unsigned long total = weighted_cpuload(cpu);
1517 if (type == 0 || !sched_feat(LB_BIAS))
1518 return total;
1520 return max(rq->cpu_load[type-1], total);
1523 static unsigned long power_of(int cpu)
1525 return cpu_rq(cpu)->cpu_power;
1528 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1530 static unsigned long cpu_avg_load_per_task(int cpu)
1532 struct rq *rq = cpu_rq(cpu);
1533 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1535 if (nr_running)
1536 rq->avg_load_per_task = rq->load.weight / nr_running;
1537 else
1538 rq->avg_load_per_task = 0;
1540 return rq->avg_load_per_task;
1543 #ifdef CONFIG_FAIR_GROUP_SCHED
1545 static __read_mostly unsigned long __percpu *update_shares_data;
1547 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1550 * Calculate and set the cpu's group shares.
1552 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1553 unsigned long sd_shares,
1554 unsigned long sd_rq_weight,
1555 unsigned long *usd_rq_weight)
1557 unsigned long shares, rq_weight;
1558 int boost = 0;
1560 rq_weight = usd_rq_weight[cpu];
1561 if (!rq_weight) {
1562 boost = 1;
1563 rq_weight = NICE_0_LOAD;
1567 * \Sum_j shares_j * rq_weight_i
1568 * shares_i = -----------------------------
1569 * \Sum_j rq_weight_j
1571 shares = (sd_shares * rq_weight) / sd_rq_weight;
1572 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1574 if (abs(shares - tg->se[cpu]->load.weight) >
1575 sysctl_sched_shares_thresh) {
1576 struct rq *rq = cpu_rq(cpu);
1577 unsigned long flags;
1579 raw_spin_lock_irqsave(&rq->lock, flags);
1580 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1581 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1582 __set_se_shares(tg->se[cpu], shares);
1583 raw_spin_unlock_irqrestore(&rq->lock, flags);
1588 * Re-compute the task group their per cpu shares over the given domain.
1589 * This needs to be done in a bottom-up fashion because the rq weight of a
1590 * parent group depends on the shares of its child groups.
1592 static int tg_shares_up(struct task_group *tg, void *data)
1594 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1595 unsigned long *usd_rq_weight;
1596 struct sched_domain *sd = data;
1597 unsigned long flags;
1598 int i;
1600 if (!tg->se[0])
1601 return 0;
1603 local_irq_save(flags);
1604 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1606 for_each_cpu(i, sched_domain_span(sd)) {
1607 weight = tg->cfs_rq[i]->load.weight;
1608 usd_rq_weight[i] = weight;
1610 rq_weight += weight;
1612 * If there are currently no tasks on the cpu pretend there
1613 * is one of average load so that when a new task gets to
1614 * run here it will not get delayed by group starvation.
1616 if (!weight)
1617 weight = NICE_0_LOAD;
1619 sum_weight += weight;
1620 shares += tg->cfs_rq[i]->shares;
1623 if (!rq_weight)
1624 rq_weight = sum_weight;
1626 if ((!shares && rq_weight) || shares > tg->shares)
1627 shares = tg->shares;
1629 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1630 shares = tg->shares;
1632 for_each_cpu(i, sched_domain_span(sd))
1633 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1635 local_irq_restore(flags);
1637 return 0;
1641 * Compute the cpu's hierarchical load factor for each task group.
1642 * This needs to be done in a top-down fashion because the load of a child
1643 * group is a fraction of its parents load.
1645 static int tg_load_down(struct task_group *tg, void *data)
1647 unsigned long load;
1648 long cpu = (long)data;
1650 if (!tg->parent) {
1651 load = cpu_rq(cpu)->load.weight;
1652 } else {
1653 load = tg->parent->cfs_rq[cpu]->h_load;
1654 load *= tg->cfs_rq[cpu]->shares;
1655 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1658 tg->cfs_rq[cpu]->h_load = load;
1660 return 0;
1663 static void update_shares(struct sched_domain *sd)
1665 s64 elapsed;
1666 u64 now;
1668 if (root_task_group_empty())
1669 return;
1671 now = local_clock();
1672 elapsed = now - sd->last_update;
1674 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1675 sd->last_update = now;
1676 walk_tg_tree(tg_nop, tg_shares_up, sd);
1680 static void update_h_load(long cpu)
1682 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1685 #else
1687 static inline void update_shares(struct sched_domain *sd)
1691 #endif
1693 #ifdef CONFIG_PREEMPT
1695 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1698 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1699 * way at the expense of forcing extra atomic operations in all
1700 * invocations. This assures that the double_lock is acquired using the
1701 * same underlying policy as the spinlock_t on this architecture, which
1702 * reduces latency compared to the unfair variant below. However, it
1703 * also adds more overhead and therefore may reduce throughput.
1705 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1706 __releases(this_rq->lock)
1707 __acquires(busiest->lock)
1708 __acquires(this_rq->lock)
1710 raw_spin_unlock(&this_rq->lock);
1711 double_rq_lock(this_rq, busiest);
1713 return 1;
1716 #else
1718 * Unfair double_lock_balance: Optimizes throughput at the expense of
1719 * latency by eliminating extra atomic operations when the locks are
1720 * already in proper order on entry. This favors lower cpu-ids and will
1721 * grant the double lock to lower cpus over higher ids under contention,
1722 * regardless of entry order into the function.
1724 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1725 __releases(this_rq->lock)
1726 __acquires(busiest->lock)
1727 __acquires(this_rq->lock)
1729 int ret = 0;
1731 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1732 if (busiest < this_rq) {
1733 raw_spin_unlock(&this_rq->lock);
1734 raw_spin_lock(&busiest->lock);
1735 raw_spin_lock_nested(&this_rq->lock,
1736 SINGLE_DEPTH_NESTING);
1737 ret = 1;
1738 } else
1739 raw_spin_lock_nested(&busiest->lock,
1740 SINGLE_DEPTH_NESTING);
1742 return ret;
1745 #endif /* CONFIG_PREEMPT */
1748 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1750 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1752 if (unlikely(!irqs_disabled())) {
1753 /* printk() doesn't work good under rq->lock */
1754 raw_spin_unlock(&this_rq->lock);
1755 BUG_ON(1);
1758 return _double_lock_balance(this_rq, busiest);
1761 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1762 __releases(busiest->lock)
1764 raw_spin_unlock(&busiest->lock);
1765 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1769 * double_rq_lock - safely lock two runqueues
1771 * Note this does not disable interrupts like task_rq_lock,
1772 * you need to do so manually before calling.
1774 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1775 __acquires(rq1->lock)
1776 __acquires(rq2->lock)
1778 BUG_ON(!irqs_disabled());
1779 if (rq1 == rq2) {
1780 raw_spin_lock(&rq1->lock);
1781 __acquire(rq2->lock); /* Fake it out ;) */
1782 } else {
1783 if (rq1 < rq2) {
1784 raw_spin_lock(&rq1->lock);
1785 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1786 } else {
1787 raw_spin_lock(&rq2->lock);
1788 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1794 * double_rq_unlock - safely unlock two runqueues
1796 * Note this does not restore interrupts like task_rq_unlock,
1797 * you need to do so manually after calling.
1799 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1800 __releases(rq1->lock)
1801 __releases(rq2->lock)
1803 raw_spin_unlock(&rq1->lock);
1804 if (rq1 != rq2)
1805 raw_spin_unlock(&rq2->lock);
1806 else
1807 __release(rq2->lock);
1810 #endif
1812 #ifdef CONFIG_FAIR_GROUP_SCHED
1813 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1815 #ifdef CONFIG_SMP
1816 cfs_rq->shares = shares;
1817 #endif
1819 #endif
1821 static void calc_load_account_idle(struct rq *this_rq);
1822 static void update_sysctl(void);
1823 static int get_update_sysctl_factor(void);
1824 static void update_cpu_load(struct rq *this_rq);
1826 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1828 set_task_rq(p, cpu);
1829 #ifdef CONFIG_SMP
1831 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1832 * successfuly executed on another CPU. We must ensure that updates of
1833 * per-task data have been completed by this moment.
1835 smp_wmb();
1836 task_thread_info(p)->cpu = cpu;
1837 #endif
1840 static const struct sched_class rt_sched_class;
1842 #define sched_class_highest (&rt_sched_class)
1843 #define for_each_class(class) \
1844 for (class = sched_class_highest; class; class = class->next)
1846 #include "sched_stats.h"
1848 static void inc_nr_running(struct rq *rq)
1850 rq->nr_running++;
1853 static void dec_nr_running(struct rq *rq)
1855 rq->nr_running--;
1858 static void set_load_weight(struct task_struct *p)
1861 * SCHED_IDLE tasks get minimal weight:
1863 if (p->policy == SCHED_IDLE) {
1864 p->se.load.weight = WEIGHT_IDLEPRIO;
1865 p->se.load.inv_weight = WMULT_IDLEPRIO;
1866 return;
1869 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1870 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1873 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1875 update_rq_clock(rq);
1876 sched_info_queued(p);
1877 p->sched_class->enqueue_task(rq, p, flags);
1878 p->se.on_rq = 1;
1881 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1883 update_rq_clock(rq);
1884 sched_info_dequeued(p);
1885 p->sched_class->dequeue_task(rq, p, flags);
1886 p->se.on_rq = 0;
1890 * activate_task - move a task to the runqueue.
1892 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1894 if (task_contributes_to_load(p))
1895 rq->nr_uninterruptible--;
1897 enqueue_task(rq, p, flags);
1898 inc_nr_running(rq);
1902 * deactivate_task - remove a task from the runqueue.
1904 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1906 if (task_contributes_to_load(p))
1907 rq->nr_uninterruptible++;
1909 dequeue_task(rq, p, flags);
1910 dec_nr_running(rq);
1913 #include "sched_idletask.c"
1914 #include "sched_fair.c"
1915 #include "sched_rt.c"
1916 #ifdef CONFIG_SCHED_DEBUG
1917 # include "sched_debug.c"
1918 #endif
1921 * __normal_prio - return the priority that is based on the static prio
1923 static inline int __normal_prio(struct task_struct *p)
1925 return p->static_prio;
1929 * Calculate the expected normal priority: i.e. priority
1930 * without taking RT-inheritance into account. Might be
1931 * boosted by interactivity modifiers. Changes upon fork,
1932 * setprio syscalls, and whenever the interactivity
1933 * estimator recalculates.
1935 static inline int normal_prio(struct task_struct *p)
1937 int prio;
1939 if (task_has_rt_policy(p))
1940 prio = MAX_RT_PRIO-1 - p->rt_priority;
1941 else
1942 prio = __normal_prio(p);
1943 return prio;
1947 * Calculate the current priority, i.e. the priority
1948 * taken into account by the scheduler. This value might
1949 * be boosted by RT tasks, or might be boosted by
1950 * interactivity modifiers. Will be RT if the task got
1951 * RT-boosted. If not then it returns p->normal_prio.
1953 static int effective_prio(struct task_struct *p)
1955 p->normal_prio = normal_prio(p);
1957 * If we are RT tasks or we were boosted to RT priority,
1958 * keep the priority unchanged. Otherwise, update priority
1959 * to the normal priority:
1961 if (!rt_prio(p->prio))
1962 return p->normal_prio;
1963 return p->prio;
1967 * task_curr - is this task currently executing on a CPU?
1968 * @p: the task in question.
1970 inline int task_curr(const struct task_struct *p)
1972 return cpu_curr(task_cpu(p)) == p;
1975 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1976 const struct sched_class *prev_class,
1977 int oldprio, int running)
1979 if (prev_class != p->sched_class) {
1980 if (prev_class->switched_from)
1981 prev_class->switched_from(rq, p, running);
1982 p->sched_class->switched_to(rq, p, running);
1983 } else
1984 p->sched_class->prio_changed(rq, p, oldprio, running);
1987 #ifdef CONFIG_SMP
1989 * Is this task likely cache-hot:
1991 static int
1992 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1994 s64 delta;
1996 if (p->sched_class != &fair_sched_class)
1997 return 0;
2000 * Buddy candidates are cache hot:
2002 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2003 (&p->se == cfs_rq_of(&p->se)->next ||
2004 &p->se == cfs_rq_of(&p->se)->last))
2005 return 1;
2007 if (sysctl_sched_migration_cost == -1)
2008 return 1;
2009 if (sysctl_sched_migration_cost == 0)
2010 return 0;
2012 delta = now - p->se.exec_start;
2014 return delta < (s64)sysctl_sched_migration_cost;
2017 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2019 #ifdef CONFIG_SCHED_DEBUG
2021 * We should never call set_task_cpu() on a blocked task,
2022 * ttwu() will sort out the placement.
2024 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2025 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2026 #endif
2028 trace_sched_migrate_task(p, new_cpu);
2030 if (task_cpu(p) != new_cpu) {
2031 p->se.nr_migrations++;
2032 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2035 __set_task_cpu(p, new_cpu);
2038 struct migration_arg {
2039 struct task_struct *task;
2040 int dest_cpu;
2043 static int migration_cpu_stop(void *data);
2046 * The task's runqueue lock must be held.
2047 * Returns true if you have to wait for migration thread.
2049 static bool migrate_task(struct task_struct *p, int dest_cpu)
2051 struct rq *rq = task_rq(p);
2054 * If the task is not on a runqueue (and not running), then
2055 * the next wake-up will properly place the task.
2057 return p->se.on_rq || task_running(rq, p);
2061 * wait_task_inactive - wait for a thread to unschedule.
2063 * If @match_state is nonzero, it's the @p->state value just checked and
2064 * not expected to change. If it changes, i.e. @p might have woken up,
2065 * then return zero. When we succeed in waiting for @p to be off its CPU,
2066 * we return a positive number (its total switch count). If a second call
2067 * a short while later returns the same number, the caller can be sure that
2068 * @p has remained unscheduled the whole time.
2070 * The caller must ensure that the task *will* unschedule sometime soon,
2071 * else this function might spin for a *long* time. This function can't
2072 * be called with interrupts off, or it may introduce deadlock with
2073 * smp_call_function() if an IPI is sent by the same process we are
2074 * waiting to become inactive.
2076 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2078 unsigned long flags;
2079 int running, on_rq;
2080 unsigned long ncsw;
2081 struct rq *rq;
2083 for (;;) {
2085 * We do the initial early heuristics without holding
2086 * any task-queue locks at all. We'll only try to get
2087 * the runqueue lock when things look like they will
2088 * work out!
2090 rq = task_rq(p);
2093 * If the task is actively running on another CPU
2094 * still, just relax and busy-wait without holding
2095 * any locks.
2097 * NOTE! Since we don't hold any locks, it's not
2098 * even sure that "rq" stays as the right runqueue!
2099 * But we don't care, since "task_running()" will
2100 * return false if the runqueue has changed and p
2101 * is actually now running somewhere else!
2103 while (task_running(rq, p)) {
2104 if (match_state && unlikely(p->state != match_state))
2105 return 0;
2106 cpu_relax();
2110 * Ok, time to look more closely! We need the rq
2111 * lock now, to be *sure*. If we're wrong, we'll
2112 * just go back and repeat.
2114 rq = task_rq_lock(p, &flags);
2115 trace_sched_wait_task(p);
2116 running = task_running(rq, p);
2117 on_rq = p->se.on_rq;
2118 ncsw = 0;
2119 if (!match_state || p->state == match_state)
2120 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2121 task_rq_unlock(rq, &flags);
2124 * If it changed from the expected state, bail out now.
2126 if (unlikely(!ncsw))
2127 break;
2130 * Was it really running after all now that we
2131 * checked with the proper locks actually held?
2133 * Oops. Go back and try again..
2135 if (unlikely(running)) {
2136 cpu_relax();
2137 continue;
2141 * It's not enough that it's not actively running,
2142 * it must be off the runqueue _entirely_, and not
2143 * preempted!
2145 * So if it was still runnable (but just not actively
2146 * running right now), it's preempted, and we should
2147 * yield - it could be a while.
2149 if (unlikely(on_rq)) {
2150 schedule_timeout_uninterruptible(1);
2151 continue;
2155 * Ahh, all good. It wasn't running, and it wasn't
2156 * runnable, which means that it will never become
2157 * running in the future either. We're all done!
2159 break;
2162 return ncsw;
2165 /***
2166 * kick_process - kick a running thread to enter/exit the kernel
2167 * @p: the to-be-kicked thread
2169 * Cause a process which is running on another CPU to enter
2170 * kernel-mode, without any delay. (to get signals handled.)
2172 * NOTE: this function doesnt have to take the runqueue lock,
2173 * because all it wants to ensure is that the remote task enters
2174 * the kernel. If the IPI races and the task has been migrated
2175 * to another CPU then no harm is done and the purpose has been
2176 * achieved as well.
2178 void kick_process(struct task_struct *p)
2180 int cpu;
2182 preempt_disable();
2183 cpu = task_cpu(p);
2184 if ((cpu != smp_processor_id()) && task_curr(p))
2185 smp_send_reschedule(cpu);
2186 preempt_enable();
2188 EXPORT_SYMBOL_GPL(kick_process);
2189 #endif /* CONFIG_SMP */
2192 * task_oncpu_function_call - call a function on the cpu on which a task runs
2193 * @p: the task to evaluate
2194 * @func: the function to be called
2195 * @info: the function call argument
2197 * Calls the function @func when the task is currently running. This might
2198 * be on the current CPU, which just calls the function directly
2200 void task_oncpu_function_call(struct task_struct *p,
2201 void (*func) (void *info), void *info)
2203 int cpu;
2205 preempt_disable();
2206 cpu = task_cpu(p);
2207 if (task_curr(p))
2208 smp_call_function_single(cpu, func, info, 1);
2209 preempt_enable();
2212 #ifdef CONFIG_SMP
2214 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2216 static int select_fallback_rq(int cpu, struct task_struct *p)
2218 int dest_cpu;
2219 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2221 /* Look for allowed, online CPU in same node. */
2222 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2223 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2224 return dest_cpu;
2226 /* Any allowed, online CPU? */
2227 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2228 if (dest_cpu < nr_cpu_ids)
2229 return dest_cpu;
2231 /* No more Mr. Nice Guy. */
2232 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2233 dest_cpu = cpuset_cpus_allowed_fallback(p);
2235 * Don't tell them about moving exiting tasks or
2236 * kernel threads (both mm NULL), since they never
2237 * leave kernel.
2239 if (p->mm && printk_ratelimit()) {
2240 printk(KERN_INFO "process %d (%s) no "
2241 "longer affine to cpu%d\n",
2242 task_pid_nr(p), p->comm, cpu);
2246 return dest_cpu;
2250 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2252 static inline
2253 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2255 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2258 * In order not to call set_task_cpu() on a blocking task we need
2259 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2260 * cpu.
2262 * Since this is common to all placement strategies, this lives here.
2264 * [ this allows ->select_task() to simply return task_cpu(p) and
2265 * not worry about this generic constraint ]
2267 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2268 !cpu_online(cpu)))
2269 cpu = select_fallback_rq(task_cpu(p), p);
2271 return cpu;
2274 static void update_avg(u64 *avg, u64 sample)
2276 s64 diff = sample - *avg;
2277 *avg += diff >> 3;
2279 #endif
2281 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2282 bool is_sync, bool is_migrate, bool is_local,
2283 unsigned long en_flags)
2285 schedstat_inc(p, se.statistics.nr_wakeups);
2286 if (is_sync)
2287 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2288 if (is_migrate)
2289 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2290 if (is_local)
2291 schedstat_inc(p, se.statistics.nr_wakeups_local);
2292 else
2293 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2295 activate_task(rq, p, en_flags);
2298 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2299 int wake_flags, bool success)
2301 trace_sched_wakeup(p, success);
2302 check_preempt_curr(rq, p, wake_flags);
2304 p->state = TASK_RUNNING;
2305 #ifdef CONFIG_SMP
2306 if (p->sched_class->task_woken)
2307 p->sched_class->task_woken(rq, p);
2309 if (unlikely(rq->idle_stamp)) {
2310 u64 delta = rq->clock - rq->idle_stamp;
2311 u64 max = 2*sysctl_sched_migration_cost;
2313 if (delta > max)
2314 rq->avg_idle = max;
2315 else
2316 update_avg(&rq->avg_idle, delta);
2317 rq->idle_stamp = 0;
2319 #endif
2320 /* if a worker is waking up, notify workqueue */
2321 if ((p->flags & PF_WQ_WORKER) && success)
2322 wq_worker_waking_up(p, cpu_of(rq));
2326 * try_to_wake_up - wake up a thread
2327 * @p: the thread to be awakened
2328 * @state: the mask of task states that can be woken
2329 * @wake_flags: wake modifier flags (WF_*)
2331 * Put it on the run-queue if it's not already there. The "current"
2332 * thread is always on the run-queue (except when the actual
2333 * re-schedule is in progress), and as such you're allowed to do
2334 * the simpler "current->state = TASK_RUNNING" to mark yourself
2335 * runnable without the overhead of this.
2337 * Returns %true if @p was woken up, %false if it was already running
2338 * or @state didn't match @p's state.
2340 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2341 int wake_flags)
2343 int cpu, orig_cpu, this_cpu, success = 0;
2344 unsigned long flags;
2345 unsigned long en_flags = ENQUEUE_WAKEUP;
2346 struct rq *rq;
2348 this_cpu = get_cpu();
2350 smp_wmb();
2351 rq = task_rq_lock(p, &flags);
2352 if (!(p->state & state))
2353 goto out;
2355 if (p->se.on_rq)
2356 goto out_running;
2358 cpu = task_cpu(p);
2359 orig_cpu = cpu;
2361 #ifdef CONFIG_SMP
2362 if (unlikely(task_running(rq, p)))
2363 goto out_activate;
2366 * In order to handle concurrent wakeups and release the rq->lock
2367 * we put the task in TASK_WAKING state.
2369 * First fix up the nr_uninterruptible count:
2371 if (task_contributes_to_load(p)) {
2372 if (likely(cpu_online(orig_cpu)))
2373 rq->nr_uninterruptible--;
2374 else
2375 this_rq()->nr_uninterruptible--;
2377 p->state = TASK_WAKING;
2379 if (p->sched_class->task_waking) {
2380 p->sched_class->task_waking(rq, p);
2381 en_flags |= ENQUEUE_WAKING;
2384 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2385 if (cpu != orig_cpu)
2386 set_task_cpu(p, cpu);
2387 __task_rq_unlock(rq);
2389 rq = cpu_rq(cpu);
2390 raw_spin_lock(&rq->lock);
2393 * We migrated the task without holding either rq->lock, however
2394 * since the task is not on the task list itself, nobody else
2395 * will try and migrate the task, hence the rq should match the
2396 * cpu we just moved it to.
2398 WARN_ON(task_cpu(p) != cpu);
2399 WARN_ON(p->state != TASK_WAKING);
2401 #ifdef CONFIG_SCHEDSTATS
2402 schedstat_inc(rq, ttwu_count);
2403 if (cpu == this_cpu)
2404 schedstat_inc(rq, ttwu_local);
2405 else {
2406 struct sched_domain *sd;
2407 for_each_domain(this_cpu, sd) {
2408 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2409 schedstat_inc(sd, ttwu_wake_remote);
2410 break;
2414 #endif /* CONFIG_SCHEDSTATS */
2416 out_activate:
2417 #endif /* CONFIG_SMP */
2418 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2419 cpu == this_cpu, en_flags);
2420 success = 1;
2421 out_running:
2422 ttwu_post_activation(p, rq, wake_flags, success);
2423 out:
2424 task_rq_unlock(rq, &flags);
2425 put_cpu();
2427 return success;
2431 * try_to_wake_up_local - try to wake up a local task with rq lock held
2432 * @p: the thread to be awakened
2434 * Put @p on the run-queue if it's not alredy there. The caller must
2435 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2436 * the current task. this_rq() stays locked over invocation.
2438 static void try_to_wake_up_local(struct task_struct *p)
2440 struct rq *rq = task_rq(p);
2441 bool success = false;
2443 BUG_ON(rq != this_rq());
2444 BUG_ON(p == current);
2445 lockdep_assert_held(&rq->lock);
2447 if (!(p->state & TASK_NORMAL))
2448 return;
2450 if (!p->se.on_rq) {
2451 if (likely(!task_running(rq, p))) {
2452 schedstat_inc(rq, ttwu_count);
2453 schedstat_inc(rq, ttwu_local);
2455 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2456 success = true;
2458 ttwu_post_activation(p, rq, 0, success);
2462 * wake_up_process - Wake up a specific process
2463 * @p: The process to be woken up.
2465 * Attempt to wake up the nominated process and move it to the set of runnable
2466 * processes. Returns 1 if the process was woken up, 0 if it was already
2467 * running.
2469 * It may be assumed that this function implies a write memory barrier before
2470 * changing the task state if and only if any tasks are woken up.
2472 int wake_up_process(struct task_struct *p)
2474 return try_to_wake_up(p, TASK_ALL, 0);
2476 EXPORT_SYMBOL(wake_up_process);
2478 int wake_up_state(struct task_struct *p, unsigned int state)
2480 return try_to_wake_up(p, state, 0);
2484 * Perform scheduler related setup for a newly forked process p.
2485 * p is forked by current.
2487 * __sched_fork() is basic setup used by init_idle() too:
2489 static void __sched_fork(struct task_struct *p)
2491 p->se.exec_start = 0;
2492 p->se.sum_exec_runtime = 0;
2493 p->se.prev_sum_exec_runtime = 0;
2494 p->se.nr_migrations = 0;
2496 #ifdef CONFIG_SCHEDSTATS
2497 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2498 #endif
2500 INIT_LIST_HEAD(&p->rt.run_list);
2501 p->se.on_rq = 0;
2502 INIT_LIST_HEAD(&p->se.group_node);
2504 #ifdef CONFIG_PREEMPT_NOTIFIERS
2505 INIT_HLIST_HEAD(&p->preempt_notifiers);
2506 #endif
2510 * fork()/clone()-time setup:
2512 void sched_fork(struct task_struct *p, int clone_flags)
2514 int cpu = get_cpu();
2516 __sched_fork(p);
2518 * We mark the process as running here. This guarantees that
2519 * nobody will actually run it, and a signal or other external
2520 * event cannot wake it up and insert it on the runqueue either.
2522 p->state = TASK_RUNNING;
2525 * Revert to default priority/policy on fork if requested.
2527 if (unlikely(p->sched_reset_on_fork)) {
2528 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2529 p->policy = SCHED_NORMAL;
2530 p->normal_prio = p->static_prio;
2533 if (PRIO_TO_NICE(p->static_prio) < 0) {
2534 p->static_prio = NICE_TO_PRIO(0);
2535 p->normal_prio = p->static_prio;
2536 set_load_weight(p);
2540 * We don't need the reset flag anymore after the fork. It has
2541 * fulfilled its duty:
2543 p->sched_reset_on_fork = 0;
2547 * Make sure we do not leak PI boosting priority to the child.
2549 p->prio = current->normal_prio;
2551 if (!rt_prio(p->prio))
2552 p->sched_class = &fair_sched_class;
2554 if (p->sched_class->task_fork)
2555 p->sched_class->task_fork(p);
2558 * The child is not yet in the pid-hash so no cgroup attach races,
2559 * and the cgroup is pinned to this child due to cgroup_fork()
2560 * is ran before sched_fork().
2562 * Silence PROVE_RCU.
2564 rcu_read_lock();
2565 set_task_cpu(p, cpu);
2566 rcu_read_unlock();
2568 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2569 if (likely(sched_info_on()))
2570 memset(&p->sched_info, 0, sizeof(p->sched_info));
2571 #endif
2572 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2573 p->oncpu = 0;
2574 #endif
2575 #ifdef CONFIG_PREEMPT
2576 /* Want to start with kernel preemption disabled. */
2577 task_thread_info(p)->preempt_count = 1;
2578 #endif
2579 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2581 put_cpu();
2585 * wake_up_new_task - wake up a newly created task for the first time.
2587 * This function will do some initial scheduler statistics housekeeping
2588 * that must be done for every newly created context, then puts the task
2589 * on the runqueue and wakes it.
2591 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2593 unsigned long flags;
2594 struct rq *rq;
2595 int cpu __maybe_unused = get_cpu();
2597 #ifdef CONFIG_SMP
2598 rq = task_rq_lock(p, &flags);
2599 p->state = TASK_WAKING;
2602 * Fork balancing, do it here and not earlier because:
2603 * - cpus_allowed can change in the fork path
2604 * - any previously selected cpu might disappear through hotplug
2606 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2607 * without people poking at ->cpus_allowed.
2609 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2610 set_task_cpu(p, cpu);
2612 p->state = TASK_RUNNING;
2613 task_rq_unlock(rq, &flags);
2614 #endif
2616 rq = task_rq_lock(p, &flags);
2617 activate_task(rq, p, 0);
2618 trace_sched_wakeup_new(p, 1);
2619 check_preempt_curr(rq, p, WF_FORK);
2620 #ifdef CONFIG_SMP
2621 if (p->sched_class->task_woken)
2622 p->sched_class->task_woken(rq, p);
2623 #endif
2624 task_rq_unlock(rq, &flags);
2625 put_cpu();
2628 #ifdef CONFIG_PREEMPT_NOTIFIERS
2631 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2632 * @notifier: notifier struct to register
2634 void preempt_notifier_register(struct preempt_notifier *notifier)
2636 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2638 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2641 * preempt_notifier_unregister - no longer interested in preemption notifications
2642 * @notifier: notifier struct to unregister
2644 * This is safe to call from within a preemption notifier.
2646 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2648 hlist_del(&notifier->link);
2650 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2652 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2654 struct preempt_notifier *notifier;
2655 struct hlist_node *node;
2657 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2658 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2661 static void
2662 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2663 struct task_struct *next)
2665 struct preempt_notifier *notifier;
2666 struct hlist_node *node;
2668 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2669 notifier->ops->sched_out(notifier, next);
2672 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2674 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2678 static void
2679 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2680 struct task_struct *next)
2684 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2687 * prepare_task_switch - prepare to switch tasks
2688 * @rq: the runqueue preparing to switch
2689 * @prev: the current task that is being switched out
2690 * @next: the task we are going to switch to.
2692 * This is called with the rq lock held and interrupts off. It must
2693 * be paired with a subsequent finish_task_switch after the context
2694 * switch.
2696 * prepare_task_switch sets up locking and calls architecture specific
2697 * hooks.
2699 static inline void
2700 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2701 struct task_struct *next)
2703 fire_sched_out_preempt_notifiers(prev, next);
2704 prepare_lock_switch(rq, next);
2705 prepare_arch_switch(next);
2709 * finish_task_switch - clean up after a task-switch
2710 * @rq: runqueue associated with task-switch
2711 * @prev: the thread we just switched away from.
2713 * finish_task_switch must be called after the context switch, paired
2714 * with a prepare_task_switch call before the context switch.
2715 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2716 * and do any other architecture-specific cleanup actions.
2718 * Note that we may have delayed dropping an mm in context_switch(). If
2719 * so, we finish that here outside of the runqueue lock. (Doing it
2720 * with the lock held can cause deadlocks; see schedule() for
2721 * details.)
2723 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2724 __releases(rq->lock)
2726 struct mm_struct *mm = rq->prev_mm;
2727 long prev_state;
2729 rq->prev_mm = NULL;
2732 * A task struct has one reference for the use as "current".
2733 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2734 * schedule one last time. The schedule call will never return, and
2735 * the scheduled task must drop that reference.
2736 * The test for TASK_DEAD must occur while the runqueue locks are
2737 * still held, otherwise prev could be scheduled on another cpu, die
2738 * there before we look at prev->state, and then the reference would
2739 * be dropped twice.
2740 * Manfred Spraul <manfred@colorfullife.com>
2742 prev_state = prev->state;
2743 finish_arch_switch(prev);
2744 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2745 local_irq_disable();
2746 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2747 perf_event_task_sched_in(current);
2748 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2749 local_irq_enable();
2750 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2751 finish_lock_switch(rq, prev);
2753 fire_sched_in_preempt_notifiers(current);
2754 if (mm)
2755 mmdrop(mm);
2756 if (unlikely(prev_state == TASK_DEAD)) {
2758 * Remove function-return probe instances associated with this
2759 * task and put them back on the free list.
2761 kprobe_flush_task(prev);
2762 put_task_struct(prev);
2766 #ifdef CONFIG_SMP
2768 /* assumes rq->lock is held */
2769 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2771 if (prev->sched_class->pre_schedule)
2772 prev->sched_class->pre_schedule(rq, prev);
2775 /* rq->lock is NOT held, but preemption is disabled */
2776 static inline void post_schedule(struct rq *rq)
2778 if (rq->post_schedule) {
2779 unsigned long flags;
2781 raw_spin_lock_irqsave(&rq->lock, flags);
2782 if (rq->curr->sched_class->post_schedule)
2783 rq->curr->sched_class->post_schedule(rq);
2784 raw_spin_unlock_irqrestore(&rq->lock, flags);
2786 rq->post_schedule = 0;
2790 #else
2792 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2796 static inline void post_schedule(struct rq *rq)
2800 #endif
2803 * schedule_tail - first thing a freshly forked thread must call.
2804 * @prev: the thread we just switched away from.
2806 asmlinkage void schedule_tail(struct task_struct *prev)
2807 __releases(rq->lock)
2809 struct rq *rq = this_rq();
2811 finish_task_switch(rq, prev);
2814 * FIXME: do we need to worry about rq being invalidated by the
2815 * task_switch?
2817 post_schedule(rq);
2819 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2820 /* In this case, finish_task_switch does not reenable preemption */
2821 preempt_enable();
2822 #endif
2823 if (current->set_child_tid)
2824 put_user(task_pid_vnr(current), current->set_child_tid);
2828 * context_switch - switch to the new MM and the new
2829 * thread's register state.
2831 static inline void
2832 context_switch(struct rq *rq, struct task_struct *prev,
2833 struct task_struct *next)
2835 struct mm_struct *mm, *oldmm;
2837 prepare_task_switch(rq, prev, next);
2838 trace_sched_switch(prev, next);
2839 mm = next->mm;
2840 oldmm = prev->active_mm;
2842 * For paravirt, this is coupled with an exit in switch_to to
2843 * combine the page table reload and the switch backend into
2844 * one hypercall.
2846 arch_start_context_switch(prev);
2848 if (likely(!mm)) {
2849 next->active_mm = oldmm;
2850 atomic_inc(&oldmm->mm_count);
2851 enter_lazy_tlb(oldmm, next);
2852 } else
2853 switch_mm(oldmm, mm, next);
2855 if (likely(!prev->mm)) {
2856 prev->active_mm = NULL;
2857 rq->prev_mm = oldmm;
2860 * Since the runqueue lock will be released by the next
2861 * task (which is an invalid locking op but in the case
2862 * of the scheduler it's an obvious special-case), so we
2863 * do an early lockdep release here:
2865 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2866 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2867 #endif
2869 /* Here we just switch the register state and the stack. */
2870 switch_to(prev, next, prev);
2872 barrier();
2874 * this_rq must be evaluated again because prev may have moved
2875 * CPUs since it called schedule(), thus the 'rq' on its stack
2876 * frame will be invalid.
2878 finish_task_switch(this_rq(), prev);
2882 * nr_running, nr_uninterruptible and nr_context_switches:
2884 * externally visible scheduler statistics: current number of runnable
2885 * threads, current number of uninterruptible-sleeping threads, total
2886 * number of context switches performed since bootup.
2888 unsigned long nr_running(void)
2890 unsigned long i, sum = 0;
2892 for_each_online_cpu(i)
2893 sum += cpu_rq(i)->nr_running;
2895 return sum;
2898 unsigned long nr_uninterruptible(void)
2900 unsigned long i, sum = 0;
2902 for_each_possible_cpu(i)
2903 sum += cpu_rq(i)->nr_uninterruptible;
2906 * Since we read the counters lockless, it might be slightly
2907 * inaccurate. Do not allow it to go below zero though:
2909 if (unlikely((long)sum < 0))
2910 sum = 0;
2912 return sum;
2915 unsigned long long nr_context_switches(void)
2917 int i;
2918 unsigned long long sum = 0;
2920 for_each_possible_cpu(i)
2921 sum += cpu_rq(i)->nr_switches;
2923 return sum;
2926 unsigned long nr_iowait(void)
2928 unsigned long i, sum = 0;
2930 for_each_possible_cpu(i)
2931 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2933 return sum;
2936 unsigned long nr_iowait_cpu(int cpu)
2938 struct rq *this = cpu_rq(cpu);
2939 return atomic_read(&this->nr_iowait);
2942 unsigned long this_cpu_load(void)
2944 struct rq *this = this_rq();
2945 return this->cpu_load[0];
2949 /* Variables and functions for calc_load */
2950 static atomic_long_t calc_load_tasks;
2951 static unsigned long calc_load_update;
2952 unsigned long avenrun[3];
2953 EXPORT_SYMBOL(avenrun);
2955 static long calc_load_fold_active(struct rq *this_rq)
2957 long nr_active, delta = 0;
2959 nr_active = this_rq->nr_running;
2960 nr_active += (long) this_rq->nr_uninterruptible;
2962 if (nr_active != this_rq->calc_load_active) {
2963 delta = nr_active - this_rq->calc_load_active;
2964 this_rq->calc_load_active = nr_active;
2967 return delta;
2970 #ifdef CONFIG_NO_HZ
2972 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2974 * When making the ILB scale, we should try to pull this in as well.
2976 static atomic_long_t calc_load_tasks_idle;
2978 static void calc_load_account_idle(struct rq *this_rq)
2980 long delta;
2982 delta = calc_load_fold_active(this_rq);
2983 if (delta)
2984 atomic_long_add(delta, &calc_load_tasks_idle);
2987 static long calc_load_fold_idle(void)
2989 long delta = 0;
2992 * Its got a race, we don't care...
2994 if (atomic_long_read(&calc_load_tasks_idle))
2995 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2997 return delta;
2999 #else
3000 static void calc_load_account_idle(struct rq *this_rq)
3004 static inline long calc_load_fold_idle(void)
3006 return 0;
3008 #endif
3011 * get_avenrun - get the load average array
3012 * @loads: pointer to dest load array
3013 * @offset: offset to add
3014 * @shift: shift count to shift the result left
3016 * These values are estimates at best, so no need for locking.
3018 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3020 loads[0] = (avenrun[0] + offset) << shift;
3021 loads[1] = (avenrun[1] + offset) << shift;
3022 loads[2] = (avenrun[2] + offset) << shift;
3025 static unsigned long
3026 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3028 load *= exp;
3029 load += active * (FIXED_1 - exp);
3030 return load >> FSHIFT;
3034 * calc_load - update the avenrun load estimates 10 ticks after the
3035 * CPUs have updated calc_load_tasks.
3037 void calc_global_load(void)
3039 unsigned long upd = calc_load_update + 10;
3040 long active;
3042 if (time_before(jiffies, upd))
3043 return;
3045 active = atomic_long_read(&calc_load_tasks);
3046 active = active > 0 ? active * FIXED_1 : 0;
3048 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3049 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3050 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3052 calc_load_update += LOAD_FREQ;
3056 * Called from update_cpu_load() to periodically update this CPU's
3057 * active count.
3059 static void calc_load_account_active(struct rq *this_rq)
3061 long delta;
3063 if (time_before(jiffies, this_rq->calc_load_update))
3064 return;
3066 delta = calc_load_fold_active(this_rq);
3067 delta += calc_load_fold_idle();
3068 if (delta)
3069 atomic_long_add(delta, &calc_load_tasks);
3071 this_rq->calc_load_update += LOAD_FREQ;
3075 * The exact cpuload at various idx values, calculated at every tick would be
3076 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3078 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3079 * on nth tick when cpu may be busy, then we have:
3080 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3081 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3083 * decay_load_missed() below does efficient calculation of
3084 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3085 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3087 * The calculation is approximated on a 128 point scale.
3088 * degrade_zero_ticks is the number of ticks after which load at any
3089 * particular idx is approximated to be zero.
3090 * degrade_factor is a precomputed table, a row for each load idx.
3091 * Each column corresponds to degradation factor for a power of two ticks,
3092 * based on 128 point scale.
3093 * Example:
3094 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3095 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3097 * With this power of 2 load factors, we can degrade the load n times
3098 * by looking at 1 bits in n and doing as many mult/shift instead of
3099 * n mult/shifts needed by the exact degradation.
3101 #define DEGRADE_SHIFT 7
3102 static const unsigned char
3103 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3104 static const unsigned char
3105 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3106 {0, 0, 0, 0, 0, 0, 0, 0},
3107 {64, 32, 8, 0, 0, 0, 0, 0},
3108 {96, 72, 40, 12, 1, 0, 0},
3109 {112, 98, 75, 43, 15, 1, 0},
3110 {120, 112, 98, 76, 45, 16, 2} };
3113 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3114 * would be when CPU is idle and so we just decay the old load without
3115 * adding any new load.
3117 static unsigned long
3118 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3120 int j = 0;
3122 if (!missed_updates)
3123 return load;
3125 if (missed_updates >= degrade_zero_ticks[idx])
3126 return 0;
3128 if (idx == 1)
3129 return load >> missed_updates;
3131 while (missed_updates) {
3132 if (missed_updates % 2)
3133 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3135 missed_updates >>= 1;
3136 j++;
3138 return load;
3142 * Update rq->cpu_load[] statistics. This function is usually called every
3143 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3144 * every tick. We fix it up based on jiffies.
3146 static void update_cpu_load(struct rq *this_rq)
3148 unsigned long this_load = this_rq->load.weight;
3149 unsigned long curr_jiffies = jiffies;
3150 unsigned long pending_updates;
3151 int i, scale;
3153 this_rq->nr_load_updates++;
3155 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3156 if (curr_jiffies == this_rq->last_load_update_tick)
3157 return;
3159 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3160 this_rq->last_load_update_tick = curr_jiffies;
3162 /* Update our load: */
3163 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3164 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3165 unsigned long old_load, new_load;
3167 /* scale is effectively 1 << i now, and >> i divides by scale */
3169 old_load = this_rq->cpu_load[i];
3170 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3171 new_load = this_load;
3173 * Round up the averaging division if load is increasing. This
3174 * prevents us from getting stuck on 9 if the load is 10, for
3175 * example.
3177 if (new_load > old_load)
3178 new_load += scale - 1;
3180 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3183 sched_avg_update(this_rq);
3186 static void update_cpu_load_active(struct rq *this_rq)
3188 update_cpu_load(this_rq);
3190 calc_load_account_active(this_rq);
3193 #ifdef CONFIG_SMP
3196 * sched_exec - execve() is a valuable balancing opportunity, because at
3197 * this point the task has the smallest effective memory and cache footprint.
3199 void sched_exec(void)
3201 struct task_struct *p = current;
3202 unsigned long flags;
3203 struct rq *rq;
3204 int dest_cpu;
3206 rq = task_rq_lock(p, &flags);
3207 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3208 if (dest_cpu == smp_processor_id())
3209 goto unlock;
3212 * select_task_rq() can race against ->cpus_allowed
3214 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3215 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3216 struct migration_arg arg = { p, dest_cpu };
3218 task_rq_unlock(rq, &flags);
3219 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3220 return;
3222 unlock:
3223 task_rq_unlock(rq, &flags);
3226 #endif
3228 DEFINE_PER_CPU(struct kernel_stat, kstat);
3230 EXPORT_PER_CPU_SYMBOL(kstat);
3233 * Return any ns on the sched_clock that have not yet been accounted in
3234 * @p in case that task is currently running.
3236 * Called with task_rq_lock() held on @rq.
3238 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3240 u64 ns = 0;
3242 if (task_current(rq, p)) {
3243 update_rq_clock(rq);
3244 ns = rq->clock - p->se.exec_start;
3245 if ((s64)ns < 0)
3246 ns = 0;
3249 return ns;
3252 unsigned long long task_delta_exec(struct task_struct *p)
3254 unsigned long flags;
3255 struct rq *rq;
3256 u64 ns = 0;
3258 rq = task_rq_lock(p, &flags);
3259 ns = do_task_delta_exec(p, rq);
3260 task_rq_unlock(rq, &flags);
3262 return ns;
3266 * Return accounted runtime for the task.
3267 * In case the task is currently running, return the runtime plus current's
3268 * pending runtime that have not been accounted yet.
3270 unsigned long long task_sched_runtime(struct task_struct *p)
3272 unsigned long flags;
3273 struct rq *rq;
3274 u64 ns = 0;
3276 rq = task_rq_lock(p, &flags);
3277 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3278 task_rq_unlock(rq, &flags);
3280 return ns;
3284 * Return sum_exec_runtime for the thread group.
3285 * In case the task is currently running, return the sum plus current's
3286 * pending runtime that have not been accounted yet.
3288 * Note that the thread group might have other running tasks as well,
3289 * so the return value not includes other pending runtime that other
3290 * running tasks might have.
3292 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3294 struct task_cputime totals;
3295 unsigned long flags;
3296 struct rq *rq;
3297 u64 ns;
3299 rq = task_rq_lock(p, &flags);
3300 thread_group_cputime(p, &totals);
3301 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3302 task_rq_unlock(rq, &flags);
3304 return ns;
3308 * Account user cpu time to a process.
3309 * @p: the process that the cpu time gets accounted to
3310 * @cputime: the cpu time spent in user space since the last update
3311 * @cputime_scaled: cputime scaled by cpu frequency
3313 void account_user_time(struct task_struct *p, cputime_t cputime,
3314 cputime_t cputime_scaled)
3316 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3317 cputime64_t tmp;
3319 /* Add user time to process. */
3320 p->utime = cputime_add(p->utime, cputime);
3321 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3322 account_group_user_time(p, cputime);
3324 /* Add user time to cpustat. */
3325 tmp = cputime_to_cputime64(cputime);
3326 if (TASK_NICE(p) > 0)
3327 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3328 else
3329 cpustat->user = cputime64_add(cpustat->user, tmp);
3331 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3332 /* Account for user time used */
3333 acct_update_integrals(p);
3337 * Account guest cpu time to a process.
3338 * @p: the process that the cpu time gets accounted to
3339 * @cputime: the cpu time spent in virtual machine since the last update
3340 * @cputime_scaled: cputime scaled by cpu frequency
3342 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3343 cputime_t cputime_scaled)
3345 cputime64_t tmp;
3346 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3348 tmp = cputime_to_cputime64(cputime);
3350 /* Add guest time to process. */
3351 p->utime = cputime_add(p->utime, cputime);
3352 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3353 account_group_user_time(p, cputime);
3354 p->gtime = cputime_add(p->gtime, cputime);
3356 /* Add guest time to cpustat. */
3357 if (TASK_NICE(p) > 0) {
3358 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3359 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3360 } else {
3361 cpustat->user = cputime64_add(cpustat->user, tmp);
3362 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3367 * Account system cpu time to a process.
3368 * @p: the process that the cpu time gets accounted to
3369 * @hardirq_offset: the offset to subtract from hardirq_count()
3370 * @cputime: the cpu time spent in kernel space since the last update
3371 * @cputime_scaled: cputime scaled by cpu frequency
3373 void account_system_time(struct task_struct *p, int hardirq_offset,
3374 cputime_t cputime, cputime_t cputime_scaled)
3376 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3377 cputime64_t tmp;
3379 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3380 account_guest_time(p, cputime, cputime_scaled);
3381 return;
3384 /* Add system time to process. */
3385 p->stime = cputime_add(p->stime, cputime);
3386 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3387 account_group_system_time(p, cputime);
3389 /* Add system time to cpustat. */
3390 tmp = cputime_to_cputime64(cputime);
3391 if (hardirq_count() - hardirq_offset)
3392 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3393 else if (softirq_count())
3394 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3395 else
3396 cpustat->system = cputime64_add(cpustat->system, tmp);
3398 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3400 /* Account for system time used */
3401 acct_update_integrals(p);
3405 * Account for involuntary wait time.
3406 * @steal: the cpu time spent in involuntary wait
3408 void account_steal_time(cputime_t cputime)
3410 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3411 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3413 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3417 * Account for idle time.
3418 * @cputime: the cpu time spent in idle wait
3420 void account_idle_time(cputime_t cputime)
3422 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3423 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3424 struct rq *rq = this_rq();
3426 if (atomic_read(&rq->nr_iowait) > 0)
3427 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3428 else
3429 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3432 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3435 * Account a single tick of cpu time.
3436 * @p: the process that the cpu time gets accounted to
3437 * @user_tick: indicates if the tick is a user or a system tick
3439 void account_process_tick(struct task_struct *p, int user_tick)
3441 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3442 struct rq *rq = this_rq();
3444 if (user_tick)
3445 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3446 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3447 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3448 one_jiffy_scaled);
3449 else
3450 account_idle_time(cputime_one_jiffy);
3454 * Account multiple ticks of steal time.
3455 * @p: the process from which the cpu time has been stolen
3456 * @ticks: number of stolen ticks
3458 void account_steal_ticks(unsigned long ticks)
3460 account_steal_time(jiffies_to_cputime(ticks));
3464 * Account multiple ticks of idle time.
3465 * @ticks: number of stolen ticks
3467 void account_idle_ticks(unsigned long ticks)
3469 account_idle_time(jiffies_to_cputime(ticks));
3472 #endif
3475 * Use precise platform statistics if available:
3477 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3478 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3480 *ut = p->utime;
3481 *st = p->stime;
3484 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3486 struct task_cputime cputime;
3488 thread_group_cputime(p, &cputime);
3490 *ut = cputime.utime;
3491 *st = cputime.stime;
3493 #else
3495 #ifndef nsecs_to_cputime
3496 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3497 #endif
3499 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3501 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3504 * Use CFS's precise accounting:
3506 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3508 if (total) {
3509 u64 temp = rtime;
3511 temp *= utime;
3512 do_div(temp, total);
3513 utime = (cputime_t)temp;
3514 } else
3515 utime = rtime;
3518 * Compare with previous values, to keep monotonicity:
3520 p->prev_utime = max(p->prev_utime, utime);
3521 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3523 *ut = p->prev_utime;
3524 *st = p->prev_stime;
3528 * Must be called with siglock held.
3530 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3532 struct signal_struct *sig = p->signal;
3533 struct task_cputime cputime;
3534 cputime_t rtime, utime, total;
3536 thread_group_cputime(p, &cputime);
3538 total = cputime_add(cputime.utime, cputime.stime);
3539 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3541 if (total) {
3542 u64 temp = rtime;
3544 temp *= cputime.utime;
3545 do_div(temp, total);
3546 utime = (cputime_t)temp;
3547 } else
3548 utime = rtime;
3550 sig->prev_utime = max(sig->prev_utime, utime);
3551 sig->prev_stime = max(sig->prev_stime,
3552 cputime_sub(rtime, sig->prev_utime));
3554 *ut = sig->prev_utime;
3555 *st = sig->prev_stime;
3557 #endif
3560 * This function gets called by the timer code, with HZ frequency.
3561 * We call it with interrupts disabled.
3563 * It also gets called by the fork code, when changing the parent's
3564 * timeslices.
3566 void scheduler_tick(void)
3568 int cpu = smp_processor_id();
3569 struct rq *rq = cpu_rq(cpu);
3570 struct task_struct *curr = rq->curr;
3572 sched_clock_tick();
3574 raw_spin_lock(&rq->lock);
3575 update_rq_clock(rq);
3576 update_cpu_load_active(rq);
3577 curr->sched_class->task_tick(rq, curr, 0);
3578 raw_spin_unlock(&rq->lock);
3580 perf_event_task_tick(curr);
3582 #ifdef CONFIG_SMP
3583 rq->idle_at_tick = idle_cpu(cpu);
3584 trigger_load_balance(rq, cpu);
3585 #endif
3588 notrace unsigned long get_parent_ip(unsigned long addr)
3590 if (in_lock_functions(addr)) {
3591 addr = CALLER_ADDR2;
3592 if (in_lock_functions(addr))
3593 addr = CALLER_ADDR3;
3595 return addr;
3598 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3599 defined(CONFIG_PREEMPT_TRACER))
3601 void __kprobes add_preempt_count(int val)
3603 #ifdef CONFIG_DEBUG_PREEMPT
3605 * Underflow?
3607 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3608 return;
3609 #endif
3610 preempt_count() += val;
3611 #ifdef CONFIG_DEBUG_PREEMPT
3613 * Spinlock count overflowing soon?
3615 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3616 PREEMPT_MASK - 10);
3617 #endif
3618 if (preempt_count() == val)
3619 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3621 EXPORT_SYMBOL(add_preempt_count);
3623 void __kprobes sub_preempt_count(int val)
3625 #ifdef CONFIG_DEBUG_PREEMPT
3627 * Underflow?
3629 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3630 return;
3632 * Is the spinlock portion underflowing?
3634 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3635 !(preempt_count() & PREEMPT_MASK)))
3636 return;
3637 #endif
3639 if (preempt_count() == val)
3640 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3641 preempt_count() -= val;
3643 EXPORT_SYMBOL(sub_preempt_count);
3645 #endif
3648 * Print scheduling while atomic bug:
3650 static noinline void __schedule_bug(struct task_struct *prev)
3652 struct pt_regs *regs = get_irq_regs();
3654 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3655 prev->comm, prev->pid, preempt_count());
3657 debug_show_held_locks(prev);
3658 print_modules();
3659 if (irqs_disabled())
3660 print_irqtrace_events(prev);
3662 if (regs)
3663 show_regs(regs);
3664 else
3665 dump_stack();
3669 * Various schedule()-time debugging checks and statistics:
3671 static inline void schedule_debug(struct task_struct *prev)
3674 * Test if we are atomic. Since do_exit() needs to call into
3675 * schedule() atomically, we ignore that path for now.
3676 * Otherwise, whine if we are scheduling when we should not be.
3678 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3679 __schedule_bug(prev);
3681 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3683 schedstat_inc(this_rq(), sched_count);
3684 #ifdef CONFIG_SCHEDSTATS
3685 if (unlikely(prev->lock_depth >= 0)) {
3686 schedstat_inc(this_rq(), bkl_count);
3687 schedstat_inc(prev, sched_info.bkl_count);
3689 #endif
3692 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3694 if (prev->se.on_rq)
3695 update_rq_clock(rq);
3696 rq->skip_clock_update = 0;
3697 prev->sched_class->put_prev_task(rq, prev);
3701 * Pick up the highest-prio task:
3703 static inline struct task_struct *
3704 pick_next_task(struct rq *rq)
3706 const struct sched_class *class;
3707 struct task_struct *p;
3710 * Optimization: we know that if all tasks are in
3711 * the fair class we can call that function directly:
3713 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3714 p = fair_sched_class.pick_next_task(rq);
3715 if (likely(p))
3716 return p;
3719 class = sched_class_highest;
3720 for ( ; ; ) {
3721 p = class->pick_next_task(rq);
3722 if (p)
3723 return p;
3725 * Will never be NULL as the idle class always
3726 * returns a non-NULL p:
3728 class = class->next;
3733 * schedule() is the main scheduler function.
3735 asmlinkage void __sched schedule(void)
3737 struct task_struct *prev, *next;
3738 unsigned long *switch_count;
3739 struct rq *rq;
3740 int cpu;
3742 need_resched:
3743 preempt_disable();
3744 cpu = smp_processor_id();
3745 rq = cpu_rq(cpu);
3746 rcu_note_context_switch(cpu);
3747 prev = rq->curr;
3749 release_kernel_lock(prev);
3750 need_resched_nonpreemptible:
3752 schedule_debug(prev);
3754 if (sched_feat(HRTICK))
3755 hrtick_clear(rq);
3757 raw_spin_lock_irq(&rq->lock);
3758 clear_tsk_need_resched(prev);
3760 switch_count = &prev->nivcsw;
3761 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3762 if (unlikely(signal_pending_state(prev->state, prev))) {
3763 prev->state = TASK_RUNNING;
3764 } else {
3766 * If a worker is going to sleep, notify and
3767 * ask workqueue whether it wants to wake up a
3768 * task to maintain concurrency. If so, wake
3769 * up the task.
3771 if (prev->flags & PF_WQ_WORKER) {
3772 struct task_struct *to_wakeup;
3774 to_wakeup = wq_worker_sleeping(prev, cpu);
3775 if (to_wakeup)
3776 try_to_wake_up_local(to_wakeup);
3778 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3780 switch_count = &prev->nvcsw;
3783 pre_schedule(rq, prev);
3785 if (unlikely(!rq->nr_running))
3786 idle_balance(cpu, rq);
3788 put_prev_task(rq, prev);
3789 next = pick_next_task(rq);
3791 if (likely(prev != next)) {
3792 sched_info_switch(prev, next);
3793 perf_event_task_sched_out(prev, next);
3795 rq->nr_switches++;
3796 rq->curr = next;
3797 ++*switch_count;
3799 context_switch(rq, prev, next); /* unlocks the rq */
3801 * The context switch have flipped the stack from under us
3802 * and restored the local variables which were saved when
3803 * this task called schedule() in the past. prev == current
3804 * is still correct, but it can be moved to another cpu/rq.
3806 cpu = smp_processor_id();
3807 rq = cpu_rq(cpu);
3808 } else
3809 raw_spin_unlock_irq(&rq->lock);
3811 post_schedule(rq);
3813 if (unlikely(reacquire_kernel_lock(prev)))
3814 goto need_resched_nonpreemptible;
3816 preempt_enable_no_resched();
3817 if (need_resched())
3818 goto need_resched;
3820 EXPORT_SYMBOL(schedule);
3822 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3824 * Look out! "owner" is an entirely speculative pointer
3825 * access and not reliable.
3827 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3829 unsigned int cpu;
3830 struct rq *rq;
3832 if (!sched_feat(OWNER_SPIN))
3833 return 0;
3835 #ifdef CONFIG_DEBUG_PAGEALLOC
3837 * Need to access the cpu field knowing that
3838 * DEBUG_PAGEALLOC could have unmapped it if
3839 * the mutex owner just released it and exited.
3841 if (probe_kernel_address(&owner->cpu, cpu))
3842 return 0;
3843 #else
3844 cpu = owner->cpu;
3845 #endif
3848 * Even if the access succeeded (likely case),
3849 * the cpu field may no longer be valid.
3851 if (cpu >= nr_cpumask_bits)
3852 return 0;
3855 * We need to validate that we can do a
3856 * get_cpu() and that we have the percpu area.
3858 if (!cpu_online(cpu))
3859 return 0;
3861 rq = cpu_rq(cpu);
3863 for (;;) {
3865 * Owner changed, break to re-assess state.
3867 if (lock->owner != owner) {
3869 * If the lock has switched to a different owner,
3870 * we likely have heavy contention. Return 0 to quit
3871 * optimistic spinning and not contend further:
3873 if (lock->owner)
3874 return 0;
3875 break;
3879 * Is that owner really running on that cpu?
3881 if (task_thread_info(rq->curr) != owner || need_resched())
3882 return 0;
3884 cpu_relax();
3887 return 1;
3889 #endif
3891 #ifdef CONFIG_PREEMPT
3893 * this is the entry point to schedule() from in-kernel preemption
3894 * off of preempt_enable. Kernel preemptions off return from interrupt
3895 * occur there and call schedule directly.
3897 asmlinkage void __sched notrace preempt_schedule(void)
3899 struct thread_info *ti = current_thread_info();
3902 * If there is a non-zero preempt_count or interrupts are disabled,
3903 * we do not want to preempt the current task. Just return..
3905 if (likely(ti->preempt_count || irqs_disabled()))
3906 return;
3908 do {
3909 add_preempt_count_notrace(PREEMPT_ACTIVE);
3910 schedule();
3911 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3914 * Check again in case we missed a preemption opportunity
3915 * between schedule and now.
3917 barrier();
3918 } while (need_resched());
3920 EXPORT_SYMBOL(preempt_schedule);
3923 * this is the entry point to schedule() from kernel preemption
3924 * off of irq context.
3925 * Note, that this is called and return with irqs disabled. This will
3926 * protect us against recursive calling from irq.
3928 asmlinkage void __sched preempt_schedule_irq(void)
3930 struct thread_info *ti = current_thread_info();
3932 /* Catch callers which need to be fixed */
3933 BUG_ON(ti->preempt_count || !irqs_disabled());
3935 do {
3936 add_preempt_count(PREEMPT_ACTIVE);
3937 local_irq_enable();
3938 schedule();
3939 local_irq_disable();
3940 sub_preempt_count(PREEMPT_ACTIVE);
3943 * Check again in case we missed a preemption opportunity
3944 * between schedule and now.
3946 barrier();
3947 } while (need_resched());
3950 #endif /* CONFIG_PREEMPT */
3952 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3953 void *key)
3955 return try_to_wake_up(curr->private, mode, wake_flags);
3957 EXPORT_SYMBOL(default_wake_function);
3960 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3961 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3962 * number) then we wake all the non-exclusive tasks and one exclusive task.
3964 * There are circumstances in which we can try to wake a task which has already
3965 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3966 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3968 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3969 int nr_exclusive, int wake_flags, void *key)
3971 wait_queue_t *curr, *next;
3973 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3974 unsigned flags = curr->flags;
3976 if (curr->func(curr, mode, wake_flags, key) &&
3977 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3978 break;
3983 * __wake_up - wake up threads blocked on a waitqueue.
3984 * @q: the waitqueue
3985 * @mode: which threads
3986 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3987 * @key: is directly passed to the wakeup function
3989 * It may be assumed that this function implies a write memory barrier before
3990 * changing the task state if and only if any tasks are woken up.
3992 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3993 int nr_exclusive, void *key)
3995 unsigned long flags;
3997 spin_lock_irqsave(&q->lock, flags);
3998 __wake_up_common(q, mode, nr_exclusive, 0, key);
3999 spin_unlock_irqrestore(&q->lock, flags);
4001 EXPORT_SYMBOL(__wake_up);
4004 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4006 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4008 __wake_up_common(q, mode, 1, 0, NULL);
4010 EXPORT_SYMBOL_GPL(__wake_up_locked);
4012 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4014 __wake_up_common(q, mode, 1, 0, key);
4018 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4019 * @q: the waitqueue
4020 * @mode: which threads
4021 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4022 * @key: opaque value to be passed to wakeup targets
4024 * The sync wakeup differs that the waker knows that it will schedule
4025 * away soon, so while the target thread will be woken up, it will not
4026 * be migrated to another CPU - ie. the two threads are 'synchronized'
4027 * with each other. This can prevent needless bouncing between CPUs.
4029 * On UP it can prevent extra preemption.
4031 * It may be assumed that this function implies a write memory barrier before
4032 * changing the task state if and only if any tasks are woken up.
4034 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4035 int nr_exclusive, void *key)
4037 unsigned long flags;
4038 int wake_flags = WF_SYNC;
4040 if (unlikely(!q))
4041 return;
4043 if (unlikely(!nr_exclusive))
4044 wake_flags = 0;
4046 spin_lock_irqsave(&q->lock, flags);
4047 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4048 spin_unlock_irqrestore(&q->lock, flags);
4050 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4053 * __wake_up_sync - see __wake_up_sync_key()
4055 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4057 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4059 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4062 * complete: - signals a single thread waiting on this completion
4063 * @x: holds the state of this particular completion
4065 * This will wake up a single thread waiting on this completion. Threads will be
4066 * awakened in the same order in which they were queued.
4068 * See also complete_all(), wait_for_completion() and related routines.
4070 * It may be assumed that this function implies a write memory barrier before
4071 * changing the task state if and only if any tasks are woken up.
4073 void complete(struct completion *x)
4075 unsigned long flags;
4077 spin_lock_irqsave(&x->wait.lock, flags);
4078 x->done++;
4079 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4080 spin_unlock_irqrestore(&x->wait.lock, flags);
4082 EXPORT_SYMBOL(complete);
4085 * complete_all: - signals all threads waiting on this completion
4086 * @x: holds the state of this particular completion
4088 * This will wake up all threads waiting on this particular completion event.
4090 * It may be assumed that this function implies a write memory barrier before
4091 * changing the task state if and only if any tasks are woken up.
4093 void complete_all(struct completion *x)
4095 unsigned long flags;
4097 spin_lock_irqsave(&x->wait.lock, flags);
4098 x->done += UINT_MAX/2;
4099 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4100 spin_unlock_irqrestore(&x->wait.lock, flags);
4102 EXPORT_SYMBOL(complete_all);
4104 static inline long __sched
4105 do_wait_for_common(struct completion *x, long timeout, int state)
4107 if (!x->done) {
4108 DECLARE_WAITQUEUE(wait, current);
4110 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4111 do {
4112 if (signal_pending_state(state, current)) {
4113 timeout = -ERESTARTSYS;
4114 break;
4116 __set_current_state(state);
4117 spin_unlock_irq(&x->wait.lock);
4118 timeout = schedule_timeout(timeout);
4119 spin_lock_irq(&x->wait.lock);
4120 } while (!x->done && timeout);
4121 __remove_wait_queue(&x->wait, &wait);
4122 if (!x->done)
4123 return timeout;
4125 x->done--;
4126 return timeout ?: 1;
4129 static long __sched
4130 wait_for_common(struct completion *x, long timeout, int state)
4132 might_sleep();
4134 spin_lock_irq(&x->wait.lock);
4135 timeout = do_wait_for_common(x, timeout, state);
4136 spin_unlock_irq(&x->wait.lock);
4137 return timeout;
4141 * wait_for_completion: - waits for completion of a task
4142 * @x: holds the state of this particular completion
4144 * This waits to be signaled for completion of a specific task. It is NOT
4145 * interruptible and there is no timeout.
4147 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4148 * and interrupt capability. Also see complete().
4150 void __sched wait_for_completion(struct completion *x)
4152 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4154 EXPORT_SYMBOL(wait_for_completion);
4157 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4158 * @x: holds the state of this particular completion
4159 * @timeout: timeout value in jiffies
4161 * This waits for either a completion of a specific task to be signaled or for a
4162 * specified timeout to expire. The timeout is in jiffies. It is not
4163 * interruptible.
4165 unsigned long __sched
4166 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4168 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4170 EXPORT_SYMBOL(wait_for_completion_timeout);
4173 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4174 * @x: holds the state of this particular completion
4176 * This waits for completion of a specific task to be signaled. It is
4177 * interruptible.
4179 int __sched wait_for_completion_interruptible(struct completion *x)
4181 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4182 if (t == -ERESTARTSYS)
4183 return t;
4184 return 0;
4186 EXPORT_SYMBOL(wait_for_completion_interruptible);
4189 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4190 * @x: holds the state of this particular completion
4191 * @timeout: timeout value in jiffies
4193 * This waits for either a completion of a specific task to be signaled or for a
4194 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4196 unsigned long __sched
4197 wait_for_completion_interruptible_timeout(struct completion *x,
4198 unsigned long timeout)
4200 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4202 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4205 * wait_for_completion_killable: - waits for completion of a task (killable)
4206 * @x: holds the state of this particular completion
4208 * This waits to be signaled for completion of a specific task. It can be
4209 * interrupted by a kill signal.
4211 int __sched wait_for_completion_killable(struct completion *x)
4213 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4214 if (t == -ERESTARTSYS)
4215 return t;
4216 return 0;
4218 EXPORT_SYMBOL(wait_for_completion_killable);
4221 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4222 * @x: holds the state of this particular completion
4223 * @timeout: timeout value in jiffies
4225 * This waits for either a completion of a specific task to be
4226 * signaled or for a specified timeout to expire. It can be
4227 * interrupted by a kill signal. The timeout is in jiffies.
4229 unsigned long __sched
4230 wait_for_completion_killable_timeout(struct completion *x,
4231 unsigned long timeout)
4233 return wait_for_common(x, timeout, TASK_KILLABLE);
4235 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4238 * try_wait_for_completion - try to decrement a completion without blocking
4239 * @x: completion structure
4241 * Returns: 0 if a decrement cannot be done without blocking
4242 * 1 if a decrement succeeded.
4244 * If a completion is being used as a counting completion,
4245 * attempt to decrement the counter without blocking. This
4246 * enables us to avoid waiting if the resource the completion
4247 * is protecting is not available.
4249 bool try_wait_for_completion(struct completion *x)
4251 unsigned long flags;
4252 int ret = 1;
4254 spin_lock_irqsave(&x->wait.lock, flags);
4255 if (!x->done)
4256 ret = 0;
4257 else
4258 x->done--;
4259 spin_unlock_irqrestore(&x->wait.lock, flags);
4260 return ret;
4262 EXPORT_SYMBOL(try_wait_for_completion);
4265 * completion_done - Test to see if a completion has any waiters
4266 * @x: completion structure
4268 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4269 * 1 if there are no waiters.
4272 bool completion_done(struct completion *x)
4274 unsigned long flags;
4275 int ret = 1;
4277 spin_lock_irqsave(&x->wait.lock, flags);
4278 if (!x->done)
4279 ret = 0;
4280 spin_unlock_irqrestore(&x->wait.lock, flags);
4281 return ret;
4283 EXPORT_SYMBOL(completion_done);
4285 static long __sched
4286 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4288 unsigned long flags;
4289 wait_queue_t wait;
4291 init_waitqueue_entry(&wait, current);
4293 __set_current_state(state);
4295 spin_lock_irqsave(&q->lock, flags);
4296 __add_wait_queue(q, &wait);
4297 spin_unlock(&q->lock);
4298 timeout = schedule_timeout(timeout);
4299 spin_lock_irq(&q->lock);
4300 __remove_wait_queue(q, &wait);
4301 spin_unlock_irqrestore(&q->lock, flags);
4303 return timeout;
4306 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4308 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4310 EXPORT_SYMBOL(interruptible_sleep_on);
4312 long __sched
4313 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4315 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4317 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4319 void __sched sleep_on(wait_queue_head_t *q)
4321 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4323 EXPORT_SYMBOL(sleep_on);
4325 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4327 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4329 EXPORT_SYMBOL(sleep_on_timeout);
4331 #ifdef CONFIG_RT_MUTEXES
4334 * rt_mutex_setprio - set the current priority of a task
4335 * @p: task
4336 * @prio: prio value (kernel-internal form)
4338 * This function changes the 'effective' priority of a task. It does
4339 * not touch ->normal_prio like __setscheduler().
4341 * Used by the rt_mutex code to implement priority inheritance logic.
4343 void rt_mutex_setprio(struct task_struct *p, int prio)
4345 unsigned long flags;
4346 int oldprio, on_rq, running;
4347 struct rq *rq;
4348 const struct sched_class *prev_class;
4350 BUG_ON(prio < 0 || prio > MAX_PRIO);
4352 rq = task_rq_lock(p, &flags);
4354 oldprio = p->prio;
4355 prev_class = p->sched_class;
4356 on_rq = p->se.on_rq;
4357 running = task_current(rq, p);
4358 if (on_rq)
4359 dequeue_task(rq, p, 0);
4360 if (running)
4361 p->sched_class->put_prev_task(rq, p);
4363 if (rt_prio(prio))
4364 p->sched_class = &rt_sched_class;
4365 else
4366 p->sched_class = &fair_sched_class;
4368 p->prio = prio;
4370 if (running)
4371 p->sched_class->set_curr_task(rq);
4372 if (on_rq) {
4373 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4375 check_class_changed(rq, p, prev_class, oldprio, running);
4377 task_rq_unlock(rq, &flags);
4380 #endif
4382 void set_user_nice(struct task_struct *p, long nice)
4384 int old_prio, delta, on_rq;
4385 unsigned long flags;
4386 struct rq *rq;
4388 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4389 return;
4391 * We have to be careful, if called from sys_setpriority(),
4392 * the task might be in the middle of scheduling on another CPU.
4394 rq = task_rq_lock(p, &flags);
4396 * The RT priorities are set via sched_setscheduler(), but we still
4397 * allow the 'normal' nice value to be set - but as expected
4398 * it wont have any effect on scheduling until the task is
4399 * SCHED_FIFO/SCHED_RR:
4401 if (task_has_rt_policy(p)) {
4402 p->static_prio = NICE_TO_PRIO(nice);
4403 goto out_unlock;
4405 on_rq = p->se.on_rq;
4406 if (on_rq)
4407 dequeue_task(rq, p, 0);
4409 p->static_prio = NICE_TO_PRIO(nice);
4410 set_load_weight(p);
4411 old_prio = p->prio;
4412 p->prio = effective_prio(p);
4413 delta = p->prio - old_prio;
4415 if (on_rq) {
4416 enqueue_task(rq, p, 0);
4418 * If the task increased its priority or is running and
4419 * lowered its priority, then reschedule its CPU:
4421 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4422 resched_task(rq->curr);
4424 out_unlock:
4425 task_rq_unlock(rq, &flags);
4427 EXPORT_SYMBOL(set_user_nice);
4430 * can_nice - check if a task can reduce its nice value
4431 * @p: task
4432 * @nice: nice value
4434 int can_nice(const struct task_struct *p, const int nice)
4436 /* convert nice value [19,-20] to rlimit style value [1,40] */
4437 int nice_rlim = 20 - nice;
4439 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4440 capable(CAP_SYS_NICE));
4443 #ifdef __ARCH_WANT_SYS_NICE
4446 * sys_nice - change the priority of the current process.
4447 * @increment: priority increment
4449 * sys_setpriority is a more generic, but much slower function that
4450 * does similar things.
4452 SYSCALL_DEFINE1(nice, int, increment)
4454 long nice, retval;
4457 * Setpriority might change our priority at the same moment.
4458 * We don't have to worry. Conceptually one call occurs first
4459 * and we have a single winner.
4461 if (increment < -40)
4462 increment = -40;
4463 if (increment > 40)
4464 increment = 40;
4466 nice = TASK_NICE(current) + increment;
4467 if (nice < -20)
4468 nice = -20;
4469 if (nice > 19)
4470 nice = 19;
4472 if (increment < 0 && !can_nice(current, nice))
4473 return -EPERM;
4475 retval = security_task_setnice(current, nice);
4476 if (retval)
4477 return retval;
4479 set_user_nice(current, nice);
4480 return 0;
4483 #endif
4486 * task_prio - return the priority value of a given task.
4487 * @p: the task in question.
4489 * This is the priority value as seen by users in /proc.
4490 * RT tasks are offset by -200. Normal tasks are centered
4491 * around 0, value goes from -16 to +15.
4493 int task_prio(const struct task_struct *p)
4495 return p->prio - MAX_RT_PRIO;
4499 * task_nice - return the nice value of a given task.
4500 * @p: the task in question.
4502 int task_nice(const struct task_struct *p)
4504 return TASK_NICE(p);
4506 EXPORT_SYMBOL(task_nice);
4509 * idle_cpu - is a given cpu idle currently?
4510 * @cpu: the processor in question.
4512 int idle_cpu(int cpu)
4514 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4518 * idle_task - return the idle task for a given cpu.
4519 * @cpu: the processor in question.
4521 struct task_struct *idle_task(int cpu)
4523 return cpu_rq(cpu)->idle;
4527 * find_process_by_pid - find a process with a matching PID value.
4528 * @pid: the pid in question.
4530 static struct task_struct *find_process_by_pid(pid_t pid)
4532 return pid ? find_task_by_vpid(pid) : current;
4535 /* Actually do priority change: must hold rq lock. */
4536 static void
4537 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4539 BUG_ON(p->se.on_rq);
4541 p->policy = policy;
4542 p->rt_priority = prio;
4543 p->normal_prio = normal_prio(p);
4544 /* we are holding p->pi_lock already */
4545 p->prio = rt_mutex_getprio(p);
4546 if (rt_prio(p->prio))
4547 p->sched_class = &rt_sched_class;
4548 else
4549 p->sched_class = &fair_sched_class;
4550 set_load_weight(p);
4554 * check the target process has a UID that matches the current process's
4556 static bool check_same_owner(struct task_struct *p)
4558 const struct cred *cred = current_cred(), *pcred;
4559 bool match;
4561 rcu_read_lock();
4562 pcred = __task_cred(p);
4563 match = (cred->euid == pcred->euid ||
4564 cred->euid == pcred->uid);
4565 rcu_read_unlock();
4566 return match;
4569 static int __sched_setscheduler(struct task_struct *p, int policy,
4570 struct sched_param *param, bool user)
4572 int retval, oldprio, oldpolicy = -1, on_rq, running;
4573 unsigned long flags;
4574 const struct sched_class *prev_class;
4575 struct rq *rq;
4576 int reset_on_fork;
4578 /* may grab non-irq protected spin_locks */
4579 BUG_ON(in_interrupt());
4580 recheck:
4581 /* double check policy once rq lock held */
4582 if (policy < 0) {
4583 reset_on_fork = p->sched_reset_on_fork;
4584 policy = oldpolicy = p->policy;
4585 } else {
4586 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4587 policy &= ~SCHED_RESET_ON_FORK;
4589 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4590 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4591 policy != SCHED_IDLE)
4592 return -EINVAL;
4596 * Valid priorities for SCHED_FIFO and SCHED_RR are
4597 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4598 * SCHED_BATCH and SCHED_IDLE is 0.
4600 if (param->sched_priority < 0 ||
4601 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4602 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4603 return -EINVAL;
4604 if (rt_policy(policy) != (param->sched_priority != 0))
4605 return -EINVAL;
4608 * Allow unprivileged RT tasks to decrease priority:
4610 if (user && !capable(CAP_SYS_NICE)) {
4611 if (rt_policy(policy)) {
4612 unsigned long rlim_rtprio =
4613 task_rlimit(p, RLIMIT_RTPRIO);
4615 /* can't set/change the rt policy */
4616 if (policy != p->policy && !rlim_rtprio)
4617 return -EPERM;
4619 /* can't increase priority */
4620 if (param->sched_priority > p->rt_priority &&
4621 param->sched_priority > rlim_rtprio)
4622 return -EPERM;
4625 * Like positive nice levels, dont allow tasks to
4626 * move out of SCHED_IDLE either:
4628 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4629 return -EPERM;
4631 /* can't change other user's priorities */
4632 if (!check_same_owner(p))
4633 return -EPERM;
4635 /* Normal users shall not reset the sched_reset_on_fork flag */
4636 if (p->sched_reset_on_fork && !reset_on_fork)
4637 return -EPERM;
4640 if (user) {
4641 retval = security_task_setscheduler(p, policy, param);
4642 if (retval)
4643 return retval;
4647 * make sure no PI-waiters arrive (or leave) while we are
4648 * changing the priority of the task:
4650 raw_spin_lock_irqsave(&p->pi_lock, flags);
4652 * To be able to change p->policy safely, the apropriate
4653 * runqueue lock must be held.
4655 rq = __task_rq_lock(p);
4657 #ifdef CONFIG_RT_GROUP_SCHED
4658 if (user) {
4660 * Do not allow realtime tasks into groups that have no runtime
4661 * assigned.
4663 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4664 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4665 __task_rq_unlock(rq);
4666 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4667 return -EPERM;
4670 #endif
4672 /* recheck policy now with rq lock held */
4673 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4674 policy = oldpolicy = -1;
4675 __task_rq_unlock(rq);
4676 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4677 goto recheck;
4679 on_rq = p->se.on_rq;
4680 running = task_current(rq, p);
4681 if (on_rq)
4682 deactivate_task(rq, p, 0);
4683 if (running)
4684 p->sched_class->put_prev_task(rq, p);
4686 p->sched_reset_on_fork = reset_on_fork;
4688 oldprio = p->prio;
4689 prev_class = p->sched_class;
4690 __setscheduler(rq, p, policy, param->sched_priority);
4692 if (running)
4693 p->sched_class->set_curr_task(rq);
4694 if (on_rq) {
4695 activate_task(rq, p, 0);
4697 check_class_changed(rq, p, prev_class, oldprio, running);
4699 __task_rq_unlock(rq);
4700 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4702 rt_mutex_adjust_pi(p);
4704 return 0;
4708 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4709 * @p: the task in question.
4710 * @policy: new policy.
4711 * @param: structure containing the new RT priority.
4713 * NOTE that the task may be already dead.
4715 int sched_setscheduler(struct task_struct *p, int policy,
4716 struct sched_param *param)
4718 return __sched_setscheduler(p, policy, param, true);
4720 EXPORT_SYMBOL_GPL(sched_setscheduler);
4723 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4724 * @p: the task in question.
4725 * @policy: new policy.
4726 * @param: structure containing the new RT priority.
4728 * Just like sched_setscheduler, only don't bother checking if the
4729 * current context has permission. For example, this is needed in
4730 * stop_machine(): we create temporary high priority worker threads,
4731 * but our caller might not have that capability.
4733 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4734 struct sched_param *param)
4736 return __sched_setscheduler(p, policy, param, false);
4739 static int
4740 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4742 struct sched_param lparam;
4743 struct task_struct *p;
4744 int retval;
4746 if (!param || pid < 0)
4747 return -EINVAL;
4748 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4749 return -EFAULT;
4751 rcu_read_lock();
4752 retval = -ESRCH;
4753 p = find_process_by_pid(pid);
4754 if (p != NULL)
4755 retval = sched_setscheduler(p, policy, &lparam);
4756 rcu_read_unlock();
4758 return retval;
4762 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4763 * @pid: the pid in question.
4764 * @policy: new policy.
4765 * @param: structure containing the new RT priority.
4767 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4768 struct sched_param __user *, param)
4770 /* negative values for policy are not valid */
4771 if (policy < 0)
4772 return -EINVAL;
4774 return do_sched_setscheduler(pid, policy, param);
4778 * sys_sched_setparam - set/change the RT priority of a thread
4779 * @pid: the pid in question.
4780 * @param: structure containing the new RT priority.
4782 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4784 return do_sched_setscheduler(pid, -1, param);
4788 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4789 * @pid: the pid in question.
4791 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4793 struct task_struct *p;
4794 int retval;
4796 if (pid < 0)
4797 return -EINVAL;
4799 retval = -ESRCH;
4800 rcu_read_lock();
4801 p = find_process_by_pid(pid);
4802 if (p) {
4803 retval = security_task_getscheduler(p);
4804 if (!retval)
4805 retval = p->policy
4806 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4808 rcu_read_unlock();
4809 return retval;
4813 * sys_sched_getparam - get the RT priority of a thread
4814 * @pid: the pid in question.
4815 * @param: structure containing the RT priority.
4817 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4819 struct sched_param lp;
4820 struct task_struct *p;
4821 int retval;
4823 if (!param || pid < 0)
4824 return -EINVAL;
4826 rcu_read_lock();
4827 p = find_process_by_pid(pid);
4828 retval = -ESRCH;
4829 if (!p)
4830 goto out_unlock;
4832 retval = security_task_getscheduler(p);
4833 if (retval)
4834 goto out_unlock;
4836 lp.sched_priority = p->rt_priority;
4837 rcu_read_unlock();
4840 * This one might sleep, we cannot do it with a spinlock held ...
4842 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4844 return retval;
4846 out_unlock:
4847 rcu_read_unlock();
4848 return retval;
4851 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4853 cpumask_var_t cpus_allowed, new_mask;
4854 struct task_struct *p;
4855 int retval;
4857 get_online_cpus();
4858 rcu_read_lock();
4860 p = find_process_by_pid(pid);
4861 if (!p) {
4862 rcu_read_unlock();
4863 put_online_cpus();
4864 return -ESRCH;
4867 /* Prevent p going away */
4868 get_task_struct(p);
4869 rcu_read_unlock();
4871 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4872 retval = -ENOMEM;
4873 goto out_put_task;
4875 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4876 retval = -ENOMEM;
4877 goto out_free_cpus_allowed;
4879 retval = -EPERM;
4880 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4881 goto out_unlock;
4883 retval = security_task_setscheduler(p, 0, NULL);
4884 if (retval)
4885 goto out_unlock;
4887 cpuset_cpus_allowed(p, cpus_allowed);
4888 cpumask_and(new_mask, in_mask, cpus_allowed);
4889 again:
4890 retval = set_cpus_allowed_ptr(p, new_mask);
4892 if (!retval) {
4893 cpuset_cpus_allowed(p, cpus_allowed);
4894 if (!cpumask_subset(new_mask, cpus_allowed)) {
4896 * We must have raced with a concurrent cpuset
4897 * update. Just reset the cpus_allowed to the
4898 * cpuset's cpus_allowed
4900 cpumask_copy(new_mask, cpus_allowed);
4901 goto again;
4904 out_unlock:
4905 free_cpumask_var(new_mask);
4906 out_free_cpus_allowed:
4907 free_cpumask_var(cpus_allowed);
4908 out_put_task:
4909 put_task_struct(p);
4910 put_online_cpus();
4911 return retval;
4914 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4915 struct cpumask *new_mask)
4917 if (len < cpumask_size())
4918 cpumask_clear(new_mask);
4919 else if (len > cpumask_size())
4920 len = cpumask_size();
4922 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4926 * sys_sched_setaffinity - set the cpu affinity of a process
4927 * @pid: pid of the process
4928 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4929 * @user_mask_ptr: user-space pointer to the new cpu mask
4931 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4932 unsigned long __user *, user_mask_ptr)
4934 cpumask_var_t new_mask;
4935 int retval;
4937 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4938 return -ENOMEM;
4940 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4941 if (retval == 0)
4942 retval = sched_setaffinity(pid, new_mask);
4943 free_cpumask_var(new_mask);
4944 return retval;
4947 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4949 struct task_struct *p;
4950 unsigned long flags;
4951 struct rq *rq;
4952 int retval;
4954 get_online_cpus();
4955 rcu_read_lock();
4957 retval = -ESRCH;
4958 p = find_process_by_pid(pid);
4959 if (!p)
4960 goto out_unlock;
4962 retval = security_task_getscheduler(p);
4963 if (retval)
4964 goto out_unlock;
4966 rq = task_rq_lock(p, &flags);
4967 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4968 task_rq_unlock(rq, &flags);
4970 out_unlock:
4971 rcu_read_unlock();
4972 put_online_cpus();
4974 return retval;
4978 * sys_sched_getaffinity - get the cpu affinity of a process
4979 * @pid: pid of the process
4980 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4981 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4983 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4984 unsigned long __user *, user_mask_ptr)
4986 int ret;
4987 cpumask_var_t mask;
4989 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4990 return -EINVAL;
4991 if (len & (sizeof(unsigned long)-1))
4992 return -EINVAL;
4994 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4995 return -ENOMEM;
4997 ret = sched_getaffinity(pid, mask);
4998 if (ret == 0) {
4999 size_t retlen = min_t(size_t, len, cpumask_size());
5001 if (copy_to_user(user_mask_ptr, mask, retlen))
5002 ret = -EFAULT;
5003 else
5004 ret = retlen;
5006 free_cpumask_var(mask);
5008 return ret;
5012 * sys_sched_yield - yield the current processor to other threads.
5014 * This function yields the current CPU to other tasks. If there are no
5015 * other threads running on this CPU then this function will return.
5017 SYSCALL_DEFINE0(sched_yield)
5019 struct rq *rq = this_rq_lock();
5021 schedstat_inc(rq, yld_count);
5022 current->sched_class->yield_task(rq);
5025 * Since we are going to call schedule() anyway, there's
5026 * no need to preempt or enable interrupts:
5028 __release(rq->lock);
5029 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5030 do_raw_spin_unlock(&rq->lock);
5031 preempt_enable_no_resched();
5033 schedule();
5035 return 0;
5038 static inline int should_resched(void)
5040 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5043 static void __cond_resched(void)
5045 add_preempt_count(PREEMPT_ACTIVE);
5046 schedule();
5047 sub_preempt_count(PREEMPT_ACTIVE);
5050 int __sched _cond_resched(void)
5052 if (should_resched()) {
5053 __cond_resched();
5054 return 1;
5056 return 0;
5058 EXPORT_SYMBOL(_cond_resched);
5061 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5062 * call schedule, and on return reacquire the lock.
5064 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5065 * operations here to prevent schedule() from being called twice (once via
5066 * spin_unlock(), once by hand).
5068 int __cond_resched_lock(spinlock_t *lock)
5070 int resched = should_resched();
5071 int ret = 0;
5073 lockdep_assert_held(lock);
5075 if (spin_needbreak(lock) || resched) {
5076 spin_unlock(lock);
5077 if (resched)
5078 __cond_resched();
5079 else
5080 cpu_relax();
5081 ret = 1;
5082 spin_lock(lock);
5084 return ret;
5086 EXPORT_SYMBOL(__cond_resched_lock);
5088 int __sched __cond_resched_softirq(void)
5090 BUG_ON(!in_softirq());
5092 if (should_resched()) {
5093 local_bh_enable();
5094 __cond_resched();
5095 local_bh_disable();
5096 return 1;
5098 return 0;
5100 EXPORT_SYMBOL(__cond_resched_softirq);
5103 * yield - yield the current processor to other threads.
5105 * This is a shortcut for kernel-space yielding - it marks the
5106 * thread runnable and calls sys_sched_yield().
5108 void __sched yield(void)
5110 set_current_state(TASK_RUNNING);
5111 sys_sched_yield();
5113 EXPORT_SYMBOL(yield);
5116 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5117 * that process accounting knows that this is a task in IO wait state.
5119 void __sched io_schedule(void)
5121 struct rq *rq = raw_rq();
5123 delayacct_blkio_start();
5124 atomic_inc(&rq->nr_iowait);
5125 current->in_iowait = 1;
5126 schedule();
5127 current->in_iowait = 0;
5128 atomic_dec(&rq->nr_iowait);
5129 delayacct_blkio_end();
5131 EXPORT_SYMBOL(io_schedule);
5133 long __sched io_schedule_timeout(long timeout)
5135 struct rq *rq = raw_rq();
5136 long ret;
5138 delayacct_blkio_start();
5139 atomic_inc(&rq->nr_iowait);
5140 current->in_iowait = 1;
5141 ret = schedule_timeout(timeout);
5142 current->in_iowait = 0;
5143 atomic_dec(&rq->nr_iowait);
5144 delayacct_blkio_end();
5145 return ret;
5149 * sys_sched_get_priority_max - return maximum RT priority.
5150 * @policy: scheduling class.
5152 * this syscall returns the maximum rt_priority that can be used
5153 * by a given scheduling class.
5155 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5157 int ret = -EINVAL;
5159 switch (policy) {
5160 case SCHED_FIFO:
5161 case SCHED_RR:
5162 ret = MAX_USER_RT_PRIO-1;
5163 break;
5164 case SCHED_NORMAL:
5165 case SCHED_BATCH:
5166 case SCHED_IDLE:
5167 ret = 0;
5168 break;
5170 return ret;
5174 * sys_sched_get_priority_min - return minimum RT priority.
5175 * @policy: scheduling class.
5177 * this syscall returns the minimum rt_priority that can be used
5178 * by a given scheduling class.
5180 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5182 int ret = -EINVAL;
5184 switch (policy) {
5185 case SCHED_FIFO:
5186 case SCHED_RR:
5187 ret = 1;
5188 break;
5189 case SCHED_NORMAL:
5190 case SCHED_BATCH:
5191 case SCHED_IDLE:
5192 ret = 0;
5194 return ret;
5198 * sys_sched_rr_get_interval - return the default timeslice of a process.
5199 * @pid: pid of the process.
5200 * @interval: userspace pointer to the timeslice value.
5202 * this syscall writes the default timeslice value of a given process
5203 * into the user-space timespec buffer. A value of '0' means infinity.
5205 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5206 struct timespec __user *, interval)
5208 struct task_struct *p;
5209 unsigned int time_slice;
5210 unsigned long flags;
5211 struct rq *rq;
5212 int retval;
5213 struct timespec t;
5215 if (pid < 0)
5216 return -EINVAL;
5218 retval = -ESRCH;
5219 rcu_read_lock();
5220 p = find_process_by_pid(pid);
5221 if (!p)
5222 goto out_unlock;
5224 retval = security_task_getscheduler(p);
5225 if (retval)
5226 goto out_unlock;
5228 rq = task_rq_lock(p, &flags);
5229 time_slice = p->sched_class->get_rr_interval(rq, p);
5230 task_rq_unlock(rq, &flags);
5232 rcu_read_unlock();
5233 jiffies_to_timespec(time_slice, &t);
5234 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5235 return retval;
5237 out_unlock:
5238 rcu_read_unlock();
5239 return retval;
5242 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5244 void sched_show_task(struct task_struct *p)
5246 unsigned long free = 0;
5247 unsigned state;
5249 state = p->state ? __ffs(p->state) + 1 : 0;
5250 printk(KERN_INFO "%-13.13s %c", p->comm,
5251 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5252 #if BITS_PER_LONG == 32
5253 if (state == TASK_RUNNING)
5254 printk(KERN_CONT " running ");
5255 else
5256 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5257 #else
5258 if (state == TASK_RUNNING)
5259 printk(KERN_CONT " running task ");
5260 else
5261 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5262 #endif
5263 #ifdef CONFIG_DEBUG_STACK_USAGE
5264 free = stack_not_used(p);
5265 #endif
5266 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5267 task_pid_nr(p), task_pid_nr(p->real_parent),
5268 (unsigned long)task_thread_info(p)->flags);
5270 show_stack(p, NULL);
5273 void show_state_filter(unsigned long state_filter)
5275 struct task_struct *g, *p;
5277 #if BITS_PER_LONG == 32
5278 printk(KERN_INFO
5279 " task PC stack pid father\n");
5280 #else
5281 printk(KERN_INFO
5282 " task PC stack pid father\n");
5283 #endif
5284 read_lock(&tasklist_lock);
5285 do_each_thread(g, p) {
5287 * reset the NMI-timeout, listing all files on a slow
5288 * console might take alot of time:
5290 touch_nmi_watchdog();
5291 if (!state_filter || (p->state & state_filter))
5292 sched_show_task(p);
5293 } while_each_thread(g, p);
5295 touch_all_softlockup_watchdogs();
5297 #ifdef CONFIG_SCHED_DEBUG
5298 sysrq_sched_debug_show();
5299 #endif
5300 read_unlock(&tasklist_lock);
5302 * Only show locks if all tasks are dumped:
5304 if (!state_filter)
5305 debug_show_all_locks();
5308 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5310 idle->sched_class = &idle_sched_class;
5314 * init_idle - set up an idle thread for a given CPU
5315 * @idle: task in question
5316 * @cpu: cpu the idle task belongs to
5318 * NOTE: this function does not set the idle thread's NEED_RESCHED
5319 * flag, to make booting more robust.
5321 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5323 struct rq *rq = cpu_rq(cpu);
5324 unsigned long flags;
5326 raw_spin_lock_irqsave(&rq->lock, flags);
5328 __sched_fork(idle);
5329 idle->state = TASK_RUNNING;
5330 idle->se.exec_start = sched_clock();
5332 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5334 * We're having a chicken and egg problem, even though we are
5335 * holding rq->lock, the cpu isn't yet set to this cpu so the
5336 * lockdep check in task_group() will fail.
5338 * Similar case to sched_fork(). / Alternatively we could
5339 * use task_rq_lock() here and obtain the other rq->lock.
5341 * Silence PROVE_RCU
5343 rcu_read_lock();
5344 __set_task_cpu(idle, cpu);
5345 rcu_read_unlock();
5347 rq->curr = rq->idle = idle;
5348 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5349 idle->oncpu = 1;
5350 #endif
5351 raw_spin_unlock_irqrestore(&rq->lock, flags);
5353 /* Set the preempt count _outside_ the spinlocks! */
5354 #if defined(CONFIG_PREEMPT)
5355 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5356 #else
5357 task_thread_info(idle)->preempt_count = 0;
5358 #endif
5360 * The idle tasks have their own, simple scheduling class:
5362 idle->sched_class = &idle_sched_class;
5363 ftrace_graph_init_task(idle);
5367 * In a system that switches off the HZ timer nohz_cpu_mask
5368 * indicates which cpus entered this state. This is used
5369 * in the rcu update to wait only for active cpus. For system
5370 * which do not switch off the HZ timer nohz_cpu_mask should
5371 * always be CPU_BITS_NONE.
5373 cpumask_var_t nohz_cpu_mask;
5376 * Increase the granularity value when there are more CPUs,
5377 * because with more CPUs the 'effective latency' as visible
5378 * to users decreases. But the relationship is not linear,
5379 * so pick a second-best guess by going with the log2 of the
5380 * number of CPUs.
5382 * This idea comes from the SD scheduler of Con Kolivas:
5384 static int get_update_sysctl_factor(void)
5386 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5387 unsigned int factor;
5389 switch (sysctl_sched_tunable_scaling) {
5390 case SCHED_TUNABLESCALING_NONE:
5391 factor = 1;
5392 break;
5393 case SCHED_TUNABLESCALING_LINEAR:
5394 factor = cpus;
5395 break;
5396 case SCHED_TUNABLESCALING_LOG:
5397 default:
5398 factor = 1 + ilog2(cpus);
5399 break;
5402 return factor;
5405 static void update_sysctl(void)
5407 unsigned int factor = get_update_sysctl_factor();
5409 #define SET_SYSCTL(name) \
5410 (sysctl_##name = (factor) * normalized_sysctl_##name)
5411 SET_SYSCTL(sched_min_granularity);
5412 SET_SYSCTL(sched_latency);
5413 SET_SYSCTL(sched_wakeup_granularity);
5414 SET_SYSCTL(sched_shares_ratelimit);
5415 #undef SET_SYSCTL
5418 static inline void sched_init_granularity(void)
5420 update_sysctl();
5423 #ifdef CONFIG_SMP
5425 * This is how migration works:
5427 * 1) we invoke migration_cpu_stop() on the target CPU using
5428 * stop_one_cpu().
5429 * 2) stopper starts to run (implicitly forcing the migrated thread
5430 * off the CPU)
5431 * 3) it checks whether the migrated task is still in the wrong runqueue.
5432 * 4) if it's in the wrong runqueue then the migration thread removes
5433 * it and puts it into the right queue.
5434 * 5) stopper completes and stop_one_cpu() returns and the migration
5435 * is done.
5439 * Change a given task's CPU affinity. Migrate the thread to a
5440 * proper CPU and schedule it away if the CPU it's executing on
5441 * is removed from the allowed bitmask.
5443 * NOTE: the caller must have a valid reference to the task, the
5444 * task must not exit() & deallocate itself prematurely. The
5445 * call is not atomic; no spinlocks may be held.
5447 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5449 unsigned long flags;
5450 struct rq *rq;
5451 unsigned int dest_cpu;
5452 int ret = 0;
5455 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5456 * drop the rq->lock and still rely on ->cpus_allowed.
5458 again:
5459 while (task_is_waking(p))
5460 cpu_relax();
5461 rq = task_rq_lock(p, &flags);
5462 if (task_is_waking(p)) {
5463 task_rq_unlock(rq, &flags);
5464 goto again;
5467 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5468 ret = -EINVAL;
5469 goto out;
5472 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5473 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5474 ret = -EINVAL;
5475 goto out;
5478 if (p->sched_class->set_cpus_allowed)
5479 p->sched_class->set_cpus_allowed(p, new_mask);
5480 else {
5481 cpumask_copy(&p->cpus_allowed, new_mask);
5482 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5485 /* Can the task run on the task's current CPU? If so, we're done */
5486 if (cpumask_test_cpu(task_cpu(p), new_mask))
5487 goto out;
5489 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5490 if (migrate_task(p, dest_cpu)) {
5491 struct migration_arg arg = { p, dest_cpu };
5492 /* Need help from migration thread: drop lock and wait. */
5493 task_rq_unlock(rq, &flags);
5494 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5495 tlb_migrate_finish(p->mm);
5496 return 0;
5498 out:
5499 task_rq_unlock(rq, &flags);
5501 return ret;
5503 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5506 * Move (not current) task off this cpu, onto dest cpu. We're doing
5507 * this because either it can't run here any more (set_cpus_allowed()
5508 * away from this CPU, or CPU going down), or because we're
5509 * attempting to rebalance this task on exec (sched_exec).
5511 * So we race with normal scheduler movements, but that's OK, as long
5512 * as the task is no longer on this CPU.
5514 * Returns non-zero if task was successfully migrated.
5516 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5518 struct rq *rq_dest, *rq_src;
5519 int ret = 0;
5521 if (unlikely(!cpu_active(dest_cpu)))
5522 return ret;
5524 rq_src = cpu_rq(src_cpu);
5525 rq_dest = cpu_rq(dest_cpu);
5527 double_rq_lock(rq_src, rq_dest);
5528 /* Already moved. */
5529 if (task_cpu(p) != src_cpu)
5530 goto done;
5531 /* Affinity changed (again). */
5532 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5533 goto fail;
5536 * If we're not on a rq, the next wake-up will ensure we're
5537 * placed properly.
5539 if (p->se.on_rq) {
5540 deactivate_task(rq_src, p, 0);
5541 set_task_cpu(p, dest_cpu);
5542 activate_task(rq_dest, p, 0);
5543 check_preempt_curr(rq_dest, p, 0);
5545 done:
5546 ret = 1;
5547 fail:
5548 double_rq_unlock(rq_src, rq_dest);
5549 return ret;
5553 * migration_cpu_stop - this will be executed by a highprio stopper thread
5554 * and performs thread migration by bumping thread off CPU then
5555 * 'pushing' onto another runqueue.
5557 static int migration_cpu_stop(void *data)
5559 struct migration_arg *arg = data;
5562 * The original target cpu might have gone down and we might
5563 * be on another cpu but it doesn't matter.
5565 local_irq_disable();
5566 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5567 local_irq_enable();
5568 return 0;
5571 #ifdef CONFIG_HOTPLUG_CPU
5573 * Figure out where task on dead CPU should go, use force if necessary.
5575 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5577 struct rq *rq = cpu_rq(dead_cpu);
5578 int needs_cpu, uninitialized_var(dest_cpu);
5579 unsigned long flags;
5581 local_irq_save(flags);
5583 raw_spin_lock(&rq->lock);
5584 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5585 if (needs_cpu)
5586 dest_cpu = select_fallback_rq(dead_cpu, p);
5587 raw_spin_unlock(&rq->lock);
5589 * It can only fail if we race with set_cpus_allowed(),
5590 * in the racer should migrate the task anyway.
5592 if (needs_cpu)
5593 __migrate_task(p, dead_cpu, dest_cpu);
5594 local_irq_restore(flags);
5598 * While a dead CPU has no uninterruptible tasks queued at this point,
5599 * it might still have a nonzero ->nr_uninterruptible counter, because
5600 * for performance reasons the counter is not stricly tracking tasks to
5601 * their home CPUs. So we just add the counter to another CPU's counter,
5602 * to keep the global sum constant after CPU-down:
5604 static void migrate_nr_uninterruptible(struct rq *rq_src)
5606 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5607 unsigned long flags;
5609 local_irq_save(flags);
5610 double_rq_lock(rq_src, rq_dest);
5611 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5612 rq_src->nr_uninterruptible = 0;
5613 double_rq_unlock(rq_src, rq_dest);
5614 local_irq_restore(flags);
5617 /* Run through task list and migrate tasks from the dead cpu. */
5618 static void migrate_live_tasks(int src_cpu)
5620 struct task_struct *p, *t;
5622 read_lock(&tasklist_lock);
5624 do_each_thread(t, p) {
5625 if (p == current)
5626 continue;
5628 if (task_cpu(p) == src_cpu)
5629 move_task_off_dead_cpu(src_cpu, p);
5630 } while_each_thread(t, p);
5632 read_unlock(&tasklist_lock);
5636 * Schedules idle task to be the next runnable task on current CPU.
5637 * It does so by boosting its priority to highest possible.
5638 * Used by CPU offline code.
5640 void sched_idle_next(void)
5642 int this_cpu = smp_processor_id();
5643 struct rq *rq = cpu_rq(this_cpu);
5644 struct task_struct *p = rq->idle;
5645 unsigned long flags;
5647 /* cpu has to be offline */
5648 BUG_ON(cpu_online(this_cpu));
5651 * Strictly not necessary since rest of the CPUs are stopped by now
5652 * and interrupts disabled on the current cpu.
5654 raw_spin_lock_irqsave(&rq->lock, flags);
5656 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5658 activate_task(rq, p, 0);
5660 raw_spin_unlock_irqrestore(&rq->lock, flags);
5664 * Ensures that the idle task is using init_mm right before its cpu goes
5665 * offline.
5667 void idle_task_exit(void)
5669 struct mm_struct *mm = current->active_mm;
5671 BUG_ON(cpu_online(smp_processor_id()));
5673 if (mm != &init_mm)
5674 switch_mm(mm, &init_mm, current);
5675 mmdrop(mm);
5678 /* called under rq->lock with disabled interrupts */
5679 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5681 struct rq *rq = cpu_rq(dead_cpu);
5683 /* Must be exiting, otherwise would be on tasklist. */
5684 BUG_ON(!p->exit_state);
5686 /* Cannot have done final schedule yet: would have vanished. */
5687 BUG_ON(p->state == TASK_DEAD);
5689 get_task_struct(p);
5692 * Drop lock around migration; if someone else moves it,
5693 * that's OK. No task can be added to this CPU, so iteration is
5694 * fine.
5696 raw_spin_unlock_irq(&rq->lock);
5697 move_task_off_dead_cpu(dead_cpu, p);
5698 raw_spin_lock_irq(&rq->lock);
5700 put_task_struct(p);
5703 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5704 static void migrate_dead_tasks(unsigned int dead_cpu)
5706 struct rq *rq = cpu_rq(dead_cpu);
5707 struct task_struct *next;
5709 for ( ; ; ) {
5710 if (!rq->nr_running)
5711 break;
5712 next = pick_next_task(rq);
5713 if (!next)
5714 break;
5715 next->sched_class->put_prev_task(rq, next);
5716 migrate_dead(dead_cpu, next);
5722 * remove the tasks which were accounted by rq from calc_load_tasks.
5724 static void calc_global_load_remove(struct rq *rq)
5726 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5727 rq->calc_load_active = 0;
5729 #endif /* CONFIG_HOTPLUG_CPU */
5731 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5733 static struct ctl_table sd_ctl_dir[] = {
5735 .procname = "sched_domain",
5736 .mode = 0555,
5741 static struct ctl_table sd_ctl_root[] = {
5743 .procname = "kernel",
5744 .mode = 0555,
5745 .child = sd_ctl_dir,
5750 static struct ctl_table *sd_alloc_ctl_entry(int n)
5752 struct ctl_table *entry =
5753 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5755 return entry;
5758 static void sd_free_ctl_entry(struct ctl_table **tablep)
5760 struct ctl_table *entry;
5763 * In the intermediate directories, both the child directory and
5764 * procname are dynamically allocated and could fail but the mode
5765 * will always be set. In the lowest directory the names are
5766 * static strings and all have proc handlers.
5768 for (entry = *tablep; entry->mode; entry++) {
5769 if (entry->child)
5770 sd_free_ctl_entry(&entry->child);
5771 if (entry->proc_handler == NULL)
5772 kfree(entry->procname);
5775 kfree(*tablep);
5776 *tablep = NULL;
5779 static void
5780 set_table_entry(struct ctl_table *entry,
5781 const char *procname, void *data, int maxlen,
5782 mode_t mode, proc_handler *proc_handler)
5784 entry->procname = procname;
5785 entry->data = data;
5786 entry->maxlen = maxlen;
5787 entry->mode = mode;
5788 entry->proc_handler = proc_handler;
5791 static struct ctl_table *
5792 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5794 struct ctl_table *table = sd_alloc_ctl_entry(13);
5796 if (table == NULL)
5797 return NULL;
5799 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5800 sizeof(long), 0644, proc_doulongvec_minmax);
5801 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5802 sizeof(long), 0644, proc_doulongvec_minmax);
5803 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5804 sizeof(int), 0644, proc_dointvec_minmax);
5805 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5806 sizeof(int), 0644, proc_dointvec_minmax);
5807 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5808 sizeof(int), 0644, proc_dointvec_minmax);
5809 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5810 sizeof(int), 0644, proc_dointvec_minmax);
5811 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5812 sizeof(int), 0644, proc_dointvec_minmax);
5813 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5814 sizeof(int), 0644, proc_dointvec_minmax);
5815 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5816 sizeof(int), 0644, proc_dointvec_minmax);
5817 set_table_entry(&table[9], "cache_nice_tries",
5818 &sd->cache_nice_tries,
5819 sizeof(int), 0644, proc_dointvec_minmax);
5820 set_table_entry(&table[10], "flags", &sd->flags,
5821 sizeof(int), 0644, proc_dointvec_minmax);
5822 set_table_entry(&table[11], "name", sd->name,
5823 CORENAME_MAX_SIZE, 0444, proc_dostring);
5824 /* &table[12] is terminator */
5826 return table;
5829 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5831 struct ctl_table *entry, *table;
5832 struct sched_domain *sd;
5833 int domain_num = 0, i;
5834 char buf[32];
5836 for_each_domain(cpu, sd)
5837 domain_num++;
5838 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5839 if (table == NULL)
5840 return NULL;
5842 i = 0;
5843 for_each_domain(cpu, sd) {
5844 snprintf(buf, 32, "domain%d", i);
5845 entry->procname = kstrdup(buf, GFP_KERNEL);
5846 entry->mode = 0555;
5847 entry->child = sd_alloc_ctl_domain_table(sd);
5848 entry++;
5849 i++;
5851 return table;
5854 static struct ctl_table_header *sd_sysctl_header;
5855 static void register_sched_domain_sysctl(void)
5857 int i, cpu_num = num_possible_cpus();
5858 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5859 char buf[32];
5861 WARN_ON(sd_ctl_dir[0].child);
5862 sd_ctl_dir[0].child = entry;
5864 if (entry == NULL)
5865 return;
5867 for_each_possible_cpu(i) {
5868 snprintf(buf, 32, "cpu%d", i);
5869 entry->procname = kstrdup(buf, GFP_KERNEL);
5870 entry->mode = 0555;
5871 entry->child = sd_alloc_ctl_cpu_table(i);
5872 entry++;
5875 WARN_ON(sd_sysctl_header);
5876 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5879 /* may be called multiple times per register */
5880 static void unregister_sched_domain_sysctl(void)
5882 if (sd_sysctl_header)
5883 unregister_sysctl_table(sd_sysctl_header);
5884 sd_sysctl_header = NULL;
5885 if (sd_ctl_dir[0].child)
5886 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5888 #else
5889 static void register_sched_domain_sysctl(void)
5892 static void unregister_sched_domain_sysctl(void)
5895 #endif
5897 static void set_rq_online(struct rq *rq)
5899 if (!rq->online) {
5900 const struct sched_class *class;
5902 cpumask_set_cpu(rq->cpu, rq->rd->online);
5903 rq->online = 1;
5905 for_each_class(class) {
5906 if (class->rq_online)
5907 class->rq_online(rq);
5912 static void set_rq_offline(struct rq *rq)
5914 if (rq->online) {
5915 const struct sched_class *class;
5917 for_each_class(class) {
5918 if (class->rq_offline)
5919 class->rq_offline(rq);
5922 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5923 rq->online = 0;
5928 * migration_call - callback that gets triggered when a CPU is added.
5929 * Here we can start up the necessary migration thread for the new CPU.
5931 static int __cpuinit
5932 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5934 int cpu = (long)hcpu;
5935 unsigned long flags;
5936 struct rq *rq = cpu_rq(cpu);
5938 switch (action) {
5940 case CPU_UP_PREPARE:
5941 case CPU_UP_PREPARE_FROZEN:
5942 rq->calc_load_update = calc_load_update;
5943 break;
5945 case CPU_ONLINE:
5946 case CPU_ONLINE_FROZEN:
5947 /* Update our root-domain */
5948 raw_spin_lock_irqsave(&rq->lock, flags);
5949 if (rq->rd) {
5950 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5952 set_rq_online(rq);
5954 raw_spin_unlock_irqrestore(&rq->lock, flags);
5955 break;
5957 #ifdef CONFIG_HOTPLUG_CPU
5958 case CPU_DEAD:
5959 case CPU_DEAD_FROZEN:
5960 migrate_live_tasks(cpu);
5961 /* Idle task back to normal (off runqueue, low prio) */
5962 raw_spin_lock_irq(&rq->lock);
5963 deactivate_task(rq, rq->idle, 0);
5964 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5965 rq->idle->sched_class = &idle_sched_class;
5966 migrate_dead_tasks(cpu);
5967 raw_spin_unlock_irq(&rq->lock);
5968 migrate_nr_uninterruptible(rq);
5969 BUG_ON(rq->nr_running != 0);
5970 calc_global_load_remove(rq);
5971 break;
5973 case CPU_DYING:
5974 case CPU_DYING_FROZEN:
5975 /* Update our root-domain */
5976 raw_spin_lock_irqsave(&rq->lock, flags);
5977 if (rq->rd) {
5978 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5979 set_rq_offline(rq);
5981 raw_spin_unlock_irqrestore(&rq->lock, flags);
5982 break;
5983 #endif
5985 return NOTIFY_OK;
5989 * Register at high priority so that task migration (migrate_all_tasks)
5990 * happens before everything else. This has to be lower priority than
5991 * the notifier in the perf_event subsystem, though.
5993 static struct notifier_block __cpuinitdata migration_notifier = {
5994 .notifier_call = migration_call,
5995 .priority = CPU_PRI_MIGRATION,
5998 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5999 unsigned long action, void *hcpu)
6001 switch (action & ~CPU_TASKS_FROZEN) {
6002 case CPU_ONLINE:
6003 case CPU_DOWN_FAILED:
6004 set_cpu_active((long)hcpu, true);
6005 return NOTIFY_OK;
6006 default:
6007 return NOTIFY_DONE;
6011 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6012 unsigned long action, void *hcpu)
6014 switch (action & ~CPU_TASKS_FROZEN) {
6015 case CPU_DOWN_PREPARE:
6016 set_cpu_active((long)hcpu, false);
6017 return NOTIFY_OK;
6018 default:
6019 return NOTIFY_DONE;
6023 static int __init migration_init(void)
6025 void *cpu = (void *)(long)smp_processor_id();
6026 int err;
6028 /* Initialize migration for the boot CPU */
6029 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6030 BUG_ON(err == NOTIFY_BAD);
6031 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6032 register_cpu_notifier(&migration_notifier);
6034 /* Register cpu active notifiers */
6035 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6036 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6038 return 0;
6040 early_initcall(migration_init);
6041 #endif
6043 #ifdef CONFIG_SMP
6045 #ifdef CONFIG_SCHED_DEBUG
6047 static __read_mostly int sched_domain_debug_enabled;
6049 static int __init sched_domain_debug_setup(char *str)
6051 sched_domain_debug_enabled = 1;
6053 return 0;
6055 early_param("sched_debug", sched_domain_debug_setup);
6057 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6058 struct cpumask *groupmask)
6060 struct sched_group *group = sd->groups;
6061 char str[256];
6063 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6064 cpumask_clear(groupmask);
6066 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6068 if (!(sd->flags & SD_LOAD_BALANCE)) {
6069 printk("does not load-balance\n");
6070 if (sd->parent)
6071 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6072 " has parent");
6073 return -1;
6076 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6078 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6079 printk(KERN_ERR "ERROR: domain->span does not contain "
6080 "CPU%d\n", cpu);
6082 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6083 printk(KERN_ERR "ERROR: domain->groups does not contain"
6084 " CPU%d\n", cpu);
6087 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6088 do {
6089 if (!group) {
6090 printk("\n");
6091 printk(KERN_ERR "ERROR: group is NULL\n");
6092 break;
6095 if (!group->cpu_power) {
6096 printk(KERN_CONT "\n");
6097 printk(KERN_ERR "ERROR: domain->cpu_power not "
6098 "set\n");
6099 break;
6102 if (!cpumask_weight(sched_group_cpus(group))) {
6103 printk(KERN_CONT "\n");
6104 printk(KERN_ERR "ERROR: empty group\n");
6105 break;
6108 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6109 printk(KERN_CONT "\n");
6110 printk(KERN_ERR "ERROR: repeated CPUs\n");
6111 break;
6114 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6116 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6118 printk(KERN_CONT " %s", str);
6119 if (group->cpu_power != SCHED_LOAD_SCALE) {
6120 printk(KERN_CONT " (cpu_power = %d)",
6121 group->cpu_power);
6124 group = group->next;
6125 } while (group != sd->groups);
6126 printk(KERN_CONT "\n");
6128 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6129 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6131 if (sd->parent &&
6132 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6133 printk(KERN_ERR "ERROR: parent span is not a superset "
6134 "of domain->span\n");
6135 return 0;
6138 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6140 cpumask_var_t groupmask;
6141 int level = 0;
6143 if (!sched_domain_debug_enabled)
6144 return;
6146 if (!sd) {
6147 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6148 return;
6151 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6153 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6154 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6155 return;
6158 for (;;) {
6159 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6160 break;
6161 level++;
6162 sd = sd->parent;
6163 if (!sd)
6164 break;
6166 free_cpumask_var(groupmask);
6168 #else /* !CONFIG_SCHED_DEBUG */
6169 # define sched_domain_debug(sd, cpu) do { } while (0)
6170 #endif /* CONFIG_SCHED_DEBUG */
6172 static int sd_degenerate(struct sched_domain *sd)
6174 if (cpumask_weight(sched_domain_span(sd)) == 1)
6175 return 1;
6177 /* Following flags need at least 2 groups */
6178 if (sd->flags & (SD_LOAD_BALANCE |
6179 SD_BALANCE_NEWIDLE |
6180 SD_BALANCE_FORK |
6181 SD_BALANCE_EXEC |
6182 SD_SHARE_CPUPOWER |
6183 SD_SHARE_PKG_RESOURCES)) {
6184 if (sd->groups != sd->groups->next)
6185 return 0;
6188 /* Following flags don't use groups */
6189 if (sd->flags & (SD_WAKE_AFFINE))
6190 return 0;
6192 return 1;
6195 static int
6196 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6198 unsigned long cflags = sd->flags, pflags = parent->flags;
6200 if (sd_degenerate(parent))
6201 return 1;
6203 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6204 return 0;
6206 /* Flags needing groups don't count if only 1 group in parent */
6207 if (parent->groups == parent->groups->next) {
6208 pflags &= ~(SD_LOAD_BALANCE |
6209 SD_BALANCE_NEWIDLE |
6210 SD_BALANCE_FORK |
6211 SD_BALANCE_EXEC |
6212 SD_SHARE_CPUPOWER |
6213 SD_SHARE_PKG_RESOURCES);
6214 if (nr_node_ids == 1)
6215 pflags &= ~SD_SERIALIZE;
6217 if (~cflags & pflags)
6218 return 0;
6220 return 1;
6223 static void free_rootdomain(struct root_domain *rd)
6225 synchronize_sched();
6227 cpupri_cleanup(&rd->cpupri);
6229 free_cpumask_var(rd->rto_mask);
6230 free_cpumask_var(rd->online);
6231 free_cpumask_var(rd->span);
6232 kfree(rd);
6235 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6237 struct root_domain *old_rd = NULL;
6238 unsigned long flags;
6240 raw_spin_lock_irqsave(&rq->lock, flags);
6242 if (rq->rd) {
6243 old_rd = rq->rd;
6245 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6246 set_rq_offline(rq);
6248 cpumask_clear_cpu(rq->cpu, old_rd->span);
6251 * If we dont want to free the old_rt yet then
6252 * set old_rd to NULL to skip the freeing later
6253 * in this function:
6255 if (!atomic_dec_and_test(&old_rd->refcount))
6256 old_rd = NULL;
6259 atomic_inc(&rd->refcount);
6260 rq->rd = rd;
6262 cpumask_set_cpu(rq->cpu, rd->span);
6263 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6264 set_rq_online(rq);
6266 raw_spin_unlock_irqrestore(&rq->lock, flags);
6268 if (old_rd)
6269 free_rootdomain(old_rd);
6272 static int init_rootdomain(struct root_domain *rd)
6274 memset(rd, 0, sizeof(*rd));
6276 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6277 goto out;
6278 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6279 goto free_span;
6280 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6281 goto free_online;
6283 if (cpupri_init(&rd->cpupri) != 0)
6284 goto free_rto_mask;
6285 return 0;
6287 free_rto_mask:
6288 free_cpumask_var(rd->rto_mask);
6289 free_online:
6290 free_cpumask_var(rd->online);
6291 free_span:
6292 free_cpumask_var(rd->span);
6293 out:
6294 return -ENOMEM;
6297 static void init_defrootdomain(void)
6299 init_rootdomain(&def_root_domain);
6301 atomic_set(&def_root_domain.refcount, 1);
6304 static struct root_domain *alloc_rootdomain(void)
6306 struct root_domain *rd;
6308 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6309 if (!rd)
6310 return NULL;
6312 if (init_rootdomain(rd) != 0) {
6313 kfree(rd);
6314 return NULL;
6317 return rd;
6321 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6322 * hold the hotplug lock.
6324 static void
6325 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6327 struct rq *rq = cpu_rq(cpu);
6328 struct sched_domain *tmp;
6330 for (tmp = sd; tmp; tmp = tmp->parent)
6331 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6333 /* Remove the sched domains which do not contribute to scheduling. */
6334 for (tmp = sd; tmp; ) {
6335 struct sched_domain *parent = tmp->parent;
6336 if (!parent)
6337 break;
6339 if (sd_parent_degenerate(tmp, parent)) {
6340 tmp->parent = parent->parent;
6341 if (parent->parent)
6342 parent->parent->child = tmp;
6343 } else
6344 tmp = tmp->parent;
6347 if (sd && sd_degenerate(sd)) {
6348 sd = sd->parent;
6349 if (sd)
6350 sd->child = NULL;
6353 sched_domain_debug(sd, cpu);
6355 rq_attach_root(rq, rd);
6356 rcu_assign_pointer(rq->sd, sd);
6359 /* cpus with isolated domains */
6360 static cpumask_var_t cpu_isolated_map;
6362 /* Setup the mask of cpus configured for isolated domains */
6363 static int __init isolated_cpu_setup(char *str)
6365 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6366 cpulist_parse(str, cpu_isolated_map);
6367 return 1;
6370 __setup("isolcpus=", isolated_cpu_setup);
6373 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6374 * to a function which identifies what group(along with sched group) a CPU
6375 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6376 * (due to the fact that we keep track of groups covered with a struct cpumask).
6378 * init_sched_build_groups will build a circular linked list of the groups
6379 * covered by the given span, and will set each group's ->cpumask correctly,
6380 * and ->cpu_power to 0.
6382 static void
6383 init_sched_build_groups(const struct cpumask *span,
6384 const struct cpumask *cpu_map,
6385 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6386 struct sched_group **sg,
6387 struct cpumask *tmpmask),
6388 struct cpumask *covered, struct cpumask *tmpmask)
6390 struct sched_group *first = NULL, *last = NULL;
6391 int i;
6393 cpumask_clear(covered);
6395 for_each_cpu(i, span) {
6396 struct sched_group *sg;
6397 int group = group_fn(i, cpu_map, &sg, tmpmask);
6398 int j;
6400 if (cpumask_test_cpu(i, covered))
6401 continue;
6403 cpumask_clear(sched_group_cpus(sg));
6404 sg->cpu_power = 0;
6406 for_each_cpu(j, span) {
6407 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6408 continue;
6410 cpumask_set_cpu(j, covered);
6411 cpumask_set_cpu(j, sched_group_cpus(sg));
6413 if (!first)
6414 first = sg;
6415 if (last)
6416 last->next = sg;
6417 last = sg;
6419 last->next = first;
6422 #define SD_NODES_PER_DOMAIN 16
6424 #ifdef CONFIG_NUMA
6427 * find_next_best_node - find the next node to include in a sched_domain
6428 * @node: node whose sched_domain we're building
6429 * @used_nodes: nodes already in the sched_domain
6431 * Find the next node to include in a given scheduling domain. Simply
6432 * finds the closest node not already in the @used_nodes map.
6434 * Should use nodemask_t.
6436 static int find_next_best_node(int node, nodemask_t *used_nodes)
6438 int i, n, val, min_val, best_node = 0;
6440 min_val = INT_MAX;
6442 for (i = 0; i < nr_node_ids; i++) {
6443 /* Start at @node */
6444 n = (node + i) % nr_node_ids;
6446 if (!nr_cpus_node(n))
6447 continue;
6449 /* Skip already used nodes */
6450 if (node_isset(n, *used_nodes))
6451 continue;
6453 /* Simple min distance search */
6454 val = node_distance(node, n);
6456 if (val < min_val) {
6457 min_val = val;
6458 best_node = n;
6462 node_set(best_node, *used_nodes);
6463 return best_node;
6467 * sched_domain_node_span - get a cpumask for a node's sched_domain
6468 * @node: node whose cpumask we're constructing
6469 * @span: resulting cpumask
6471 * Given a node, construct a good cpumask for its sched_domain to span. It
6472 * should be one that prevents unnecessary balancing, but also spreads tasks
6473 * out optimally.
6475 static void sched_domain_node_span(int node, struct cpumask *span)
6477 nodemask_t used_nodes;
6478 int i;
6480 cpumask_clear(span);
6481 nodes_clear(used_nodes);
6483 cpumask_or(span, span, cpumask_of_node(node));
6484 node_set(node, used_nodes);
6486 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6487 int next_node = find_next_best_node(node, &used_nodes);
6489 cpumask_or(span, span, cpumask_of_node(next_node));
6492 #endif /* CONFIG_NUMA */
6494 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6497 * The cpus mask in sched_group and sched_domain hangs off the end.
6499 * ( See the the comments in include/linux/sched.h:struct sched_group
6500 * and struct sched_domain. )
6502 struct static_sched_group {
6503 struct sched_group sg;
6504 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6507 struct static_sched_domain {
6508 struct sched_domain sd;
6509 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6512 struct s_data {
6513 #ifdef CONFIG_NUMA
6514 int sd_allnodes;
6515 cpumask_var_t domainspan;
6516 cpumask_var_t covered;
6517 cpumask_var_t notcovered;
6518 #endif
6519 cpumask_var_t nodemask;
6520 cpumask_var_t this_sibling_map;
6521 cpumask_var_t this_core_map;
6522 cpumask_var_t send_covered;
6523 cpumask_var_t tmpmask;
6524 struct sched_group **sched_group_nodes;
6525 struct root_domain *rd;
6528 enum s_alloc {
6529 sa_sched_groups = 0,
6530 sa_rootdomain,
6531 sa_tmpmask,
6532 sa_send_covered,
6533 sa_this_core_map,
6534 sa_this_sibling_map,
6535 sa_nodemask,
6536 sa_sched_group_nodes,
6537 #ifdef CONFIG_NUMA
6538 sa_notcovered,
6539 sa_covered,
6540 sa_domainspan,
6541 #endif
6542 sa_none,
6546 * SMT sched-domains:
6548 #ifdef CONFIG_SCHED_SMT
6549 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6550 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6552 static int
6553 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6554 struct sched_group **sg, struct cpumask *unused)
6556 if (sg)
6557 *sg = &per_cpu(sched_groups, cpu).sg;
6558 return cpu;
6560 #endif /* CONFIG_SCHED_SMT */
6563 * multi-core sched-domains:
6565 #ifdef CONFIG_SCHED_MC
6566 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6567 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6568 #endif /* CONFIG_SCHED_MC */
6570 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6571 static int
6572 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6573 struct sched_group **sg, struct cpumask *mask)
6575 int group;
6577 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6578 group = cpumask_first(mask);
6579 if (sg)
6580 *sg = &per_cpu(sched_group_core, group).sg;
6581 return group;
6583 #elif defined(CONFIG_SCHED_MC)
6584 static int
6585 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6586 struct sched_group **sg, struct cpumask *unused)
6588 if (sg)
6589 *sg = &per_cpu(sched_group_core, cpu).sg;
6590 return cpu;
6592 #endif
6594 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6595 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6597 static int
6598 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6599 struct sched_group **sg, struct cpumask *mask)
6601 int group;
6602 #ifdef CONFIG_SCHED_MC
6603 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6604 group = cpumask_first(mask);
6605 #elif defined(CONFIG_SCHED_SMT)
6606 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6607 group = cpumask_first(mask);
6608 #else
6609 group = cpu;
6610 #endif
6611 if (sg)
6612 *sg = &per_cpu(sched_group_phys, group).sg;
6613 return group;
6616 #ifdef CONFIG_NUMA
6618 * The init_sched_build_groups can't handle what we want to do with node
6619 * groups, so roll our own. Now each node has its own list of groups which
6620 * gets dynamically allocated.
6622 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6623 static struct sched_group ***sched_group_nodes_bycpu;
6625 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6626 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6628 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6629 struct sched_group **sg,
6630 struct cpumask *nodemask)
6632 int group;
6634 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6635 group = cpumask_first(nodemask);
6637 if (sg)
6638 *sg = &per_cpu(sched_group_allnodes, group).sg;
6639 return group;
6642 static void init_numa_sched_groups_power(struct sched_group *group_head)
6644 struct sched_group *sg = group_head;
6645 int j;
6647 if (!sg)
6648 return;
6649 do {
6650 for_each_cpu(j, sched_group_cpus(sg)) {
6651 struct sched_domain *sd;
6653 sd = &per_cpu(phys_domains, j).sd;
6654 if (j != group_first_cpu(sd->groups)) {
6656 * Only add "power" once for each
6657 * physical package.
6659 continue;
6662 sg->cpu_power += sd->groups->cpu_power;
6664 sg = sg->next;
6665 } while (sg != group_head);
6668 static int build_numa_sched_groups(struct s_data *d,
6669 const struct cpumask *cpu_map, int num)
6671 struct sched_domain *sd;
6672 struct sched_group *sg, *prev;
6673 int n, j;
6675 cpumask_clear(d->covered);
6676 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6677 if (cpumask_empty(d->nodemask)) {
6678 d->sched_group_nodes[num] = NULL;
6679 goto out;
6682 sched_domain_node_span(num, d->domainspan);
6683 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6685 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6686 GFP_KERNEL, num);
6687 if (!sg) {
6688 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6689 num);
6690 return -ENOMEM;
6692 d->sched_group_nodes[num] = sg;
6694 for_each_cpu(j, d->nodemask) {
6695 sd = &per_cpu(node_domains, j).sd;
6696 sd->groups = sg;
6699 sg->cpu_power = 0;
6700 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6701 sg->next = sg;
6702 cpumask_or(d->covered, d->covered, d->nodemask);
6704 prev = sg;
6705 for (j = 0; j < nr_node_ids; j++) {
6706 n = (num + j) % nr_node_ids;
6707 cpumask_complement(d->notcovered, d->covered);
6708 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6709 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6710 if (cpumask_empty(d->tmpmask))
6711 break;
6712 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6713 if (cpumask_empty(d->tmpmask))
6714 continue;
6715 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6716 GFP_KERNEL, num);
6717 if (!sg) {
6718 printk(KERN_WARNING
6719 "Can not alloc domain group for node %d\n", j);
6720 return -ENOMEM;
6722 sg->cpu_power = 0;
6723 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6724 sg->next = prev->next;
6725 cpumask_or(d->covered, d->covered, d->tmpmask);
6726 prev->next = sg;
6727 prev = sg;
6729 out:
6730 return 0;
6732 #endif /* CONFIG_NUMA */
6734 #ifdef CONFIG_NUMA
6735 /* Free memory allocated for various sched_group structures */
6736 static void free_sched_groups(const struct cpumask *cpu_map,
6737 struct cpumask *nodemask)
6739 int cpu, i;
6741 for_each_cpu(cpu, cpu_map) {
6742 struct sched_group **sched_group_nodes
6743 = sched_group_nodes_bycpu[cpu];
6745 if (!sched_group_nodes)
6746 continue;
6748 for (i = 0; i < nr_node_ids; i++) {
6749 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6751 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6752 if (cpumask_empty(nodemask))
6753 continue;
6755 if (sg == NULL)
6756 continue;
6757 sg = sg->next;
6758 next_sg:
6759 oldsg = sg;
6760 sg = sg->next;
6761 kfree(oldsg);
6762 if (oldsg != sched_group_nodes[i])
6763 goto next_sg;
6765 kfree(sched_group_nodes);
6766 sched_group_nodes_bycpu[cpu] = NULL;
6769 #else /* !CONFIG_NUMA */
6770 static void free_sched_groups(const struct cpumask *cpu_map,
6771 struct cpumask *nodemask)
6774 #endif /* CONFIG_NUMA */
6777 * Initialize sched groups cpu_power.
6779 * cpu_power indicates the capacity of sched group, which is used while
6780 * distributing the load between different sched groups in a sched domain.
6781 * Typically cpu_power for all the groups in a sched domain will be same unless
6782 * there are asymmetries in the topology. If there are asymmetries, group
6783 * having more cpu_power will pickup more load compared to the group having
6784 * less cpu_power.
6786 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6788 struct sched_domain *child;
6789 struct sched_group *group;
6790 long power;
6791 int weight;
6793 WARN_ON(!sd || !sd->groups);
6795 if (cpu != group_first_cpu(sd->groups))
6796 return;
6798 child = sd->child;
6800 sd->groups->cpu_power = 0;
6802 if (!child) {
6803 power = SCHED_LOAD_SCALE;
6804 weight = cpumask_weight(sched_domain_span(sd));
6806 * SMT siblings share the power of a single core.
6807 * Usually multiple threads get a better yield out of
6808 * that one core than a single thread would have,
6809 * reflect that in sd->smt_gain.
6811 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6812 power *= sd->smt_gain;
6813 power /= weight;
6814 power >>= SCHED_LOAD_SHIFT;
6816 sd->groups->cpu_power += power;
6817 return;
6821 * Add cpu_power of each child group to this groups cpu_power.
6823 group = child->groups;
6824 do {
6825 sd->groups->cpu_power += group->cpu_power;
6826 group = group->next;
6827 } while (group != child->groups);
6831 * Initializers for schedule domains
6832 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6835 #ifdef CONFIG_SCHED_DEBUG
6836 # define SD_INIT_NAME(sd, type) sd->name = #type
6837 #else
6838 # define SD_INIT_NAME(sd, type) do { } while (0)
6839 #endif
6841 #define SD_INIT(sd, type) sd_init_##type(sd)
6843 #define SD_INIT_FUNC(type) \
6844 static noinline void sd_init_##type(struct sched_domain *sd) \
6846 memset(sd, 0, sizeof(*sd)); \
6847 *sd = SD_##type##_INIT; \
6848 sd->level = SD_LV_##type; \
6849 SD_INIT_NAME(sd, type); \
6852 SD_INIT_FUNC(CPU)
6853 #ifdef CONFIG_NUMA
6854 SD_INIT_FUNC(ALLNODES)
6855 SD_INIT_FUNC(NODE)
6856 #endif
6857 #ifdef CONFIG_SCHED_SMT
6858 SD_INIT_FUNC(SIBLING)
6859 #endif
6860 #ifdef CONFIG_SCHED_MC
6861 SD_INIT_FUNC(MC)
6862 #endif
6864 static int default_relax_domain_level = -1;
6866 static int __init setup_relax_domain_level(char *str)
6868 unsigned long val;
6870 val = simple_strtoul(str, NULL, 0);
6871 if (val < SD_LV_MAX)
6872 default_relax_domain_level = val;
6874 return 1;
6876 __setup("relax_domain_level=", setup_relax_domain_level);
6878 static void set_domain_attribute(struct sched_domain *sd,
6879 struct sched_domain_attr *attr)
6881 int request;
6883 if (!attr || attr->relax_domain_level < 0) {
6884 if (default_relax_domain_level < 0)
6885 return;
6886 else
6887 request = default_relax_domain_level;
6888 } else
6889 request = attr->relax_domain_level;
6890 if (request < sd->level) {
6891 /* turn off idle balance on this domain */
6892 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6893 } else {
6894 /* turn on idle balance on this domain */
6895 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6899 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6900 const struct cpumask *cpu_map)
6902 switch (what) {
6903 case sa_sched_groups:
6904 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6905 d->sched_group_nodes = NULL;
6906 case sa_rootdomain:
6907 free_rootdomain(d->rd); /* fall through */
6908 case sa_tmpmask:
6909 free_cpumask_var(d->tmpmask); /* fall through */
6910 case sa_send_covered:
6911 free_cpumask_var(d->send_covered); /* fall through */
6912 case sa_this_core_map:
6913 free_cpumask_var(d->this_core_map); /* fall through */
6914 case sa_this_sibling_map:
6915 free_cpumask_var(d->this_sibling_map); /* fall through */
6916 case sa_nodemask:
6917 free_cpumask_var(d->nodemask); /* fall through */
6918 case sa_sched_group_nodes:
6919 #ifdef CONFIG_NUMA
6920 kfree(d->sched_group_nodes); /* fall through */
6921 case sa_notcovered:
6922 free_cpumask_var(d->notcovered); /* fall through */
6923 case sa_covered:
6924 free_cpumask_var(d->covered); /* fall through */
6925 case sa_domainspan:
6926 free_cpumask_var(d->domainspan); /* fall through */
6927 #endif
6928 case sa_none:
6929 break;
6933 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6934 const struct cpumask *cpu_map)
6936 #ifdef CONFIG_NUMA
6937 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6938 return sa_none;
6939 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6940 return sa_domainspan;
6941 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6942 return sa_covered;
6943 /* Allocate the per-node list of sched groups */
6944 d->sched_group_nodes = kcalloc(nr_node_ids,
6945 sizeof(struct sched_group *), GFP_KERNEL);
6946 if (!d->sched_group_nodes) {
6947 printk(KERN_WARNING "Can not alloc sched group node list\n");
6948 return sa_notcovered;
6950 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6951 #endif
6952 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6953 return sa_sched_group_nodes;
6954 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6955 return sa_nodemask;
6956 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6957 return sa_this_sibling_map;
6958 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6959 return sa_this_core_map;
6960 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6961 return sa_send_covered;
6962 d->rd = alloc_rootdomain();
6963 if (!d->rd) {
6964 printk(KERN_WARNING "Cannot alloc root domain\n");
6965 return sa_tmpmask;
6967 return sa_rootdomain;
6970 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6971 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6973 struct sched_domain *sd = NULL;
6974 #ifdef CONFIG_NUMA
6975 struct sched_domain *parent;
6977 d->sd_allnodes = 0;
6978 if (cpumask_weight(cpu_map) >
6979 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6980 sd = &per_cpu(allnodes_domains, i).sd;
6981 SD_INIT(sd, ALLNODES);
6982 set_domain_attribute(sd, attr);
6983 cpumask_copy(sched_domain_span(sd), cpu_map);
6984 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6985 d->sd_allnodes = 1;
6987 parent = sd;
6989 sd = &per_cpu(node_domains, i).sd;
6990 SD_INIT(sd, NODE);
6991 set_domain_attribute(sd, attr);
6992 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6993 sd->parent = parent;
6994 if (parent)
6995 parent->child = sd;
6996 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6997 #endif
6998 return sd;
7001 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7002 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7003 struct sched_domain *parent, int i)
7005 struct sched_domain *sd;
7006 sd = &per_cpu(phys_domains, i).sd;
7007 SD_INIT(sd, CPU);
7008 set_domain_attribute(sd, attr);
7009 cpumask_copy(sched_domain_span(sd), d->nodemask);
7010 sd->parent = parent;
7011 if (parent)
7012 parent->child = sd;
7013 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7014 return sd;
7017 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7018 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7019 struct sched_domain *parent, int i)
7021 struct sched_domain *sd = parent;
7022 #ifdef CONFIG_SCHED_MC
7023 sd = &per_cpu(core_domains, i).sd;
7024 SD_INIT(sd, MC);
7025 set_domain_attribute(sd, attr);
7026 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7027 sd->parent = parent;
7028 parent->child = sd;
7029 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7030 #endif
7031 return sd;
7034 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7035 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7036 struct sched_domain *parent, int i)
7038 struct sched_domain *sd = parent;
7039 #ifdef CONFIG_SCHED_SMT
7040 sd = &per_cpu(cpu_domains, i).sd;
7041 SD_INIT(sd, SIBLING);
7042 set_domain_attribute(sd, attr);
7043 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7044 sd->parent = parent;
7045 parent->child = sd;
7046 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7047 #endif
7048 return sd;
7051 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7052 const struct cpumask *cpu_map, int cpu)
7054 switch (l) {
7055 #ifdef CONFIG_SCHED_SMT
7056 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7057 cpumask_and(d->this_sibling_map, cpu_map,
7058 topology_thread_cpumask(cpu));
7059 if (cpu == cpumask_first(d->this_sibling_map))
7060 init_sched_build_groups(d->this_sibling_map, cpu_map,
7061 &cpu_to_cpu_group,
7062 d->send_covered, d->tmpmask);
7063 break;
7064 #endif
7065 #ifdef CONFIG_SCHED_MC
7066 case SD_LV_MC: /* set up multi-core groups */
7067 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7068 if (cpu == cpumask_first(d->this_core_map))
7069 init_sched_build_groups(d->this_core_map, cpu_map,
7070 &cpu_to_core_group,
7071 d->send_covered, d->tmpmask);
7072 break;
7073 #endif
7074 case SD_LV_CPU: /* set up physical groups */
7075 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7076 if (!cpumask_empty(d->nodemask))
7077 init_sched_build_groups(d->nodemask, cpu_map,
7078 &cpu_to_phys_group,
7079 d->send_covered, d->tmpmask);
7080 break;
7081 #ifdef CONFIG_NUMA
7082 case SD_LV_ALLNODES:
7083 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7084 d->send_covered, d->tmpmask);
7085 break;
7086 #endif
7087 default:
7088 break;
7093 * Build sched domains for a given set of cpus and attach the sched domains
7094 * to the individual cpus
7096 static int __build_sched_domains(const struct cpumask *cpu_map,
7097 struct sched_domain_attr *attr)
7099 enum s_alloc alloc_state = sa_none;
7100 struct s_data d;
7101 struct sched_domain *sd;
7102 int i;
7103 #ifdef CONFIG_NUMA
7104 d.sd_allnodes = 0;
7105 #endif
7107 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7108 if (alloc_state != sa_rootdomain)
7109 goto error;
7110 alloc_state = sa_sched_groups;
7113 * Set up domains for cpus specified by the cpu_map.
7115 for_each_cpu(i, cpu_map) {
7116 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7117 cpu_map);
7119 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7120 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7121 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7122 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7125 for_each_cpu(i, cpu_map) {
7126 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7127 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7130 /* Set up physical groups */
7131 for (i = 0; i < nr_node_ids; i++)
7132 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7134 #ifdef CONFIG_NUMA
7135 /* Set up node groups */
7136 if (d.sd_allnodes)
7137 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7139 for (i = 0; i < nr_node_ids; i++)
7140 if (build_numa_sched_groups(&d, cpu_map, i))
7141 goto error;
7142 #endif
7144 /* Calculate CPU power for physical packages and nodes */
7145 #ifdef CONFIG_SCHED_SMT
7146 for_each_cpu(i, cpu_map) {
7147 sd = &per_cpu(cpu_domains, i).sd;
7148 init_sched_groups_power(i, sd);
7150 #endif
7151 #ifdef CONFIG_SCHED_MC
7152 for_each_cpu(i, cpu_map) {
7153 sd = &per_cpu(core_domains, i).sd;
7154 init_sched_groups_power(i, sd);
7156 #endif
7158 for_each_cpu(i, cpu_map) {
7159 sd = &per_cpu(phys_domains, i).sd;
7160 init_sched_groups_power(i, sd);
7163 #ifdef CONFIG_NUMA
7164 for (i = 0; i < nr_node_ids; i++)
7165 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7167 if (d.sd_allnodes) {
7168 struct sched_group *sg;
7170 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7171 d.tmpmask);
7172 init_numa_sched_groups_power(sg);
7174 #endif
7176 /* Attach the domains */
7177 for_each_cpu(i, cpu_map) {
7178 #ifdef CONFIG_SCHED_SMT
7179 sd = &per_cpu(cpu_domains, i).sd;
7180 #elif defined(CONFIG_SCHED_MC)
7181 sd = &per_cpu(core_domains, i).sd;
7182 #else
7183 sd = &per_cpu(phys_domains, i).sd;
7184 #endif
7185 cpu_attach_domain(sd, d.rd, i);
7188 d.sched_group_nodes = NULL; /* don't free this we still need it */
7189 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7190 return 0;
7192 error:
7193 __free_domain_allocs(&d, alloc_state, cpu_map);
7194 return -ENOMEM;
7197 static int build_sched_domains(const struct cpumask *cpu_map)
7199 return __build_sched_domains(cpu_map, NULL);
7202 static cpumask_var_t *doms_cur; /* current sched domains */
7203 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7204 static struct sched_domain_attr *dattr_cur;
7205 /* attribues of custom domains in 'doms_cur' */
7208 * Special case: If a kmalloc of a doms_cur partition (array of
7209 * cpumask) fails, then fallback to a single sched domain,
7210 * as determined by the single cpumask fallback_doms.
7212 static cpumask_var_t fallback_doms;
7215 * arch_update_cpu_topology lets virtualized architectures update the
7216 * cpu core maps. It is supposed to return 1 if the topology changed
7217 * or 0 if it stayed the same.
7219 int __attribute__((weak)) arch_update_cpu_topology(void)
7221 return 0;
7224 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7226 int i;
7227 cpumask_var_t *doms;
7229 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7230 if (!doms)
7231 return NULL;
7232 for (i = 0; i < ndoms; i++) {
7233 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7234 free_sched_domains(doms, i);
7235 return NULL;
7238 return doms;
7241 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7243 unsigned int i;
7244 for (i = 0; i < ndoms; i++)
7245 free_cpumask_var(doms[i]);
7246 kfree(doms);
7250 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7251 * For now this just excludes isolated cpus, but could be used to
7252 * exclude other special cases in the future.
7254 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7256 int err;
7258 arch_update_cpu_topology();
7259 ndoms_cur = 1;
7260 doms_cur = alloc_sched_domains(ndoms_cur);
7261 if (!doms_cur)
7262 doms_cur = &fallback_doms;
7263 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7264 dattr_cur = NULL;
7265 err = build_sched_domains(doms_cur[0]);
7266 register_sched_domain_sysctl();
7268 return err;
7271 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7272 struct cpumask *tmpmask)
7274 free_sched_groups(cpu_map, tmpmask);
7278 * Detach sched domains from a group of cpus specified in cpu_map
7279 * These cpus will now be attached to the NULL domain
7281 static void detach_destroy_domains(const struct cpumask *cpu_map)
7283 /* Save because hotplug lock held. */
7284 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7285 int i;
7287 for_each_cpu(i, cpu_map)
7288 cpu_attach_domain(NULL, &def_root_domain, i);
7289 synchronize_sched();
7290 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7293 /* handle null as "default" */
7294 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7295 struct sched_domain_attr *new, int idx_new)
7297 struct sched_domain_attr tmp;
7299 /* fast path */
7300 if (!new && !cur)
7301 return 1;
7303 tmp = SD_ATTR_INIT;
7304 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7305 new ? (new + idx_new) : &tmp,
7306 sizeof(struct sched_domain_attr));
7310 * Partition sched domains as specified by the 'ndoms_new'
7311 * cpumasks in the array doms_new[] of cpumasks. This compares
7312 * doms_new[] to the current sched domain partitioning, doms_cur[].
7313 * It destroys each deleted domain and builds each new domain.
7315 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7316 * The masks don't intersect (don't overlap.) We should setup one
7317 * sched domain for each mask. CPUs not in any of the cpumasks will
7318 * not be load balanced. If the same cpumask appears both in the
7319 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7320 * it as it is.
7322 * The passed in 'doms_new' should be allocated using
7323 * alloc_sched_domains. This routine takes ownership of it and will
7324 * free_sched_domains it when done with it. If the caller failed the
7325 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7326 * and partition_sched_domains() will fallback to the single partition
7327 * 'fallback_doms', it also forces the domains to be rebuilt.
7329 * If doms_new == NULL it will be replaced with cpu_online_mask.
7330 * ndoms_new == 0 is a special case for destroying existing domains,
7331 * and it will not create the default domain.
7333 * Call with hotplug lock held
7335 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7336 struct sched_domain_attr *dattr_new)
7338 int i, j, n;
7339 int new_topology;
7341 mutex_lock(&sched_domains_mutex);
7343 /* always unregister in case we don't destroy any domains */
7344 unregister_sched_domain_sysctl();
7346 /* Let architecture update cpu core mappings. */
7347 new_topology = arch_update_cpu_topology();
7349 n = doms_new ? ndoms_new : 0;
7351 /* Destroy deleted domains */
7352 for (i = 0; i < ndoms_cur; i++) {
7353 for (j = 0; j < n && !new_topology; j++) {
7354 if (cpumask_equal(doms_cur[i], doms_new[j])
7355 && dattrs_equal(dattr_cur, i, dattr_new, j))
7356 goto match1;
7358 /* no match - a current sched domain not in new doms_new[] */
7359 detach_destroy_domains(doms_cur[i]);
7360 match1:
7364 if (doms_new == NULL) {
7365 ndoms_cur = 0;
7366 doms_new = &fallback_doms;
7367 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7368 WARN_ON_ONCE(dattr_new);
7371 /* Build new domains */
7372 for (i = 0; i < ndoms_new; i++) {
7373 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7374 if (cpumask_equal(doms_new[i], doms_cur[j])
7375 && dattrs_equal(dattr_new, i, dattr_cur, j))
7376 goto match2;
7378 /* no match - add a new doms_new */
7379 __build_sched_domains(doms_new[i],
7380 dattr_new ? dattr_new + i : NULL);
7381 match2:
7385 /* Remember the new sched domains */
7386 if (doms_cur != &fallback_doms)
7387 free_sched_domains(doms_cur, ndoms_cur);
7388 kfree(dattr_cur); /* kfree(NULL) is safe */
7389 doms_cur = doms_new;
7390 dattr_cur = dattr_new;
7391 ndoms_cur = ndoms_new;
7393 register_sched_domain_sysctl();
7395 mutex_unlock(&sched_domains_mutex);
7398 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7399 static void arch_reinit_sched_domains(void)
7401 get_online_cpus();
7403 /* Destroy domains first to force the rebuild */
7404 partition_sched_domains(0, NULL, NULL);
7406 rebuild_sched_domains();
7407 put_online_cpus();
7410 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7412 unsigned int level = 0;
7414 if (sscanf(buf, "%u", &level) != 1)
7415 return -EINVAL;
7418 * level is always be positive so don't check for
7419 * level < POWERSAVINGS_BALANCE_NONE which is 0
7420 * What happens on 0 or 1 byte write,
7421 * need to check for count as well?
7424 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7425 return -EINVAL;
7427 if (smt)
7428 sched_smt_power_savings = level;
7429 else
7430 sched_mc_power_savings = level;
7432 arch_reinit_sched_domains();
7434 return count;
7437 #ifdef CONFIG_SCHED_MC
7438 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7439 struct sysdev_class_attribute *attr,
7440 char *page)
7442 return sprintf(page, "%u\n", sched_mc_power_savings);
7444 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7445 struct sysdev_class_attribute *attr,
7446 const char *buf, size_t count)
7448 return sched_power_savings_store(buf, count, 0);
7450 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7451 sched_mc_power_savings_show,
7452 sched_mc_power_savings_store);
7453 #endif
7455 #ifdef CONFIG_SCHED_SMT
7456 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7457 struct sysdev_class_attribute *attr,
7458 char *page)
7460 return sprintf(page, "%u\n", sched_smt_power_savings);
7462 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7463 struct sysdev_class_attribute *attr,
7464 const char *buf, size_t count)
7466 return sched_power_savings_store(buf, count, 1);
7468 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7469 sched_smt_power_savings_show,
7470 sched_smt_power_savings_store);
7471 #endif
7473 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7475 int err = 0;
7477 #ifdef CONFIG_SCHED_SMT
7478 if (smt_capable())
7479 err = sysfs_create_file(&cls->kset.kobj,
7480 &attr_sched_smt_power_savings.attr);
7481 #endif
7482 #ifdef CONFIG_SCHED_MC
7483 if (!err && mc_capable())
7484 err = sysfs_create_file(&cls->kset.kobj,
7485 &attr_sched_mc_power_savings.attr);
7486 #endif
7487 return err;
7489 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7492 * Update cpusets according to cpu_active mask. If cpusets are
7493 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7494 * around partition_sched_domains().
7496 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7497 void *hcpu)
7499 switch (action & ~CPU_TASKS_FROZEN) {
7500 case CPU_ONLINE:
7501 case CPU_DOWN_FAILED:
7502 cpuset_update_active_cpus();
7503 return NOTIFY_OK;
7504 default:
7505 return NOTIFY_DONE;
7509 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7510 void *hcpu)
7512 switch (action & ~CPU_TASKS_FROZEN) {
7513 case CPU_DOWN_PREPARE:
7514 cpuset_update_active_cpus();
7515 return NOTIFY_OK;
7516 default:
7517 return NOTIFY_DONE;
7521 static int update_runtime(struct notifier_block *nfb,
7522 unsigned long action, void *hcpu)
7524 int cpu = (int)(long)hcpu;
7526 switch (action) {
7527 case CPU_DOWN_PREPARE:
7528 case CPU_DOWN_PREPARE_FROZEN:
7529 disable_runtime(cpu_rq(cpu));
7530 return NOTIFY_OK;
7532 case CPU_DOWN_FAILED:
7533 case CPU_DOWN_FAILED_FROZEN:
7534 case CPU_ONLINE:
7535 case CPU_ONLINE_FROZEN:
7536 enable_runtime(cpu_rq(cpu));
7537 return NOTIFY_OK;
7539 default:
7540 return NOTIFY_DONE;
7544 void __init sched_init_smp(void)
7546 cpumask_var_t non_isolated_cpus;
7548 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7549 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7551 #if defined(CONFIG_NUMA)
7552 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7553 GFP_KERNEL);
7554 BUG_ON(sched_group_nodes_bycpu == NULL);
7555 #endif
7556 get_online_cpus();
7557 mutex_lock(&sched_domains_mutex);
7558 arch_init_sched_domains(cpu_active_mask);
7559 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7560 if (cpumask_empty(non_isolated_cpus))
7561 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7562 mutex_unlock(&sched_domains_mutex);
7563 put_online_cpus();
7565 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7566 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7568 /* RT runtime code needs to handle some hotplug events */
7569 hotcpu_notifier(update_runtime, 0);
7571 init_hrtick();
7573 /* Move init over to a non-isolated CPU */
7574 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7575 BUG();
7576 sched_init_granularity();
7577 free_cpumask_var(non_isolated_cpus);
7579 init_sched_rt_class();
7581 #else
7582 void __init sched_init_smp(void)
7584 sched_init_granularity();
7586 #endif /* CONFIG_SMP */
7588 const_debug unsigned int sysctl_timer_migration = 1;
7590 int in_sched_functions(unsigned long addr)
7592 return in_lock_functions(addr) ||
7593 (addr >= (unsigned long)__sched_text_start
7594 && addr < (unsigned long)__sched_text_end);
7597 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7599 cfs_rq->tasks_timeline = RB_ROOT;
7600 INIT_LIST_HEAD(&cfs_rq->tasks);
7601 #ifdef CONFIG_FAIR_GROUP_SCHED
7602 cfs_rq->rq = rq;
7603 #endif
7604 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7607 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7609 struct rt_prio_array *array;
7610 int i;
7612 array = &rt_rq->active;
7613 for (i = 0; i < MAX_RT_PRIO; i++) {
7614 INIT_LIST_HEAD(array->queue + i);
7615 __clear_bit(i, array->bitmap);
7617 /* delimiter for bitsearch: */
7618 __set_bit(MAX_RT_PRIO, array->bitmap);
7620 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7621 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7622 #ifdef CONFIG_SMP
7623 rt_rq->highest_prio.next = MAX_RT_PRIO;
7624 #endif
7625 #endif
7626 #ifdef CONFIG_SMP
7627 rt_rq->rt_nr_migratory = 0;
7628 rt_rq->overloaded = 0;
7629 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7630 #endif
7632 rt_rq->rt_time = 0;
7633 rt_rq->rt_throttled = 0;
7634 rt_rq->rt_runtime = 0;
7635 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7637 #ifdef CONFIG_RT_GROUP_SCHED
7638 rt_rq->rt_nr_boosted = 0;
7639 rt_rq->rq = rq;
7640 #endif
7643 #ifdef CONFIG_FAIR_GROUP_SCHED
7644 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7645 struct sched_entity *se, int cpu, int add,
7646 struct sched_entity *parent)
7648 struct rq *rq = cpu_rq(cpu);
7649 tg->cfs_rq[cpu] = cfs_rq;
7650 init_cfs_rq(cfs_rq, rq);
7651 cfs_rq->tg = tg;
7652 if (add)
7653 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7655 tg->se[cpu] = se;
7656 /* se could be NULL for init_task_group */
7657 if (!se)
7658 return;
7660 if (!parent)
7661 se->cfs_rq = &rq->cfs;
7662 else
7663 se->cfs_rq = parent->my_q;
7665 se->my_q = cfs_rq;
7666 se->load.weight = tg->shares;
7667 se->load.inv_weight = 0;
7668 se->parent = parent;
7670 #endif
7672 #ifdef CONFIG_RT_GROUP_SCHED
7673 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7674 struct sched_rt_entity *rt_se, int cpu, int add,
7675 struct sched_rt_entity *parent)
7677 struct rq *rq = cpu_rq(cpu);
7679 tg->rt_rq[cpu] = rt_rq;
7680 init_rt_rq(rt_rq, rq);
7681 rt_rq->tg = tg;
7682 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7683 if (add)
7684 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7686 tg->rt_se[cpu] = rt_se;
7687 if (!rt_se)
7688 return;
7690 if (!parent)
7691 rt_se->rt_rq = &rq->rt;
7692 else
7693 rt_se->rt_rq = parent->my_q;
7695 rt_se->my_q = rt_rq;
7696 rt_se->parent = parent;
7697 INIT_LIST_HEAD(&rt_se->run_list);
7699 #endif
7701 void __init sched_init(void)
7703 int i, j;
7704 unsigned long alloc_size = 0, ptr;
7706 #ifdef CONFIG_FAIR_GROUP_SCHED
7707 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7708 #endif
7709 #ifdef CONFIG_RT_GROUP_SCHED
7710 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7711 #endif
7712 #ifdef CONFIG_CPUMASK_OFFSTACK
7713 alloc_size += num_possible_cpus() * cpumask_size();
7714 #endif
7715 if (alloc_size) {
7716 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7718 #ifdef CONFIG_FAIR_GROUP_SCHED
7719 init_task_group.se = (struct sched_entity **)ptr;
7720 ptr += nr_cpu_ids * sizeof(void **);
7722 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7723 ptr += nr_cpu_ids * sizeof(void **);
7725 #endif /* CONFIG_FAIR_GROUP_SCHED */
7726 #ifdef CONFIG_RT_GROUP_SCHED
7727 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7728 ptr += nr_cpu_ids * sizeof(void **);
7730 init_task_group.rt_rq = (struct rt_rq **)ptr;
7731 ptr += nr_cpu_ids * sizeof(void **);
7733 #endif /* CONFIG_RT_GROUP_SCHED */
7734 #ifdef CONFIG_CPUMASK_OFFSTACK
7735 for_each_possible_cpu(i) {
7736 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7737 ptr += cpumask_size();
7739 #endif /* CONFIG_CPUMASK_OFFSTACK */
7742 #ifdef CONFIG_SMP
7743 init_defrootdomain();
7744 #endif
7746 init_rt_bandwidth(&def_rt_bandwidth,
7747 global_rt_period(), global_rt_runtime());
7749 #ifdef CONFIG_RT_GROUP_SCHED
7750 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7751 global_rt_period(), global_rt_runtime());
7752 #endif /* CONFIG_RT_GROUP_SCHED */
7754 #ifdef CONFIG_CGROUP_SCHED
7755 list_add(&init_task_group.list, &task_groups);
7756 INIT_LIST_HEAD(&init_task_group.children);
7758 #endif /* CONFIG_CGROUP_SCHED */
7760 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7761 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7762 __alignof__(unsigned long));
7763 #endif
7764 for_each_possible_cpu(i) {
7765 struct rq *rq;
7767 rq = cpu_rq(i);
7768 raw_spin_lock_init(&rq->lock);
7769 rq->nr_running = 0;
7770 rq->calc_load_active = 0;
7771 rq->calc_load_update = jiffies + LOAD_FREQ;
7772 init_cfs_rq(&rq->cfs, rq);
7773 init_rt_rq(&rq->rt, rq);
7774 #ifdef CONFIG_FAIR_GROUP_SCHED
7775 init_task_group.shares = init_task_group_load;
7776 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7777 #ifdef CONFIG_CGROUP_SCHED
7779 * How much cpu bandwidth does init_task_group get?
7781 * In case of task-groups formed thr' the cgroup filesystem, it
7782 * gets 100% of the cpu resources in the system. This overall
7783 * system cpu resource is divided among the tasks of
7784 * init_task_group and its child task-groups in a fair manner,
7785 * based on each entity's (task or task-group's) weight
7786 * (se->load.weight).
7788 * In other words, if init_task_group has 10 tasks of weight
7789 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7790 * then A0's share of the cpu resource is:
7792 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7794 * We achieve this by letting init_task_group's tasks sit
7795 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7797 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7798 #endif
7799 #endif /* CONFIG_FAIR_GROUP_SCHED */
7801 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7802 #ifdef CONFIG_RT_GROUP_SCHED
7803 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7804 #ifdef CONFIG_CGROUP_SCHED
7805 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7806 #endif
7807 #endif
7809 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7810 rq->cpu_load[j] = 0;
7812 rq->last_load_update_tick = jiffies;
7814 #ifdef CONFIG_SMP
7815 rq->sd = NULL;
7816 rq->rd = NULL;
7817 rq->cpu_power = SCHED_LOAD_SCALE;
7818 rq->post_schedule = 0;
7819 rq->active_balance = 0;
7820 rq->next_balance = jiffies;
7821 rq->push_cpu = 0;
7822 rq->cpu = i;
7823 rq->online = 0;
7824 rq->idle_stamp = 0;
7825 rq->avg_idle = 2*sysctl_sched_migration_cost;
7826 rq_attach_root(rq, &def_root_domain);
7827 #ifdef CONFIG_NO_HZ
7828 rq->nohz_balance_kick = 0;
7829 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7830 #endif
7831 #endif
7832 init_rq_hrtick(rq);
7833 atomic_set(&rq->nr_iowait, 0);
7836 set_load_weight(&init_task);
7838 #ifdef CONFIG_PREEMPT_NOTIFIERS
7839 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7840 #endif
7842 #ifdef CONFIG_SMP
7843 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7844 #endif
7846 #ifdef CONFIG_RT_MUTEXES
7847 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7848 #endif
7851 * The boot idle thread does lazy MMU switching as well:
7853 atomic_inc(&init_mm.mm_count);
7854 enter_lazy_tlb(&init_mm, current);
7857 * Make us the idle thread. Technically, schedule() should not be
7858 * called from this thread, however somewhere below it might be,
7859 * but because we are the idle thread, we just pick up running again
7860 * when this runqueue becomes "idle".
7862 init_idle(current, smp_processor_id());
7864 calc_load_update = jiffies + LOAD_FREQ;
7867 * During early bootup we pretend to be a normal task:
7869 current->sched_class = &fair_sched_class;
7871 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7872 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7873 #ifdef CONFIG_SMP
7874 #ifdef CONFIG_NO_HZ
7875 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7876 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
7877 atomic_set(&nohz.load_balancer, nr_cpu_ids);
7878 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
7879 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7880 #endif
7881 /* May be allocated at isolcpus cmdline parse time */
7882 if (cpu_isolated_map == NULL)
7883 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7884 #endif /* SMP */
7886 perf_event_init();
7888 scheduler_running = 1;
7891 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7892 static inline int preempt_count_equals(int preempt_offset)
7894 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7896 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7899 void __might_sleep(const char *file, int line, int preempt_offset)
7901 #ifdef in_atomic
7902 static unsigned long prev_jiffy; /* ratelimiting */
7904 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7905 system_state != SYSTEM_RUNNING || oops_in_progress)
7906 return;
7907 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7908 return;
7909 prev_jiffy = jiffies;
7911 printk(KERN_ERR
7912 "BUG: sleeping function called from invalid context at %s:%d\n",
7913 file, line);
7914 printk(KERN_ERR
7915 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7916 in_atomic(), irqs_disabled(),
7917 current->pid, current->comm);
7919 debug_show_held_locks(current);
7920 if (irqs_disabled())
7921 print_irqtrace_events(current);
7922 dump_stack();
7923 #endif
7925 EXPORT_SYMBOL(__might_sleep);
7926 #endif
7928 #ifdef CONFIG_MAGIC_SYSRQ
7929 static void normalize_task(struct rq *rq, struct task_struct *p)
7931 int on_rq;
7933 on_rq = p->se.on_rq;
7934 if (on_rq)
7935 deactivate_task(rq, p, 0);
7936 __setscheduler(rq, p, SCHED_NORMAL, 0);
7937 if (on_rq) {
7938 activate_task(rq, p, 0);
7939 resched_task(rq->curr);
7943 void normalize_rt_tasks(void)
7945 struct task_struct *g, *p;
7946 unsigned long flags;
7947 struct rq *rq;
7949 read_lock_irqsave(&tasklist_lock, flags);
7950 do_each_thread(g, p) {
7952 * Only normalize user tasks:
7954 if (!p->mm)
7955 continue;
7957 p->se.exec_start = 0;
7958 #ifdef CONFIG_SCHEDSTATS
7959 p->se.statistics.wait_start = 0;
7960 p->se.statistics.sleep_start = 0;
7961 p->se.statistics.block_start = 0;
7962 #endif
7964 if (!rt_task(p)) {
7966 * Renice negative nice level userspace
7967 * tasks back to 0:
7969 if (TASK_NICE(p) < 0 && p->mm)
7970 set_user_nice(p, 0);
7971 continue;
7974 raw_spin_lock(&p->pi_lock);
7975 rq = __task_rq_lock(p);
7977 normalize_task(rq, p);
7979 __task_rq_unlock(rq);
7980 raw_spin_unlock(&p->pi_lock);
7981 } while_each_thread(g, p);
7983 read_unlock_irqrestore(&tasklist_lock, flags);
7986 #endif /* CONFIG_MAGIC_SYSRQ */
7988 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7990 * These functions are only useful for the IA64 MCA handling, or kdb.
7992 * They can only be called when the whole system has been
7993 * stopped - every CPU needs to be quiescent, and no scheduling
7994 * activity can take place. Using them for anything else would
7995 * be a serious bug, and as a result, they aren't even visible
7996 * under any other configuration.
8000 * curr_task - return the current task for a given cpu.
8001 * @cpu: the processor in question.
8003 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8005 struct task_struct *curr_task(int cpu)
8007 return cpu_curr(cpu);
8010 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8012 #ifdef CONFIG_IA64
8014 * set_curr_task - set the current task for a given cpu.
8015 * @cpu: the processor in question.
8016 * @p: the task pointer to set.
8018 * Description: This function must only be used when non-maskable interrupts
8019 * are serviced on a separate stack. It allows the architecture to switch the
8020 * notion of the current task on a cpu in a non-blocking manner. This function
8021 * must be called with all CPU's synchronized, and interrupts disabled, the
8022 * and caller must save the original value of the current task (see
8023 * curr_task() above) and restore that value before reenabling interrupts and
8024 * re-starting the system.
8026 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8028 void set_curr_task(int cpu, struct task_struct *p)
8030 cpu_curr(cpu) = p;
8033 #endif
8035 #ifdef CONFIG_FAIR_GROUP_SCHED
8036 static void free_fair_sched_group(struct task_group *tg)
8038 int i;
8040 for_each_possible_cpu(i) {
8041 if (tg->cfs_rq)
8042 kfree(tg->cfs_rq[i]);
8043 if (tg->se)
8044 kfree(tg->se[i]);
8047 kfree(tg->cfs_rq);
8048 kfree(tg->se);
8051 static
8052 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8054 struct cfs_rq *cfs_rq;
8055 struct sched_entity *se;
8056 struct rq *rq;
8057 int i;
8059 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8060 if (!tg->cfs_rq)
8061 goto err;
8062 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8063 if (!tg->se)
8064 goto err;
8066 tg->shares = NICE_0_LOAD;
8068 for_each_possible_cpu(i) {
8069 rq = cpu_rq(i);
8071 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8072 GFP_KERNEL, cpu_to_node(i));
8073 if (!cfs_rq)
8074 goto err;
8076 se = kzalloc_node(sizeof(struct sched_entity),
8077 GFP_KERNEL, cpu_to_node(i));
8078 if (!se)
8079 goto err_free_rq;
8081 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8084 return 1;
8086 err_free_rq:
8087 kfree(cfs_rq);
8088 err:
8089 return 0;
8092 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8094 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8095 &cpu_rq(cpu)->leaf_cfs_rq_list);
8098 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8100 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8102 #else /* !CONFG_FAIR_GROUP_SCHED */
8103 static inline void free_fair_sched_group(struct task_group *tg)
8107 static inline
8108 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8110 return 1;
8113 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8117 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8120 #endif /* CONFIG_FAIR_GROUP_SCHED */
8122 #ifdef CONFIG_RT_GROUP_SCHED
8123 static void free_rt_sched_group(struct task_group *tg)
8125 int i;
8127 destroy_rt_bandwidth(&tg->rt_bandwidth);
8129 for_each_possible_cpu(i) {
8130 if (tg->rt_rq)
8131 kfree(tg->rt_rq[i]);
8132 if (tg->rt_se)
8133 kfree(tg->rt_se[i]);
8136 kfree(tg->rt_rq);
8137 kfree(tg->rt_se);
8140 static
8141 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8143 struct rt_rq *rt_rq;
8144 struct sched_rt_entity *rt_se;
8145 struct rq *rq;
8146 int i;
8148 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8149 if (!tg->rt_rq)
8150 goto err;
8151 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8152 if (!tg->rt_se)
8153 goto err;
8155 init_rt_bandwidth(&tg->rt_bandwidth,
8156 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8158 for_each_possible_cpu(i) {
8159 rq = cpu_rq(i);
8161 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8162 GFP_KERNEL, cpu_to_node(i));
8163 if (!rt_rq)
8164 goto err;
8166 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8167 GFP_KERNEL, cpu_to_node(i));
8168 if (!rt_se)
8169 goto err_free_rq;
8171 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8174 return 1;
8176 err_free_rq:
8177 kfree(rt_rq);
8178 err:
8179 return 0;
8182 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8184 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8185 &cpu_rq(cpu)->leaf_rt_rq_list);
8188 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8190 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8192 #else /* !CONFIG_RT_GROUP_SCHED */
8193 static inline void free_rt_sched_group(struct task_group *tg)
8197 static inline
8198 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8200 return 1;
8203 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8207 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8210 #endif /* CONFIG_RT_GROUP_SCHED */
8212 #ifdef CONFIG_CGROUP_SCHED
8213 static void free_sched_group(struct task_group *tg)
8215 free_fair_sched_group(tg);
8216 free_rt_sched_group(tg);
8217 kfree(tg);
8220 /* allocate runqueue etc for a new task group */
8221 struct task_group *sched_create_group(struct task_group *parent)
8223 struct task_group *tg;
8224 unsigned long flags;
8225 int i;
8227 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8228 if (!tg)
8229 return ERR_PTR(-ENOMEM);
8231 if (!alloc_fair_sched_group(tg, parent))
8232 goto err;
8234 if (!alloc_rt_sched_group(tg, parent))
8235 goto err;
8237 spin_lock_irqsave(&task_group_lock, flags);
8238 for_each_possible_cpu(i) {
8239 register_fair_sched_group(tg, i);
8240 register_rt_sched_group(tg, i);
8242 list_add_rcu(&tg->list, &task_groups);
8244 WARN_ON(!parent); /* root should already exist */
8246 tg->parent = parent;
8247 INIT_LIST_HEAD(&tg->children);
8248 list_add_rcu(&tg->siblings, &parent->children);
8249 spin_unlock_irqrestore(&task_group_lock, flags);
8251 return tg;
8253 err:
8254 free_sched_group(tg);
8255 return ERR_PTR(-ENOMEM);
8258 /* rcu callback to free various structures associated with a task group */
8259 static void free_sched_group_rcu(struct rcu_head *rhp)
8261 /* now it should be safe to free those cfs_rqs */
8262 free_sched_group(container_of(rhp, struct task_group, rcu));
8265 /* Destroy runqueue etc associated with a task group */
8266 void sched_destroy_group(struct task_group *tg)
8268 unsigned long flags;
8269 int i;
8271 spin_lock_irqsave(&task_group_lock, flags);
8272 for_each_possible_cpu(i) {
8273 unregister_fair_sched_group(tg, i);
8274 unregister_rt_sched_group(tg, i);
8276 list_del_rcu(&tg->list);
8277 list_del_rcu(&tg->siblings);
8278 spin_unlock_irqrestore(&task_group_lock, flags);
8280 /* wait for possible concurrent references to cfs_rqs complete */
8281 call_rcu(&tg->rcu, free_sched_group_rcu);
8284 /* change task's runqueue when it moves between groups.
8285 * The caller of this function should have put the task in its new group
8286 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8287 * reflect its new group.
8289 void sched_move_task(struct task_struct *tsk)
8291 int on_rq, running;
8292 unsigned long flags;
8293 struct rq *rq;
8295 rq = task_rq_lock(tsk, &flags);
8297 running = task_current(rq, tsk);
8298 on_rq = tsk->se.on_rq;
8300 if (on_rq)
8301 dequeue_task(rq, tsk, 0);
8302 if (unlikely(running))
8303 tsk->sched_class->put_prev_task(rq, tsk);
8305 set_task_rq(tsk, task_cpu(tsk));
8307 #ifdef CONFIG_FAIR_GROUP_SCHED
8308 if (tsk->sched_class->moved_group)
8309 tsk->sched_class->moved_group(tsk, on_rq);
8310 #endif
8312 if (unlikely(running))
8313 tsk->sched_class->set_curr_task(rq);
8314 if (on_rq)
8315 enqueue_task(rq, tsk, 0);
8317 task_rq_unlock(rq, &flags);
8319 #endif /* CONFIG_CGROUP_SCHED */
8321 #ifdef CONFIG_FAIR_GROUP_SCHED
8322 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8324 struct cfs_rq *cfs_rq = se->cfs_rq;
8325 int on_rq;
8327 on_rq = se->on_rq;
8328 if (on_rq)
8329 dequeue_entity(cfs_rq, se, 0);
8331 se->load.weight = shares;
8332 se->load.inv_weight = 0;
8334 if (on_rq)
8335 enqueue_entity(cfs_rq, se, 0);
8338 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8340 struct cfs_rq *cfs_rq = se->cfs_rq;
8341 struct rq *rq = cfs_rq->rq;
8342 unsigned long flags;
8344 raw_spin_lock_irqsave(&rq->lock, flags);
8345 __set_se_shares(se, shares);
8346 raw_spin_unlock_irqrestore(&rq->lock, flags);
8349 static DEFINE_MUTEX(shares_mutex);
8351 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8353 int i;
8354 unsigned long flags;
8357 * We can't change the weight of the root cgroup.
8359 if (!tg->se[0])
8360 return -EINVAL;
8362 if (shares < MIN_SHARES)
8363 shares = MIN_SHARES;
8364 else if (shares > MAX_SHARES)
8365 shares = MAX_SHARES;
8367 mutex_lock(&shares_mutex);
8368 if (tg->shares == shares)
8369 goto done;
8371 spin_lock_irqsave(&task_group_lock, flags);
8372 for_each_possible_cpu(i)
8373 unregister_fair_sched_group(tg, i);
8374 list_del_rcu(&tg->siblings);
8375 spin_unlock_irqrestore(&task_group_lock, flags);
8377 /* wait for any ongoing reference to this group to finish */
8378 synchronize_sched();
8381 * Now we are free to modify the group's share on each cpu
8382 * w/o tripping rebalance_share or load_balance_fair.
8384 tg->shares = shares;
8385 for_each_possible_cpu(i) {
8387 * force a rebalance
8389 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8390 set_se_shares(tg->se[i], shares);
8394 * Enable load balance activity on this group, by inserting it back on
8395 * each cpu's rq->leaf_cfs_rq_list.
8397 spin_lock_irqsave(&task_group_lock, flags);
8398 for_each_possible_cpu(i)
8399 register_fair_sched_group(tg, i);
8400 list_add_rcu(&tg->siblings, &tg->parent->children);
8401 spin_unlock_irqrestore(&task_group_lock, flags);
8402 done:
8403 mutex_unlock(&shares_mutex);
8404 return 0;
8407 unsigned long sched_group_shares(struct task_group *tg)
8409 return tg->shares;
8411 #endif
8413 #ifdef CONFIG_RT_GROUP_SCHED
8415 * Ensure that the real time constraints are schedulable.
8417 static DEFINE_MUTEX(rt_constraints_mutex);
8419 static unsigned long to_ratio(u64 period, u64 runtime)
8421 if (runtime == RUNTIME_INF)
8422 return 1ULL << 20;
8424 return div64_u64(runtime << 20, period);
8427 /* Must be called with tasklist_lock held */
8428 static inline int tg_has_rt_tasks(struct task_group *tg)
8430 struct task_struct *g, *p;
8432 do_each_thread(g, p) {
8433 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8434 return 1;
8435 } while_each_thread(g, p);
8437 return 0;
8440 struct rt_schedulable_data {
8441 struct task_group *tg;
8442 u64 rt_period;
8443 u64 rt_runtime;
8446 static int tg_schedulable(struct task_group *tg, void *data)
8448 struct rt_schedulable_data *d = data;
8449 struct task_group *child;
8450 unsigned long total, sum = 0;
8451 u64 period, runtime;
8453 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8454 runtime = tg->rt_bandwidth.rt_runtime;
8456 if (tg == d->tg) {
8457 period = d->rt_period;
8458 runtime = d->rt_runtime;
8462 * Cannot have more runtime than the period.
8464 if (runtime > period && runtime != RUNTIME_INF)
8465 return -EINVAL;
8468 * Ensure we don't starve existing RT tasks.
8470 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8471 return -EBUSY;
8473 total = to_ratio(period, runtime);
8476 * Nobody can have more than the global setting allows.
8478 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8479 return -EINVAL;
8482 * The sum of our children's runtime should not exceed our own.
8484 list_for_each_entry_rcu(child, &tg->children, siblings) {
8485 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8486 runtime = child->rt_bandwidth.rt_runtime;
8488 if (child == d->tg) {
8489 period = d->rt_period;
8490 runtime = d->rt_runtime;
8493 sum += to_ratio(period, runtime);
8496 if (sum > total)
8497 return -EINVAL;
8499 return 0;
8502 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8504 struct rt_schedulable_data data = {
8505 .tg = tg,
8506 .rt_period = period,
8507 .rt_runtime = runtime,
8510 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8513 static int tg_set_bandwidth(struct task_group *tg,
8514 u64 rt_period, u64 rt_runtime)
8516 int i, err = 0;
8518 mutex_lock(&rt_constraints_mutex);
8519 read_lock(&tasklist_lock);
8520 err = __rt_schedulable(tg, rt_period, rt_runtime);
8521 if (err)
8522 goto unlock;
8524 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8525 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8526 tg->rt_bandwidth.rt_runtime = rt_runtime;
8528 for_each_possible_cpu(i) {
8529 struct rt_rq *rt_rq = tg->rt_rq[i];
8531 raw_spin_lock(&rt_rq->rt_runtime_lock);
8532 rt_rq->rt_runtime = rt_runtime;
8533 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8535 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8536 unlock:
8537 read_unlock(&tasklist_lock);
8538 mutex_unlock(&rt_constraints_mutex);
8540 return err;
8543 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8545 u64 rt_runtime, rt_period;
8547 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8548 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8549 if (rt_runtime_us < 0)
8550 rt_runtime = RUNTIME_INF;
8552 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8555 long sched_group_rt_runtime(struct task_group *tg)
8557 u64 rt_runtime_us;
8559 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8560 return -1;
8562 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8563 do_div(rt_runtime_us, NSEC_PER_USEC);
8564 return rt_runtime_us;
8567 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8569 u64 rt_runtime, rt_period;
8571 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8572 rt_runtime = tg->rt_bandwidth.rt_runtime;
8574 if (rt_period == 0)
8575 return -EINVAL;
8577 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8580 long sched_group_rt_period(struct task_group *tg)
8582 u64 rt_period_us;
8584 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8585 do_div(rt_period_us, NSEC_PER_USEC);
8586 return rt_period_us;
8589 static int sched_rt_global_constraints(void)
8591 u64 runtime, period;
8592 int ret = 0;
8594 if (sysctl_sched_rt_period <= 0)
8595 return -EINVAL;
8597 runtime = global_rt_runtime();
8598 period = global_rt_period();
8601 * Sanity check on the sysctl variables.
8603 if (runtime > period && runtime != RUNTIME_INF)
8604 return -EINVAL;
8606 mutex_lock(&rt_constraints_mutex);
8607 read_lock(&tasklist_lock);
8608 ret = __rt_schedulable(NULL, 0, 0);
8609 read_unlock(&tasklist_lock);
8610 mutex_unlock(&rt_constraints_mutex);
8612 return ret;
8615 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8617 /* Don't accept realtime tasks when there is no way for them to run */
8618 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8619 return 0;
8621 return 1;
8624 #else /* !CONFIG_RT_GROUP_SCHED */
8625 static int sched_rt_global_constraints(void)
8627 unsigned long flags;
8628 int i;
8630 if (sysctl_sched_rt_period <= 0)
8631 return -EINVAL;
8634 * There's always some RT tasks in the root group
8635 * -- migration, kstopmachine etc..
8637 if (sysctl_sched_rt_runtime == 0)
8638 return -EBUSY;
8640 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8641 for_each_possible_cpu(i) {
8642 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8644 raw_spin_lock(&rt_rq->rt_runtime_lock);
8645 rt_rq->rt_runtime = global_rt_runtime();
8646 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8648 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8650 return 0;
8652 #endif /* CONFIG_RT_GROUP_SCHED */
8654 int sched_rt_handler(struct ctl_table *table, int write,
8655 void __user *buffer, size_t *lenp,
8656 loff_t *ppos)
8658 int ret;
8659 int old_period, old_runtime;
8660 static DEFINE_MUTEX(mutex);
8662 mutex_lock(&mutex);
8663 old_period = sysctl_sched_rt_period;
8664 old_runtime = sysctl_sched_rt_runtime;
8666 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8668 if (!ret && write) {
8669 ret = sched_rt_global_constraints();
8670 if (ret) {
8671 sysctl_sched_rt_period = old_period;
8672 sysctl_sched_rt_runtime = old_runtime;
8673 } else {
8674 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8675 def_rt_bandwidth.rt_period =
8676 ns_to_ktime(global_rt_period());
8679 mutex_unlock(&mutex);
8681 return ret;
8684 #ifdef CONFIG_CGROUP_SCHED
8686 /* return corresponding task_group object of a cgroup */
8687 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8689 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8690 struct task_group, css);
8693 static struct cgroup_subsys_state *
8694 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8696 struct task_group *tg, *parent;
8698 if (!cgrp->parent) {
8699 /* This is early initialization for the top cgroup */
8700 return &init_task_group.css;
8703 parent = cgroup_tg(cgrp->parent);
8704 tg = sched_create_group(parent);
8705 if (IS_ERR(tg))
8706 return ERR_PTR(-ENOMEM);
8708 return &tg->css;
8711 static void
8712 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8714 struct task_group *tg = cgroup_tg(cgrp);
8716 sched_destroy_group(tg);
8719 static int
8720 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8722 #ifdef CONFIG_RT_GROUP_SCHED
8723 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8724 return -EINVAL;
8725 #else
8726 /* We don't support RT-tasks being in separate groups */
8727 if (tsk->sched_class != &fair_sched_class)
8728 return -EINVAL;
8729 #endif
8730 return 0;
8733 static int
8734 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8735 struct task_struct *tsk, bool threadgroup)
8737 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8738 if (retval)
8739 return retval;
8740 if (threadgroup) {
8741 struct task_struct *c;
8742 rcu_read_lock();
8743 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8744 retval = cpu_cgroup_can_attach_task(cgrp, c);
8745 if (retval) {
8746 rcu_read_unlock();
8747 return retval;
8750 rcu_read_unlock();
8752 return 0;
8755 static void
8756 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8757 struct cgroup *old_cont, struct task_struct *tsk,
8758 bool threadgroup)
8760 sched_move_task(tsk);
8761 if (threadgroup) {
8762 struct task_struct *c;
8763 rcu_read_lock();
8764 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8765 sched_move_task(c);
8767 rcu_read_unlock();
8771 #ifdef CONFIG_FAIR_GROUP_SCHED
8772 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8773 u64 shareval)
8775 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8778 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8780 struct task_group *tg = cgroup_tg(cgrp);
8782 return (u64) tg->shares;
8784 #endif /* CONFIG_FAIR_GROUP_SCHED */
8786 #ifdef CONFIG_RT_GROUP_SCHED
8787 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8788 s64 val)
8790 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8793 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8795 return sched_group_rt_runtime(cgroup_tg(cgrp));
8798 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8799 u64 rt_period_us)
8801 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8804 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8806 return sched_group_rt_period(cgroup_tg(cgrp));
8808 #endif /* CONFIG_RT_GROUP_SCHED */
8810 static struct cftype cpu_files[] = {
8811 #ifdef CONFIG_FAIR_GROUP_SCHED
8813 .name = "shares",
8814 .read_u64 = cpu_shares_read_u64,
8815 .write_u64 = cpu_shares_write_u64,
8817 #endif
8818 #ifdef CONFIG_RT_GROUP_SCHED
8820 .name = "rt_runtime_us",
8821 .read_s64 = cpu_rt_runtime_read,
8822 .write_s64 = cpu_rt_runtime_write,
8825 .name = "rt_period_us",
8826 .read_u64 = cpu_rt_period_read_uint,
8827 .write_u64 = cpu_rt_period_write_uint,
8829 #endif
8832 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8834 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8837 struct cgroup_subsys cpu_cgroup_subsys = {
8838 .name = "cpu",
8839 .create = cpu_cgroup_create,
8840 .destroy = cpu_cgroup_destroy,
8841 .can_attach = cpu_cgroup_can_attach,
8842 .attach = cpu_cgroup_attach,
8843 .populate = cpu_cgroup_populate,
8844 .subsys_id = cpu_cgroup_subsys_id,
8845 .early_init = 1,
8848 #endif /* CONFIG_CGROUP_SCHED */
8850 #ifdef CONFIG_CGROUP_CPUACCT
8853 * CPU accounting code for task groups.
8855 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8856 * (balbir@in.ibm.com).
8859 /* track cpu usage of a group of tasks and its child groups */
8860 struct cpuacct {
8861 struct cgroup_subsys_state css;
8862 /* cpuusage holds pointer to a u64-type object on every cpu */
8863 u64 __percpu *cpuusage;
8864 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8865 struct cpuacct *parent;
8868 struct cgroup_subsys cpuacct_subsys;
8870 /* return cpu accounting group corresponding to this container */
8871 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8873 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8874 struct cpuacct, css);
8877 /* return cpu accounting group to which this task belongs */
8878 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8880 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8881 struct cpuacct, css);
8884 /* create a new cpu accounting group */
8885 static struct cgroup_subsys_state *cpuacct_create(
8886 struct cgroup_subsys *ss, struct cgroup *cgrp)
8888 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8889 int i;
8891 if (!ca)
8892 goto out;
8894 ca->cpuusage = alloc_percpu(u64);
8895 if (!ca->cpuusage)
8896 goto out_free_ca;
8898 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8899 if (percpu_counter_init(&ca->cpustat[i], 0))
8900 goto out_free_counters;
8902 if (cgrp->parent)
8903 ca->parent = cgroup_ca(cgrp->parent);
8905 return &ca->css;
8907 out_free_counters:
8908 while (--i >= 0)
8909 percpu_counter_destroy(&ca->cpustat[i]);
8910 free_percpu(ca->cpuusage);
8911 out_free_ca:
8912 kfree(ca);
8913 out:
8914 return ERR_PTR(-ENOMEM);
8917 /* destroy an existing cpu accounting group */
8918 static void
8919 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8921 struct cpuacct *ca = cgroup_ca(cgrp);
8922 int i;
8924 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8925 percpu_counter_destroy(&ca->cpustat[i]);
8926 free_percpu(ca->cpuusage);
8927 kfree(ca);
8930 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8932 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8933 u64 data;
8935 #ifndef CONFIG_64BIT
8937 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8939 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8940 data = *cpuusage;
8941 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8942 #else
8943 data = *cpuusage;
8944 #endif
8946 return data;
8949 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8951 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8953 #ifndef CONFIG_64BIT
8955 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8957 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8958 *cpuusage = val;
8959 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8960 #else
8961 *cpuusage = val;
8962 #endif
8965 /* return total cpu usage (in nanoseconds) of a group */
8966 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8968 struct cpuacct *ca = cgroup_ca(cgrp);
8969 u64 totalcpuusage = 0;
8970 int i;
8972 for_each_present_cpu(i)
8973 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8975 return totalcpuusage;
8978 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8979 u64 reset)
8981 struct cpuacct *ca = cgroup_ca(cgrp);
8982 int err = 0;
8983 int i;
8985 if (reset) {
8986 err = -EINVAL;
8987 goto out;
8990 for_each_present_cpu(i)
8991 cpuacct_cpuusage_write(ca, i, 0);
8993 out:
8994 return err;
8997 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8998 struct seq_file *m)
9000 struct cpuacct *ca = cgroup_ca(cgroup);
9001 u64 percpu;
9002 int i;
9004 for_each_present_cpu(i) {
9005 percpu = cpuacct_cpuusage_read(ca, i);
9006 seq_printf(m, "%llu ", (unsigned long long) percpu);
9008 seq_printf(m, "\n");
9009 return 0;
9012 static const char *cpuacct_stat_desc[] = {
9013 [CPUACCT_STAT_USER] = "user",
9014 [CPUACCT_STAT_SYSTEM] = "system",
9017 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9018 struct cgroup_map_cb *cb)
9020 struct cpuacct *ca = cgroup_ca(cgrp);
9021 int i;
9023 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9024 s64 val = percpu_counter_read(&ca->cpustat[i]);
9025 val = cputime64_to_clock_t(val);
9026 cb->fill(cb, cpuacct_stat_desc[i], val);
9028 return 0;
9031 static struct cftype files[] = {
9033 .name = "usage",
9034 .read_u64 = cpuusage_read,
9035 .write_u64 = cpuusage_write,
9038 .name = "usage_percpu",
9039 .read_seq_string = cpuacct_percpu_seq_read,
9042 .name = "stat",
9043 .read_map = cpuacct_stats_show,
9047 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9049 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9053 * charge this task's execution time to its accounting group.
9055 * called with rq->lock held.
9057 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9059 struct cpuacct *ca;
9060 int cpu;
9062 if (unlikely(!cpuacct_subsys.active))
9063 return;
9065 cpu = task_cpu(tsk);
9067 rcu_read_lock();
9069 ca = task_ca(tsk);
9071 for (; ca; ca = ca->parent) {
9072 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9073 *cpuusage += cputime;
9076 rcu_read_unlock();
9080 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9081 * in cputime_t units. As a result, cpuacct_update_stats calls
9082 * percpu_counter_add with values large enough to always overflow the
9083 * per cpu batch limit causing bad SMP scalability.
9085 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9086 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9087 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9089 #ifdef CONFIG_SMP
9090 #define CPUACCT_BATCH \
9091 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9092 #else
9093 #define CPUACCT_BATCH 0
9094 #endif
9097 * Charge the system/user time to the task's accounting group.
9099 static void cpuacct_update_stats(struct task_struct *tsk,
9100 enum cpuacct_stat_index idx, cputime_t val)
9102 struct cpuacct *ca;
9103 int batch = CPUACCT_BATCH;
9105 if (unlikely(!cpuacct_subsys.active))
9106 return;
9108 rcu_read_lock();
9109 ca = task_ca(tsk);
9111 do {
9112 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9113 ca = ca->parent;
9114 } while (ca);
9115 rcu_read_unlock();
9118 struct cgroup_subsys cpuacct_subsys = {
9119 .name = "cpuacct",
9120 .create = cpuacct_create,
9121 .destroy = cpuacct_destroy,
9122 .populate = cpuacct_populate,
9123 .subsys_id = cpuacct_subsys_id,
9125 #endif /* CONFIG_CGROUP_CPUACCT */
9127 #ifndef CONFIG_SMP
9129 void synchronize_sched_expedited(void)
9131 barrier();
9133 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9135 #else /* #ifndef CONFIG_SMP */
9137 static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
9139 static int synchronize_sched_expedited_cpu_stop(void *data)
9142 * There must be a full memory barrier on each affected CPU
9143 * between the time that try_stop_cpus() is called and the
9144 * time that it returns.
9146 * In the current initial implementation of cpu_stop, the
9147 * above condition is already met when the control reaches
9148 * this point and the following smp_mb() is not strictly
9149 * necessary. Do smp_mb() anyway for documentation and
9150 * robustness against future implementation changes.
9152 smp_mb(); /* See above comment block. */
9153 return 0;
9157 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9158 * approach to force grace period to end quickly. This consumes
9159 * significant time on all CPUs, and is thus not recommended for
9160 * any sort of common-case code.
9162 * Note that it is illegal to call this function while holding any
9163 * lock that is acquired by a CPU-hotplug notifier. Failing to
9164 * observe this restriction will result in deadlock.
9166 void synchronize_sched_expedited(void)
9168 int snap, trycount = 0;
9170 smp_mb(); /* ensure prior mod happens before capturing snap. */
9171 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
9172 get_online_cpus();
9173 while (try_stop_cpus(cpu_online_mask,
9174 synchronize_sched_expedited_cpu_stop,
9175 NULL) == -EAGAIN) {
9176 put_online_cpus();
9177 if (trycount++ < 10)
9178 udelay(trycount * num_online_cpus());
9179 else {
9180 synchronize_sched();
9181 return;
9183 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
9184 smp_mb(); /* ensure test happens before caller kfree */
9185 return;
9187 get_online_cpus();
9189 atomic_inc(&synchronize_sched_expedited_count);
9190 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9191 put_online_cpus();
9193 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9195 #endif /* #else #ifndef CONFIG_SMP */