2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
11 * This handles all read/write requests to block devices
13 #include <linux/config.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
35 #include <scsi/scsi_cmnd.h>
37 static void blk_unplug_work(void *data
);
38 static void blk_unplug_timeout(unsigned long data
);
39 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
);
40 static void init_request_from_bio(struct request
*req
, struct bio
*bio
);
41 static int __make_request(request_queue_t
*q
, struct bio
*bio
);
44 * For the allocated request tables
46 static kmem_cache_t
*request_cachep
;
49 * For queue allocation
51 static kmem_cache_t
*requestq_cachep
;
54 * For io context allocations
56 static kmem_cache_t
*iocontext_cachep
;
58 static wait_queue_head_t congestion_wqh
[2] = {
59 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh
[0]),
60 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh
[1])
64 * Controlling structure to kblockd
66 static struct workqueue_struct
*kblockd_workqueue
;
68 unsigned long blk_max_low_pfn
, blk_max_pfn
;
70 EXPORT_SYMBOL(blk_max_low_pfn
);
71 EXPORT_SYMBOL(blk_max_pfn
);
73 static DEFINE_PER_CPU(struct list_head
, blk_cpu_done
);
75 /* Amount of time in which a process may batch requests */
76 #define BLK_BATCH_TIME (HZ/50UL)
78 /* Number of requests a "batching" process may submit */
79 #define BLK_BATCH_REQ 32
82 * Return the threshold (number of used requests) at which the queue is
83 * considered to be congested. It include a little hysteresis to keep the
84 * context switch rate down.
86 static inline int queue_congestion_on_threshold(struct request_queue
*q
)
88 return q
->nr_congestion_on
;
92 * The threshold at which a queue is considered to be uncongested
94 static inline int queue_congestion_off_threshold(struct request_queue
*q
)
96 return q
->nr_congestion_off
;
99 static void blk_queue_congestion_threshold(struct request_queue
*q
)
103 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
104 if (nr
> q
->nr_requests
)
106 q
->nr_congestion_on
= nr
;
108 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
111 q
->nr_congestion_off
= nr
;
115 * A queue has just exitted congestion. Note this in the global counter of
116 * congested queues, and wake up anyone who was waiting for requests to be
119 static void clear_queue_congested(request_queue_t
*q
, int rw
)
122 wait_queue_head_t
*wqh
= &congestion_wqh
[rw
];
124 bit
= (rw
== WRITE
) ? BDI_write_congested
: BDI_read_congested
;
125 clear_bit(bit
, &q
->backing_dev_info
.state
);
126 smp_mb__after_clear_bit();
127 if (waitqueue_active(wqh
))
132 * A queue has just entered congestion. Flag that in the queue's VM-visible
133 * state flags and increment the global gounter of congested queues.
135 static void set_queue_congested(request_queue_t
*q
, int rw
)
139 bit
= (rw
== WRITE
) ? BDI_write_congested
: BDI_read_congested
;
140 set_bit(bit
, &q
->backing_dev_info
.state
);
144 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
147 * Locates the passed device's request queue and returns the address of its
150 * Will return NULL if the request queue cannot be located.
152 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
154 struct backing_dev_info
*ret
= NULL
;
155 request_queue_t
*q
= bdev_get_queue(bdev
);
158 ret
= &q
->backing_dev_info
;
162 EXPORT_SYMBOL(blk_get_backing_dev_info
);
164 void blk_queue_activity_fn(request_queue_t
*q
, activity_fn
*fn
, void *data
)
167 q
->activity_data
= data
;
170 EXPORT_SYMBOL(blk_queue_activity_fn
);
173 * blk_queue_prep_rq - set a prepare_request function for queue
175 * @pfn: prepare_request function
177 * It's possible for a queue to register a prepare_request callback which
178 * is invoked before the request is handed to the request_fn. The goal of
179 * the function is to prepare a request for I/O, it can be used to build a
180 * cdb from the request data for instance.
183 void blk_queue_prep_rq(request_queue_t
*q
, prep_rq_fn
*pfn
)
188 EXPORT_SYMBOL(blk_queue_prep_rq
);
191 * blk_queue_merge_bvec - set a merge_bvec function for queue
193 * @mbfn: merge_bvec_fn
195 * Usually queues have static limitations on the max sectors or segments that
196 * we can put in a request. Stacking drivers may have some settings that
197 * are dynamic, and thus we have to query the queue whether it is ok to
198 * add a new bio_vec to a bio at a given offset or not. If the block device
199 * has such limitations, it needs to register a merge_bvec_fn to control
200 * the size of bio's sent to it. Note that a block device *must* allow a
201 * single page to be added to an empty bio. The block device driver may want
202 * to use the bio_split() function to deal with these bio's. By default
203 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
206 void blk_queue_merge_bvec(request_queue_t
*q
, merge_bvec_fn
*mbfn
)
208 q
->merge_bvec_fn
= mbfn
;
211 EXPORT_SYMBOL(blk_queue_merge_bvec
);
213 void blk_queue_softirq_done(request_queue_t
*q
, softirq_done_fn
*fn
)
215 q
->softirq_done_fn
= fn
;
218 EXPORT_SYMBOL(blk_queue_softirq_done
);
221 * blk_queue_make_request - define an alternate make_request function for a device
222 * @q: the request queue for the device to be affected
223 * @mfn: the alternate make_request function
226 * The normal way for &struct bios to be passed to a device
227 * driver is for them to be collected into requests on a request
228 * queue, and then to allow the device driver to select requests
229 * off that queue when it is ready. This works well for many block
230 * devices. However some block devices (typically virtual devices
231 * such as md or lvm) do not benefit from the processing on the
232 * request queue, and are served best by having the requests passed
233 * directly to them. This can be achieved by providing a function
234 * to blk_queue_make_request().
237 * The driver that does this *must* be able to deal appropriately
238 * with buffers in "highmemory". This can be accomplished by either calling
239 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
240 * blk_queue_bounce() to create a buffer in normal memory.
242 void blk_queue_make_request(request_queue_t
* q
, make_request_fn
* mfn
)
247 q
->nr_requests
= BLKDEV_MAX_RQ
;
248 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
249 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
250 q
->make_request_fn
= mfn
;
251 q
->backing_dev_info
.ra_pages
= (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
252 q
->backing_dev_info
.state
= 0;
253 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
254 blk_queue_max_sectors(q
, SAFE_MAX_SECTORS
);
255 blk_queue_hardsect_size(q
, 512);
256 blk_queue_dma_alignment(q
, 511);
257 blk_queue_congestion_threshold(q
);
258 q
->nr_batching
= BLK_BATCH_REQ
;
260 q
->unplug_thresh
= 4; /* hmm */
261 q
->unplug_delay
= (3 * HZ
) / 1000; /* 3 milliseconds */
262 if (q
->unplug_delay
== 0)
265 INIT_WORK(&q
->unplug_work
, blk_unplug_work
, q
);
267 q
->unplug_timer
.function
= blk_unplug_timeout
;
268 q
->unplug_timer
.data
= (unsigned long)q
;
271 * by default assume old behaviour and bounce for any highmem page
273 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
275 blk_queue_activity_fn(q
, NULL
, NULL
);
278 EXPORT_SYMBOL(blk_queue_make_request
);
280 static inline void rq_init(request_queue_t
*q
, struct request
*rq
)
282 INIT_LIST_HEAD(&rq
->queuelist
);
283 INIT_LIST_HEAD(&rq
->donelist
);
286 rq
->rq_status
= RQ_ACTIVE
;
287 rq
->bio
= rq
->biotail
= NULL
;
296 rq
->nr_phys_segments
= 0;
299 rq
->end_io_data
= NULL
;
300 rq
->completion_data
= NULL
;
304 * blk_queue_ordered - does this queue support ordered writes
305 * @q: the request queue
306 * @ordered: one of QUEUE_ORDERED_*
307 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
310 * For journalled file systems, doing ordered writes on a commit
311 * block instead of explicitly doing wait_on_buffer (which is bad
312 * for performance) can be a big win. Block drivers supporting this
313 * feature should call this function and indicate so.
316 int blk_queue_ordered(request_queue_t
*q
, unsigned ordered
,
317 prepare_flush_fn
*prepare_flush_fn
)
319 if (ordered
& (QUEUE_ORDERED_PREFLUSH
| QUEUE_ORDERED_POSTFLUSH
) &&
320 prepare_flush_fn
== NULL
) {
321 printk(KERN_ERR
"blk_queue_ordered: prepare_flush_fn required\n");
325 if (ordered
!= QUEUE_ORDERED_NONE
&&
326 ordered
!= QUEUE_ORDERED_DRAIN
&&
327 ordered
!= QUEUE_ORDERED_DRAIN_FLUSH
&&
328 ordered
!= QUEUE_ORDERED_DRAIN_FUA
&&
329 ordered
!= QUEUE_ORDERED_TAG
&&
330 ordered
!= QUEUE_ORDERED_TAG_FLUSH
&&
331 ordered
!= QUEUE_ORDERED_TAG_FUA
) {
332 printk(KERN_ERR
"blk_queue_ordered: bad value %d\n", ordered
);
336 q
->ordered
= ordered
;
337 q
->next_ordered
= ordered
;
338 q
->prepare_flush_fn
= prepare_flush_fn
;
343 EXPORT_SYMBOL(blk_queue_ordered
);
346 * blk_queue_issue_flush_fn - set function for issuing a flush
347 * @q: the request queue
348 * @iff: the function to be called issuing the flush
351 * If a driver supports issuing a flush command, the support is notified
352 * to the block layer by defining it through this call.
355 void blk_queue_issue_flush_fn(request_queue_t
*q
, issue_flush_fn
*iff
)
357 q
->issue_flush_fn
= iff
;
360 EXPORT_SYMBOL(blk_queue_issue_flush_fn
);
363 * Cache flushing for ordered writes handling
365 inline unsigned blk_ordered_cur_seq(request_queue_t
*q
)
369 return 1 << ffz(q
->ordseq
);
372 unsigned blk_ordered_req_seq(struct request
*rq
)
374 request_queue_t
*q
= rq
->q
;
376 BUG_ON(q
->ordseq
== 0);
378 if (rq
== &q
->pre_flush_rq
)
379 return QUEUE_ORDSEQ_PREFLUSH
;
380 if (rq
== &q
->bar_rq
)
381 return QUEUE_ORDSEQ_BAR
;
382 if (rq
== &q
->post_flush_rq
)
383 return QUEUE_ORDSEQ_POSTFLUSH
;
385 if ((rq
->flags
& REQ_ORDERED_COLOR
) ==
386 (q
->orig_bar_rq
->flags
& REQ_ORDERED_COLOR
))
387 return QUEUE_ORDSEQ_DRAIN
;
389 return QUEUE_ORDSEQ_DONE
;
392 void blk_ordered_complete_seq(request_queue_t
*q
, unsigned seq
, int error
)
397 if (error
&& !q
->orderr
)
400 BUG_ON(q
->ordseq
& seq
);
403 if (blk_ordered_cur_seq(q
) != QUEUE_ORDSEQ_DONE
)
407 * Okay, sequence complete.
410 uptodate
= q
->orderr
? q
->orderr
: 1;
414 end_that_request_first(rq
, uptodate
, rq
->hard_nr_sectors
);
415 end_that_request_last(rq
, uptodate
);
418 static void pre_flush_end_io(struct request
*rq
, int error
)
420 elv_completed_request(rq
->q
, rq
);
421 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_PREFLUSH
, error
);
424 static void bar_end_io(struct request
*rq
, int error
)
426 elv_completed_request(rq
->q
, rq
);
427 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_BAR
, error
);
430 static void post_flush_end_io(struct request
*rq
, int error
)
432 elv_completed_request(rq
->q
, rq
);
433 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_POSTFLUSH
, error
);
436 static void queue_flush(request_queue_t
*q
, unsigned which
)
439 rq_end_io_fn
*end_io
;
441 if (which
== QUEUE_ORDERED_PREFLUSH
) {
442 rq
= &q
->pre_flush_rq
;
443 end_io
= pre_flush_end_io
;
445 rq
= &q
->post_flush_rq
;
446 end_io
= post_flush_end_io
;
450 rq
->flags
= REQ_HARDBARRIER
;
451 rq
->elevator_private
= NULL
;
452 rq
->rq_disk
= q
->bar_rq
.rq_disk
;
455 q
->prepare_flush_fn(q
, rq
);
457 elv_insert(q
, rq
, ELEVATOR_INSERT_FRONT
);
460 static inline struct request
*start_ordered(request_queue_t
*q
,
465 q
->ordered
= q
->next_ordered
;
466 q
->ordseq
|= QUEUE_ORDSEQ_STARTED
;
469 * Prep proxy barrier request.
471 blkdev_dequeue_request(rq
);
475 rq
->flags
= bio_data_dir(q
->orig_bar_rq
->bio
);
476 rq
->flags
|= q
->ordered
& QUEUE_ORDERED_FUA
? REQ_FUA
: 0;
477 rq
->elevator_private
= NULL
;
479 init_request_from_bio(rq
, q
->orig_bar_rq
->bio
);
480 rq
->end_io
= bar_end_io
;
483 * Queue ordered sequence. As we stack them at the head, we
484 * need to queue in reverse order. Note that we rely on that
485 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
486 * request gets inbetween ordered sequence.
488 if (q
->ordered
& QUEUE_ORDERED_POSTFLUSH
)
489 queue_flush(q
, QUEUE_ORDERED_POSTFLUSH
);
491 q
->ordseq
|= QUEUE_ORDSEQ_POSTFLUSH
;
493 elv_insert(q
, rq
, ELEVATOR_INSERT_FRONT
);
495 if (q
->ordered
& QUEUE_ORDERED_PREFLUSH
) {
496 queue_flush(q
, QUEUE_ORDERED_PREFLUSH
);
497 rq
= &q
->pre_flush_rq
;
499 q
->ordseq
|= QUEUE_ORDSEQ_PREFLUSH
;
501 if ((q
->ordered
& QUEUE_ORDERED_TAG
) || q
->in_flight
== 0)
502 q
->ordseq
|= QUEUE_ORDSEQ_DRAIN
;
509 int blk_do_ordered(request_queue_t
*q
, struct request
**rqp
)
511 struct request
*rq
= *rqp
;
512 int is_barrier
= blk_fs_request(rq
) && blk_barrier_rq(rq
);
518 if (q
->next_ordered
!= QUEUE_ORDERED_NONE
) {
519 *rqp
= start_ordered(q
, rq
);
523 * This can happen when the queue switches to
524 * ORDERED_NONE while this request is on it.
526 blkdev_dequeue_request(rq
);
527 end_that_request_first(rq
, -EOPNOTSUPP
,
528 rq
->hard_nr_sectors
);
529 end_that_request_last(rq
, -EOPNOTSUPP
);
536 * Ordered sequence in progress
539 /* Special requests are not subject to ordering rules. */
540 if (!blk_fs_request(rq
) &&
541 rq
!= &q
->pre_flush_rq
&& rq
!= &q
->post_flush_rq
)
544 if (q
->ordered
& QUEUE_ORDERED_TAG
) {
545 /* Ordered by tag. Blocking the next barrier is enough. */
546 if (is_barrier
&& rq
!= &q
->bar_rq
)
549 /* Ordered by draining. Wait for turn. */
550 WARN_ON(blk_ordered_req_seq(rq
) < blk_ordered_cur_seq(q
));
551 if (blk_ordered_req_seq(rq
) > blk_ordered_cur_seq(q
))
558 static int flush_dry_bio_endio(struct bio
*bio
, unsigned int bytes
, int error
)
560 request_queue_t
*q
= bio
->bi_private
;
561 struct bio_vec
*bvec
;
565 * This is dry run, restore bio_sector and size. We'll finish
566 * this request again with the original bi_end_io after an
567 * error occurs or post flush is complete.
576 bio_for_each_segment(bvec
, bio
, i
) {
577 bvec
->bv_len
+= bvec
->bv_offset
;
582 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
583 bio
->bi_size
= q
->bi_size
;
584 bio
->bi_sector
-= (q
->bi_size
>> 9);
590 static inline int ordered_bio_endio(struct request
*rq
, struct bio
*bio
,
591 unsigned int nbytes
, int error
)
593 request_queue_t
*q
= rq
->q
;
597 if (&q
->bar_rq
!= rq
)
601 * Okay, this is the barrier request in progress, dry finish it.
603 if (error
&& !q
->orderr
)
606 endio
= bio
->bi_end_io
;
607 private = bio
->bi_private
;
608 bio
->bi_end_io
= flush_dry_bio_endio
;
611 bio_endio(bio
, nbytes
, error
);
613 bio
->bi_end_io
= endio
;
614 bio
->bi_private
= private;
620 * blk_queue_bounce_limit - set bounce buffer limit for queue
621 * @q: the request queue for the device
622 * @dma_addr: bus address limit
625 * Different hardware can have different requirements as to what pages
626 * it can do I/O directly to. A low level driver can call
627 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
628 * buffers for doing I/O to pages residing above @page. By default
629 * the block layer sets this to the highest numbered "low" memory page.
631 void blk_queue_bounce_limit(request_queue_t
*q
, u64 dma_addr
)
633 unsigned long bounce_pfn
= dma_addr
>> PAGE_SHIFT
;
636 * set appropriate bounce gfp mask -- unfortunately we don't have a
637 * full 4GB zone, so we have to resort to low memory for any bounces.
638 * ISA has its own < 16MB zone.
640 if (bounce_pfn
< blk_max_low_pfn
) {
641 BUG_ON(dma_addr
< BLK_BOUNCE_ISA
);
642 init_emergency_isa_pool();
643 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
645 q
->bounce_gfp
= GFP_NOIO
;
647 q
->bounce_pfn
= bounce_pfn
;
650 EXPORT_SYMBOL(blk_queue_bounce_limit
);
653 * blk_queue_max_sectors - set max sectors for a request for this queue
654 * @q: the request queue for the device
655 * @max_sectors: max sectors in the usual 512b unit
658 * Enables a low level driver to set an upper limit on the size of
661 void blk_queue_max_sectors(request_queue_t
*q
, unsigned int max_sectors
)
663 if ((max_sectors
<< 9) < PAGE_CACHE_SIZE
) {
664 max_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
665 printk("%s: set to minimum %d\n", __FUNCTION__
, max_sectors
);
668 if (BLK_DEF_MAX_SECTORS
> max_sectors
)
669 q
->max_hw_sectors
= q
->max_sectors
= max_sectors
;
671 q
->max_sectors
= BLK_DEF_MAX_SECTORS
;
672 q
->max_hw_sectors
= max_sectors
;
676 EXPORT_SYMBOL(blk_queue_max_sectors
);
679 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
680 * @q: the request queue for the device
681 * @max_segments: max number of segments
684 * Enables a low level driver to set an upper limit on the number of
685 * physical data segments in a request. This would be the largest sized
686 * scatter list the driver could handle.
688 void blk_queue_max_phys_segments(request_queue_t
*q
, unsigned short max_segments
)
692 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
695 q
->max_phys_segments
= max_segments
;
698 EXPORT_SYMBOL(blk_queue_max_phys_segments
);
701 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
702 * @q: the request queue for the device
703 * @max_segments: max number of segments
706 * Enables a low level driver to set an upper limit on the number of
707 * hw data segments in a request. This would be the largest number of
708 * address/length pairs the host adapter can actually give as once
711 void blk_queue_max_hw_segments(request_queue_t
*q
, unsigned short max_segments
)
715 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
718 q
->max_hw_segments
= max_segments
;
721 EXPORT_SYMBOL(blk_queue_max_hw_segments
);
724 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
725 * @q: the request queue for the device
726 * @max_size: max size of segment in bytes
729 * Enables a low level driver to set an upper limit on the size of a
732 void blk_queue_max_segment_size(request_queue_t
*q
, unsigned int max_size
)
734 if (max_size
< PAGE_CACHE_SIZE
) {
735 max_size
= PAGE_CACHE_SIZE
;
736 printk("%s: set to minimum %d\n", __FUNCTION__
, max_size
);
739 q
->max_segment_size
= max_size
;
742 EXPORT_SYMBOL(blk_queue_max_segment_size
);
745 * blk_queue_hardsect_size - set hardware sector size for the queue
746 * @q: the request queue for the device
747 * @size: the hardware sector size, in bytes
750 * This should typically be set to the lowest possible sector size
751 * that the hardware can operate on (possible without reverting to
752 * even internal read-modify-write operations). Usually the default
753 * of 512 covers most hardware.
755 void blk_queue_hardsect_size(request_queue_t
*q
, unsigned short size
)
757 q
->hardsect_size
= size
;
760 EXPORT_SYMBOL(blk_queue_hardsect_size
);
763 * Returns the minimum that is _not_ zero, unless both are zero.
765 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
768 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
769 * @t: the stacking driver (top)
770 * @b: the underlying device (bottom)
772 void blk_queue_stack_limits(request_queue_t
*t
, request_queue_t
*b
)
774 /* zero is "infinity" */
775 t
->max_sectors
= min_not_zero(t
->max_sectors
,b
->max_sectors
);
776 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
,b
->max_hw_sectors
);
778 t
->max_phys_segments
= min(t
->max_phys_segments
,b
->max_phys_segments
);
779 t
->max_hw_segments
= min(t
->max_hw_segments
,b
->max_hw_segments
);
780 t
->max_segment_size
= min(t
->max_segment_size
,b
->max_segment_size
);
781 t
->hardsect_size
= max(t
->hardsect_size
,b
->hardsect_size
);
784 EXPORT_SYMBOL(blk_queue_stack_limits
);
787 * blk_queue_segment_boundary - set boundary rules for segment merging
788 * @q: the request queue for the device
789 * @mask: the memory boundary mask
791 void blk_queue_segment_boundary(request_queue_t
*q
, unsigned long mask
)
793 if (mask
< PAGE_CACHE_SIZE
- 1) {
794 mask
= PAGE_CACHE_SIZE
- 1;
795 printk("%s: set to minimum %lx\n", __FUNCTION__
, mask
);
798 q
->seg_boundary_mask
= mask
;
801 EXPORT_SYMBOL(blk_queue_segment_boundary
);
804 * blk_queue_dma_alignment - set dma length and memory alignment
805 * @q: the request queue for the device
806 * @mask: alignment mask
809 * set required memory and length aligment for direct dma transactions.
810 * this is used when buiding direct io requests for the queue.
813 void blk_queue_dma_alignment(request_queue_t
*q
, int mask
)
815 q
->dma_alignment
= mask
;
818 EXPORT_SYMBOL(blk_queue_dma_alignment
);
821 * blk_queue_find_tag - find a request by its tag and queue
822 * @q: The request queue for the device
823 * @tag: The tag of the request
826 * Should be used when a device returns a tag and you want to match
829 * no locks need be held.
831 struct request
*blk_queue_find_tag(request_queue_t
*q
, int tag
)
833 struct blk_queue_tag
*bqt
= q
->queue_tags
;
835 if (unlikely(bqt
== NULL
|| tag
>= bqt
->real_max_depth
))
838 return bqt
->tag_index
[tag
];
841 EXPORT_SYMBOL(blk_queue_find_tag
);
844 * __blk_queue_free_tags - release tag maintenance info
845 * @q: the request queue for the device
848 * blk_cleanup_queue() will take care of calling this function, if tagging
849 * has been used. So there's no need to call this directly.
851 static void __blk_queue_free_tags(request_queue_t
*q
)
853 struct blk_queue_tag
*bqt
= q
->queue_tags
;
858 if (atomic_dec_and_test(&bqt
->refcnt
)) {
860 BUG_ON(!list_empty(&bqt
->busy_list
));
862 kfree(bqt
->tag_index
);
863 bqt
->tag_index
= NULL
;
871 q
->queue_tags
= NULL
;
872 q
->queue_flags
&= ~(1 << QUEUE_FLAG_QUEUED
);
876 * blk_queue_free_tags - release tag maintenance info
877 * @q: the request queue for the device
880 * This is used to disabled tagged queuing to a device, yet leave
883 void blk_queue_free_tags(request_queue_t
*q
)
885 clear_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
888 EXPORT_SYMBOL(blk_queue_free_tags
);
891 init_tag_map(request_queue_t
*q
, struct blk_queue_tag
*tags
, int depth
)
893 struct request
**tag_index
;
894 unsigned long *tag_map
;
897 if (depth
> q
->nr_requests
* 2) {
898 depth
= q
->nr_requests
* 2;
899 printk(KERN_ERR
"%s: adjusted depth to %d\n",
900 __FUNCTION__
, depth
);
903 tag_index
= kmalloc(depth
* sizeof(struct request
*), GFP_ATOMIC
);
907 nr_ulongs
= ALIGN(depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
908 tag_map
= kmalloc(nr_ulongs
* sizeof(unsigned long), GFP_ATOMIC
);
912 memset(tag_index
, 0, depth
* sizeof(struct request
*));
913 memset(tag_map
, 0, nr_ulongs
* sizeof(unsigned long));
914 tags
->real_max_depth
= depth
;
915 tags
->max_depth
= depth
;
916 tags
->tag_index
= tag_index
;
917 tags
->tag_map
= tag_map
;
926 * blk_queue_init_tags - initialize the queue tag info
927 * @q: the request queue for the device
928 * @depth: the maximum queue depth supported
929 * @tags: the tag to use
931 int blk_queue_init_tags(request_queue_t
*q
, int depth
,
932 struct blk_queue_tag
*tags
)
936 BUG_ON(tags
&& q
->queue_tags
&& tags
!= q
->queue_tags
);
938 if (!tags
&& !q
->queue_tags
) {
939 tags
= kmalloc(sizeof(struct blk_queue_tag
), GFP_ATOMIC
);
943 if (init_tag_map(q
, tags
, depth
))
946 INIT_LIST_HEAD(&tags
->busy_list
);
948 atomic_set(&tags
->refcnt
, 1);
949 } else if (q
->queue_tags
) {
950 if ((rc
= blk_queue_resize_tags(q
, depth
)))
952 set_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
955 atomic_inc(&tags
->refcnt
);
958 * assign it, all done
960 q
->queue_tags
= tags
;
961 q
->queue_flags
|= (1 << QUEUE_FLAG_QUEUED
);
968 EXPORT_SYMBOL(blk_queue_init_tags
);
971 * blk_queue_resize_tags - change the queueing depth
972 * @q: the request queue for the device
973 * @new_depth: the new max command queueing depth
976 * Must be called with the queue lock held.
978 int blk_queue_resize_tags(request_queue_t
*q
, int new_depth
)
980 struct blk_queue_tag
*bqt
= q
->queue_tags
;
981 struct request
**tag_index
;
982 unsigned long *tag_map
;
983 int max_depth
, nr_ulongs
;
989 * if we already have large enough real_max_depth. just
990 * adjust max_depth. *NOTE* as requests with tag value
991 * between new_depth and real_max_depth can be in-flight, tag
992 * map can not be shrunk blindly here.
994 if (new_depth
<= bqt
->real_max_depth
) {
995 bqt
->max_depth
= new_depth
;
1000 * save the old state info, so we can copy it back
1002 tag_index
= bqt
->tag_index
;
1003 tag_map
= bqt
->tag_map
;
1004 max_depth
= bqt
->real_max_depth
;
1006 if (init_tag_map(q
, bqt
, new_depth
))
1009 memcpy(bqt
->tag_index
, tag_index
, max_depth
* sizeof(struct request
*));
1010 nr_ulongs
= ALIGN(max_depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
1011 memcpy(bqt
->tag_map
, tag_map
, nr_ulongs
* sizeof(unsigned long));
1018 EXPORT_SYMBOL(blk_queue_resize_tags
);
1021 * blk_queue_end_tag - end tag operations for a request
1022 * @q: the request queue for the device
1023 * @rq: the request that has completed
1026 * Typically called when end_that_request_first() returns 0, meaning
1027 * all transfers have been done for a request. It's important to call
1028 * this function before end_that_request_last(), as that will put the
1029 * request back on the free list thus corrupting the internal tag list.
1032 * queue lock must be held.
1034 void blk_queue_end_tag(request_queue_t
*q
, struct request
*rq
)
1036 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1041 if (unlikely(tag
>= bqt
->real_max_depth
))
1043 * This can happen after tag depth has been reduced.
1044 * FIXME: how about a warning or info message here?
1048 if (unlikely(!__test_and_clear_bit(tag
, bqt
->tag_map
))) {
1049 printk(KERN_ERR
"%s: attempt to clear non-busy tag (%d)\n",
1054 list_del_init(&rq
->queuelist
);
1055 rq
->flags
&= ~REQ_QUEUED
;
1058 if (unlikely(bqt
->tag_index
[tag
] == NULL
))
1059 printk(KERN_ERR
"%s: tag %d is missing\n",
1062 bqt
->tag_index
[tag
] = NULL
;
1066 EXPORT_SYMBOL(blk_queue_end_tag
);
1069 * blk_queue_start_tag - find a free tag and assign it
1070 * @q: the request queue for the device
1071 * @rq: the block request that needs tagging
1074 * This can either be used as a stand-alone helper, or possibly be
1075 * assigned as the queue &prep_rq_fn (in which case &struct request
1076 * automagically gets a tag assigned). Note that this function
1077 * assumes that any type of request can be queued! if this is not
1078 * true for your device, you must check the request type before
1079 * calling this function. The request will also be removed from
1080 * the request queue, so it's the drivers responsibility to readd
1081 * it if it should need to be restarted for some reason.
1084 * queue lock must be held.
1086 int blk_queue_start_tag(request_queue_t
*q
, struct request
*rq
)
1088 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1091 if (unlikely((rq
->flags
& REQ_QUEUED
))) {
1093 "%s: request %p for device [%s] already tagged %d",
1095 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->tag
);
1099 tag
= find_first_zero_bit(bqt
->tag_map
, bqt
->max_depth
);
1100 if (tag
>= bqt
->max_depth
)
1103 __set_bit(tag
, bqt
->tag_map
);
1105 rq
->flags
|= REQ_QUEUED
;
1107 bqt
->tag_index
[tag
] = rq
;
1108 blkdev_dequeue_request(rq
);
1109 list_add(&rq
->queuelist
, &bqt
->busy_list
);
1114 EXPORT_SYMBOL(blk_queue_start_tag
);
1117 * blk_queue_invalidate_tags - invalidate all pending tags
1118 * @q: the request queue for the device
1121 * Hardware conditions may dictate a need to stop all pending requests.
1122 * In this case, we will safely clear the block side of the tag queue and
1123 * readd all requests to the request queue in the right order.
1126 * queue lock must be held.
1128 void blk_queue_invalidate_tags(request_queue_t
*q
)
1130 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1131 struct list_head
*tmp
, *n
;
1134 list_for_each_safe(tmp
, n
, &bqt
->busy_list
) {
1135 rq
= list_entry_rq(tmp
);
1137 if (rq
->tag
== -1) {
1139 "%s: bad tag found on list\n", __FUNCTION__
);
1140 list_del_init(&rq
->queuelist
);
1141 rq
->flags
&= ~REQ_QUEUED
;
1143 blk_queue_end_tag(q
, rq
);
1145 rq
->flags
&= ~REQ_STARTED
;
1146 __elv_add_request(q
, rq
, ELEVATOR_INSERT_BACK
, 0);
1150 EXPORT_SYMBOL(blk_queue_invalidate_tags
);
1152 static const char * const rq_flags
[] = {
1173 "REQ_DRIVE_TASKFILE",
1178 "REQ_ORDERED_COLOR",
1181 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
1185 printk("%s: dev %s: flags = ", msg
,
1186 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?");
1189 if (rq
->flags
& (1 << bit
))
1190 printk("%s ", rq_flags
[bit
]);
1192 } while (bit
< __REQ_NR_BITS
);
1194 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq
->sector
,
1196 rq
->current_nr_sectors
);
1197 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq
->bio
, rq
->biotail
, rq
->buffer
, rq
->data
, rq
->data_len
);
1199 if (rq
->flags
& (REQ_BLOCK_PC
| REQ_PC
)) {
1201 for (bit
= 0; bit
< sizeof(rq
->cmd
); bit
++)
1202 printk("%02x ", rq
->cmd
[bit
]);
1207 EXPORT_SYMBOL(blk_dump_rq_flags
);
1209 void blk_recount_segments(request_queue_t
*q
, struct bio
*bio
)
1211 struct bio_vec
*bv
, *bvprv
= NULL
;
1212 int i
, nr_phys_segs
, nr_hw_segs
, seg_size
, hw_seg_size
, cluster
;
1213 int high
, highprv
= 1;
1215 if (unlikely(!bio
->bi_io_vec
))
1218 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1219 hw_seg_size
= seg_size
= nr_phys_segs
= nr_hw_segs
= 0;
1220 bio_for_each_segment(bv
, bio
, i
) {
1222 * the trick here is making sure that a high page is never
1223 * considered part of another segment, since that might
1224 * change with the bounce page.
1226 high
= page_to_pfn(bv
->bv_page
) >= q
->bounce_pfn
;
1227 if (high
|| highprv
)
1228 goto new_hw_segment
;
1230 if (seg_size
+ bv
->bv_len
> q
->max_segment_size
)
1232 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bv
))
1234 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bv
))
1236 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
))
1237 goto new_hw_segment
;
1239 seg_size
+= bv
->bv_len
;
1240 hw_seg_size
+= bv
->bv_len
;
1245 if (BIOVEC_VIRT_MERGEABLE(bvprv
, bv
) &&
1246 !BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
)) {
1247 hw_seg_size
+= bv
->bv_len
;
1250 if (hw_seg_size
> bio
->bi_hw_front_size
)
1251 bio
->bi_hw_front_size
= hw_seg_size
;
1252 hw_seg_size
= BIOVEC_VIRT_START_SIZE(bv
) + bv
->bv_len
;
1258 seg_size
= bv
->bv_len
;
1261 if (hw_seg_size
> bio
->bi_hw_back_size
)
1262 bio
->bi_hw_back_size
= hw_seg_size
;
1263 if (nr_hw_segs
== 1 && hw_seg_size
> bio
->bi_hw_front_size
)
1264 bio
->bi_hw_front_size
= hw_seg_size
;
1265 bio
->bi_phys_segments
= nr_phys_segs
;
1266 bio
->bi_hw_segments
= nr_hw_segs
;
1267 bio
->bi_flags
|= (1 << BIO_SEG_VALID
);
1271 static int blk_phys_contig_segment(request_queue_t
*q
, struct bio
*bio
,
1274 if (!(q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
)))
1277 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)))
1279 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1283 * bio and nxt are contigous in memory, check if the queue allows
1284 * these two to be merged into one
1286 if (BIO_SEG_BOUNDARY(q
, bio
, nxt
))
1292 static int blk_hw_contig_segment(request_queue_t
*q
, struct bio
*bio
,
1295 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1296 blk_recount_segments(q
, bio
);
1297 if (unlikely(!bio_flagged(nxt
, BIO_SEG_VALID
)))
1298 blk_recount_segments(q
, nxt
);
1299 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)) ||
1300 BIOVEC_VIRT_OVERSIZE(bio
->bi_hw_front_size
+ bio
->bi_hw_back_size
))
1302 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1309 * map a request to scatterlist, return number of sg entries setup. Caller
1310 * must make sure sg can hold rq->nr_phys_segments entries
1312 int blk_rq_map_sg(request_queue_t
*q
, struct request
*rq
, struct scatterlist
*sg
)
1314 struct bio_vec
*bvec
, *bvprv
;
1316 int nsegs
, i
, cluster
;
1319 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1322 * for each bio in rq
1325 rq_for_each_bio(bio
, rq
) {
1327 * for each segment in bio
1329 bio_for_each_segment(bvec
, bio
, i
) {
1330 int nbytes
= bvec
->bv_len
;
1332 if (bvprv
&& cluster
) {
1333 if (sg
[nsegs
- 1].length
+ nbytes
> q
->max_segment_size
)
1336 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bvec
))
1338 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bvec
))
1341 sg
[nsegs
- 1].length
+= nbytes
;
1344 memset(&sg
[nsegs
],0,sizeof(struct scatterlist
));
1345 sg
[nsegs
].page
= bvec
->bv_page
;
1346 sg
[nsegs
].length
= nbytes
;
1347 sg
[nsegs
].offset
= bvec
->bv_offset
;
1352 } /* segments in bio */
1358 EXPORT_SYMBOL(blk_rq_map_sg
);
1361 * the standard queue merge functions, can be overridden with device
1362 * specific ones if so desired
1365 static inline int ll_new_mergeable(request_queue_t
*q
,
1366 struct request
*req
,
1369 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1371 if (req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1372 req
->flags
|= REQ_NOMERGE
;
1373 if (req
== q
->last_merge
)
1374 q
->last_merge
= NULL
;
1379 * A hw segment is just getting larger, bump just the phys
1382 req
->nr_phys_segments
+= nr_phys_segs
;
1386 static inline int ll_new_hw_segment(request_queue_t
*q
,
1387 struct request
*req
,
1390 int nr_hw_segs
= bio_hw_segments(q
, bio
);
1391 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1393 if (req
->nr_hw_segments
+ nr_hw_segs
> q
->max_hw_segments
1394 || req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1395 req
->flags
|= REQ_NOMERGE
;
1396 if (req
== q
->last_merge
)
1397 q
->last_merge
= NULL
;
1402 * This will form the start of a new hw segment. Bump both
1405 req
->nr_hw_segments
+= nr_hw_segs
;
1406 req
->nr_phys_segments
+= nr_phys_segs
;
1410 static int ll_back_merge_fn(request_queue_t
*q
, struct request
*req
,
1413 unsigned short max_sectors
;
1416 if (unlikely(blk_pc_request(req
)))
1417 max_sectors
= q
->max_hw_sectors
;
1419 max_sectors
= q
->max_sectors
;
1421 if (req
->nr_sectors
+ bio_sectors(bio
) > max_sectors
) {
1422 req
->flags
|= REQ_NOMERGE
;
1423 if (req
== q
->last_merge
)
1424 q
->last_merge
= NULL
;
1427 if (unlikely(!bio_flagged(req
->biotail
, BIO_SEG_VALID
)))
1428 blk_recount_segments(q
, req
->biotail
);
1429 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1430 blk_recount_segments(q
, bio
);
1431 len
= req
->biotail
->bi_hw_back_size
+ bio
->bi_hw_front_size
;
1432 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req
->biotail
), __BVEC_START(bio
)) &&
1433 !BIOVEC_VIRT_OVERSIZE(len
)) {
1434 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1437 if (req
->nr_hw_segments
== 1)
1438 req
->bio
->bi_hw_front_size
= len
;
1439 if (bio
->bi_hw_segments
== 1)
1440 bio
->bi_hw_back_size
= len
;
1445 return ll_new_hw_segment(q
, req
, bio
);
1448 static int ll_front_merge_fn(request_queue_t
*q
, struct request
*req
,
1451 unsigned short max_sectors
;
1454 if (unlikely(blk_pc_request(req
)))
1455 max_sectors
= q
->max_hw_sectors
;
1457 max_sectors
= q
->max_sectors
;
1460 if (req
->nr_sectors
+ bio_sectors(bio
) > max_sectors
) {
1461 req
->flags
|= REQ_NOMERGE
;
1462 if (req
== q
->last_merge
)
1463 q
->last_merge
= NULL
;
1466 len
= bio
->bi_hw_back_size
+ req
->bio
->bi_hw_front_size
;
1467 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1468 blk_recount_segments(q
, bio
);
1469 if (unlikely(!bio_flagged(req
->bio
, BIO_SEG_VALID
)))
1470 blk_recount_segments(q
, req
->bio
);
1471 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(req
->bio
)) &&
1472 !BIOVEC_VIRT_OVERSIZE(len
)) {
1473 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1476 if (bio
->bi_hw_segments
== 1)
1477 bio
->bi_hw_front_size
= len
;
1478 if (req
->nr_hw_segments
== 1)
1479 req
->biotail
->bi_hw_back_size
= len
;
1484 return ll_new_hw_segment(q
, req
, bio
);
1487 static int ll_merge_requests_fn(request_queue_t
*q
, struct request
*req
,
1488 struct request
*next
)
1490 int total_phys_segments
;
1491 int total_hw_segments
;
1494 * First check if the either of the requests are re-queued
1495 * requests. Can't merge them if they are.
1497 if (req
->special
|| next
->special
)
1501 * Will it become too large?
1503 if ((req
->nr_sectors
+ next
->nr_sectors
) > q
->max_sectors
)
1506 total_phys_segments
= req
->nr_phys_segments
+ next
->nr_phys_segments
;
1507 if (blk_phys_contig_segment(q
, req
->biotail
, next
->bio
))
1508 total_phys_segments
--;
1510 if (total_phys_segments
> q
->max_phys_segments
)
1513 total_hw_segments
= req
->nr_hw_segments
+ next
->nr_hw_segments
;
1514 if (blk_hw_contig_segment(q
, req
->biotail
, next
->bio
)) {
1515 int len
= req
->biotail
->bi_hw_back_size
+ next
->bio
->bi_hw_front_size
;
1517 * propagate the combined length to the end of the requests
1519 if (req
->nr_hw_segments
== 1)
1520 req
->bio
->bi_hw_front_size
= len
;
1521 if (next
->nr_hw_segments
== 1)
1522 next
->biotail
->bi_hw_back_size
= len
;
1523 total_hw_segments
--;
1526 if (total_hw_segments
> q
->max_hw_segments
)
1529 /* Merge is OK... */
1530 req
->nr_phys_segments
= total_phys_segments
;
1531 req
->nr_hw_segments
= total_hw_segments
;
1536 * "plug" the device if there are no outstanding requests: this will
1537 * force the transfer to start only after we have put all the requests
1540 * This is called with interrupts off and no requests on the queue and
1541 * with the queue lock held.
1543 void blk_plug_device(request_queue_t
*q
)
1545 WARN_ON(!irqs_disabled());
1548 * don't plug a stopped queue, it must be paired with blk_start_queue()
1549 * which will restart the queueing
1551 if (test_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
))
1554 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
1555 mod_timer(&q
->unplug_timer
, jiffies
+ q
->unplug_delay
);
1558 EXPORT_SYMBOL(blk_plug_device
);
1561 * remove the queue from the plugged list, if present. called with
1562 * queue lock held and interrupts disabled.
1564 int blk_remove_plug(request_queue_t
*q
)
1566 WARN_ON(!irqs_disabled());
1568 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
1571 del_timer(&q
->unplug_timer
);
1575 EXPORT_SYMBOL(blk_remove_plug
);
1578 * remove the plug and let it rip..
1580 void __generic_unplug_device(request_queue_t
*q
)
1582 if (unlikely(test_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
)))
1585 if (!blk_remove_plug(q
))
1590 EXPORT_SYMBOL(__generic_unplug_device
);
1593 * generic_unplug_device - fire a request queue
1594 * @q: The &request_queue_t in question
1597 * Linux uses plugging to build bigger requests queues before letting
1598 * the device have at them. If a queue is plugged, the I/O scheduler
1599 * is still adding and merging requests on the queue. Once the queue
1600 * gets unplugged, the request_fn defined for the queue is invoked and
1601 * transfers started.
1603 void generic_unplug_device(request_queue_t
*q
)
1605 spin_lock_irq(q
->queue_lock
);
1606 __generic_unplug_device(q
);
1607 spin_unlock_irq(q
->queue_lock
);
1609 EXPORT_SYMBOL(generic_unplug_device
);
1611 static void blk_backing_dev_unplug(struct backing_dev_info
*bdi
,
1614 request_queue_t
*q
= bdi
->unplug_io_data
;
1617 * devices don't necessarily have an ->unplug_fn defined
1623 static void blk_unplug_work(void *data
)
1625 request_queue_t
*q
= data
;
1630 static void blk_unplug_timeout(unsigned long data
)
1632 request_queue_t
*q
= (request_queue_t
*)data
;
1634 kblockd_schedule_work(&q
->unplug_work
);
1638 * blk_start_queue - restart a previously stopped queue
1639 * @q: The &request_queue_t in question
1642 * blk_start_queue() will clear the stop flag on the queue, and call
1643 * the request_fn for the queue if it was in a stopped state when
1644 * entered. Also see blk_stop_queue(). Queue lock must be held.
1646 void blk_start_queue(request_queue_t
*q
)
1648 clear_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1651 * one level of recursion is ok and is much faster than kicking
1652 * the unplug handling
1654 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1656 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1659 kblockd_schedule_work(&q
->unplug_work
);
1663 EXPORT_SYMBOL(blk_start_queue
);
1666 * blk_stop_queue - stop a queue
1667 * @q: The &request_queue_t in question
1670 * The Linux block layer assumes that a block driver will consume all
1671 * entries on the request queue when the request_fn strategy is called.
1672 * Often this will not happen, because of hardware limitations (queue
1673 * depth settings). If a device driver gets a 'queue full' response,
1674 * or if it simply chooses not to queue more I/O at one point, it can
1675 * call this function to prevent the request_fn from being called until
1676 * the driver has signalled it's ready to go again. This happens by calling
1677 * blk_start_queue() to restart queue operations. Queue lock must be held.
1679 void blk_stop_queue(request_queue_t
*q
)
1682 set_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1684 EXPORT_SYMBOL(blk_stop_queue
);
1687 * blk_sync_queue - cancel any pending callbacks on a queue
1691 * The block layer may perform asynchronous callback activity
1692 * on a queue, such as calling the unplug function after a timeout.
1693 * A block device may call blk_sync_queue to ensure that any
1694 * such activity is cancelled, thus allowing it to release resources
1695 * the the callbacks might use. The caller must already have made sure
1696 * that its ->make_request_fn will not re-add plugging prior to calling
1700 void blk_sync_queue(struct request_queue
*q
)
1702 del_timer_sync(&q
->unplug_timer
);
1705 EXPORT_SYMBOL(blk_sync_queue
);
1708 * blk_run_queue - run a single device queue
1709 * @q: The queue to run
1711 void blk_run_queue(struct request_queue
*q
)
1713 unsigned long flags
;
1715 spin_lock_irqsave(q
->queue_lock
, flags
);
1717 if (!elv_queue_empty(q
))
1719 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1721 EXPORT_SYMBOL(blk_run_queue
);
1724 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1725 * @q: the request queue to be released
1728 * blk_cleanup_queue is the pair to blk_init_queue() or
1729 * blk_queue_make_request(). It should be called when a request queue is
1730 * being released; typically when a block device is being de-registered.
1731 * Currently, its primary task it to free all the &struct request
1732 * structures that were allocated to the queue and the queue itself.
1735 * Hopefully the low level driver will have finished any
1736 * outstanding requests first...
1738 void blk_cleanup_queue(request_queue_t
* q
)
1740 struct request_list
*rl
= &q
->rq
;
1742 if (!atomic_dec_and_test(&q
->refcnt
))
1746 elevator_exit(q
->elevator
);
1751 mempool_destroy(rl
->rq_pool
);
1754 __blk_queue_free_tags(q
);
1756 kmem_cache_free(requestq_cachep
, q
);
1759 EXPORT_SYMBOL(blk_cleanup_queue
);
1761 static int blk_init_free_list(request_queue_t
*q
)
1763 struct request_list
*rl
= &q
->rq
;
1765 rl
->count
[READ
] = rl
->count
[WRITE
] = 0;
1766 rl
->starved
[READ
] = rl
->starved
[WRITE
] = 0;
1768 init_waitqueue_head(&rl
->wait
[READ
]);
1769 init_waitqueue_head(&rl
->wait
[WRITE
]);
1771 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
1772 mempool_free_slab
, request_cachep
, q
->node
);
1780 request_queue_t
*blk_alloc_queue(gfp_t gfp_mask
)
1782 return blk_alloc_queue_node(gfp_mask
, -1);
1784 EXPORT_SYMBOL(blk_alloc_queue
);
1786 request_queue_t
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
1790 q
= kmem_cache_alloc_node(requestq_cachep
, gfp_mask
, node_id
);
1794 memset(q
, 0, sizeof(*q
));
1795 init_timer(&q
->unplug_timer
);
1796 atomic_set(&q
->refcnt
, 1);
1798 q
->backing_dev_info
.unplug_io_fn
= blk_backing_dev_unplug
;
1799 q
->backing_dev_info
.unplug_io_data
= q
;
1803 EXPORT_SYMBOL(blk_alloc_queue_node
);
1806 * blk_init_queue - prepare a request queue for use with a block device
1807 * @rfn: The function to be called to process requests that have been
1808 * placed on the queue.
1809 * @lock: Request queue spin lock
1812 * If a block device wishes to use the standard request handling procedures,
1813 * which sorts requests and coalesces adjacent requests, then it must
1814 * call blk_init_queue(). The function @rfn will be called when there
1815 * are requests on the queue that need to be processed. If the device
1816 * supports plugging, then @rfn may not be called immediately when requests
1817 * are available on the queue, but may be called at some time later instead.
1818 * Plugged queues are generally unplugged when a buffer belonging to one
1819 * of the requests on the queue is needed, or due to memory pressure.
1821 * @rfn is not required, or even expected, to remove all requests off the
1822 * queue, but only as many as it can handle at a time. If it does leave
1823 * requests on the queue, it is responsible for arranging that the requests
1824 * get dealt with eventually.
1826 * The queue spin lock must be held while manipulating the requests on the
1829 * Function returns a pointer to the initialized request queue, or NULL if
1830 * it didn't succeed.
1833 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1834 * when the block device is deactivated (such as at module unload).
1837 request_queue_t
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
1839 return blk_init_queue_node(rfn
, lock
, -1);
1841 EXPORT_SYMBOL(blk_init_queue
);
1844 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
1846 request_queue_t
*q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
1852 if (blk_init_free_list(q
))
1856 * if caller didn't supply a lock, they get per-queue locking with
1860 spin_lock_init(&q
->__queue_lock
);
1861 lock
= &q
->__queue_lock
;
1864 q
->request_fn
= rfn
;
1865 q
->back_merge_fn
= ll_back_merge_fn
;
1866 q
->front_merge_fn
= ll_front_merge_fn
;
1867 q
->merge_requests_fn
= ll_merge_requests_fn
;
1868 q
->prep_rq_fn
= NULL
;
1869 q
->unplug_fn
= generic_unplug_device
;
1870 q
->queue_flags
= (1 << QUEUE_FLAG_CLUSTER
);
1871 q
->queue_lock
= lock
;
1873 blk_queue_segment_boundary(q
, 0xffffffff);
1875 blk_queue_make_request(q
, __make_request
);
1876 blk_queue_max_segment_size(q
, MAX_SEGMENT_SIZE
);
1878 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
1879 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
1884 if (!elevator_init(q
, NULL
)) {
1885 blk_queue_congestion_threshold(q
);
1889 blk_cleanup_queue(q
);
1891 kmem_cache_free(requestq_cachep
, q
);
1894 EXPORT_SYMBOL(blk_init_queue_node
);
1896 int blk_get_queue(request_queue_t
*q
)
1898 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
1899 atomic_inc(&q
->refcnt
);
1906 EXPORT_SYMBOL(blk_get_queue
);
1908 static inline void blk_free_request(request_queue_t
*q
, struct request
*rq
)
1910 if (rq
->flags
& REQ_ELVPRIV
)
1911 elv_put_request(q
, rq
);
1912 mempool_free(rq
, q
->rq
.rq_pool
);
1915 static inline struct request
*
1916 blk_alloc_request(request_queue_t
*q
, int rw
, struct bio
*bio
,
1917 int priv
, gfp_t gfp_mask
)
1919 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
1925 * first three bits are identical in rq->flags and bio->bi_rw,
1926 * see bio.h and blkdev.h
1931 if (unlikely(elv_set_request(q
, rq
, bio
, gfp_mask
))) {
1932 mempool_free(rq
, q
->rq
.rq_pool
);
1935 rq
->flags
|= REQ_ELVPRIV
;
1942 * ioc_batching returns true if the ioc is a valid batching request and
1943 * should be given priority access to a request.
1945 static inline int ioc_batching(request_queue_t
*q
, struct io_context
*ioc
)
1951 * Make sure the process is able to allocate at least 1 request
1952 * even if the batch times out, otherwise we could theoretically
1955 return ioc
->nr_batch_requests
== q
->nr_batching
||
1956 (ioc
->nr_batch_requests
> 0
1957 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
1961 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1962 * will cause the process to be a "batcher" on all queues in the system. This
1963 * is the behaviour we want though - once it gets a wakeup it should be given
1966 static void ioc_set_batching(request_queue_t
*q
, struct io_context
*ioc
)
1968 if (!ioc
|| ioc_batching(q
, ioc
))
1971 ioc
->nr_batch_requests
= q
->nr_batching
;
1972 ioc
->last_waited
= jiffies
;
1975 static void __freed_request(request_queue_t
*q
, int rw
)
1977 struct request_list
*rl
= &q
->rq
;
1979 if (rl
->count
[rw
] < queue_congestion_off_threshold(q
))
1980 clear_queue_congested(q
, rw
);
1982 if (rl
->count
[rw
] + 1 <= q
->nr_requests
) {
1983 if (waitqueue_active(&rl
->wait
[rw
]))
1984 wake_up(&rl
->wait
[rw
]);
1986 blk_clear_queue_full(q
, rw
);
1991 * A request has just been released. Account for it, update the full and
1992 * congestion status, wake up any waiters. Called under q->queue_lock.
1994 static void freed_request(request_queue_t
*q
, int rw
, int priv
)
1996 struct request_list
*rl
= &q
->rq
;
2002 __freed_request(q
, rw
);
2004 if (unlikely(rl
->starved
[rw
^ 1]))
2005 __freed_request(q
, rw
^ 1);
2008 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2010 * Get a free request, queue_lock must be held.
2011 * Returns NULL on failure, with queue_lock held.
2012 * Returns !NULL on success, with queue_lock *not held*.
2014 static struct request
*get_request(request_queue_t
*q
, int rw
, struct bio
*bio
,
2017 struct request
*rq
= NULL
;
2018 struct request_list
*rl
= &q
->rq
;
2019 struct io_context
*ioc
= NULL
;
2020 int may_queue
, priv
;
2022 may_queue
= elv_may_queue(q
, rw
, bio
);
2023 if (may_queue
== ELV_MQUEUE_NO
)
2026 if (rl
->count
[rw
]+1 >= queue_congestion_on_threshold(q
)) {
2027 if (rl
->count
[rw
]+1 >= q
->nr_requests
) {
2028 ioc
= current_io_context(GFP_ATOMIC
);
2030 * The queue will fill after this allocation, so set
2031 * it as full, and mark this process as "batching".
2032 * This process will be allowed to complete a batch of
2033 * requests, others will be blocked.
2035 if (!blk_queue_full(q
, rw
)) {
2036 ioc_set_batching(q
, ioc
);
2037 blk_set_queue_full(q
, rw
);
2039 if (may_queue
!= ELV_MQUEUE_MUST
2040 && !ioc_batching(q
, ioc
)) {
2042 * The queue is full and the allocating
2043 * process is not a "batcher", and not
2044 * exempted by the IO scheduler
2050 set_queue_congested(q
, rw
);
2054 * Only allow batching queuers to allocate up to 50% over the defined
2055 * limit of requests, otherwise we could have thousands of requests
2056 * allocated with any setting of ->nr_requests
2058 if (rl
->count
[rw
] >= (3 * q
->nr_requests
/ 2))
2062 rl
->starved
[rw
] = 0;
2064 priv
= !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
2068 spin_unlock_irq(q
->queue_lock
);
2070 rq
= blk_alloc_request(q
, rw
, bio
, priv
, gfp_mask
);
2071 if (unlikely(!rq
)) {
2073 * Allocation failed presumably due to memory. Undo anything
2074 * we might have messed up.
2076 * Allocating task should really be put onto the front of the
2077 * wait queue, but this is pretty rare.
2079 spin_lock_irq(q
->queue_lock
);
2080 freed_request(q
, rw
, priv
);
2083 * in the very unlikely event that allocation failed and no
2084 * requests for this direction was pending, mark us starved
2085 * so that freeing of a request in the other direction will
2086 * notice us. another possible fix would be to split the
2087 * rq mempool into READ and WRITE
2090 if (unlikely(rl
->count
[rw
] == 0))
2091 rl
->starved
[rw
] = 1;
2097 * ioc may be NULL here, and ioc_batching will be false. That's
2098 * OK, if the queue is under the request limit then requests need
2099 * not count toward the nr_batch_requests limit. There will always
2100 * be some limit enforced by BLK_BATCH_TIME.
2102 if (ioc_batching(q
, ioc
))
2103 ioc
->nr_batch_requests
--;
2112 * No available requests for this queue, unplug the device and wait for some
2113 * requests to become available.
2115 * Called with q->queue_lock held, and returns with it unlocked.
2117 static struct request
*get_request_wait(request_queue_t
*q
, int rw
,
2122 rq
= get_request(q
, rw
, bio
, GFP_NOIO
);
2125 struct request_list
*rl
= &q
->rq
;
2127 prepare_to_wait_exclusive(&rl
->wait
[rw
], &wait
,
2128 TASK_UNINTERRUPTIBLE
);
2130 rq
= get_request(q
, rw
, bio
, GFP_NOIO
);
2133 struct io_context
*ioc
;
2135 __generic_unplug_device(q
);
2136 spin_unlock_irq(q
->queue_lock
);
2140 * After sleeping, we become a "batching" process and
2141 * will be able to allocate at least one request, and
2142 * up to a big batch of them for a small period time.
2143 * See ioc_batching, ioc_set_batching
2145 ioc
= current_io_context(GFP_NOIO
);
2146 ioc_set_batching(q
, ioc
);
2148 spin_lock_irq(q
->queue_lock
);
2150 finish_wait(&rl
->wait
[rw
], &wait
);
2156 struct request
*blk_get_request(request_queue_t
*q
, int rw
, gfp_t gfp_mask
)
2160 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
2162 spin_lock_irq(q
->queue_lock
);
2163 if (gfp_mask
& __GFP_WAIT
) {
2164 rq
= get_request_wait(q
, rw
, NULL
);
2166 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
2168 spin_unlock_irq(q
->queue_lock
);
2170 /* q->queue_lock is unlocked at this point */
2174 EXPORT_SYMBOL(blk_get_request
);
2177 * blk_requeue_request - put a request back on queue
2178 * @q: request queue where request should be inserted
2179 * @rq: request to be inserted
2182 * Drivers often keep queueing requests until the hardware cannot accept
2183 * more, when that condition happens we need to put the request back
2184 * on the queue. Must be called with queue lock held.
2186 void blk_requeue_request(request_queue_t
*q
, struct request
*rq
)
2188 if (blk_rq_tagged(rq
))
2189 blk_queue_end_tag(q
, rq
);
2191 elv_requeue_request(q
, rq
);
2194 EXPORT_SYMBOL(blk_requeue_request
);
2197 * blk_insert_request - insert a special request in to a request queue
2198 * @q: request queue where request should be inserted
2199 * @rq: request to be inserted
2200 * @at_head: insert request at head or tail of queue
2201 * @data: private data
2204 * Many block devices need to execute commands asynchronously, so they don't
2205 * block the whole kernel from preemption during request execution. This is
2206 * accomplished normally by inserting aritficial requests tagged as
2207 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2208 * scheduled for actual execution by the request queue.
2210 * We have the option of inserting the head or the tail of the queue.
2211 * Typically we use the tail for new ioctls and so forth. We use the head
2212 * of the queue for things like a QUEUE_FULL message from a device, or a
2213 * host that is unable to accept a particular command.
2215 void blk_insert_request(request_queue_t
*q
, struct request
*rq
,
2216 int at_head
, void *data
)
2218 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2219 unsigned long flags
;
2222 * tell I/O scheduler that this isn't a regular read/write (ie it
2223 * must not attempt merges on this) and that it acts as a soft
2226 rq
->flags
|= REQ_SPECIAL
| REQ_SOFTBARRIER
;
2230 spin_lock_irqsave(q
->queue_lock
, flags
);
2233 * If command is tagged, release the tag
2235 if (blk_rq_tagged(rq
))
2236 blk_queue_end_tag(q
, rq
);
2238 drive_stat_acct(rq
, rq
->nr_sectors
, 1);
2239 __elv_add_request(q
, rq
, where
, 0);
2241 if (blk_queue_plugged(q
))
2242 __generic_unplug_device(q
);
2245 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2248 EXPORT_SYMBOL(blk_insert_request
);
2251 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2252 * @q: request queue where request should be inserted
2253 * @rq: request structure to fill
2254 * @ubuf: the user buffer
2255 * @len: length of user data
2258 * Data will be mapped directly for zero copy io, if possible. Otherwise
2259 * a kernel bounce buffer is used.
2261 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2262 * still in process context.
2264 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2265 * before being submitted to the device, as pages mapped may be out of
2266 * reach. It's the callers responsibility to make sure this happens. The
2267 * original bio must be passed back in to blk_rq_unmap_user() for proper
2270 int blk_rq_map_user(request_queue_t
*q
, struct request
*rq
, void __user
*ubuf
,
2273 unsigned long uaddr
;
2277 if (len
> (q
->max_hw_sectors
<< 9))
2282 reading
= rq_data_dir(rq
) == READ
;
2285 * if alignment requirement is satisfied, map in user pages for
2286 * direct dma. else, set up kernel bounce buffers
2288 uaddr
= (unsigned long) ubuf
;
2289 if (!(uaddr
& queue_dma_alignment(q
)) && !(len
& queue_dma_alignment(q
)))
2290 bio
= bio_map_user(q
, NULL
, uaddr
, len
, reading
);
2292 bio
= bio_copy_user(q
, uaddr
, len
, reading
);
2295 rq
->bio
= rq
->biotail
= bio
;
2296 blk_rq_bio_prep(q
, rq
, bio
);
2298 rq
->buffer
= rq
->data
= NULL
;
2304 * bio is the err-ptr
2306 return PTR_ERR(bio
);
2309 EXPORT_SYMBOL(blk_rq_map_user
);
2312 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2313 * @q: request queue where request should be inserted
2314 * @rq: request to map data to
2315 * @iov: pointer to the iovec
2316 * @iov_count: number of elements in the iovec
2319 * Data will be mapped directly for zero copy io, if possible. Otherwise
2320 * a kernel bounce buffer is used.
2322 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2323 * still in process context.
2325 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2326 * before being submitted to the device, as pages mapped may be out of
2327 * reach. It's the callers responsibility to make sure this happens. The
2328 * original bio must be passed back in to blk_rq_unmap_user() for proper
2331 int blk_rq_map_user_iov(request_queue_t
*q
, struct request
*rq
,
2332 struct sg_iovec
*iov
, int iov_count
)
2336 if (!iov
|| iov_count
<= 0)
2339 /* we don't allow misaligned data like bio_map_user() does. If the
2340 * user is using sg, they're expected to know the alignment constraints
2341 * and respect them accordingly */
2342 bio
= bio_map_user_iov(q
, NULL
, iov
, iov_count
, rq_data_dir(rq
)== READ
);
2344 return PTR_ERR(bio
);
2346 rq
->bio
= rq
->biotail
= bio
;
2347 blk_rq_bio_prep(q
, rq
, bio
);
2348 rq
->buffer
= rq
->data
= NULL
;
2349 rq
->data_len
= bio
->bi_size
;
2353 EXPORT_SYMBOL(blk_rq_map_user_iov
);
2356 * blk_rq_unmap_user - unmap a request with user data
2357 * @bio: bio to be unmapped
2358 * @ulen: length of user buffer
2361 * Unmap a bio previously mapped by blk_rq_map_user().
2363 int blk_rq_unmap_user(struct bio
*bio
, unsigned int ulen
)
2368 if (bio_flagged(bio
, BIO_USER_MAPPED
))
2369 bio_unmap_user(bio
);
2371 ret
= bio_uncopy_user(bio
);
2377 EXPORT_SYMBOL(blk_rq_unmap_user
);
2380 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2381 * @q: request queue where request should be inserted
2382 * @rq: request to fill
2383 * @kbuf: the kernel buffer
2384 * @len: length of user data
2385 * @gfp_mask: memory allocation flags
2387 int blk_rq_map_kern(request_queue_t
*q
, struct request
*rq
, void *kbuf
,
2388 unsigned int len
, gfp_t gfp_mask
)
2392 if (len
> (q
->max_hw_sectors
<< 9))
2397 bio
= bio_map_kern(q
, kbuf
, len
, gfp_mask
);
2399 return PTR_ERR(bio
);
2401 if (rq_data_dir(rq
) == WRITE
)
2402 bio
->bi_rw
|= (1 << BIO_RW
);
2404 rq
->bio
= rq
->biotail
= bio
;
2405 blk_rq_bio_prep(q
, rq
, bio
);
2407 rq
->buffer
= rq
->data
= NULL
;
2412 EXPORT_SYMBOL(blk_rq_map_kern
);
2415 * blk_execute_rq_nowait - insert a request into queue for execution
2416 * @q: queue to insert the request in
2417 * @bd_disk: matching gendisk
2418 * @rq: request to insert
2419 * @at_head: insert request at head or tail of queue
2420 * @done: I/O completion handler
2423 * Insert a fully prepared request at the back of the io scheduler queue
2424 * for execution. Don't wait for completion.
2426 void blk_execute_rq_nowait(request_queue_t
*q
, struct gendisk
*bd_disk
,
2427 struct request
*rq
, int at_head
,
2430 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2432 rq
->rq_disk
= bd_disk
;
2433 rq
->flags
|= REQ_NOMERGE
;
2435 elv_add_request(q
, rq
, where
, 1);
2436 generic_unplug_device(q
);
2439 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait
);
2442 * blk_execute_rq - insert a request into queue for execution
2443 * @q: queue to insert the request in
2444 * @bd_disk: matching gendisk
2445 * @rq: request to insert
2446 * @at_head: insert request at head or tail of queue
2449 * Insert a fully prepared request at the back of the io scheduler queue
2450 * for execution and wait for completion.
2452 int blk_execute_rq(request_queue_t
*q
, struct gendisk
*bd_disk
,
2453 struct request
*rq
, int at_head
)
2455 DECLARE_COMPLETION(wait
);
2456 char sense
[SCSI_SENSE_BUFFERSIZE
];
2460 * we need an extra reference to the request, so we can look at
2461 * it after io completion
2466 memset(sense
, 0, sizeof(sense
));
2471 rq
->waiting
= &wait
;
2472 blk_execute_rq_nowait(q
, bd_disk
, rq
, at_head
, blk_end_sync_rq
);
2473 wait_for_completion(&wait
);
2482 EXPORT_SYMBOL(blk_execute_rq
);
2485 * blkdev_issue_flush - queue a flush
2486 * @bdev: blockdev to issue flush for
2487 * @error_sector: error sector
2490 * Issue a flush for the block device in question. Caller can supply
2491 * room for storing the error offset in case of a flush error, if they
2492 * wish to. Caller must run wait_for_completion() on its own.
2494 int blkdev_issue_flush(struct block_device
*bdev
, sector_t
*error_sector
)
2498 if (bdev
->bd_disk
== NULL
)
2501 q
= bdev_get_queue(bdev
);
2504 if (!q
->issue_flush_fn
)
2507 return q
->issue_flush_fn(q
, bdev
->bd_disk
, error_sector
);
2510 EXPORT_SYMBOL(blkdev_issue_flush
);
2512 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
)
2514 int rw
= rq_data_dir(rq
);
2516 if (!blk_fs_request(rq
) || !rq
->rq_disk
)
2520 __disk_stat_inc(rq
->rq_disk
, merges
[rw
]);
2522 disk_round_stats(rq
->rq_disk
);
2523 rq
->rq_disk
->in_flight
++;
2528 * add-request adds a request to the linked list.
2529 * queue lock is held and interrupts disabled, as we muck with the
2530 * request queue list.
2532 static inline void add_request(request_queue_t
* q
, struct request
* req
)
2534 drive_stat_acct(req
, req
->nr_sectors
, 1);
2537 q
->activity_fn(q
->activity_data
, rq_data_dir(req
));
2540 * elevator indicated where it wants this request to be
2541 * inserted at elevator_merge time
2543 __elv_add_request(q
, req
, ELEVATOR_INSERT_SORT
, 0);
2547 * disk_round_stats() - Round off the performance stats on a struct
2550 * The average IO queue length and utilisation statistics are maintained
2551 * by observing the current state of the queue length and the amount of
2552 * time it has been in this state for.
2554 * Normally, that accounting is done on IO completion, but that can result
2555 * in more than a second's worth of IO being accounted for within any one
2556 * second, leading to >100% utilisation. To deal with that, we call this
2557 * function to do a round-off before returning the results when reading
2558 * /proc/diskstats. This accounts immediately for all queue usage up to
2559 * the current jiffies and restarts the counters again.
2561 void disk_round_stats(struct gendisk
*disk
)
2563 unsigned long now
= jiffies
;
2565 if (now
== disk
->stamp
)
2568 if (disk
->in_flight
) {
2569 __disk_stat_add(disk
, time_in_queue
,
2570 disk
->in_flight
* (now
- disk
->stamp
));
2571 __disk_stat_add(disk
, io_ticks
, (now
- disk
->stamp
));
2576 EXPORT_SYMBOL_GPL(disk_round_stats
);
2579 * queue lock must be held
2581 void __blk_put_request(request_queue_t
*q
, struct request
*req
)
2583 struct request_list
*rl
= req
->rl
;
2587 if (unlikely(--req
->ref_count
))
2590 elv_completed_request(q
, req
);
2592 req
->rq_status
= RQ_INACTIVE
;
2596 * Request may not have originated from ll_rw_blk. if not,
2597 * it didn't come out of our reserved rq pools
2600 int rw
= rq_data_dir(req
);
2601 int priv
= req
->flags
& REQ_ELVPRIV
;
2603 BUG_ON(!list_empty(&req
->queuelist
));
2605 blk_free_request(q
, req
);
2606 freed_request(q
, rw
, priv
);
2610 EXPORT_SYMBOL_GPL(__blk_put_request
);
2612 void blk_put_request(struct request
*req
)
2614 unsigned long flags
;
2615 request_queue_t
*q
= req
->q
;
2618 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2619 * following if (q) test.
2622 spin_lock_irqsave(q
->queue_lock
, flags
);
2623 __blk_put_request(q
, req
);
2624 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2628 EXPORT_SYMBOL(blk_put_request
);
2631 * blk_end_sync_rq - executes a completion event on a request
2632 * @rq: request to complete
2633 * @error: end io status of the request
2635 void blk_end_sync_rq(struct request
*rq
, int error
)
2637 struct completion
*waiting
= rq
->waiting
;
2640 __blk_put_request(rq
->q
, rq
);
2643 * complete last, if this is a stack request the process (and thus
2644 * the rq pointer) could be invalid right after this complete()
2648 EXPORT_SYMBOL(blk_end_sync_rq
);
2651 * blk_congestion_wait - wait for a queue to become uncongested
2652 * @rw: READ or WRITE
2653 * @timeout: timeout in jiffies
2655 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2656 * If no queues are congested then just wait for the next request to be
2659 long blk_congestion_wait(int rw
, long timeout
)
2663 wait_queue_head_t
*wqh
= &congestion_wqh
[rw
];
2665 prepare_to_wait(wqh
, &wait
, TASK_UNINTERRUPTIBLE
);
2666 ret
= io_schedule_timeout(timeout
);
2667 finish_wait(wqh
, &wait
);
2671 EXPORT_SYMBOL(blk_congestion_wait
);
2674 * Has to be called with the request spinlock acquired
2676 static int attempt_merge(request_queue_t
*q
, struct request
*req
,
2677 struct request
*next
)
2679 if (!rq_mergeable(req
) || !rq_mergeable(next
))
2685 if (req
->sector
+ req
->nr_sectors
!= next
->sector
)
2688 if (rq_data_dir(req
) != rq_data_dir(next
)
2689 || req
->rq_disk
!= next
->rq_disk
2690 || next
->waiting
|| next
->special
)
2694 * If we are allowed to merge, then append bio list
2695 * from next to rq and release next. merge_requests_fn
2696 * will have updated segment counts, update sector
2699 if (!q
->merge_requests_fn(q
, req
, next
))
2703 * At this point we have either done a back merge
2704 * or front merge. We need the smaller start_time of
2705 * the merged requests to be the current request
2706 * for accounting purposes.
2708 if (time_after(req
->start_time
, next
->start_time
))
2709 req
->start_time
= next
->start_time
;
2711 req
->biotail
->bi_next
= next
->bio
;
2712 req
->biotail
= next
->biotail
;
2714 req
->nr_sectors
= req
->hard_nr_sectors
+= next
->hard_nr_sectors
;
2716 elv_merge_requests(q
, req
, next
);
2719 disk_round_stats(req
->rq_disk
);
2720 req
->rq_disk
->in_flight
--;
2723 req
->ioprio
= ioprio_best(req
->ioprio
, next
->ioprio
);
2725 __blk_put_request(q
, next
);
2729 static inline int attempt_back_merge(request_queue_t
*q
, struct request
*rq
)
2731 struct request
*next
= elv_latter_request(q
, rq
);
2734 return attempt_merge(q
, rq
, next
);
2739 static inline int attempt_front_merge(request_queue_t
*q
, struct request
*rq
)
2741 struct request
*prev
= elv_former_request(q
, rq
);
2744 return attempt_merge(q
, prev
, rq
);
2749 static void init_request_from_bio(struct request
*req
, struct bio
*bio
)
2751 req
->flags
|= REQ_CMD
;
2754 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2756 if (bio_rw_ahead(bio
) || bio_failfast(bio
))
2757 req
->flags
|= REQ_FAILFAST
;
2760 * REQ_BARRIER implies no merging, but lets make it explicit
2762 if (unlikely(bio_barrier(bio
)))
2763 req
->flags
|= (REQ_HARDBARRIER
| REQ_NOMERGE
);
2766 req
->hard_sector
= req
->sector
= bio
->bi_sector
;
2767 req
->hard_nr_sectors
= req
->nr_sectors
= bio_sectors(bio
);
2768 req
->current_nr_sectors
= req
->hard_cur_sectors
= bio_cur_sectors(bio
);
2769 req
->nr_phys_segments
= bio_phys_segments(req
->q
, bio
);
2770 req
->nr_hw_segments
= bio_hw_segments(req
->q
, bio
);
2771 req
->buffer
= bio_data(bio
); /* see ->buffer comment above */
2772 req
->waiting
= NULL
;
2773 req
->bio
= req
->biotail
= bio
;
2774 req
->ioprio
= bio_prio(bio
);
2775 req
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2776 req
->start_time
= jiffies
;
2779 static int __make_request(request_queue_t
*q
, struct bio
*bio
)
2781 struct request
*req
;
2782 int el_ret
, rw
, nr_sectors
, cur_nr_sectors
, barrier
, err
, sync
;
2783 unsigned short prio
;
2786 sector
= bio
->bi_sector
;
2787 nr_sectors
= bio_sectors(bio
);
2788 cur_nr_sectors
= bio_cur_sectors(bio
);
2789 prio
= bio_prio(bio
);
2791 rw
= bio_data_dir(bio
);
2792 sync
= bio_sync(bio
);
2795 * low level driver can indicate that it wants pages above a
2796 * certain limit bounced to low memory (ie for highmem, or even
2797 * ISA dma in theory)
2799 blk_queue_bounce(q
, &bio
);
2801 spin_lock_prefetch(q
->queue_lock
);
2803 barrier
= bio_barrier(bio
);
2804 if (unlikely(barrier
) && (q
->next_ordered
== QUEUE_ORDERED_NONE
)) {
2809 spin_lock_irq(q
->queue_lock
);
2811 if (unlikely(barrier
) || elv_queue_empty(q
))
2814 el_ret
= elv_merge(q
, &req
, bio
);
2816 case ELEVATOR_BACK_MERGE
:
2817 BUG_ON(!rq_mergeable(req
));
2819 if (!q
->back_merge_fn(q
, req
, bio
))
2822 req
->biotail
->bi_next
= bio
;
2824 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2825 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2826 drive_stat_acct(req
, nr_sectors
, 0);
2827 if (!attempt_back_merge(q
, req
))
2828 elv_merged_request(q
, req
);
2831 case ELEVATOR_FRONT_MERGE
:
2832 BUG_ON(!rq_mergeable(req
));
2834 if (!q
->front_merge_fn(q
, req
, bio
))
2837 bio
->bi_next
= req
->bio
;
2841 * may not be valid. if the low level driver said
2842 * it didn't need a bounce buffer then it better
2843 * not touch req->buffer either...
2845 req
->buffer
= bio_data(bio
);
2846 req
->current_nr_sectors
= cur_nr_sectors
;
2847 req
->hard_cur_sectors
= cur_nr_sectors
;
2848 req
->sector
= req
->hard_sector
= sector
;
2849 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2850 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2851 drive_stat_acct(req
, nr_sectors
, 0);
2852 if (!attempt_front_merge(q
, req
))
2853 elv_merged_request(q
, req
);
2856 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2863 * Grab a free request. This is might sleep but can not fail.
2864 * Returns with the queue unlocked.
2866 req
= get_request_wait(q
, rw
, bio
);
2869 * After dropping the lock and possibly sleeping here, our request
2870 * may now be mergeable after it had proven unmergeable (above).
2871 * We don't worry about that case for efficiency. It won't happen
2872 * often, and the elevators are able to handle it.
2874 init_request_from_bio(req
, bio
);
2876 spin_lock_irq(q
->queue_lock
);
2877 if (elv_queue_empty(q
))
2879 add_request(q
, req
);
2882 __generic_unplug_device(q
);
2884 spin_unlock_irq(q
->queue_lock
);
2888 bio_endio(bio
, nr_sectors
<< 9, err
);
2893 * If bio->bi_dev is a partition, remap the location
2895 static inline void blk_partition_remap(struct bio
*bio
)
2897 struct block_device
*bdev
= bio
->bi_bdev
;
2899 if (bdev
!= bdev
->bd_contains
) {
2900 struct hd_struct
*p
= bdev
->bd_part
;
2901 const int rw
= bio_data_dir(bio
);
2903 p
->sectors
[rw
] += bio_sectors(bio
);
2906 bio
->bi_sector
+= p
->start_sect
;
2907 bio
->bi_bdev
= bdev
->bd_contains
;
2911 static void handle_bad_sector(struct bio
*bio
)
2913 char b
[BDEVNAME_SIZE
];
2915 printk(KERN_INFO
"attempt to access beyond end of device\n");
2916 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
2917 bdevname(bio
->bi_bdev
, b
),
2919 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
2920 (long long)(bio
->bi_bdev
->bd_inode
->i_size
>> 9));
2922 set_bit(BIO_EOF
, &bio
->bi_flags
);
2926 * generic_make_request: hand a buffer to its device driver for I/O
2927 * @bio: The bio describing the location in memory and on the device.
2929 * generic_make_request() is used to make I/O requests of block
2930 * devices. It is passed a &struct bio, which describes the I/O that needs
2933 * generic_make_request() does not return any status. The
2934 * success/failure status of the request, along with notification of
2935 * completion, is delivered asynchronously through the bio->bi_end_io
2936 * function described (one day) else where.
2938 * The caller of generic_make_request must make sure that bi_io_vec
2939 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2940 * set to describe the device address, and the
2941 * bi_end_io and optionally bi_private are set to describe how
2942 * completion notification should be signaled.
2944 * generic_make_request and the drivers it calls may use bi_next if this
2945 * bio happens to be merged with someone else, and may change bi_dev and
2946 * bi_sector for remaps as it sees fit. So the values of these fields
2947 * should NOT be depended on after the call to generic_make_request.
2949 void generic_make_request(struct bio
*bio
)
2953 int ret
, nr_sectors
= bio_sectors(bio
);
2956 /* Test device or partition size, when known. */
2957 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
2959 sector_t sector
= bio
->bi_sector
;
2961 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
2963 * This may well happen - the kernel calls bread()
2964 * without checking the size of the device, e.g., when
2965 * mounting a device.
2967 handle_bad_sector(bio
);
2973 * Resolve the mapping until finished. (drivers are
2974 * still free to implement/resolve their own stacking
2975 * by explicitly returning 0)
2977 * NOTE: we don't repeat the blk_size check for each new device.
2978 * Stacking drivers are expected to know what they are doing.
2981 char b
[BDEVNAME_SIZE
];
2983 q
= bdev_get_queue(bio
->bi_bdev
);
2986 "generic_make_request: Trying to access "
2987 "nonexistent block-device %s (%Lu)\n",
2988 bdevname(bio
->bi_bdev
, b
),
2989 (long long) bio
->bi_sector
);
2991 bio_endio(bio
, bio
->bi_size
, -EIO
);
2995 if (unlikely(bio_sectors(bio
) > q
->max_hw_sectors
)) {
2996 printk("bio too big device %s (%u > %u)\n",
2997 bdevname(bio
->bi_bdev
, b
),
3003 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
3007 * If this device has partitions, remap block n
3008 * of partition p to block n+start(p) of the disk.
3010 blk_partition_remap(bio
);
3012 ret
= q
->make_request_fn(q
, bio
);
3016 EXPORT_SYMBOL(generic_make_request
);
3019 * submit_bio: submit a bio to the block device layer for I/O
3020 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3021 * @bio: The &struct bio which describes the I/O
3023 * submit_bio() is very similar in purpose to generic_make_request(), and
3024 * uses that function to do most of the work. Both are fairly rough
3025 * interfaces, @bio must be presetup and ready for I/O.
3028 void submit_bio(int rw
, struct bio
*bio
)
3030 int count
= bio_sectors(bio
);
3032 BIO_BUG_ON(!bio
->bi_size
);
3033 BIO_BUG_ON(!bio
->bi_io_vec
);
3036 mod_page_state(pgpgout
, count
);
3038 mod_page_state(pgpgin
, count
);
3040 if (unlikely(block_dump
)) {
3041 char b
[BDEVNAME_SIZE
];
3042 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s\n",
3043 current
->comm
, current
->pid
,
3044 (rw
& WRITE
) ? "WRITE" : "READ",
3045 (unsigned long long)bio
->bi_sector
,
3046 bdevname(bio
->bi_bdev
,b
));
3049 generic_make_request(bio
);
3052 EXPORT_SYMBOL(submit_bio
);
3054 static void blk_recalc_rq_segments(struct request
*rq
)
3056 struct bio
*bio
, *prevbio
= NULL
;
3057 int nr_phys_segs
, nr_hw_segs
;
3058 unsigned int phys_size
, hw_size
;
3059 request_queue_t
*q
= rq
->q
;
3064 phys_size
= hw_size
= nr_phys_segs
= nr_hw_segs
= 0;
3065 rq_for_each_bio(bio
, rq
) {
3066 /* Force bio hw/phys segs to be recalculated. */
3067 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3069 nr_phys_segs
+= bio_phys_segments(q
, bio
);
3070 nr_hw_segs
+= bio_hw_segments(q
, bio
);
3072 int pseg
= phys_size
+ prevbio
->bi_size
+ bio
->bi_size
;
3073 int hseg
= hw_size
+ prevbio
->bi_size
+ bio
->bi_size
;
3075 if (blk_phys_contig_segment(q
, prevbio
, bio
) &&
3076 pseg
<= q
->max_segment_size
) {
3078 phys_size
+= prevbio
->bi_size
+ bio
->bi_size
;
3082 if (blk_hw_contig_segment(q
, prevbio
, bio
) &&
3083 hseg
<= q
->max_segment_size
) {
3085 hw_size
+= prevbio
->bi_size
+ bio
->bi_size
;
3092 rq
->nr_phys_segments
= nr_phys_segs
;
3093 rq
->nr_hw_segments
= nr_hw_segs
;
3096 static void blk_recalc_rq_sectors(struct request
*rq
, int nsect
)
3098 if (blk_fs_request(rq
)) {
3099 rq
->hard_sector
+= nsect
;
3100 rq
->hard_nr_sectors
-= nsect
;
3103 * Move the I/O submission pointers ahead if required.
3105 if ((rq
->nr_sectors
>= rq
->hard_nr_sectors
) &&
3106 (rq
->sector
<= rq
->hard_sector
)) {
3107 rq
->sector
= rq
->hard_sector
;
3108 rq
->nr_sectors
= rq
->hard_nr_sectors
;
3109 rq
->hard_cur_sectors
= bio_cur_sectors(rq
->bio
);
3110 rq
->current_nr_sectors
= rq
->hard_cur_sectors
;
3111 rq
->buffer
= bio_data(rq
->bio
);
3115 * if total number of sectors is less than the first segment
3116 * size, something has gone terribly wrong
3118 if (rq
->nr_sectors
< rq
->current_nr_sectors
) {
3119 printk("blk: request botched\n");
3120 rq
->nr_sectors
= rq
->current_nr_sectors
;
3125 static int __end_that_request_first(struct request
*req
, int uptodate
,
3128 int total_bytes
, bio_nbytes
, error
, next_idx
= 0;
3132 * extend uptodate bool to allow < 0 value to be direct io error
3135 if (end_io_error(uptodate
))
3136 error
= !uptodate
? -EIO
: uptodate
;
3139 * for a REQ_BLOCK_PC request, we want to carry any eventual
3140 * sense key with us all the way through
3142 if (!blk_pc_request(req
))
3146 if (blk_fs_request(req
) && !(req
->flags
& REQ_QUIET
))
3147 printk("end_request: I/O error, dev %s, sector %llu\n",
3148 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
3149 (unsigned long long)req
->sector
);
3152 if (blk_fs_request(req
) && req
->rq_disk
) {
3153 const int rw
= rq_data_dir(req
);
3155 disk_stat_add(req
->rq_disk
, sectors
[rw
], nr_bytes
>> 9);
3158 total_bytes
= bio_nbytes
= 0;
3159 while ((bio
= req
->bio
) != NULL
) {
3162 if (nr_bytes
>= bio
->bi_size
) {
3163 req
->bio
= bio
->bi_next
;
3164 nbytes
= bio
->bi_size
;
3165 if (!ordered_bio_endio(req
, bio
, nbytes
, error
))
3166 bio_endio(bio
, nbytes
, error
);
3170 int idx
= bio
->bi_idx
+ next_idx
;
3172 if (unlikely(bio
->bi_idx
>= bio
->bi_vcnt
)) {
3173 blk_dump_rq_flags(req
, "__end_that");
3174 printk("%s: bio idx %d >= vcnt %d\n",
3176 bio
->bi_idx
, bio
->bi_vcnt
);
3180 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
3181 BIO_BUG_ON(nbytes
> bio
->bi_size
);
3184 * not a complete bvec done
3186 if (unlikely(nbytes
> nr_bytes
)) {
3187 bio_nbytes
+= nr_bytes
;
3188 total_bytes
+= nr_bytes
;
3193 * advance to the next vector
3196 bio_nbytes
+= nbytes
;
3199 total_bytes
+= nbytes
;
3202 if ((bio
= req
->bio
)) {
3204 * end more in this run, or just return 'not-done'
3206 if (unlikely(nr_bytes
<= 0))
3218 * if the request wasn't completed, update state
3221 if (!ordered_bio_endio(req
, bio
, bio_nbytes
, error
))
3222 bio_endio(bio
, bio_nbytes
, error
);
3223 bio
->bi_idx
+= next_idx
;
3224 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
3225 bio_iovec(bio
)->bv_len
-= nr_bytes
;
3228 blk_recalc_rq_sectors(req
, total_bytes
>> 9);
3229 blk_recalc_rq_segments(req
);
3234 * end_that_request_first - end I/O on a request
3235 * @req: the request being processed
3236 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3237 * @nr_sectors: number of sectors to end I/O on
3240 * Ends I/O on a number of sectors attached to @req, and sets it up
3241 * for the next range of segments (if any) in the cluster.
3244 * 0 - we are done with this request, call end_that_request_last()
3245 * 1 - still buffers pending for this request
3247 int end_that_request_first(struct request
*req
, int uptodate
, int nr_sectors
)
3249 return __end_that_request_first(req
, uptodate
, nr_sectors
<< 9);
3252 EXPORT_SYMBOL(end_that_request_first
);
3255 * end_that_request_chunk - end I/O on a request
3256 * @req: the request being processed
3257 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3258 * @nr_bytes: number of bytes to complete
3261 * Ends I/O on a number of bytes attached to @req, and sets it up
3262 * for the next range of segments (if any). Like end_that_request_first(),
3263 * but deals with bytes instead of sectors.
3266 * 0 - we are done with this request, call end_that_request_last()
3267 * 1 - still buffers pending for this request
3269 int end_that_request_chunk(struct request
*req
, int uptodate
, int nr_bytes
)
3271 return __end_that_request_first(req
, uptodate
, nr_bytes
);
3274 EXPORT_SYMBOL(end_that_request_chunk
);
3277 * splice the completion data to a local structure and hand off to
3278 * process_completion_queue() to complete the requests
3280 static void blk_done_softirq(struct softirq_action
*h
)
3282 struct list_head
*cpu_list
;
3283 LIST_HEAD(local_list
);
3285 local_irq_disable();
3286 cpu_list
= &__get_cpu_var(blk_cpu_done
);
3287 list_splice_init(cpu_list
, &local_list
);
3290 while (!list_empty(&local_list
)) {
3291 struct request
*rq
= list_entry(local_list
.next
, struct request
, donelist
);
3293 list_del_init(&rq
->donelist
);
3294 rq
->q
->softirq_done_fn(rq
);
3298 #ifdef CONFIG_HOTPLUG_CPU
3300 static int blk_cpu_notify(struct notifier_block
*self
, unsigned long action
,
3304 * If a CPU goes away, splice its entries to the current CPU
3305 * and trigger a run of the softirq
3307 if (action
== CPU_DEAD
) {
3308 int cpu
= (unsigned long) hcpu
;
3310 local_irq_disable();
3311 list_splice_init(&per_cpu(blk_cpu_done
, cpu
),
3312 &__get_cpu_var(blk_cpu_done
));
3313 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
3321 static struct notifier_block __devinitdata blk_cpu_notifier
= {
3322 .notifier_call
= blk_cpu_notify
,
3325 #endif /* CONFIG_HOTPLUG_CPU */
3328 * blk_complete_request - end I/O on a request
3329 * @req: the request being processed
3332 * Ends all I/O on a request. It does not handle partial completions,
3333 * unless the driver actually implements this in its completionc callback
3334 * through requeueing. Theh actual completion happens out-of-order,
3335 * through a softirq handler. The user must have registered a completion
3336 * callback through blk_queue_softirq_done().
3339 void blk_complete_request(struct request
*req
)
3341 struct list_head
*cpu_list
;
3342 unsigned long flags
;
3344 BUG_ON(!req
->q
->softirq_done_fn
);
3346 local_irq_save(flags
);
3348 cpu_list
= &__get_cpu_var(blk_cpu_done
);
3349 list_add_tail(&req
->donelist
, cpu_list
);
3350 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
3352 local_irq_restore(flags
);
3355 EXPORT_SYMBOL(blk_complete_request
);
3358 * queue lock must be held
3360 void end_that_request_last(struct request
*req
, int uptodate
)
3362 struct gendisk
*disk
= req
->rq_disk
;
3366 * extend uptodate bool to allow < 0 value to be direct io error
3369 if (end_io_error(uptodate
))
3370 error
= !uptodate
? -EIO
: uptodate
;
3372 if (unlikely(laptop_mode
) && blk_fs_request(req
))
3373 laptop_io_completion();
3375 if (disk
&& blk_fs_request(req
)) {
3376 unsigned long duration
= jiffies
- req
->start_time
;
3377 const int rw
= rq_data_dir(req
);
3379 __disk_stat_inc(disk
, ios
[rw
]);
3380 __disk_stat_add(disk
, ticks
[rw
], duration
);
3381 disk_round_stats(disk
);
3385 req
->end_io(req
, error
);
3387 __blk_put_request(req
->q
, req
);
3390 EXPORT_SYMBOL(end_that_request_last
);
3392 void end_request(struct request
*req
, int uptodate
)
3394 if (!end_that_request_first(req
, uptodate
, req
->hard_cur_sectors
)) {
3395 add_disk_randomness(req
->rq_disk
);
3396 blkdev_dequeue_request(req
);
3397 end_that_request_last(req
, uptodate
);
3401 EXPORT_SYMBOL(end_request
);
3403 void blk_rq_bio_prep(request_queue_t
*q
, struct request
*rq
, struct bio
*bio
)
3405 /* first three bits are identical in rq->flags and bio->bi_rw */
3406 rq
->flags
|= (bio
->bi_rw
& 7);
3408 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
3409 rq
->nr_hw_segments
= bio_hw_segments(q
, bio
);
3410 rq
->current_nr_sectors
= bio_cur_sectors(bio
);
3411 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
3412 rq
->hard_nr_sectors
= rq
->nr_sectors
= bio_sectors(bio
);
3413 rq
->buffer
= bio_data(bio
);
3415 rq
->bio
= rq
->biotail
= bio
;
3418 EXPORT_SYMBOL(blk_rq_bio_prep
);
3420 int kblockd_schedule_work(struct work_struct
*work
)
3422 return queue_work(kblockd_workqueue
, work
);
3425 EXPORT_SYMBOL(kblockd_schedule_work
);
3427 void kblockd_flush(void)
3429 flush_workqueue(kblockd_workqueue
);
3431 EXPORT_SYMBOL(kblockd_flush
);
3433 int __init
blk_dev_init(void)
3437 kblockd_workqueue
= create_workqueue("kblockd");
3438 if (!kblockd_workqueue
)
3439 panic("Failed to create kblockd\n");
3441 request_cachep
= kmem_cache_create("blkdev_requests",
3442 sizeof(struct request
), 0, SLAB_PANIC
, NULL
, NULL
);
3444 requestq_cachep
= kmem_cache_create("blkdev_queue",
3445 sizeof(request_queue_t
), 0, SLAB_PANIC
, NULL
, NULL
);
3447 iocontext_cachep
= kmem_cache_create("blkdev_ioc",
3448 sizeof(struct io_context
), 0, SLAB_PANIC
, NULL
, NULL
);
3451 INIT_LIST_HEAD(&per_cpu(blk_cpu_done
, i
));
3453 open_softirq(BLOCK_SOFTIRQ
, blk_done_softirq
, NULL
);
3454 #ifdef CONFIG_HOTPLUG_CPU
3455 register_cpu_notifier(&blk_cpu_notifier
);
3458 blk_max_low_pfn
= max_low_pfn
;
3459 blk_max_pfn
= max_pfn
;
3465 * IO Context helper functions
3467 void put_io_context(struct io_context
*ioc
)
3472 BUG_ON(atomic_read(&ioc
->refcount
) == 0);
3474 if (atomic_dec_and_test(&ioc
->refcount
)) {
3475 if (ioc
->aic
&& ioc
->aic
->dtor
)
3476 ioc
->aic
->dtor(ioc
->aic
);
3477 if (ioc
->cic
&& ioc
->cic
->dtor
)
3478 ioc
->cic
->dtor(ioc
->cic
);
3480 kmem_cache_free(iocontext_cachep
, ioc
);
3483 EXPORT_SYMBOL(put_io_context
);
3485 /* Called by the exitting task */
3486 void exit_io_context(void)
3488 unsigned long flags
;
3489 struct io_context
*ioc
;
3491 local_irq_save(flags
);
3493 ioc
= current
->io_context
;
3494 current
->io_context
= NULL
;
3496 task_unlock(current
);
3497 local_irq_restore(flags
);
3499 if (ioc
->aic
&& ioc
->aic
->exit
)
3500 ioc
->aic
->exit(ioc
->aic
);
3501 if (ioc
->cic
&& ioc
->cic
->exit
)
3502 ioc
->cic
->exit(ioc
->cic
);
3504 put_io_context(ioc
);
3508 * If the current task has no IO context then create one and initialise it.
3509 * Otherwise, return its existing IO context.
3511 * This returned IO context doesn't have a specifically elevated refcount,
3512 * but since the current task itself holds a reference, the context can be
3513 * used in general code, so long as it stays within `current` context.
3515 struct io_context
*current_io_context(gfp_t gfp_flags
)
3517 struct task_struct
*tsk
= current
;
3518 struct io_context
*ret
;
3520 ret
= tsk
->io_context
;
3524 ret
= kmem_cache_alloc(iocontext_cachep
, gfp_flags
);
3526 atomic_set(&ret
->refcount
, 1);
3527 ret
->task
= current
;
3528 ret
->set_ioprio
= NULL
;
3529 ret
->last_waited
= jiffies
; /* doesn't matter... */
3530 ret
->nr_batch_requests
= 0; /* because this is 0 */
3533 tsk
->io_context
= ret
;
3538 EXPORT_SYMBOL(current_io_context
);
3541 * If the current task has no IO context then create one and initialise it.
3542 * If it does have a context, take a ref on it.
3544 * This is always called in the context of the task which submitted the I/O.
3546 struct io_context
*get_io_context(gfp_t gfp_flags
)
3548 struct io_context
*ret
;
3549 ret
= current_io_context(gfp_flags
);
3551 atomic_inc(&ret
->refcount
);
3554 EXPORT_SYMBOL(get_io_context
);
3556 void copy_io_context(struct io_context
**pdst
, struct io_context
**psrc
)
3558 struct io_context
*src
= *psrc
;
3559 struct io_context
*dst
= *pdst
;
3562 BUG_ON(atomic_read(&src
->refcount
) == 0);
3563 atomic_inc(&src
->refcount
);
3564 put_io_context(dst
);
3568 EXPORT_SYMBOL(copy_io_context
);
3570 void swap_io_context(struct io_context
**ioc1
, struct io_context
**ioc2
)
3572 struct io_context
*temp
;
3577 EXPORT_SYMBOL(swap_io_context
);
3582 struct queue_sysfs_entry
{
3583 struct attribute attr
;
3584 ssize_t (*show
)(struct request_queue
*, char *);
3585 ssize_t (*store
)(struct request_queue
*, const char *, size_t);
3589 queue_var_show(unsigned int var
, char *page
)
3591 return sprintf(page
, "%d\n", var
);
3595 queue_var_store(unsigned long *var
, const char *page
, size_t count
)
3597 char *p
= (char *) page
;
3599 *var
= simple_strtoul(p
, &p
, 10);
3603 static ssize_t
queue_requests_show(struct request_queue
*q
, char *page
)
3605 return queue_var_show(q
->nr_requests
, (page
));
3609 queue_requests_store(struct request_queue
*q
, const char *page
, size_t count
)
3611 struct request_list
*rl
= &q
->rq
;
3613 int ret
= queue_var_store(&q
->nr_requests
, page
, count
);
3614 if (q
->nr_requests
< BLKDEV_MIN_RQ
)
3615 q
->nr_requests
= BLKDEV_MIN_RQ
;
3616 blk_queue_congestion_threshold(q
);
3618 if (rl
->count
[READ
] >= queue_congestion_on_threshold(q
))
3619 set_queue_congested(q
, READ
);
3620 else if (rl
->count
[READ
] < queue_congestion_off_threshold(q
))
3621 clear_queue_congested(q
, READ
);
3623 if (rl
->count
[WRITE
] >= queue_congestion_on_threshold(q
))
3624 set_queue_congested(q
, WRITE
);
3625 else if (rl
->count
[WRITE
] < queue_congestion_off_threshold(q
))
3626 clear_queue_congested(q
, WRITE
);
3628 if (rl
->count
[READ
] >= q
->nr_requests
) {
3629 blk_set_queue_full(q
, READ
);
3630 } else if (rl
->count
[READ
]+1 <= q
->nr_requests
) {
3631 blk_clear_queue_full(q
, READ
);
3632 wake_up(&rl
->wait
[READ
]);
3635 if (rl
->count
[WRITE
] >= q
->nr_requests
) {
3636 blk_set_queue_full(q
, WRITE
);
3637 } else if (rl
->count
[WRITE
]+1 <= q
->nr_requests
) {
3638 blk_clear_queue_full(q
, WRITE
);
3639 wake_up(&rl
->wait
[WRITE
]);
3644 static ssize_t
queue_ra_show(struct request_queue
*q
, char *page
)
3646 int ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3648 return queue_var_show(ra_kb
, (page
));
3652 queue_ra_store(struct request_queue
*q
, const char *page
, size_t count
)
3654 unsigned long ra_kb
;
3655 ssize_t ret
= queue_var_store(&ra_kb
, page
, count
);
3657 spin_lock_irq(q
->queue_lock
);
3658 if (ra_kb
> (q
->max_sectors
>> 1))
3659 ra_kb
= (q
->max_sectors
>> 1);
3661 q
->backing_dev_info
.ra_pages
= ra_kb
>> (PAGE_CACHE_SHIFT
- 10);
3662 spin_unlock_irq(q
->queue_lock
);
3667 static ssize_t
queue_max_sectors_show(struct request_queue
*q
, char *page
)
3669 int max_sectors_kb
= q
->max_sectors
>> 1;
3671 return queue_var_show(max_sectors_kb
, (page
));
3675 queue_max_sectors_store(struct request_queue
*q
, const char *page
, size_t count
)
3677 unsigned long max_sectors_kb
,
3678 max_hw_sectors_kb
= q
->max_hw_sectors
>> 1,
3679 page_kb
= 1 << (PAGE_CACHE_SHIFT
- 10);
3680 ssize_t ret
= queue_var_store(&max_sectors_kb
, page
, count
);
3683 if (max_sectors_kb
> max_hw_sectors_kb
|| max_sectors_kb
< page_kb
)
3686 * Take the queue lock to update the readahead and max_sectors
3687 * values synchronously:
3689 spin_lock_irq(q
->queue_lock
);
3691 * Trim readahead window as well, if necessary:
3693 ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3694 if (ra_kb
> max_sectors_kb
)
3695 q
->backing_dev_info
.ra_pages
=
3696 max_sectors_kb
>> (PAGE_CACHE_SHIFT
- 10);
3698 q
->max_sectors
= max_sectors_kb
<< 1;
3699 spin_unlock_irq(q
->queue_lock
);
3704 static ssize_t
queue_max_hw_sectors_show(struct request_queue
*q
, char *page
)
3706 int max_hw_sectors_kb
= q
->max_hw_sectors
>> 1;
3708 return queue_var_show(max_hw_sectors_kb
, (page
));
3712 static struct queue_sysfs_entry queue_requests_entry
= {
3713 .attr
= {.name
= "nr_requests", .mode
= S_IRUGO
| S_IWUSR
},
3714 .show
= queue_requests_show
,
3715 .store
= queue_requests_store
,
3718 static struct queue_sysfs_entry queue_ra_entry
= {
3719 .attr
= {.name
= "read_ahead_kb", .mode
= S_IRUGO
| S_IWUSR
},
3720 .show
= queue_ra_show
,
3721 .store
= queue_ra_store
,
3724 static struct queue_sysfs_entry queue_max_sectors_entry
= {
3725 .attr
= {.name
= "max_sectors_kb", .mode
= S_IRUGO
| S_IWUSR
},
3726 .show
= queue_max_sectors_show
,
3727 .store
= queue_max_sectors_store
,
3730 static struct queue_sysfs_entry queue_max_hw_sectors_entry
= {
3731 .attr
= {.name
= "max_hw_sectors_kb", .mode
= S_IRUGO
},
3732 .show
= queue_max_hw_sectors_show
,
3735 static struct queue_sysfs_entry queue_iosched_entry
= {
3736 .attr
= {.name
= "scheduler", .mode
= S_IRUGO
| S_IWUSR
},
3737 .show
= elv_iosched_show
,
3738 .store
= elv_iosched_store
,
3741 static struct attribute
*default_attrs
[] = {
3742 &queue_requests_entry
.attr
,
3743 &queue_ra_entry
.attr
,
3744 &queue_max_hw_sectors_entry
.attr
,
3745 &queue_max_sectors_entry
.attr
,
3746 &queue_iosched_entry
.attr
,
3750 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3753 queue_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
3755 struct queue_sysfs_entry
*entry
= to_queue(attr
);
3756 struct request_queue
*q
;
3758 q
= container_of(kobj
, struct request_queue
, kobj
);
3762 return entry
->show(q
, page
);
3766 queue_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
3767 const char *page
, size_t length
)
3769 struct queue_sysfs_entry
*entry
= to_queue(attr
);
3770 struct request_queue
*q
;
3772 q
= container_of(kobj
, struct request_queue
, kobj
);
3776 return entry
->store(q
, page
, length
);
3779 static struct sysfs_ops queue_sysfs_ops
= {
3780 .show
= queue_attr_show
,
3781 .store
= queue_attr_store
,
3784 static struct kobj_type queue_ktype
= {
3785 .sysfs_ops
= &queue_sysfs_ops
,
3786 .default_attrs
= default_attrs
,
3789 int blk_register_queue(struct gendisk
*disk
)
3793 request_queue_t
*q
= disk
->queue
;
3795 if (!q
|| !q
->request_fn
)
3798 q
->kobj
.parent
= kobject_get(&disk
->kobj
);
3799 if (!q
->kobj
.parent
)
3802 snprintf(q
->kobj
.name
, KOBJ_NAME_LEN
, "%s", "queue");
3803 q
->kobj
.ktype
= &queue_ktype
;
3805 ret
= kobject_register(&q
->kobj
);
3809 ret
= elv_register_queue(q
);
3811 kobject_unregister(&q
->kobj
);
3818 void blk_unregister_queue(struct gendisk
*disk
)
3820 request_queue_t
*q
= disk
->queue
;
3822 if (q
&& q
->request_fn
) {
3823 elv_unregister_queue(q
);
3825 kobject_unregister(&q
->kobj
);
3826 kobject_put(&disk
->kobj
);