ARM: perf: refactor event mapping
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / arm / kernel / perf_event_v6.c
bloba4c5aa9baa4468a7c417b200d7abbafdc0fdaf56
1 /*
2 * ARMv6 Performance counter handling code.
4 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
6 * ARMv6 has 2 configurable performance counters and a single cycle counter.
7 * They all share a single reset bit but can be written to zero so we can use
8 * that for a reset.
10 * The counters can't be individually enabled or disabled so when we remove
11 * one event and replace it with another we could get spurious counts from the
12 * wrong event. However, we can take advantage of the fact that the
13 * performance counters can export events to the event bus, and the event bus
14 * itself can be monitored. This requires that we *don't* export the events to
15 * the event bus. The procedure for disabling a configurable counter is:
16 * - change the counter to count the ETMEXTOUT[0] signal (0x20). This
17 * effectively stops the counter from counting.
18 * - disable the counter's interrupt generation (each counter has it's
19 * own interrupt enable bit).
20 * Once stopped, the counter value can be written as 0 to reset.
22 * To enable a counter:
23 * - enable the counter's interrupt generation.
24 * - set the new event type.
26 * Note: the dedicated cycle counter only counts cycles and can't be
27 * enabled/disabled independently of the others. When we want to disable the
28 * cycle counter, we have to just disable the interrupt reporting and start
29 * ignoring that counter. When re-enabling, we have to reset the value and
30 * enable the interrupt.
33 #if defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K)
34 enum armv6_perf_types {
35 ARMV6_PERFCTR_ICACHE_MISS = 0x0,
36 ARMV6_PERFCTR_IBUF_STALL = 0x1,
37 ARMV6_PERFCTR_DDEP_STALL = 0x2,
38 ARMV6_PERFCTR_ITLB_MISS = 0x3,
39 ARMV6_PERFCTR_DTLB_MISS = 0x4,
40 ARMV6_PERFCTR_BR_EXEC = 0x5,
41 ARMV6_PERFCTR_BR_MISPREDICT = 0x6,
42 ARMV6_PERFCTR_INSTR_EXEC = 0x7,
43 ARMV6_PERFCTR_DCACHE_HIT = 0x9,
44 ARMV6_PERFCTR_DCACHE_ACCESS = 0xA,
45 ARMV6_PERFCTR_DCACHE_MISS = 0xB,
46 ARMV6_PERFCTR_DCACHE_WBACK = 0xC,
47 ARMV6_PERFCTR_SW_PC_CHANGE = 0xD,
48 ARMV6_PERFCTR_MAIN_TLB_MISS = 0xF,
49 ARMV6_PERFCTR_EXPL_D_ACCESS = 0x10,
50 ARMV6_PERFCTR_LSU_FULL_STALL = 0x11,
51 ARMV6_PERFCTR_WBUF_DRAINED = 0x12,
52 ARMV6_PERFCTR_CPU_CYCLES = 0xFF,
53 ARMV6_PERFCTR_NOP = 0x20,
56 enum armv6_counters {
57 ARMV6_CYCLE_COUNTER = 0,
58 ARMV6_COUNTER0,
59 ARMV6_COUNTER1,
63 * The hardware events that we support. We do support cache operations but
64 * we have harvard caches and no way to combine instruction and data
65 * accesses/misses in hardware.
67 static const unsigned armv6_perf_map[PERF_COUNT_HW_MAX] = {
68 [PERF_COUNT_HW_CPU_CYCLES] = ARMV6_PERFCTR_CPU_CYCLES,
69 [PERF_COUNT_HW_INSTRUCTIONS] = ARMV6_PERFCTR_INSTR_EXEC,
70 [PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
71 [PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED,
72 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6_PERFCTR_BR_EXEC,
73 [PERF_COUNT_HW_BRANCH_MISSES] = ARMV6_PERFCTR_BR_MISPREDICT,
74 [PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED,
77 static const unsigned armv6_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
78 [PERF_COUNT_HW_CACHE_OP_MAX]
79 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
80 [C(L1D)] = {
82 * The performance counters don't differentiate between read
83 * and write accesses/misses so this isn't strictly correct,
84 * but it's the best we can do. Writes and reads get
85 * combined.
87 [C(OP_READ)] = {
88 [C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS,
89 [C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS,
91 [C(OP_WRITE)] = {
92 [C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS,
93 [C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS,
95 [C(OP_PREFETCH)] = {
96 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
97 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
100 [C(L1I)] = {
101 [C(OP_READ)] = {
102 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
103 [C(RESULT_MISS)] = ARMV6_PERFCTR_ICACHE_MISS,
105 [C(OP_WRITE)] = {
106 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
107 [C(RESULT_MISS)] = ARMV6_PERFCTR_ICACHE_MISS,
109 [C(OP_PREFETCH)] = {
110 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
111 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
114 [C(LL)] = {
115 [C(OP_READ)] = {
116 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
117 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
119 [C(OP_WRITE)] = {
120 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
121 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
123 [C(OP_PREFETCH)] = {
124 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
125 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
128 [C(DTLB)] = {
130 * The ARM performance counters can count micro DTLB misses,
131 * micro ITLB misses and main TLB misses. There isn't an event
132 * for TLB misses, so use the micro misses here and if users
133 * want the main TLB misses they can use a raw counter.
135 [C(OP_READ)] = {
136 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
137 [C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS,
139 [C(OP_WRITE)] = {
140 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
141 [C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS,
143 [C(OP_PREFETCH)] = {
144 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
145 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
148 [C(ITLB)] = {
149 [C(OP_READ)] = {
150 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
151 [C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS,
153 [C(OP_WRITE)] = {
154 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
155 [C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS,
157 [C(OP_PREFETCH)] = {
158 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
159 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
162 [C(BPU)] = {
163 [C(OP_READ)] = {
164 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
165 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
167 [C(OP_WRITE)] = {
168 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
169 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
171 [C(OP_PREFETCH)] = {
172 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
173 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
176 [C(NODE)] = {
177 [C(OP_READ)] = {
178 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
179 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
181 [C(OP_WRITE)] = {
182 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
183 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
185 [C(OP_PREFETCH)] = {
186 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
187 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
192 enum armv6mpcore_perf_types {
193 ARMV6MPCORE_PERFCTR_ICACHE_MISS = 0x0,
194 ARMV6MPCORE_PERFCTR_IBUF_STALL = 0x1,
195 ARMV6MPCORE_PERFCTR_DDEP_STALL = 0x2,
196 ARMV6MPCORE_PERFCTR_ITLB_MISS = 0x3,
197 ARMV6MPCORE_PERFCTR_DTLB_MISS = 0x4,
198 ARMV6MPCORE_PERFCTR_BR_EXEC = 0x5,
199 ARMV6MPCORE_PERFCTR_BR_NOTPREDICT = 0x6,
200 ARMV6MPCORE_PERFCTR_BR_MISPREDICT = 0x7,
201 ARMV6MPCORE_PERFCTR_INSTR_EXEC = 0x8,
202 ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS = 0xA,
203 ARMV6MPCORE_PERFCTR_DCACHE_RDMISS = 0xB,
204 ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS = 0xC,
205 ARMV6MPCORE_PERFCTR_DCACHE_WRMISS = 0xD,
206 ARMV6MPCORE_PERFCTR_DCACHE_EVICTION = 0xE,
207 ARMV6MPCORE_PERFCTR_SW_PC_CHANGE = 0xF,
208 ARMV6MPCORE_PERFCTR_MAIN_TLB_MISS = 0x10,
209 ARMV6MPCORE_PERFCTR_EXPL_MEM_ACCESS = 0x11,
210 ARMV6MPCORE_PERFCTR_LSU_FULL_STALL = 0x12,
211 ARMV6MPCORE_PERFCTR_WBUF_DRAINED = 0x13,
212 ARMV6MPCORE_PERFCTR_CPU_CYCLES = 0xFF,
216 * The hardware events that we support. We do support cache operations but
217 * we have harvard caches and no way to combine instruction and data
218 * accesses/misses in hardware.
220 static const unsigned armv6mpcore_perf_map[PERF_COUNT_HW_MAX] = {
221 [PERF_COUNT_HW_CPU_CYCLES] = ARMV6MPCORE_PERFCTR_CPU_CYCLES,
222 [PERF_COUNT_HW_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_INSTR_EXEC,
223 [PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
224 [PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED,
225 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_BR_EXEC,
226 [PERF_COUNT_HW_BRANCH_MISSES] = ARMV6MPCORE_PERFCTR_BR_MISPREDICT,
227 [PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED,
230 static const unsigned armv6mpcore_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
231 [PERF_COUNT_HW_CACHE_OP_MAX]
232 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
233 [C(L1D)] = {
234 [C(OP_READ)] = {
235 [C(RESULT_ACCESS)] =
236 ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS,
237 [C(RESULT_MISS)] =
238 ARMV6MPCORE_PERFCTR_DCACHE_RDMISS,
240 [C(OP_WRITE)] = {
241 [C(RESULT_ACCESS)] =
242 ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS,
243 [C(RESULT_MISS)] =
244 ARMV6MPCORE_PERFCTR_DCACHE_WRMISS,
246 [C(OP_PREFETCH)] = {
247 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
248 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
251 [C(L1I)] = {
252 [C(OP_READ)] = {
253 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
254 [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ICACHE_MISS,
256 [C(OP_WRITE)] = {
257 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
258 [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ICACHE_MISS,
260 [C(OP_PREFETCH)] = {
261 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
262 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
265 [C(LL)] = {
266 [C(OP_READ)] = {
267 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
268 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
270 [C(OP_WRITE)] = {
271 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
272 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
274 [C(OP_PREFETCH)] = {
275 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
276 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
279 [C(DTLB)] = {
281 * The ARM performance counters can count micro DTLB misses,
282 * micro ITLB misses and main TLB misses. There isn't an event
283 * for TLB misses, so use the micro misses here and if users
284 * want the main TLB misses they can use a raw counter.
286 [C(OP_READ)] = {
287 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
288 [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DTLB_MISS,
290 [C(OP_WRITE)] = {
291 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
292 [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DTLB_MISS,
294 [C(OP_PREFETCH)] = {
295 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
296 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
299 [C(ITLB)] = {
300 [C(OP_READ)] = {
301 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
302 [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ITLB_MISS,
304 [C(OP_WRITE)] = {
305 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
306 [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ITLB_MISS,
308 [C(OP_PREFETCH)] = {
309 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
310 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
313 [C(BPU)] = {
314 [C(OP_READ)] = {
315 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
316 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
318 [C(OP_WRITE)] = {
319 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
320 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
322 [C(OP_PREFETCH)] = {
323 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
324 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
327 [C(NODE)] = {
328 [C(OP_READ)] = {
329 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
330 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
332 [C(OP_WRITE)] = {
333 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
334 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
336 [C(OP_PREFETCH)] = {
337 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
338 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
343 static inline unsigned long
344 armv6_pmcr_read(void)
346 u32 val;
347 asm volatile("mrc p15, 0, %0, c15, c12, 0" : "=r"(val));
348 return val;
351 static inline void
352 armv6_pmcr_write(unsigned long val)
354 asm volatile("mcr p15, 0, %0, c15, c12, 0" : : "r"(val));
357 #define ARMV6_PMCR_ENABLE (1 << 0)
358 #define ARMV6_PMCR_CTR01_RESET (1 << 1)
359 #define ARMV6_PMCR_CCOUNT_RESET (1 << 2)
360 #define ARMV6_PMCR_CCOUNT_DIV (1 << 3)
361 #define ARMV6_PMCR_COUNT0_IEN (1 << 4)
362 #define ARMV6_PMCR_COUNT1_IEN (1 << 5)
363 #define ARMV6_PMCR_CCOUNT_IEN (1 << 6)
364 #define ARMV6_PMCR_COUNT0_OVERFLOW (1 << 8)
365 #define ARMV6_PMCR_COUNT1_OVERFLOW (1 << 9)
366 #define ARMV6_PMCR_CCOUNT_OVERFLOW (1 << 10)
367 #define ARMV6_PMCR_EVT_COUNT0_SHIFT 20
368 #define ARMV6_PMCR_EVT_COUNT0_MASK (0xFF << ARMV6_PMCR_EVT_COUNT0_SHIFT)
369 #define ARMV6_PMCR_EVT_COUNT1_SHIFT 12
370 #define ARMV6_PMCR_EVT_COUNT1_MASK (0xFF << ARMV6_PMCR_EVT_COUNT1_SHIFT)
372 #define ARMV6_PMCR_OVERFLOWED_MASK \
373 (ARMV6_PMCR_COUNT0_OVERFLOW | ARMV6_PMCR_COUNT1_OVERFLOW | \
374 ARMV6_PMCR_CCOUNT_OVERFLOW)
376 static inline int
377 armv6_pmcr_has_overflowed(unsigned long pmcr)
379 return pmcr & ARMV6_PMCR_OVERFLOWED_MASK;
382 static inline int
383 armv6_pmcr_counter_has_overflowed(unsigned long pmcr,
384 enum armv6_counters counter)
386 int ret = 0;
388 if (ARMV6_CYCLE_COUNTER == counter)
389 ret = pmcr & ARMV6_PMCR_CCOUNT_OVERFLOW;
390 else if (ARMV6_COUNTER0 == counter)
391 ret = pmcr & ARMV6_PMCR_COUNT0_OVERFLOW;
392 else if (ARMV6_COUNTER1 == counter)
393 ret = pmcr & ARMV6_PMCR_COUNT1_OVERFLOW;
394 else
395 WARN_ONCE(1, "invalid counter number (%d)\n", counter);
397 return ret;
400 static inline u32
401 armv6pmu_read_counter(int counter)
403 unsigned long value = 0;
405 if (ARMV6_CYCLE_COUNTER == counter)
406 asm volatile("mrc p15, 0, %0, c15, c12, 1" : "=r"(value));
407 else if (ARMV6_COUNTER0 == counter)
408 asm volatile("mrc p15, 0, %0, c15, c12, 2" : "=r"(value));
409 else if (ARMV6_COUNTER1 == counter)
410 asm volatile("mrc p15, 0, %0, c15, c12, 3" : "=r"(value));
411 else
412 WARN_ONCE(1, "invalid counter number (%d)\n", counter);
414 return value;
417 static inline void
418 armv6pmu_write_counter(int counter,
419 u32 value)
421 if (ARMV6_CYCLE_COUNTER == counter)
422 asm volatile("mcr p15, 0, %0, c15, c12, 1" : : "r"(value));
423 else if (ARMV6_COUNTER0 == counter)
424 asm volatile("mcr p15, 0, %0, c15, c12, 2" : : "r"(value));
425 else if (ARMV6_COUNTER1 == counter)
426 asm volatile("mcr p15, 0, %0, c15, c12, 3" : : "r"(value));
427 else
428 WARN_ONCE(1, "invalid counter number (%d)\n", counter);
431 static void
432 armv6pmu_enable_event(struct hw_perf_event *hwc,
433 int idx)
435 unsigned long val, mask, evt, flags;
436 struct cpu_hw_events *events = armpmu->get_hw_events();
438 if (ARMV6_CYCLE_COUNTER == idx) {
439 mask = 0;
440 evt = ARMV6_PMCR_CCOUNT_IEN;
441 } else if (ARMV6_COUNTER0 == idx) {
442 mask = ARMV6_PMCR_EVT_COUNT0_MASK;
443 evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT0_SHIFT) |
444 ARMV6_PMCR_COUNT0_IEN;
445 } else if (ARMV6_COUNTER1 == idx) {
446 mask = ARMV6_PMCR_EVT_COUNT1_MASK;
447 evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT1_SHIFT) |
448 ARMV6_PMCR_COUNT1_IEN;
449 } else {
450 WARN_ONCE(1, "invalid counter number (%d)\n", idx);
451 return;
455 * Mask out the current event and set the counter to count the event
456 * that we're interested in.
458 raw_spin_lock_irqsave(&events->pmu_lock, flags);
459 val = armv6_pmcr_read();
460 val &= ~mask;
461 val |= evt;
462 armv6_pmcr_write(val);
463 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
466 static int counter_is_active(unsigned long pmcr, int idx)
468 unsigned long mask = 0;
469 if (idx == ARMV6_CYCLE_COUNTER)
470 mask = ARMV6_PMCR_CCOUNT_IEN;
471 else if (idx == ARMV6_COUNTER0)
472 mask = ARMV6_PMCR_COUNT0_IEN;
473 else if (idx == ARMV6_COUNTER1)
474 mask = ARMV6_PMCR_COUNT1_IEN;
476 if (mask)
477 return pmcr & mask;
479 WARN_ONCE(1, "invalid counter number (%d)\n", idx);
480 return 0;
483 static irqreturn_t
484 armv6pmu_handle_irq(int irq_num,
485 void *dev)
487 unsigned long pmcr = armv6_pmcr_read();
488 struct perf_sample_data data;
489 struct cpu_hw_events *cpuc;
490 struct pt_regs *regs;
491 int idx;
493 if (!armv6_pmcr_has_overflowed(pmcr))
494 return IRQ_NONE;
496 regs = get_irq_regs();
499 * The interrupts are cleared by writing the overflow flags back to
500 * the control register. All of the other bits don't have any effect
501 * if they are rewritten, so write the whole value back.
503 armv6_pmcr_write(pmcr);
505 perf_sample_data_init(&data, 0);
507 cpuc = &__get_cpu_var(cpu_hw_events);
508 for (idx = 0; idx < armpmu->num_events; ++idx) {
509 struct perf_event *event = cpuc->events[idx];
510 struct hw_perf_event *hwc;
512 if (!counter_is_active(pmcr, idx))
513 continue;
516 * We have a single interrupt for all counters. Check that
517 * each counter has overflowed before we process it.
519 if (!armv6_pmcr_counter_has_overflowed(pmcr, idx))
520 continue;
522 hwc = &event->hw;
523 armpmu_event_update(event, hwc, idx, 1);
524 data.period = event->hw.last_period;
525 if (!armpmu_event_set_period(event, hwc, idx))
526 continue;
528 if (perf_event_overflow(event, &data, regs))
529 armpmu->disable(hwc, idx);
533 * Handle the pending perf events.
535 * Note: this call *must* be run with interrupts disabled. For
536 * platforms that can have the PMU interrupts raised as an NMI, this
537 * will not work.
539 irq_work_run();
541 return IRQ_HANDLED;
544 static void
545 armv6pmu_start(void)
547 unsigned long flags, val;
548 struct cpu_hw_events *events = armpmu->get_hw_events();
550 raw_spin_lock_irqsave(&events->pmu_lock, flags);
551 val = armv6_pmcr_read();
552 val |= ARMV6_PMCR_ENABLE;
553 armv6_pmcr_write(val);
554 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
557 static void
558 armv6pmu_stop(void)
560 unsigned long flags, val;
561 struct cpu_hw_events *events = armpmu->get_hw_events();
563 raw_spin_lock_irqsave(&events->pmu_lock, flags);
564 val = armv6_pmcr_read();
565 val &= ~ARMV6_PMCR_ENABLE;
566 armv6_pmcr_write(val);
567 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
570 static int
571 armv6pmu_get_event_idx(struct cpu_hw_events *cpuc,
572 struct hw_perf_event *event)
574 /* Always place a cycle counter into the cycle counter. */
575 if (ARMV6_PERFCTR_CPU_CYCLES == event->config_base) {
576 if (test_and_set_bit(ARMV6_CYCLE_COUNTER, cpuc->used_mask))
577 return -EAGAIN;
579 return ARMV6_CYCLE_COUNTER;
580 } else {
582 * For anything other than a cycle counter, try and use
583 * counter0 and counter1.
585 if (!test_and_set_bit(ARMV6_COUNTER1, cpuc->used_mask))
586 return ARMV6_COUNTER1;
588 if (!test_and_set_bit(ARMV6_COUNTER0, cpuc->used_mask))
589 return ARMV6_COUNTER0;
591 /* The counters are all in use. */
592 return -EAGAIN;
596 static void
597 armv6pmu_disable_event(struct hw_perf_event *hwc,
598 int idx)
600 unsigned long val, mask, evt, flags;
601 struct cpu_hw_events *events = armpmu->get_hw_events();
603 if (ARMV6_CYCLE_COUNTER == idx) {
604 mask = ARMV6_PMCR_CCOUNT_IEN;
605 evt = 0;
606 } else if (ARMV6_COUNTER0 == idx) {
607 mask = ARMV6_PMCR_COUNT0_IEN | ARMV6_PMCR_EVT_COUNT0_MASK;
608 evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT0_SHIFT;
609 } else if (ARMV6_COUNTER1 == idx) {
610 mask = ARMV6_PMCR_COUNT1_IEN | ARMV6_PMCR_EVT_COUNT1_MASK;
611 evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT1_SHIFT;
612 } else {
613 WARN_ONCE(1, "invalid counter number (%d)\n", idx);
614 return;
618 * Mask out the current event and set the counter to count the number
619 * of ETM bus signal assertion cycles. The external reporting should
620 * be disabled and so this should never increment.
622 raw_spin_lock_irqsave(&events->pmu_lock, flags);
623 val = armv6_pmcr_read();
624 val &= ~mask;
625 val |= evt;
626 armv6_pmcr_write(val);
627 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
630 static void
631 armv6mpcore_pmu_disable_event(struct hw_perf_event *hwc,
632 int idx)
634 unsigned long val, mask, flags, evt = 0;
635 struct cpu_hw_events *events = armpmu->get_hw_events();
637 if (ARMV6_CYCLE_COUNTER == idx) {
638 mask = ARMV6_PMCR_CCOUNT_IEN;
639 } else if (ARMV6_COUNTER0 == idx) {
640 mask = ARMV6_PMCR_COUNT0_IEN;
641 } else if (ARMV6_COUNTER1 == idx) {
642 mask = ARMV6_PMCR_COUNT1_IEN;
643 } else {
644 WARN_ONCE(1, "invalid counter number (%d)\n", idx);
645 return;
649 * Unlike UP ARMv6, we don't have a way of stopping the counters. We
650 * simply disable the interrupt reporting.
652 raw_spin_lock_irqsave(&events->pmu_lock, flags);
653 val = armv6_pmcr_read();
654 val &= ~mask;
655 val |= evt;
656 armv6_pmcr_write(val);
657 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
660 static int armv6_map_event(struct perf_event *event)
662 return map_cpu_event(event, &armv6_perf_map,
663 &armv6_perf_cache_map, 0xFF);
666 static struct arm_pmu armv6pmu = {
667 .id = ARM_PERF_PMU_ID_V6,
668 .name = "v6",
669 .handle_irq = armv6pmu_handle_irq,
670 .enable = armv6pmu_enable_event,
671 .disable = armv6pmu_disable_event,
672 .read_counter = armv6pmu_read_counter,
673 .write_counter = armv6pmu_write_counter,
674 .get_event_idx = armv6pmu_get_event_idx,
675 .start = armv6pmu_start,
676 .stop = armv6pmu_stop,
677 .map_event = armv6_map_event,
678 .num_events = 3,
679 .max_period = (1LLU << 32) - 1,
682 static struct arm_pmu *__init armv6pmu_init(void)
684 return &armv6pmu;
688 * ARMv6mpcore is almost identical to single core ARMv6 with the exception
689 * that some of the events have different enumerations and that there is no
690 * *hack* to stop the programmable counters. To stop the counters we simply
691 * disable the interrupt reporting and update the event. When unthrottling we
692 * reset the period and enable the interrupt reporting.
695 static int armv6mpcore_map_event(struct perf_event *event)
697 return map_cpu_event(event, &armv6mpcore_perf_map,
698 &armv6mpcore_perf_cache_map, 0xFF);
701 static struct arm_pmu armv6mpcore_pmu = {
702 .id = ARM_PERF_PMU_ID_V6MP,
703 .name = "v6mpcore",
704 .handle_irq = armv6pmu_handle_irq,
705 .enable = armv6pmu_enable_event,
706 .disable = armv6mpcore_pmu_disable_event,
707 .read_counter = armv6pmu_read_counter,
708 .write_counter = armv6pmu_write_counter,
709 .get_event_idx = armv6pmu_get_event_idx,
710 .start = armv6pmu_start,
711 .stop = armv6pmu_stop,
712 .map_event = armv6mpcore_map_event,
713 .num_events = 3,
714 .max_period = (1LLU << 32) - 1,
717 static struct arm_pmu *__init armv6mpcore_pmu_init(void)
719 return &armv6mpcore_pmu;
721 #else
722 static struct arm_pmu *__init armv6pmu_init(void)
724 return NULL;
727 static struct arm_pmu *__init armv6mpcore_pmu_init(void)
729 return NULL;
731 #endif /* CONFIG_CPU_V6 || CONFIG_CPU_V6K */