4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
50 #include <linux/swapops.h>
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 * order-0 pages and then compact the zone
68 typedef unsigned __bitwise__ reclaim_mode_t
;
69 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned
;
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed
;
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim
;
85 unsigned long hibernation_mode
;
87 /* This context's GFP mask */
92 /* Can mapped pages be reclaimed? */
95 /* Can pages be swapped as part of reclaim? */
101 * Intend to reclaim enough continuous memory rather than reclaim
102 * enough amount of memory. i.e, mode for high order allocation.
104 reclaim_mode_t reclaim_mode
;
106 /* Which cgroup do we reclaim from */
107 struct mem_cgroup
*mem_cgroup
;
110 * Nodemask of nodes allowed by the caller. If NULL, all nodes
113 nodemask_t
*nodemask
;
116 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
118 #ifdef ARCH_HAS_PREFETCH
119 #define prefetch_prev_lru_page(_page, _base, _field) \
121 if ((_page)->lru.prev != _base) { \
124 prev = lru_to_page(&(_page->lru)); \
125 prefetch(&prev->_field); \
129 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132 #ifdef ARCH_HAS_PREFETCHW
133 #define prefetchw_prev_lru_page(_page, _base, _field) \
135 if ((_page)->lru.prev != _base) { \
138 prev = lru_to_page(&(_page->lru)); \
139 prefetchw(&prev->_field); \
143 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
147 * From 0 .. 100. Higher means more swappy.
149 int vm_swappiness
= 60;
150 long vm_total_pages
; /* The total number of pages which the VM controls */
152 static LIST_HEAD(shrinker_list
);
153 static DECLARE_RWSEM(shrinker_rwsem
);
155 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
156 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
158 #define scanning_global_lru(sc) (1)
161 static struct zone_reclaim_stat
*get_reclaim_stat(struct zone
*zone
,
162 struct scan_control
*sc
)
164 if (!scanning_global_lru(sc
))
165 return mem_cgroup_get_reclaim_stat(sc
->mem_cgroup
, zone
);
167 return &zone
->reclaim_stat
;
170 static unsigned long zone_nr_lru_pages(struct zone
*zone
,
171 struct scan_control
*sc
, enum lru_list lru
)
173 if (!scanning_global_lru(sc
))
174 return mem_cgroup_zone_nr_lru_pages(sc
->mem_cgroup
,
175 zone_to_nid(zone
), zone_idx(zone
), BIT(lru
));
177 return zone_page_state(zone
, NR_LRU_BASE
+ lru
);
182 * Add a shrinker callback to be called from the vm
184 void register_shrinker(struct shrinker
*shrinker
)
187 down_write(&shrinker_rwsem
);
188 list_add_tail(&shrinker
->list
, &shrinker_list
);
189 up_write(&shrinker_rwsem
);
191 EXPORT_SYMBOL(register_shrinker
);
196 void unregister_shrinker(struct shrinker
*shrinker
)
198 down_write(&shrinker_rwsem
);
199 list_del(&shrinker
->list
);
200 up_write(&shrinker_rwsem
);
202 EXPORT_SYMBOL(unregister_shrinker
);
204 static inline int do_shrinker_shrink(struct shrinker
*shrinker
,
205 struct shrink_control
*sc
,
206 unsigned long nr_to_scan
)
208 sc
->nr_to_scan
= nr_to_scan
;
209 return (*shrinker
->shrink
)(shrinker
, sc
);
212 #define SHRINK_BATCH 128
214 * Call the shrink functions to age shrinkable caches
216 * Here we assume it costs one seek to replace a lru page and that it also
217 * takes a seek to recreate a cache object. With this in mind we age equal
218 * percentages of the lru and ageable caches. This should balance the seeks
219 * generated by these structures.
221 * If the vm encountered mapped pages on the LRU it increase the pressure on
222 * slab to avoid swapping.
224 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
226 * `lru_pages' represents the number of on-LRU pages in all the zones which
227 * are eligible for the caller's allocation attempt. It is used for balancing
228 * slab reclaim versus page reclaim.
230 * Returns the number of slab objects which we shrunk.
232 unsigned long shrink_slab(struct shrink_control
*shrink
,
233 unsigned long nr_pages_scanned
,
234 unsigned long lru_pages
)
236 struct shrinker
*shrinker
;
237 unsigned long ret
= 0;
239 if (nr_pages_scanned
== 0)
240 nr_pages_scanned
= SWAP_CLUSTER_MAX
;
242 if (!down_read_trylock(&shrinker_rwsem
)) {
243 /* Assume we'll be able to shrink next time */
248 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
249 unsigned long long delta
;
250 unsigned long total_scan
;
251 unsigned long max_pass
;
255 long batch_size
= shrinker
->batch
? shrinker
->batch
259 * copy the current shrinker scan count into a local variable
260 * and zero it so that other concurrent shrinker invocations
261 * don't also do this scanning work.
265 } while (cmpxchg(&shrinker
->nr
, nr
, 0) != nr
);
268 max_pass
= do_shrinker_shrink(shrinker
, shrink
, 0);
269 delta
= (4 * nr_pages_scanned
) / shrinker
->seeks
;
271 do_div(delta
, lru_pages
+ 1);
273 if (total_scan
< 0) {
274 printk(KERN_ERR
"shrink_slab: %pF negative objects to "
276 shrinker
->shrink
, total_scan
);
277 total_scan
= max_pass
;
281 * We need to avoid excessive windup on filesystem shrinkers
282 * due to large numbers of GFP_NOFS allocations causing the
283 * shrinkers to return -1 all the time. This results in a large
284 * nr being built up so when a shrink that can do some work
285 * comes along it empties the entire cache due to nr >>>
286 * max_pass. This is bad for sustaining a working set in
289 * Hence only allow the shrinker to scan the entire cache when
290 * a large delta change is calculated directly.
292 if (delta
< max_pass
/ 4)
293 total_scan
= min(total_scan
, max_pass
/ 2);
296 * Avoid risking looping forever due to too large nr value:
297 * never try to free more than twice the estimate number of
300 if (total_scan
> max_pass
* 2)
301 total_scan
= max_pass
* 2;
303 trace_mm_shrink_slab_start(shrinker
, shrink
, nr
,
304 nr_pages_scanned
, lru_pages
,
305 max_pass
, delta
, total_scan
);
307 while (total_scan
>= batch_size
) {
310 nr_before
= do_shrinker_shrink(shrinker
, shrink
, 0);
311 shrink_ret
= do_shrinker_shrink(shrinker
, shrink
,
313 if (shrink_ret
== -1)
315 if (shrink_ret
< nr_before
)
316 ret
+= nr_before
- shrink_ret
;
317 count_vm_events(SLABS_SCANNED
, batch_size
);
318 total_scan
-= batch_size
;
324 * move the unused scan count back into the shrinker in a
325 * manner that handles concurrent updates. If we exhausted the
326 * scan, there is no need to do an update.
330 new_nr
= total_scan
+ nr
;
333 } while (cmpxchg(&shrinker
->nr
, nr
, new_nr
) != nr
);
335 trace_mm_shrink_slab_end(shrinker
, shrink_ret
, nr
, new_nr
);
337 up_read(&shrinker_rwsem
);
343 static void set_reclaim_mode(int priority
, struct scan_control
*sc
,
346 reclaim_mode_t syncmode
= sync
? RECLAIM_MODE_SYNC
: RECLAIM_MODE_ASYNC
;
349 * Initially assume we are entering either lumpy reclaim or
350 * reclaim/compaction.Depending on the order, we will either set the
351 * sync mode or just reclaim order-0 pages later.
353 if (COMPACTION_BUILD
)
354 sc
->reclaim_mode
= RECLAIM_MODE_COMPACTION
;
356 sc
->reclaim_mode
= RECLAIM_MODE_LUMPYRECLAIM
;
359 * Avoid using lumpy reclaim or reclaim/compaction if possible by
360 * restricting when its set to either costly allocations or when
361 * under memory pressure
363 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
364 sc
->reclaim_mode
|= syncmode
;
365 else if (sc
->order
&& priority
< DEF_PRIORITY
- 2)
366 sc
->reclaim_mode
|= syncmode
;
368 sc
->reclaim_mode
= RECLAIM_MODE_SINGLE
| RECLAIM_MODE_ASYNC
;
371 static void reset_reclaim_mode(struct scan_control
*sc
)
373 sc
->reclaim_mode
= RECLAIM_MODE_SINGLE
| RECLAIM_MODE_ASYNC
;
376 static inline int is_page_cache_freeable(struct page
*page
)
379 * A freeable page cache page is referenced only by the caller
380 * that isolated the page, the page cache radix tree and
381 * optional buffer heads at page->private.
383 return page_count(page
) - page_has_private(page
) == 2;
386 static int may_write_to_queue(struct backing_dev_info
*bdi
,
387 struct scan_control
*sc
)
389 if (current
->flags
& PF_SWAPWRITE
)
391 if (!bdi_write_congested(bdi
))
393 if (bdi
== current
->backing_dev_info
)
396 /* lumpy reclaim for hugepage often need a lot of write */
397 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
403 * We detected a synchronous write error writing a page out. Probably
404 * -ENOSPC. We need to propagate that into the address_space for a subsequent
405 * fsync(), msync() or close().
407 * The tricky part is that after writepage we cannot touch the mapping: nothing
408 * prevents it from being freed up. But we have a ref on the page and once
409 * that page is locked, the mapping is pinned.
411 * We're allowed to run sleeping lock_page() here because we know the caller has
414 static void handle_write_error(struct address_space
*mapping
,
415 struct page
*page
, int error
)
418 if (page_mapping(page
) == mapping
)
419 mapping_set_error(mapping
, error
);
423 /* possible outcome of pageout() */
425 /* failed to write page out, page is locked */
427 /* move page to the active list, page is locked */
429 /* page has been sent to the disk successfully, page is unlocked */
431 /* page is clean and locked */
436 * pageout is called by shrink_page_list() for each dirty page.
437 * Calls ->writepage().
439 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
440 struct scan_control
*sc
)
443 * If the page is dirty, only perform writeback if that write
444 * will be non-blocking. To prevent this allocation from being
445 * stalled by pagecache activity. But note that there may be
446 * stalls if we need to run get_block(). We could test
447 * PagePrivate for that.
449 * If this process is currently in __generic_file_aio_write() against
450 * this page's queue, we can perform writeback even if that
453 * If the page is swapcache, write it back even if that would
454 * block, for some throttling. This happens by accident, because
455 * swap_backing_dev_info is bust: it doesn't reflect the
456 * congestion state of the swapdevs. Easy to fix, if needed.
458 if (!is_page_cache_freeable(page
))
462 * Some data journaling orphaned pages can have
463 * page->mapping == NULL while being dirty with clean buffers.
465 if (page_has_private(page
)) {
466 if (try_to_free_buffers(page
)) {
467 ClearPageDirty(page
);
468 printk("%s: orphaned page\n", __func__
);
474 if (mapping
->a_ops
->writepage
== NULL
)
475 return PAGE_ACTIVATE
;
476 if (!may_write_to_queue(mapping
->backing_dev_info
, sc
))
479 if (clear_page_dirty_for_io(page
)) {
481 struct writeback_control wbc
= {
482 .sync_mode
= WB_SYNC_NONE
,
483 .nr_to_write
= SWAP_CLUSTER_MAX
,
485 .range_end
= LLONG_MAX
,
489 SetPageReclaim(page
);
490 res
= mapping
->a_ops
->writepage(page
, &wbc
);
492 handle_write_error(mapping
, page
, res
);
493 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
494 ClearPageReclaim(page
);
495 return PAGE_ACTIVATE
;
499 * Wait on writeback if requested to. This happens when
500 * direct reclaiming a large contiguous area and the
501 * first attempt to free a range of pages fails.
503 if (PageWriteback(page
) &&
504 (sc
->reclaim_mode
& RECLAIM_MODE_SYNC
))
505 wait_on_page_writeback(page
);
507 if (!PageWriteback(page
)) {
508 /* synchronous write or broken a_ops? */
509 ClearPageReclaim(page
);
511 trace_mm_vmscan_writepage(page
,
512 trace_reclaim_flags(page
, sc
->reclaim_mode
));
513 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
521 * Same as remove_mapping, but if the page is removed from the mapping, it
522 * gets returned with a refcount of 0.
524 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
)
526 BUG_ON(!PageLocked(page
));
527 BUG_ON(mapping
!= page_mapping(page
));
529 spin_lock_irq(&mapping
->tree_lock
);
531 * The non racy check for a busy page.
533 * Must be careful with the order of the tests. When someone has
534 * a ref to the page, it may be possible that they dirty it then
535 * drop the reference. So if PageDirty is tested before page_count
536 * here, then the following race may occur:
538 * get_user_pages(&page);
539 * [user mapping goes away]
541 * !PageDirty(page) [good]
542 * SetPageDirty(page);
544 * !page_count(page) [good, discard it]
546 * [oops, our write_to data is lost]
548 * Reversing the order of the tests ensures such a situation cannot
549 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
550 * load is not satisfied before that of page->_count.
552 * Note that if SetPageDirty is always performed via set_page_dirty,
553 * and thus under tree_lock, then this ordering is not required.
555 if (!page_freeze_refs(page
, 2))
557 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
558 if (unlikely(PageDirty(page
))) {
559 page_unfreeze_refs(page
, 2);
563 if (PageSwapCache(page
)) {
564 swp_entry_t swap
= { .val
= page_private(page
) };
565 __delete_from_swap_cache(page
);
566 spin_unlock_irq(&mapping
->tree_lock
);
567 swapcache_free(swap
, page
);
569 void (*freepage
)(struct page
*);
571 freepage
= mapping
->a_ops
->freepage
;
573 __delete_from_page_cache(page
);
574 spin_unlock_irq(&mapping
->tree_lock
);
575 mem_cgroup_uncharge_cache_page(page
);
577 if (freepage
!= NULL
)
584 spin_unlock_irq(&mapping
->tree_lock
);
589 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
590 * someone else has a ref on the page, abort and return 0. If it was
591 * successfully detached, return 1. Assumes the caller has a single ref on
594 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
596 if (__remove_mapping(mapping
, page
)) {
598 * Unfreezing the refcount with 1 rather than 2 effectively
599 * drops the pagecache ref for us without requiring another
602 page_unfreeze_refs(page
, 1);
609 * putback_lru_page - put previously isolated page onto appropriate LRU list
610 * @page: page to be put back to appropriate lru list
612 * Add previously isolated @page to appropriate LRU list.
613 * Page may still be unevictable for other reasons.
615 * lru_lock must not be held, interrupts must be enabled.
617 void putback_lru_page(struct page
*page
)
620 int active
= !!TestClearPageActive(page
);
621 int was_unevictable
= PageUnevictable(page
);
623 VM_BUG_ON(PageLRU(page
));
626 ClearPageUnevictable(page
);
628 if (page_evictable(page
, NULL
)) {
630 * For evictable pages, we can use the cache.
631 * In event of a race, worst case is we end up with an
632 * unevictable page on [in]active list.
633 * We know how to handle that.
635 lru
= active
+ page_lru_base_type(page
);
636 lru_cache_add_lru(page
, lru
);
639 * Put unevictable pages directly on zone's unevictable
642 lru
= LRU_UNEVICTABLE
;
643 add_page_to_unevictable_list(page
);
645 * When racing with an mlock clearing (page is
646 * unlocked), make sure that if the other thread does
647 * not observe our setting of PG_lru and fails
648 * isolation, we see PG_mlocked cleared below and move
649 * the page back to the evictable list.
651 * The other side is TestClearPageMlocked().
657 * page's status can change while we move it among lru. If an evictable
658 * page is on unevictable list, it never be freed. To avoid that,
659 * check after we added it to the list, again.
661 if (lru
== LRU_UNEVICTABLE
&& page_evictable(page
, NULL
)) {
662 if (!isolate_lru_page(page
)) {
666 /* This means someone else dropped this page from LRU
667 * So, it will be freed or putback to LRU again. There is
668 * nothing to do here.
672 if (was_unevictable
&& lru
!= LRU_UNEVICTABLE
)
673 count_vm_event(UNEVICTABLE_PGRESCUED
);
674 else if (!was_unevictable
&& lru
== LRU_UNEVICTABLE
)
675 count_vm_event(UNEVICTABLE_PGCULLED
);
677 put_page(page
); /* drop ref from isolate */
680 enum page_references
{
682 PAGEREF_RECLAIM_CLEAN
,
687 static enum page_references
page_check_references(struct page
*page
,
688 struct scan_control
*sc
)
690 int referenced_ptes
, referenced_page
;
691 unsigned long vm_flags
;
693 referenced_ptes
= page_referenced(page
, 1, sc
->mem_cgroup
, &vm_flags
);
694 referenced_page
= TestClearPageReferenced(page
);
696 /* Lumpy reclaim - ignore references */
697 if (sc
->reclaim_mode
& RECLAIM_MODE_LUMPYRECLAIM
)
698 return PAGEREF_RECLAIM
;
701 * Mlock lost the isolation race with us. Let try_to_unmap()
702 * move the page to the unevictable list.
704 if (vm_flags
& VM_LOCKED
)
705 return PAGEREF_RECLAIM
;
707 if (referenced_ptes
) {
709 return PAGEREF_ACTIVATE
;
711 * All mapped pages start out with page table
712 * references from the instantiating fault, so we need
713 * to look twice if a mapped file page is used more
716 * Mark it and spare it for another trip around the
717 * inactive list. Another page table reference will
718 * lead to its activation.
720 * Note: the mark is set for activated pages as well
721 * so that recently deactivated but used pages are
724 SetPageReferenced(page
);
727 return PAGEREF_ACTIVATE
;
732 /* Reclaim if clean, defer dirty pages to writeback */
733 if (referenced_page
&& !PageSwapBacked(page
))
734 return PAGEREF_RECLAIM_CLEAN
;
736 return PAGEREF_RECLAIM
;
739 static noinline_for_stack
void free_page_list(struct list_head
*free_pages
)
741 struct pagevec freed_pvec
;
742 struct page
*page
, *tmp
;
744 pagevec_init(&freed_pvec
, 1);
746 list_for_each_entry_safe(page
, tmp
, free_pages
, lru
) {
747 list_del(&page
->lru
);
748 if (!pagevec_add(&freed_pvec
, page
)) {
749 __pagevec_free(&freed_pvec
);
750 pagevec_reinit(&freed_pvec
);
754 pagevec_free(&freed_pvec
);
758 * shrink_page_list() returns the number of reclaimed pages
760 static unsigned long shrink_page_list(struct list_head
*page_list
,
762 struct scan_control
*sc
)
764 LIST_HEAD(ret_pages
);
765 LIST_HEAD(free_pages
);
767 unsigned long nr_dirty
= 0;
768 unsigned long nr_congested
= 0;
769 unsigned long nr_reclaimed
= 0;
773 while (!list_empty(page_list
)) {
774 enum page_references references
;
775 struct address_space
*mapping
;
781 page
= lru_to_page(page_list
);
782 list_del(&page
->lru
);
784 if (!trylock_page(page
))
787 VM_BUG_ON(PageActive(page
));
788 VM_BUG_ON(page_zone(page
) != zone
);
792 if (unlikely(!page_evictable(page
, NULL
)))
795 if (!sc
->may_unmap
&& page_mapped(page
))
798 /* Double the slab pressure for mapped and swapcache pages */
799 if (page_mapped(page
) || PageSwapCache(page
))
802 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
803 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
805 if (PageWriteback(page
)) {
807 * Synchronous reclaim is performed in two passes,
808 * first an asynchronous pass over the list to
809 * start parallel writeback, and a second synchronous
810 * pass to wait for the IO to complete. Wait here
811 * for any page for which writeback has already
814 if ((sc
->reclaim_mode
& RECLAIM_MODE_SYNC
) &&
816 wait_on_page_writeback(page
);
823 references
= page_check_references(page
, sc
);
824 switch (references
) {
825 case PAGEREF_ACTIVATE
:
826 goto activate_locked
;
829 case PAGEREF_RECLAIM
:
830 case PAGEREF_RECLAIM_CLEAN
:
831 ; /* try to reclaim the page below */
835 * Anonymous process memory has backing store?
836 * Try to allocate it some swap space here.
838 if (PageAnon(page
) && !PageSwapCache(page
)) {
839 if (!(sc
->gfp_mask
& __GFP_IO
))
841 if (!add_to_swap(page
))
842 goto activate_locked
;
846 mapping
= page_mapping(page
);
849 * The page is mapped into the page tables of one or more
850 * processes. Try to unmap it here.
852 if (page_mapped(page
) && mapping
) {
853 switch (try_to_unmap(page
, TTU_UNMAP
)) {
855 goto activate_locked
;
861 ; /* try to free the page below */
865 if (PageDirty(page
)) {
868 if (references
== PAGEREF_RECLAIM_CLEAN
)
872 if (!sc
->may_writepage
)
875 /* Page is dirty, try to write it out here */
876 switch (pageout(page
, mapping
, sc
)) {
881 goto activate_locked
;
883 if (PageWriteback(page
))
889 * A synchronous write - probably a ramdisk. Go
890 * ahead and try to reclaim the page.
892 if (!trylock_page(page
))
894 if (PageDirty(page
) || PageWriteback(page
))
896 mapping
= page_mapping(page
);
898 ; /* try to free the page below */
903 * If the page has buffers, try to free the buffer mappings
904 * associated with this page. If we succeed we try to free
907 * We do this even if the page is PageDirty().
908 * try_to_release_page() does not perform I/O, but it is
909 * possible for a page to have PageDirty set, but it is actually
910 * clean (all its buffers are clean). This happens if the
911 * buffers were written out directly, with submit_bh(). ext3
912 * will do this, as well as the blockdev mapping.
913 * try_to_release_page() will discover that cleanness and will
914 * drop the buffers and mark the page clean - it can be freed.
916 * Rarely, pages can have buffers and no ->mapping. These are
917 * the pages which were not successfully invalidated in
918 * truncate_complete_page(). We try to drop those buffers here
919 * and if that worked, and the page is no longer mapped into
920 * process address space (page_count == 1) it can be freed.
921 * Otherwise, leave the page on the LRU so it is swappable.
923 if (page_has_private(page
)) {
924 if (!try_to_release_page(page
, sc
->gfp_mask
))
925 goto activate_locked
;
926 if (!mapping
&& page_count(page
) == 1) {
928 if (put_page_testzero(page
))
932 * rare race with speculative reference.
933 * the speculative reference will free
934 * this page shortly, so we may
935 * increment nr_reclaimed here (and
936 * leave it off the LRU).
944 if (!mapping
|| !__remove_mapping(mapping
, page
))
948 * At this point, we have no other references and there is
949 * no way to pick any more up (removed from LRU, removed
950 * from pagecache). Can use non-atomic bitops now (and
951 * we obviously don't have to worry about waking up a process
952 * waiting on the page lock, because there are no references.
954 __clear_page_locked(page
);
959 * Is there need to periodically free_page_list? It would
960 * appear not as the counts should be low
962 list_add(&page
->lru
, &free_pages
);
966 if (PageSwapCache(page
))
967 try_to_free_swap(page
);
969 putback_lru_page(page
);
970 reset_reclaim_mode(sc
);
974 /* Not a candidate for swapping, so reclaim swap space. */
975 if (PageSwapCache(page
) && vm_swap_full())
976 try_to_free_swap(page
);
977 VM_BUG_ON(PageActive(page
));
983 reset_reclaim_mode(sc
);
985 list_add(&page
->lru
, &ret_pages
);
986 VM_BUG_ON(PageLRU(page
) || PageUnevictable(page
));
990 * Tag a zone as congested if all the dirty pages encountered were
991 * backed by a congested BDI. In this case, reclaimers should just
992 * back off and wait for congestion to clear because further reclaim
993 * will encounter the same problem
995 if (nr_dirty
&& nr_dirty
== nr_congested
&& scanning_global_lru(sc
))
996 zone_set_flag(zone
, ZONE_CONGESTED
);
998 free_page_list(&free_pages
);
1000 list_splice(&ret_pages
, page_list
);
1001 count_vm_events(PGACTIVATE
, pgactivate
);
1002 return nr_reclaimed
;
1006 * Attempt to remove the specified page from its LRU. Only take this page
1007 * if it is of the appropriate PageActive status. Pages which are being
1008 * freed elsewhere are also ignored.
1010 * page: page to consider
1011 * mode: one of the LRU isolation modes defined above
1013 * returns 0 on success, -ve errno on failure.
1015 int __isolate_lru_page(struct page
*page
, int mode
, int file
)
1019 /* Only take pages on the LRU. */
1024 * When checking the active state, we need to be sure we are
1025 * dealing with comparible boolean values. Take the logical not
1028 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
1031 if (mode
!= ISOLATE_BOTH
&& page_is_file_cache(page
) != file
)
1035 * When this function is being called for lumpy reclaim, we
1036 * initially look into all LRU pages, active, inactive and
1037 * unevictable; only give shrink_page_list evictable pages.
1039 if (PageUnevictable(page
))
1044 if (likely(get_page_unless_zero(page
))) {
1046 * Be careful not to clear PageLRU until after we're
1047 * sure the page is not being freed elsewhere -- the
1048 * page release code relies on it.
1058 * zone->lru_lock is heavily contended. Some of the functions that
1059 * shrink the lists perform better by taking out a batch of pages
1060 * and working on them outside the LRU lock.
1062 * For pagecache intensive workloads, this function is the hottest
1063 * spot in the kernel (apart from copy_*_user functions).
1065 * Appropriate locks must be held before calling this function.
1067 * @nr_to_scan: The number of pages to look through on the list.
1068 * @src: The LRU list to pull pages off.
1069 * @dst: The temp list to put pages on to.
1070 * @scanned: The number of pages that were scanned.
1071 * @order: The caller's attempted allocation order
1072 * @mode: One of the LRU isolation modes
1073 * @file: True [1] if isolating file [!anon] pages
1075 * returns how many pages were moved onto *@dst.
1077 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1078 struct list_head
*src
, struct list_head
*dst
,
1079 unsigned long *scanned
, int order
, int mode
, int file
)
1081 unsigned long nr_taken
= 0;
1082 unsigned long nr_lumpy_taken
= 0;
1083 unsigned long nr_lumpy_dirty
= 0;
1084 unsigned long nr_lumpy_failed
= 0;
1087 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
1090 unsigned long end_pfn
;
1091 unsigned long page_pfn
;
1094 page
= lru_to_page(src
);
1095 prefetchw_prev_lru_page(page
, src
, flags
);
1097 VM_BUG_ON(!PageLRU(page
));
1099 switch (__isolate_lru_page(page
, mode
, file
)) {
1101 list_move(&page
->lru
, dst
);
1102 mem_cgroup_del_lru(page
);
1103 nr_taken
+= hpage_nr_pages(page
);
1107 /* else it is being freed elsewhere */
1108 list_move(&page
->lru
, src
);
1109 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1120 * Attempt to take all pages in the order aligned region
1121 * surrounding the tag page. Only take those pages of
1122 * the same active state as that tag page. We may safely
1123 * round the target page pfn down to the requested order
1124 * as the mem_map is guaranteed valid out to MAX_ORDER,
1125 * where that page is in a different zone we will detect
1126 * it from its zone id and abort this block scan.
1128 zone_id
= page_zone_id(page
);
1129 page_pfn
= page_to_pfn(page
);
1130 pfn
= page_pfn
& ~((1 << order
) - 1);
1131 end_pfn
= pfn
+ (1 << order
);
1132 for (; pfn
< end_pfn
; pfn
++) {
1133 struct page
*cursor_page
;
1135 /* The target page is in the block, ignore it. */
1136 if (unlikely(pfn
== page_pfn
))
1139 /* Avoid holes within the zone. */
1140 if (unlikely(!pfn_valid_within(pfn
)))
1143 cursor_page
= pfn_to_page(pfn
);
1145 /* Check that we have not crossed a zone boundary. */
1146 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
1150 * If we don't have enough swap space, reclaiming of
1151 * anon page which don't already have a swap slot is
1154 if (nr_swap_pages
<= 0 && PageAnon(cursor_page
) &&
1155 !PageSwapCache(cursor_page
))
1158 if (__isolate_lru_page(cursor_page
, mode
, file
) == 0) {
1159 list_move(&cursor_page
->lru
, dst
);
1160 mem_cgroup_del_lru(cursor_page
);
1161 nr_taken
+= hpage_nr_pages(page
);
1163 if (PageDirty(cursor_page
))
1168 * Check if the page is freed already.
1170 * We can't use page_count() as that
1171 * requires compound_head and we don't
1172 * have a pin on the page here. If a
1173 * page is tail, we may or may not
1174 * have isolated the head, so assume
1175 * it's not free, it'd be tricky to
1176 * track the head status without a
1179 if (!PageTail(cursor_page
) &&
1180 !atomic_read(&cursor_page
->_count
))
1186 /* If we break out of the loop above, lumpy reclaim failed */
1193 trace_mm_vmscan_lru_isolate(order
,
1196 nr_lumpy_taken
, nr_lumpy_dirty
, nr_lumpy_failed
,
1201 static unsigned long isolate_pages_global(unsigned long nr
,
1202 struct list_head
*dst
,
1203 unsigned long *scanned
, int order
,
1204 int mode
, struct zone
*z
,
1205 int active
, int file
)
1212 return isolate_lru_pages(nr
, &z
->lru
[lru
].list
, dst
, scanned
, order
,
1217 * clear_active_flags() is a helper for shrink_active_list(), clearing
1218 * any active bits from the pages in the list.
1220 static unsigned long clear_active_flags(struct list_head
*page_list
,
1221 unsigned int *count
)
1227 list_for_each_entry(page
, page_list
, lru
) {
1228 int numpages
= hpage_nr_pages(page
);
1229 lru
= page_lru_base_type(page
);
1230 if (PageActive(page
)) {
1232 ClearPageActive(page
);
1233 nr_active
+= numpages
;
1236 count
[lru
] += numpages
;
1243 * isolate_lru_page - tries to isolate a page from its LRU list
1244 * @page: page to isolate from its LRU list
1246 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1247 * vmstat statistic corresponding to whatever LRU list the page was on.
1249 * Returns 0 if the page was removed from an LRU list.
1250 * Returns -EBUSY if the page was not on an LRU list.
1252 * The returned page will have PageLRU() cleared. If it was found on
1253 * the active list, it will have PageActive set. If it was found on
1254 * the unevictable list, it will have the PageUnevictable bit set. That flag
1255 * may need to be cleared by the caller before letting the page go.
1257 * The vmstat statistic corresponding to the list on which the page was
1258 * found will be decremented.
1261 * (1) Must be called with an elevated refcount on the page. This is a
1262 * fundamentnal difference from isolate_lru_pages (which is called
1263 * without a stable reference).
1264 * (2) the lru_lock must not be held.
1265 * (3) interrupts must be enabled.
1267 int isolate_lru_page(struct page
*page
)
1271 VM_BUG_ON(!page_count(page
));
1273 if (PageLRU(page
)) {
1274 struct zone
*zone
= page_zone(page
);
1276 spin_lock_irq(&zone
->lru_lock
);
1277 if (PageLRU(page
)) {
1278 int lru
= page_lru(page
);
1283 del_page_from_lru_list(zone
, page
, lru
);
1285 spin_unlock_irq(&zone
->lru_lock
);
1291 * Are there way too many processes in the direct reclaim path already?
1293 static int too_many_isolated(struct zone
*zone
, int file
,
1294 struct scan_control
*sc
)
1296 unsigned long inactive
, isolated
;
1298 if (current_is_kswapd())
1301 if (!scanning_global_lru(sc
))
1305 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1306 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
);
1308 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1309 isolated
= zone_page_state(zone
, NR_ISOLATED_ANON
);
1312 return isolated
> inactive
;
1316 * TODO: Try merging with migrations version of putback_lru_pages
1318 static noinline_for_stack
void
1319 putback_lru_pages(struct zone
*zone
, struct scan_control
*sc
,
1320 unsigned long nr_anon
, unsigned long nr_file
,
1321 struct list_head
*page_list
)
1324 struct pagevec pvec
;
1325 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1327 pagevec_init(&pvec
, 1);
1330 * Put back any unfreeable pages.
1332 spin_lock(&zone
->lru_lock
);
1333 while (!list_empty(page_list
)) {
1335 page
= lru_to_page(page_list
);
1336 VM_BUG_ON(PageLRU(page
));
1337 list_del(&page
->lru
);
1338 if (unlikely(!page_evictable(page
, NULL
))) {
1339 spin_unlock_irq(&zone
->lru_lock
);
1340 putback_lru_page(page
);
1341 spin_lock_irq(&zone
->lru_lock
);
1345 lru
= page_lru(page
);
1346 add_page_to_lru_list(zone
, page
, lru
);
1347 if (is_active_lru(lru
)) {
1348 int file
= is_file_lru(lru
);
1349 int numpages
= hpage_nr_pages(page
);
1350 reclaim_stat
->recent_rotated
[file
] += numpages
;
1352 if (!pagevec_add(&pvec
, page
)) {
1353 spin_unlock_irq(&zone
->lru_lock
);
1354 __pagevec_release(&pvec
);
1355 spin_lock_irq(&zone
->lru_lock
);
1358 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, -nr_anon
);
1359 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, -nr_file
);
1361 spin_unlock_irq(&zone
->lru_lock
);
1362 pagevec_release(&pvec
);
1365 static noinline_for_stack
void update_isolated_counts(struct zone
*zone
,
1366 struct scan_control
*sc
,
1367 unsigned long *nr_anon
,
1368 unsigned long *nr_file
,
1369 struct list_head
*isolated_list
)
1371 unsigned long nr_active
;
1372 unsigned int count
[NR_LRU_LISTS
] = { 0, };
1373 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1375 nr_active
= clear_active_flags(isolated_list
, count
);
1376 __count_vm_events(PGDEACTIVATE
, nr_active
);
1378 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
,
1379 -count
[LRU_ACTIVE_FILE
]);
1380 __mod_zone_page_state(zone
, NR_INACTIVE_FILE
,
1381 -count
[LRU_INACTIVE_FILE
]);
1382 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
,
1383 -count
[LRU_ACTIVE_ANON
]);
1384 __mod_zone_page_state(zone
, NR_INACTIVE_ANON
,
1385 -count
[LRU_INACTIVE_ANON
]);
1387 *nr_anon
= count
[LRU_ACTIVE_ANON
] + count
[LRU_INACTIVE_ANON
];
1388 *nr_file
= count
[LRU_ACTIVE_FILE
] + count
[LRU_INACTIVE_FILE
];
1389 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, *nr_anon
);
1390 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, *nr_file
);
1392 reclaim_stat
->recent_scanned
[0] += *nr_anon
;
1393 reclaim_stat
->recent_scanned
[1] += *nr_file
;
1397 * Returns true if the caller should wait to clean dirty/writeback pages.
1399 * If we are direct reclaiming for contiguous pages and we do not reclaim
1400 * everything in the list, try again and wait for writeback IO to complete.
1401 * This will stall high-order allocations noticeably. Only do that when really
1402 * need to free the pages under high memory pressure.
1404 static inline bool should_reclaim_stall(unsigned long nr_taken
,
1405 unsigned long nr_freed
,
1407 struct scan_control
*sc
)
1409 int lumpy_stall_priority
;
1411 /* kswapd should not stall on sync IO */
1412 if (current_is_kswapd())
1415 /* Only stall on lumpy reclaim */
1416 if (sc
->reclaim_mode
& RECLAIM_MODE_SINGLE
)
1419 /* If we have relaimed everything on the isolated list, no stall */
1420 if (nr_freed
== nr_taken
)
1424 * For high-order allocations, there are two stall thresholds.
1425 * High-cost allocations stall immediately where as lower
1426 * order allocations such as stacks require the scanning
1427 * priority to be much higher before stalling.
1429 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
1430 lumpy_stall_priority
= DEF_PRIORITY
;
1432 lumpy_stall_priority
= DEF_PRIORITY
/ 3;
1434 return priority
<= lumpy_stall_priority
;
1438 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1439 * of reclaimed pages
1441 static noinline_for_stack
unsigned long
1442 shrink_inactive_list(unsigned long nr_to_scan
, struct zone
*zone
,
1443 struct scan_control
*sc
, int priority
, int file
)
1445 LIST_HEAD(page_list
);
1446 unsigned long nr_scanned
;
1447 unsigned long nr_reclaimed
= 0;
1448 unsigned long nr_taken
;
1449 unsigned long nr_anon
;
1450 unsigned long nr_file
;
1452 while (unlikely(too_many_isolated(zone
, file
, sc
))) {
1453 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1455 /* We are about to die and free our memory. Return now. */
1456 if (fatal_signal_pending(current
))
1457 return SWAP_CLUSTER_MAX
;
1460 set_reclaim_mode(priority
, sc
, false);
1462 spin_lock_irq(&zone
->lru_lock
);
1464 if (scanning_global_lru(sc
)) {
1465 nr_taken
= isolate_pages_global(nr_to_scan
,
1466 &page_list
, &nr_scanned
, sc
->order
,
1467 sc
->reclaim_mode
& RECLAIM_MODE_LUMPYRECLAIM
?
1468 ISOLATE_BOTH
: ISOLATE_INACTIVE
,
1470 zone
->pages_scanned
+= nr_scanned
;
1471 if (current_is_kswapd())
1472 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
,
1475 __count_zone_vm_events(PGSCAN_DIRECT
, zone
,
1478 nr_taken
= mem_cgroup_isolate_pages(nr_to_scan
,
1479 &page_list
, &nr_scanned
, sc
->order
,
1480 sc
->reclaim_mode
& RECLAIM_MODE_LUMPYRECLAIM
?
1481 ISOLATE_BOTH
: ISOLATE_INACTIVE
,
1482 zone
, sc
->mem_cgroup
,
1485 * mem_cgroup_isolate_pages() keeps track of
1486 * scanned pages on its own.
1490 if (nr_taken
== 0) {
1491 spin_unlock_irq(&zone
->lru_lock
);
1495 update_isolated_counts(zone
, sc
, &nr_anon
, &nr_file
, &page_list
);
1497 spin_unlock_irq(&zone
->lru_lock
);
1499 nr_reclaimed
= shrink_page_list(&page_list
, zone
, sc
);
1501 /* Check if we should syncronously wait for writeback */
1502 if (should_reclaim_stall(nr_taken
, nr_reclaimed
, priority
, sc
)) {
1503 set_reclaim_mode(priority
, sc
, true);
1504 nr_reclaimed
+= shrink_page_list(&page_list
, zone
, sc
);
1507 local_irq_disable();
1508 if (current_is_kswapd())
1509 __count_vm_events(KSWAPD_STEAL
, nr_reclaimed
);
1510 __count_zone_vm_events(PGSTEAL
, zone
, nr_reclaimed
);
1512 putback_lru_pages(zone
, sc
, nr_anon
, nr_file
, &page_list
);
1514 trace_mm_vmscan_lru_shrink_inactive(zone
->zone_pgdat
->node_id
,
1516 nr_scanned
, nr_reclaimed
,
1518 trace_shrink_flags(file
, sc
->reclaim_mode
));
1519 return nr_reclaimed
;
1523 * This moves pages from the active list to the inactive list.
1525 * We move them the other way if the page is referenced by one or more
1526 * processes, from rmap.
1528 * If the pages are mostly unmapped, the processing is fast and it is
1529 * appropriate to hold zone->lru_lock across the whole operation. But if
1530 * the pages are mapped, the processing is slow (page_referenced()) so we
1531 * should drop zone->lru_lock around each page. It's impossible to balance
1532 * this, so instead we remove the pages from the LRU while processing them.
1533 * It is safe to rely on PG_active against the non-LRU pages in here because
1534 * nobody will play with that bit on a non-LRU page.
1536 * The downside is that we have to touch page->_count against each page.
1537 * But we had to alter page->flags anyway.
1540 static void move_active_pages_to_lru(struct zone
*zone
,
1541 struct list_head
*list
,
1544 unsigned long pgmoved
= 0;
1545 struct pagevec pvec
;
1548 pagevec_init(&pvec
, 1);
1550 while (!list_empty(list
)) {
1551 page
= lru_to_page(list
);
1553 VM_BUG_ON(PageLRU(page
));
1556 list_move(&page
->lru
, &zone
->lru
[lru
].list
);
1557 mem_cgroup_add_lru_list(page
, lru
);
1558 pgmoved
+= hpage_nr_pages(page
);
1560 if (!pagevec_add(&pvec
, page
) || list_empty(list
)) {
1561 spin_unlock_irq(&zone
->lru_lock
);
1562 if (buffer_heads_over_limit
)
1563 pagevec_strip(&pvec
);
1564 __pagevec_release(&pvec
);
1565 spin_lock_irq(&zone
->lru_lock
);
1568 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1569 if (!is_active_lru(lru
))
1570 __count_vm_events(PGDEACTIVATE
, pgmoved
);
1573 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
1574 struct scan_control
*sc
, int priority
, int file
)
1576 unsigned long nr_taken
;
1577 unsigned long pgscanned
;
1578 unsigned long vm_flags
;
1579 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1580 LIST_HEAD(l_active
);
1581 LIST_HEAD(l_inactive
);
1583 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1584 unsigned long nr_rotated
= 0;
1587 spin_lock_irq(&zone
->lru_lock
);
1588 if (scanning_global_lru(sc
)) {
1589 nr_taken
= isolate_pages_global(nr_pages
, &l_hold
,
1590 &pgscanned
, sc
->order
,
1591 ISOLATE_ACTIVE
, zone
,
1593 zone
->pages_scanned
+= pgscanned
;
1595 nr_taken
= mem_cgroup_isolate_pages(nr_pages
, &l_hold
,
1596 &pgscanned
, sc
->order
,
1597 ISOLATE_ACTIVE
, zone
,
1598 sc
->mem_cgroup
, 1, file
);
1600 * mem_cgroup_isolate_pages() keeps track of
1601 * scanned pages on its own.
1605 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1607 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1609 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
, -nr_taken
);
1611 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
, -nr_taken
);
1612 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1613 spin_unlock_irq(&zone
->lru_lock
);
1615 while (!list_empty(&l_hold
)) {
1617 page
= lru_to_page(&l_hold
);
1618 list_del(&page
->lru
);
1620 if (unlikely(!page_evictable(page
, NULL
))) {
1621 putback_lru_page(page
);
1625 if (page_referenced(page
, 0, sc
->mem_cgroup
, &vm_flags
)) {
1626 nr_rotated
+= hpage_nr_pages(page
);
1628 * Identify referenced, file-backed active pages and
1629 * give them one more trip around the active list. So
1630 * that executable code get better chances to stay in
1631 * memory under moderate memory pressure. Anon pages
1632 * are not likely to be evicted by use-once streaming
1633 * IO, plus JVM can create lots of anon VM_EXEC pages,
1634 * so we ignore them here.
1636 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
1637 list_add(&page
->lru
, &l_active
);
1642 ClearPageActive(page
); /* we are de-activating */
1643 list_add(&page
->lru
, &l_inactive
);
1647 * Move pages back to the lru list.
1649 spin_lock_irq(&zone
->lru_lock
);
1651 * Count referenced pages from currently used mappings as rotated,
1652 * even though only some of them are actually re-activated. This
1653 * helps balance scan pressure between file and anonymous pages in
1656 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
1658 move_active_pages_to_lru(zone
, &l_active
,
1659 LRU_ACTIVE
+ file
* LRU_FILE
);
1660 move_active_pages_to_lru(zone
, &l_inactive
,
1661 LRU_BASE
+ file
* LRU_FILE
);
1662 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1663 spin_unlock_irq(&zone
->lru_lock
);
1667 static int inactive_anon_is_low_global(struct zone
*zone
)
1669 unsigned long active
, inactive
;
1671 active
= zone_page_state(zone
, NR_ACTIVE_ANON
);
1672 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1674 if (inactive
* zone
->inactive_ratio
< active
)
1681 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1682 * @zone: zone to check
1683 * @sc: scan control of this context
1685 * Returns true if the zone does not have enough inactive anon pages,
1686 * meaning some active anon pages need to be deactivated.
1688 static int inactive_anon_is_low(struct zone
*zone
, struct scan_control
*sc
)
1693 * If we don't have swap space, anonymous page deactivation
1696 if (!total_swap_pages
)
1699 if (scanning_global_lru(sc
))
1700 low
= inactive_anon_is_low_global(zone
);
1702 low
= mem_cgroup_inactive_anon_is_low(sc
->mem_cgroup
);
1706 static inline int inactive_anon_is_low(struct zone
*zone
,
1707 struct scan_control
*sc
)
1713 static int inactive_file_is_low_global(struct zone
*zone
)
1715 unsigned long active
, inactive
;
1717 active
= zone_page_state(zone
, NR_ACTIVE_FILE
);
1718 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1720 return (active
> inactive
);
1724 * inactive_file_is_low - check if file pages need to be deactivated
1725 * @zone: zone to check
1726 * @sc: scan control of this context
1728 * When the system is doing streaming IO, memory pressure here
1729 * ensures that active file pages get deactivated, until more
1730 * than half of the file pages are on the inactive list.
1732 * Once we get to that situation, protect the system's working
1733 * set from being evicted by disabling active file page aging.
1735 * This uses a different ratio than the anonymous pages, because
1736 * the page cache uses a use-once replacement algorithm.
1738 static int inactive_file_is_low(struct zone
*zone
, struct scan_control
*sc
)
1742 if (scanning_global_lru(sc
))
1743 low
= inactive_file_is_low_global(zone
);
1745 low
= mem_cgroup_inactive_file_is_low(sc
->mem_cgroup
);
1749 static int inactive_list_is_low(struct zone
*zone
, struct scan_control
*sc
,
1753 return inactive_file_is_low(zone
, sc
);
1755 return inactive_anon_is_low(zone
, sc
);
1758 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1759 struct zone
*zone
, struct scan_control
*sc
, int priority
)
1761 int file
= is_file_lru(lru
);
1763 if (is_active_lru(lru
)) {
1764 if (inactive_list_is_low(zone
, sc
, file
))
1765 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1769 return shrink_inactive_list(nr_to_scan
, zone
, sc
, priority
, file
);
1772 static int vmscan_swappiness(struct scan_control
*sc
)
1774 if (scanning_global_lru(sc
))
1775 return vm_swappiness
;
1776 return mem_cgroup_swappiness(sc
->mem_cgroup
);
1780 * Determine how aggressively the anon and file LRU lists should be
1781 * scanned. The relative value of each set of LRU lists is determined
1782 * by looking at the fraction of the pages scanned we did rotate back
1783 * onto the active list instead of evict.
1785 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1787 static void get_scan_count(struct zone
*zone
, struct scan_control
*sc
,
1788 unsigned long *nr
, int priority
)
1790 unsigned long anon
, file
, free
;
1791 unsigned long anon_prio
, file_prio
;
1792 unsigned long ap
, fp
;
1793 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1794 u64 fraction
[2], denominator
;
1797 bool force_scan
= false;
1798 unsigned long nr_force_scan
[2];
1800 /* kswapd does zone balancing and needs to scan this zone */
1801 if (scanning_global_lru(sc
) && current_is_kswapd())
1803 /* memcg may have small limit and need to avoid priority drop */
1804 if (!scanning_global_lru(sc
))
1807 /* If we have no swap space, do not bother scanning anon pages. */
1808 if (!sc
->may_swap
|| (nr_swap_pages
<= 0)) {
1813 nr_force_scan
[0] = 0;
1814 nr_force_scan
[1] = SWAP_CLUSTER_MAX
;
1818 anon
= zone_nr_lru_pages(zone
, sc
, LRU_ACTIVE_ANON
) +
1819 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_ANON
);
1820 file
= zone_nr_lru_pages(zone
, sc
, LRU_ACTIVE_FILE
) +
1821 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_FILE
);
1823 if (scanning_global_lru(sc
)) {
1824 free
= zone_page_state(zone
, NR_FREE_PAGES
);
1825 /* If we have very few page cache pages,
1826 force-scan anon pages. */
1827 if (unlikely(file
+ free
<= high_wmark_pages(zone
))) {
1831 nr_force_scan
[0] = SWAP_CLUSTER_MAX
;
1832 nr_force_scan
[1] = 0;
1838 * With swappiness at 100, anonymous and file have the same priority.
1839 * This scanning priority is essentially the inverse of IO cost.
1841 anon_prio
= vmscan_swappiness(sc
);
1842 file_prio
= 200 - vmscan_swappiness(sc
);
1845 * OK, so we have swap space and a fair amount of page cache
1846 * pages. We use the recently rotated / recently scanned
1847 * ratios to determine how valuable each cache is.
1849 * Because workloads change over time (and to avoid overflow)
1850 * we keep these statistics as a floating average, which ends
1851 * up weighing recent references more than old ones.
1853 * anon in [0], file in [1]
1855 spin_lock_irq(&zone
->lru_lock
);
1856 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
1857 reclaim_stat
->recent_scanned
[0] /= 2;
1858 reclaim_stat
->recent_rotated
[0] /= 2;
1861 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
1862 reclaim_stat
->recent_scanned
[1] /= 2;
1863 reclaim_stat
->recent_rotated
[1] /= 2;
1867 * The amount of pressure on anon vs file pages is inversely
1868 * proportional to the fraction of recently scanned pages on
1869 * each list that were recently referenced and in active use.
1871 ap
= (anon_prio
+ 1) * (reclaim_stat
->recent_scanned
[0] + 1);
1872 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
1874 fp
= (file_prio
+ 1) * (reclaim_stat
->recent_scanned
[1] + 1);
1875 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
1876 spin_unlock_irq(&zone
->lru_lock
);
1880 denominator
= ap
+ fp
+ 1;
1882 unsigned long scan
= SWAP_CLUSTER_MAX
;
1883 nr_force_scan
[0] = div64_u64(scan
* ap
, denominator
);
1884 nr_force_scan
[1] = div64_u64(scan
* fp
, denominator
);
1887 for_each_evictable_lru(l
) {
1888 int file
= is_file_lru(l
);
1891 scan
= zone_nr_lru_pages(zone
, sc
, l
);
1892 if (priority
|| noswap
) {
1894 scan
= div64_u64(scan
* fraction
[file
], denominator
);
1898 * If zone is small or memcg is small, nr[l] can be 0.
1899 * This results no-scan on this priority and priority drop down.
1900 * For global direct reclaim, it can visit next zone and tend
1901 * not to have problems. For global kswapd, it's for zone
1902 * balancing and it need to scan a small amounts. When using
1903 * memcg, priority drop can cause big latency. So, it's better
1904 * to scan small amount. See may_noscan above.
1906 if (!scan
&& force_scan
)
1907 scan
= nr_force_scan
[file
];
1913 * Reclaim/compaction depends on a number of pages being freed. To avoid
1914 * disruption to the system, a small number of order-0 pages continue to be
1915 * rotated and reclaimed in the normal fashion. However, by the time we get
1916 * back to the allocator and call try_to_compact_zone(), we ensure that
1917 * there are enough free pages for it to be likely successful
1919 static inline bool should_continue_reclaim(struct zone
*zone
,
1920 unsigned long nr_reclaimed
,
1921 unsigned long nr_scanned
,
1922 struct scan_control
*sc
)
1924 unsigned long pages_for_compaction
;
1925 unsigned long inactive_lru_pages
;
1927 /* If not in reclaim/compaction mode, stop */
1928 if (!(sc
->reclaim_mode
& RECLAIM_MODE_COMPACTION
))
1931 /* Consider stopping depending on scan and reclaim activity */
1932 if (sc
->gfp_mask
& __GFP_REPEAT
) {
1934 * For __GFP_REPEAT allocations, stop reclaiming if the
1935 * full LRU list has been scanned and we are still failing
1936 * to reclaim pages. This full LRU scan is potentially
1937 * expensive but a __GFP_REPEAT caller really wants to succeed
1939 if (!nr_reclaimed
&& !nr_scanned
)
1943 * For non-__GFP_REPEAT allocations which can presumably
1944 * fail without consequence, stop if we failed to reclaim
1945 * any pages from the last SWAP_CLUSTER_MAX number of
1946 * pages that were scanned. This will return to the
1947 * caller faster at the risk reclaim/compaction and
1948 * the resulting allocation attempt fails
1955 * If we have not reclaimed enough pages for compaction and the
1956 * inactive lists are large enough, continue reclaiming
1958 pages_for_compaction
= (2UL << sc
->order
);
1959 inactive_lru_pages
= zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_ANON
) +
1960 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_FILE
);
1961 if (sc
->nr_reclaimed
< pages_for_compaction
&&
1962 inactive_lru_pages
> pages_for_compaction
)
1965 /* If compaction would go ahead or the allocation would succeed, stop */
1966 switch (compaction_suitable(zone
, sc
->order
)) {
1967 case COMPACT_PARTIAL
:
1968 case COMPACT_CONTINUE
:
1976 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1978 static void shrink_zone(int priority
, struct zone
*zone
,
1979 struct scan_control
*sc
)
1981 unsigned long nr
[NR_LRU_LISTS
];
1982 unsigned long nr_to_scan
;
1984 unsigned long nr_reclaimed
, nr_scanned
;
1985 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
1989 nr_scanned
= sc
->nr_scanned
;
1990 get_scan_count(zone
, sc
, nr
, priority
);
1992 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
1993 nr
[LRU_INACTIVE_FILE
]) {
1994 for_each_evictable_lru(l
) {
1996 nr_to_scan
= min_t(unsigned long,
1997 nr
[l
], SWAP_CLUSTER_MAX
);
1998 nr
[l
] -= nr_to_scan
;
2000 nr_reclaimed
+= shrink_list(l
, nr_to_scan
,
2001 zone
, sc
, priority
);
2005 * On large memory systems, scan >> priority can become
2006 * really large. This is fine for the starting priority;
2007 * we want to put equal scanning pressure on each zone.
2008 * However, if the VM has a harder time of freeing pages,
2009 * with multiple processes reclaiming pages, the total
2010 * freeing target can get unreasonably large.
2012 if (nr_reclaimed
>= nr_to_reclaim
&& priority
< DEF_PRIORITY
)
2015 sc
->nr_reclaimed
+= nr_reclaimed
;
2018 * Even if we did not try to evict anon pages at all, we want to
2019 * rebalance the anon lru active/inactive ratio.
2021 if (inactive_anon_is_low(zone
, sc
))
2022 shrink_active_list(SWAP_CLUSTER_MAX
, zone
, sc
, priority
, 0);
2024 /* reclaim/compaction might need reclaim to continue */
2025 if (should_continue_reclaim(zone
, nr_reclaimed
,
2026 sc
->nr_scanned
- nr_scanned
, sc
))
2029 throttle_vm_writeout(sc
->gfp_mask
);
2033 * This is the direct reclaim path, for page-allocating processes. We only
2034 * try to reclaim pages from zones which will satisfy the caller's allocation
2037 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2039 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2041 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2042 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2043 * zone defense algorithm.
2045 * If a zone is deemed to be full of pinned pages then just give it a light
2046 * scan then give up on it.
2048 static void shrink_zones(int priority
, struct zonelist
*zonelist
,
2049 struct scan_control
*sc
)
2053 unsigned long nr_soft_reclaimed
;
2054 unsigned long nr_soft_scanned
;
2056 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2057 gfp_zone(sc
->gfp_mask
), sc
->nodemask
) {
2058 if (!populated_zone(zone
))
2061 * Take care memory controller reclaiming has small influence
2064 if (scanning_global_lru(sc
)) {
2065 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2067 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2068 continue; /* Let kswapd poll it */
2070 * This steals pages from memory cgroups over softlimit
2071 * and returns the number of reclaimed pages and
2072 * scanned pages. This works for global memory pressure
2073 * and balancing, not for a memcg's limit.
2075 nr_soft_scanned
= 0;
2076 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
,
2077 sc
->order
, sc
->gfp_mask
,
2079 sc
->nr_reclaimed
+= nr_soft_reclaimed
;
2080 sc
->nr_scanned
+= nr_soft_scanned
;
2081 /* need some check for avoid more shrink_zone() */
2084 shrink_zone(priority
, zone
, sc
);
2088 static bool zone_reclaimable(struct zone
*zone
)
2090 return zone
->pages_scanned
< zone_reclaimable_pages(zone
) * 6;
2093 /* All zones in zonelist are unreclaimable? */
2094 static bool all_unreclaimable(struct zonelist
*zonelist
,
2095 struct scan_control
*sc
)
2100 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2101 gfp_zone(sc
->gfp_mask
), sc
->nodemask
) {
2102 if (!populated_zone(zone
))
2104 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2106 if (!zone
->all_unreclaimable
)
2114 * This is the main entry point to direct page reclaim.
2116 * If a full scan of the inactive list fails to free enough memory then we
2117 * are "out of memory" and something needs to be killed.
2119 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2120 * high - the zone may be full of dirty or under-writeback pages, which this
2121 * caller can't do much about. We kick the writeback threads and take explicit
2122 * naps in the hope that some of these pages can be written. But if the
2123 * allocating task holds filesystem locks which prevent writeout this might not
2124 * work, and the allocation attempt will fail.
2126 * returns: 0, if no pages reclaimed
2127 * else, the number of pages reclaimed
2129 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
2130 struct scan_control
*sc
,
2131 struct shrink_control
*shrink
)
2134 unsigned long total_scanned
= 0;
2135 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2138 unsigned long writeback_threshold
;
2141 delayacct_freepages_start();
2143 if (scanning_global_lru(sc
))
2144 count_vm_event(ALLOCSTALL
);
2146 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
2149 disable_swap_token(sc
->mem_cgroup
);
2150 shrink_zones(priority
, zonelist
, sc
);
2152 * Don't shrink slabs when reclaiming memory from
2153 * over limit cgroups
2155 if (scanning_global_lru(sc
)) {
2156 unsigned long lru_pages
= 0;
2157 for_each_zone_zonelist(zone
, z
, zonelist
,
2158 gfp_zone(sc
->gfp_mask
)) {
2159 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2162 lru_pages
+= zone_reclaimable_pages(zone
);
2165 shrink_slab(shrink
, sc
->nr_scanned
, lru_pages
);
2166 if (reclaim_state
) {
2167 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2168 reclaim_state
->reclaimed_slab
= 0;
2171 total_scanned
+= sc
->nr_scanned
;
2172 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
2176 * Try to write back as many pages as we just scanned. This
2177 * tends to cause slow streaming writers to write data to the
2178 * disk smoothly, at the dirtying rate, which is nice. But
2179 * that's undesirable in laptop mode, where we *want* lumpy
2180 * writeout. So in laptop mode, write out the whole world.
2182 writeback_threshold
= sc
->nr_to_reclaim
+ sc
->nr_to_reclaim
/ 2;
2183 if (total_scanned
> writeback_threshold
) {
2184 wakeup_flusher_threads(laptop_mode
? 0 : total_scanned
);
2185 sc
->may_writepage
= 1;
2188 /* Take a nap, wait for some writeback to complete */
2189 if (!sc
->hibernation_mode
&& sc
->nr_scanned
&&
2190 priority
< DEF_PRIORITY
- 2) {
2191 struct zone
*preferred_zone
;
2193 first_zones_zonelist(zonelist
, gfp_zone(sc
->gfp_mask
),
2194 &cpuset_current_mems_allowed
,
2196 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/10);
2201 delayacct_freepages_end();
2204 if (sc
->nr_reclaimed
)
2205 return sc
->nr_reclaimed
;
2208 * As hibernation is going on, kswapd is freezed so that it can't mark
2209 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2212 if (oom_killer_disabled
)
2215 /* top priority shrink_zones still had more to do? don't OOM, then */
2216 if (scanning_global_lru(sc
) && !all_unreclaimable(zonelist
, sc
))
2222 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
2223 gfp_t gfp_mask
, nodemask_t
*nodemask
)
2225 unsigned long nr_reclaimed
;
2226 struct scan_control sc
= {
2227 .gfp_mask
= gfp_mask
,
2228 .may_writepage
= !laptop_mode
,
2229 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2234 .nodemask
= nodemask
,
2236 struct shrink_control shrink
= {
2237 .gfp_mask
= sc
.gfp_mask
,
2240 trace_mm_vmscan_direct_reclaim_begin(order
,
2244 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
, &shrink
);
2246 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
2248 return nr_reclaimed
;
2251 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2253 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup
*mem
,
2254 gfp_t gfp_mask
, bool noswap
,
2256 unsigned long *nr_scanned
)
2258 struct scan_control sc
= {
2260 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2261 .may_writepage
= !laptop_mode
,
2263 .may_swap
= !noswap
,
2268 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2269 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
2271 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2276 * NOTE: Although we can get the priority field, using it
2277 * here is not a good idea, since it limits the pages we can scan.
2278 * if we don't reclaim here, the shrink_zone from balance_pgdat
2279 * will pick up pages from other mem cgroup's as well. We hack
2280 * the priority and make it zero.
2282 shrink_zone(0, zone
, &sc
);
2284 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
2286 *nr_scanned
= sc
.nr_scanned
;
2287 return sc
.nr_reclaimed
;
2290 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*mem_cont
,
2294 struct zonelist
*zonelist
;
2295 unsigned long nr_reclaimed
;
2297 struct scan_control sc
= {
2298 .may_writepage
= !laptop_mode
,
2300 .may_swap
= !noswap
,
2301 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2303 .mem_cgroup
= mem_cont
,
2304 .nodemask
= NULL
, /* we don't care the placement */
2305 .gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2306 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
),
2308 struct shrink_control shrink
= {
2309 .gfp_mask
= sc
.gfp_mask
,
2313 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2314 * take care of from where we get pages. So the node where we start the
2315 * scan does not need to be the current node.
2317 nid
= mem_cgroup_select_victim_node(mem_cont
);
2319 zonelist
= NODE_DATA(nid
)->node_zonelists
;
2321 trace_mm_vmscan_memcg_reclaim_begin(0,
2325 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
, &shrink
);
2327 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
2329 return nr_reclaimed
;
2334 * pgdat_balanced is used when checking if a node is balanced for high-order
2335 * allocations. Only zones that meet watermarks and are in a zone allowed
2336 * by the callers classzone_idx are added to balanced_pages. The total of
2337 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2338 * for the node to be considered balanced. Forcing all zones to be balanced
2339 * for high orders can cause excessive reclaim when there are imbalanced zones.
2340 * The choice of 25% is due to
2341 * o a 16M DMA zone that is balanced will not balance a zone on any
2342 * reasonable sized machine
2343 * o On all other machines, the top zone must be at least a reasonable
2344 * percentage of the middle zones. For example, on 32-bit x86, highmem
2345 * would need to be at least 256M for it to be balance a whole node.
2346 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2347 * to balance a node on its own. These seemed like reasonable ratios.
2349 static bool pgdat_balanced(pg_data_t
*pgdat
, unsigned long balanced_pages
,
2352 unsigned long present_pages
= 0;
2355 for (i
= 0; i
<= classzone_idx
; i
++)
2356 present_pages
+= pgdat
->node_zones
[i
].present_pages
;
2358 /* A special case here: if zone has no page, we think it's balanced */
2359 return balanced_pages
>= (present_pages
>> 2);
2362 /* is kswapd sleeping prematurely? */
2363 static bool sleeping_prematurely(pg_data_t
*pgdat
, int order
, long remaining
,
2367 unsigned long balanced
= 0;
2368 bool all_zones_ok
= true;
2370 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2374 /* Check the watermark levels */
2375 for (i
= 0; i
<= classzone_idx
; i
++) {
2376 struct zone
*zone
= pgdat
->node_zones
+ i
;
2378 if (!populated_zone(zone
))
2382 * balance_pgdat() skips over all_unreclaimable after
2383 * DEF_PRIORITY. Effectively, it considers them balanced so
2384 * they must be considered balanced here as well if kswapd
2387 if (zone
->all_unreclaimable
) {
2388 balanced
+= zone
->present_pages
;
2392 if (!zone_watermark_ok_safe(zone
, order
, high_wmark_pages(zone
),
2394 all_zones_ok
= false;
2396 balanced
+= zone
->present_pages
;
2400 * For high-order requests, the balanced zones must contain at least
2401 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2405 return !pgdat_balanced(pgdat
, balanced
, classzone_idx
);
2407 return !all_zones_ok
;
2411 * For kswapd, balance_pgdat() will work across all this node's zones until
2412 * they are all at high_wmark_pages(zone).
2414 * Returns the final order kswapd was reclaiming at
2416 * There is special handling here for zones which are full of pinned pages.
2417 * This can happen if the pages are all mlocked, or if they are all used by
2418 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2419 * What we do is to detect the case where all pages in the zone have been
2420 * scanned twice and there has been zero successful reclaim. Mark the zone as
2421 * dead and from now on, only perform a short scan. Basically we're polling
2422 * the zone for when the problem goes away.
2424 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2425 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2426 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2427 * lower zones regardless of the number of free pages in the lower zones. This
2428 * interoperates with the page allocator fallback scheme to ensure that aging
2429 * of pages is balanced across the zones.
2431 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
,
2435 unsigned long balanced
;
2438 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
2439 unsigned long total_scanned
;
2440 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2441 unsigned long nr_soft_reclaimed
;
2442 unsigned long nr_soft_scanned
;
2443 struct scan_control sc
= {
2444 .gfp_mask
= GFP_KERNEL
,
2448 * kswapd doesn't want to be bailed out while reclaim. because
2449 * we want to put equal scanning pressure on each zone.
2451 .nr_to_reclaim
= ULONG_MAX
,
2455 struct shrink_control shrink
= {
2456 .gfp_mask
= sc
.gfp_mask
,
2460 sc
.nr_reclaimed
= 0;
2461 sc
.may_writepage
= !laptop_mode
;
2462 count_vm_event(PAGEOUTRUN
);
2464 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
2465 unsigned long lru_pages
= 0;
2466 int has_under_min_watermark_zone
= 0;
2468 /* The swap token gets in the way of swapout... */
2470 disable_swap_token(NULL
);
2476 * Scan in the highmem->dma direction for the highest
2477 * zone which needs scanning
2479 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
2480 struct zone
*zone
= pgdat
->node_zones
+ i
;
2482 if (!populated_zone(zone
))
2485 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2489 * Do some background aging of the anon list, to give
2490 * pages a chance to be referenced before reclaiming.
2492 if (inactive_anon_is_low(zone
, &sc
))
2493 shrink_active_list(SWAP_CLUSTER_MAX
, zone
,
2496 if (!zone_watermark_ok_safe(zone
, order
,
2497 high_wmark_pages(zone
), 0, 0)) {
2501 /* If balanced, clear the congested flag */
2502 zone_clear_flag(zone
, ZONE_CONGESTED
);
2508 for (i
= 0; i
<= end_zone
; i
++) {
2509 struct zone
*zone
= pgdat
->node_zones
+ i
;
2511 lru_pages
+= zone_reclaimable_pages(zone
);
2515 * Now scan the zone in the dma->highmem direction, stopping
2516 * at the last zone which needs scanning.
2518 * We do this because the page allocator works in the opposite
2519 * direction. This prevents the page allocator from allocating
2520 * pages behind kswapd's direction of progress, which would
2521 * cause too much scanning of the lower zones.
2523 for (i
= 0; i
<= end_zone
; i
++) {
2524 struct zone
*zone
= pgdat
->node_zones
+ i
;
2526 unsigned long balance_gap
;
2528 if (!populated_zone(zone
))
2531 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2536 nr_soft_scanned
= 0;
2538 * Call soft limit reclaim before calling shrink_zone.
2540 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
,
2543 sc
.nr_reclaimed
+= nr_soft_reclaimed
;
2544 total_scanned
+= nr_soft_scanned
;
2547 * We put equal pressure on every zone, unless
2548 * one zone has way too many pages free
2549 * already. The "too many pages" is defined
2550 * as the high wmark plus a "gap" where the
2551 * gap is either the low watermark or 1%
2552 * of the zone, whichever is smaller.
2554 balance_gap
= min(low_wmark_pages(zone
),
2555 (zone
->present_pages
+
2556 KSWAPD_ZONE_BALANCE_GAP_RATIO
-1) /
2557 KSWAPD_ZONE_BALANCE_GAP_RATIO
);
2558 if (!zone_watermark_ok_safe(zone
, order
,
2559 high_wmark_pages(zone
) + balance_gap
,
2561 shrink_zone(priority
, zone
, &sc
);
2563 reclaim_state
->reclaimed_slab
= 0;
2564 nr_slab
= shrink_slab(&shrink
, sc
.nr_scanned
, lru_pages
);
2565 sc
.nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2566 total_scanned
+= sc
.nr_scanned
;
2568 if (nr_slab
== 0 && !zone_reclaimable(zone
))
2569 zone
->all_unreclaimable
= 1;
2573 * If we've done a decent amount of scanning and
2574 * the reclaim ratio is low, start doing writepage
2575 * even in laptop mode
2577 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
2578 total_scanned
> sc
.nr_reclaimed
+ sc
.nr_reclaimed
/ 2)
2579 sc
.may_writepage
= 1;
2581 if (zone
->all_unreclaimable
) {
2582 if (end_zone
&& end_zone
== i
)
2587 if (!zone_watermark_ok_safe(zone
, order
,
2588 high_wmark_pages(zone
), end_zone
, 0)) {
2591 * We are still under min water mark. This
2592 * means that we have a GFP_ATOMIC allocation
2593 * failure risk. Hurry up!
2595 if (!zone_watermark_ok_safe(zone
, order
,
2596 min_wmark_pages(zone
), end_zone
, 0))
2597 has_under_min_watermark_zone
= 1;
2600 * If a zone reaches its high watermark,
2601 * consider it to be no longer congested. It's
2602 * possible there are dirty pages backed by
2603 * congested BDIs but as pressure is relieved,
2604 * spectulatively avoid congestion waits
2606 zone_clear_flag(zone
, ZONE_CONGESTED
);
2607 if (i
<= *classzone_idx
)
2608 balanced
+= zone
->present_pages
;
2612 if (all_zones_ok
|| (order
&& pgdat_balanced(pgdat
, balanced
, *classzone_idx
)))
2613 break; /* kswapd: all done */
2615 * OK, kswapd is getting into trouble. Take a nap, then take
2616 * another pass across the zones.
2618 if (total_scanned
&& (priority
< DEF_PRIORITY
- 2)) {
2619 if (has_under_min_watermark_zone
)
2620 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT
);
2622 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2626 * We do this so kswapd doesn't build up large priorities for
2627 * example when it is freeing in parallel with allocators. It
2628 * matches the direct reclaim path behaviour in terms of impact
2629 * on zone->*_priority.
2631 if (sc
.nr_reclaimed
>= SWAP_CLUSTER_MAX
)
2637 * order-0: All zones must meet high watermark for a balanced node
2638 * high-order: Balanced zones must make up at least 25% of the node
2639 * for the node to be balanced
2641 if (!(all_zones_ok
|| (order
&& pgdat_balanced(pgdat
, balanced
, *classzone_idx
)))) {
2647 * Fragmentation may mean that the system cannot be
2648 * rebalanced for high-order allocations in all zones.
2649 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2650 * it means the zones have been fully scanned and are still
2651 * not balanced. For high-order allocations, there is
2652 * little point trying all over again as kswapd may
2655 * Instead, recheck all watermarks at order-0 as they
2656 * are the most important. If watermarks are ok, kswapd will go
2657 * back to sleep. High-order users can still perform direct
2658 * reclaim if they wish.
2660 if (sc
.nr_reclaimed
< SWAP_CLUSTER_MAX
)
2661 order
= sc
.order
= 0;
2667 * If kswapd was reclaiming at a higher order, it has the option of
2668 * sleeping without all zones being balanced. Before it does, it must
2669 * ensure that the watermarks for order-0 on *all* zones are met and
2670 * that the congestion flags are cleared. The congestion flag must
2671 * be cleared as kswapd is the only mechanism that clears the flag
2672 * and it is potentially going to sleep here.
2675 for (i
= 0; i
<= end_zone
; i
++) {
2676 struct zone
*zone
= pgdat
->node_zones
+ i
;
2678 if (!populated_zone(zone
))
2681 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2684 /* Confirm the zone is balanced for order-0 */
2685 if (!zone_watermark_ok(zone
, 0,
2686 high_wmark_pages(zone
), 0, 0)) {
2687 order
= sc
.order
= 0;
2691 /* If balanced, clear the congested flag */
2692 zone_clear_flag(zone
, ZONE_CONGESTED
);
2697 * Return the order we were reclaiming at so sleeping_prematurely()
2698 * makes a decision on the order we were last reclaiming at. However,
2699 * if another caller entered the allocator slow path while kswapd
2700 * was awake, order will remain at the higher level
2702 *classzone_idx
= end_zone
;
2706 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int order
, int classzone_idx
)
2711 if (freezing(current
) || kthread_should_stop())
2714 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2716 /* Try to sleep for a short interval */
2717 if (!sleeping_prematurely(pgdat
, order
, remaining
, classzone_idx
)) {
2718 remaining
= schedule_timeout(HZ
/10);
2719 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2720 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2724 * After a short sleep, check if it was a premature sleep. If not, then
2725 * go fully to sleep until explicitly woken up.
2727 if (!sleeping_prematurely(pgdat
, order
, remaining
, classzone_idx
)) {
2728 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
2731 * vmstat counters are not perfectly accurate and the estimated
2732 * value for counters such as NR_FREE_PAGES can deviate from the
2733 * true value by nr_online_cpus * threshold. To avoid the zone
2734 * watermarks being breached while under pressure, we reduce the
2735 * per-cpu vmstat threshold while kswapd is awake and restore
2736 * them before going back to sleep.
2738 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
2740 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
2743 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
2745 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
2747 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2751 * The background pageout daemon, started as a kernel thread
2752 * from the init process.
2754 * This basically trickles out pages so that we have _some_
2755 * free memory available even if there is no other activity
2756 * that frees anything up. This is needed for things like routing
2757 * etc, where we otherwise might have all activity going on in
2758 * asynchronous contexts that cannot page things out.
2760 * If there are applications that are active memory-allocators
2761 * (most normal use), this basically shouldn't matter.
2763 static int kswapd(void *p
)
2765 unsigned long order
, new_order
;
2766 int classzone_idx
, new_classzone_idx
;
2767 pg_data_t
*pgdat
= (pg_data_t
*)p
;
2768 struct task_struct
*tsk
= current
;
2770 struct reclaim_state reclaim_state
= {
2771 .reclaimed_slab
= 0,
2773 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
2775 lockdep_set_current_reclaim_state(GFP_KERNEL
);
2777 if (!cpumask_empty(cpumask
))
2778 set_cpus_allowed_ptr(tsk
, cpumask
);
2779 current
->reclaim_state
= &reclaim_state
;
2782 * Tell the memory management that we're a "memory allocator",
2783 * and that if we need more memory we should get access to it
2784 * regardless (see "__alloc_pages()"). "kswapd" should
2785 * never get caught in the normal page freeing logic.
2787 * (Kswapd normally doesn't need memory anyway, but sometimes
2788 * you need a small amount of memory in order to be able to
2789 * page out something else, and this flag essentially protects
2790 * us from recursively trying to free more memory as we're
2791 * trying to free the first piece of memory in the first place).
2793 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
2796 order
= new_order
= 0;
2797 classzone_idx
= new_classzone_idx
= pgdat
->nr_zones
- 1;
2802 * If the last balance_pgdat was unsuccessful it's unlikely a
2803 * new request of a similar or harder type will succeed soon
2804 * so consider going to sleep on the basis we reclaimed at
2806 if (classzone_idx
>= new_classzone_idx
&& order
== new_order
) {
2807 new_order
= pgdat
->kswapd_max_order
;
2808 new_classzone_idx
= pgdat
->classzone_idx
;
2809 pgdat
->kswapd_max_order
= 0;
2810 pgdat
->classzone_idx
= pgdat
->nr_zones
- 1;
2813 if (order
< new_order
|| classzone_idx
> new_classzone_idx
) {
2815 * Don't sleep if someone wants a larger 'order'
2816 * allocation or has tigher zone constraints
2819 classzone_idx
= new_classzone_idx
;
2821 kswapd_try_to_sleep(pgdat
, order
, classzone_idx
);
2822 order
= pgdat
->kswapd_max_order
;
2823 classzone_idx
= pgdat
->classzone_idx
;
2824 pgdat
->kswapd_max_order
= 0;
2825 pgdat
->classzone_idx
= pgdat
->nr_zones
- 1;
2828 ret
= try_to_freeze();
2829 if (kthread_should_stop())
2833 * We can speed up thawing tasks if we don't call balance_pgdat
2834 * after returning from the refrigerator
2837 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, order
);
2838 order
= balance_pgdat(pgdat
, order
, &classzone_idx
);
2845 * A zone is low on free memory, so wake its kswapd task to service it.
2847 void wakeup_kswapd(struct zone
*zone
, int order
, enum zone_type classzone_idx
)
2851 if (!populated_zone(zone
))
2854 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2856 pgdat
= zone
->zone_pgdat
;
2857 if (pgdat
->kswapd_max_order
< order
) {
2858 pgdat
->kswapd_max_order
= order
;
2859 pgdat
->classzone_idx
= min(pgdat
->classzone_idx
, classzone_idx
);
2861 if (!waitqueue_active(&pgdat
->kswapd_wait
))
2863 if (zone_watermark_ok_safe(zone
, order
, low_wmark_pages(zone
), 0, 0))
2866 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, zone_idx(zone
), order
);
2867 wake_up_interruptible(&pgdat
->kswapd_wait
);
2871 * The reclaimable count would be mostly accurate.
2872 * The less reclaimable pages may be
2873 * - mlocked pages, which will be moved to unevictable list when encountered
2874 * - mapped pages, which may require several travels to be reclaimed
2875 * - dirty pages, which is not "instantly" reclaimable
2877 unsigned long global_reclaimable_pages(void)
2881 nr
= global_page_state(NR_ACTIVE_FILE
) +
2882 global_page_state(NR_INACTIVE_FILE
);
2884 if (nr_swap_pages
> 0)
2885 nr
+= global_page_state(NR_ACTIVE_ANON
) +
2886 global_page_state(NR_INACTIVE_ANON
);
2891 unsigned long zone_reclaimable_pages(struct zone
*zone
)
2895 nr
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
2896 zone_page_state(zone
, NR_INACTIVE_FILE
);
2898 if (nr_swap_pages
> 0)
2899 nr
+= zone_page_state(zone
, NR_ACTIVE_ANON
) +
2900 zone_page_state(zone
, NR_INACTIVE_ANON
);
2905 #ifdef CONFIG_HIBERNATION
2907 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2910 * Rather than trying to age LRUs the aim is to preserve the overall
2911 * LRU order by reclaiming preferentially
2912 * inactive > active > active referenced > active mapped
2914 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
2916 struct reclaim_state reclaim_state
;
2917 struct scan_control sc
= {
2918 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
2922 .nr_to_reclaim
= nr_to_reclaim
,
2923 .hibernation_mode
= 1,
2926 struct shrink_control shrink
= {
2927 .gfp_mask
= sc
.gfp_mask
,
2929 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
2930 struct task_struct
*p
= current
;
2931 unsigned long nr_reclaimed
;
2933 p
->flags
|= PF_MEMALLOC
;
2934 lockdep_set_current_reclaim_state(sc
.gfp_mask
);
2935 reclaim_state
.reclaimed_slab
= 0;
2936 p
->reclaim_state
= &reclaim_state
;
2938 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
, &shrink
);
2940 p
->reclaim_state
= NULL
;
2941 lockdep_clear_current_reclaim_state();
2942 p
->flags
&= ~PF_MEMALLOC
;
2944 return nr_reclaimed
;
2946 #endif /* CONFIG_HIBERNATION */
2948 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2949 not required for correctness. So if the last cpu in a node goes
2950 away, we get changed to run anywhere: as the first one comes back,
2951 restore their cpu bindings. */
2952 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
2953 unsigned long action
, void *hcpu
)
2957 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
2958 for_each_node_state(nid
, N_HIGH_MEMORY
) {
2959 pg_data_t
*pgdat
= NODE_DATA(nid
);
2960 const struct cpumask
*mask
;
2962 mask
= cpumask_of_node(pgdat
->node_id
);
2964 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
2965 /* One of our CPUs online: restore mask */
2966 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
2973 * This kswapd start function will be called by init and node-hot-add.
2974 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2976 int kswapd_run(int nid
)
2978 pg_data_t
*pgdat
= NODE_DATA(nid
);
2984 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
2985 if (IS_ERR(pgdat
->kswapd
)) {
2986 /* failure at boot is fatal */
2987 BUG_ON(system_state
== SYSTEM_BOOTING
);
2988 printk("Failed to start kswapd on node %d\n",nid
);
2995 * Called by memory hotplug when all memory in a node is offlined.
2997 void kswapd_stop(int nid
)
2999 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
3002 kthread_stop(kswapd
);
3005 static int __init
kswapd_init(void)
3010 for_each_node_state(nid
, N_HIGH_MEMORY
)
3012 hotcpu_notifier(cpu_callback
, 0);
3016 module_init(kswapd_init
)
3022 * If non-zero call zone_reclaim when the number of free pages falls below
3025 int zone_reclaim_mode __read_mostly
;
3027 #define RECLAIM_OFF 0
3028 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3029 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3030 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3033 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3034 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3037 #define ZONE_RECLAIM_PRIORITY 4
3040 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3043 int sysctl_min_unmapped_ratio
= 1;
3046 * If the number of slab pages in a zone grows beyond this percentage then
3047 * slab reclaim needs to occur.
3049 int sysctl_min_slab_ratio
= 5;
3051 static inline unsigned long zone_unmapped_file_pages(struct zone
*zone
)
3053 unsigned long file_mapped
= zone_page_state(zone
, NR_FILE_MAPPED
);
3054 unsigned long file_lru
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
3055 zone_page_state(zone
, NR_ACTIVE_FILE
);
3058 * It's possible for there to be more file mapped pages than
3059 * accounted for by the pages on the file LRU lists because
3060 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3062 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
3065 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3066 static long zone_pagecache_reclaimable(struct zone
*zone
)
3068 long nr_pagecache_reclaimable
;
3072 * If RECLAIM_SWAP is set, then all file pages are considered
3073 * potentially reclaimable. Otherwise, we have to worry about
3074 * pages like swapcache and zone_unmapped_file_pages() provides
3077 if (zone_reclaim_mode
& RECLAIM_SWAP
)
3078 nr_pagecache_reclaimable
= zone_page_state(zone
, NR_FILE_PAGES
);
3080 nr_pagecache_reclaimable
= zone_unmapped_file_pages(zone
);
3082 /* If we can't clean pages, remove dirty pages from consideration */
3083 if (!(zone_reclaim_mode
& RECLAIM_WRITE
))
3084 delta
+= zone_page_state(zone
, NR_FILE_DIRTY
);
3086 /* Watch for any possible underflows due to delta */
3087 if (unlikely(delta
> nr_pagecache_reclaimable
))
3088 delta
= nr_pagecache_reclaimable
;
3090 return nr_pagecache_reclaimable
- delta
;
3094 * Try to free up some pages from this zone through reclaim.
3096 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
3098 /* Minimum pages needed in order to stay on node */
3099 const unsigned long nr_pages
= 1 << order
;
3100 struct task_struct
*p
= current
;
3101 struct reclaim_state reclaim_state
;
3103 struct scan_control sc
= {
3104 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
3105 .may_unmap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
3107 .nr_to_reclaim
= max_t(unsigned long, nr_pages
,
3109 .gfp_mask
= gfp_mask
,
3112 struct shrink_control shrink
= {
3113 .gfp_mask
= sc
.gfp_mask
,
3115 unsigned long nr_slab_pages0
, nr_slab_pages1
;
3119 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3120 * and we also need to be able to write out pages for RECLAIM_WRITE
3123 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
3124 lockdep_set_current_reclaim_state(gfp_mask
);
3125 reclaim_state
.reclaimed_slab
= 0;
3126 p
->reclaim_state
= &reclaim_state
;
3128 if (zone_pagecache_reclaimable(zone
) > zone
->min_unmapped_pages
) {
3130 * Free memory by calling shrink zone with increasing
3131 * priorities until we have enough memory freed.
3133 priority
= ZONE_RECLAIM_PRIORITY
;
3135 shrink_zone(priority
, zone
, &sc
);
3137 } while (priority
>= 0 && sc
.nr_reclaimed
< nr_pages
);
3140 nr_slab_pages0
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
3141 if (nr_slab_pages0
> zone
->min_slab_pages
) {
3143 * shrink_slab() does not currently allow us to determine how
3144 * many pages were freed in this zone. So we take the current
3145 * number of slab pages and shake the slab until it is reduced
3146 * by the same nr_pages that we used for reclaiming unmapped
3149 * Note that shrink_slab will free memory on all zones and may
3153 unsigned long lru_pages
= zone_reclaimable_pages(zone
);
3155 /* No reclaimable slab or very low memory pressure */
3156 if (!shrink_slab(&shrink
, sc
.nr_scanned
, lru_pages
))
3159 /* Freed enough memory */
3160 nr_slab_pages1
= zone_page_state(zone
,
3161 NR_SLAB_RECLAIMABLE
);
3162 if (nr_slab_pages1
+ nr_pages
<= nr_slab_pages0
)
3167 * Update nr_reclaimed by the number of slab pages we
3168 * reclaimed from this zone.
3170 nr_slab_pages1
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
3171 if (nr_slab_pages1
< nr_slab_pages0
)
3172 sc
.nr_reclaimed
+= nr_slab_pages0
- nr_slab_pages1
;
3175 p
->reclaim_state
= NULL
;
3176 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
3177 lockdep_clear_current_reclaim_state();
3178 return sc
.nr_reclaimed
>= nr_pages
;
3181 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
3187 * Zone reclaim reclaims unmapped file backed pages and
3188 * slab pages if we are over the defined limits.
3190 * A small portion of unmapped file backed pages is needed for
3191 * file I/O otherwise pages read by file I/O will be immediately
3192 * thrown out if the zone is overallocated. So we do not reclaim
3193 * if less than a specified percentage of the zone is used by
3194 * unmapped file backed pages.
3196 if (zone_pagecache_reclaimable(zone
) <= zone
->min_unmapped_pages
&&
3197 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) <= zone
->min_slab_pages
)
3198 return ZONE_RECLAIM_FULL
;
3200 if (zone
->all_unreclaimable
)
3201 return ZONE_RECLAIM_FULL
;
3204 * Do not scan if the allocation should not be delayed.
3206 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
3207 return ZONE_RECLAIM_NOSCAN
;
3210 * Only run zone reclaim on the local zone or on zones that do not
3211 * have associated processors. This will favor the local processor
3212 * over remote processors and spread off node memory allocations
3213 * as wide as possible.
3215 node_id
= zone_to_nid(zone
);
3216 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
3217 return ZONE_RECLAIM_NOSCAN
;
3219 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
3220 return ZONE_RECLAIM_NOSCAN
;
3222 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
3223 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);
3226 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
3233 * page_evictable - test whether a page is evictable
3234 * @page: the page to test
3235 * @vma: the VMA in which the page is or will be mapped, may be NULL
3237 * Test whether page is evictable--i.e., should be placed on active/inactive
3238 * lists vs unevictable list. The vma argument is !NULL when called from the
3239 * fault path to determine how to instantate a new page.
3241 * Reasons page might not be evictable:
3242 * (1) page's mapping marked unevictable
3243 * (2) page is part of an mlocked VMA
3246 int page_evictable(struct page
*page
, struct vm_area_struct
*vma
)
3249 if (mapping_unevictable(page_mapping(page
)))
3252 if (PageMlocked(page
) || (vma
&& is_mlocked_vma(vma
, page
)))
3259 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3260 * @page: page to check evictability and move to appropriate lru list
3261 * @zone: zone page is in
3263 * Checks a page for evictability and moves the page to the appropriate
3266 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3267 * have PageUnevictable set.
3269 static void check_move_unevictable_page(struct page
*page
, struct zone
*zone
)
3271 VM_BUG_ON(PageActive(page
));
3274 ClearPageUnevictable(page
);
3275 if (page_evictable(page
, NULL
)) {
3276 enum lru_list l
= page_lru_base_type(page
);
3278 __dec_zone_state(zone
, NR_UNEVICTABLE
);
3279 list_move(&page
->lru
, &zone
->lru
[l
].list
);
3280 mem_cgroup_move_lists(page
, LRU_UNEVICTABLE
, l
);
3281 __inc_zone_state(zone
, NR_INACTIVE_ANON
+ l
);
3282 __count_vm_event(UNEVICTABLE_PGRESCUED
);
3285 * rotate unevictable list
3287 SetPageUnevictable(page
);
3288 list_move(&page
->lru
, &zone
->lru
[LRU_UNEVICTABLE
].list
);
3289 mem_cgroup_rotate_lru_list(page
, LRU_UNEVICTABLE
);
3290 if (page_evictable(page
, NULL
))
3296 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3297 * @mapping: struct address_space to scan for evictable pages
3299 * Scan all pages in mapping. Check unevictable pages for
3300 * evictability and move them to the appropriate zone lru list.
3302 void scan_mapping_unevictable_pages(struct address_space
*mapping
)
3305 pgoff_t end
= (i_size_read(mapping
->host
) + PAGE_CACHE_SIZE
- 1) >>
3308 struct pagevec pvec
;
3310 if (mapping
->nrpages
== 0)
3313 pagevec_init(&pvec
, 0);
3314 while (next
< end
&&
3315 pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
3321 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
3322 struct page
*page
= pvec
.pages
[i
];
3323 pgoff_t page_index
= page
->index
;
3324 struct zone
*pagezone
= page_zone(page
);
3327 if (page_index
> next
)
3331 if (pagezone
!= zone
) {
3333 spin_unlock_irq(&zone
->lru_lock
);
3335 spin_lock_irq(&zone
->lru_lock
);
3338 if (PageLRU(page
) && PageUnevictable(page
))
3339 check_move_unevictable_page(page
, zone
);
3342 spin_unlock_irq(&zone
->lru_lock
);
3343 pagevec_release(&pvec
);
3345 count_vm_events(UNEVICTABLE_PGSCANNED
, pg_scanned
);
3351 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3352 * @zone - zone of which to scan the unevictable list
3354 * Scan @zone's unevictable LRU lists to check for pages that have become
3355 * evictable. Move those that have to @zone's inactive list where they
3356 * become candidates for reclaim, unless shrink_inactive_zone() decides
3357 * to reactivate them. Pages that are still unevictable are rotated
3358 * back onto @zone's unevictable list.
3360 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3361 static void scan_zone_unevictable_pages(struct zone
*zone
)
3363 struct list_head
*l_unevictable
= &zone
->lru
[LRU_UNEVICTABLE
].list
;
3365 unsigned long nr_to_scan
= zone_page_state(zone
, NR_UNEVICTABLE
);
3367 while (nr_to_scan
> 0) {
3368 unsigned long batch_size
= min(nr_to_scan
,
3369 SCAN_UNEVICTABLE_BATCH_SIZE
);
3371 spin_lock_irq(&zone
->lru_lock
);
3372 for (scan
= 0; scan
< batch_size
; scan
++) {
3373 struct page
*page
= lru_to_page(l_unevictable
);
3375 if (!trylock_page(page
))
3378 prefetchw_prev_lru_page(page
, l_unevictable
, flags
);
3380 if (likely(PageLRU(page
) && PageUnevictable(page
)))
3381 check_move_unevictable_page(page
, zone
);
3385 spin_unlock_irq(&zone
->lru_lock
);
3387 nr_to_scan
-= batch_size
;
3393 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3395 * A really big hammer: scan all zones' unevictable LRU lists to check for
3396 * pages that have become evictable. Move those back to the zones'
3397 * inactive list where they become candidates for reclaim.
3398 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3399 * and we add swap to the system. As such, it runs in the context of a task
3400 * that has possibly/probably made some previously unevictable pages
3403 static void scan_all_zones_unevictable_pages(void)
3407 for_each_zone(zone
) {
3408 scan_zone_unevictable_pages(zone
);
3413 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3414 * all nodes' unevictable lists for evictable pages
3416 unsigned long scan_unevictable_pages
;
3418 int scan_unevictable_handler(struct ctl_table
*table
, int write
,
3419 void __user
*buffer
,
3420 size_t *length
, loff_t
*ppos
)
3422 proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
3424 if (write
&& *(unsigned long *)table
->data
)
3425 scan_all_zones_unevictable_pages();
3427 scan_unevictable_pages
= 0;
3433 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3434 * a specified node's per zone unevictable lists for evictable pages.
3437 static ssize_t
read_scan_unevictable_node(struct sys_device
*dev
,
3438 struct sysdev_attribute
*attr
,
3441 return sprintf(buf
, "0\n"); /* always zero; should fit... */
3444 static ssize_t
write_scan_unevictable_node(struct sys_device
*dev
,
3445 struct sysdev_attribute
*attr
,
3446 const char *buf
, size_t count
)
3448 struct zone
*node_zones
= NODE_DATA(dev
->id
)->node_zones
;
3451 unsigned long req
= strict_strtoul(buf
, 10, &res
);
3454 return 1; /* zero is no-op */
3456 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
3457 if (!populated_zone(zone
))
3459 scan_zone_unevictable_pages(zone
);
3465 static SYSDEV_ATTR(scan_unevictable_pages
, S_IRUGO
| S_IWUSR
,
3466 read_scan_unevictable_node
,
3467 write_scan_unevictable_node
);
3469 int scan_unevictable_register_node(struct node
*node
)
3471 return sysdev_create_file(&node
->sysdev
, &attr_scan_unevictable_pages
);
3474 void scan_unevictable_unregister_node(struct node
*node
)
3476 sysdev_remove_file(&node
->sysdev
, &attr_scan_unevictable_pages
);