2 * arch/arm/mach-tegra/dma.c
4 * System DMA driver for NVIDIA Tegra SoCs
6 * Copyright (c) 2008-2009, NVIDIA Corporation.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, write to the Free Software Foundation, Inc.,
20 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
26 #include <linux/spinlock.h>
27 #include <linux/err.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <linux/clk.h>
32 #include <mach/irqs.h>
33 #include <mach/iomap.h>
34 #include <mach/suspend.h>
36 #define APB_DMA_GEN 0x000
37 #define GEN_ENABLE (1<<31)
39 #define APB_DMA_CNTRL 0x010
41 #define APB_DMA_IRQ_MASK 0x01c
43 #define APB_DMA_IRQ_MASK_SET 0x020
45 #define APB_DMA_CHAN_CSR 0x000
46 #define CSR_ENB (1<<31)
47 #define CSR_IE_EOC (1<<30)
48 #define CSR_HOLD (1<<29)
49 #define CSR_DIR (1<<28)
50 #define CSR_ONCE (1<<27)
51 #define CSR_FLOW (1<<21)
52 #define CSR_REQ_SEL_SHIFT 16
53 #define CSR_REQ_SEL_MASK (0x1F<<CSR_REQ_SEL_SHIFT)
54 #define CSR_REQ_SEL_INVALID (31<<CSR_REQ_SEL_SHIFT)
55 #define CSR_WCOUNT_SHIFT 2
56 #define CSR_WCOUNT_MASK 0xFFFC
58 #define APB_DMA_CHAN_STA 0x004
59 #define STA_BUSY (1<<31)
60 #define STA_ISE_EOC (1<<30)
61 #define STA_HALT (1<<29)
62 #define STA_PING_PONG (1<<28)
63 #define STA_COUNT_SHIFT 2
64 #define STA_COUNT_MASK 0xFFFC
66 #define APB_DMA_CHAN_AHB_PTR 0x010
68 #define APB_DMA_CHAN_AHB_SEQ 0x014
69 #define AHB_SEQ_INTR_ENB (1<<31)
70 #define AHB_SEQ_BUS_WIDTH_SHIFT 28
71 #define AHB_SEQ_BUS_WIDTH_MASK (0x7<<AHB_SEQ_BUS_WIDTH_SHIFT)
72 #define AHB_SEQ_BUS_WIDTH_8 (0<<AHB_SEQ_BUS_WIDTH_SHIFT)
73 #define AHB_SEQ_BUS_WIDTH_16 (1<<AHB_SEQ_BUS_WIDTH_SHIFT)
74 #define AHB_SEQ_BUS_WIDTH_32 (2<<AHB_SEQ_BUS_WIDTH_SHIFT)
75 #define AHB_SEQ_BUS_WIDTH_64 (3<<AHB_SEQ_BUS_WIDTH_SHIFT)
76 #define AHB_SEQ_BUS_WIDTH_128 (4<<AHB_SEQ_BUS_WIDTH_SHIFT)
77 #define AHB_SEQ_DATA_SWAP (1<<27)
78 #define AHB_SEQ_BURST_MASK (0x7<<24)
79 #define AHB_SEQ_BURST_1 (4<<24)
80 #define AHB_SEQ_BURST_4 (5<<24)
81 #define AHB_SEQ_BURST_8 (6<<24)
82 #define AHB_SEQ_DBL_BUF (1<<19)
83 #define AHB_SEQ_WRAP_SHIFT 16
84 #define AHB_SEQ_WRAP_MASK (0x7<<AHB_SEQ_WRAP_SHIFT)
86 #define APB_DMA_CHAN_APB_PTR 0x018
88 #define APB_DMA_CHAN_APB_SEQ 0x01c
89 #define APB_SEQ_BUS_WIDTH_SHIFT 28
90 #define APB_SEQ_BUS_WIDTH_MASK (0x7<<APB_SEQ_BUS_WIDTH_SHIFT)
91 #define APB_SEQ_BUS_WIDTH_8 (0<<APB_SEQ_BUS_WIDTH_SHIFT)
92 #define APB_SEQ_BUS_WIDTH_16 (1<<APB_SEQ_BUS_WIDTH_SHIFT)
93 #define APB_SEQ_BUS_WIDTH_32 (2<<APB_SEQ_BUS_WIDTH_SHIFT)
94 #define APB_SEQ_BUS_WIDTH_64 (3<<APB_SEQ_BUS_WIDTH_SHIFT)
95 #define APB_SEQ_BUS_WIDTH_128 (4<<APB_SEQ_BUS_WIDTH_SHIFT)
96 #define APB_SEQ_DATA_SWAP (1<<27)
97 #define APB_SEQ_WRAP_SHIFT 16
98 #define APB_SEQ_WRAP_MASK (0x7<<APB_SEQ_WRAP_SHIFT)
100 #define TEGRA_SYSTEM_DMA_CH_NR 16
101 #define TEGRA_SYSTEM_DMA_AVP_CH_NUM 4
102 #define TEGRA_SYSTEM_DMA_CH_MIN 0
103 #define TEGRA_SYSTEM_DMA_CH_MAX \
104 (TEGRA_SYSTEM_DMA_CH_NR - TEGRA_SYSTEM_DMA_AVP_CH_NUM - 1)
106 #define NV_DMA_MAX_TRASFER_SIZE 0x10000
108 static const unsigned int ahb_addr_wrap_table
[8] = {
109 0, 32, 64, 128, 256, 512, 1024, 2048
112 static const unsigned int apb_addr_wrap_table
[8] = {
113 0, 1, 2, 4, 8, 16, 32, 64
116 static const unsigned int bus_width_table
[5] = {
120 #define TEGRA_DMA_NAME_SIZE 16
121 struct tegra_dma_channel
{
122 struct list_head list
;
125 char name
[TEGRA_DMA_NAME_SIZE
];
129 int req_transfer_count
;
132 #define NV_DMA_MAX_CHANNELS 32
134 static bool tegra_dma_initialized
;
135 static DEFINE_MUTEX(tegra_dma_lock
);
137 static DECLARE_BITMAP(channel_usage
, NV_DMA_MAX_CHANNELS
);
138 static struct tegra_dma_channel dma_channels
[NV_DMA_MAX_CHANNELS
];
140 static void tegra_dma_update_hw(struct tegra_dma_channel
*ch
,
141 struct tegra_dma_req
*req
);
142 static void tegra_dma_update_hw_partial(struct tegra_dma_channel
*ch
,
143 struct tegra_dma_req
*req
);
144 static void tegra_dma_stop(struct tegra_dma_channel
*ch
);
146 void tegra_dma_flush(struct tegra_dma_channel
*ch
)
149 EXPORT_SYMBOL(tegra_dma_flush
);
151 void tegra_dma_dequeue(struct tegra_dma_channel
*ch
)
153 struct tegra_dma_req
*req
;
155 if (tegra_dma_is_empty(ch
))
158 req
= list_entry(ch
->list
.next
, typeof(*req
), node
);
160 tegra_dma_dequeue_req(ch
, req
);
164 static void tegra_dma_stop(struct tegra_dma_channel
*ch
)
169 csr
= readl(ch
->addr
+ APB_DMA_CHAN_CSR
);
171 writel(csr
, ch
->addr
+ APB_DMA_CHAN_CSR
);
174 writel(csr
, ch
->addr
+ APB_DMA_CHAN_CSR
);
176 status
= readl(ch
->addr
+ APB_DMA_CHAN_STA
);
177 if (status
& STA_ISE_EOC
)
178 writel(status
, ch
->addr
+ APB_DMA_CHAN_STA
);
181 static int tegra_dma_cancel(struct tegra_dma_channel
*ch
)
184 unsigned long irq_flags
;
186 spin_lock_irqsave(&ch
->lock
, irq_flags
);
187 while (!list_empty(&ch
->list
))
188 list_del(ch
->list
.next
);
190 csr
= readl(ch
->addr
+ APB_DMA_CHAN_CSR
);
191 csr
&= ~CSR_REQ_SEL_MASK
;
192 csr
|= CSR_REQ_SEL_INVALID
;
193 writel(csr
, ch
->addr
+ APB_DMA_CHAN_CSR
);
197 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
201 int tegra_dma_dequeue_req(struct tegra_dma_channel
*ch
,
202 struct tegra_dma_req
*_req
)
206 struct tegra_dma_req
*req
= NULL
;
208 unsigned long irq_flags
;
210 int req_transfer_count
;
212 spin_lock_irqsave(&ch
->lock
, irq_flags
);
213 list_for_each_entry(req
, &ch
->list
, node
) {
215 list_del(&req
->node
);
221 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
225 /* STOP the DMA and get the transfer count.
226 * Getting the transfer count is tricky.
227 * - Change the source selector to invalid to stop the DMA from
229 * - Read the status register to know the number of pending
230 * bytes to be transferred.
231 * - Finally stop or program the DMA to the next buffer in the
234 csr
= readl(ch
->addr
+ APB_DMA_CHAN_CSR
);
235 csr
&= ~CSR_REQ_SEL_MASK
;
236 csr
|= CSR_REQ_SEL_INVALID
;
237 writel(csr
, ch
->addr
+ APB_DMA_CHAN_CSR
);
239 /* Get the transfer count */
240 status
= readl(ch
->addr
+ APB_DMA_CHAN_STA
);
241 to_transfer
= (status
& STA_COUNT_MASK
) >> STA_COUNT_SHIFT
;
242 req_transfer_count
= ch
->req_transfer_count
;
243 req_transfer_count
+= 1;
246 req
->bytes_transferred
= req_transfer_count
;
248 if (status
& STA_BUSY
)
249 req
->bytes_transferred
-= to_transfer
;
251 /* In continuous transfer mode, DMA only tracks the count of the
252 * half DMA buffer. So, if the DMA already finished half the DMA
253 * then add the half buffer to the completed count.
255 * FIXME: There can be a race here. What if the req to
256 * dequue happens at the same time as the DMA just moved to
257 * the new buffer and SW didn't yet received the interrupt?
259 if (ch
->mode
& TEGRA_DMA_MODE_CONTINOUS
)
260 if (req
->buffer_status
== TEGRA_DMA_REQ_BUF_STATUS_HALF_FULL
)
261 req
->bytes_transferred
+= req_transfer_count
;
263 req
->bytes_transferred
*= 4;
266 if (!list_empty(&ch
->list
)) {
267 /* if the list is not empty, queue the next request */
268 struct tegra_dma_req
*next_req
;
269 next_req
= list_entry(ch
->list
.next
,
270 typeof(*next_req
), node
);
271 tegra_dma_update_hw(ch
, next_req
);
273 req
->status
= -TEGRA_DMA_REQ_ERROR_ABORTED
;
275 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
277 /* Callback should be called without any lock */
281 EXPORT_SYMBOL(tegra_dma_dequeue_req
);
283 bool tegra_dma_is_empty(struct tegra_dma_channel
*ch
)
285 unsigned long irq_flags
;
288 spin_lock_irqsave(&ch
->lock
, irq_flags
);
289 if (list_empty(&ch
->list
))
293 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
296 EXPORT_SYMBOL(tegra_dma_is_empty
);
298 bool tegra_dma_is_req_inflight(struct tegra_dma_channel
*ch
,
299 struct tegra_dma_req
*_req
)
301 unsigned long irq_flags
;
302 struct tegra_dma_req
*req
;
304 spin_lock_irqsave(&ch
->lock
, irq_flags
);
305 list_for_each_entry(req
, &ch
->list
, node
) {
307 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
311 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
314 EXPORT_SYMBOL(tegra_dma_is_req_inflight
);
316 int tegra_dma_enqueue_req(struct tegra_dma_channel
*ch
,
317 struct tegra_dma_req
*req
)
319 unsigned long irq_flags
;
320 struct tegra_dma_req
*_req
;
323 if (req
->size
> NV_DMA_MAX_TRASFER_SIZE
||
324 req
->source_addr
& 0x3 || req
->dest_addr
& 0x3) {
325 pr_err("Invalid DMA request for channel %d\n", ch
->id
);
329 spin_lock_irqsave(&ch
->lock
, irq_flags
);
331 list_for_each_entry(_req
, &ch
->list
, node
) {
333 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
338 req
->bytes_transferred
= 0;
340 req
->buffer_status
= 0;
341 if (list_empty(&ch
->list
))
344 list_add_tail(&req
->node
, &ch
->list
);
347 tegra_dma_update_hw(ch
, req
);
349 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
353 EXPORT_SYMBOL(tegra_dma_enqueue_req
);
355 struct tegra_dma_channel
*tegra_dma_allocate_channel(int mode
)
358 struct tegra_dma_channel
*ch
= NULL
;
360 if (WARN_ON(!tegra_dma_initialized
))
363 mutex_lock(&tegra_dma_lock
);
365 /* first channel is the shared channel */
366 if (mode
& TEGRA_DMA_SHARED
) {
367 channel
= TEGRA_SYSTEM_DMA_CH_MIN
;
369 channel
= find_first_zero_bit(channel_usage
,
370 ARRAY_SIZE(dma_channels
));
371 if (channel
>= ARRAY_SIZE(dma_channels
))
374 __set_bit(channel
, channel_usage
);
375 ch
= &dma_channels
[channel
];
379 mutex_unlock(&tegra_dma_lock
);
382 EXPORT_SYMBOL(tegra_dma_allocate_channel
);
384 void tegra_dma_free_channel(struct tegra_dma_channel
*ch
)
386 if (ch
->mode
& TEGRA_DMA_SHARED
)
388 tegra_dma_cancel(ch
);
389 mutex_lock(&tegra_dma_lock
);
390 __clear_bit(ch
->id
, channel_usage
);
391 mutex_unlock(&tegra_dma_lock
);
393 EXPORT_SYMBOL(tegra_dma_free_channel
);
395 static void tegra_dma_update_hw_partial(struct tegra_dma_channel
*ch
,
396 struct tegra_dma_req
*req
)
401 if (req
->to_memory
) {
402 apb_ptr
= req
->source_addr
;
403 ahb_ptr
= req
->dest_addr
;
405 apb_ptr
= req
->dest_addr
;
406 ahb_ptr
= req
->source_addr
;
408 writel(apb_ptr
, ch
->addr
+ APB_DMA_CHAN_APB_PTR
);
409 writel(ahb_ptr
, ch
->addr
+ APB_DMA_CHAN_AHB_PTR
);
411 req
->status
= TEGRA_DMA_REQ_INFLIGHT
;
415 static void tegra_dma_update_hw(struct tegra_dma_channel
*ch
,
416 struct tegra_dma_req
*req
)
430 csr
= CSR_IE_EOC
| CSR_FLOW
;
431 ahb_seq
= AHB_SEQ_INTR_ENB
| AHB_SEQ_BURST_1
;
434 csr
|= req
->req_sel
<< CSR_REQ_SEL_SHIFT
;
436 /* One shot mode is always single buffered,
437 * continuous mode is always double buffered
439 if (ch
->mode
& TEGRA_DMA_MODE_ONESHOT
) {
441 ch
->req_transfer_count
= (req
->size
>> 2) - 1;
443 ahb_seq
|= AHB_SEQ_DBL_BUF
;
445 /* In double buffered mode, we set the size to half the
446 * requested size and interrupt when half the buffer
448 ch
->req_transfer_count
= (req
->size
>> 3) - 1;
451 csr
|= ch
->req_transfer_count
<< CSR_WCOUNT_SHIFT
;
453 if (req
->to_memory
) {
454 apb_ptr
= req
->source_addr
;
455 ahb_ptr
= req
->dest_addr
;
457 apb_addr_wrap
= req
->source_wrap
;
458 ahb_addr_wrap
= req
->dest_wrap
;
459 apb_bus_width
= req
->source_bus_width
;
460 ahb_bus_width
= req
->dest_bus_width
;
464 apb_ptr
= req
->dest_addr
;
465 ahb_ptr
= req
->source_addr
;
467 apb_addr_wrap
= req
->dest_wrap
;
468 ahb_addr_wrap
= req
->source_wrap
;
469 apb_bus_width
= req
->dest_bus_width
;
470 ahb_bus_width
= req
->source_bus_width
;
476 /* set address wrap for APB size */
479 if (apb_addr_wrap_table
[index
] == apb_addr_wrap
)
482 } while (index
< ARRAY_SIZE(apb_addr_wrap_table
));
483 BUG_ON(index
== ARRAY_SIZE(apb_addr_wrap_table
));
484 apb_seq
|= index
<< APB_SEQ_WRAP_SHIFT
;
486 /* set address wrap for AHB size */
489 if (ahb_addr_wrap_table
[index
] == ahb_addr_wrap
)
492 } while (index
< ARRAY_SIZE(ahb_addr_wrap_table
));
493 BUG_ON(index
== ARRAY_SIZE(ahb_addr_wrap_table
));
494 ahb_seq
|= index
<< AHB_SEQ_WRAP_SHIFT
;
496 for (index
= 0; index
< ARRAY_SIZE(bus_width_table
); index
++) {
497 if (bus_width_table
[index
] == ahb_bus_width
)
500 BUG_ON(index
== ARRAY_SIZE(bus_width_table
));
501 ahb_seq
|= index
<< AHB_SEQ_BUS_WIDTH_SHIFT
;
503 for (index
= 0; index
< ARRAY_SIZE(bus_width_table
); index
++) {
504 if (bus_width_table
[index
] == apb_bus_width
)
507 BUG_ON(index
== ARRAY_SIZE(bus_width_table
));
508 apb_seq
|= index
<< APB_SEQ_BUS_WIDTH_SHIFT
;
510 writel(csr
, ch
->addr
+ APB_DMA_CHAN_CSR
);
511 writel(apb_seq
, ch
->addr
+ APB_DMA_CHAN_APB_SEQ
);
512 writel(apb_ptr
, ch
->addr
+ APB_DMA_CHAN_APB_PTR
);
513 writel(ahb_seq
, ch
->addr
+ APB_DMA_CHAN_AHB_SEQ
);
514 writel(ahb_ptr
, ch
->addr
+ APB_DMA_CHAN_AHB_PTR
);
517 writel(csr
, ch
->addr
+ APB_DMA_CHAN_CSR
);
519 req
->status
= TEGRA_DMA_REQ_INFLIGHT
;
522 static void handle_oneshot_dma(struct tegra_dma_channel
*ch
)
524 struct tegra_dma_req
*req
;
525 unsigned long irq_flags
;
527 spin_lock_irqsave(&ch
->lock
, irq_flags
);
528 if (list_empty(&ch
->list
)) {
529 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
533 req
= list_entry(ch
->list
.next
, typeof(*req
), node
);
535 int bytes_transferred
;
537 bytes_transferred
= ch
->req_transfer_count
;
538 bytes_transferred
+= 1;
539 bytes_transferred
<<= 2;
541 list_del(&req
->node
);
542 req
->bytes_transferred
= bytes_transferred
;
543 req
->status
= TEGRA_DMA_REQ_SUCCESS
;
545 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
546 /* Callback should be called without any lock */
547 pr_debug("%s: transferred %d bytes\n", __func__
,
548 req
->bytes_transferred
);
550 spin_lock_irqsave(&ch
->lock
, irq_flags
);
553 if (!list_empty(&ch
->list
)) {
554 req
= list_entry(ch
->list
.next
, typeof(*req
), node
);
555 /* the complete function we just called may have enqueued
556 another req, in which case dma has already started */
557 if (req
->status
!= TEGRA_DMA_REQ_INFLIGHT
)
558 tegra_dma_update_hw(ch
, req
);
560 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
563 static void handle_continuous_dma(struct tegra_dma_channel
*ch
)
565 struct tegra_dma_req
*req
;
566 unsigned long irq_flags
;
568 spin_lock_irqsave(&ch
->lock
, irq_flags
);
569 if (list_empty(&ch
->list
)) {
570 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
574 req
= list_entry(ch
->list
.next
, typeof(*req
), node
);
576 if (req
->buffer_status
== TEGRA_DMA_REQ_BUF_STATUS_EMPTY
) {
577 bool is_dma_ping_complete
;
578 is_dma_ping_complete
= (readl(ch
->addr
+ APB_DMA_CHAN_STA
)
579 & STA_PING_PONG
) ? true : false;
581 is_dma_ping_complete
= !is_dma_ping_complete
;
582 /* Out of sync - Release current buffer */
583 if (!is_dma_ping_complete
) {
584 int bytes_transferred
;
586 bytes_transferred
= ch
->req_transfer_count
;
587 bytes_transferred
+= 1;
588 bytes_transferred
<<= 3;
589 req
->buffer_status
= TEGRA_DMA_REQ_BUF_STATUS_FULL
;
590 req
->bytes_transferred
= bytes_transferred
;
591 req
->status
= TEGRA_DMA_REQ_SUCCESS
;
594 if (!list_is_last(&req
->node
, &ch
->list
)) {
595 struct tegra_dma_req
*next_req
;
597 next_req
= list_entry(req
->node
.next
,
598 typeof(*next_req
), node
);
599 tegra_dma_update_hw(ch
, next_req
);
602 list_del(&req
->node
);
604 /* DMA lock is NOT held when callbak is called */
605 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
609 /* Load the next request into the hardware, if available
611 if (!list_is_last(&req
->node
, &ch
->list
)) {
612 struct tegra_dma_req
*next_req
;
614 next_req
= list_entry(req
->node
.next
,
615 typeof(*next_req
), node
);
616 tegra_dma_update_hw_partial(ch
, next_req
);
618 req
->buffer_status
= TEGRA_DMA_REQ_BUF_STATUS_HALF_FULL
;
619 req
->status
= TEGRA_DMA_REQ_SUCCESS
;
620 /* DMA lock is NOT held when callback is called */
621 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
622 if (likely(req
->threshold
))
626 } else if (req
->buffer_status
==
627 TEGRA_DMA_REQ_BUF_STATUS_HALF_FULL
) {
628 /* Callback when the buffer is completely full (i.e on
629 * the second interrupt */
630 int bytes_transferred
;
632 bytes_transferred
= ch
->req_transfer_count
;
633 bytes_transferred
+= 1;
634 bytes_transferred
<<= 3;
636 req
->buffer_status
= TEGRA_DMA_REQ_BUF_STATUS_FULL
;
637 req
->bytes_transferred
= bytes_transferred
;
638 req
->status
= TEGRA_DMA_REQ_SUCCESS
;
639 list_del(&req
->node
);
641 /* DMA lock is NOT held when callbak is called */
642 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
650 spin_unlock_irqrestore(&ch
->lock
, irq_flags
);
653 static irqreturn_t
dma_isr(int irq
, void *data
)
655 struct tegra_dma_channel
*ch
= data
;
656 unsigned long status
;
658 status
= readl(ch
->addr
+ APB_DMA_CHAN_STA
);
659 if (status
& STA_ISE_EOC
)
660 writel(status
, ch
->addr
+ APB_DMA_CHAN_STA
);
662 pr_warning("Got a spurious ISR for DMA channel %d\n", ch
->id
);
665 return IRQ_WAKE_THREAD
;
668 static irqreturn_t
dma_thread_fn(int irq
, void *data
)
670 struct tegra_dma_channel
*ch
= data
;
672 if (ch
->mode
& TEGRA_DMA_MODE_ONESHOT
)
673 handle_oneshot_dma(ch
);
675 handle_continuous_dma(ch
);
681 int __init
tegra_dma_init(void)
689 bitmap_fill(channel_usage
, NV_DMA_MAX_CHANNELS
);
691 c
= clk_get_sys("tegra-dma", NULL
);
693 pr_err("Unable to get clock for APB DMA\n");
699 pr_err("Unable to enable clock for APB DMA\n");
703 addr
= IO_ADDRESS(TEGRA_APB_DMA_BASE
);
704 writel(GEN_ENABLE
, addr
+ APB_DMA_GEN
);
705 writel(0, addr
+ APB_DMA_CNTRL
);
706 writel(0xFFFFFFFFul
>> (31 - TEGRA_SYSTEM_DMA_CH_MAX
),
707 addr
+ APB_DMA_IRQ_MASK_SET
);
709 for (i
= TEGRA_SYSTEM_DMA_CH_MIN
; i
<= TEGRA_SYSTEM_DMA_CH_MAX
; i
++) {
710 struct tegra_dma_channel
*ch
= &dma_channels
[i
];
713 snprintf(ch
->name
, TEGRA_DMA_NAME_SIZE
, "dma_channel_%d", i
);
715 ch
->addr
= IO_ADDRESS(TEGRA_APB_DMA_CH0_BASE
+
716 TEGRA_APB_DMA_CH0_SIZE
* i
);
718 spin_lock_init(&ch
->lock
);
719 INIT_LIST_HEAD(&ch
->list
);
721 irq
= INT_APB_DMA_CH0
+ i
;
722 ret
= request_threaded_irq(irq
, dma_isr
, dma_thread_fn
, 0,
723 dma_channels
[i
].name
, ch
);
725 pr_err("Failed to register IRQ %d for DMA %d\n",
731 __clear_bit(i
, channel_usage
);
733 /* mark the shared channel allocated */
734 __set_bit(TEGRA_SYSTEM_DMA_CH_MIN
, channel_usage
);
736 tegra_dma_initialized
= true;
740 writel(0, addr
+ APB_DMA_GEN
);
741 for (i
= TEGRA_SYSTEM_DMA_CH_MIN
; i
<= TEGRA_SYSTEM_DMA_CH_MAX
; i
++) {
742 struct tegra_dma_channel
*ch
= &dma_channels
[i
];
744 free_irq(ch
->irq
, ch
);
748 postcore_initcall(tegra_dma_init
);
751 static u32 apb_dma
[5*TEGRA_SYSTEM_DMA_CH_NR
+ 3];
753 void tegra_dma_suspend(void)
755 void __iomem
*addr
= IO_ADDRESS(TEGRA_APB_DMA_BASE
);
759 *ctx
++ = readl(addr
+ APB_DMA_GEN
);
760 *ctx
++ = readl(addr
+ APB_DMA_CNTRL
);
761 *ctx
++ = readl(addr
+ APB_DMA_IRQ_MASK
);
763 for (i
= 0; i
< TEGRA_SYSTEM_DMA_CH_NR
; i
++) {
764 addr
= IO_ADDRESS(TEGRA_APB_DMA_CH0_BASE
+
765 TEGRA_APB_DMA_CH0_SIZE
* i
);
767 *ctx
++ = readl(addr
+ APB_DMA_CHAN_CSR
);
768 *ctx
++ = readl(addr
+ APB_DMA_CHAN_AHB_PTR
);
769 *ctx
++ = readl(addr
+ APB_DMA_CHAN_AHB_SEQ
);
770 *ctx
++ = readl(addr
+ APB_DMA_CHAN_APB_PTR
);
771 *ctx
++ = readl(addr
+ APB_DMA_CHAN_APB_SEQ
);
775 void tegra_dma_resume(void)
777 void __iomem
*addr
= IO_ADDRESS(TEGRA_APB_DMA_BASE
);
781 writel(*ctx
++, addr
+ APB_DMA_GEN
);
782 writel(*ctx
++, addr
+ APB_DMA_CNTRL
);
783 writel(*ctx
++, addr
+ APB_DMA_IRQ_MASK
);
785 for (i
= 0; i
< TEGRA_SYSTEM_DMA_CH_NR
; i
++) {
786 addr
= IO_ADDRESS(TEGRA_APB_DMA_CH0_BASE
+
787 TEGRA_APB_DMA_CH0_SIZE
* i
);
789 writel(*ctx
++, addr
+ APB_DMA_CHAN_CSR
);
790 writel(*ctx
++, addr
+ APB_DMA_CHAN_AHB_PTR
);
791 writel(*ctx
++, addr
+ APB_DMA_CHAN_AHB_SEQ
);
792 writel(*ctx
++, addr
+ APB_DMA_CHAN_APB_PTR
);
793 writel(*ctx
++, addr
+ APB_DMA_CHAN_APB_SEQ
);