tty-usb-mct-u232: Coding style
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / security / commoncap.c
blob0b6537a3672d8822baf4b10627f142e9afc1102b
1 /* Common capabilities, needed by capability.o and root_plug.o
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
8 */
10 #include <linux/capability.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/security.h>
15 #include <linux/file.h>
16 #include <linux/mm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/skbuff.h>
21 #include <linux/netlink.h>
22 #include <linux/ptrace.h>
23 #include <linux/xattr.h>
24 #include <linux/hugetlb.h>
25 #include <linux/mount.h>
26 #include <linux/sched.h>
27 #include <linux/prctl.h>
28 #include <linux/securebits.h>
30 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
32 NETLINK_CB(skb).eff_cap = current->cap_effective;
33 return 0;
36 int cap_netlink_recv(struct sk_buff *skb, int cap)
38 if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
39 return -EPERM;
40 return 0;
43 EXPORT_SYMBOL(cap_netlink_recv);
46 * NOTE WELL: cap_capable() cannot be used like the kernel's capable()
47 * function. That is, it has the reverse semantics: cap_capable()
48 * returns 0 when a task has a capability, but the kernel's capable()
49 * returns 1 for this case.
51 int cap_capable (struct task_struct *tsk, int cap)
53 /* Derived from include/linux/sched.h:capable. */
54 if (cap_raised(tsk->cap_effective, cap))
55 return 0;
56 return -EPERM;
59 int cap_settime(struct timespec *ts, struct timezone *tz)
61 if (!capable(CAP_SYS_TIME))
62 return -EPERM;
63 return 0;
66 int cap_ptrace (struct task_struct *parent, struct task_struct *child,
67 unsigned int mode)
69 /* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
70 if (!cap_issubset(child->cap_permitted, parent->cap_permitted) &&
71 !__capable(parent, CAP_SYS_PTRACE))
72 return -EPERM;
73 return 0;
76 int cap_capget (struct task_struct *target, kernel_cap_t *effective,
77 kernel_cap_t *inheritable, kernel_cap_t *permitted)
79 /* Derived from kernel/capability.c:sys_capget. */
80 *effective = target->cap_effective;
81 *inheritable = target->cap_inheritable;
82 *permitted = target->cap_permitted;
83 return 0;
86 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
88 static inline int cap_block_setpcap(struct task_struct *target)
91 * No support for remote process capability manipulation with
92 * filesystem capability support.
94 return (target != current);
97 static inline int cap_inh_is_capped(void)
100 * Return 1 if changes to the inheritable set are limited
101 * to the old permitted set. That is, if the current task
102 * does *not* possess the CAP_SETPCAP capability.
104 return (cap_capable(current, CAP_SETPCAP) != 0);
107 static inline int cap_limit_ptraced_target(void) { return 1; }
109 #else /* ie., ndef CONFIG_SECURITY_FILE_CAPABILITIES */
111 static inline int cap_block_setpcap(struct task_struct *t) { return 0; }
112 static inline int cap_inh_is_capped(void) { return 1; }
113 static inline int cap_limit_ptraced_target(void)
115 return !capable(CAP_SETPCAP);
118 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
120 int cap_capset_check (struct task_struct *target, kernel_cap_t *effective,
121 kernel_cap_t *inheritable, kernel_cap_t *permitted)
123 if (cap_block_setpcap(target)) {
124 return -EPERM;
126 if (cap_inh_is_capped()
127 && !cap_issubset(*inheritable,
128 cap_combine(target->cap_inheritable,
129 current->cap_permitted))) {
130 /* incapable of using this inheritable set */
131 return -EPERM;
133 if (!cap_issubset(*inheritable,
134 cap_combine(target->cap_inheritable,
135 current->cap_bset))) {
136 /* no new pI capabilities outside bounding set */
137 return -EPERM;
140 /* verify restrictions on target's new Permitted set */
141 if (!cap_issubset (*permitted,
142 cap_combine (target->cap_permitted,
143 current->cap_permitted))) {
144 return -EPERM;
147 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
148 if (!cap_issubset (*effective, *permitted)) {
149 return -EPERM;
152 return 0;
155 void cap_capset_set (struct task_struct *target, kernel_cap_t *effective,
156 kernel_cap_t *inheritable, kernel_cap_t *permitted)
158 target->cap_effective = *effective;
159 target->cap_inheritable = *inheritable;
160 target->cap_permitted = *permitted;
163 static inline void bprm_clear_caps(struct linux_binprm *bprm)
165 cap_clear(bprm->cap_inheritable);
166 cap_clear(bprm->cap_permitted);
167 bprm->cap_effective = false;
170 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
172 int cap_inode_need_killpriv(struct dentry *dentry)
174 struct inode *inode = dentry->d_inode;
175 int error;
177 if (!inode->i_op || !inode->i_op->getxattr)
178 return 0;
180 error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
181 if (error <= 0)
182 return 0;
183 return 1;
186 int cap_inode_killpriv(struct dentry *dentry)
188 struct inode *inode = dentry->d_inode;
190 if (!inode->i_op || !inode->i_op->removexattr)
191 return 0;
193 return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
196 static inline int cap_from_disk(struct vfs_cap_data *caps,
197 struct linux_binprm *bprm, unsigned size)
199 __u32 magic_etc;
200 unsigned tocopy, i;
202 if (size < sizeof(magic_etc))
203 return -EINVAL;
205 magic_etc = le32_to_cpu(caps->magic_etc);
207 switch ((magic_etc & VFS_CAP_REVISION_MASK)) {
208 case VFS_CAP_REVISION_1:
209 if (size != XATTR_CAPS_SZ_1)
210 return -EINVAL;
211 tocopy = VFS_CAP_U32_1;
212 break;
213 case VFS_CAP_REVISION_2:
214 if (size != XATTR_CAPS_SZ_2)
215 return -EINVAL;
216 tocopy = VFS_CAP_U32_2;
217 break;
218 default:
219 return -EINVAL;
222 if (magic_etc & VFS_CAP_FLAGS_EFFECTIVE) {
223 bprm->cap_effective = true;
224 } else {
225 bprm->cap_effective = false;
228 for (i = 0; i < tocopy; ++i) {
229 bprm->cap_permitted.cap[i] =
230 le32_to_cpu(caps->data[i].permitted);
231 bprm->cap_inheritable.cap[i] =
232 le32_to_cpu(caps->data[i].inheritable);
234 while (i < VFS_CAP_U32) {
235 bprm->cap_permitted.cap[i] = 0;
236 bprm->cap_inheritable.cap[i] = 0;
237 i++;
240 return 0;
243 /* Locate any VFS capabilities: */
244 static int get_file_caps(struct linux_binprm *bprm)
246 struct dentry *dentry;
247 int rc = 0;
248 struct vfs_cap_data vcaps;
249 struct inode *inode;
251 if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID) {
252 bprm_clear_caps(bprm);
253 return 0;
256 dentry = dget(bprm->file->f_dentry);
257 inode = dentry->d_inode;
258 if (!inode->i_op || !inode->i_op->getxattr)
259 goto out;
261 rc = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, &vcaps,
262 XATTR_CAPS_SZ);
263 if (rc == -ENODATA || rc == -EOPNOTSUPP) {
264 /* no data, that's ok */
265 rc = 0;
266 goto out;
268 if (rc < 0)
269 goto out;
271 rc = cap_from_disk(&vcaps, bprm, rc);
272 if (rc)
273 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
274 __func__, rc, bprm->filename);
276 out:
277 dput(dentry);
278 if (rc)
279 bprm_clear_caps(bprm);
281 return rc;
284 #else
285 int cap_inode_need_killpriv(struct dentry *dentry)
287 return 0;
290 int cap_inode_killpriv(struct dentry *dentry)
292 return 0;
295 static inline int get_file_caps(struct linux_binprm *bprm)
297 bprm_clear_caps(bprm);
298 return 0;
300 #endif
302 int cap_bprm_set_security (struct linux_binprm *bprm)
304 int ret;
306 ret = get_file_caps(bprm);
307 if (ret)
308 printk(KERN_NOTICE "%s: get_file_caps returned %d for %s\n",
309 __func__, ret, bprm->filename);
311 /* To support inheritance of root-permissions and suid-root
312 * executables under compatibility mode, we raise all three
313 * capability sets for the file.
315 * If only the real uid is 0, we only raise the inheritable
316 * and permitted sets of the executable file.
319 if (!issecure (SECURE_NOROOT)) {
320 if (bprm->e_uid == 0 || current->uid == 0) {
321 cap_set_full (bprm->cap_inheritable);
322 cap_set_full (bprm->cap_permitted);
324 if (bprm->e_uid == 0)
325 bprm->cap_effective = true;
328 return ret;
331 void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
333 /* Derived from fs/exec.c:compute_creds. */
334 kernel_cap_t new_permitted, working;
336 new_permitted = cap_intersect(bprm->cap_permitted,
337 current->cap_bset);
338 working = cap_intersect(bprm->cap_inheritable,
339 current->cap_inheritable);
340 new_permitted = cap_combine(new_permitted, working);
342 if (bprm->e_uid != current->uid || bprm->e_gid != current->gid ||
343 !cap_issubset (new_permitted, current->cap_permitted)) {
344 set_dumpable(current->mm, suid_dumpable);
345 current->pdeath_signal = 0;
347 if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
348 if (!capable(CAP_SETUID)) {
349 bprm->e_uid = current->uid;
350 bprm->e_gid = current->gid;
352 if (cap_limit_ptraced_target()) {
353 new_permitted =
354 cap_intersect(new_permitted,
355 current->cap_permitted);
360 current->suid = current->euid = current->fsuid = bprm->e_uid;
361 current->sgid = current->egid = current->fsgid = bprm->e_gid;
363 /* For init, we want to retain the capabilities set
364 * in the init_task struct. Thus we skip the usual
365 * capability rules */
366 if (!is_global_init(current)) {
367 current->cap_permitted = new_permitted;
368 if (bprm->cap_effective)
369 current->cap_effective = new_permitted;
370 else
371 cap_clear(current->cap_effective);
374 /* AUD: Audit candidate if current->cap_effective is set */
376 current->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
379 int cap_bprm_secureexec (struct linux_binprm *bprm)
381 if (current->uid != 0) {
382 if (bprm->cap_effective)
383 return 1;
384 if (!cap_isclear(bprm->cap_permitted))
385 return 1;
386 if (!cap_isclear(bprm->cap_inheritable))
387 return 1;
390 return (current->euid != current->uid ||
391 current->egid != current->gid);
394 int cap_inode_setxattr(struct dentry *dentry, const char *name,
395 const void *value, size_t size, int flags)
397 if (!strcmp(name, XATTR_NAME_CAPS)) {
398 if (!capable(CAP_SETFCAP))
399 return -EPERM;
400 return 0;
401 } else if (!strncmp(name, XATTR_SECURITY_PREFIX,
402 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
403 !capable(CAP_SYS_ADMIN))
404 return -EPERM;
405 return 0;
408 int cap_inode_removexattr(struct dentry *dentry, const char *name)
410 if (!strcmp(name, XATTR_NAME_CAPS)) {
411 if (!capable(CAP_SETFCAP))
412 return -EPERM;
413 return 0;
414 } else if (!strncmp(name, XATTR_SECURITY_PREFIX,
415 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
416 !capable(CAP_SYS_ADMIN))
417 return -EPERM;
418 return 0;
421 /* moved from kernel/sys.c. */
423 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
424 * a process after a call to setuid, setreuid, or setresuid.
426 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
427 * {r,e,s}uid != 0, the permitted and effective capabilities are
428 * cleared.
430 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
431 * capabilities of the process are cleared.
433 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
434 * capabilities are set to the permitted capabilities.
436 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
437 * never happen.
439 * -astor
441 * cevans - New behaviour, Oct '99
442 * A process may, via prctl(), elect to keep its capabilities when it
443 * calls setuid() and switches away from uid==0. Both permitted and
444 * effective sets will be retained.
445 * Without this change, it was impossible for a daemon to drop only some
446 * of its privilege. The call to setuid(!=0) would drop all privileges!
447 * Keeping uid 0 is not an option because uid 0 owns too many vital
448 * files..
449 * Thanks to Olaf Kirch and Peter Benie for spotting this.
451 static inline void cap_emulate_setxuid (int old_ruid, int old_euid,
452 int old_suid)
454 if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) &&
455 (current->uid != 0 && current->euid != 0 && current->suid != 0) &&
456 !issecure(SECURE_KEEP_CAPS)) {
457 cap_clear (current->cap_permitted);
458 cap_clear (current->cap_effective);
460 if (old_euid == 0 && current->euid != 0) {
461 cap_clear (current->cap_effective);
463 if (old_euid != 0 && current->euid == 0) {
464 current->cap_effective = current->cap_permitted;
468 int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid,
469 int flags)
471 switch (flags) {
472 case LSM_SETID_RE:
473 case LSM_SETID_ID:
474 case LSM_SETID_RES:
475 /* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
476 if (!issecure (SECURE_NO_SETUID_FIXUP)) {
477 cap_emulate_setxuid (old_ruid, old_euid, old_suid);
479 break;
480 case LSM_SETID_FS:
482 uid_t old_fsuid = old_ruid;
484 /* Copied from kernel/sys.c:setfsuid. */
487 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
488 * if not, we might be a bit too harsh here.
491 if (!issecure (SECURE_NO_SETUID_FIXUP)) {
492 if (old_fsuid == 0 && current->fsuid != 0) {
493 current->cap_effective =
494 cap_drop_fs_set(
495 current->cap_effective);
497 if (old_fsuid != 0 && current->fsuid == 0) {
498 current->cap_effective =
499 cap_raise_fs_set(
500 current->cap_effective,
501 current->cap_permitted);
504 break;
506 default:
507 return -EINVAL;
510 return 0;
513 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
515 * Rationale: code calling task_setscheduler, task_setioprio, and
516 * task_setnice, assumes that
517 * . if capable(cap_sys_nice), then those actions should be allowed
518 * . if not capable(cap_sys_nice), but acting on your own processes,
519 * then those actions should be allowed
520 * This is insufficient now since you can call code without suid, but
521 * yet with increased caps.
522 * So we check for increased caps on the target process.
524 static inline int cap_safe_nice(struct task_struct *p)
526 if (!cap_issubset(p->cap_permitted, current->cap_permitted) &&
527 !__capable(current, CAP_SYS_NICE))
528 return -EPERM;
529 return 0;
532 int cap_task_setscheduler (struct task_struct *p, int policy,
533 struct sched_param *lp)
535 return cap_safe_nice(p);
538 int cap_task_setioprio (struct task_struct *p, int ioprio)
540 return cap_safe_nice(p);
543 int cap_task_setnice (struct task_struct *p, int nice)
545 return cap_safe_nice(p);
549 * called from kernel/sys.c for prctl(PR_CABSET_DROP)
550 * done without task_capability_lock() because it introduces
551 * no new races - i.e. only another task doing capget() on
552 * this task could get inconsistent info. There can be no
553 * racing writer bc a task can only change its own caps.
555 static long cap_prctl_drop(unsigned long cap)
557 if (!capable(CAP_SETPCAP))
558 return -EPERM;
559 if (!cap_valid(cap))
560 return -EINVAL;
561 cap_lower(current->cap_bset, cap);
562 return 0;
565 #else
566 int cap_task_setscheduler (struct task_struct *p, int policy,
567 struct sched_param *lp)
569 return 0;
571 int cap_task_setioprio (struct task_struct *p, int ioprio)
573 return 0;
575 int cap_task_setnice (struct task_struct *p, int nice)
577 return 0;
579 #endif
581 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
582 unsigned long arg4, unsigned long arg5, long *rc_p)
584 long error = 0;
586 switch (option) {
587 case PR_CAPBSET_READ:
588 if (!cap_valid(arg2))
589 error = -EINVAL;
590 else
591 error = !!cap_raised(current->cap_bset, arg2);
592 break;
593 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
594 case PR_CAPBSET_DROP:
595 error = cap_prctl_drop(arg2);
596 break;
599 * The next four prctl's remain to assist with transitioning a
600 * system from legacy UID=0 based privilege (when filesystem
601 * capabilities are not in use) to a system using filesystem
602 * capabilities only - as the POSIX.1e draft intended.
604 * Note:
606 * PR_SET_SECUREBITS =
607 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
608 * | issecure_mask(SECURE_NOROOT)
609 * | issecure_mask(SECURE_NOROOT_LOCKED)
610 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
611 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
613 * will ensure that the current process and all of its
614 * children will be locked into a pure
615 * capability-based-privilege environment.
617 case PR_SET_SECUREBITS:
618 if ((((current->securebits & SECURE_ALL_LOCKS) >> 1)
619 & (current->securebits ^ arg2)) /*[1]*/
620 || ((current->securebits & SECURE_ALL_LOCKS
621 & ~arg2)) /*[2]*/
622 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
623 || (cap_capable(current, CAP_SETPCAP) != 0)) { /*[4]*/
625 * [1] no changing of bits that are locked
626 * [2] no unlocking of locks
627 * [3] no setting of unsupported bits
628 * [4] doing anything requires privilege (go read about
629 * the "sendmail capabilities bug")
631 error = -EPERM; /* cannot change a locked bit */
632 } else {
633 current->securebits = arg2;
635 break;
636 case PR_GET_SECUREBITS:
637 error = current->securebits;
638 break;
640 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
642 case PR_GET_KEEPCAPS:
643 if (issecure(SECURE_KEEP_CAPS))
644 error = 1;
645 break;
646 case PR_SET_KEEPCAPS:
647 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
648 error = -EINVAL;
649 else if (issecure(SECURE_KEEP_CAPS_LOCKED))
650 error = -EPERM;
651 else if (arg2)
652 current->securebits |= issecure_mask(SECURE_KEEP_CAPS);
653 else
654 current->securebits &=
655 ~issecure_mask(SECURE_KEEP_CAPS);
656 break;
658 default:
659 /* No functionality available - continue with default */
660 return 0;
663 /* Functionality provided */
664 *rc_p = error;
665 return 1;
668 void cap_task_reparent_to_init (struct task_struct *p)
670 cap_set_init_eff(p->cap_effective);
671 cap_clear(p->cap_inheritable);
672 cap_set_full(p->cap_permitted);
673 p->securebits = SECUREBITS_DEFAULT;
674 return;
677 int cap_syslog (int type)
679 if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
680 return -EPERM;
681 return 0;
684 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
686 int cap_sys_admin = 0;
688 if (cap_capable(current, CAP_SYS_ADMIN) == 0)
689 cap_sys_admin = 1;
690 return __vm_enough_memory(mm, pages, cap_sys_admin);