[SCSI] libfc: cache align fc_exch_pool
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / scsi / libfc / fc_exch.c
bloba78655b86cb7327b30addc0b63e31a1b4f577848
1 /*
2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved.
4 * Copyright(c) 2008 Mike Christie
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 * Maintained at www.Open-FCoE.org
23 * Fibre Channel exchange and sequence handling.
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <linux/err.h>
30 #include <scsi/fc/fc_fc2.h>
32 #include <scsi/libfc.h>
33 #include <scsi/fc_encode.h>
35 #include "fc_libfc.h"
37 u16 fc_cpu_mask; /* cpu mask for possible cpus */
38 EXPORT_SYMBOL(fc_cpu_mask);
39 static u16 fc_cpu_order; /* 2's power to represent total possible cpus */
40 static struct kmem_cache *fc_em_cachep; /* cache for exchanges */
41 static struct workqueue_struct *fc_exch_workqueue;
44 * Structure and function definitions for managing Fibre Channel Exchanges
45 * and Sequences.
47 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
49 * fc_exch_mgr holds the exchange state for an N port
51 * fc_exch holds state for one exchange and links to its active sequence.
53 * fc_seq holds the state for an individual sequence.
56 /**
57 * struct fc_exch_pool - Per cpu exchange pool
58 * @next_index: Next possible free exchange index
59 * @total_exches: Total allocated exchanges
60 * @lock: Exch pool lock
61 * @ex_list: List of exchanges
63 * This structure manages per cpu exchanges in array of exchange pointers.
64 * This array is allocated followed by struct fc_exch_pool memory for
65 * assigned range of exchanges to per cpu pool.
67 struct fc_exch_pool {
68 spinlock_t lock;
69 struct list_head ex_list;
70 u16 next_index;
71 u16 total_exches;
73 /* two cache of free slot in exch array */
74 u16 left;
75 u16 right;
76 } ____cacheline_aligned_in_smp;
78 /**
79 * struct fc_exch_mgr - The Exchange Manager (EM).
80 * @class: Default class for new sequences
81 * @kref: Reference counter
82 * @min_xid: Minimum exchange ID
83 * @max_xid: Maximum exchange ID
84 * @ep_pool: Reserved exchange pointers
85 * @pool_max_index: Max exch array index in exch pool
86 * @pool: Per cpu exch pool
87 * @stats: Statistics structure
89 * This structure is the center for creating exchanges and sequences.
90 * It manages the allocation of exchange IDs.
92 struct fc_exch_mgr {
93 struct fc_exch_pool *pool;
94 mempool_t *ep_pool;
95 enum fc_class class;
96 struct kref kref;
97 u16 min_xid;
98 u16 max_xid;
99 u16 pool_max_index;
102 * currently exchange mgr stats are updated but not used.
103 * either stats can be expose via sysfs or remove them
104 * all together if not used XXX
106 struct {
107 atomic_t no_free_exch;
108 atomic_t no_free_exch_xid;
109 atomic_t xid_not_found;
110 atomic_t xid_busy;
111 atomic_t seq_not_found;
112 atomic_t non_bls_resp;
113 } stats;
117 * struct fc_exch_mgr_anchor - primary structure for list of EMs
118 * @ema_list: Exchange Manager Anchor list
119 * @mp: Exchange Manager associated with this anchor
120 * @match: Routine to determine if this anchor's EM should be used
122 * When walking the list of anchors the match routine will be called
123 * for each anchor to determine if that EM should be used. The last
124 * anchor in the list will always match to handle any exchanges not
125 * handled by other EMs. The non-default EMs would be added to the
126 * anchor list by HW that provides FCoE offloads.
128 struct fc_exch_mgr_anchor {
129 struct list_head ema_list;
130 struct fc_exch_mgr *mp;
131 bool (*match)(struct fc_frame *);
134 static void fc_exch_rrq(struct fc_exch *);
135 static void fc_seq_ls_acc(struct fc_frame *);
136 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
137 enum fc_els_rjt_explan);
138 static void fc_exch_els_rec(struct fc_frame *);
139 static void fc_exch_els_rrq(struct fc_frame *);
142 * Internal implementation notes.
144 * The exchange manager is one by default in libfc but LLD may choose
145 * to have one per CPU. The sequence manager is one per exchange manager
146 * and currently never separated.
148 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field
149 * assigned by the Sequence Initiator that shall be unique for a specific
150 * D_ID and S_ID pair while the Sequence is open." Note that it isn't
151 * qualified by exchange ID, which one might think it would be.
152 * In practice this limits the number of open sequences and exchanges to 256
153 * per session. For most targets we could treat this limit as per exchange.
155 * The exchange and its sequence are freed when the last sequence is received.
156 * It's possible for the remote port to leave an exchange open without
157 * sending any sequences.
159 * Notes on reference counts:
161 * Exchanges are reference counted and exchange gets freed when the reference
162 * count becomes zero.
164 * Timeouts:
165 * Sequences are timed out for E_D_TOV and R_A_TOV.
167 * Sequence event handling:
169 * The following events may occur on initiator sequences:
171 * Send.
172 * For now, the whole thing is sent.
173 * Receive ACK
174 * This applies only to class F.
175 * The sequence is marked complete.
176 * ULP completion.
177 * The upper layer calls fc_exch_done() when done
178 * with exchange and sequence tuple.
179 * RX-inferred completion.
180 * When we receive the next sequence on the same exchange, we can
181 * retire the previous sequence ID. (XXX not implemented).
182 * Timeout.
183 * R_A_TOV frees the sequence ID. If we're waiting for ACK,
184 * E_D_TOV causes abort and calls upper layer response handler
185 * with FC_EX_TIMEOUT error.
186 * Receive RJT
187 * XXX defer.
188 * Send ABTS
189 * On timeout.
191 * The following events may occur on recipient sequences:
193 * Receive
194 * Allocate sequence for first frame received.
195 * Hold during receive handler.
196 * Release when final frame received.
197 * Keep status of last N of these for the ELS RES command. XXX TBD.
198 * Receive ABTS
199 * Deallocate sequence
200 * Send RJT
201 * Deallocate
203 * For now, we neglect conditions where only part of a sequence was
204 * received or transmitted, or where out-of-order receipt is detected.
208 * Locking notes:
210 * The EM code run in a per-CPU worker thread.
212 * To protect against concurrency between a worker thread code and timers,
213 * sequence allocation and deallocation must be locked.
214 * - exchange refcnt can be done atomicly without locks.
215 * - sequence allocation must be locked by exch lock.
216 * - If the EM pool lock and ex_lock must be taken at the same time, then the
217 * EM pool lock must be taken before the ex_lock.
221 * opcode names for debugging.
223 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
226 * fc_exch_name_lookup() - Lookup name by opcode
227 * @op: Opcode to be looked up
228 * @table: Opcode/name table
229 * @max_index: Index not to be exceeded
231 * This routine is used to determine a human-readable string identifying
232 * a R_CTL opcode.
234 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
235 unsigned int max_index)
237 const char *name = NULL;
239 if (op < max_index)
240 name = table[op];
241 if (!name)
242 name = "unknown";
243 return name;
247 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
248 * @op: The opcode to be looked up
250 static const char *fc_exch_rctl_name(unsigned int op)
252 return fc_exch_name_lookup(op, fc_exch_rctl_names,
253 ARRAY_SIZE(fc_exch_rctl_names));
257 * fc_exch_hold() - Increment an exchange's reference count
258 * @ep: Echange to be held
260 static inline void fc_exch_hold(struct fc_exch *ep)
262 atomic_inc(&ep->ex_refcnt);
266 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
267 * and determine SOF and EOF.
268 * @ep: The exchange to that will use the header
269 * @fp: The frame whose header is to be modified
270 * @f_ctl: F_CTL bits that will be used for the frame header
272 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
273 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
275 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
276 u32 f_ctl)
278 struct fc_frame_header *fh = fc_frame_header_get(fp);
279 u16 fill;
281 fr_sof(fp) = ep->class;
282 if (ep->seq.cnt)
283 fr_sof(fp) = fc_sof_normal(ep->class);
285 if (f_ctl & FC_FC_END_SEQ) {
286 fr_eof(fp) = FC_EOF_T;
287 if (fc_sof_needs_ack(ep->class))
288 fr_eof(fp) = FC_EOF_N;
290 * From F_CTL.
291 * The number of fill bytes to make the length a 4-byte
292 * multiple is the low order 2-bits of the f_ctl.
293 * The fill itself will have been cleared by the frame
294 * allocation.
295 * After this, the length will be even, as expected by
296 * the transport.
298 fill = fr_len(fp) & 3;
299 if (fill) {
300 fill = 4 - fill;
301 /* TODO, this may be a problem with fragmented skb */
302 skb_put(fp_skb(fp), fill);
303 hton24(fh->fh_f_ctl, f_ctl | fill);
305 } else {
306 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */
307 fr_eof(fp) = FC_EOF_N;
311 * Initialize remainig fh fields
312 * from fc_fill_fc_hdr
314 fh->fh_ox_id = htons(ep->oxid);
315 fh->fh_rx_id = htons(ep->rxid);
316 fh->fh_seq_id = ep->seq.id;
317 fh->fh_seq_cnt = htons(ep->seq.cnt);
321 * fc_exch_release() - Decrement an exchange's reference count
322 * @ep: Exchange to be released
324 * If the reference count reaches zero and the exchange is complete,
325 * it is freed.
327 static void fc_exch_release(struct fc_exch *ep)
329 struct fc_exch_mgr *mp;
331 if (atomic_dec_and_test(&ep->ex_refcnt)) {
332 mp = ep->em;
333 if (ep->destructor)
334 ep->destructor(&ep->seq, ep->arg);
335 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
336 mempool_free(ep, mp->ep_pool);
341 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
342 * @ep: The exchange that is complete
344 static int fc_exch_done_locked(struct fc_exch *ep)
346 int rc = 1;
349 * We must check for completion in case there are two threads
350 * tyring to complete this. But the rrq code will reuse the
351 * ep, and in that case we only clear the resp and set it as
352 * complete, so it can be reused by the timer to send the rrq.
354 ep->resp = NULL;
355 if (ep->state & FC_EX_DONE)
356 return rc;
357 ep->esb_stat |= ESB_ST_COMPLETE;
359 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
360 ep->state |= FC_EX_DONE;
361 if (cancel_delayed_work(&ep->timeout_work))
362 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
363 rc = 0;
365 return rc;
369 * fc_exch_ptr_get() - Return an exchange from an exchange pool
370 * @pool: Exchange Pool to get an exchange from
371 * @index: Index of the exchange within the pool
373 * Use the index to get an exchange from within an exchange pool. exches
374 * will point to an array of exchange pointers. The index will select
375 * the exchange within the array.
377 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
378 u16 index)
380 struct fc_exch **exches = (struct fc_exch **)(pool + 1);
381 return exches[index];
385 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
386 * @pool: The pool to assign the exchange to
387 * @index: The index in the pool where the exchange will be assigned
388 * @ep: The exchange to assign to the pool
390 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
391 struct fc_exch *ep)
393 ((struct fc_exch **)(pool + 1))[index] = ep;
397 * fc_exch_delete() - Delete an exchange
398 * @ep: The exchange to be deleted
400 static void fc_exch_delete(struct fc_exch *ep)
402 struct fc_exch_pool *pool;
403 u16 index;
405 pool = ep->pool;
406 spin_lock_bh(&pool->lock);
407 WARN_ON(pool->total_exches <= 0);
408 pool->total_exches--;
410 /* update cache of free slot */
411 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
412 if (pool->left == FC_XID_UNKNOWN)
413 pool->left = index;
414 else if (pool->right == FC_XID_UNKNOWN)
415 pool->right = index;
416 else
417 pool->next_index = index;
419 fc_exch_ptr_set(pool, index, NULL);
420 list_del(&ep->ex_list);
421 spin_unlock_bh(&pool->lock);
422 fc_exch_release(ep); /* drop hold for exch in mp */
426 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
427 * the exchange lock held
428 * @ep: The exchange whose timer will start
429 * @timer_msec: The timeout period
431 * Used for upper level protocols to time out the exchange.
432 * The timer is cancelled when it fires or when the exchange completes.
434 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
435 unsigned int timer_msec)
437 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
438 return;
440 FC_EXCH_DBG(ep, "Exchange timer armed\n");
442 if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
443 msecs_to_jiffies(timer_msec)))
444 fc_exch_hold(ep); /* hold for timer */
448 * fc_exch_timer_set() - Lock the exchange and set the timer
449 * @ep: The exchange whose timer will start
450 * @timer_msec: The timeout period
452 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
454 spin_lock_bh(&ep->ex_lock);
455 fc_exch_timer_set_locked(ep, timer_msec);
456 spin_unlock_bh(&ep->ex_lock);
460 * fc_seq_send() - Send a frame using existing sequence/exchange pair
461 * @lport: The local port that the exchange will be sent on
462 * @sp: The sequence to be sent
463 * @fp: The frame to be sent on the exchange
465 static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
466 struct fc_frame *fp)
468 struct fc_exch *ep;
469 struct fc_frame_header *fh = fc_frame_header_get(fp);
470 int error;
471 u32 f_ctl;
473 ep = fc_seq_exch(sp);
474 WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);
476 f_ctl = ntoh24(fh->fh_f_ctl);
477 fc_exch_setup_hdr(ep, fp, f_ctl);
478 fr_encaps(fp) = ep->encaps;
481 * update sequence count if this frame is carrying
482 * multiple FC frames when sequence offload is enabled
483 * by LLD.
485 if (fr_max_payload(fp))
486 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
487 fr_max_payload(fp));
488 else
489 sp->cnt++;
492 * Send the frame.
494 error = lport->tt.frame_send(lport, fp);
497 * Update the exchange and sequence flags,
498 * assuming all frames for the sequence have been sent.
499 * We can only be called to send once for each sequence.
501 spin_lock_bh(&ep->ex_lock);
502 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */
503 if (f_ctl & FC_FC_SEQ_INIT)
504 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
505 spin_unlock_bh(&ep->ex_lock);
506 return error;
510 * fc_seq_alloc() - Allocate a sequence for a given exchange
511 * @ep: The exchange to allocate a new sequence for
512 * @seq_id: The sequence ID to be used
514 * We don't support multiple originated sequences on the same exchange.
515 * By implication, any previously originated sequence on this exchange
516 * is complete, and we reallocate the same sequence.
518 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
520 struct fc_seq *sp;
522 sp = &ep->seq;
523 sp->ssb_stat = 0;
524 sp->cnt = 0;
525 sp->id = seq_id;
526 return sp;
530 * fc_seq_start_next_locked() - Allocate a new sequence on the same
531 * exchange as the supplied sequence
532 * @sp: The sequence/exchange to get a new sequence for
534 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
536 struct fc_exch *ep = fc_seq_exch(sp);
538 sp = fc_seq_alloc(ep, ep->seq_id++);
539 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
540 ep->f_ctl, sp->id);
541 return sp;
545 * fc_seq_start_next() - Lock the exchange and get a new sequence
546 * for a given sequence/exchange pair
547 * @sp: The sequence/exchange to get a new exchange for
549 static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
551 struct fc_exch *ep = fc_seq_exch(sp);
553 spin_lock_bh(&ep->ex_lock);
554 sp = fc_seq_start_next_locked(sp);
555 spin_unlock_bh(&ep->ex_lock);
557 return sp;
561 * Set the response handler for the exchange associated with a sequence.
563 static void fc_seq_set_resp(struct fc_seq *sp,
564 void (*resp)(struct fc_seq *, struct fc_frame *,
565 void *),
566 void *arg)
568 struct fc_exch *ep = fc_seq_exch(sp);
570 spin_lock_bh(&ep->ex_lock);
571 ep->resp = resp;
572 ep->arg = arg;
573 spin_unlock_bh(&ep->ex_lock);
577 * fc_seq_exch_abort() - Abort an exchange and sequence
578 * @req_sp: The sequence to be aborted
579 * @timer_msec: The period of time to wait before aborting
581 * Generally called because of a timeout or an abort from the upper layer.
583 static int fc_seq_exch_abort(const struct fc_seq *req_sp,
584 unsigned int timer_msec)
586 struct fc_seq *sp;
587 struct fc_exch *ep;
588 struct fc_frame *fp;
589 int error;
591 ep = fc_seq_exch(req_sp);
593 spin_lock_bh(&ep->ex_lock);
594 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
595 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
596 spin_unlock_bh(&ep->ex_lock);
597 return -ENXIO;
601 * Send the abort on a new sequence if possible.
603 sp = fc_seq_start_next_locked(&ep->seq);
604 if (!sp) {
605 spin_unlock_bh(&ep->ex_lock);
606 return -ENOMEM;
609 ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
610 if (timer_msec)
611 fc_exch_timer_set_locked(ep, timer_msec);
612 spin_unlock_bh(&ep->ex_lock);
615 * If not logged into the fabric, don't send ABTS but leave
616 * sequence active until next timeout.
618 if (!ep->sid)
619 return 0;
622 * Send an abort for the sequence that timed out.
624 fp = fc_frame_alloc(ep->lp, 0);
625 if (fp) {
626 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
627 FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
628 error = fc_seq_send(ep->lp, sp, fp);
629 } else
630 error = -ENOBUFS;
631 return error;
635 * fc_exch_timeout() - Handle exchange timer expiration
636 * @work: The work_struct identifying the exchange that timed out
638 static void fc_exch_timeout(struct work_struct *work)
640 struct fc_exch *ep = container_of(work, struct fc_exch,
641 timeout_work.work);
642 struct fc_seq *sp = &ep->seq;
643 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
644 void *arg;
645 u32 e_stat;
646 int rc = 1;
648 FC_EXCH_DBG(ep, "Exchange timed out\n");
650 spin_lock_bh(&ep->ex_lock);
651 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
652 goto unlock;
654 e_stat = ep->esb_stat;
655 if (e_stat & ESB_ST_COMPLETE) {
656 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
657 spin_unlock_bh(&ep->ex_lock);
658 if (e_stat & ESB_ST_REC_QUAL)
659 fc_exch_rrq(ep);
660 goto done;
661 } else {
662 resp = ep->resp;
663 arg = ep->arg;
664 ep->resp = NULL;
665 if (e_stat & ESB_ST_ABNORMAL)
666 rc = fc_exch_done_locked(ep);
667 spin_unlock_bh(&ep->ex_lock);
668 if (!rc)
669 fc_exch_delete(ep);
670 if (resp)
671 resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
672 fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
673 goto done;
675 unlock:
676 spin_unlock_bh(&ep->ex_lock);
677 done:
679 * This release matches the hold taken when the timer was set.
681 fc_exch_release(ep);
685 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
686 * @lport: The local port that the exchange is for
687 * @mp: The exchange manager that will allocate the exchange
689 * Returns pointer to allocated fc_exch with exch lock held.
691 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
692 struct fc_exch_mgr *mp)
694 struct fc_exch *ep;
695 unsigned int cpu;
696 u16 index;
697 struct fc_exch_pool *pool;
699 /* allocate memory for exchange */
700 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
701 if (!ep) {
702 atomic_inc(&mp->stats.no_free_exch);
703 goto out;
705 memset(ep, 0, sizeof(*ep));
707 cpu = get_cpu();
708 pool = per_cpu_ptr(mp->pool, cpu);
709 spin_lock_bh(&pool->lock);
710 put_cpu();
712 /* peek cache of free slot */
713 if (pool->left != FC_XID_UNKNOWN) {
714 index = pool->left;
715 pool->left = FC_XID_UNKNOWN;
716 goto hit;
718 if (pool->right != FC_XID_UNKNOWN) {
719 index = pool->right;
720 pool->right = FC_XID_UNKNOWN;
721 goto hit;
724 index = pool->next_index;
725 /* allocate new exch from pool */
726 while (fc_exch_ptr_get(pool, index)) {
727 index = index == mp->pool_max_index ? 0 : index + 1;
728 if (index == pool->next_index)
729 goto err;
731 pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
732 hit:
733 fc_exch_hold(ep); /* hold for exch in mp */
734 spin_lock_init(&ep->ex_lock);
736 * Hold exch lock for caller to prevent fc_exch_reset()
737 * from releasing exch while fc_exch_alloc() caller is
738 * still working on exch.
740 spin_lock_bh(&ep->ex_lock);
742 fc_exch_ptr_set(pool, index, ep);
743 list_add_tail(&ep->ex_list, &pool->ex_list);
744 fc_seq_alloc(ep, ep->seq_id++);
745 pool->total_exches++;
746 spin_unlock_bh(&pool->lock);
749 * update exchange
751 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
752 ep->em = mp;
753 ep->pool = pool;
754 ep->lp = lport;
755 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */
756 ep->rxid = FC_XID_UNKNOWN;
757 ep->class = mp->class;
758 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
759 out:
760 return ep;
761 err:
762 spin_unlock_bh(&pool->lock);
763 atomic_inc(&mp->stats.no_free_exch_xid);
764 mempool_free(ep, mp->ep_pool);
765 return NULL;
769 * fc_exch_alloc() - Allocate an exchange from an EM on a
770 * local port's list of EMs.
771 * @lport: The local port that will own the exchange
772 * @fp: The FC frame that the exchange will be for
774 * This function walks the list of exchange manager(EM)
775 * anchors to select an EM for a new exchange allocation. The
776 * EM is selected when a NULL match function pointer is encountered
777 * or when a call to a match function returns true.
779 static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
780 struct fc_frame *fp)
782 struct fc_exch_mgr_anchor *ema;
784 list_for_each_entry(ema, &lport->ema_list, ema_list)
785 if (!ema->match || ema->match(fp))
786 return fc_exch_em_alloc(lport, ema->mp);
787 return NULL;
791 * fc_exch_find() - Lookup and hold an exchange
792 * @mp: The exchange manager to lookup the exchange from
793 * @xid: The XID of the exchange to look up
795 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
797 struct fc_exch_pool *pool;
798 struct fc_exch *ep = NULL;
800 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
801 pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
802 spin_lock_bh(&pool->lock);
803 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
804 if (ep && ep->xid == xid)
805 fc_exch_hold(ep);
806 spin_unlock_bh(&pool->lock);
808 return ep;
813 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
814 * the memory allocated for the related objects may be freed.
815 * @sp: The sequence that has completed
817 static void fc_exch_done(struct fc_seq *sp)
819 struct fc_exch *ep = fc_seq_exch(sp);
820 int rc;
822 spin_lock_bh(&ep->ex_lock);
823 rc = fc_exch_done_locked(ep);
824 spin_unlock_bh(&ep->ex_lock);
825 if (!rc)
826 fc_exch_delete(ep);
830 * fc_exch_resp() - Allocate a new exchange for a response frame
831 * @lport: The local port that the exchange was for
832 * @mp: The exchange manager to allocate the exchange from
833 * @fp: The response frame
835 * Sets the responder ID in the frame header.
837 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
838 struct fc_exch_mgr *mp,
839 struct fc_frame *fp)
841 struct fc_exch *ep;
842 struct fc_frame_header *fh;
844 ep = fc_exch_alloc(lport, fp);
845 if (ep) {
846 ep->class = fc_frame_class(fp);
849 * Set EX_CTX indicating we're responding on this exchange.
851 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */
852 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */
853 fh = fc_frame_header_get(fp);
854 ep->sid = ntoh24(fh->fh_d_id);
855 ep->did = ntoh24(fh->fh_s_id);
856 ep->oid = ep->did;
859 * Allocated exchange has placed the XID in the
860 * originator field. Move it to the responder field,
861 * and set the originator XID from the frame.
863 ep->rxid = ep->xid;
864 ep->oxid = ntohs(fh->fh_ox_id);
865 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
866 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
867 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
869 fc_exch_hold(ep); /* hold for caller */
870 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */
872 return ep;
876 * fc_seq_lookup_recip() - Find a sequence where the other end
877 * originated the sequence
878 * @lport: The local port that the frame was sent to
879 * @mp: The Exchange Manager to lookup the exchange from
880 * @fp: The frame associated with the sequence we're looking for
882 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
883 * on the ep that should be released by the caller.
885 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
886 struct fc_exch_mgr *mp,
887 struct fc_frame *fp)
889 struct fc_frame_header *fh = fc_frame_header_get(fp);
890 struct fc_exch *ep = NULL;
891 struct fc_seq *sp = NULL;
892 enum fc_pf_rjt_reason reject = FC_RJT_NONE;
893 u32 f_ctl;
894 u16 xid;
896 f_ctl = ntoh24(fh->fh_f_ctl);
897 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
900 * Lookup or create the exchange if we will be creating the sequence.
902 if (f_ctl & FC_FC_EX_CTX) {
903 xid = ntohs(fh->fh_ox_id); /* we originated exch */
904 ep = fc_exch_find(mp, xid);
905 if (!ep) {
906 atomic_inc(&mp->stats.xid_not_found);
907 reject = FC_RJT_OX_ID;
908 goto out;
910 if (ep->rxid == FC_XID_UNKNOWN)
911 ep->rxid = ntohs(fh->fh_rx_id);
912 else if (ep->rxid != ntohs(fh->fh_rx_id)) {
913 reject = FC_RJT_OX_ID;
914 goto rel;
916 } else {
917 xid = ntohs(fh->fh_rx_id); /* we are the responder */
920 * Special case for MDS issuing an ELS TEST with a
921 * bad rxid of 0.
922 * XXX take this out once we do the proper reject.
924 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
925 fc_frame_payload_op(fp) == ELS_TEST) {
926 fh->fh_rx_id = htons(FC_XID_UNKNOWN);
927 xid = FC_XID_UNKNOWN;
931 * new sequence - find the exchange
933 ep = fc_exch_find(mp, xid);
934 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
935 if (ep) {
936 atomic_inc(&mp->stats.xid_busy);
937 reject = FC_RJT_RX_ID;
938 goto rel;
940 ep = fc_exch_resp(lport, mp, fp);
941 if (!ep) {
942 reject = FC_RJT_EXCH_EST; /* XXX */
943 goto out;
945 xid = ep->xid; /* get our XID */
946 } else if (!ep) {
947 atomic_inc(&mp->stats.xid_not_found);
948 reject = FC_RJT_RX_ID; /* XID not found */
949 goto out;
954 * At this point, we have the exchange held.
955 * Find or create the sequence.
957 if (fc_sof_is_init(fr_sof(fp))) {
958 sp = &ep->seq;
959 sp->ssb_stat |= SSB_ST_RESP;
960 sp->id = fh->fh_seq_id;
961 } else {
962 sp = &ep->seq;
963 if (sp->id != fh->fh_seq_id) {
964 atomic_inc(&mp->stats.seq_not_found);
965 if (f_ctl & FC_FC_END_SEQ) {
967 * Update sequence_id based on incoming last
968 * frame of sequence exchange. This is needed
969 * for FCoE target where DDP has been used
970 * on target where, stack is indicated only
971 * about last frame's (payload _header) header.
972 * Whereas "seq_id" which is part of
973 * frame_header is allocated by initiator
974 * which is totally different from "seq_id"
975 * allocated when XFER_RDY was sent by target.
976 * To avoid false -ve which results into not
977 * sending RSP, hence write request on other
978 * end never finishes.
980 spin_lock_bh(&ep->ex_lock);
981 sp->ssb_stat |= SSB_ST_RESP;
982 sp->id = fh->fh_seq_id;
983 spin_unlock_bh(&ep->ex_lock);
984 } else {
985 /* sequence/exch should exist */
986 reject = FC_RJT_SEQ_ID;
987 goto rel;
991 WARN_ON(ep != fc_seq_exch(sp));
993 if (f_ctl & FC_FC_SEQ_INIT)
994 ep->esb_stat |= ESB_ST_SEQ_INIT;
996 fr_seq(fp) = sp;
997 out:
998 return reject;
999 rel:
1000 fc_exch_done(&ep->seq);
1001 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */
1002 return reject;
1006 * fc_seq_lookup_orig() - Find a sequence where this end
1007 * originated the sequence
1008 * @mp: The Exchange Manager to lookup the exchange from
1009 * @fp: The frame associated with the sequence we're looking for
1011 * Does not hold the sequence for the caller.
1013 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1014 struct fc_frame *fp)
1016 struct fc_frame_header *fh = fc_frame_header_get(fp);
1017 struct fc_exch *ep;
1018 struct fc_seq *sp = NULL;
1019 u32 f_ctl;
1020 u16 xid;
1022 f_ctl = ntoh24(fh->fh_f_ctl);
1023 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1024 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1025 ep = fc_exch_find(mp, xid);
1026 if (!ep)
1027 return NULL;
1028 if (ep->seq.id == fh->fh_seq_id) {
1030 * Save the RX_ID if we didn't previously know it.
1032 sp = &ep->seq;
1033 if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1034 ep->rxid == FC_XID_UNKNOWN) {
1035 ep->rxid = ntohs(fh->fh_rx_id);
1038 fc_exch_release(ep);
1039 return sp;
1043 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1044 * @ep: The exchange to set the addresses for
1045 * @orig_id: The originator's ID
1046 * @resp_id: The responder's ID
1048 * Note this must be done before the first sequence of the exchange is sent.
1050 static void fc_exch_set_addr(struct fc_exch *ep,
1051 u32 orig_id, u32 resp_id)
1053 ep->oid = orig_id;
1054 if (ep->esb_stat & ESB_ST_RESP) {
1055 ep->sid = resp_id;
1056 ep->did = orig_id;
1057 } else {
1058 ep->sid = orig_id;
1059 ep->did = resp_id;
1064 * fc_seq_els_rsp_send() - Send an ELS response using information from
1065 * the existing sequence/exchange.
1066 * @fp: The received frame
1067 * @els_cmd: The ELS command to be sent
1068 * @els_data: The ELS data to be sent
1070 * The received frame is not freed.
1072 static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1073 struct fc_seq_els_data *els_data)
1075 switch (els_cmd) {
1076 case ELS_LS_RJT:
1077 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1078 break;
1079 case ELS_LS_ACC:
1080 fc_seq_ls_acc(fp);
1081 break;
1082 case ELS_RRQ:
1083 fc_exch_els_rrq(fp);
1084 break;
1085 case ELS_REC:
1086 fc_exch_els_rec(fp);
1087 break;
1088 default:
1089 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1094 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1095 * @sp: The sequence that is to be sent
1096 * @fp: The frame that will be sent on the sequence
1097 * @rctl: The R_CTL information to be sent
1098 * @fh_type: The frame header type
1100 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1101 enum fc_rctl rctl, enum fc_fh_type fh_type)
1103 u32 f_ctl;
1104 struct fc_exch *ep = fc_seq_exch(sp);
1106 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1107 f_ctl |= ep->f_ctl;
1108 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1109 fc_seq_send(ep->lp, sp, fp);
1113 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1114 * @sp: The sequence to send the ACK on
1115 * @rx_fp: The received frame that is being acknoledged
1117 * Send ACK_1 (or equiv.) indicating we received something.
1119 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1121 struct fc_frame *fp;
1122 struct fc_frame_header *rx_fh;
1123 struct fc_frame_header *fh;
1124 struct fc_exch *ep = fc_seq_exch(sp);
1125 struct fc_lport *lport = ep->lp;
1126 unsigned int f_ctl;
1129 * Don't send ACKs for class 3.
1131 if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1132 fp = fc_frame_alloc(lport, 0);
1133 if (!fp)
1134 return;
1136 fh = fc_frame_header_get(fp);
1137 fh->fh_r_ctl = FC_RCTL_ACK_1;
1138 fh->fh_type = FC_TYPE_BLS;
1141 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1142 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1143 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1144 * Last ACK uses bits 7-6 (continue sequence),
1145 * bits 5-4 are meaningful (what kind of ACK to use).
1147 rx_fh = fc_frame_header_get(rx_fp);
1148 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1149 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1150 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1151 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1152 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1153 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1154 hton24(fh->fh_f_ctl, f_ctl);
1156 fc_exch_setup_hdr(ep, fp, f_ctl);
1157 fh->fh_seq_id = rx_fh->fh_seq_id;
1158 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1159 fh->fh_parm_offset = htonl(1); /* ack single frame */
1161 fr_sof(fp) = fr_sof(rx_fp);
1162 if (f_ctl & FC_FC_END_SEQ)
1163 fr_eof(fp) = FC_EOF_T;
1164 else
1165 fr_eof(fp) = FC_EOF_N;
1167 lport->tt.frame_send(lport, fp);
1172 * fc_exch_send_ba_rjt() - Send BLS Reject
1173 * @rx_fp: The frame being rejected
1174 * @reason: The reason the frame is being rejected
1175 * @explan: The explanation for the rejection
1177 * This is for rejecting BA_ABTS only.
1179 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1180 enum fc_ba_rjt_reason reason,
1181 enum fc_ba_rjt_explan explan)
1183 struct fc_frame *fp;
1184 struct fc_frame_header *rx_fh;
1185 struct fc_frame_header *fh;
1186 struct fc_ba_rjt *rp;
1187 struct fc_lport *lport;
1188 unsigned int f_ctl;
1190 lport = fr_dev(rx_fp);
1191 fp = fc_frame_alloc(lport, sizeof(*rp));
1192 if (!fp)
1193 return;
1194 fh = fc_frame_header_get(fp);
1195 rx_fh = fc_frame_header_get(rx_fp);
1197 memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1199 rp = fc_frame_payload_get(fp, sizeof(*rp));
1200 rp->br_reason = reason;
1201 rp->br_explan = explan;
1204 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1206 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1207 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1208 fh->fh_ox_id = rx_fh->fh_ox_id;
1209 fh->fh_rx_id = rx_fh->fh_rx_id;
1210 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1211 fh->fh_r_ctl = FC_RCTL_BA_RJT;
1212 fh->fh_type = FC_TYPE_BLS;
1215 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1216 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1217 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1218 * Last ACK uses bits 7-6 (continue sequence),
1219 * bits 5-4 are meaningful (what kind of ACK to use).
1220 * Always set LAST_SEQ, END_SEQ.
1222 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1223 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1224 FC_FC_END_CONN | FC_FC_SEQ_INIT |
1225 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1226 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1227 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1228 f_ctl &= ~FC_FC_FIRST_SEQ;
1229 hton24(fh->fh_f_ctl, f_ctl);
1231 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1232 fr_eof(fp) = FC_EOF_T;
1233 if (fc_sof_needs_ack(fr_sof(fp)))
1234 fr_eof(fp) = FC_EOF_N;
1236 lport->tt.frame_send(lport, fp);
1240 * fc_exch_recv_abts() - Handle an incoming ABTS
1241 * @ep: The exchange the abort was on
1242 * @rx_fp: The ABTS frame
1244 * This would be for target mode usually, but could be due to lost
1245 * FCP transfer ready, confirm or RRQ. We always handle this as an
1246 * exchange abort, ignoring the parameter.
1248 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1250 struct fc_frame *fp;
1251 struct fc_ba_acc *ap;
1252 struct fc_frame_header *fh;
1253 struct fc_seq *sp;
1255 if (!ep)
1256 goto reject;
1257 spin_lock_bh(&ep->ex_lock);
1258 if (ep->esb_stat & ESB_ST_COMPLETE) {
1259 spin_unlock_bh(&ep->ex_lock);
1260 goto reject;
1262 if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1263 fc_exch_hold(ep); /* hold for REC_QUAL */
1264 ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1265 fc_exch_timer_set_locked(ep, ep->r_a_tov);
1267 fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1268 if (!fp) {
1269 spin_unlock_bh(&ep->ex_lock);
1270 goto free;
1272 fh = fc_frame_header_get(fp);
1273 ap = fc_frame_payload_get(fp, sizeof(*ap));
1274 memset(ap, 0, sizeof(*ap));
1275 sp = &ep->seq;
1276 ap->ba_high_seq_cnt = htons(0xffff);
1277 if (sp->ssb_stat & SSB_ST_RESP) {
1278 ap->ba_seq_id = sp->id;
1279 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1280 ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1281 ap->ba_low_seq_cnt = htons(sp->cnt);
1283 sp = fc_seq_start_next_locked(sp);
1284 spin_unlock_bh(&ep->ex_lock);
1285 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1286 fc_frame_free(rx_fp);
1287 return;
1289 reject:
1290 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1291 free:
1292 fc_frame_free(rx_fp);
1296 * fc_seq_assign() - Assign exchange and sequence for incoming request
1297 * @lport: The local port that received the request
1298 * @fp: The request frame
1300 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1301 * A reference will be held on the exchange/sequence for the caller, which
1302 * must call fc_seq_release().
1304 static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1306 struct fc_exch_mgr_anchor *ema;
1308 WARN_ON(lport != fr_dev(fp));
1309 WARN_ON(fr_seq(fp));
1310 fr_seq(fp) = NULL;
1312 list_for_each_entry(ema, &lport->ema_list, ema_list)
1313 if ((!ema->match || ema->match(fp)) &&
1314 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1315 break;
1316 return fr_seq(fp);
1320 * fc_seq_release() - Release the hold
1321 * @sp: The sequence.
1323 static void fc_seq_release(struct fc_seq *sp)
1325 fc_exch_release(fc_seq_exch(sp));
1329 * fc_exch_recv_req() - Handler for an incoming request
1330 * @lport: The local port that received the request
1331 * @mp: The EM that the exchange is on
1332 * @fp: The request frame
1334 * This is used when the other end is originating the exchange
1335 * and the sequence.
1337 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1338 struct fc_frame *fp)
1340 struct fc_frame_header *fh = fc_frame_header_get(fp);
1341 struct fc_seq *sp = NULL;
1342 struct fc_exch *ep = NULL;
1343 enum fc_pf_rjt_reason reject;
1345 /* We can have the wrong fc_lport at this point with NPIV, which is a
1346 * problem now that we know a new exchange needs to be allocated
1348 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1349 if (!lport) {
1350 fc_frame_free(fp);
1351 return;
1353 fr_dev(fp) = lport;
1355 BUG_ON(fr_seq(fp)); /* XXX remove later */
1358 * If the RX_ID is 0xffff, don't allocate an exchange.
1359 * The upper-level protocol may request one later, if needed.
1361 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1362 return lport->tt.lport_recv(lport, fp);
1364 reject = fc_seq_lookup_recip(lport, mp, fp);
1365 if (reject == FC_RJT_NONE) {
1366 sp = fr_seq(fp); /* sequence will be held */
1367 ep = fc_seq_exch(sp);
1368 fc_seq_send_ack(sp, fp);
1369 ep->encaps = fr_encaps(fp);
1372 * Call the receive function.
1374 * The receive function may allocate a new sequence
1375 * over the old one, so we shouldn't change the
1376 * sequence after this.
1378 * The frame will be freed by the receive function.
1379 * If new exch resp handler is valid then call that
1380 * first.
1382 if (ep->resp)
1383 ep->resp(sp, fp, ep->arg);
1384 else
1385 lport->tt.lport_recv(lport, fp);
1386 fc_exch_release(ep); /* release from lookup */
1387 } else {
1388 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1389 reject);
1390 fc_frame_free(fp);
1395 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1396 * end is the originator of the sequence that is a
1397 * response to our initial exchange
1398 * @mp: The EM that the exchange is on
1399 * @fp: The response frame
1401 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1403 struct fc_frame_header *fh = fc_frame_header_get(fp);
1404 struct fc_seq *sp;
1405 struct fc_exch *ep;
1406 enum fc_sof sof;
1407 u32 f_ctl;
1408 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1409 void *ex_resp_arg;
1410 int rc;
1412 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1413 if (!ep) {
1414 atomic_inc(&mp->stats.xid_not_found);
1415 goto out;
1417 if (ep->esb_stat & ESB_ST_COMPLETE) {
1418 atomic_inc(&mp->stats.xid_not_found);
1419 goto rel;
1421 if (ep->rxid == FC_XID_UNKNOWN)
1422 ep->rxid = ntohs(fh->fh_rx_id);
1423 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1424 atomic_inc(&mp->stats.xid_not_found);
1425 goto rel;
1427 if (ep->did != ntoh24(fh->fh_s_id) &&
1428 ep->did != FC_FID_FLOGI) {
1429 atomic_inc(&mp->stats.xid_not_found);
1430 goto rel;
1432 sof = fr_sof(fp);
1433 sp = &ep->seq;
1434 if (fc_sof_is_init(sof)) {
1435 sp->ssb_stat |= SSB_ST_RESP;
1436 sp->id = fh->fh_seq_id;
1437 } else if (sp->id != fh->fh_seq_id) {
1438 atomic_inc(&mp->stats.seq_not_found);
1439 goto rel;
1442 f_ctl = ntoh24(fh->fh_f_ctl);
1443 fr_seq(fp) = sp;
1444 if (f_ctl & FC_FC_SEQ_INIT)
1445 ep->esb_stat |= ESB_ST_SEQ_INIT;
1447 if (fc_sof_needs_ack(sof))
1448 fc_seq_send_ack(sp, fp);
1449 resp = ep->resp;
1450 ex_resp_arg = ep->arg;
1452 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1453 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1454 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1455 spin_lock_bh(&ep->ex_lock);
1456 resp = ep->resp;
1457 rc = fc_exch_done_locked(ep);
1458 WARN_ON(fc_seq_exch(sp) != ep);
1459 spin_unlock_bh(&ep->ex_lock);
1460 if (!rc)
1461 fc_exch_delete(ep);
1465 * Call the receive function.
1466 * The sequence is held (has a refcnt) for us,
1467 * but not for the receive function.
1469 * The receive function may allocate a new sequence
1470 * over the old one, so we shouldn't change the
1471 * sequence after this.
1473 * The frame will be freed by the receive function.
1474 * If new exch resp handler is valid then call that
1475 * first.
1477 if (resp)
1478 resp(sp, fp, ex_resp_arg);
1479 else
1480 fc_frame_free(fp);
1481 fc_exch_release(ep);
1482 return;
1483 rel:
1484 fc_exch_release(ep);
1485 out:
1486 fc_frame_free(fp);
1490 * fc_exch_recv_resp() - Handler for a sequence where other end is
1491 * responding to our sequence
1492 * @mp: The EM that the exchange is on
1493 * @fp: The response frame
1495 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1497 struct fc_seq *sp;
1499 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */
1501 if (!sp)
1502 atomic_inc(&mp->stats.xid_not_found);
1503 else
1504 atomic_inc(&mp->stats.non_bls_resp);
1506 fc_frame_free(fp);
1510 * fc_exch_abts_resp() - Handler for a response to an ABT
1511 * @ep: The exchange that the frame is on
1512 * @fp: The response frame
1514 * This response would be to an ABTS cancelling an exchange or sequence.
1515 * The response can be either BA_ACC or BA_RJT
1517 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1519 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1520 void *ex_resp_arg;
1521 struct fc_frame_header *fh;
1522 struct fc_ba_acc *ap;
1523 struct fc_seq *sp;
1524 u16 low;
1525 u16 high;
1526 int rc = 1, has_rec = 0;
1528 fh = fc_frame_header_get(fp);
1529 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1530 fc_exch_rctl_name(fh->fh_r_ctl));
1532 if (cancel_delayed_work_sync(&ep->timeout_work))
1533 fc_exch_release(ep); /* release from pending timer hold */
1535 spin_lock_bh(&ep->ex_lock);
1536 switch (fh->fh_r_ctl) {
1537 case FC_RCTL_BA_ACC:
1538 ap = fc_frame_payload_get(fp, sizeof(*ap));
1539 if (!ap)
1540 break;
1543 * Decide whether to establish a Recovery Qualifier.
1544 * We do this if there is a non-empty SEQ_CNT range and
1545 * SEQ_ID is the same as the one we aborted.
1547 low = ntohs(ap->ba_low_seq_cnt);
1548 high = ntohs(ap->ba_high_seq_cnt);
1549 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1550 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1551 ap->ba_seq_id == ep->seq_id) && low != high) {
1552 ep->esb_stat |= ESB_ST_REC_QUAL;
1553 fc_exch_hold(ep); /* hold for recovery qualifier */
1554 has_rec = 1;
1556 break;
1557 case FC_RCTL_BA_RJT:
1558 break;
1559 default:
1560 break;
1563 resp = ep->resp;
1564 ex_resp_arg = ep->arg;
1566 /* do we need to do some other checks here. Can we reuse more of
1567 * fc_exch_recv_seq_resp
1569 sp = &ep->seq;
1571 * do we want to check END_SEQ as well as LAST_SEQ here?
1573 if (ep->fh_type != FC_TYPE_FCP &&
1574 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1575 rc = fc_exch_done_locked(ep);
1576 spin_unlock_bh(&ep->ex_lock);
1577 if (!rc)
1578 fc_exch_delete(ep);
1580 if (resp)
1581 resp(sp, fp, ex_resp_arg);
1582 else
1583 fc_frame_free(fp);
1585 if (has_rec)
1586 fc_exch_timer_set(ep, ep->r_a_tov);
1591 * fc_exch_recv_bls() - Handler for a BLS sequence
1592 * @mp: The EM that the exchange is on
1593 * @fp: The request frame
1595 * The BLS frame is always a sequence initiated by the remote side.
1596 * We may be either the originator or recipient of the exchange.
1598 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1600 struct fc_frame_header *fh;
1601 struct fc_exch *ep;
1602 u32 f_ctl;
1604 fh = fc_frame_header_get(fp);
1605 f_ctl = ntoh24(fh->fh_f_ctl);
1606 fr_seq(fp) = NULL;
1608 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1609 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1610 if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1611 spin_lock_bh(&ep->ex_lock);
1612 ep->esb_stat |= ESB_ST_SEQ_INIT;
1613 spin_unlock_bh(&ep->ex_lock);
1615 if (f_ctl & FC_FC_SEQ_CTX) {
1617 * A response to a sequence we initiated.
1618 * This should only be ACKs for class 2 or F.
1620 switch (fh->fh_r_ctl) {
1621 case FC_RCTL_ACK_1:
1622 case FC_RCTL_ACK_0:
1623 break;
1624 default:
1625 FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1626 fh->fh_r_ctl,
1627 fc_exch_rctl_name(fh->fh_r_ctl));
1628 break;
1630 fc_frame_free(fp);
1631 } else {
1632 switch (fh->fh_r_ctl) {
1633 case FC_RCTL_BA_RJT:
1634 case FC_RCTL_BA_ACC:
1635 if (ep)
1636 fc_exch_abts_resp(ep, fp);
1637 else
1638 fc_frame_free(fp);
1639 break;
1640 case FC_RCTL_BA_ABTS:
1641 fc_exch_recv_abts(ep, fp);
1642 break;
1643 default: /* ignore junk */
1644 fc_frame_free(fp);
1645 break;
1648 if (ep)
1649 fc_exch_release(ep); /* release hold taken by fc_exch_find */
1653 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1654 * @rx_fp: The received frame, not freed here.
1656 * If this fails due to allocation or transmit congestion, assume the
1657 * originator will repeat the sequence.
1659 static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1661 struct fc_lport *lport;
1662 struct fc_els_ls_acc *acc;
1663 struct fc_frame *fp;
1665 lport = fr_dev(rx_fp);
1666 fp = fc_frame_alloc(lport, sizeof(*acc));
1667 if (!fp)
1668 return;
1669 acc = fc_frame_payload_get(fp, sizeof(*acc));
1670 memset(acc, 0, sizeof(*acc));
1671 acc->la_cmd = ELS_LS_ACC;
1672 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1673 lport->tt.frame_send(lport, fp);
1677 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1678 * @rx_fp: The received frame, not freed here.
1679 * @reason: The reason the sequence is being rejected
1680 * @explan: The explanation for the rejection
1682 * If this fails due to allocation or transmit congestion, assume the
1683 * originator will repeat the sequence.
1685 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1686 enum fc_els_rjt_explan explan)
1688 struct fc_lport *lport;
1689 struct fc_els_ls_rjt *rjt;
1690 struct fc_frame *fp;
1692 lport = fr_dev(rx_fp);
1693 fp = fc_frame_alloc(lport, sizeof(*rjt));
1694 if (!fp)
1695 return;
1696 rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1697 memset(rjt, 0, sizeof(*rjt));
1698 rjt->er_cmd = ELS_LS_RJT;
1699 rjt->er_reason = reason;
1700 rjt->er_explan = explan;
1701 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1702 lport->tt.frame_send(lport, fp);
1706 * fc_exch_reset() - Reset an exchange
1707 * @ep: The exchange to be reset
1709 static void fc_exch_reset(struct fc_exch *ep)
1711 struct fc_seq *sp;
1712 void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1713 void *arg;
1714 int rc = 1;
1716 spin_lock_bh(&ep->ex_lock);
1717 ep->state |= FC_EX_RST_CLEANUP;
1718 if (cancel_delayed_work(&ep->timeout_work))
1719 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
1720 resp = ep->resp;
1721 ep->resp = NULL;
1722 if (ep->esb_stat & ESB_ST_REC_QUAL)
1723 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */
1724 ep->esb_stat &= ~ESB_ST_REC_QUAL;
1725 arg = ep->arg;
1726 sp = &ep->seq;
1727 rc = fc_exch_done_locked(ep);
1728 spin_unlock_bh(&ep->ex_lock);
1729 if (!rc)
1730 fc_exch_delete(ep);
1732 if (resp)
1733 resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1737 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1738 * @lport: The local port that the exchange pool is on
1739 * @pool: The exchange pool to be reset
1740 * @sid: The source ID
1741 * @did: The destination ID
1743 * Resets a per cpu exches pool, releasing all of its sequences
1744 * and exchanges. If sid is non-zero then reset only exchanges
1745 * we sourced from the local port's FID. If did is non-zero then
1746 * only reset exchanges destined for the local port's FID.
1748 static void fc_exch_pool_reset(struct fc_lport *lport,
1749 struct fc_exch_pool *pool,
1750 u32 sid, u32 did)
1752 struct fc_exch *ep;
1753 struct fc_exch *next;
1755 spin_lock_bh(&pool->lock);
1756 restart:
1757 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1758 if ((lport == ep->lp) &&
1759 (sid == 0 || sid == ep->sid) &&
1760 (did == 0 || did == ep->did)) {
1761 fc_exch_hold(ep);
1762 spin_unlock_bh(&pool->lock);
1764 fc_exch_reset(ep);
1766 fc_exch_release(ep);
1767 spin_lock_bh(&pool->lock);
1770 * must restart loop incase while lock
1771 * was down multiple eps were released.
1773 goto restart;
1776 spin_unlock_bh(&pool->lock);
1780 * fc_exch_mgr_reset() - Reset all EMs of a local port
1781 * @lport: The local port whose EMs are to be reset
1782 * @sid: The source ID
1783 * @did: The destination ID
1785 * Reset all EMs associated with a given local port. Release all
1786 * sequences and exchanges. If sid is non-zero then reset only the
1787 * exchanges sent from the local port's FID. If did is non-zero then
1788 * reset only exchanges destined for the local port's FID.
1790 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1792 struct fc_exch_mgr_anchor *ema;
1793 unsigned int cpu;
1795 list_for_each_entry(ema, &lport->ema_list, ema_list) {
1796 for_each_possible_cpu(cpu)
1797 fc_exch_pool_reset(lport,
1798 per_cpu_ptr(ema->mp->pool, cpu),
1799 sid, did);
1802 EXPORT_SYMBOL(fc_exch_mgr_reset);
1805 * fc_exch_lookup() - find an exchange
1806 * @lport: The local port
1807 * @xid: The exchange ID
1809 * Returns exchange pointer with hold for caller, or NULL if not found.
1811 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1813 struct fc_exch_mgr_anchor *ema;
1815 list_for_each_entry(ema, &lport->ema_list, ema_list)
1816 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1817 return fc_exch_find(ema->mp, xid);
1818 return NULL;
1822 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1823 * @rfp: The REC frame, not freed here.
1825 * Note that the requesting port may be different than the S_ID in the request.
1827 static void fc_exch_els_rec(struct fc_frame *rfp)
1829 struct fc_lport *lport;
1830 struct fc_frame *fp;
1831 struct fc_exch *ep;
1832 struct fc_els_rec *rp;
1833 struct fc_els_rec_acc *acc;
1834 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1835 enum fc_els_rjt_explan explan;
1836 u32 sid;
1837 u16 rxid;
1838 u16 oxid;
1840 lport = fr_dev(rfp);
1841 rp = fc_frame_payload_get(rfp, sizeof(*rp));
1842 explan = ELS_EXPL_INV_LEN;
1843 if (!rp)
1844 goto reject;
1845 sid = ntoh24(rp->rec_s_id);
1846 rxid = ntohs(rp->rec_rx_id);
1847 oxid = ntohs(rp->rec_ox_id);
1849 ep = fc_exch_lookup(lport,
1850 sid == fc_host_port_id(lport->host) ? oxid : rxid);
1851 explan = ELS_EXPL_OXID_RXID;
1852 if (!ep)
1853 goto reject;
1854 if (ep->oid != sid || oxid != ep->oxid)
1855 goto rel;
1856 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1857 goto rel;
1858 fp = fc_frame_alloc(lport, sizeof(*acc));
1859 if (!fp)
1860 goto out;
1862 acc = fc_frame_payload_get(fp, sizeof(*acc));
1863 memset(acc, 0, sizeof(*acc));
1864 acc->reca_cmd = ELS_LS_ACC;
1865 acc->reca_ox_id = rp->rec_ox_id;
1866 memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1867 acc->reca_rx_id = htons(ep->rxid);
1868 if (ep->sid == ep->oid)
1869 hton24(acc->reca_rfid, ep->did);
1870 else
1871 hton24(acc->reca_rfid, ep->sid);
1872 acc->reca_fc4value = htonl(ep->seq.rec_data);
1873 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1874 ESB_ST_SEQ_INIT |
1875 ESB_ST_COMPLETE));
1876 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1877 lport->tt.frame_send(lport, fp);
1878 out:
1879 fc_exch_release(ep);
1880 return;
1882 rel:
1883 fc_exch_release(ep);
1884 reject:
1885 fc_seq_ls_rjt(rfp, reason, explan);
1889 * fc_exch_rrq_resp() - Handler for RRQ responses
1890 * @sp: The sequence that the RRQ is on
1891 * @fp: The RRQ frame
1892 * @arg: The exchange that the RRQ is on
1894 * TODO: fix error handler.
1896 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1898 struct fc_exch *aborted_ep = arg;
1899 unsigned int op;
1901 if (IS_ERR(fp)) {
1902 int err = PTR_ERR(fp);
1904 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1905 goto cleanup;
1906 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1907 "frame error %d\n", err);
1908 return;
1911 op = fc_frame_payload_op(fp);
1912 fc_frame_free(fp);
1914 switch (op) {
1915 case ELS_LS_RJT:
1916 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1917 /* fall through */
1918 case ELS_LS_ACC:
1919 goto cleanup;
1920 default:
1921 FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1922 "for RRQ", op);
1923 return;
1926 cleanup:
1927 fc_exch_done(&aborted_ep->seq);
1928 /* drop hold for rec qual */
1929 fc_exch_release(aborted_ep);
1934 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1935 * @lport: The local port to send the frame on
1936 * @fp: The frame to be sent
1937 * @resp: The response handler for this request
1938 * @destructor: The destructor for the exchange
1939 * @arg: The argument to be passed to the response handler
1940 * @timer_msec: The timeout period for the exchange
1942 * The frame pointer with some of the header's fields must be
1943 * filled before calling this routine, those fields are:
1945 * - routing control
1946 * - FC port did
1947 * - FC port sid
1948 * - FC header type
1949 * - frame control
1950 * - parameter or relative offset
1952 static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1953 struct fc_frame *fp,
1954 void (*resp)(struct fc_seq *,
1955 struct fc_frame *fp,
1956 void *arg),
1957 void (*destructor)(struct fc_seq *,
1958 void *),
1959 void *arg, u32 timer_msec)
1961 struct fc_exch *ep;
1962 struct fc_seq *sp = NULL;
1963 struct fc_frame_header *fh;
1964 int rc = 1;
1966 ep = fc_exch_alloc(lport, fp);
1967 if (!ep) {
1968 fc_frame_free(fp);
1969 return NULL;
1971 ep->esb_stat |= ESB_ST_SEQ_INIT;
1972 fh = fc_frame_header_get(fp);
1973 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
1974 ep->resp = resp;
1975 ep->destructor = destructor;
1976 ep->arg = arg;
1977 ep->r_a_tov = FC_DEF_R_A_TOV;
1978 ep->lp = lport;
1979 sp = &ep->seq;
1981 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
1982 ep->f_ctl = ntoh24(fh->fh_f_ctl);
1983 fc_exch_setup_hdr(ep, fp, ep->f_ctl);
1984 sp->cnt++;
1986 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD)
1987 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
1989 if (unlikely(lport->tt.frame_send(lport, fp)))
1990 goto err;
1992 if (timer_msec)
1993 fc_exch_timer_set_locked(ep, timer_msec);
1994 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */
1996 if (ep->f_ctl & FC_FC_SEQ_INIT)
1997 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1998 spin_unlock_bh(&ep->ex_lock);
1999 return sp;
2000 err:
2001 fc_fcp_ddp_done(fr_fsp(fp));
2002 rc = fc_exch_done_locked(ep);
2003 spin_unlock_bh(&ep->ex_lock);
2004 if (!rc)
2005 fc_exch_delete(ep);
2006 return NULL;
2010 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2011 * @ep: The exchange to send the RRQ on
2013 * This tells the remote port to stop blocking the use of
2014 * the exchange and the seq_cnt range.
2016 static void fc_exch_rrq(struct fc_exch *ep)
2018 struct fc_lport *lport;
2019 struct fc_els_rrq *rrq;
2020 struct fc_frame *fp;
2021 u32 did;
2023 lport = ep->lp;
2025 fp = fc_frame_alloc(lport, sizeof(*rrq));
2026 if (!fp)
2027 goto retry;
2029 rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2030 memset(rrq, 0, sizeof(*rrq));
2031 rrq->rrq_cmd = ELS_RRQ;
2032 hton24(rrq->rrq_s_id, ep->sid);
2033 rrq->rrq_ox_id = htons(ep->oxid);
2034 rrq->rrq_rx_id = htons(ep->rxid);
2036 did = ep->did;
2037 if (ep->esb_stat & ESB_ST_RESP)
2038 did = ep->sid;
2040 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2041 lport->port_id, FC_TYPE_ELS,
2042 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2044 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2045 lport->e_d_tov))
2046 return;
2048 retry:
2049 spin_lock_bh(&ep->ex_lock);
2050 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2051 spin_unlock_bh(&ep->ex_lock);
2052 /* drop hold for rec qual */
2053 fc_exch_release(ep);
2054 return;
2056 ep->esb_stat |= ESB_ST_REC_QUAL;
2057 fc_exch_timer_set_locked(ep, ep->r_a_tov);
2058 spin_unlock_bh(&ep->ex_lock);
2062 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2063 * @fp: The RRQ frame, not freed here.
2065 static void fc_exch_els_rrq(struct fc_frame *fp)
2067 struct fc_lport *lport;
2068 struct fc_exch *ep = NULL; /* request or subject exchange */
2069 struct fc_els_rrq *rp;
2070 u32 sid;
2071 u16 xid;
2072 enum fc_els_rjt_explan explan;
2074 lport = fr_dev(fp);
2075 rp = fc_frame_payload_get(fp, sizeof(*rp));
2076 explan = ELS_EXPL_INV_LEN;
2077 if (!rp)
2078 goto reject;
2081 * lookup subject exchange.
2083 sid = ntoh24(rp->rrq_s_id); /* subject source */
2084 xid = fc_host_port_id(lport->host) == sid ?
2085 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2086 ep = fc_exch_lookup(lport, xid);
2087 explan = ELS_EXPL_OXID_RXID;
2088 if (!ep)
2089 goto reject;
2090 spin_lock_bh(&ep->ex_lock);
2091 if (ep->oxid != ntohs(rp->rrq_ox_id))
2092 goto unlock_reject;
2093 if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2094 ep->rxid != FC_XID_UNKNOWN)
2095 goto unlock_reject;
2096 explan = ELS_EXPL_SID;
2097 if (ep->sid != sid)
2098 goto unlock_reject;
2101 * Clear Recovery Qualifier state, and cancel timer if complete.
2103 if (ep->esb_stat & ESB_ST_REC_QUAL) {
2104 ep->esb_stat &= ~ESB_ST_REC_QUAL;
2105 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */
2107 if (ep->esb_stat & ESB_ST_COMPLETE) {
2108 if (cancel_delayed_work(&ep->timeout_work))
2109 atomic_dec(&ep->ex_refcnt); /* drop timer hold */
2112 spin_unlock_bh(&ep->ex_lock);
2115 * Send LS_ACC.
2117 fc_seq_ls_acc(fp);
2118 goto out;
2120 unlock_reject:
2121 spin_unlock_bh(&ep->ex_lock);
2122 reject:
2123 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2124 out:
2125 if (ep)
2126 fc_exch_release(ep); /* drop hold from fc_exch_find */
2130 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2131 * @lport: The local port to add the exchange manager to
2132 * @mp: The exchange manager to be added to the local port
2133 * @match: The match routine that indicates when this EM should be used
2135 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2136 struct fc_exch_mgr *mp,
2137 bool (*match)(struct fc_frame *))
2139 struct fc_exch_mgr_anchor *ema;
2141 ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2142 if (!ema)
2143 return ema;
2145 ema->mp = mp;
2146 ema->match = match;
2147 /* add EM anchor to EM anchors list */
2148 list_add_tail(&ema->ema_list, &lport->ema_list);
2149 kref_get(&mp->kref);
2150 return ema;
2152 EXPORT_SYMBOL(fc_exch_mgr_add);
2155 * fc_exch_mgr_destroy() - Destroy an exchange manager
2156 * @kref: The reference to the EM to be destroyed
2158 static void fc_exch_mgr_destroy(struct kref *kref)
2160 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2162 mempool_destroy(mp->ep_pool);
2163 free_percpu(mp->pool);
2164 kfree(mp);
2168 * fc_exch_mgr_del() - Delete an EM from a local port's list
2169 * @ema: The exchange manager anchor identifying the EM to be deleted
2171 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2173 /* remove EM anchor from EM anchors list */
2174 list_del(&ema->ema_list);
2175 kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2176 kfree(ema);
2178 EXPORT_SYMBOL(fc_exch_mgr_del);
2181 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2182 * @src: Source lport to clone exchange managers from
2183 * @dst: New lport that takes references to all the exchange managers
2185 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2187 struct fc_exch_mgr_anchor *ema, *tmp;
2189 list_for_each_entry(ema, &src->ema_list, ema_list) {
2190 if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2191 goto err;
2193 return 0;
2194 err:
2195 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2196 fc_exch_mgr_del(ema);
2197 return -ENOMEM;
2199 EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2202 * fc_exch_mgr_alloc() - Allocate an exchange manager
2203 * @lport: The local port that the new EM will be associated with
2204 * @class: The default FC class for new exchanges
2205 * @min_xid: The minimum XID for exchanges from the new EM
2206 * @max_xid: The maximum XID for exchanges from the new EM
2207 * @match: The match routine for the new EM
2209 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2210 enum fc_class class,
2211 u16 min_xid, u16 max_xid,
2212 bool (*match)(struct fc_frame *))
2214 struct fc_exch_mgr *mp;
2215 u16 pool_exch_range;
2216 size_t pool_size;
2217 unsigned int cpu;
2218 struct fc_exch_pool *pool;
2220 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2221 (min_xid & fc_cpu_mask) != 0) {
2222 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2223 min_xid, max_xid);
2224 return NULL;
2228 * allocate memory for EM
2230 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2231 if (!mp)
2232 return NULL;
2234 mp->class = class;
2235 /* adjust em exch xid range for offload */
2236 mp->min_xid = min_xid;
2237 mp->max_xid = max_xid;
2239 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2240 if (!mp->ep_pool)
2241 goto free_mp;
2244 * Setup per cpu exch pool with entire exchange id range equally
2245 * divided across all cpus. The exch pointers array memory is
2246 * allocated for exch range per pool.
2248 pool_exch_range = (mp->max_xid - mp->min_xid + 1) / (fc_cpu_mask + 1);
2249 mp->pool_max_index = pool_exch_range - 1;
2252 * Allocate and initialize per cpu exch pool
2254 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2255 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2256 if (!mp->pool)
2257 goto free_mempool;
2258 for_each_possible_cpu(cpu) {
2259 pool = per_cpu_ptr(mp->pool, cpu);
2260 pool->left = FC_XID_UNKNOWN;
2261 pool->right = FC_XID_UNKNOWN;
2262 spin_lock_init(&pool->lock);
2263 INIT_LIST_HEAD(&pool->ex_list);
2266 kref_init(&mp->kref);
2267 if (!fc_exch_mgr_add(lport, mp, match)) {
2268 free_percpu(mp->pool);
2269 goto free_mempool;
2273 * Above kref_init() sets mp->kref to 1 and then
2274 * call to fc_exch_mgr_add incremented mp->kref again,
2275 * so adjust that extra increment.
2277 kref_put(&mp->kref, fc_exch_mgr_destroy);
2278 return mp;
2280 free_mempool:
2281 mempool_destroy(mp->ep_pool);
2282 free_mp:
2283 kfree(mp);
2284 return NULL;
2286 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2289 * fc_exch_mgr_free() - Free all exchange managers on a local port
2290 * @lport: The local port whose EMs are to be freed
2292 void fc_exch_mgr_free(struct fc_lport *lport)
2294 struct fc_exch_mgr_anchor *ema, *next;
2296 flush_workqueue(fc_exch_workqueue);
2297 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2298 fc_exch_mgr_del(ema);
2300 EXPORT_SYMBOL(fc_exch_mgr_free);
2303 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2304 * upon 'xid'.
2305 * @f_ctl: f_ctl
2306 * @lport: The local port the frame was received on
2307 * @fh: The received frame header
2309 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2310 struct fc_lport *lport,
2311 struct fc_frame_header *fh)
2313 struct fc_exch_mgr_anchor *ema;
2314 u16 xid;
2316 if (f_ctl & FC_FC_EX_CTX)
2317 xid = ntohs(fh->fh_ox_id);
2318 else {
2319 xid = ntohs(fh->fh_rx_id);
2320 if (xid == FC_XID_UNKNOWN)
2321 return list_entry(lport->ema_list.prev,
2322 typeof(*ema), ema_list);
2325 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2326 if ((xid >= ema->mp->min_xid) &&
2327 (xid <= ema->mp->max_xid))
2328 return ema;
2330 return NULL;
2333 * fc_exch_recv() - Handler for received frames
2334 * @lport: The local port the frame was received on
2335 * @fp: The received frame
2337 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2339 struct fc_frame_header *fh = fc_frame_header_get(fp);
2340 struct fc_exch_mgr_anchor *ema;
2341 u32 f_ctl;
2343 /* lport lock ? */
2344 if (!lport || lport->state == LPORT_ST_DISABLED) {
2345 FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2346 "has not been initialized correctly\n");
2347 fc_frame_free(fp);
2348 return;
2351 f_ctl = ntoh24(fh->fh_f_ctl);
2352 ema = fc_find_ema(f_ctl, lport, fh);
2353 if (!ema) {
2354 FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2355 "fc_ctl <0x%x>, xid <0x%x>\n",
2356 f_ctl,
2357 (f_ctl & FC_FC_EX_CTX) ?
2358 ntohs(fh->fh_ox_id) :
2359 ntohs(fh->fh_rx_id));
2360 fc_frame_free(fp);
2361 return;
2365 * If frame is marked invalid, just drop it.
2367 switch (fr_eof(fp)) {
2368 case FC_EOF_T:
2369 if (f_ctl & FC_FC_END_SEQ)
2370 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2371 /* fall through */
2372 case FC_EOF_N:
2373 if (fh->fh_type == FC_TYPE_BLS)
2374 fc_exch_recv_bls(ema->mp, fp);
2375 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2376 FC_FC_EX_CTX)
2377 fc_exch_recv_seq_resp(ema->mp, fp);
2378 else if (f_ctl & FC_FC_SEQ_CTX)
2379 fc_exch_recv_resp(ema->mp, fp);
2380 else /* no EX_CTX and no SEQ_CTX */
2381 fc_exch_recv_req(lport, ema->mp, fp);
2382 break;
2383 default:
2384 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2385 fr_eof(fp));
2386 fc_frame_free(fp);
2389 EXPORT_SYMBOL(fc_exch_recv);
2392 * fc_exch_init() - Initialize the exchange layer for a local port
2393 * @lport: The local port to initialize the exchange layer for
2395 int fc_exch_init(struct fc_lport *lport)
2397 if (!lport->tt.seq_start_next)
2398 lport->tt.seq_start_next = fc_seq_start_next;
2400 if (!lport->tt.seq_set_resp)
2401 lport->tt.seq_set_resp = fc_seq_set_resp;
2403 if (!lport->tt.exch_seq_send)
2404 lport->tt.exch_seq_send = fc_exch_seq_send;
2406 if (!lport->tt.seq_send)
2407 lport->tt.seq_send = fc_seq_send;
2409 if (!lport->tt.seq_els_rsp_send)
2410 lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2412 if (!lport->tt.exch_done)
2413 lport->tt.exch_done = fc_exch_done;
2415 if (!lport->tt.exch_mgr_reset)
2416 lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2418 if (!lport->tt.seq_exch_abort)
2419 lport->tt.seq_exch_abort = fc_seq_exch_abort;
2421 if (!lport->tt.seq_assign)
2422 lport->tt.seq_assign = fc_seq_assign;
2424 if (!lport->tt.seq_release)
2425 lport->tt.seq_release = fc_seq_release;
2427 return 0;
2429 EXPORT_SYMBOL(fc_exch_init);
2432 * fc_setup_exch_mgr() - Setup an exchange manager
2434 int fc_setup_exch_mgr(void)
2436 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2437 0, SLAB_HWCACHE_ALIGN, NULL);
2438 if (!fc_em_cachep)
2439 return -ENOMEM;
2442 * Initialize fc_cpu_mask and fc_cpu_order. The
2443 * fc_cpu_mask is set for nr_cpu_ids rounded up
2444 * to order of 2's * power and order is stored
2445 * in fc_cpu_order as this is later required in
2446 * mapping between an exch id and exch array index
2447 * in per cpu exch pool.
2449 * This round up is required to align fc_cpu_mask
2450 * to exchange id's lower bits such that all incoming
2451 * frames of an exchange gets delivered to the same
2452 * cpu on which exchange originated by simple bitwise
2453 * AND operation between fc_cpu_mask and exchange id.
2455 fc_cpu_mask = 1;
2456 fc_cpu_order = 0;
2457 while (fc_cpu_mask < nr_cpu_ids) {
2458 fc_cpu_mask <<= 1;
2459 fc_cpu_order++;
2461 fc_cpu_mask--;
2463 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2464 if (!fc_exch_workqueue)
2465 goto err;
2466 return 0;
2467 err:
2468 kmem_cache_destroy(fc_em_cachep);
2469 return -ENOMEM;
2473 * fc_destroy_exch_mgr() - Destroy an exchange manager
2475 void fc_destroy_exch_mgr(void)
2477 destroy_workqueue(fc_exch_workqueue);
2478 kmem_cache_destroy(fc_em_cachep);